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Abstract

Semantic segmentation is one of the most challenging computer vision problems,
which involves a pixel-wise classification to partition the input image into semanti-
cally consistent regions. Its relevance comes from the significant role it plays in many
real world applications, such as autonomous driving or medical imaging.
Recently, the development of fully convolutional neural networks has proven to be
crucial to successfully address the semantic segmentation task. However, while FCNs
have shown remarkable performance when employed in dense image classification,
their success is strongly dependent on the availability of huge amounts of training
data, which has to be annotated through a laborious work.
Moreover, convolutional networks usually are not capable of generalizing what they
learn in a specific context to new environments, which may result into a noticeable
accuracy drop when data statistical distribution is subject to a shift between train and
test phases. This shortcoming, for instance, prevents the usage of synthetic training
datasets with easily accessible computed-generated annotations, given that, despite
the recent advances in computer graphics allowing photo-realistic image generation,
the inherent domain discrepancy with real data causes a decrease of model perfor-
mance when final predictions are computed on real images.
Our goal is to address these limitations by implementing an unsupervised domain
adaptation framework specifically designed for the semantic segmentation task and
tested in a synthetic-to-real adaptation scenario. First, we propose a pixel-level adap-
tation strategy based on a cross-domain image mapping to transfer visual attributes
from an unlabelled target dataset to a fully annotated source one. In this way we are
able to exert a form of target supervision by resorting to adapted source examples still
carrying useful annotations. We also add a semantic consistency constraint to force
generated images to share the same semantic content of their original versions, so
that source label maps can be safely transferred to the corresponding adapted data.
In a second moment, we introduce an additional feature-level adaptation to enforce
feature distribution alignment between source and target domains. For both the im-
age and feature level adaptation tasks we resort to an adversarial learning strategy
based on the architecture of generative adversarial networks. Finally, we perform a
single stage model optimization where all the components of our domain adaptation
framework are simultaneously trained.
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1
Introduction

The development of deep learning architectures has been the enabling factor for the
solution of complex tasks in the machine learning and computer vision fields. Many
advanced real-world systems depend on some level of comprehension of the surround-
ing environment, usually based on the analysis of visual data. On this regard, visual
scene understanding approaches aim at extracting the semantic content of a scene,
and this can be done at different abstraction levels. Image classification, for example,
lean on the discovery of global scene properties, while more advanced tasks, such as
object detection or semantic segmentation, are more focused on relations between
local image components at a pixel or instance levels.

Until not so many years ago, visual understanding problems were addressed resorting
to complex algorithms with multiple stages. A feature extractor module was employed
to detect visual descriptors (e.g. SIFT or Haar wavelets), which were then provided
to a feature classifier (e.g. SVM or Random Forest) for the final output classification.
Recently, the adoption of deep convolutional neural networks (DCNNs) has brought
a huge performance boost in most computer vision tasks. These deep network mod-
els consist of a large number of elementary computing units organized in a layered
structure, to form a highly non-linear and end-to-end trainable framework able to
effectively deal with the whole feature extraction and classification process in a single
shot.
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The significant amount of complexity in terms of millions of learnable parameters,
despite playing a fundamental role in the solution of advanced tasks, is a critical is-
sue for deep neural networks, especially when compared with previous methods based
on hand-crafted descriptors. Not surprisingly, in fact, a great contribution to their
success has to be attributed to the availability of large volumes of annotated data
from public datasets, which turned out crucial to avoid overfitting phenomena and
enable their full potential. Unluckily, building such datasets could be tremendously
expensive and time consuming, since it usually requires a huge human effort during
data generation and labelling processes. This is especially true when dealing with
dense prediction problems, such as semantic segmentation, which entails a pixel-wise
labelling action.

A viable solution to the training data shortage could be to take advantage of fully
labelled (and possibly more easily accessible) samples from a source domain different
from the target one, on which we would like to perform our final predictions. Partic-
ularly appealing is, for instance, the use of synthetic data for training purposes. Not
only computer generated imagery has reached in the last few years a high level of
realism (thanks to non-stop progress in computer graphics), but its exploitation also
allows a scalable and almost effortless dataset generation and labelling, as well as a
total control over training data properties.
A few examples of real-world applications that could benefit from the availability
of multi-domain data are autonomous driving, for which several synthetic datasets
have been created in order to address semantic understanding of urban scenes, and
video-surveillance systems, since it is possible to harness multiple internet sources to
collect security cameras footage. Medical applications could make use of additional
training information as well, given that sample annotation is really expensive due to
medical expertise requirements.

Unfortunately, deep neural networks tend to fail to generalize learned knowledge to
new domains and even a minor change in the statistic distribution between the source
and target data could strongly degrade their prediction effectiveness. So, for exam-
ple, if we train our predictor only on synthetic data (source domain) and test it in a
real-world environment (target domain), it will probably have low performance due
to an input distribution gap between the two phases. Therefore a domain adaptation
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process is needed, where domain adaptation can be defined as the task of learning a
predictor that performs optimally even in case of domain discrepancy between source
and target samples. In addition, an adaptation based only on source ground-truth
information (i.e. using no labels for the target domain) is called unsupervised domain
adaptation.

Our work is focused on unsupervised domain adaptation specifically applied to seman-
tic segmentation. As source domain we consider synthetic images from a computer
generated dataset, which can reasonably assumed to be fully annotated. Then, our
objective is to learn a segmentator with good prediction performance on real-world
test pictures that carry the same semantic content of synthetic ones. Moreover, the
training procedure is based only on source supervision, which means that we com-
pletely ignore target label maps (even if available) until the final testing phase.
The approach we adopt combines a generative process to perform a cross-domain
image translation and an additional feature alignment operation, both carried out by
means of adversarial learning [2].
First, following the framework proposed by J. Zhu et al. [3], we make use of an image-
to-image translation network, with the purpose of discovering a mapping from the
source domain to the target one. Domain adaptation is then performed by supervis-
edly training the semantic segmentator on labelled source examples that have been
previously translated into the target domain.
Secondly, we extend the work of [3] with the introduction of a semantic consistency
loss [4] to preserve the semantic content of images during the cross-domain transla-
tion. In particular, a semantic segmentator is inserted inside the original framework
and used to measure the semantic distance between original and transformed exam-
ples.
Finally, we introduce an adversarial feature framework consisting of two additional
feature discriminators. They work as their image-level counterparts, while being fed
with semantic features rather than elements from the image space. The objective is
to further improve the degree of adaptation reached by adopting just a generative
approach.

The thesis is organized as follows: in Chapter 2 we describe convolutional neural
networks and existing CNN-based approaches to solve the image classification and
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semantic segmentation tasks, in Chapter 3 we introduce the concept of adversarial
learning and its application to solve both generative and domain adaptation problems
with a specific focus on semantic segmentation, in Chapter 4 we propose in detail our
model together with the optimization strategies we adopt to train it and finally in
Chapter 5 and 6 we show some experimental results and draw conclusions.
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2
Semantic Segmentation

Semantic segmentation is one of the most challenging problems in the computer vision
field. It combines image segmentation with object detection in order to produce a
partitioning of the input image into semantically uniform regions. In practice, the
task is to assign a class label to every pixel inside the image, according to the content
which is represented. The result of the labelling operation is a dense and structured
output, since it involves multiple pixel-level predictions and requires the recognition
of spatial relations between image components.

Figure2.1:Examples of semantic segmentation of urban scenes.
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Segmentation networks are often employed in complex computer vision systems for
real-world applications. The availability of high quality images, which can be acquired
at low cost from camera systems with essentially no location constraints, naturally
comes with the need of tools able to interpret and understand their semantic content.
One popular application is autonomous vehicles, which strongly rely on extremely
accurate vision-based algorithms for tasks such as road segmentation, pedestrian de-
tection and traffic sign recognition in order to safely navigate the urban environment.
Other examples are video-surveillance and robotic systems, which require the un-
derstanding of the surrounding environment and the precise identification of scene
components. Those applications could also benefit from scene geometry information
in the form of depth maps, to be added to the color images as input of the segmen-
tation model.

Learning problems based on visual information have traditionally been addressed as
two-staged processes by performing feature extraction and classification separately.
However, it’s only with the spreading of deep learning frameworks in the past decade
that many computer vision problems have been successfully solved. Nowadays, state-
of-the-art semantic segmentation models are built upon convolutional neural networks
(CNNs), which have been successfully applied to the image classification task, and
more specifically on their extension into a fully convolutional form (FCNs). In the
next sections we will briefly introduce deep neural networks, and in particular their
convolutional reinterpretation. We will also review some convnet-based approaches
in the context of image classification and semantic segmentation.

2.1 Convolutional Neural Networks

2.1.1 Artificial Neural Networks

Artificial neural networks (ANNs) have been developed to simulate the learning pro-
cess in the human brain. They are based on a simple computing unit called neuron,
which takes multiple input values and performs their weighted sum. In addition,
a non linear activation function is applied to get the final output. More than one
elemental unit connected together form a neural network, by which in principle it’s
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possible to model a wide range of complex non-linear functions relating the net input
with its output. In figure 2.2 we report a graphical representation of an artificial
neuron.

Figure2.2:Scheme of an artificial neuron.

The most common network structure is the multi-layer feed-forward framework: neu-
rons are arranged in layers and each node (except for the input ones) is fed with the
outputs from the previous stage. A key feature of ANNs is the ability to learn a
specific function given a sufficient amount of input-output observations. The learn-
ing process consists in finding the best values of the network weights to match those
observations and it is usually performed by means of the back-propagation algorithm
(section 2.1.3) [5].

2.1.2 CNN Architecture

Convolutional neural networks are a special class of ANNs, particularly suitable to
process image data thanks to their capability of performing spatial filtering. Essen-
tial CNN features are local connectivity and weight sharing: each neuron is connected
to a relatively small number of other neurons from the previous layer and weights
are shared by different elemental units of the same layer. Both properties combined
allow the network to apply multiple convolutional operations with learnable kernels
and generate feature maps as intermediate outputs. Usually, inside a single convolu-
tional layer several feature maps are jointly produced as a result of multiple filtering
operations applied simultaneously.

More formally, each layer takes in input a 3D tensor of size H × W × D (which
corresponds to the input image for the first layer or alternatively to a collection of
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intermediate feature maps) and produces an output of size H ′ × W ′ × D′, by con-
volving the input with D′ filters of size K1 ×K2 ×D. The amount of input padding
and the stride parameter, defined as the interval at which filters slide through the
input volume, determine the actual output spatial dimensions H ′ and W ′. Similar
to ANNs, activation functions are applied on the convolution output to introduce
non linearities. A popular solution involves the ReLU activation, which behaves like
an identity function in correspondence of positive input values, while blocking the
negative ones.
An additional dimensionality reduction is achieved by a sub-sampling action carried
out by pooling layers. The result is an increased robustness against noise and, at the
same time, a drop of the computational complexity.
The feature maps extracted by a concatenation of multiple convolutional and pooling
stages are fed to one or more fully connected layers (with the inevitable loss of spatial
information) and a problem-dependent classifier (a softmax function for example) is
employed to compute the final prediction. The typical CNN architecture is shown in
figure 2.3.

Figure2.3:An example of CNN architecture.

Convolutional neural networks are capable of extracting hierarchies of features. Shal-
low layers have access to local information, therefore are focused on image details
at low-level and are able to capture simple abstractions. Going deeper inside the
network, features loose spatial information in exchange for a more complex under-
standing and a better invariance to input transformations. The ability of effectively
and automatically extract meaningful features is fundamental for CNNs to success-
fully learn models in many computer vision applications.
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2.1.3 Training Procedure

Training a CNN means optimizing a task-dependent loss function L(θ) with respect
to the network parameters θ ∈ Rd. The most popular optimization strategies are
gradient-based and rely on the back-propagation algorithm. First, input samples are
fed to the network and predictions are computed. Then, the error information, which
measures the mismatch between the expected and actual outputs and is measured
by the loss function, is back-propagated through the network in the form of loss gra-
dients with respect to weights and biases ∇θJ (θ). Finally, network parameters are
updated moving in the opposite direction of the the computed gradient.
The update step can be executed following different variations of the standard gradi-
ent descend approach:

θ = θ − η · ∇θJ (θ) (2.1)

where the learning rate η controls the size of the update and the gradient is cal-
culated over the entire training set. A popular variant, called stochastic gradient
descent (SGD), speeds up the training procedure by executing an update for each
training example at the price of higher instability. A trade-off between balance and
speed is achieved by the mini-batch gradient descent strategy, for which the update
is performed every time the network sees a subset of the training data.
To reduce oscillations typical of SGD, a momentum method has been introduced.
The update step can be written as:

vt = γ · vt−1 + η · ∇θJ (θ) (2.2)

θ = θ − vt (2.3)

where the exponential moving average of the gradient vt is used in place of the
gradient itself. Another widely used optimization algorithm is the Adaptive Moment
Estimation (Adam) [6], which is a further extension of SGD with momentum with
the following update rule:

θ = θ − η√
m̂t + ϵ

· v̂t (2.4)

where v̂t and m̂t are bias-corrected estimates of respectively the first and second
moment of the gradient. An exponential moving average and a rescaling operation
are used to compute v̂t and m̂t. Moreover, β1 and β2 are the hyper-parameters
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controlling the exponential rate decay for respectively the first and second moment
estimate.

2.2 From Classification to Semantic Segmentation

2.2.1 Image Classification with CNNs

The first work to show the potentialities of convolutional neural networks is the one
proposed by LeCun et al. [7] (1989), who exploit CNNs to perform digit classification.
Even though the original LeNet model [7] was composed of very few layers with a
relatively small number of parameters, major performance constraints were imposed
by hardware limitations.

The first popular CNN implementation is the AlexNet [8], proposed by Krizhevesky
et al. in 2012. It won with impressive results the ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) [9] in that year, performing significantly better than tra-
ditional machine learning and computer vision approaches for visual recognition and
classification tasks. The AlexNet architecture is similar to the LeNet one, with an
increased number of convolutional layers and multiple filters for each of them.

Showing that depth in CNNs is a critical factor, the VGG network [10] has been
proposed by Simonyan et al. in 2014. The main structure resembles the one of the
original AlexNet, but only 3× 3 convolutions are employed and the total amount of
filters is largely increased. The VGG model is commonly used as a backbone feature
extractor for many advanced applications, such as semantic segmentation.

The GoogleNet [11] architecture designed by Szegedy et al. is the winner of the
ILSVRC in 2014. Driven by the idea of capturing sparse correlation patterns in con-
volutional structures, a new inception module with convolutions of different kernel
sizes is introduced. An improved and more efficient version of the module also incor-
porates 1x1 convolutions for dimensionality reduction purposes. Hence, the resulting
GoogleNet model is a stack of inception layers with only a total of 7M parameters,
far less than the AlexNet (60M) and VGG-19 (138M) solutions.
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The concept of residual connection is introduced in the CNN framework by He et
al. with the ResNet architecture [12] in 2015. A generic residual block receives the
output of the previous layer, performs a series of operations (which depend on the
specific architecture) and returns the sum of the intermediate result with the original
input. By extension, a residual network is a composition of several residual blocks.
The diagram of a basic residual module is reported in figure 2.4.

Figure2.4:Residual block.

The key property of residual connections is that they provide a better gradient preser-
vation during the back-propagation step, which is crucial for an effective network
training. This allows to successfully design and implement ultra-deep frameworks,
while keeping the complexity under control.

2.2.2 Semantic Segmentation with CNNs

Convolutional neural networks, as defined in the most popular architectures, output
a single vector containing the discrete probability distribution for a set of pre-defined
classes. For this reason, they are suitable to perform non spatial predictions, such as
whole-image classification. On the contrary, semantic segmentation can be seen as
an extension of the image classification problem, where global semantic information
must be fused with local spatial information to perform a pixel-wise dense prediction.
Actually, it would be possible to modify the CNN structure to get a pixel-wise pre-
diction (by changing the configuration of the final fully connected layer for example),
but this would increase a lot the model complexity, thus making the optimization
computationally infeasible.
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A solution that has proven to be effective to address the semantic segmentation task
is the conversion of CNNs into a fully convolutional form, capable of recovering spa-
tial knowledge from coarse features extracted by the convolutional layers with the
help of a decoder module.
The work of Long et al. [13] is the first one to come up with an end-to-end trainable
fully convolutional network (FCN) for the segmentation task. Their idea is to ex-
ploit representations extracted by a pre-trained classification network (the VGG, for
instance), which is adapted in order to accept an input of arbitrary size and produce
a prediction map of the same dimension of the input. First of all, fully connected
layers are reinterpreted as convolutions with kernels the size of the input activation
map and with as many filters as the number of neurons in the original layer. This
essentially removes any constraint on the input dimension, while making the output
no longer a single vector but a tensor with coarse spatial information. Those features
are then upsampled by a deconvolution layer, which performs a learnable interpola-
tion to obtain a dense segmentation. Additionally, skip connections are introduced
to provide the final dense classifier with information of low-level fine details from
shallower feature maps. A simple FCN scheme is shown in figure 2.5.

Figure2.5:An example of fully convolutional network (FCN).

Fully convolutional networks, as defined in the original form [13], tend to overlook
global information: even though deep layers in FCNs usually have large receptive
fields filling the entire input image, their practical coverage could be much smaller
and thereby not able to fully capture global context [14]. To overcome this shortcom-
ing, Liu et al. [14] suggest a simple extension of the FCN model (called ParseNet)
based on the addition of scene-level context to feature maps. In particular, global
average pooling is applied on a generic layer output to extract a context vector, which
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is then unpooled and fused to the associated activation map before being fed to the
next layer. Furthermore, L2 regularization and scale factors are employed to success-
fully combine global features at different scales.
Following the same line of work, Zhao et al. [15] propose the pyramid scene parsing
network (PSPNet). The main feature of the PSPNet is the presence of a pyramid
pooling module before the classification layer: since global descriptors may not hold
enough representational power when highly detailed input images are provided, ad-
ditional multi-scale information is collected from sub-regions of different sizes by
multiple pooling operations. The resulting pooled maps are then fused together for
the final prediction. A graphical representation of the PSPNet is shown in figure 2.6.

Figure2.6:PSPNet with pyramid pooling module.

An alternative approach to convert CNNs into a fully convolutional form relies on
a modified version the standard convolution, called atrous convolution [16, 17, 18].
The idea is to increase the size of convolutional filters by creating holes inside ker-
nels and filling them with zeros. This solution effectively enlarges the receptive field
of neurons (with no additional complexity), and partially removes the subsampling
requirements, which are essential in CNNs for learning at multiple abstraction levels,
but are also responsible of harmful reductions of signal resolution.
In this direction, Chen et al. develop the DeepLab architecture [16], based on the re-
purposing of the VGG-16 classification network in a fully convolutional fashion, with
the introduction of the atrous convolution and a fixed bilinear upsampling in place
of the original transposed convolution. On top of that, a fully connected Conditional
Random Field (CRF) is appended to the FCN output to improve the dense prediction
accuracy on low-level details (e.g. object boundaries).
A second version of the DeepLab [17] is provided with an atrous spatial pyramid pool-
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ing (ASPP) module for multi-scale context capturing (following the same concept of
[15]), equipped with multiple parallel atrous convolutions at different rates. Finally,
in a third variant (DeepLabV3) [19] the ASSP module is revisited with the addition
of a 1× 1 convolution and a global pooling stage to extract image-level features and
the CRF is removed. In figure 2.7 we report the DeepLabV3 architecture.

Figure2.7:DeepLabV3 with ASPP module.

A major weakness of FCNs is the heavy computational requirements for both training
and inference stages due to the large amount of learnable parameters. This is a strong
limitation for mobile and embedded vision applications affected by strict hardware
constraints or for complex frameworks which are built upon more than one network
connected together (such as the increasingly popular adversarial architecture)
In this regard, the MobileNetV2 recently proposed by Sandler et al. [1] achieves
state-of-the-art performance of mobile networks in multiple computer vision tasks,
including semantic segmentation. Its design is based on the previous version of the
MobileNet [20]. The primary component is the depthwise separable convolution,
which is responsible for both the efficiency and the reduced weight of the archi-
tecture. It is split into two phases: first a depthwise convolution performs several
individual single-channel lightweight filterings, then a pointwise 1 × 1 convolution
linearly combines input channels to construct the output features.
Let hi, wi be the input height and width, di, dj be the input and output num-
ber of channels and k be the size of the filter. Then, while the standard convo-
lution has a computational cost proportional to hi · wi · di · dj · k · k, where we
assume that spatial dimensions hi, wi are kept constant and dj square filters of
size k × k × di are applied, the depthwise and pointwise operations summed to-
gether result in a cost of hi · wi · di · (k2 + dj). This leads to a reduction factor of
(hi ·wi ·di ·dj ·k ·k)/(hi ·wi ·di · (k2 + dj)) = k2dj/ (k

2 + dj) ≈ k2 (assuming k2 ≪ dj)
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in terms of number of parameters with respect to an identical solution based on the
basic convolution.

The MobileNetV2 also introduces the inverted residual blocks with linear bottle-
neck (figure 2.8): a low-dimensional input representation is first expanded with a
pointwise convolution into a high-dimensional space and then re-projected back after
that a depthwise convolution based filtering has been applied. As described in section
2.2.1, a residual connection is built between input and output maps.
To address the semantic segmentation task, the MobileNetV2 has been inserted as
the backbone feature extractor inside the DeepLabV3+ model [21]. The MobileNet
combined with an ASPP module forms the encoder, while a light decoder with a few
convolutional layers fuses features from the encoder output with intermediate repre-
sentations for the final prediction.
In our work we resort to the MobilenetV2 network embedded in the DeeplabV3+
framework [21], as it offers a good trade-off between segmentation performance and
memory occupation.

Figure2.8:MobileNetV2 inverted residual.
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3
Domain Adaptation

As extensively discussed in Chapter 2, deep convolutional networks have brought
significant improvements in a wide range of computer vision tasks, such as image
classification and semantic segmentation. Nonetheless, their success is strictly re-
lated to the availability of massive amounts of labelled data. Unfortunately, building
such datasets can be quite cumbersome, especially when the collection of highly de-
tailed dense manual annotations is required (e.g. semantic segmentation). At the
same time, deep models suffer from poor generalization performance, making so that
it’s not possible to directly transfer acquired knowledge from a source domain where
labels are plentiful or easily accessible to a target domain lacking of sufficient anno-
tations.

Domain adaptation presents itself as a possible solution to the annotated data short-
age. Let X be the input space and Y be the label space, and assume the existence of
a source and a target joint distributions (that we denote respectively as S(x, y) and
T (x, y)) from which we can drawn source and target labelled samples (xS, yS) and
(xT , yT ). Thus, the domain adaptation problem can be stated as the task of learning
a predictor h : X → Y that performs well on target data when target labels are
available in a small quantity or even missing, by resorting to source annotations.
In our work we address the specific case of unsupervised domain adaptation, therefore
we assume complete lack of target supervision.
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Unsupervised domain adaptation in deep learning has been traditionally addressed
by identifying a measure of domain dissimilarity between source and target distri-
butions. Some works refer to the Maximum Mean Discrepancy (MMD), such as
[22, 23, 24]. Tzeng et al. [22] introduce an adaptation layer and a domain confusion
loss in the standard CNN architecture [8] to learn domain invariant representations.
In [23, 24] the degradation in transferability of application-specific hidden represen-
tations is tackled by matching mean domain embeddings in a new space. A different
approach relies on correlation alignment, taking into account second order statistic
dataset properties [25, 26]. A key factor for the majority of these works is that deep
adaptation is performed end-to-end by assisting the task loss with a supplementary
adaptation objective. Furthermore, no restriction to a specific deep architecture is
assumed.

Game-changer is the introduction of adversarial learning in the context of domain
adaptation. The adversarial approach, in fact, has proven to be suitable to success-
fully perform representation alignment both at feature and pixel levels. In the next
sections we will discuss the Generative Adversarial Network (GAN) model [2] (the
first to propose the adversarial framework), while briefly introducing the more gen-
eral case of generative networks. We will also describe the image-to-image translation
task, and its connection to domain adaptation. Finally, we will illustrate some main
contributions in literature to adversarial domain adaptation, and in particular we will
focus on adaptation techniques applied to semantic segmentation.

3.1 Generative Networks

Generative models are based on the evaluation of complex probability distributions.
In other words, given samples drawn according to an unknown probability distribu-
tion pdata, the objective is to learn a representation of that specific pdata.
Deep generative frameworks built upon explicit probability estimation usually are
very difficult to be trained with the standard back-propagation algorithm due to
problematic gradient computations. Nonetheless, explicit density models that keep
computational tractability have been successfully developed, and they usually rely on
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particular structures that provide that tractability or depend on manageable approx-
imations of the likelihood function [27, 28].
Another solution that has been pursued by a different line of work is to avoid explicit
estimation of probability distributions by adopting an implicit density computation.
On this direction, we report the well known work of Goodfellow et al. [2]. The key
contribution of [2] is the introduction of the concept of adversarial learning, which
is employed in the original paper to address the generative task, but has been suc-
cessfully applied to solve a wide range of different problems, such as semi-supervised
learning and unsupervised domain adaptation.
In the next sections we will describe the Generative Adversarial Network (GAN)
model from [2]. We will also discuss a particular case of generative task, that is
image-to-image translation, which involves input transformation in place of image
synthesis from scratch. It constitutes, together with the adversarial technique, a
fundamental component in our domain adaptation framework.

3.1.1 Generative Adversarial Networks

The generative adversarial framework can be thought as a game between two players,
a generator and a discriminator. The generator has to learn to produce data with
the same statistical distribution of samples from a training dataset. To do so, it is
paired with a discriminator, which has the goal of understanding when input data
comes from the original set and when instead it has been generated. At the same
time, the generator is trained to fool the discriminator by creating samples that look
authentic.
The cooperation (or competition) between the two components is essential to success-
fully solve the generative task: the generator is helped by the discriminator in order
to improve the realism of synthesized samples, while the discriminator enhances its
prediction performance with the support of an accurate generative action. Balance
during the learning process is also fundamental: a discriminator or a generator be-
coming too strong prevents the other player (and in turn itself) from learning useful
information and provokes model collapse. However, when the training procedure is
successfully carried out, the generator should be able to create samples statistically
very similar from the training ones.
More in details, the generator corresponds to a differentiable function G (z;θG), where
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Figure3.1:Architecture of the Generative Adversarial Network.

we indicate θG as its learnable parameters. In the original GAN, when G is provided
with noise vectors z ∼ pz (z), it returns generated samples x ∼ pG (x) from a distri-
bution pG. Extensions of the adversarial model have also been proposed, where G is
supplied with different types of input information, such as directly with data from a
domain correlated with the output space.
The objective of G is to learn an unknown probability distribution pdata over x when
only individual samples x ∼ pdata (x) from a training dataset are available, in order
to make pG coincide with pdata. The discriminator D (x;θD) is defined as a differ-
entiable function as well, parametrized by θD. When it is fed with a sample x, its
output represents the probability that x comes from the training set (x ∼ pdata (x))
rather than the set of generated data (x ∼ pG (x)). Both G and D functions are
commonly implemented as multilayer perceptrons, but it’s possible to extend the ad-
versarial framework to deep convolutional neural networks (DCGANs) [29].

The training procedure requires the definition of the two cost functions J (G)(θG,θD)

and J (D)(θG,θD), one for each player, which are directly related to the objectives of
G (fool D) and D (distinguish real from fake samples). Since each player’s objective
involves the other player’s parameters, the cost functions depend on both G and D.
Additionally, the simultaneous minimization of J (G)(θG,θD) and J (D)(θG,θD) corre-
sponds to a game. Hence, the solution is given by a Nash equilibrium, which is a
tuple (θ∗

G,θ
∗
D) identifying a local minimum of J (G) with respect to θG and a local

minimum of J (D) with respect to θD.
In the original paper a zero-sum game is proposed to model the adversarial frame-
work. In particular, it is assumed that the sum of the costs of G and D is always

20



zero, so that we have J (G) = −J (D). A single value function V (G,D) is then defined
and a min-max game is played by the generator and discriminator:

min
G

max
D

V (D,G) = Ex∼pdata [log (D(x))] + Ez∼pz(z) [log(1−D(G(z)))] (3.1)

where a standard binary cross-entropy cost is employed. By maximizing V , the dis-
criminator seeks to bring D(x) close to 1 and D(G(z)) close to 0, that corresponds
to perfect sample recognition. On the other side, a minimization of V with respect to
G entails a value of D(G(z)) that tends to 1, which implicates a completely deceived
discriminator. Provided that G and D have enough capacity (i.e. a sufficient network
complexity), the solution of the min-max game leads to D(x) = 1/2 for every sample
x. In this scenario pG = pdata, so that the generative task is solved.
The min-max cross-entropy cost in practice is not working well. This is due to sat-
uration effects that appear during the initial training stages when G is not able
yet to produce convincing samples and D is always providing correct predictions
with high confidence, which as a result induces vanishing generator gradients (the
log(1 − D(G(z))) term is near 0). As a solution to this problem, the authors of [2]
propose to split the min-max game into two alternating optimization processes with
separate cost functions for G and D, in order to generate stronger gradients.

The GAN model is capable of learning a structured loss in the form of a learnable
discriminator, which guides the generative network in its optimization procedure. For
this reason, the objective function can be thought as automatically adapting to the
specific context, removing, in fact, the necessity to manually design complex losses.
Therefore, the adversarial learning introduced in [2] can be extended and adjusted
to address multiple tasks that would normally require different types of application-
specific objectives.

3.1.2 Image‐to‐Image Translation

Image-to-image translation is a class of generative techniques where the objective is
to learn a function that maps images across domains. The idea is to extract charac-
teristics peculiar to a specific set of images and transfer those properties to a different
data collection. In other words, the same scene is converted from one representation
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to another.
In principle, many computer vision tasks could fall under the category of image-to-
image translation problems. For instance, semantic segmentation could be modelled
as a domain mapping application, where the goal is to learn a function converting
images from their original shape to label maps containing semantic information. Sim-
ilarly, vision tasks such as edge detection, super-resolution and image colorization can
be seen as image-to-image translations, since they involve pixel-level predictions.
In our domain adaptation framework we employ an image-to-image translation block
with a style transfer purpose: both domains among which the mapping is performed
comprise realistic urban scenes. Our goal, in fact, is to transfer visual attributes from
the target domain to the source one, while preserving source semantic information.

In a more formal definition, the image-to-image translation task aims at discover-
ing a joint distribution of images from different domains. In a supervised setting
pairs of corresponding images are available, whereas in the unsupervised scenario
only individual images can be accessed from independent sets. The second case is
more challenging, but at the same time more practical, since it doesn’t require the
generation of expensive training datasets. Obtaining couples of matching samples,
in fact, can be quite problematic (e.g. for graphic tasks as artistic stylization) or
even doesn’t constitute a well-defined assignment (e.g. for object transfiguration).
Unsupervised image-to-image translation is then defined as the task of learning a
joint image distribution when only marginal distributions from single domains are
accessible. In our work we resort to unsupervised domain mapping, as no matching
pairs from source and target domains are at our disposal.

Gatys et al. [30, 31] are the first to apply convolutional neural networks to address
image style transfer. They propose the Neural Algorithm of Artistic Style for artistic
stylization (2015). Activations from high-level layers of a pre-trained VGG network
[10] are used to capture the content of an input image, whereas feature statistic at
multiple representation levels provide texture information. The generative process
is then guided by a content loss, which measures the distance between features ex-
tracted from the input image and a content-target image, and a style loss, which
forces statistical alignment in terms of feature correlation between the input image
and a style-target image. The synthesized picture should possess the content and the
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style of the two target examples.
To overcome the excessive computational burden of the neural style transfer algorithm
[30, 31], Johnson et al. [32] split the framework into a trainable generative block and
a pre-trained convolutional network for image classification to achieve real-time im-
age translations. A perceptual loss is also accompanied by a per-pixel loss to achieve
better stylization performance.
Despite reaching impressive results in artistic stylization, the methods introduced
above suffer from the presence of unpleasant artifacts when the synthesized images
must appear as real photos. To solve this problem, photorealistic stylization algo-
rithms have been developed [33, 34], usually based on additional refinement steps
to improve the results of an initial style transfer stage. For instance, the method
suggested by [34] relies on a smoothing action that effectively removes spacial incon-
sistencies, while causing a considerable increase of the running time.

Image-to-image translation represents a more general problem compared to image
style transfer: instead of focusing on individual images carrying content and style
information, image-to-image translation involves a mapping between entire image
collections. Thus, the attributes extracted and transferred pertain the whole set
rather than single examples, resulting in more robust transformations.
The adversarial approach has been widely employed to address the image-to-image
translation task [3, 35, 36, 37, 38, 39, 40, 41, 42]. One of the first works following
this direction is the one proposed by Isola et al. [35] (2016), who develop a generative
framework based on conditional generative adversarial networks [43]. Both the gener-
ator and discriminator are provided with additional information to impose a stricter
control on the generative process: the discriminative action is performed on matching
couples (x,y) and (x, GX→Y (x)), as opposed to the standard scenario in which only
the true y and fake G(x) samples are available to D. The major drawback of [35]
lies in the requirement of supervision during the training process, since corresponding
samples from different domains must be accessible.

Unsupervised image-to-image translation removes the need for paired data. In turn,
the problem becomes ill-posed, as an infinite set of joint distributions can be inferred
from the marginal ones. For this reasons, appropriate constraints must be applied to
obtain acceptable solutions.
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On this regard, Taigman et al. [36] employ a multiclass GAN for unsupervised cross-
domain image generation. An external function is used with regularization purposes
to force consistency between input and output of the generative unit. Moreover, the
generator is required to be an identity mapping when applied on the output domain.
A different line of work is based on a shared latent space assumption [37, 38], which
infers the existence of a latent space where corresponding elements from different do-
mains share the same representation. For instance, the CoGAN network [37] is built
upon multiple GANs tied by a weight sharing constraint to learn a joint distribution
of multi-domain images in absence of supervision. The work in [38] extents the Co-
GAN model with the insertion of variational autoencoders (VAE) [28] combined with
pre-existent generative adversarial modules to achieve high quality image translation.
Another popular constraint is the cycle-consistency [3, 39, 40], introduced by Zhu
et al. with the CycleGAN [3]. Two mappings GX→Y and GY→X are concurrently
learnt by means of the adversarial technique and forced to be one the inverse of the
other (i.e. GX→Y (GY→X(X)) ≈ X and GY→X(GX→Y (Y )) ≈ Y ). The reconstruction
requirement provided by the cycle-consistency loss [3] should encourage the preser-
vation of structural properties during the translation, for a more convincing image
generation. As mentioned before, our work is based on the CycleGAN framework.

Recently, one-sided translation models have been proposed to avoid the concurrent op-
timization of multiple generative networks required by the cycle-consistency [41, 42].
The DistanceGAN [41] is based on a distance constraint, which forces examples from
the same domain to preserve their distance during the translation. To this end, a
predefined function is used to measure the gap between images.
Similarly, Fu et al. introduce a geometry-consistency constraint [42] to reduce the
space of possible solutions to the unsupervised domain mapping problem. Behind
their assumption lies the observation that geometric transformations don’t alter se-
mantic content. Thus, a predefined geometric transformation is included inside a
reconstruction loss, in order to prevent the emerging of generative artifacts.
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3.2 Adversarial Techniques for Domain Adaptation

The adversarial technique illustrated in section 3.1.1 can be effectively employed to
solve the unsupervised deep domain adaptation problem for visual recognition tasks.
The key idea is to bridge the domain gap between source and target distributions
by means of a domain classifier, where the discriminative action is applied on data
samples (or their feature representations) from different domains. In other words, a
measure of domain discrepancy is simultaneously learnt and minimized during the
adversarial competition.

The adversarial strategy can be applied directly on the input space (pixel-level) or on
an intermediate latent space (feature-level). In the first case, the generator still holds
a generative role, as it performs cross-domain mapping of images from the source
domain to the target one. The generator-discriminator purpose is therefore to pro-
duce target-like images, while preserving their ground truth information coming from
source annotations. The availability of the new adapted data, in principle, should
allow us to train the predictor directly with target supervision.
There exist several works that have explored the unsupervised domain adaptation
problem with a generative perspective [3, 37, 44, 45]. Some of them resort to the de-
velopment of an image-to-image translation network, such as the already mentioned
CycleGAN [3] and the CoGAN [37], which is then exploited to perform source-to-
target image mapping. In a second stage, an application specific predictor is learnt
on top of the generative model.
Other works focus specifically on synthetic data adaptation [44, 45]. Bousmalis et
al. [44] introduce a GAN-based adaptation model, where a task-specific predictor is
trained in conjunction with a generative adversarial module. In addition, a content-
similarity loss is proposed to prevent an excessive input alteration in the translation
process. Shrivastava et al. [45] develop a framework to improve the realism of syn-
thetic images produced by a simulator. In particular, they stabilize the adversarial
learning with a local adversarial loss, for which the discriminator is applied on several
overlapping patches instead of directly over the entire image. Moreover, they use a
history of refined images rather that just the current batch to update the discrimina-
tor parameters.
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A different branch of research has been focusing on feature-space adaptation [46,
47, 48, 49]. Differently from a generative approach, the generator inside the original
adversarial framework is replaced by a neural network performing feature extraction.
Thus, the discriminator is now provided with feature embeddings that must be clas-
sified as originating from source or target inputs. The adversarial objective, then,
becomes the distribution alignment of activations relative to different domains. As
a result of the adversarial competition, the feature extractor should span a shared
feature space, where samples projected from source and target domains no longer
show discrepancy in terms of probability distribution. At this point, a single classifier
for both domains can be trained over the common space to carry out the adaptation
process.
One of the first contributions to the adversarial feature adaptation problem is brought
by Ganin et al. [46, 47] (2015). They propose a solution based on a gradient rever-
sal layer to effectively backpropagate the error information during the adversarial
min-max game and correctly update the feature extractor and domain discriminator
parameters. A domain classification loss is also joined by a label prediction loss to
promote feature discriminativeness in addition to domain invariance.
Following a similar approach, the ADDA model [48] is built to address unsupervised
domain adaptation. However, unlike previous adaptation models such as [46, 47], the
feature extractor is no longer shared by the source and target domains. Instead, two
distinct networks are employed for separate representation learning. This induces an
asymmetric feature mapping, while improving adaptation flexibility.
In order to learn more transferable representations, Ren et al. [49] explore adversarial
feature adaptation in the context of multi-task learning. The core module is still
composed of a feature extractor and a domain discriminator, while the task-specific
classifier is replaced with multiple predictors addressing more related objectives. In
addition, they test their framework on synthetic data and prove that it produces
better visual representations than single-objective competitors.
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3.3 Domain Adaptation in Semantic Segmentation
In the previous section we discussed multiple solutions to unsupervised domain adap-
tation of deep convolutional neural networks based on adversarial learning. The ma-
jority of those works, despite being devised as application-independent, are mainly
focused on the image classification problem. However, unlike the image classification
task, semantic segmentation involves complex high-dimensional representations to
capture spatial affinity of local semantics. In addition, semantic segmentation pre-
dictions belong to an exponentially large label space due to their dense pixel-level
highly-structured nature. For these reasons, domain adaptation in the context of
semantic segmentation requires an extra effort in model design, as well as supple-
mentary techniques to carefully deal with the inherent additional complexity.

The first work to propose an adaptive framework for semantic segmentation is [50]
(2016). Similarly to previous image classification methods, an unsupervised adver-
sarial approach is employed to perform global domain alignment at feature level. In
particular, a domain classifier is trained to distinguish source from target features,
while the fully convolutional [13] feature extractor learns to produce domain invari-
ant representations. A local alignment constraint-based technique is also introduced
to acquire category specific knowledge from the target domain and achieve a more
robust adaptation.

A different path is followed by Zhang et al. [51] (2017), who adopt a curriculum-
style adaptive method. First, some high level label properties are inferred on target
data by resorting to traditional machine learning algorithms (e.g SVMs). In partic-
ular, they opt for an estimate of both global statistic of target semantic maps and
local superpixel label distributions to gather information about spatial structures.
These are called easy tasks, since they don’t require complex dense predictions and,
in turn, are less sensitive to domain shift. Then, the semantic segmentation hard task
is learnt with a standard source-based supervised optimization, assisted by additional
losses to enforce the inferred properties on target predictions lacking of supervision.

Recently, unsupervised domain adaptation has acquired huge interest in the com-
puter vision community. Many researches have tried to improve the state-of-the-art
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of domain adaptation in the semantic segmentation field, especially focusing on adap-
tation from synthetic data to real world scenes. Some of those contributions resort
to style transfer algorithms to perform cross-domain translation of source samples
before using them for a target-based supervised training of the segmentation network
[52, 53].
Another line of works falls in the category of adversarial adaptation methods [4, 54,
55, 56, 57, 58, 59].
On this regard, Sankaranarayanan et al. [54, 55] use a generative adversarial mod-
ule to learn an encoder-decoder couple capable of projecting images into a feature
space and reconstructing them back for both source and target domains. At the same
time the entire network is trained to produce target-like images when features are
extracted from input source samples.
With the purpose of learning domain invariant semantic representations, Tsai et al.
[56] investigate adversarial learning in the output space (i.e. segmentation maps).
They also extend their model with a multi-level adaptation framework to adapt fea-
tures at different scales.
Similarly, Murez et al. [57] design an adaptation framework based on a backbone
encoder supported by multiple auxiliary networks and losses with regularization pur-
poses to achieve domain agnostic feature extraction. The discovered latent feature
space is then exploited to learn a domain invariant predictor.

Following a different self-training strategy, Vu et al. [58] address unsupervised do-
main adaptation in the context of semantic segmentation with the introduction of a
loss based on the entropy of output probability maps. Their goal is to improve the
low-confident (high entropy) predictions on target samples by mimicking the over-
confident (low entropy) behaviour of source predictions. Moreover, they explore a
direct approach with a hand-crafted loss, as well as an indirect adversarial method in
which the objective is expressed by a learnable discriminator.
Additionally, other works [60, 61] resort to a self-training technique by generating
pseudo-labels from high-scoring pixel-wise predictions selected by applying a thresh-
old on probability maps computed on unlabelled data.

In a popular work, Hoffman et al. [4] introduce the CyCADA framework, which relies
on the CycleGAN [3] image-to-image translator for pixel-level adaptation. First of
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all, the CycleGAN-based generative module, which is augmented with a semantic-
consistency constraint to avoid semantic alterations of input data, is trained to per-
form cross-domain image translation. Then, the generator responsible for the source-
to-target mapping is applied on source images before they are provided to the predic-
tor in a supervised training phase. Finally, a separate adversarial feature adaptation
step is proposed, where the goal is to align the distribution of features extracted by
the semantic segmentator from the source-adapted domain with those from the target
domain to further improve adaptation results.
Unfortunately, the authors were not able to fully exploit the proposed method for the
semantic segmentation task, due to hardware constraints hindering the insertion of a
fully convolutional predictor inside an already memory-demanding generative module
comprising four neural networks.
In figure 3.2 we report a graphical representation of the CyCADA model (the final
feature adaptation step is not included).

Figure3.2:Architecture of the CyCADA framework (feature adaptation step not included).

Similarly to [4], Chen et al. [59] propose an extension of the CycleGAN framework by
introducing a pair of feature domain discriminators and a couple of semantic segmen-
tation networks (one per domain), which are trained in conjunction with the original
image-to-image translation module (two generators and two image discriminators).
In addition, a cross-domain consistency loss based on the bi-directional KL divergence
is used to encourage similar predictions on original and transformed images in the
target domain.
We base our work on [4], since it shows quite good results in terms of adaptation
performance, while leaving room for further investigations.
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4
Proposed Framework

As already mentioned, we base our work on the frameworks proposed by Zhu et al.
[3] for the adversarial generative process and by Hoffman et al. [4] for the more gen-
eral domain adaptation task, which have been both briefly described in Chapter 3.
We insert a lightweight semantic segmentator inside the main CycleGAN framework,
pushed by the target of building an unified model in presence of hardware limita-
tions. For this reason, we choose the MobileNetV2 embedded in the DeepLabv3+
frame, which has proven to represent a good trade-off between prediction accuracy
and network size, as illustrated in section 2.2.2. We further implement an additional
adversarial framework working at feature-level to improve adaptation performance.

Our goal is to perform unsupervised domain adaptation in the context of semantic
segmentation. The core idea is to transfer semantic attributes from target to source
images by means of a generative process, and then use the target-like source samples
in a supervised training. For this reason, we assume to have access to a consistent
amount of fully annotated source data, along with a sufficient number of unlabelled
images from a target set (we also make use of a small group of labelled target images,
but only for testing purposes). More specifically, we resort to a computer-generated
dataset of urban scenes as source domain (with in principle no limitations to the
availability of labelled data) and we test our final framework on real-world images
from an urban environment as well.
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As initial step, we adopt a generative approach to solve the unsupervised domain
adaptation task. In particular, we implement a framework built upon five differ-
ent deep neural networks jointly operating. Two fully convolutional generators work
together with other two discriminators to learn two cross-domain image translation
functions in both source-to-target and target-to-source directions, while a semantic
segmentator is included to enforce semantic consistency in the generative processes.
In a second moment, an additional feature-level adaptation is included: we introduce
a couple of new feature discriminators that work as their image-level counterparts
from the original CycleGAN model [3], but with the job of discriminating between
features extracted by the segmentator rather than images.
Finally, we unify the entire framework by changing the training policy from a multi-
stage optimization to a single step in which both the generative and segmentation
tasks are learnt at once.
In the next sections we will illustrate in detail the architecture that we employ to
address the adaptation task and we will discuss the optimization strategies that we
adopt to train the model.

4.1 Architecture

4.1.1 Cross‐Domain Image Generation

The generative module is based on the CycleGAN framework from [3]. Its original
purpose is to solve the unpaired image-to-image translation task, with the underlying
objective of learning a joint probability distribution starting from the marginal ones
from single domains. The “unpaired” term refers to the fact that no supervision in
the form of aligned couples of images from both domains must be provided during
the training process. This generative framework has proven to be suitable for color
and texture changes, but not for more radical geometrical transformations. This is
positive for us, since we are looking for a translation which allow us to safely transfer
the ground truth information from the original image to the translated one.
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The model is made of two generative adversarial modules (in the standard generator-
discriminator form), tied together by a cycle-consistency constraint to enforce image
structure preservation. The generator is a fully convolutional network with a concate-
nation of one stride-1 and two stride-2 convolutions, nine residual blocks, two stride-
1/2 fractional convolutions to recover the input dimensionality and a final stride-1
convolution. We remove the final tanh activation layer, which is likely to harm the
signal propagation due to saturation effects. The discriminator consists of a series of
five stride-2 convolutions with the leaky-ReLU activation. Its role, following the orig-
inal concept of GANs [2], is to discriminate between images in their original form and
images that have been translated from the other domain. We report the generator
and discriminator structures in figure 4.1.

Figure4.1:Discriminator (left) and generator (right) structures.

4.1.2 Task Specific Adaptation

We embed the generative module in a task-specific domain adaptation framework.
In particular, following the work of Hoffman et al. [4], the CycleGAN architecture is
augmented with an additional deep neural network performing semantic segmenta-
tion on data from both domains. This model add-on is exploited to enforce semantic
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consistency between images before and after the generative action. Basically, the
segmentator is supplied with original and adapted versions of the same sample and
in return it provides information about the semantic changes that the generator has
produced. This error information is then propagated back through the network up to
the generator, which is optimized in order to minimize semantic alteration (among
the other objectives).

The proposed framework, in principle, can utilize any deep network capable of per-
forming semantic segmentation. Nevertheless, on the practical side we have a limited
amount of computational and memory resources at our disposal (we work with a
single gpu of a maximum of 11GB of memory). Moreover, the generative module
in its original form is already quite complex, since it’s built upon 4 different neural
networks with millions of parameters each.
To overcome this issue, we decide to employ a mobile segmentation network. In partic-
ular we resort to the MobileNetV2 [1] embedded in the DeepLabV3+ [21] framework,
a state-of-the-art solution for mobile applications. As discussed in section 2.2.2, the
key idea behind that architecture is to employ lightweight structures such as separa-
ble convolutions and inverted residual blocks for an effective network size reduction,
while still keeping a good prediction accuracy. In figure 4.2 we show a graphical
representation of the encoder-decoder segmentator architecture.

Figure4.2:DeepLabV3+ architecture. We use the MobileNetV2 [1] as DCNN backbone of the encoder module.

34



4.1.3 Adversarial Feature Alignment

Aiming at further improving the generative domain adaptation model, we decide to
introduce an additional adversarial module to perform feature-level adaptation. The
core idea is to replicate the adversarial strategy adopted for the image-to-image trans-
lation task, where the goal is a pixel-level distribution alignment to make images from
one domain (e.g. source) look as if originating from the other domain (e.g. target)
after being translated. The new adversarial objective is instead the adaptation of in-
termediate feature representations. The goal now is to make generated images from
one domain appear statistically identical to original images from the other domain
when looking at their semantic representations extracted by the segmentation net-
work.

More specifically, we add a couple of feature discriminators and provide them with
activations from the output of the MobileNet feature extractor, before the ASPP and
decoder modules. The adversarial game, then, takes place between the two feature
discriminators and the two original generators, and eventually also the segmentator
if it is made trainable. As a result of the adversarial game, we should have access to a
pair of image-to-image mappings capable of translating images across domains, while,
at the same time, making generated samples statistically indistinguishable from true
ones when projected into the feature space defined by the segmentator network.

Figure4.3:Proposed framework.

As concerns the implementation side, the pair of feature discriminators is constructed
following the PatchGAN [35] structure described in section 4.1.1. A key adjustment
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we make is to decrease the stride value from 2 to 1 in all convolutional layers. The
reason for that lies in the fact that the discriminators are not fed with full-size images,
but with their feature maps, so that the input spatial dimensionality is reduced. In
figure 4.3 a scheme of the proposed framework is reported.

4.2 Optimization Strategies
In this section we describe the methods that we adopt to train the proposed domain
adaptation framework. In particular, we report the loss functions that we use for
parameter optimization, as well as the strategy we follow to effectively train all the
different components.

We define XS, YS as the image and semantic label spaces in the source domain,
from which we can access annotated samples in the form of (xS, yS) ∈ XS ×YS pairs,
generated according to a known source joint distribution over XS × YS. Analogously,
we denote XT , YT as the target data and label spaces, and (xT , yT ) ∈ XT × YT

as a generic labelled target image. Since we are operating in the unsupervised do-
main adaptation scenario, no target supervision can be exploited during the training
process. Therefore, we are allowed to use target data samples xT ∈ XT only by
themselves, without their respective ground-truth label maps yT ∈ YT (the joint dis-
tribution over XT × YT is unknown).
In addition, we denote F as a predictor that associates data samples to the cor-
responding semantic maps. In our case, F is a fully convolutional neural network
performing semantic segmentation: given an input RGB image of size H ×W × 3, a
dense classification map of size H ×W × C is computed, where C is the number of
classes. Our goal is to learn a segmentator F that performs well on target images,
while resorting exclusively to source ground-truth information.

We start by training F in a supervised manner on source data. We use the stan-
dard cross-entropy loss:

Ltask (F,XS, YS) = E(xS ,yS)∼(XS ,YS)

[
−

∑
h,w,c

y
(h,w,c)
S · log

(
f
(h,w,c)
S

)]
(4.1)
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which encourages the predictor to output a probability map fS = F (xS) that is as
close as possible to the one-hot encoded semantic label yS (both of size H ×W ×C).
This first step should give us a predictor FS = argmin

F
Ltask (F,XS, YS) quite effective

on the source domain, but typically not capable of generalize the acquired knowledge
to new domains, such as the target one. This causes a performance drop when pre-
dictions are computed on target images.

To address the effect of domain discrepancy, we resort to a generative approach.
In particular, we employ a generative adversarial framework to learn a mapping to
project images from the source to the target space. The objective is to produce
adapted source images that resemble target ones, while preserving the ground-truth
information at our disposal. In this way, we should be able to introduce a sort of
target supervision by exploiting target-like annotated source images to train the se-
mantic segmentator. This process should lead to better results when evaluating the
predictor on the target domain.

We define the cross-domain source-to-target mapping as GS→T : XS → XT , and
we pair it with a discriminator DT . The generator GS→T must fool the discriminator
by making source images look like target ones, while the discriminator must be able
to discern between real-target and fake-target images. We implement both modules
as fully convolutional networks.
The standard adversarial objective from [2] is of the form:

LGAN (GS→T , DT , XS, XT ) = ExT∼XT
[log (DT (xT ))]

+ ExS∼XS
[log(1−DT (GS→T (xS)))]

(4.2)

The optimization is performed in multiple stages, during which GS→T aims to mini-
mize the objective, whereas DT concurrently seeks to maximize it. The optimization
rule is the next:

min
GS→T

max
DT

LGAN (GS→T , DT , XS, XT ) (4.3)

Following the work of [62], we split the adversarial objective in two different losses (one
for the discriminator, and one for the generator) in order to have a more stable learning
process. The logarithm is replaced by a power-2 operator to avoid the saturation
effects and vanishing gradients that appear when the original sigmoid cross-entropy
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cost (equation 4.2) is used. The new objective functions (both to be minimized) now
become:

Ldis
GAN (GS→T , DT , XS, XT ) = ExS∼XS

[
(DT (GS→T (xS)))

2]
+ ExT∼XT

[
(DT (xT )− 1)2

] (4.4)

Lgen
GAN (GS→T , DT , XS) = ExS∼XS

[
(DT (GS→T (xS))− 1)2

]
(4.5)

We group the two objectives in a single term that we denote as Limg
adv (GS→T , DT , XS, XT ).

Adversarial frameworks are notoriously hard to train, but if the optimization is cor-
rectly carried out, then the generative module should produce convincing target-like
samples.

With the just described generative process, we are able, in principle, to learn a joint
source-target distribution starting from the marginal ones, which means that we can
produce couples of images representing the same sample in both source and target
styles. Unfortunately, since there is an infinite number of joint distributions that
match the available marginal ones, we are not guaranteed that the mapping function
we’ve found is preserving content structure and semantics. In other words, without
additional constraints our translation network could completely disrupt the starting
source image, still producing a new sample with target properties, but far from its
original version.

We combine the adversarial losses 4.4 and 4.5 with supplementary objectives for
a better safeguard of the input image appearance. Following the work of Zhu et al.
[3], we introduce a cycle-consistency constraint: a target-to-source mapping GT→S :

XT → XS is learnt through an additional adversarial generator-discriminator frame-
work. The two generators GS→T and GT→S are then tied by the following loss term:

Lcycle (GS→T , GT→S, XS, XT ) = ExS∼XS
[∥GT→S (GS→T (xS))− xS∥1]

+ ExT∼XT
[∥GS→T (GT→S (xT ))− xT∥1]

(4.6)

which basically guarantees structural content preservation by enforcing a perfect re-
covery of the input image with the joint application of both translations, i.e. we
want GS→T (GT→S (xS)) ≈ xS and GT→S (GS→T (xT )) ≈ xT . In figure 4.4 we report
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(a)original (XS ) (b)adapted (XS→T ) (c)reconstructed (XS→T→S )

Figure4.4:Example of the cycle‐consistency constraint.

a visual example of the effect of the cycle-consistency constraint.
In addition, inspired by the work of Hoffman et al. [4], we impose semantic uniformity
on images before and after the translation, by means of a semantic consistency loss:

Lsem (GS→T , GT→S, XS, XT , FS) = Ltask (FS, GS→T (XS), ρ(FS, XS))

+ Ltask (FS, GT→S(XT ), ρ(FS, XT ))
(4.7)

The intent is to exploit the segmentation network in its pre-trained version FS from
the first step to produce a semantic label of a generic image from both source or
target domain by computing the argmax of the probability map FS(X):

ρ (FS, X) = argmax (FS (X)) (4.8)

The cross-entropy task loss Ltask (equation 4.1) is then employed, where in place of
the ground-truth label we introduce the semantic map ρ(FS, X) provided by FS. The
loss effect is no longer to promote correct segmentator predictions, but to force the
generator to yield transformed images that are semantically identical to the original
ones when viewed under the FS scope. This scheme allow us to compute a measure
of semantic distance in both domains, without resorting to ground-truth information.
On the other side, FS is not a perfect predictor (not even a good one in the target
domain), therefore an excessive emphasis on this loss could introduced undesired
artifacts in the generative process.
As a further objective, we introduce the identity loss [36] with regularization purposes:

Liden (GS→T , GT→S, XS, XT ) = ExS∼XS
[∥ (GT→S (xS))− xS∥1]

+ ExT∼XT
[∥ (GS→T (xT ))− xT∥1]

(4.9)
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It obliges the generators to act like identity mappings when supplied with input
images already from the output domain. The underlying goal is to encourage the
generative process to preserve colors.

By grouping all the losses that we’ve introduced above in a single objective to be
minimized with respect to all the generative framework parameters, we get:

Ltot (GS→T , GT→S, DT , DS, XS, XT )

= λimg · Limg
adv (GS→T , DT , XS, XT ) + λimg · Limg

adv (GT→S, DS, XT , XS)

+ λcycle · Lcycle (GS→T , GT→S, XS, XT ) + λsem · Lsem (GS→T , GT→S, XS, XT , FS)

+ λiden · Liden (GS→T , GT→S, XS, XT )

(4.10)

where the λ terms are included to balance the several individual components. In
Chapter 5 we will discuss more in detail how we set the values for the different loss
weights.

If the image-to-image translation framework is successfully trained, we should have
access to a source-to-target translator G∗

S→T = arg min
GS→T

Ltot capable of producing
target-like samples still provided with annotations from source domain, thanks to
semantic consistency constraints. Now we can apply the cross-entropy loss similarly
to the first step, but this time using the adapted source samples:

FT = argmin
F

Ltask (F,G
∗
S→T (XS), YS) (4.11)

As a result of this third step, the new predictor FT should have improved performance
on the target domain and we should have reduced the gap with a totally supervised
target-based training.
As described in section 4.1.3, an additional adversarial framework is proposed to
improve the adaptation performance, with the introduction of two new discriminators
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Dfeat
S and Dfeat

T and the relative adversarial losses similarly to the pixel-level case:

Ldis−feat
GAN (F ′, GS→T , D

feat
T , XS, XT ) = ExS∼XS

[(
Dfeat

T (F ′(GS→T (xS)))
)2
]

+ ExT∼XT

[(
Dfeat

T (F ′(xT ))− 1
)2
] (4.12)

Lgen−feat
GAN (F ′, GS→T , D

feat
T , XS) = ExS∼XS

[(
Dfeat

T (F ′(GS→T (xS)))− 1
)2
]

(4.13)

where we denote with F ′ the first section of the segmentator (i.e. only the MobileNet
backbone encoder without the decoder module) when utilized for feature extraction
and not for semantic prediction (we report only the source-to-target loss terms).
Again, we group the pairs of adversarial objectives in single terms that we denote as
Lfeat

adv (GS→T , D
feat
T , XS, XT ) and Lfeat

adv (GT→S, D
feat
S , XT , XS). Dfeat

S and Dfeat
T have to

discriminate between feature representations of original and transformed images from
the same domain, while generators have to fool them as usual.
With the introduction of the feature adaptation framework, we also try to combine
the second and third optimization steps in order to perform the segmentator fine-
tuning in conjunction with the training of the generative module. The full objective
now becomes:

L′
tot(F,GS→T , GT→S, DT , DS, D

feat
T , Dfeat

S , XS, XT )

= λimg · Limg
adv (GS→T , DT , XS, XT ) + λimg · Limg

adv (GT→S, DS, XT , XS)

+ λfeat · Lfeat
adv (F

′, GS→T , D
feat
T , XS, XT ) + λfeat · Lfeat

adv (F
′, GT→S, D

feat
S , XT , XS)

+ λcycle · Lcycle (F,GS→T , GT→S, XS, XT ) + λsem · Lsem (GS→T , GT→S, XS, XT , FS)

+ λiden · Liden (GS→T , GT→S, XS, XT ) + λtask · Ltask (F,GS→T (XS), YS)

(4.14)

The complete framework is more prone to unstable behaviours, given that in early
stages F is trained with images produced by generators not yet in their final versions.
On the other hand, an improved F inside the generative module should help the
semantic loss to promote a more reliable and less noisy semantic consistency, thanks
to more accurate predictions.
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5
Results

5.1 Implementation Details

The proposed domain adaptation framework that we introduced in section 4 is de-
veloped using TensorFlow 1.13. We resort to pre-existent CycleGAN [3] and Mo-
bileNetV2 [1] implementations, which are modified and adapted in order to build our
final model.
The model hyper-parameters are selected with a preliminary tuning procedure. Note
that it is not guaranteed that the values we find are the best ones, since an optimal
solution entails a joint optimization over the entire parameters space, which would
require much more computational and time resources than what we have at our dis-
posal. For this reason, we base our search on values proposed by the original works,
which we then modify in order to adapt them to our scenario.

The semantic segmentation network is trained by means of an Adam optimizer [6]
with β1, the exponential decay rate for the first moment estimates, set to 0.9, and
a weight decay of 4 × 10−5. The learning rate is subjected to a polynomial decay of
power 0.9, and it is decreased to 0 from its initial value by the end of the training
procedure. In section 5.3.1 we will discuss more in detail how segmentation perfor-
mance are affected by different starting points for the learning rate.
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As described in section 4.1.2, the feature extractor backbone is augmented with ASPP
and decoder modules to recover the input dimensionality. On this regard, we select
an output stride of 16 for the feature extractor, whereas for the ASPP block we choose
atrous rates of 6, 12 and 18 as suggested by the original paper [21]. We speed up the
training procedure of the ASPP and decoder modules by boosting their learning rate
of a factor 10, since initially we don’t have access to pre-trained weights for them
as we do for the rest of the network. When the segmentation network is fine-tuned,
we no longer apply this multiplicative factor and, at the same time, we decrease the
learning rate. Moreover, we start with a version of the MobileNetV2 which has been
pre-trained on the Pascal VOC 2012 dataset [63] to improve efficiency and speed up
the training process.

The CycleGAN framework optimization is based on the Adam method [6] as well. In
particular, we keep a small β1 term equal to 0.5 as in the original paper. It makes
the training process more unstable, but we notice no improvements by changing it.
The learning rate is fixed to 2× 10−4 and kept constant for the entire training time.
For additional stability, the image-level discriminators are updated using a history of
generated images. Following [3], two buffers with 50 transformed samples each are
built (one per domain), and each discriminator is provided with the latest generator
output or with a stored image with equal probability.

As concerns the generative objective Ltot, we make several tests trying to balance
the different components. We notice that in correspondence of λimg = 1, λcycle = 20

and λsem = 0.1 we get the best domain adaptation results. The Liden term seems
to be beneficial only to produce better looking images, with no effects on the overall
adaptation process.
With the introduction of the feature framework and the full objective L′

tot, we set
λfeat to small values and we start to observe the regularization effect of Liden on the
adaptation process. In addition, we set λtask = 1.
Further insights on this subject will be reported and discussed in the next sections.

We train our domain adaptation model with a single GPU, a NVDIA GeForce GTX
1080 Ti, which has a total dedicated memory of 11GB. The large amount of model
parameters, combined with the high resolution images from source and target sets,
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prevent us from using full resolution data for training purposes. To overcome this
issue, we extract random patches from training samples and we use them as model
inputs. Moreover, we set a batch size of 5 when training the semantic segmentator
alone in the first step. In all the other phases, where multiple deep neural networks
have to fit the gpu memory at the same time, we have to reduce the batch size up to
1 to fulfil hardware constraints.

5.2 Datasets

A fundamental ingredient in the developing process of a machine learning algorithm
is the availability of training data, that is the source from which the model should be
able to extract the necessary information to solve its task. In the context of semantic
segmentation, a supervised training procedure requires the availability of pairs of im-
ages and corresponding dense labels carrying pixel-level annotations, which usually
are extremely expensive to produce. As extensively discussed in previous sections,
the combination of annotation shortage and poor generalization skills of deep neural
networks, pushes us to undertake the unsupervised domain adaptation task.

To place us in an appropriate framework, we select a source domain with easily
accessible labelled samples that can be obtained in large quantities, which is the case
of synthetic imagery. Synthetic data not only comes with essentially free annotations
and a much lower collection cost than real data thanks to an automatic generation,
but also in principle provides a total control over the virtual environment in terms of
point of view, illumination, objects inside the scene, etc. This feature allows a care-
ful design of the synthetic dataset properties, to guarantee that it contains a proper
amount of useful information.
On the opposite side, we refer to real imagery as the target domain. Nowadays real-
world photos are fairly easy to get in any situation, therefore we realistically expect
no particular limitations on their availability. In addition, we assume no ground-truth
information is accessible in any form for real data (if not for comparison or evaluation
purposes), so that we really are in an unsupervised scenario.
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As concerns the specific datasets on which we train and validate our framework, we
choose the publicly accessible GTA5 [64] and Cityscapes [65] ones. They are built
specifically to address semantic segmentation of urban scenes, which is of strategic im-
portance in autonomous driving. The task is quite challenging, since multiple objects
of different sizes and semantic categories have to be recognized with high confidence.

The Cityscapes dataset [65] contains high-resolution images of 2048 × 1024 pixels
collected from a vehicle moving across the streets of 50 cities in central Europe.
Starting from the hundreds of thousands of frames captured in video sequences dur-
ing the acquisition process, only a subset of 5000 pictures is manually labelled with
dense pixel-level annotations. The annotated batch is further split into groups of
2975, 500 and 1525 images for respectively training, validation and test purposes.
We train and test our model on the 3475 samples from the training and validation
subsets, which are the only publicly available. The dataset is provided with a total 34
different classes, but we employ only 19 of them in order to match the GTA5 object
categories.
Urban scenes captured by Cityscapes images involve the typical dense traffic of Eu-
ropean cities, with a strong presence of pedestrians and in general a crowded envi-
ronment. Additionally, they are characterized by a gray tone due to the peculiar
appearance of the urban landscape of the acquisition sites.

Figure5.1:Examples of Cityscapes images.

The GTA5 [64] is a synthetic dataset composed of 24966 annotated images, with reso-
lution of 1914×1052 pixels and a total of 19 semantic categories compatible with the
Cityscapes dataset. Frame acquisition is performed inside the Grand Theft Auto V
(GTA5) open-world computer game: similarly to the Cityscapes dataset, images are
collected from a vehicle point of view, but the scenario is a virtual city resembling
Los Angeles in Southern California. The high realism and fidelity of the game en-
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vironment in terms of object textures and scene layout ensures the generation of
photorealistic images. At the same time it is possible to extrapolate semantic infor-
mation from scene rendering to efficiently produce dense annotations on synthesized
images. This two elements combined have been crucial for the development of the
GTA5 large scale semantic segmentation dataset.
In our experiments we use only half of the entire dataset to train the domain adapta-
tion model (12483 images). Furthermore, we select 500 samples from the remaining
set for validation purposes.
From a visual analysis of the dataset, images appear to have quite vivid tones (which
is typical of video games), while the urban environment they depict is typically sub-
urban with few pedestrians and a wide and diverse landscape.

Figure5.2:Examples of GTA5 images.

5.3 Experiments

The purpose of the following sections is to show the results of each intermediate step
of our unsupervised domain adaptation framework and, in the end, to prove its ef-
fectiveness. First, we discuss the no adaptation scenario, in which the segmentation
network is source-supervisedly trained on the GTA5 dataset before being validated on
the Cityscapes dataset with no further adjustments. Next, the generative adaptation
strategy is analyzed, in both the visual results from the image-to-image translation
stage and the performance boost on semantic predictions provided by domain adap-
tation. Finally, we will describe the outcomes of our attempts to further improve our
framework by introducing feature adaptation and unifying the model optimization in
an end-to-end training process.
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5.3.1 Training on Synthetic Data

In this section we analyze the optimization process that is done prior to the actual
domain adaptation. We train the segmentation network as discussed in section 4.2,
with just a standard cross-entropy loss and labelled frames from the GTA5 dataset.
We don’t use full-size images during the training stage due to memory constraints,
and we first perform a random crop to size 800 × 800 before feeding them to the
predictor. For this reason, we are able to utilize a batch of 5 images. To measure
the performance achieved by the segmentation network, we test it on the Cityscapes
and GTA5 validation sets, both composed of 500 images. During the testing phase,
input samples are kept at their original size and prediction maps are upsampled to
match the spatial dimension of the corresponding annotations. For comparison pur-
poses, we also perform a target-based optimization, for which the network is directly
supplied with annotated target samples from the Cityscapes dataset in both training
and testing phases and therefore no adaptation is needed.
The accuracy of the segmentation network in terms of intersection over union (IoU)
on the Cityscapes validation set is reported in table 5.1 (we list the highest measured
values). We explore 4 different configurations with regard to learning rate and type
of supervision. In particular, we consider 3 distinct starting points for the learning
rate (namely 10−4, 10−5, 10−6), whereas we directly report the target upper bound
provided by a target-based optimization.
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MeanIoU

Synth. (lr = 10−6) 7.5 13.0 66.1 1.1 0.0 0.5 0.0 0.0 71.8 6.0 50.8 22.3 0.0 62.5 4.5 0.0 0.0 0.0 0.0 16.1
Synth. (lr = 10−5) 14.8 13.0 53.6 4.2 10.7 15.9 2.5 0.0 74.1 8.3 54.0 39.6 2.9 56.7 6.8 6.0 0.0 0.1 0.0 19.1
Synth. (lr = 10−4) 71.6 20.1 72.7 15.3 18.6 10.0 5.7 4.2 73.5 11.9 42.5 37.7 0.4 71.4 3.4 25.5 0.0 2.3 0.1 25.6

Real (lr = 10−4) 96.6 76.3 87.7 43.1 49.2 42.5 48.9 60.5 88.2 55.9 90.2 70.3 47.0 87.5 51.9 71.5 60.1 44.8 66.6 65.19

Table5.1:Results in terms of IoU on the Cityscapes validation set for different training settings. Synthetic
corresponds to a source‐based optimization, whileReal to a target‐based optimization.

Plots of training error, validation error on target data and mean IoU on both target
and source domains in correspondence of a source-based network training with differ-
ent learning rates are shown in figures 5.3, 5.4, 5.5 and 5.6 respectively. We train the
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network for a total of 90000 steps, but we limit the curves to an interval comprising
the initial 35000 (except for figure 5.6 where we consider all the 90000 steps).
The first thing we notice (table 5.1) is that there is a huge gap in terms of mean
IoU (around 40% at least) between the case in which training and validation images
belong to separate datasets and when instead a standard supervision with ideally
the same train and test data distributions is performed. This is a perfect example
of how deep models lack of generalization skills and suffer from a consistent drop of
performance in presence of domain shift.

Figure5.3:Training error on synthetic data (GTA5 dataset). Training is performed on synthetic data (GTA5 dataset).

Moreover, while the training process in case of target supervision is converging to an
optimal parameter configuration, in case of source supervision we observe a domain
overfitting trend (figure 5.4). In other words, the predictor in the first steps is capa-
ble of quickly learning meaningful representations that can be safely shared among
the two domains, since they are related to general properties which characterize any
urban scene. However, when the segmentator starts to improve its accuracy on the
source domain, it does so by focusing on attributes specific to that domain, but it
concurrently harms its understanding of samples with similar semantic content of
training ones but different appearance. Other than that, the absence of convergence
on the target domain forces us to choose a specific point where to stop the training
process. For a correct decision, we should look at the mean IoU curve computed over
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the Cityscapes dataset in correspondence to a GTA5-based training (figure 5.5). We
report the behaviour of the mean IoU with different values of the learning rate, for it
has shown to highly influence the network accuracy.

Figure5.4:Validation error on real data (Cityscapes dataset). Training is performed on synthetic data (GTA5 dataset).

We observe that learning rates of 10−4 and 10−5 share the best trends, but the first
involves a much higher instability. A reasonable choice would be to select the more
reliable and stable solution, even though the other one reaches a higher meanIoU
(table 5.1). Unfortunately, if we move our attention to the curves representing the
training error (figure 5.3) and the meanIoU computed on source data (figure 5.6),
we can see that a bigger learning rate entails a noticeable performance gain (around
20% in terms of mIoU between 10−5 and 10−4 values). With further investigations,
we notice that the accuracy drop on the source domain is strongly detrimental to
the overall adaptation performance and this is due to the fact that the semantic seg-
mentator inside the generative module operates in both domains. For this reason we
choose a learning rate of 10−4. Furthermore, we perform additional tests and measure
small variations on the final adaptation results when changing the mean IoU peak
(on the Cityscapes validation set) for which we save the network parameters. This is
positive, as the unstable pre-training phase doesn’t affect the overall domain adapta-
tion performance of the entire framework.
Finally, we pick a subset of 500 images from the Cityscapes training set (which the
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network has never seen in a GTA5-based training phase) and use them to test the
network prediction accuracy when the checkpoint relative to the 25.62% mean IoU
peak is selected. We get an even improved mean IoU of 27.0%, showing that the
fluctuations of validation results are due to an unstable optimization rather than a
validation set not correctly matching the general properties of the Cityscapes dataset.

Figure5.5:Mean IoU on real data (Cityscapes dataset). Training is performed on synthetic data (GTA5 dataset).

In figure 5.7 we show some visual results in terms of semantic prediction maps to re-
late the optimization in the standard supervised setting to the case in which a domain
discrepancy appears between training and test phases due to a change of dataset. The
segmentator with source supervision and no adaptation clearly struggles to correctly
classify large portions of the target input image relative to some major classes such us
the road and the sidewalk. This means that the segmentator is not able to recognize
common structures due to textures and color changes across domains. Other than
that, details are completely lost and objects from classes with reduced occurrences
are easily misclassified. There is no doubt that an adaptation process can be strongly
beneficial.
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Figure5.6:Mean IoU on synthetic data (GTA5 dataset). Training is performed on synthetic data (GTA5 dataset). We
plot the curve in an interval comprising all the 90000 training steps to better show how the optimization converges
when no domain discreapancy is present between training and test phases.

(a)Target image (b)Ground‐truth (c)Source supervision (d)Target supervision
Figure5.7:Segmentation maps of real images from the Cityscapes validation set when source or target supervision is
provided (learning rate equal to 10−4).
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5.3.2 Generative Framework

The core of our domain adaptation framework is represented by the image-to-image
translation module. As extensively discussed in previous sections, it is made of a cou-
ple of GANs working in parallel on separated domains and tied by a cycle-consistency
constraint. In addition, a pre-trained semantic segmentator is used to enforce seman-
tically consistent translations.
We provide the source generator with synthetic images from the GTA5 dataset and
the target generator with real images from the Cityscapes dataset. In this phase,
semantic label maps are ignored in both source and target domains. Moreover, the
optimization process of the generative module is unsupervised, since we don’t have
access to pairs of corresponding GTA5 and Cityscapes frames. We don’t use full-size
images due to memory constraints, and we perform a random crop before supplying
them to the generators and discriminators. In particular, we first downsample input
images so that they have a width equal to 1024 (while preserving the aspect ratio)
and then we randomly select patches of size 400 × 400 to be fed to the network.
This effectively reduces memory occupation allowing us to train the framework with
a batch size of 1. The alternative would be to directly downsample input data until
hardware constraints are met, but the resolution drop would destroy useful details
and, in turn, hurt the generative performance.
We train the generative module for a total of 60000 steps, since it seems to be a
sufficiently long interval to reach a stable point.

In figures 5.8, 5.9, 5.10 and 5.11 we report the plots of the adversarial generator
and discriminator errors (Lgen

GAN and Ldis
GAN) and of the cycle-consistency and seman-

tic losses (Lcycle and Lsem). To remove the strong oscillations in the original curves,
we apply a smoothing function that highlights the general trend. The intense varia-
tions are probably caused by a batch size of 1 and a small β1 value (0.5) of the Adam
optimizer, which controls the exponential decay rate for the first moment estimates
of the gradient.
From figures 5.8 and 5.9 we can see that the adversarial system in both domains
is not perfectly balanced, as the discriminator errors are lower than the generator
counterparts. Training a single GAN is already a challenging task, training simulta-
neously two of them to translate high resolution fully detailed images makes the task
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even more difficult. On the other hand, the cycle-consistency loss (figure 5.10) seems
to effectively tie the two adversarial processes, and that is reflected by a common
generator-discriminator behaviour across the source and target domains. Moreover,
the cycle-consistency loss appears to require more training time to stabilize with re-
spect to the adversarial losses, justifying our choice to extend the optimization up to
60000 steps.

We report the plot of the semantic loss for both domains and different loss weights
(λsem) to highlight the inherent asymmetry brought by the segmentation network.
On this regard, it is possible to notice that the source semantic loss, which forces
semantic consistency between source original and generated images, has lower values
than the target counterpart. This because, as discussed in the previous section, the
semantic segmentator, which is pre-trained on synthetic data, has a poor prediction
accuracy on the real domain. Additionally, a higher λsem leads to a lower semantic
error, which, in turns, corresponds to a stronger impact of the semantic segmentator
on the generative process.

Figure5.8:Discriminator adversarial loss Ldis
GAN for both source‐to‐target and target‐to‐source translations.
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Figure5.9:Generator adversarial loss Lgen
GAN for both source‐to‐target and target‐to‐source translations.

Figure5.10:Cycle‐consistency lossLcycle computed during the training of the original CycleGANmodel (λsem = 0).
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Figure5.11:Semantic loss Lsem reported for both domains and for λsem = 0.1, 0.5.

In figures 5.12 and 5.13 we show some examples of the effect of the cycle-consistency
constraint on both the GTA5-to-Cityscapes and Cityscapes-to-GTA5 branches. Im-
ages on the left correspond to the originals, whereas the second and third columns
illustrate respectively the first cross-domain translation and the second transforma-
tion that brings inputs back to their initial state. We can see that color and textures
modified by the first stage are almost completely recovered during the reconstruction.
For example, the road appearance, which is one of the elements that better differen-
tiate the two datasets, is mostly restored by the reprojection.
In figures 5.14 and 5.15 we report some visual results of the image-to-image transla-
tion process across the GTA5 and Cityscapes datasets in both source-to-target and
target-to-source directions. In particular, we show the different outcomes when λsem

is set to 0 (standard CycleGAN), 0.1 or 0.5. The translation function applied on
the GTA5 dataset is mostly adding a grey shade to the input samples, as Cityscapes
images are mainly characterized by grey tonalities. In addition, it is possible to notice
some artifacts appearing in the sky introduced by the generative process, due to a
not perfectly balanced adversarial competition. On the other side, source-like target
images originating from the Cityscapes dataset acquire more vivid and bright tones,
in order to match the look of a typical GTA5 urban scene. Moreover, road texture of
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input images is always subject to perceptible changes, confirming that it is a distinc-
tive dataset attribute. The purpose of the semantic consistency loss is to preserve the
semantic content of images during their translation. Nonetheless, we observe that, as
an additional effect, the loss helps also to preserve image appearance. On this regard,
we notice that a bigger value of λsem entails a minor presence of visible alterations
and an improved color preservation. This is especially true in the GTA-to-Cityscapes
scenario, but can be easily perceived also in the other direction. For example, an
unpleasant visual artifact that completely alters the color of some red or blue image
components in the λsem = 0, 0.1 cases is solved by encouraging a stronger semantic
consistency (λsem = 0.5).

(a)original (GTA) (b)adapted (GTA→ CS) (c)reconstructed (GTA→ CS→GTA)

Figure5.12:Examples of the cycle‐consistency constraint on the synthetic‐to‐real model branch.

(a)original (CS) (b)adapted (GTA→ CS) (c)reconstructed (CS→ GTA→ CS)

Figure5.13:Examples of the cycle‐consistency constraint on the real‐to‐synthetic model branch.
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(a)Original (b)CycleGAN only (c)λsem = 0.1 (d)λsem = 0.5

Figure5.14:Examples of GTA5 images adapted to the Cityscapes dataset with different generative settings, namely
with various semantic loss weights inside the generative objective.

(a)Original (b)CycleGAN only (c)λsem = 0.1 (d)λsem = 0.5

Figure5.15:Examples of Cityscapes images adapted to the GTA5 dataset with different generative settings, namely
with various semantic loss weights inside the generative objective.
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5.3.3 Fine‐tuning on Adapted Data

Once the image-to-image translation module is trained, we have access to a genera-
tor capable of projecting images from the GTA5 to the Cityscapes dataset, that is
from the source to the target domain. We exploit the source-to-target translator by
appending it to the input of the pre-trained semantic segmentator, which is then fine-
tuned on adapted source data. These synthesized target-like images should still carry
accurate semantic information in the form semantic labels coming from their original
source versions. This because the semantic loss embedded inside the image-to-image
translation model promotes a generative process that preserves the semantic content
of input data. Moreover, the CycleGAN framework itself is suited for texture and
color changes rather than more radical alterations to the input structure.
We supply the generator-segmentator module with synthetic images from the GTA5
training set. As discussed in the previous section, hardware constraints force us to
perform a resize of input data to reduce memory occupation. We again opt for the
extraction of random patches of size 400× 400 on a resized version of the input.
The segmentator is trained for a total of 50000 steps, while the initial learning rate
is decreased to 10−5, leading to a more stable optimization. The generator, instead,
is kept fixed and used as a preprocessing function on input data. The segmentation
results in terms of per-class and mean IoU evaluated on the Cityscapes validation set
are shown in table 5.2. More specifically, we compare the adaptation performance
achieved by adopting different values for λsem, namely 0, 0.1 and 0.5. In this way we
can determine the impact of the semantic consistency constraint over the final adap-
tation results. In addition, we report from section 5.3.1 the IoU values computed in
the no adaptation scenario and in case of a target-based supervised training (upper
bound).
As first thing, we notice that our generative adaptation technique (with and without
semantic loss) introduces a consistent boost to the semantic segmentator prediction
accuracy with respect to a simple source-based optimization. When the best value
for λsem is selected (0.1), we find an improvement of 10% of the mean IoU, going
from 25.6% to 35.5%. More importantly, the performance increase occurs for al-
most all the semantic classes. On this regard, the adaptation process is capable to
enhance the accuracy on semantic components with small occurrences, which the seg-
mentator particularly struggles to capture in presence of domain shift, but also leads
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to more accurate predictions on frequent and dominant classes that are recognized
with sufficient precision even with no adaptation. For example, classes such as pole,
traffic light and traffic sign involving small object detection are affected by the
most noticeable prediction enhancement. At the same time, the adapted segmentator
performs better on common categories, such as road, car, building and vegetation.
Another class that benefits from domain adaptation is the truck one (with strong
semantic similarity to the car and bus categories), confirming that our framework
effectively provides the predictor with additional information to solve its task.
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MeanIoU

Synth. 71.6 20.1 72.7 15.3 18.6 10.0 5.7 4.2 73.5 11.9 42.5 37.7 0.4 71.4 3.4 25.5 0.0 2.3 0.1 25.6

λsem = 0 86.6 37.7 76.2 18.3 11.7 27.2 17.9 20.8 68.2 10.9 53.7 51.0 16.7 76.5 18.8 21.7 9.5 8.7 0.6 33.3
λsem = 0.5 84.2 30.1 79.2 18.5 13.8 20.1 14.7 14.3 81.1 19.6 67.3 53.1 15.2 79.2 22.0 28.0 2.5 9.8 0.1 34.4
λsem = 0.1 87.1 39.9 79.0 21.3 14.0 22.8 16.0 16.0 80.7 25.4 68.0 52.2 14.3 77.0 19.3 29.8 3.9 8.0 0.6 35.5

Real 96.6 76.3 87.7 43.1 49.2 42.5 48.9 60.5 88.2 55.9 90.2 70.3 47.0 87.6 51.9 71.5 60.2 44.8 66.6 65.2

Table5.2:Results in terms of IoU on the Cityscapes validation set for different adaptation settings, namely with
various semantic loss weights inside the generative objective.

Moving forward, we observe improved adaptation results when the semantic loss is
added to the generative objective (λsem = 0.1, 0.5). To that end, the increment in
terms of mean IoU appearing with the introduction of the semantic consistency con-
straint (about 2%) shows that the segmentator inserted inside the generative frame-
work truly helps to preserve useful information during image translations. However,
the improvement is not well distributed among all the classes. In particular, more
confident classes are boosted, while less confident ones are penalized. An imperfect
predictor, in fact, could induce some inconsistencies in the generative process that, in
turn, leads to worse adaptation results, especially for the most challenging semantic
categories. For instance, the pole, traffic light and traffic sign classes appear to
be recognized more effectively when no semantic consistency is enforced. That said,
the semantic loss is actually beneficial for the majority of the semantic classes.
Finally, we notice that a stronger emphasis on the semantic loss (λsem = 0.5), while
producing more visually appealing image translations in terms of color preservation
and artifact removal (figures 5.14 and 5.15 from section 5.3.2), actually results in
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slightly worse adaptation performance with respect to a scenario with a smaller loss
weight (λsem = 0.1). As just discussed, this is probably due to an inherently flawed
segmentation module and to the inaccuracy that it transfers to the generative frame-
work. Figure 5.16 contains some examples of semantic predictions on real images
from the Cityscapes validation set. We consider 3 different scenarios: no adaptation
with just source supervision (third column), pixel-level adaptation using the original
CycleGAN framework (forth column) and pixel-level adaptation with the additional
semantic loss (λsem = 0.1) (fifth column). We can visually perceive a definite im-
provement of prediction capabilities when adaptation is performed. For example, the
road is identified much more precisely, but also pedestrians and cars are detected
with enhanced accuracy. On the other hand, changes introduced by the semantic loss
with respect to the standard CycleGAN are less evident. We select some results that
better highlight those differences. In particular, it is possible to see some prediction
errors in terms of vegetation and wall detection that are corrected when the semantic
consistency is enforced (rows one, four and five).

(a)Original image (b)Ground truth (c)No adaptation (d)λsem = 0 (e)λsem = 0.1

Figure5.16:Segmentation maps of real images from the Cityscapes validation set when only synthetic supervision is
provided (no adaptation) and when pixel‐level adaptation is performed by the CycleGAN framework, with and
without semantic loss.
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5.3.4 Feature Framework

In this section we describe the performance of our unsupervised domain adaptation
technique when an additional feature alignment is enforced. As discussed in chapter
4, a pair of domain feature-level discriminators are included inside the CycleGAN to
improve the original pixel-level adaptation.
We explore two different optimization strategies. To start, we train the new frame-
work exatly how it was done for the pixel-level adaptation, that is with two separate
stages in which first the generative and then the segmentator modules are optimized
(without counting the initial synthetic-based optimization). Next, we merge the two
steps together in such a way that both the updated CycleGAN and the semantic
predictor are simultaneously learnt. We set λsem = 0.1 in all our experiments.
In the second scenario we train the entire model for a total of 80000 steps. Moreover,
the semantic segmentator is kept fixed for the first 20000 steps, that is until the gen-
erators start to perform acceptable translations. Finally, the starting learning rate
for the segmentation network is set to 10−5.

In table 5.3 we report the segmentation results in terms of per-class and mean
IoU evaluated on the Cityscapes validation set. We compare the best performance
achieved when only pixel-level adaptation is performed (λsem = 0.1), with the case in
which the supplementary feature alignment in both a single step or separate stages
is included. We set the λfeat parameter, which controls the influnce exerted by the
adversarial feature loss inside the full objective, to 10−3 and 10−4 respectively for the
separate and single stage settings. Higher values for λfeat enhance the focus to feature
adaptation, but, in turn, seem to hurt the generative process, leading to worse adap-
tation results. In addition, we notice that an extra regularization action provided by
the identity loss is beneficial when training simultaneously the segmentator and the
generative modules (we set λiden = 2).

We observe that the additional feature framework is actually helpful for the domain
adaptation task. The improvement with respect to the pixel-level adaptation is not
substantial (less than 2% in the best scenario), but it is distributed quite uniformly
on the majority of the classes, showing that it is consistent. Moreover, optimizing the
entire framework in a single step seems to be the best choice, with the mean IoU rising
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from 36.3% to 37.2%. The performance increase is probably due to a more effective
feature-level adversarial learning when the semantic segmentator can contribute to
the optimization of the adversarial loss by modifying the image representations it
extracts and provides to the feature discriminators. On the other hand, error gradi-
ents back-propagating through both a discriminator and a segmentation network are
likely to lose their strength before reaching the generator, preventing, in practice, an
efficient parameter update to optimize the adversarial objective at feature-level. For
this reason, feature adaptation loses effectiveness when the generator is competing
alone without the support of a trainable segmentation module. In addition, we notice
a more stable convergence in case of a training process concurrently performed for all
the model components.
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Synthetic 71.6 20.1 72.7 15.3 18.6 10.0 5.7 4.2 73.5 11.9 42.5 37.7 0.4 71.4 3.4 25.5 0.0 2.3 0.1 25.6

Pixel-level adaptation 87.1 39.9 79.0 21.3 14.0 22.8 16.0 16.0 80.7 25.4 68.0 52.2 14.3 77.0 19.3 29.8 3.9 8.0 0.6 35.5
Feature alignment (separate stages) 86.3 35.9 80.0 20.0 17.8 20.3 16.6 23.5 81.9 26.3 66.9 53.7 15.0 81.2 20.5 20.4 16.2 7.4 0.5 36.3

Feature alignment (single stage) 84.6 32.9 80.5 21.7 11.8 29.9 18.4 23.7 83.3 29.5 70.6 55.9 15.5 83.8 22.8 23.6 5.2 13.2 0.3 37.2

Real 96.6 76.3 87.7 43.1 49.2 42.5 48.9 60.5 88.2 55.9 90.2 70.3 47.0 87.5 51.9 71.5 60.1 44.8 66.6 65.2

Table5.3:Results in terms of IoU on the Cityscapes validation set for different adaptation settings, namely when
pixel‐level adaptation is performed with and without feature alignment in both single and separate optimization
stages.

In figures 5.17 and 5.18 we show some examples of GTA5 and Cityscapes images
that have been translated from the original domain to the other. In particular, we
refer to the three framework configurations for which we have reported the segmenta-
tion results in table 5.3, namely the pixel-level adaptation with semantic loss weight
λsem = 0.1 and the combined feature and pixel level adaptation for both optimization
strategies as described above.
We notice that the feature framework doesn’t help to perform more realistic transla-
tions. On the contrary, in certain cases it introduces some visual artifacts that nor-
mally don’t show up when the standard CycleGAN model is employed. This because
the feature adversarial loss promotes feature alignment, which entails the generation
of images that appear as originating from the other domain under the scope of the
semantic feature extractor, rather than samples that possess visual attributes from a

63



different dataset. For example, GTA5 adapted images tend to show more frequently
the generative artifacts that typically affects the sky region (last two rows of figure
5.17).

(a)Original (b)Pixel‐level (c)Separate stages (d)Single stage
Figure5.17:Examples of GTA5 images adapted to the Cityscapes dataset with different generative settings, namely
when pixel‐level adaptation is performed with and without feature alignment in both single and separate
optimization stages.

Furthermore, as already discussed in section 5.3.2, the cross-domain mapping mainly
corresponds to a texture change, which is particularly evident in the road becoming
smoother in the GTA5-to-Cityscapes adaptation or more irregular when the projec-
tion follows the inverse path. Moreover, colors are modified in terms of saturation
level and are adjusted from more intense and colorful to less vivid and bright (or
viceversa) depending on the direction of the translation.
It is also possible to notice the effect of the identity loss introduced in the single stage
optimization scenario, which encourages a better color preservation (last columns of
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(a)Original (b)Pixel‐level (c)Separate stages (d)Single stage
Figure5.18:Examples of Cityscapes images adapted to the GTA5 dataset with different generative settings, namely
when pixel‐level adaptation is performed with and without feature alignment in both single and separate
optimization stages.

figures 5.17 and 5.18). In particular, it prevents the red-blue color inversion that
affects some objects (e.g. cars, buildings and traffic signs) in the other two cases.
Figure 5.19 contains a few examples of prediction maps computed on images from the
Cityscapes validation set. We put in comparison the source-only optimization and
the pixel-level adaptation with and without the supplementary feature framework
to highlight some improvements progressively achieved by the subsequent steps. As
previously stated, the accuracy boost brought by the adaptation framework is clearly
visible for every image. On the other hand, the improvement introduced by feature
alignment is more difficult to be perceived, since it involves the majority of the se-
mantic classes but by a small extent each. Nonetheless, in figure 5.19 we report a few
cases which show the better prediction accuracy over some details. For instance, we
can see that car edges are generally detected with a slightly more precision. Traffic
signs are also recognized with more confidence (last row). Moreover, some more evi-
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dent prediction errors that affect semantic maps in the pixel-level adaptation scenario
are corrected when feature alignment is performed (second and forth rows).

(a)Original (b)Ground truth (c)No adaptation (d)Pixel‐level adaptation (e)Final model

Figure5.19:Segmentation maps of real images from the Cityscapes validation set when only synthetic supervision is
provided (no adaptation), when pixel‐level adaptation is performed with semantic loss (λsem = 0.1) and when the
unified domain adaptation framework is applied.

In table 5.4 we compare our final unsupervised domain adaptation model, comprising
both pixel and feature level adaptation and trained in a single optimization stage,
similarly to CyCADA [4]. In particular, we report the mean IoU computed on the
Cityscapes validation set for three different training settings, namely when only syn-
thetic supervision is provided, when pixel and feature level adaptation is performed
and when target supervision from annotated real data is directly available.
In [4] the CyCADA model is tested on two different segmentation networks, namely
the FCN8s-VGG16 [13] and DRN-26 [18]. Both of those networks have far more
parameters than the MobileNetV2 [1] embedded in the DeepLabV3+ [21] that we
employ in our framework (134M [13] and 21M [18] compared to 2M [1]), and for
this reason they are not suitable to be inserted inside the image-to-image translation
module. Furthermore the core architectures are quite different, going from decon-
volution layers [13] and dilated convolution [18] to the inverted residual blocks with
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Method Synthetic Pixel+Feat Real

Ours (MobileNetV2[1]) 25.6 37.2 65.2

CyCADA[4] (FCN8s[13]) 17.9 35.4 60.3

CyCADA[4] (DRN-26[18]) 21.7 39.5 67.4

Table5.4:Results in terms of mean IoU on the Cityscapes validation set for different adaptation techniques, i.e. our
final model and the CyCADA framework with different semantic segmentation networks. We report the results for
multiple training settings, namely when only synthetic supervision is provided, when pixel and feature level
adaptation is performed and when target supervision from annotated real data is directly available.

linear bottlenecks [1]. Hence, it is not possible to perform a direct comparison of the
domain adaptation performance obtained by the different adaptation frameworks.
Nonetheless, we observe that our model with 37.2% of mean IoU places itself right
in the middle with respect to the CyCADA final results (35.4% and 39.5%), show-
ing an improved accuracy compared to the FCN8s case. Moreover, the adaptation
performance are coherent with the target supervision upper bound: the distance in
terms of mean IoU between a source-adapted and a target based supervised training
for our model (from 37.2% to 65.2%) is basically identical to the one regarding the
DRN-26 adaptation (from 39.5% to 67.4%), revealing similar adaptation performance
achieved by our framework and the CyCADA model.
As concerns the source-only optimization lower bound, we notice that the authors of
[4] report quite low results compared to ours (table 5.4). Unfortunately, they don’t
go into details on how they obtain those results.
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6
Conclusions

In this thesis we developed a technique based on adversarial learning to address do-
main adaptation in the context of semantic segmentation. We place ourself in the
challenging, but also more practical, scenario of unsupervised adaptation, where the
segmentation network has not direct access to annotated data from the target domain
on which it has to perform its final predictions.
To address the unsupervised domain adaptation task we resort to a generative strat-
egy. We reduce the domain shift between the source and target datasets by means
of an image-to-image translation network based on the GAN model. The synthe-
sized target-like source images are then used to train the semantic segmentator and
enforce a form of target supervision. Additional semantic consistency to the pixel-
level adaptation process is effectively achieved by providing the segmentation network
with a supervisory role inside the generative module. On this regard, we rely on a
light-weight implementation of the semantic segmentator in order to fulfil memory
constraints.
To prove the effectiveness of our model, we validate it on a synthetic to real adap-
tation scenario, in which both source and target datasets contain high resolution
images of urban scenes. Results show a consistent improvement with respect to the
no adaptation case.
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In addition, we augment the generative module with an adversarial feature frame-
work, with the intent to assist pixel-level adaptation with a supplementary alignment
of source and target image features extracted by the semantic predictor. Moreover,
we unify the optimization phase in a single step in which both the image-to-image
translation module and the semantic segmentator network are concurrently trained.
Further experimental results show that the additional feature level adaptation affects
positively the final semantic prediction accuracy, proving to be an useful addition to
the original pixel-level strategy.

As regards future works, we could modify the image-to-image translation framework
in order to introduce different types of constraints to the generative adversarial mod-
ule, by resorting, for example, to some recently proposed techniques that allow one-
sided mappings. This should effectively reduce complexity and memory occupation
of the generative framework, while leaving room for the adaptation of more compu-
tationally demanding segmentation networks achieving state-of-the-art performance
in the semantic segmentation field.
Furthermore, additional investigations can be directed toward the improvement of
the adaptation at feature-level. For instance, we could analyze feature statics to re-
veal which activations exhibit the highest sensitivity to domain discrepancy between
source and target inputs and focus our attention on them. Moreover, we could act on
the output probability map produced by the segmentator rather than on intermediate
representations in order to reach a more efficient adaptation performed directly inside
the prediction space.
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