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Abstract

Studies of planet migration due to the interaction of the planets with the parent

circumstellar disk are of paramount importance to understand the evolution of the

orbital elements of exoplanets. It was shown that planet migration can lead to res-

onance capture, during which the planets exert a regular and periodic gravitational

influence on each other. Depending on the details of the resonance process, this phe-

nomenon can either stabilize or destabilize the orbits of the involved bodies. The case

of a Jupiter-Saturn system shows the occurrence of a two-stage migration, based on

the coupling between planet migration due to the interaction with the gaseous disk

and a 3:2 mean motion resonance. In this work it was chosen to investigate via

numerical modeling the effects of the model resolution on the migration of a Jupiter-

Saturn pair locked in resonance. The choice of this type of analysis follows from the

results obtained by recent 2-dimensional preliminary simulations performed with the

hydrodynamical code FARGO3D. It was found that by increasing the resolution of

the grid firstly by a factor of 2 and subsequently by a factor of 3, the results are

different compared to the low-resolution case. In the high resolution case, it seems

to be the second-order 5:3 mean motion resonance to drive the outward migration

of the two-planets and not the usual 3:2 commensurability. The medium resolution

case shows an intermediate behaviour, with a temporary capture in the 5:3 mean mo-

tion resonance and a final arrangement in the 3:2 commensurability. The obtained

results raise several questions regarding whether the observed outcomes are due to

an intrinsic issue within the FARGO3D code or if the resolution of the model indeed

influences the type of resonance capable of driving the outward planet migration. In

order to explore further this problem, an alternative hydrodynamical code, namely

PLUTO, is employed to investigate the coupled evolution of a Jupiter-Saturn pair

within its parent protoplanetary disk.
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1 Introduction

The study of planet migration within circumstellar disks has revolutionized the under-

standing of planetary system formation and evolution, becoming a fundamental topic in

the field of astrophysics. Over the past decades, numerous exoplanetary systems were dis-

covered, revealing a rich diversity of planetary architectures and orbital configurations. In

order to explain the complexity of these findings, the interaction between the planets and

their parent gaseous disk represents one of the key processes that is able to cause large

variations in the orbital elements of the planets. However, planet-planet and star-planet

interactions are also needed to account for the diversity of the observed planetary systems,

leading to significant changes in the semi-major axis, eccentricity and inclination of the

involved bodies.

Among all these phenomena, the migration of a pair of planets in resonance within a cir-

cumstellar disk has attracted considerable attention, due to its relevance to the long-term

stability and orbital architectures of planetary systems. Orbital resonances occur when

two or more celestial bodies exert regular and periodic gravitational influences on each

other, thus reinforcing or dampening their orbital motions. In particular, the most impor-

tant resonance is the mean-motion resonance, which takes place when the orbital periods

of the planets are commensurate, i.e. when they have a simple integer ratio. This process

can significantly affect the orbital evolution of the involved bodies, as it can cause both

resonant trapping, where planets maintain a stable configuration, and resonant destabi-

lization, characterized by close encounters or even collisions.

The migration of resonant planet pairs within their parent circumstellar disks is a complex

process governed by the interplay between tidal interactions, gravitational perturbations

and disk-planet interactions. As a consequence, understanding the underlying mecha-

nisms and the resulting dynamics is crucial for unraveling the formation and dynamical

evolution of planetary systems.

In recent years, significant progress was made in theoretical modeling and numerical sim-

ulations aimed at studying the migration of resonant planet pairs in circumstellar disks. In

particular, a study conducted by Masset & Snellgrove [31] has shown that a system com-

posed of two closely spaced giant planets orbiting around a central star has the ability to

migrate outwards within the parent disk, once the two planets are captured in resonance.

Within this context, numerical simulations carried out by D’Angelo & Marzari [13] have

demonstrated that the most favorable conditions for successful joint outward migration

occur when the mass ratio between the inner and outer planets closely resembles that

of Jupiter and Saturn. It follows that the Jupiter-Saturn system serves as a template for

studying other planetary systems beyond the solar one and to interpret the observations

of a multitude of exoplanets. According to these studies, the most accepted theory to
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explain the formation, migration and dynamics of Jupiter and Saturn is the occurrence

of a two-stage migration, based on the coupling between planet migration due to the in-

teraction with the disk and a 3:2 mean motion resonance. Firstly, Jupiter underwent an

initial inward migration, until it was caught up by Saturn. Once they get captured in reso-

nance, both planets started to migrate outwards together, until the dispersion of the parent

gaseous disk [58].

In this work, it was chosen to investigate via numerical modeling the effects of the model

resolution on the migration of two planets locked in resonance. The choice of this type

of analysis is due to the results obtained by recent 2-dimensional preliminary simulations

performed with the hydrodynamical code FARGO3D. It was found that by increasing the

resolution of the grid firstly by a factor of 2 and subsequently by a factor of 3, the results

are different compared to the low-resolution case. In particular, in the high resolution

case, it seems to be the second-order 5:3 mean motion resonance to drive the outward

migration of the two-planets and not the usual 3:2 commensurability. The medium res-

olution case instead shows an intermediate behaviour, with a temporary capture in the

5:3 mean motion resonance and a final arrangement in the 3:2 commensurability. The

obtained results raise several questions regarding whether the observed outcomes are due

to an intrinsic issue within the FARGO3D code or if the resolution of the model indeed

influences the type of resonance capable of driving the outward planet migration. In order

to explore this further, an alternative hydrodynamical code, namely PLUTO, is employed

to investigate the coupled evolution of a Jupiter-Saturn pair within its parent protoplane-

tary disk.

The work is organized as follows: in Section 2, a theoretical framework is provided for

understanding the process of planet formation. Section 3 discusses the several interac-

tion mechanisms between the planets and their gaseous parent disk. In section 4, the

FARGO3D code is presented, together with the results of the preliminary simulations that

inspired this work. Section 5 provides an illustration of the PLUTO code, with particular

attention to the related configuration files and a comparison with the FARGO3D code.

In section 6 the results of the simulations obtained with the PLUTO code are presented

and discussed, including the effects of the model resolution on planets migration. Fi-

nally, in Section 7, the conclusions are summarized and avenues for future research are

highlighted.
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2 The Standard Model of Planet Formation

The standard model of planet formation, also known as the core accretion model, is a

widely accepted framework that was developed in order to explain the origin of the Solar

System and in particular the process by which planets form in circumstellar disks around

young stars.

This model proposes a sequential series of steps that lead to the formation of planets. It

starts with a molecular cloud made of gas and dust, which gravitationally collapses into a

protostar. Since the infalling material possesses some amount of angular momentum, its

conservation results in the formation of a rotating circumstellar disk of gas and dust that

continues to feed the central young star.

As the disk gradually cools down, a dust sedimentation process takes place along the

middle plane of the disk. From this dust, pebbles and planetesimals grow, giving rise to

objects with dimensions larger than 1−100 km. Subsequently, collisions and gravitational

accumulation occur, leading to the formation of terrestrial planets and the core of giants.

Finally, the infall of gas on the core produces giant planets and the disk dissipates. A

graphical representation of the various stages characterizing the standard model of planet

formation is provided in Fig. 1.

Figure 1: Graphical representation of the different steps that characterize the standard

model of planet formation. Credit to Pearson Prentice Hall, Inc.
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2.1 Circumstellar Disks

It was seen in Sec. 2 that a disk of rotating circumstellar material usually forms around a

growing protostar as a consequence of angular momentum conservation during the cloud

collapse.

Circumstellar disks, also known as protoplanetary disks, play a crucial role in the forma-

tion of planetary systems and they are believed to be the birthplaces of planets. These

structures are made of gas and dust, with the latter being usually a fraction of the order

of ∼ 1/100 with respect to the other component. Note that the density of gas and dust

in circumstellar disks decreases with increasing distance from the central star. The initial

evolution of the disk is quite turbulent, due to the infall of dust and gas from the envelope

and to the presence of jets in form of bipolar outflows. However, this phase is followed

by a more quiet state, during which the dust settles towards the middle plane of the cir-

cumstellar disk [30].

Circumstellar disks are assumed to be in thermal equilibrium, due to the presence of three

main mechanisms, i.e. viscous heating, star irradiation and radiative cooling. As a con-

sequence of star irradiation, a temperature gradient is present within the disk, with higher

temperatures in the inner regions. The so-called snow line marks the radial distance at

which the disk temperature drops below the condensation temperature of a particular ice.

This means that within this line the ices cannot condense and the only particles that are

able to do it are mainly silicates and iron compounds. On the other hand, in the outer

regions of the disk ices and gases are able to condense.

These structures can be detected mainly in two ways, i.e. by studying the infrared excess

in the star spectrum or through direct imaging. In particular, the infrared excess is due to

the fact that the dust present in the disk emits at a lower temperature with respect to the

star, with a blackbody radiation falling within the infrared spectral range. Therefore, the

presence of a disk is deduced by this additional infrared emission, as it is shown in Fig. 2.

The infrared excess changes according to the disk evolution, since as the disk evolves the

density and temperature profiles are different. This means that by measuring the infrared

excess, it is possible to get information about the density and temperature profiles of the

circumstellar disk.

The standard power-law disk model proposed by Beckwith et al. [4] provides the follow-

ing expression for the superficial density profile of the disk (Σ0 ≈ 102 − 104 g/cm2):

Σ = Σ0

(

R

R0

)−p
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Figure 2: Spectral energy distribution (SED) of GM Aurigae, a classical T Tauri star. It

shows a large infrared excess indicating the presence of a disk. From Schneider et al.

[51].

Similarly, the temperature profile of the disk is given by (T0 ≈ 1000− 2000 K):

T (R) = T0

(

R

R0

)−q

In these two expressions the quantity R0 and the two coefficients q and p depend on the

type of the star. By fitting the infrared excess it is possible to derive approximate values

for Σ0, T0, q and p.

The vertical structure of the disk is described through the scale height h = H
R

, where H is

the height of the disk surface at radius R. The value of the scale height is constant in the

flat disk model, being usually of the order of h ≈ 0.05, while it grows going outwards in

the flared disk model.

Regarding instead direct imaging observations, with the arrival of ALMA (Atacama Large

Millimiter Array) high resolution images have become possible. They highlighted the fact

that circumstellar disks are not regular structures, but they often present many different

features. As shown in Fig 3, circumstellar disks can be characterized by the presence of

gaps, spirals, inner holes and different gas and dust distributions. Thanks to ALMA it

was possible to obtain a large sample of disks, thus leading to a statistical estimate of the
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fraction of stars with disk and of their lifetime.

Figure 3: Three examples of circumstellar disks imaged with ALMA. Credit to ALMA,

ESO/NAOJ/NRAO.

Observations in the spectrum of several stars have shown that the viscous evolution of the

disk leads to mass accretion onto the star, causing a transfer of angular momentum towards

the outer regions. The accretion rate covers a wide range of values, being of the order of

Ṁ ≈ 10−12 M⊙/yr for low mass stars up to Ṁ ≈ 10−7 M⊙/yr for more massive stars.

According to the magnetospheric accretion model, the material on the inner border of the

disk is ionized by the star radiation and it impacts the star following the magnetic disk

lines, i.e. it impacts on a region around the two poles of the star if a dipole magnetic field

is assumed. Therefore, accretion onto the star is deduced from the ultraviolet and optical

excess at the shock, where the disk material impacts the star surface at a temperature of

about T ≈ 104 K. An example of ultraviolet emission is shown in Fig. 4. Within this

context, it is worth to mention the work done by Hartmann et al. [20], who found a strong

correlation between the mass of the star and the disk accretion rate:

log(Ṁacc) = −7.9 + 2.1 log(Ms)

The long term evolution of a disk is determined by its viscous evolution, by photoevapo-

ration and by planet formation. Let’s assume to deal with a thin, axis-symmetric disk and

to adopt the isothermal approximation. Moreover, let’s suppose to have vertical equilib-

rium and that the radial velocity equals the Keplerian velocity. Under these hypotheses,

the one-dimensional approximated continuity equation gives (ν is the viscosity, Σ̇PE rep-

resents the photoevaporation term):

∂Σ

∂t
− 3

r

∂

∂r

(

r
1

2

∂

∂r
|Σν|

)

= −Σ̇PE
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Figure 4: Ultraviolet emission of BP Tau. The mass accretion onto the star is deduced

from the shock contribution to the spectral energy distribution (SED). From Gullbring et

al. [19].

As a consequence of this evolution, disks have a finite lifetime, which appears to be of the

order of 3−10Myr. Moreover, younger regions are expected to have more massive disks

as it is confirmed by comparing star forming regions of different ages. The central region

of circumstellar disks in an advanced stage of evolution is characterized by the formation

of a hole in the gas and dust density. At this stage, we talk about transition disks, which

can be identified thanks to the infrared excess and in particular to the presence of a gap in

the spectrum.

To conclude, the study of the properties and evolution of circumstellar disks is essential

for understanding the processes that shape the different planetary architectures observed

in the Universe. By investigating these structures, it is possible to gain insights into the

mechanisms and conditions necessary for planet formation.

7



2.2 Planetesimal Formation

Planetesimal formation is a crucial process in the early stages of planetary formation

within protoplanetary disks. The term planetesimals refers to solid bodies that serve as

building blocks for planets, typically ranging from several kilometers to hundreds of kilo-

meters in diameter. Once planetesimals have formed, they can merge and accrete more

material to eventually form planets. However, the process of planetesimal formation is

still an open problem in astrophysics, in particular concerning the mechanisms that built

them up and their initial size distribution.

It was seen in Sec. 2.1 that during the quiet phase of the disk evolution, the dust settles

towards the middle plane of the disk and it grows into larger bodies. This fact is due to the

gas drag acting on the dust particles. In order to better understand this mechanism, let’s

assume the dust grains to be spherical, with a radius s smaller than the mean free path of

the gas particles. The thermal velocity of the gas vth is given by:

vth =

√

8kBT

πµmH

In this expression, kB is the Boltzmann constant, T is the absolute temperature defined by

the ideal gas law, while the quantity µmH gives the average molecular weight in terms of

the hydrogen atom mass. If a dust grain moves with respect to the gas with velocity v, the

frequency with which they collide head-on is equal to (ρg is the density of gas particles):

f = πs2
(

1

3
vth + v

)

ρg
µmH

On the other hand, the same quantity computed in the opposite direction gives:

b = πs2
(

1

3
vth − v

)

ρg
µmH

By assuming that vth ≫ v, each collision releases a momentum ∆p equal to:

∆p = 2µmH

1

3
vth

It follows that a net force will act on the dust grain, due to its movement through the gas.

This is the drag force FD, which is by definition the force component in the direction of

the flow velocity. The drag equation is also known as the Epstein drag law and it gives:

F⃗D = −(f − b)∆p = −4

3
πs2ρgvthv⃗ = F v⃗
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The gravity force FG is then opposed by the drag force FD, so the motion of the dust grain

in a viscous regime is described by the following expression:

ma = FG − FD = FG − Fv −→ v(t) =
FG

F

(

1− e−
F
m
t
)

In the limit t→ ∞, the previous equation becomes v = FG

F
. Therefore, the sedimentation

speed in the median plane of a circumstellar disk is given by:

vsettle =
FG

F
=
GMmz

r3
3

4πs2vthρg
=
GMρdzs

r3vthρg

By assuming that z = 1 AU , the time required by the dust to sediment on the median

plane is equal to:

tsettle =
z

vsettle
≈ 105 yr

Instead, when the size of the dust grain is larger than the mean free path of the gas parti-

cles, the gas is treated as a fluid acting on the particle. In this case the drag force FD is

given by:

F⃗D = −CD

2
πs2ρgvv⃗

In this expression the coefficient CD depends on the Reynolds number1 R and it is of the

order of CD ≈ 0.44 at a distance of 1 AU .

As a result of the dust sedimentation process, the increased density of dust in the middle

plane of the disk can facilitate the growth of larger bodies through coagulation and grav-

itational instabilities. Therefore, this process plays an important role in the evolution of

protoplanetary disks and planetesimal formation.

In general, it is possible to trace a theoretical transition from dust particles to planetesi-

mals when the drag of the gas becomes a perturbation with respect to the dominant Kep-

lerian motion. This transition typically occurs at sizes of the order of 10 km in diameter.

For smaller sizes, the evolution is dominated by the gas and the motion is not Keplerian,

i.e. when a particle moves around the star, it does not cross the median plane of the disk,

but it is confined within the gas. On the other hand, for larger sizes the motion is Keple-

rian and planetesimals perform an orbit with a given inclination, thus crossing the median

plane of the disk at the nodal line. Obviously, a sharp cut in size is not possible and there

will be a slow transition from one kind of motion to the other depending on the size of the

body.

Until not long ago, it was believed that the progressive accumulation of dust particles

1The Reynolds number is a dimensionless quantity used in fluid dynamics to characterize the flow of a

fluid in different situations. In particular, it is defined as the ratio between the inertial forces and the viscous

forces.
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into larger bodies led directly to planetesimals through a series of two-body collisions.

However, it was seen that there are many possible outcomes of dust particle collisions.

According to Zsom et al. [63] and to what is described in Fig. 5, two particles may be

subject to sticking (with partial or total mass transfer), bouncing (with partial or null mass

transfer), fragmentation or erosion. The final outcome of collisions is strongly dependent

on the mutual impact velocity between the two particles. In particular, if it is too high,

fragmentation and erosion will dominate and the dust accumulation process is halted.

Figure 5: Different types of collision between dust particles. From Zsom et al. [63].

The relative velocity is determined by several contributes, i.e. the Brownian motion of the

two particles, their differential vertical settling, their differential radial shift and the pres-

ence of turbulence. By combining all these contributions, the estimated relative velocity

profile shows a sudden jump around pebble-size particles, as it is shown in Fig. 6. Lab-

oratory experiments with these impact velocities performed by Wurm & Blum [9] have

shown that accretion appears not to be possible for objects larger than about 10 cm, since

in this case mass loss dominates, leading to the erosion or fragmentation of the bodies.

An additional negative factor for direct accumulation of dust particles into planetesimals

is the so called meter-size barrier. This term refers to the fact that the interaction with

the gas component of the disk leads to a fast spiraling of bodies of about 1 m in size,

although notable drift will begin already in the millimeter and centimeter size regimes. In

particular, the inward radial velocity vrad becomes comparable to the Keplerian velocity

10



Figure 6: Combined relative velocities between dust particles caused by Brownian mo-

tion, radial drift, and turbulence in three different disk models for equal-sized particles

(panel a) and for different-sized particles with a mass ratio of 100 (panel b). From Zsom

et al. [63].

vK , leading to a radial redistribution of matter:

vrad = −0.5ηvK

As a consequence, the timescale to drift towards the star becomes of the order of 100 −
1000 yr. It follows that planetesimal formation must be rapid in order to occur, otherwise

a further accumulation of dust particles may be prevented.

Alternative models on planetesimal formation with respect to the continuous growth of

dust particles directly into larger bodies were proposed, by assuming a strong interaction

with the gas. A first attempt supposes that the dust settles in the middle plane of the disk,

where gravitational instabilities lead to the direct formation of planetesimals. However,

this model does not consider the Kelvin-Helmholtz instability due to the back-reaction of

dust on the gas, which creates turbulence that diffuses the dust particles and reduces the

density below the value needed for gravitational instability to be effective.

A second attempt considers the streaming instability, i.e. a different type of instability

that may lead to the clumping of a large number of dust particles into planetesimals. Ac-

cording to a study provided by Johansen & Youdin [23], the streaming instability predicts

the formation of dense filaments in the gas, which trap the dust and become unstable to

self-gravity. In this way, it creates a planetesimal size distribution, directly leading from

centimeter size pebbles to the formation of large bodies with dimensions of the order of

100 − 200 km, skipping the 1 − 10 km size phase. In order for this phenomenon to oc-

cur, it requires a high density in the middle plane for the back-reaction to be important,

typically a dust-to-gas mass ratio of the order of ∼ 1. It is interesting to note that the key

ingredient for the streaming instability is the occurrence of pressure bumps where the dust

is trapped, which in general can be produced by any kind of gas instability. The formation
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of dense filaments in the gas due to the streaming instability is shown in the four different

snapshots provided in Fig. 7

Figure 7: Four particle density snapshots. The evident linear wavelength in the top left

panel results from the streaming instability feeding off the drift of the particles through

the gas. Subsequent panels document the consequences of a self-consistently generated

turbulence, i.e. the non-linear cascade of dense particle clumps into larger filaments.

From Johansen & Youdin [23].

There are also other mechanisms which are able to trap dust particles into a restricted vol-

ume and trigger the gravitational instability needed to form planetesimals. For example,

Drazkowska & Alibert [14] found that large icy grains coming from the outer regions of

the disk may be trapped at the snow line and shrink due to evaporation. This would cause

a slow down of the inward drift velocity, thus leading to a higher dust density. Alterna-

tively, if magneto-rotational instability is responsible for the viscosity in the disk, a gas

bump can form at the edges of a dead zone of low ionization and trap the dust, as studied
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by Dzyurkevich et al. [15]. Finally, Pinilla et al. [48] found that as giant planets produce

a gap in the gas, at the edges of these gaps dust accumulates because of the pressure bump

and this can favor clumping.

2.3 Planet Formation

The process of planet formation refers to the planetesimal gravitational accumulation

through mutual collisions. Once billions of planetesimals have formed around the pro-

tostar, they start to collide, forming bigger bodies if the condition of low relative velocity

is satisfied. Otherwise, if the relative velocity between the colliding objects is large, they

will undergo cratering in case of small mass ratio, or fragmentation in case of high mass

ratio.

Planetesimal accretion can be divided in three different stages, i.e. the runaway growth,

the oligarchic growth and the giant impacts phase (or chaotic growth). During the run-

away growth phase, some planetesimals outrun the others and grow at a faster pace. This

behaviour was studied thanks to the planet building code, which is a numerical model

used to simulate planetesimal evolution and to estimate the timescale of planetesimal ac-

cumulation. From this model, it appears that after about 1 Myr a large fraction of the

initial mass is in a few bodies more massive than the remnant population, i.e. a family of

protoplanets has formed. This phenomenon is shown in the three plots provided in Fig. 8.

The transition from runaway growth to oligarchic growth occurs when the protoplan-

ets become massive enough to affect the random velocities of the other planetesimals.

This typically happens when their mass is about 100 times the average mass of the total

planetesimal population. At this point the protoplanets excite the eccentricities and incli-

nations of the planetesimals, thus increasing the relative velocity between the two types

of objects. As a consequence, the growth regime switches to a slower one, although the

mass ratio between protoplanets and planetesimals continues to increase with time. N-

body simulations have shown that protoplanets tend to keep a typical orbital separation

of 10 Hill’s radius2. It follows that protoplanets grow oligarchically and no substantial

accretion between the remaining planetesimals occurs. This fact was studied by Kokubo

& Ida [26], who found the formation of a bi-modal mass distribution, composed of a large

number of small planetesimals and a small number of protoplanets dominating the plan-

etesimal system. After reaching a limit mass value that depends on their orbital separation,

2The Hill’s sphere is the region where an astronomical body dominates the attraction of its satellites.

This is a fundamental condition to differentiate between planets and moons, since a satellite must have an

orbit that lies within the Hill’s sphere of the planet in order to be considered a planet itself. By defining as

m the mass of the satellite, as M the mass of the central body and as a the semi-major axis of the satellite,

the Hill’s radius is defined as RH =
(

m

3M

)
1

3 a.
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Figure 8: Planetesimal accumulation modelled with the planet-building code. An initial

population of planetesimals is evolved through collisions until runaway growth occurs

after approximately 1Myr. On the x-axis there is the distance of the planetesimals from

the star, on the y-axis their mass and on the z-axis the number of bodies with the values

of mass and radial distance given in the (x, y)-axes. From Weidenschilling et al. [61].

on the dust density of the circumstellar disk and on the fraction of icy solid material, the

protoplanets end up dynamically isolated and they do not grow further. An example of

oligarchic growth is given in Fig. 9.

The giant impacts phase starts when the dynamical friction of smaller planetesimals via

repeated close encounters is no longer sufficient to damp the protoplanets eccentricities.

According to Kenyon & Bromley [24], the protoplanets mutually excite their orbits and

the evolution becomes chaotic, with frequent close encounters and giant collisions. The

result is the formation of larger bodies, with dimensions similar to those of the Earth and

Venus.

Finally, if a protoplanet reaches a mass of the order of 10−30MEarth, a fast mass infall of

gas onto the the rocky-icy core occurs. In this way, after about 103−104 yr, the final mass

of the giant planet is achieved. Note that the formation of a gas giant planet is influenced

by the rate of gas infall and by the availability of gas in the protoplanetary disk.
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Figure 9: Example of oligarchic growth computed via an N-body numerical simulation in

the a − e (left panel) and a − i (right panel) planes. Initially, the bodies have a mass of

2.5 · 10−4 MEarth and they grow by mutual collisions. From Kokubo & Ida [26].

2.4 Pebble Accretion

It was seen in Sec. 2.1 that circumstellar disks dissipate with a timescale of the order of

3− 10Myr, as their evolution is driven by viscosity, photoevaporation and planet forma-

tion. This means that planetesimal and planet formation must be rapid to occur, otherwise

there will be not enough material available to grow further. This fact is particularly im-

portant for giant planets, which must have time to reach a more massive core with respect

to terrestrial planets (i.e. of the order of 10 − 30MEarth) and to successfully capture the

surrounding gas.

The pebble accretion model provides a solution to this problem. It states that not all the

dust ends up into planetesimals, but that a significant amount of mass can stay in the form

of pebbles, i.e. decimeter size rocky-icy bodies. Due to the friction exercised by the sur-

rounding gas, these pebbles slow down and can be captured by the gravity of a growing

protoplanet. In this regard, a study conducted by Ormel & Klahr [44] has indeed shown
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that the cross section for pebble impacts on a protoplanet is strongly enhanced by the gas

drag on the pebbles. As a consequence, pebble accretion significantly contributes to the

planet growth and speeds up the planet formation timescale with respect to the planetesi-

mal only scenario.

According to a study conducted by Chatterjee & Tan [10], pebbles drift from the outer

region of the disk towards the inner one, until they find the end of the dead zone3. At this

point, pebbles collect due to the presence of a pressure trap, thus forming a pebble ring

that persists until it either becomes gravitationally unstable enough to form a planet or it

induces gradual planet formation via core accretion. After the first planet is formed, the

inner edge of the dead zone gets farther out, since the disk dissipates and more regions are

ionized. This process repeats at the location of the new pressure trap, always requiring

the existence of a dead zone. A schematic overview of this phenomenon is provided in

Fig. 10.

Figure 10: Schematic overview of the stages of the inside-out planet formation scenario.

From Chatterjee et al. [10].

3In the outer regions of the disk, where the radiation from the star is weaker, the ionization level de-

creases significantly. As a result, the gas becomes less turbulent and less effective at transporting angular

momentum. This region is known as the dead zone, whose reduced activity can make it challenging for

planetesimals and dust grains to accumulate and form larger objects like planets.
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It is worth to note that pebbles can be either primordial or the outcome of planetesimal

collisions. In fact, during the runaway growth phase, most of the pebbles are lost due to

radial drift. Therefore, planetesimal collisions are necessary to produce a second genera-

tion of pebbles.
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3 Planet-Disk Interaction

The term exoplanet refers to a planet not belonging to the Solar System. Since the de-

tection of the first exoplanet by Mayor & Queloz [33], i.e. the gaseous giant 51 Peg b,

more than 5000 extrasolar planets were discovered to date. This goal was achieved thanks

to the development of several detection methods, i.e. radial velocity, transit photometry,

microlensing, astrometry, direct imaging and orbital brightness modulation.

The radial velocity method allows to indirectly detect the presence of a planet from the

motion of the star around the barycenter of the planet-star system. In particular, it mea-

sures the oscillation of the absorption lines due to the Doppler effect, providing the planet

mass, semi-major axis and eccentricity4.

The transit or occultation method takes advantage of the fact that when the planet passes

in front of the star, the brightness of the star decreases. The transit data provide the orbital

period and radius of the planet from the star dimming, while its eccentricity is deduced

from the duration of the transit.

The microlensing method is based on the gravitational lens effect and it allows to com-

pute the mass and semi-major axis of a planet, even if it is located very far away from the

observer.

Astrometry computes the orbit of the star around the barycenter of the planet-star system

by making precise measurements of its position in the sky. This method preferentially

detects planets with large orbits, giving their semi-major axis, eccentricity and mass5.

Direct imaging efficiently detects young planets located far from the star, since they emit

at infrared wavelengths where the star light is dimmer. It is worth to note that this method

works better for face-on planetary orbits.

Finally, the orbital brightness modulation method is based either on the change in the star

light due to the phases of a bright planet, or on the change in the shape of the star due to

planetary tides.

The inclination of the planet orbit can be computed thanks to a synergy between radial

velocity and transit observations. When the planet passes in front of a star during a tran-

sit, it first shades one limb and then the other one. Since the star is rotating, the limbs are

affected by the Doppler effect and this appears in the radial velocity curve. It follows that

from the shape of the signal it is possible to estimate the inclination of the planet orbit

with respect to the star spin. This phenomenon is known as the Rossiter-McLaughlin ef-

4The semi-major axis of the planet is computed from the period of the oscillation, while the eccentricity

is obtained from the shape of the radial velocity curve. The amplitude of the radial velocity oscillation

instead gives the quantity m · sin i, where m is the mass of the planet and i is the inclination of the orbital

plane with respect to the line of sight.
5As in the case of the radial velocity method, astrometry computes the mass with a sin i uncertainty, i.e.

it gives the quantity m · sin i.
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fect and it is illustrated in Fig. 11.

Figure 11: Schematic illustration of the velocity curve anomaly due to the Rossiter-

McLaughlin effect. The four different paths of a planet in the left panel correspond to

the velocity curves in the right panel. From Ohta et al. [43].

What emerges from the many exoplanet observations made thanks to these detection

methods is that the Solar System seems to be quite unique. Indeed, it is composed of

terrestrial planets in the inner region and giant planets in the outer one, all of them having

nearly circular orbits that lie near the plane of the Earth’s orbit, which is called the ecliptic.

Conversely, most of the extrasolar systems discovered show a large number of gaseous gi-

ants orbiting very close to their stars, with periods ranging from a few to some days. They

were termed Hot or Warm Jupiters6 and it is thought that they formed in the outer regions

of the circumstellar disk (so beyond the frost line) and then migrated inwards to their cur-

rent positions. Measurements of the Rossiter-McLaughlin effect have revealed that the

orbits of several Hot Jupiters are characterized by a high misalignment with respect to

the equatorial plane of the star [1], suggesting that exoplanets have a broad distribution

of inclination. Furthermore, many planets present very high eccentricities, despite having

formed from a disk which should give origin to planets on circular orbits. The fact that

exoplanets present a broad distribution of eccentricity was studied by Takeda & Rasio

[54], who found a median value of the order of e ≈ 0.3.

It is clear that in order to include these findings in the standard model for planet formation,

some additional dynamical mechanisms must be included. One of these key processes is

the interaction between the planets and their parent protoplanetary disk, which is able

6The name hot or warm Jupiter derives from the fact that it refers to giant planets warmer than our

system’s gas giant Jupiter, being located very close to their parent stars.
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to cause large variations in the orbital elements of the planets. However, planet-planet

and star-planet interactions are also needed to account for the diversity of exoplanetary

systems [2], leading to significant changes not only in the semi-major axis, but also in

the eccentricity and inclination. In the following paragraph, some of the major ingredi-

ents in shaping the architecture of observed planetary systems will be presented. These

are planet migration by interaction with the gaseous disk, periods of dynamical instability

characterized by close approaches between the planets (i.e. planet-planet scattering), tidal

interaction between the planet and the star and mean motion resonances.

3.1 Planet Migration by Interaction with the Gaseous Disk

Planet migration by interaction with the gaseous disk is an important process in the stan-

dard model of planet formation. In particular, it refers to the movement of a forming

planet within the protoplanetary disk due to gravitational interactions and exchange of

angular momentum with the surrounding gas.

It is possible to divide this phenomenon into two regimes, i.e. type I and type II migration,

depending on the mass of the planet. Specifically, type I migration occurs when the planet

is relatively small compared to the surrounding gaseous disk, having a mass of the order

of 1−50MEarth. In this case, the perturbations in the disk induced by the planet are small

and the disk structure does not change significantly. These perturbations are commonly

divided into two parts, as it is illustrated in Fig. 12:

• A wave part, in which the disk responds by generating spiral density waves that

propagate across the entire disk from the planet’s position.

• Another part localized within a narrow zone that surrounds the planet’s orbital ra-

dius, known as the planet’s horseshoe region. Within this region, the material in the

disk makes u-turns as it interacts with the planet.

Dealing with the wave part, Goldreich & Tremaine [18] found that a planet exerting its

gravitational force to the disk has the ability to initiate waves at Lindblad resonances.

This type of resonances occur at locations where the azimuthal velocity of the gas relative

to the planet matches the phase velocity7 of acoustic waves in the azimuthal direction [2].

The combination of the waves generated at Lindblad resonances results in the formation

of a spiral density wave with a single-arm pattern, which is known as the wake [42]. The

inner part of the spiral wave rotates faster than the planet, thus exerting a gravitational

torque that tends to dampen the planet’s eccentricity and inclination, while transferring

7The phase velocity of acoustic waves depends on the azimuthal wavenumber, on the sound speed and

on the epicyclic frequency [2], i.e. the oscillation frequency of a particle in the disk that is subject to a small

radial displacement [60].
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Figure 12: Relative perturbation of the surface density of a gaseous protoplanetary disk

perturbed by a planet with mass M = 5MEarth, located at x = rp and y = 0. The planet

induces a one-armed spiral density wave that propagates throughout the disk and density

perturbations confined in the planet’s horseshoe region. From Baruteau et al. [2].

angular momentum from the planet to the disk. As a consequence of this positive torque,

the planet is accelerated and forced to migrate outwards. Conversely, the outer part of

the spiral wave rotates slower than the planet, thus leading to a gravitational torque that

tends to excite the planet’s eccentricity and inclination, while transferring angular mo-

mentum from the disk to the planet. It follows that a negative torque is exerted on the

planet, slowing it down and causing an inward migration. In most cases, the two torques

are unbalanced, with the outer one being greater. This means that the sum of the two

torques, i.e. the differential Lindblad torque, is negative and causes an inward migration

on timescales of the order of a few 105 yr. These timescales are significantly shorter com-

pared to the expected lifetime of the disk, being it typically of the order of 106 − 107 yr.

As a consequence, this type of migration appears to be excessively efficient, making it

highly challenging for planets to survive on orbits spanning several AU.

An expression for the total torque acting on the planet can be obtained by adding up all the

torques at the Lindblad resonances. Let’s denote as Σ the surface density of the disk, as q

the planet-to-star mass ratio, as Ω the angular velocity of the disk, as r the radial distance

of the planet from the star, as h = H
r

the disk aspect ratio and as γ the ratio between the
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specific heats. According to the work done by Paardekooper & Papaloizou [46], the total

wave torque ΓL exerted on the planet in a non-isothermal, adiabatic and two-dimensional

disk is given by:

γΓL = −(2.5 + 1.7β − 0.1α)
q2

h2
Σpr

4
pΩ

2
p = −(2.5 + 1.7β − 0.1α)Γ0

It is immediate to note that the migration rate is proportional to both the mass of the planet

Mp and the surface gas density Σ. In this expression the quantities with subscript p refer

to the location of the planet, Γ0 is a normalization factor, while the parameters α and

β represent respectively the exponents of the density power-law and of the temperature

profile:

Σ ∝ r−α T ∝ r−β

In general, the two parameters α and β are positive, since both the surface density Σ

and the temperature T decrease moving outwards. From the normalization factor Γ0 it is

possible to compute the timescale for type I migration in case of planets on circular orbits.

By denoting as M∗ the mass of the central star, it gives:

τ0 =
rp
∣

∣

∣

drp
dt

∣

∣

∣

=
1

2

h2

q

M∗

Σpr2p
Ω−1

p

An additional contribution to type I migration comes from corotation torques exerted by

gas particles that on average corotate with the planet. In a rotating reference frame mov-

ing with the planet, these gas particles perform horseshoe orbits, reversing the direction

of their motion when they approach the planet from ahead or from behind. After having

spent some time in this horseshoe region, the particles will move to the region inside the

planet. The exchange of angular momentum between the gas and the planet due to these

orbits depends on the temperature and density profiles of the disk and on viscosity. Gen-

erally, this leads to an outward migration, thus slowing down or even reversing the inward

migration due to the Lindblad resonances8.

It is worth to note that while density waves carry away angular momentum from the

planet, the horseshoe region can only operate under a finite amount of available angular

momentum. This means that in order to sustain the corotation torque, it is necessary to

consider an inflow of angular momentum into the horseshoe region, otherwise the corota-

tion torque is prone to saturation [2].

A study conducted by Tanaka et al. [55] found that wave torques always dominate over

corotation torques, with the exception of disks with extreme surface density profiles. Ac-

8Within this context, it is worth to mention the work done by Nelson [40]. He found that large scale

turbulence can cause a stochastic migration of planets that may overcome the Lindblad torques.
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cording to Paardekooper et al. [45] a numerical value for the corotation torque Γc can be

obtained by solving the linearized disk equation. For a non-isothermal, two-dimensional

disk, it gives:

γΓc =

[

0.7

(

3

2
− α− 2ζ

γ

)

+ 2.2ζ

]

q2

h2
Σpr

4
pΩ

2
p =

[

0.7

(

3

2
− α− 2ζ

γ

)

+ 2.2ζ

]

Γ0

In this expression ζ = β − (γ − 1)α refers to the power-law exponent of the specific

entropy. It was demonstrated that in case of an isothermal disk, ζ = 0 and the linear

corotation torque scales with the local gradient in vortensity9 [18]. As a result, corota-

tion torques exhibit a stronger dependence on gradients in the background surface density

compared to wave torques.

An alternative formulation for the corotation torque was derived by Ward [59], by exam-

ining the behavior of gas particles on horseshoe orbits with respect to the planet. For an

isothermal disk, he found that the torque exercised on the planet by these particles scales

with the vortensity gradient similarly to what was shown by the linear corotation torque.

Being corotation torques very sensitive to the viscosity and thermal properties of the disk,

it was already mentioned that they may be able to counterbalance the negative wave

torque, thus leading to a global outward migration. In this framework, Bitsch & Kley

[7] conducted numerical simulations on small eccentric planets, demonstrating how the

corotation torque decreases as the eccentricity increases. This limitation restricts the pos-

sibility of outward migration to planets with eccentricities below a few percent. According

to Fendyke & Nelson [16], the reason behind this phenomenon can be attributed to the

narrowing of the width of the horseshoe region as the eccentricity increases. Furthermore,

Papaloizou & Larwood [47] found that the Lindblad torque becomes more positive with

increasing eccentricities, a fact that further accentuates the previous limitation. Studies

on low-mass inclined planets have instead shown that they can only migrate outwards if

their inclination remains below a few degrees [6]. In fact, the larger the inclination, the

smaller the duration of the planet’s interaction with the gas near the mid-plane of the disk.

Consequently, the corotation torque and the migration rate will decrease accordingly.

To conclude, it is interesting to note that type I planet migration leads to a system char-

acterized by circular orbits, since small eccentricity variations are dumped by the gas

[17][32]. An analogous reasoning applies to planetary inclinations, as they are gradually

attenuated over time by planet-disk interactions [56]. Within this context, Tanaka & Ward

[56] obtained an expression for the timescales of eccentricity and inclination damping in

9The vortensity, or specific vorticity, is defined as the vorticity divided by the surface density.
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three-dimensional systems:

τe =
e
∣

∣

de
dt

∣

∣

≈ 2.6h2τ0 τi =
i
∣

∣

di
dt

∣

∣

≈ 3.7h2τ0

Since the factor h2 is very small, the damping of both the eccentricity and inclination

occurs at a significantly faster rate compared to migration. As a result, a single low-mass

planet is expected to migrate while maintaining a circular and coplanar orbit.

Dealing now with type II migration, it occurs when the planet is massive enough to open a

gap in the protoplanetary disk. The formation of a gap is due to the tidal torque exerted by

the planet on the disk, which transfers angular momentum from the planet to the gas out-

side its orbit, while doing the opposite to the gas located inside. When the torque exerted

by the planet exceeds the magnitude of the viscous torque responsible for the spreading

of the disk, it results in the creation of an annular gap that encircles the planet’s orbit [28].

Otherwise, the viscous torque occurring close to the planet’s orbit will be able to contrast

this effect, by resupplying gas and smoothing the density gradient.

The depth of the gap is defined as the distance from the planet at which the planet torque

and the viscous torque achieve equilibrium [57]. However, a study conducted by Crida

et al. [12] showed that the disk material close to the planet experiences an additional

pressure torque, arising from the non-axisymmetric density perturbations induced by the

planet. In a state of equilibrium, the three torques balance each other, ultimately deter-

mining the profile of the gap. From a semi-analytic study of this torque balance, they

found the following gap-opening criterion:

P =
3

4

H

rH
+

50

qR ≤ 1

In this expression P is a dimensionless quantity, while rH is the planet’s Hill radius. It is

possible to solve the equation P = 1 analytically, obtaining the minimum planet-to-star

mass ratio to open a deep gap in the disk. By introducing the quantity X =
√

1 + 3Rh3

800
,

it gives:

qmin =
100

R
[

(X + 1)
1

3 − (X − 1)
1

3

]−3

As an annular gap develops around a planet, it divides the protoplanetary disk into two

distinct regions, i.e. an inner disk and an outer disk. Both of them exert repulsive forces on

the planet, thus pushing it towards the center of the gap. Since the gaseous disk is moving

inwards due to viscous accretion, it will force the planet to migrate with it along the same

direction [28]. Therefore, the migration of the planet follows the viscous evolution of the
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disk, with a timescale equal to the viscous accretion time:

τν =
r2p
ν

In this expression the quantity ν is the disk’s kinematic viscosity, whose value is of-

ten computed by exploiting the alpha prescription for the disk viscosity. In general, the

timescale for type II migration appears to be of the of the order of 105 − 106 yr.

However, if the planet’s mass is significantly larger than that of the gas surrounding the

gap, the planet will slow down the viscous accretion of the disk [2]. This situation arises

when the following condition is fulfilled:

Mp > 4πΣ0r
2
p

In this expression Σ0 represents the surface density of the outer disk immediately outside

the gap. In such scenarios, the inner disk continues to accrete material onto the central

star, while the outer disk is controlled by the gravitational influence of the planet. As

a result, it occurs a partial or complete emptying of the inner disk, while the migration

timescale τ will be determined by the equilibrium between the viscous torque and the

inertia of the planet:

τ = τν ·
Mp

4πΣ0r2p

Finally, it must be considered that the gas residing within the gap exerts a positive corota-

tion torque on the planet. As a consequence, the migration of planets that barely meet the

condition for gap formation can proceed at a slower pace compared to the conventional

type II migration. Specifically, if the gap density reaches a significant level, the corotation

torque can overcome the viscous torque, thus leading to a global outward migration of the

planet [11][2].

As it was said for type I migration, planet-disk interactions tend to dump the eccentricity

and inclination also in the case of massive planets that have created gaps in the surround-

ing disk [8]. Therefore, type II migration is expected to produce hot Jupiters that are

characterized by circular orbits and low inclinations.

3.2 Planet-Planet Scattering

It was seen in Sec. 3.1 that the eccentricities of planets forming within a circumstellar disk

are kept low by the gas perturbations. However, once the gas dissipates, a multi-planet

system may become unstable, allowing the eccentricities to grow. As a consequence, the

planets may be subject to close encounters, thus leading to a period of chaotic evolution,
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where the orbital elements of the planets show steep changes.

This instability develops on a timescale that depends on the initial mutual distance be-

tween the planets, ending when one or more planets are ejected out of the system on

hyperbolic orbits. As a result, the surviving planets are placed into highly eccentric or-

bits, both closer and farther from the star [62].

Numerical simulations of planet-planet scattering involving three giant planets with Jupiter

mass around a solar type star show the occurrence of this type of instability and the sub-

sequent ejection of one of the planets on a hyperbolic orbit. Since the trajectory of the

ejected planet has positive energy, the conservation of the total energy of the system im-

plies that the inner surviving planet is injected on an orbit that is closer to the star. Specif-

ically, at the beginning of the simulation, the energy of the system is given by:

E = −GMs

2

(

m1

a1
+
m2

a2
+
m3

a3

)

In this expression Ms is the mass of the star, m1, m2 and m3 are the masses of the three

planets, while a1, a2 and a3 are the semi-major axis of the correspondent orbits. Con-

versely, at the end of the simulation most of the energy of the system is given by the

closer planet. It follows that this planet must present a very high eccentricity, being its

semi-major axis of the order of afin,1 ≈ GMsmi

2E
.

It is safe to conclude that the gravitational interaction among planets can exert a remark-

able influence on the final architecture and stability of planetary systems. In particular,

close encounters can break resonant configurations, leading to the planets being released

from their resonance or even reversing the order of planets in the chain.

3.3 Tidal Interaction

Tidal forces depend on the gradient of a gravitational field, arising from the unequal dis-

tribution of the gravitational attraction on different parts of an object.

In exoplanetary systems where the planet orbits close enough to the star, the two objects

can tidally interact with each other. This means that there will be a tide raised by the planet

on the star and a tide raised by the star on the planet. It is possible to define different kinds

of tidal interaction:

• The equilibrium tide is typical of rocky bodies having an orbit characterized by a

small eccentricity and it foresees the formation of an equilibrium bulge. In this

case, the dissipation of energy is caused by the time variation of the tidal bulge.

• The dynamical tide is typical of gaseous bodies with high eccentricities. In this

case, the body is assumed to be an oscillator, with a number of modes that are
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excited when the companion passes at the pericenter.

The most important effect of tidal interaction is the circularization of the planet orbit,

which in case of an eccentric planetary orbit it drags the planet closer to the star. In order

to understand this phenomenon, let’s consider the expression for the conservation of the

angular momentum. By denoting as mp and ms the masses of the planet and the star, as

M the total mass of the system, as a the semi-major axis of the planet’s orbit and as e its

eccentricity, it yields:

L =
mpms

mp +ms

√

GMa(1− e2) = constant

It follows that the quantity a(1− e2) must not change in time, thus giving:

a(1− e2) = a(1− e)(1 + e) ≈ 2a(1− e) = constant −→ a(1− e) = constant

Therefore, if the eccentricity e decreases, so must do the semi-major axis a. In the limit

in which e → 0, the final semi-major axis will be equal to twice the initial pericenter

distance of the orbit, being it p = a(1− e).

As a consequence of this fact, the coupling between tidal interaction of the planet with the

star and planet-planet scattering is able to explain the existence of Hot/Warm Jupiters. By

referring to what was said in Sec. 3.2, the occurrence of planet-planet scattering in case

of three giant planets orbiting around a star implies that the inner surviving planet must

have a high eccentricity [62]. This means that the planet passes very close to the star, thus

causing a strong tidal interaction that leads to the circularization of the orbit to twice the

initial pericenter of the planet. As a result, if the eccentricity e is initially high, then the

final semi-major axis a of the orbit will be much smaller that the initial one.

This situation was studied by Nagasawa et al. [39], who carried out orbital integrations of

three giant planets with Jupiter mass directly including the effect of tidal circularization.

In their work, they adopted the formulas derived by Ivanov & Papaloizou [22] to compute

the amount of tidal angular momentum ∆Ltide and energy ∆Etide gained during a single

pericenter passage, which are given by:

∆Ltide ≈ −32
√
2

15
w̄2

0Q̄
2ζe−

4
√

2

3
w+ζ

[

1− 9

214(w̄0ζ)4
e

4
√

2

3
σ̄ζ

]

Lpl

∆Etide ≈ −16
√
2

15
w̄3

0Q̄
2ζe−

4
√

2

3
w+ζ

[

1 +
3

27(w̄0ζ)2
e

2
√

2

3
σ̄ζ

]2

Epl

In these two expressions, Lpl = m(GmR)
1

2 and Epl =
Gm2

R
are the orbital angular mo-

mentum and orbital energy. Moreover, by denoting as p = a(1−e) the pericenter distance,
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as Ωr the angular velocity of the planet rotation, as w̄0 a dimensionless frequency of fun-

damental mode and as Q̄ a dimensionless overlap integral depending on the planetary

interior model, then ζ = (mp3)
1

2 (m∗R
3)−

1

2 , w+ = w̄0

(

Gm
R3

) 1

2 + Ωr and σ̄ = 2Ωr

(Gm

R3 )
1
2

[39].

Note that for a non-rotating planet, the previous two equations are simplified to:

∆Ltide ≈ −32
√
2

15
w̄2

0Q̄
2ζe−

4
√

2

3
w0ζLpl

∆Etide ≈ −16
√
2

15
w̄3

0Q̄
2ζe−

4
√

2

3
w0ζEpl

This model is applicable only to fully convective planets in highly eccentric orbits, as it

considers the l = 2 fundamental modes of tidal dissipation and it uses the impulse ap-

proximation. In fact, oscillation modes are excited within the planetary interior due to the

tidal force exerted by the star near the pericenter. It is assumed that the energy of these

modes dissipates, while the angular momentum is transferred to the orbital angular mo-

mentum before the subsequent pericenter passage. By supposing that the orbital changes

during each approach are negligible, the orbit of the planet is changed impulsively at the

moment of the pericenter passage. Since the pericenter passage occurs every Keplerian

time TKep, the evolution timescales of the semi-major axis a and eccentricity e are given

by (γ = 1−e2

e2
):

τa = −a
ȧ
= −Gmm∗

2a

TKep

∆Etide

τe = −e
ė
= Gmm∗TKep

(

−aγ∆Etide +

√

γGm∗

ae2
∆Ltide

)−1

Therefore, the timescale for tidal damping is proportional to the mass and radius of the

planet.

As shown in figure 13, at the end of the simulation a system of three-planet scattering

usually ends with the ejection of one planet and the system entering a stable state. In

particular, one planet is left on an outer orbit, while the inner one is tidally driven to a

circular orbit closer to the star. It is safe to conclude that planet-planet scattering and

tidal interaction with the star are able to explain the observed orbits of most Hot/Warm

Jupiters without invoking planet migration by interaction with the gaseous disk, even

though additional dynamical mechanisms may cause a change in their orbital elements.

3.4 Resonances

Orbital resonances arise when two or more celestial bodies exert regular and periodic

gravitational influences on each other, reinforcing or dampening their orbital motions.
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Figure 13: Evolution of the semi-major axes (middle), apocenter (outer) and pericenter

(inner) of three planets. In particular, the dotted line refers to the ejected planet, the dash-

dotted line to the planet left on an outer orbit, while the solid line to the planet injected on

a closer orbit. From Nagasawa et al. [39].

The most important resonance is the mean-motion resonance, which occurs when the or-

bital periods of the involved planets have a simple integer ratio.

In order to understand the properties of the mean-motion resonance, let’s consider a sys-

tem of two planets that undergo migration within their parent disk. When the migration

drift rates of the two planets cause them to move apart, i.e. when a divergent migration

takes place, the effects of planet-planet interactions are small and resonant capture does

not occur [2]. On the other hand, resonant capture takes place during convergent migra-

tion, where the planets migrate towards each other. In this case, the planets may approach

a state in which their orbital periods are the ratio of two integers. As a consequence, the

orbital eccentricities of the planets can be excited, thus leading to a possible resonant cap-

ture.

The occurrence of resonant capture depends on the time the two planets take to cross the

resonance. In particular, the timescale of convergent migration must be longer than the

timescale of libration associated with the width of the resonance [52], otherwise the two

planets will not have enough time to excite the resonance and they will pass through it

without being captured [38].

By denoting as Ω1 and Ω2 the angular velocity of the inner and outer planets, the condition

29



for the manifestation of a mean-motion resonance is:

(p+ q)Ω2 − pΩ1 = 0

In this expression q and p are two positive integers, with q denoting the order of the

resonance [2]. The same condition written in terms of the semi-major axes of the two

planets gives:

a2
a1

=

(

p+ q

p

) 2

3

When this criterion is satisfied, the system is considered to be in a p+ q : p mean motion

resonance. As a result, at least one of the resonant angles will exhibit libration, thus

showing a limited dynamical range that will be smaller than 2π.

Let’s denote as λ1 and λ2 the mean longitudes of the inner and outer planets, while as ω̄1

and ω̄2 the longitude of their pericentres. The resonant angles ϕ1 and ϕ2 are then defined

by the following combination of the mean longitudes of the two planets:

ϕ1,2 = (p+ q)λ2 − pλ1 − qω̄1,2

Therefore, when the two planets are captured in resonance, the resonant angles exhibit

libration. In this case the system is said to be in apsidal corotation [2], since the two

apsidal lines of the resonant planets are always aligned or maintain a fixed angle between

them [25].

The specific resonance into which the system may ultimately settle depends on several

factors, such as the masses of the planets, their initial separation and the relative speed of

their migration [41]. Nevertheless, since the convergent migration speed is quite low, it is

common for two initially distant planets to be captured in the 2:1 resonance, being it the

first first-order resonance they encounter [2].

After being captured in resonance, the two planets migrate together, while maintaining a

constant ratio between the orbital periods. Moreover, they experience an increase in their

eccentricities, which will continue to rise in absence of an adequate damping mechanism.

This may lead the eccentricities to reach extremely large values, thus giving rise to insta-

bilities within the system.

The rate at which the eccentricity is damped by the surrounding disk, which is denoted as

ė, is frequently parameterized with respect to the migration rate ȧ:

∣

∣

∣

∣

ė

e

∣

∣

∣

∣

= K

∣

∣

∣

∣

ȧ

a

∣

∣
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∣
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In this expression the quantityK refers to a dimensionless constant. According to Baruteau

et al. [2], for low-mass planets the eccentricity damping takes place at a significantly faster

rate compared to migration. Conversely, the creation of a gap in the disk considerably re-

duces the eccentricity damping in the case of high-mass planets.

A fully analytical and integrable treatment of resonant phenomena was provided by Baty-

gin & Morbidelli [3], who tried to construct an approximation to the first order resonant

motion of two massive planets orbiting around a central star. According to their work,

let’s denote as M the mass of the star, as m1 and m2 the masses of the inner and outer

bodies, as p1 and p2 their barycentric linear momenta, as r1 and r2 their distance from the

star and as ∆12 the relative distance between them. The exact Hamiltonian H that governs

the gravitational three-body problem in its heliocentric formulation is then given by:

H =
M +m1

2M

p21
m1

+
M +m2

2M

p22
m2

− GMm1

r1
− GMm2

r2
+
p1 · p2
M

−G
m1m2

∆12

In order to obtain a suitable approximation to this expression, it is more practical to em-

ploy the classical perturbation method instead of directly dealing with the Hamiltonian.

By noting that the first four terms of the Hamiltonian define the Keplerian motion of the

two planets, it is possible to write the Keplerian part in terms of the orbital elements

[37][36], specifically by exploiting their semi-major axes a1 and a2:

HKep = −GMm1

2a1
− GMm2

2a2

The remaining terms in the Hamiltonian account for planet-planet interactions. Since their

magnitudes are significantly smaller compared to HKep, these terms are often referred to

as the disturbing function, which introduces minor perturbations to the integrable Hamil-

tonian.

Let’s now expand the disturbing function into a Fourier series in terms of the orbital angles

and a power series of the planetary eccentricities and inclinations [27]. This procedure

allows to identify the presence of resonant10 and secular terms within the disturbing func-

tion. However, the dominant secular terms in the expansion are of the order of O(e2, i2),

where e represents the eccentricity and i denotes the inclination. As a consequence, in

the development of a first-order resonant theory, these terms will be neglected, along with

all the resonant terms of higher order in eccentricity and inclination. The approximated

Hamiltonian can thus be written as:

H ≈ HKep +Hres +O(e2, i2)

10Resonant terms are harmonics that exhibit variations on a timescale significantly longer than the orbital

timescale in the vicinity of exact commensurability [3].

31



Within this context, the perturbation caused by the k : k − 1 resonance to the Keplerian

motion reads:

Hres = −Gm1m2

a2
(f (1)

rese1 cos(kλ2− (k− 1)λ1− ω̄1)+ f
(2)
rese2 cos(kλ2− (k− 1)λ1− ω̄2))

In this expression the quantities f
(1)
res and f

(2)
res are of the order of unity, being them weakly

sensitive to the semi-major axes ratio a1
a2

only. On the other hand, ω̄ and λ refer respec-

tively to the longitude of perihelion and mean longitude of the two planets.

The subsequent manipulation of the Hamiltonian is quite tricky. By means of several

transformations, the number of degrees of freedom of the Hamiltonian is reduced from

the initial value of six to one, providing a simple integrable expression for the Hamilto-

nian:

H = δ(Ω + Ψ1 +Ψ2)− (Ω + Ψ1 +Ψ2)
2 −

√

2Ψ1 cos(ψ1)

Without dwelling on the meaning of the different variables, it is still immediate to note

how the Hamiltonian under consideration is equivalent to the second fundamental model

of resonance developed by Henrard & Lemaitre [21], thus showing qualitative similarities

to the pendulum model for resonance. Despite being only accurate at low eccentricities,

this theory provides useful insights into the global dynamics of the unrestricted, first order

resonant three-body problem [3]. In fact, by making use of the different constants of

motion that have emerged during the computation of the final integrable Hamiltonian, it

is possible to construct a geometrical characterization of the resonant motion.

3.5 The Jupiter-Saturn Case

A study conducted by Masset & Snellgrove [31] has investigated the coupled evolution of

a system composed of two closely spaced giant gaseous planets orbiting around a central

star. In particular, they considered a system composed of a giant planet embedded in a

protoplanetary disk, which is caught up by a lighter outer giant planet before having mi-

grated all the way to the central star.

In order to study the long-term behaviour of this system, they used two different hy-

drodynamical codes based on fixed Eulerian grids. The 2-dimensional simulations are

conducted in a non-inertial, non-rotating frame centered on the star, which is assumed to

resemble the Sun. The two planets have respectively the same masses of Jupiter and Sat-

urn and they start their evolution with semi-major axis aj = 1 AU and as = 2 AU . The

disk aspect ratio is assumed to be uniform and constant, being it equal to h = H
r
= 0.04.

The disk surface density is also uniform and it corresponds to two Jupiter masses inside

the Jupiter’s orbit. The adopted grid resolution is Nr = 122 and Nθ = 300, while the grid
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outer boundary is set at Rmax = 5 AU and the inner boundary is at Rmin = 0.4 AU . It

is worth to note how the outer boundary of the computational grid is set at a sufficiently

high distance from the planets, preventing any inflow or outflow. This choice ensures that

the spiral density waves launched by the planets are damped before reaching the outer

boundary. Conversely, the inner boundary of the grid allows for outflow, thus enabling

the accretion of disk material onto the central star. Finally, the viscosity is assumed to be

uniform through the disk, corresponding to a value of α = 6 · 10−3 near the inner planet’s

orbit.

All the simulations gave very similar results, showing the ability of the two-planets sys-

tem to migrate outwards within the parent disk. In this scenario, the mass of the inner

planet is sufficiently large to create a deep gap around its orbit, thus leading to a type II

migration. On the other hand, the outer planet has a lower mass, so it only opens a partial

gap in the disk. As a consequence, the outer planet migrates inward at a faster pace than

the inner planet. Let’s consider the case in which the convergent migration occurs rapidly

enough for the planets to cross the 2:1 mean-motion resonance and become locked in the

3:2 resonance. In this situation the two planets will merge their gaps and they will start

migrating together [2]. Since the inner planet is more massive than the outer one, the pos-

itive torque exerted by the inner disk overtakes the negative torque exerted by the outer

disk. As a result, the two planets will move outwards in their migration.

This mechanism depends on the presence of an asymmetric density distribution across the

common gap that surrounds the two planets. It follows that the joint outward migration

of a resonant planet pair is influenced by the aspect ratio and viscosity of the disk, as well

as the mass ratio between the two planets, being these factors affecting the density profile

within the gap.

Within this context, D’Angelo & Marzari [13] carried out hydrodynamical simulations in

both two and three dimensions to examine the circumstances under which the outward mi-

gration of a pair of resonant-orbit planets can be effective. Referring to the 2-dimensional

simulations, they adopted a reference frame centred on the star, which is again assumed to

have the same mass of the Sun. The disk is supposed to be locally isothermal, so that the

temperature depends only on the radial distance r. The aspect ratio is constant through the

disk, being of the order of h = H
r
= 0.04. The adopted grid resolution is Nr = 678 and

Nθ = 700, ranging in radius from Rmin = 0.25 AU to Rmax = 7 AU . The two planets

have the same masses of Jupiter and Saturn and they are assumed to be fully-formed since

the beginning of the calculations and non-accreting. In particular, their initial conditions

are aj = 1.5 AU and as = 2 AU . They applied wave-damping boundary conditions for

regions within r = 0.3 AU and beyond r = 6.65 AU , which are appropriate for planets

far enough from the boundaries. The surface density is set to Σ = 50 g/cm2 at r = 1 AU .
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This follows from disk evolution calculations, which showed that around 50% of disks

have Σ ≤ 50 g/cm2 at r = 1 AU after ≈ 1 Myr, i.e. at a time in which planets have

already formed. The kinematic viscosity is supposed to be constant throughout the disk,

being it of the order of ν = 4 · 10−6.

Thanks to these numerical simulations, the authors have demonstrated that the most favor-

able conditions for successful joint outward migration with a 3:2 ratio of commensurabil-

ity occur when the mass ratio between the inner and outer planets closely resembles that

of Jupiter and Saturn. This commensurability represents the first encountered first-order

mean motion resonance, but the second-order 5:3 commensurability may provide another

possibility. Conversely, in the case of more massive planets by a factor of about three, an

outward migration may be promoted by a 2:1 ratio of commensurability.

Therefore, it is possible to explain the present-day orbits of Jupiter and Saturn through the

occurrence of a two-stage migration, based on the coupling between planet migration due

to the interaction with the disk and a 3:2 mean motion resonance [31]. This explanation

provides the most accepted theory to explain the formation, migration and dynamics of

Jupiter and Saturn. The Jupiter and Saturn resonant configuration is shown in Fig. 14.

Finally, it is worth to mention the so-called Grand Tack scenario, which was proposed by

Walsh et al. [58]. The authors conducted hydrodynamical simulations to show that Jupiter

and Saturn can undergo a two-stage, inward-then-outward, migration within their parent

protoplanetary disk. The amount of gas at any distance within the disk is multiplied by an

exponentially-decaying function of time, in order to imitate the gradual dissipation of the

disk as the planets are in motion. In particular, the gas surface density is set to be equal

to 100 g/cm2 at r = 15 AU . The adopted aspect ratio is constant through the disk, being

of the order of h = H
r
= 0.05. Jupiter is assumed to be fully-formed since the beginning

of the calculations and it starts at 3.5 AU . The choice of this location is considered to be

highly favorable for giant planet formation due to the presence of the snow-line11. Sat-

urn instead starts at 4.5 AU with half of its final mass and remains stationary for about

105 yr, growing its mass as Jupiter migrates inwards. Once Saturn reaches its final mass,

its inward migration begins and it is much faster than that of the fully grown Jupiter. As a

consequence, Saturn catches Jupiter, they merge their gaps and they get trapped in the 3:2

mean motion resonance, which occurs when Jupiter is located approximately at 1.5 AU .

At this point, the direction of migration is reversed and the two giant planets start migrat-

ing outwards together until the dispersion of the gaseous disk. At the end of the migration,

11A quite recent research has indicated the presence of two equilibrium radii within the disk, where the

migration of cores comes to a halt [29]. The innermost equilibrium position is closely linked to the snow-

line, which is estimated to be around 3− 5 AU . This location, where core migration ceases, was identified

as a favorable site for core growth [35][50]. As a consequence, the cores are expected to develop in the

proximity of an equilibrium radius, on non-migrating orbits and locked in mutual resonances with each

another [58].
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Figure 14: Jupiter and Saturn in a resonant configuration. The two planets are locked

in a 3:2 mean motion resonance, having opened a mutual gap in the protoplanetary disk.

As a consequence, the planetary migration direction is reversed to point outwards. The

snapshot shows the orbital state of Jupiter and Saturn at a time when Jupiter is at 4.3 AU .

From Masset & Snellgrove [31], Morbidelli & Crida [11].

Jupiter is located approximately at 5.4 AU from the central star.

Once the gas is removed, the giant planets continue to experience gravitational interac-

tions with the planetesimals present in the disk. Over time, these interactions lead to the

disruption of the mutual resonances between the giant planets. This leads the planets to

enter an unstable phase, which is characterized by mutual close encounters. During this

phase, Jupiter and Saturn undergo significant changes in their orbital eccentricities and

inclinations, ultimately acquiring their current values. N-body simulations have indeed

demonstrated that the giant planet instability phase serves as the dynamical connection

between the current configuration of the planets and the resonant orbital arrangement that

the giant planets had at the end of the gas-disk phase.

It is worth to note that the rate of outward migration depends on the depth of the partial
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gap formed by Saturn. This is in turn influenced by the characteristics of the disk, such

as the scale height and the viscosity. In particular, in case of thick disks the migration

proceeds at a very low pace, resulting in the planets maintaining a relatively constant dis-

tance from the central star. Conversely, in case of disks with diminishing thickness, the

outward migration progressively accelerates.

To conclude, the study of the Jupiter-Saturn system is very important as it serves as a

template for studying other planetary systems beyond the solar one and to interpret the

observations of a multitude of exoplanets. The reversal of the migration direction be-

tween two planets in resonance appears to occur exclusively when the outer planet has

a lower mass than the inner planet, with the optimal mass ratio falling between 1
4

and 1
2
.

For Jupiter-Saturn mass planets, the resonance capable of driving outward migration is

the 3:2 resonance. On the other hand, for more massive planets with three times the mass

of Jupiter and Saturn, the resonant configuration for outward migration is the 2:1 reso-

nance. Finally, if the planets have similar masses or if the outer planet is more massive,

the resonant planets migrate inwards.
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4 The FARGO3D Code

FARGO3D is a widely-used hydrodynamical and magnetohydrodynamical code, which is

specifically designed for simulating astrophysical accretion disks in the context of planet

formation and migration. This code employs a finite-difference method to solve the equa-

tions of fluid dynamics on an Eulerian mesh, which can be either Cartesian, cylindrical or

spherical [5]. Despite being it created to solve three-dimensional problems, it can also be

used in lower dimensions.

More specifically, FARGO3D solves the hydrodynamical equations by using a time-

explicit method that employs operator splitting and upwind techniques on the Eulerian

mesh. The discretization of some differential equations is achieved through finite differ-

ences, while others are solved utilizing finite volume methods.

In order to understand how the operator splitting technique works, let’s consider the fol-

lowing problem:
∂U

∂t
+A(U) = 0 U(0) = U0

If it is possible to decompose the quantity A into A = A1 +A2, then the solution of the

previous equation can be obtained by taking the linear combination of the solutions of:

∂U1

∂t
+A1(U1) = 0

∂U2

∂t
+A2(U2) = 0

In a finite difference scheme, the correspondent approximate solutions can be expressed

in the following form:
U1 − U0

∆t
= −A1(U

0)

U2 − U1

∆t
= −A2(U

1)

Generally, by denoting as U a set of conservative quantities, as T (U) a rank 2 tensor

representing the fluxes of each component of U and as S(U) the source terms, a system

of conservation laws is written as:

∂U

∂t
= −∇ · T (U) + S(U)

In this case, applying the operator splitting technique gives:

A1 = −S(U) A2 = ∇ · T (U)
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Therefore, the operator splitting technique divides the problem into two partial ones, i.e.

the source step and the transport step [53]. The equations associated with the two partial

problems can be expressed as follows:

∂tQ = S(U)

∂tQ = −∇ · T (U)

It follows that a complete time step must be composed of two sequential updates. Firstly,

there is a partial update from Q(t0) = Q0 → Q1, which is accomplished through the

source step ∂tQ = S(U). This is followed by a subsequent update from Q1 → Q2 =

Q(t0 + ∆t) through the transport step ∂tQ = −∇ · T (U). This technique improves

computational efficiency by addressing different physical processes separately.

In the source step, the effects of external forces, such as gravity and viscous forces, are

accounted for. By following the procedure of Stone & Norman [53], the source step is

divided into three sub-steps:

• In sub-step 1, the velocity field is updated by incorporating pressure gradients and

gravitational forces.

• In sub-step 2, an artificial von Neumann-Richtmyer viscosity is introduced along

with the corresponding heating terms.

• In sub-step 3, the work done by pressure forces is added to the system.

The transport step handles instead the advection or movement of material due to the ro-

tation of the gas. In particular, the transport step consists in solving a conservation law

for the quantity Q. By assuming that the control volume V does not have an explicit de-

pendence on time, the time variations of Q within the control volume are solely attributed

to the flux across its boundary ∂V . It is worth to note that the update of the frame’s an-

gular velocity does not occur during the entire transport sub-step. As a consequence, the

new velocities do not reflect the change in the frame’s rotation rate. This means that after

updating the frame’s angular velocity, it is necessary to explicitly correct the azimuthal

velocities.

The evaluation of the flux is accomplished by using an upwind method, which estimates

the value of the quantity Q∗ at the face center during the half-time step. While many

astrophysical fluid dynamics codes use the Riemann problem to evaluate the fluxes at the

interface, the FARGO3D code employs the staggering of the velocity field to express the

flux in a simpler way. In most of the sub-steps, a zone-wise linear reconstruction exploit-

ing the van Leer’s slopes is employed to obtain the interpolated value of Q. In this way,
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the interface values of density, energy and momenta are computed at the cell interfaces.

The conservation of momenta is maintained up to machine accuracy during the transport

step. In Godunov-based codes, the pressure at the interface between zones is incorporated

into the momenta fluxes, thus ensuring the conservation of momenta throughout a com-

plete update. Conversely, in FARGO3D the pressure gradient is handled separately in the

source step. Therefore, it is necessary to separately address the conservation of momenta

under the action of this source term [5]. Note that in Fig. 15 it is given a flow chart of all

the operations performed by the FARGO3D code during a full update.

The FARGO3D code possesses several key properties that contribute to its effectiveness

in simulating astrophysical systems:

• It employs high-order numerical schemes for accurate and precise calculations,

which enable reliable time integration and minimize numerical errors.

• It supports the adaptive mesh refinement (AMR), allowing for enhanced resolution

in regions of interest. This capability enables the simulations to capture detailed

features and structures within the system.

• It can incorporate various physical processes, leading to more comprehensive and

realistic simulations of astrophysical systems.

• It is designed to take advantage of parallel computing architectures, allowing to do

faster simulations by distributing the computational tasks across multiple proces-

sors or nodes.

• It provides tools for data analysis and visualization, allowing users to extract rele-

vant information from simulation results and gain insights into the simulated sys-

tem.

These properties collectively contribute to the ability of FARGO3D to accurately simulate

astrophysical systems, making it a valuable tool for investigating various phenomena in

protoplanetary disks and other relevant astrophysical environments.

4.1 FARGO3D Simulations

As it was said in section 3.5, several studies were conducted in recent years to investigate

the coupled evolution of a system composed of two closely spaced giant planets orbiting

around a central star. It was found that a system of two giant planets with masses equal to

that of Jupiter and Saturn has the ability to migrate outwards within its parent protoplan-

etary disk. In particular, the long-term evolution of this system shows the occurrence of
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Figure 15: Flow chart of the operations performed in succession in FARGO3D during

a full update. Note that the boxes with blue background are specific to the MHD case.

From Benitez et al. [5].

a two-stage migration, inward-then-outward, based on the coupling between planet mi-

gration due to the interaction with the disk and a 3:2 mean motion resonance. This ratio

of commensurability represents the first encountered first-order mean motion resonance

for a Jupiter-Saturn pair, although the second-order 5:3 commensurability may provide

another possibility [13].

Recently, preliminary simulations were performed with the FARGO3D hydrodynamical
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code in order to better understand the circumstances under which the outward migra-

tion of a Jupiter-Saturn resonant system can be effective. These simulations are done in

2-dimensions, with polar cylindrical coordinates {x1, x2} = {r, ϕ}. The adopted non-

rotating reference frame is centred on the central star, which is assumed to have the same

mass of the Sun. The disk radius ranges from Rmin = 0.4 AU to Rmax = 12.0 AU ,

with damped outflow boundary conditions implemented both at the inner and other bor-

der. This type of boundaries enables the accretion of disk material onto the central star

as well as its dissipation due to photoevaporation, stellar winds and radiation pressure.

The two planets have the same masses of Jupiter and Saturn and they are assumed to be

fully-formed before starting their migration within the gaseous disk. More specifically,

the initial positions of the two planets are held fixed until they reach their final masses,

when they are released and allowed to migrate. This time enables the system to stabi-

lize itself, in order to avoid problems in the simulation. The initial conditions of the two

planets are aj = 4 AU and as = 6 AU , a range of locations that is considered to be

highly favorable for giant planet formation due to the presence of the snow-line, being

it estimated to be around 3 − 5 AU . The disk is supposed to be locally isothermal, thus

providing a good approximation for old disks with low gas density. As a consequence,

the cooling, thermal conduction and entropy effects are neglected in these simulations.

The surface density is set to Σ = 40 g/cm2 at r = 1 AU , a choice which is very similar

to the one made by D’Angelo et al. [13], who used a surface density of Σ = 50 g/cm2.

This low density value is in line with the fact that the planets have already formed before

starting their migration. The aspect ratio is constant through the disk, being of the order

of h = H
r

= 0.05. This value aligns with those adopted in other simulations, being it

equal to h = 0.04 in the works conducted by Masset et al. [31] and by D’Angelo et al.

[13], while it is set to h = 0.05 in the study proposed by Walsh et al. [58]. The viscosity

parameter α is supposed to be constant through the disk and it is set to α = 1 ·10−3, while

the kinematic viscosity is given by ν = α
√
r. This choice of α well agrees with the value

of α = 6 · 10−3 used by Masset et al. [31].

By adopting a grid resolution of Nr = 384 and Nθ = 620, these preliminary simulations

have shown that the resonance capable of driving outward migration for a Jupiter-Saturn

pair is indeed the 3:2 mean motion resonance, while the second order 5:3 commensurabil-

ity is overcome without any problem. The resolution of the grid was then firstly increased

by almost a factor of 2, thus setting it to Nr = 512 and Nθ = 1024, and subsequently

by a factor of 3, with Nr = 768 and Nθ = 1536. Surprisingly, the results obtained are

different with respect to the low-resolution case. Indeed, in the high resolution case, it

is the second-order 5:3 mean motion resonance to drive the outward migration and not

the usual 3:2 commensurability. The medium resolution case shows instead an interme-
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diate behaviour, with a temporary capture in the 5:3 mean motion resonance and a final

arrangement in the 3:2 commensurability. The time evolution of the semi-axes ratio of

the two planets in the three grid resolution cases is provided in Fig. 16.

Figure 16: Time evolution of the semi-axes ratio of the two planets in the three grid

resolution cases. A ratio of about a2/a1 ≈ 1.41 indicates the occurrence of a 5:3 mean

motion resonance, while a ratio of a2/a1 ≈ 1.31 denotes a 3:2 mean motion resonance.

Preliminary simulations obtained with the FARGO3D hydrodynamical code.

The obtained results raise several questions regarding whether the observed outcomes are

due to an intrinsic issue within the FARGO3D code or if the resolution of the model in-

deed influences the type of resonance capable of driving the outward planet migration. In

order to explore this further, an alternative hydrodynamical code, namely PLUTO, was

employed to investigate the coupled evolution of a Jupiter-Saturn pair within its parent

protoplanetary disk.
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5 The PLUTO Code

PLUTO is a multi-physics, multi-algorithm, high-resolution numerical code, which is

specifically designed for handling astrophysical hypersonic flows in the presence of dis-

continuities [34]. This code is able to integrate a system of conservation laws, i.e. mixed

hyperbolic-parabolic systems of partial differential equations, by means of shock-capturing

methods and by adopting a conservative discretization based on finite volume or finite

difference Godunov-type12 schemes. In this approach, volume averages are first recon-

structed using piecewise monotonic interpolants inside each computational cell. Subse-

quently, a Riemann problem is solved at each interface with discontinuous left and right

states. Finally, the solution is evolved in time [34]. A simplified flow diagram of the

strategy followed by the PLUTO code is provided in Fig. 17.

Figure 17: Simplified flow diagram of the reconstruct-solve-average strategy. Firstly, vol-

ume averages U are more conveniently mapped into primitive quantities V . Subsequently,

left and right states V+,L and V−,R are constructed inside each zone by suitable variable

interpolation or extrapolation. A Riemann problem is then solved between V+,L and V+,R

to compute the numerical flux function F+ at cell interfaces. Finally, the solution is ad-

vanced in time. From Mignone et al. [34].

It is worth to note that the employment of high-resolution shock-capturing (HRSC) schemes

has revealed to be a promising tool to study fluid dynamics in non-linear regimes. In par-

ticular, this type of schemes has the ability to accurately simulate strongly supersonic

flows, while maintaining robustness and stability. The implementation of HRSC algo-

12The Godunov scheme is a conservative numerical scheme used to solve partial differential equations. It

represents a conservative finite-volume method which solves Riemann problems at each inter-cell boundary.

Despite being a first order accurate method in both space and time, it can also be used as a base scheme for

developing higher-order methods.
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rithms relies on a conservative formulation of the fluid equations, where accurate up-

winding is achieved through an exact or approximate solution to the Riemann problem.

As it was done for the FARGO3D code, let’s denote as U a set of conservative quantities,

as T (U) a rank 2 tensor representing the fluxes of each component of U and as S(U) the

source terms. It follows that a system of conservation laws is written as:

∂U

∂t
= −∇ · T (U) + S(U)

While the components of U are the main variables being updated, it is more convenient

to compute fluxes using a different set of physical quantities. This set will be denoted as

the primitive vector V .

The explicit form assumed by all these quantities depends on the particular physics mod-

ule the user chooses to work with. The possible choices consists of the Newtonian hydro-

dynamics or HD module, the ideal magnetohydrodynamics or MHD module, the special

relativistic hydrodynamics or RHD module, the special relativistic magnetohydrodynam-

ics or RMHD module and the special relativistic magnetohydrodynamics with resistivity

or ResRMHD module. Each physics module comprises all the necessary algorithms to

calculate the terms involved in the discretization of the right-hand side of the previous

system of equations. This should include one or more Riemann solvers, mapping routines

for the conversion between primitive and conservative variables, a flux routine that deter-

mines the components of T (U) in each direction, a source term function and a routine for

computing the maximum and minimum characteristic speeds of the Jacobian matrix.

In order to solve the system of conservation laws, PLUTO adopts a mesh approach, where

flow quantities are discretized on a rectangular computational grid enclosed by a bound-

ary. Moreover, guard cells or ghost points are used to implement boundary conditions. It

is worth to note that the grid can be either static or dynamically adaptive to the evolution

of the flow. In the first case the running of PLUTO requires Python, a C compiler and

the make utility, while in the latter one the code relies on the Chombo library for adaptive

mesh refinement (AMR). However, in all future simulations the static version of the grid

will be adopted.

The PLUTO code can run on both single processors and parallel machines, with the paral-

lel functionality being implemented through the message passing interface (MPI) library.

In particular, parallelization is achieved through domain decomposition, where the global

domain is divided into subdomains with an equal number of points and each subdomain

is assigned to a processor.
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5.1 PLUTO Configuration Files

The configuration of PLUTO is stored in five different files:

• The definitions.h header file contains all the problem-dependent preprocessor direc-

tives required at compilation time.

• The makefile is the one needed to compile the code.

• The pluto.ini initialization file contains all the run-time parameters.

• The planet.ini file defines the initial conditions for the planets present in the simu-

lation.

• The init.c file implements the initial and boundary conditions.

The Python script setup.py is used to create the first two files, while the latter three must

be edited by the user. After these five configuration files are created, PLUTO can be com-

piled by typing the command make. If compilation is successful, the command ./pluto

allows to run the code.

The following subsections will explain the various options accessible through the differ-

ent configuration files, together with the choices made for the simulations that will be

discussed later.

5.2 Definitions.h

As it was said in Sec. 5.1, the header file definitions.h is created by the Python script

setup.py by selecting the Setup problem menu. There are different options accessible

through this Python script, as it is shown in Tab. 1. In particular:

• PHYSICS specifies the fluid equations to be solved. In all future simulations the

classical hydrodynamics physics module HD described by the Euler equations will

be adopted. With this module, PLUTO evolves in time following systems of con-

servation laws:

∂

∂t







ρ

m

Et + ρΦ






+∇ ·







ρv

mv + pI

(Et + p+ ρΦ)v







T

=







0

−ρ∇Φ + ρg

m · g







In this expression ρ is the mass density, m = ρv is the momentum density, v is the

velocity, p is the thermal pressure, Et is the total energy density, Φ is the gravita-

tional potential, g is the acceleration vector, while I is the unit tensor. The total
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Option Value

PHYSICS HD

DIMENSIONS 2

COMPONENTS 2

GEOMETRY POLAR

BODY FORCE NO

COOLING NO

RECONSTRUCTION LINEAR

TIME STEPPING RK2

DIMENSIONAL SPLITTING NO

NTRACER 0

USER DEF PARAMETERS 6

NBODY SYS YES

Table 1: Options and selected values that are accessible through the definitions.h header

file.

energy density Et is related to the gas pressure p by the ideal gas closure [34]:

Et =
p

Γ− 1
+

|m|2
2ρ

Primitive variables are defined by V = (ρ, v, p)T and they are generally more con-

venient when boundary or initial conditions are assigned.

• DIMENSIONS sets the number of spatial dimensions of the problem. In this work

it was chosen to deal with two-dimensional hydrodynamics simulations only, so it

will always be set equal to 2. The related option COMPONENTS is placed equal to

2 as well in order to exclude the z coordinate in the future calculations in the (r, ϕ)

coordinates in polar geometry.

• GEOMETRY sets the geometry of the problem, which will be in polar cylindrical

coordinates {x1, x2} = {r, ϕ}. As just said, the third dimension x3 was excluded.

• BODY FORCE is used to include a body force in the momentum and energy equa-

tions, but this option will not be exploited.

• COOLING is used to include optically thin thermal losses, but again it will not be

exploited.

• RECONSTRUCTION sets the spatial order of integration. In particular, it refers to

the process of approximating the values of fluid variables at cell interfaces within

the numerical grid. Therefore, it plays a crucial role for accurately calculating fluxes

and evolving the solution in time. The reconstruction technique used in PLUTO is
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typically based on piecewise polynomial interpolation. This reconstruction aims to

estimate the values of the fluid variables at the cell interfaces starting from the val-

ues available at the cell centers. The chosen option will be the default LINEAR one,

which is second order accurate in space and provides a TVD13 linear reconstruc-

tion of the primitive variables. This choice is due to the fact that the linear option

handles curvilinear coordinates more correctly than other types of reconstruction.

• TIME STEPPING defines the time increment between two consecutive steps. In

this work the second order TVD Runge-Kutta option RK2 will be used to advance

the solution to the next time level. More precisely, if ∆tn = tn+1 − tn is the incre-

ment between two consecutive steps and L denotes the discretized spatial operator,

the RK2 option gives:

U∗ = Un +∆tnLn

Un+1 =
1

2
(Un + U∗ +∆tnL∗)

It is worth to note that multi-stage integrators like Runge-Kutta handles non-Cartesian

geometries better, especially in the presence of angular coordinates.

• DIMENSIONAL SPLITTING allows to use different numerical integration methods

for different physical dimensions, but it will not be exploited in this work.

• NTRACER is used to follow the evolution of a specified number of dust grains, but

it will not be exploited.

• USER DEF PARAMETERS sets the number of user-defined parameters that can be

changed at runtime. In the future simulations it was chosen to add six user defined

parameters. In particular, M CO is the mass of the central star and ASPECT RATIO

refers to the scale height of the disk, which is assumed to be a constant. The ALPHA

parameter gives the selected value for the viscosity parameter α. The other three

parameters are related to the superficial density of the disk, whose profile is given

by:

Σ(r) = Σ0 · r−α

In this expression the quantity Σ0 is the superficial density at r = 1 AU and its

value is provided by the SIGMA REF parameter. The α coefficient is supplied via

the PROFILE P parameter, while the SIGMA FLOOR parameter sets a minimum

density value. Once being set and labelled in the definition.h file as shown in Tab. 2,

13TVD stands for Total Variational Diminishing and it refers to a type of schemes usually implemented

within an unstructured grid finite volume method framework. Note that it is the use of flux limiters, together

with an appropriate high resolution scheme, that makes the solutions total variation diminishing.
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the values of these six user-defined parameters are selected inside the initialization

file pluto.ini.

Parameter Label

M CO 0

ASPECT RATIO 1

ALPHA 2

SIGMA REF 3

SIGMA FLOOR 4

PROFILE P 5

Table 2: Setting and labelling of the user-defined parameters in the definitions.h file.

• NBODY SYS is used to activate the PLUTO N-body module, which works only

in 2-D polar or 3-D spherical coordinates with the RK2 time-stepping algorithm.

The user must also define different N-body declarations. In particular, the option

CENTRAL OBJECT defines if the disk is centered around a single star in the ori-

gin or around the center or mass of a binary. In this work it was chosen to deal

with a single star, so it is necessary to provide a user-defined parameter called

M CO that must be equal to the mass of the star in code units (as it was done in

the USER DEF PARAMETERS option). The CO FEELS DISK options was set to

TRUE, so that the central object is accelerated by the disk. When planets are present

in the simulation or when the central object is accelerated by the disk, the coordinate

system is accelerated. By setting the INDIRECT TERM option to YES a correction

term is added to account for this acceleration. The NO OF PLANETS option de-

fines the number of planets present in the simulation, which will be equal to 2 in

all future simulations. Finally, the PLANET FORMAT option was set to ORBIT in

order to specify the orbital elements of each planet in the planet.ini configuration

file. The selected N-body declarations are shown in Tab. 3.

Option Value

CENTRAL OBJECT STAR

CO FEELS DISK YES

INDIRECT TERM YES

NO OF PLANETS 2

PLANET FORMAT ORBIT

Table 3: N-body declarations in the definitions.h file.

Once the physics module is selected, further options appear in a secondary menu depend-

ing on the choice made, as it is shown in Tab. 4. In particular, having selected the HD

module, the following options are available:
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Option Value

EOS ISOTHERMAL

ENTROPY SWITCH NO

THERMAL CONDUCTION NO

VISCOSITY EXPLICIT

ROTATING FRAME NO

Table 4: Physics dependent declarations and correspondent selected values in the defini-

tions.h file.

• The EOS option selects the equation of state, which will be the isothermal one. In

an isothermal gas, the temperature is constant and the pressure is obtained by the

following expression:

p = ρc2iso

In this expression ciso represents the isothermal sound speed, which can be either

a constant value or a spatially-varying quantity that will be set using the variable

g isoSoundSpeed in the init.c configuration file. Note that in this case the energy

equation is not included.

• The ENTROPY SWITCH option is used to add the entropy equation to the system of

conservation laws. However, this option is not available for the isothermal equation

of state, so it will not be exploited.

• The THERMAL CONDUCTION option allows to include thermal conduction ef-

fects, but again it will not be exploited.

• The VISCOSITY option is used to include viscous terms. In this work it was chosen

to select the EXPLICIT option, which will treat viscosity explicitly. The viscous

stresses enter the HD equations with two parabolic diffusion terms in the momen-

tum and energy equations, thus giving a mixed hyperbolic/parabolic system of the

form:
∂m

∂t
+∇ · Th = ∇ · Π

∂Et

∂t
+∇ · FE = ∇ · (v · Π)

The quantity Π represents the viscous stress tensor, which for an isotropic viscous

stress is given by:

Π = ν1
[

∇v + (∇v)T
]

+

(

ν2 −
2

3
ν1

)

(∇ · v)

In this expression the two coefficients ν1 and ν2 are the first (shear) and second
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(bulk) parameter of viscosity, respectively.

• The ROTATING FRAME option allows to solve the equations in a reference frame

which rotates with constant angular velocity around the vertical polar axis. How-

ever, it was chosen to not exploit this option.

It is also possible to manually insert an arbitrary number of user-defined symbolic con-

stants in the header file definitions.h. This is important because PLUTO generally works

with code units (i.e. non-dimensional units) in order to properly rescale flow quantities. In

particular, dimensionalization is necessary when specific length, time or energy scales are

introduced in the problem. PLUTO then requires three fundamental units to be specified

through the definition of the following constants:

• The UNIT LENGTH L0 sets the reference length in cm.

• The UNIT DENSITY ρ0 defines the reference density in gr/cm3.

• The UNIT VELOCITY v0 sets the reference velocity in cm/s.

Note that all other units are derived from a combination of these three symbolic constants.

Finally, the header file definitions.h allows the definition of several user-editable supple-

mentary constants, as it is shown in Tab. 5.

Constant Value

PRINT TO FILE YES

INTERNAL BOUNDARY YES

CHAR LIMITING YES

LIMITER VANLEER LIM

Table 5: User-editable supplementary constants and selected values in the definitions.h

file.

Of considerable relevance is the INTERNAL BOUNDARY option, which if set to YES

enables the control of the solution array at the beginning of every time step inside the

computational domain through the UserDefBoundary() function defined in the init.c con-

figuration file. The LIMITER option introduces a flux limiter to restrict the solution gradi-

ent near shocks or discontinuities and avoid the spurious oscillations that would otherwise

occur with high order spatial discretization schemes due to sharp changes in the solution

domain. The selected flux limiter function will be the VANLEER LIM one, which is de-

fined by the following expressions:

ϕ(r) =
r + |r|
1 + |r| lim

r→∞
ϕ(r) = 2
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The supplementary constants PRINT TO FILE and CHAR LIMITING are instead related

to the output of the simulation.

5.3 Makefile

The makefile contains instructions to compile the code and produces the executable pluto.

When a new makefile is created, Python will ask the user to select the appropriate .defs

file containing the architecture-dependent flags from the Config directory. In the future

simulations, it will always be the Linux.gcc.defs file14.

The makefile is also used to set the headers and objects files. Moreover, it defines the

variables PARALLEL, USE HDF5 and USE PNG to enable parallel mode, support for

HDF5 library and support for PNG library, respectively. These variables are available

only in the static grid version of PLUTO and in this work they will be set to TRUE.

Finally, it allows to add user-defined files to the standard object list created by Python.

This will instruct the makefile that PLUTO has to be compiled together with these user-

supplied files.

5.4 Pluto.ini

The pluto.ini input file contains all the runtime information necessary for the computation.

This initialization file is divided into different blocks, each of them containing a set of

labels and corresponding options:

• The [Grid] block controls the grid generation. In the static version of PLUTO,

as it will be in this work, it defines the physical domain and generates the whole

computation. In particular, for each dimension the first integer defines the number

of consecutive adjacent grids that are used to cover the whole physical domain. The

following triplet is made of a double precision number, an integer and a character,

specifying the leftmost node coordinate value, the number of points and the grid-

type, respectively. Finally, the last double precision number defines the rightmost

node coordinate value. It is important to note that if a dimension is ignored, then

a 1 grid-point only should be assigned to that grid. This is exactly what happens

for the third dimension x3 in the adopted polar geometry. The grid-type entry will

be set to u, thus constructing a uniform grid patch. By denoting as xL and xR the

leftmost and rightmost points of the patch, the grid spacing will be:

∆x =
xR − xL

N

14The argument gcc stands for GNU Compiler Collection, which is a C compiler originally written for

the GNU operating system.
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The adopted grids for future simulations are shown in Tab. 8, Tab. 6 and Tab. 7.

With respect to the low-resolution case, the resolution of the grid is increased by a

factor of 2 in the medium-resolution case and by a factor of 3 in the high-resolution

case.

Dimension N° of grids Left node N° of points Grid type Right node

X1-grid 1 0.4 128 u 12.0

X2-grid 1 0.0 256 u 6.28318531

X3-grid 1 0.0 1 u 1.0

Table 6: Low-resolution grid implemented in the Grid block of the pluto.ini initialization

file.

Dimension N° of grids Left node N° of points Grid type Right node

X1-grid 1 0.4 256 u 12.0

X2-grid 1 0.0 512 u 6.28318531

X3-grid 1 0.0 1 u 1.0

Table 7: Medium-resolution grid implemented in the Grid block of the pluto.ini initial-

ization file.

Dimension N° of grids Left node N° of points Grid type Right node

X1-grid 1 0.4 384 u 12.0

X2-grid 1 0.0 768 u 6.28318531

X3-grid 1 0.0 1 u 1.0

Table 8: High-resolution grid implemented in the Grid block of the pluto.ini initialization

file.

• The [Chombo Refinement] block controls the grid refinement if PLUTO was com-

piled with the Chombo library. Since a static version of the grid will always be

adopted in the future simulations, this block will be ignored.

• The [Time] block specifies some adjustable time-marching parameters. In partic-

ular, the CFL parameter represents the Courant15 number, which controls the time

step length of the simulation. By denoting as Ndim the number of spatial dimen-

sions, the Courant number must satisfy the following condition:

CFL ≤ 1

Ndim

Since in this work Ndim = 2, this means that CFL ≤ 0.5. However, it seems that

a second order Runge-Kutta algorithm requires CFL ≤ 0.4 for stability reasons

15The Courant number is a dimensionless value that represents the time a particle stays in one cell of the

mesh. It must be below 1, otherwise the time step is too large to see the particle in one cell.
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and this is the value that will be adopted. The CFL max var parameter defines the

maximum time step growth between two consecutive steps. The tstop parameter

sets the time at which the integration must end, while the first dt parameter defines

the initial time step. The selected values of all these parameters for the future

simulations are shown in Tab. 9.

Parameter Value

CFL 0.4

CFL max var 1.1

tstop 10000000

first dt 1.e-6

Table 9: Time block parameters and selected values in the pluto.ini initialization file.

• The [Solver] block selects the Riemann solver for flux computation. In this work it

was chosen to deal with the Harten, Lax, Van Leer approximate Riemann solver16.

It is selected by using the hll string and represents one of the least accurate but most

diffusive solver options.

• The [Boundary] block is used to specify the boundary conditions that must be ap-

plied in the ghost zones of the computational domain. In this work it was chosen

to set the userdef option along the radial direction, in order to use dumped outflow

boundary conditions that were not available in the code. This type of boundary

condition will always be used at the inner border of the disk, while at the outer

border both a damped outflow and a reflective boundary will be employed. Conc-

versely, the periodic option was adopted along the azimuthal direction. Note that

user-supplied boundary conditions must be implemented in the UserDefBoundary()

function defined in the init.c configuration file. A graphical representation of the

boundary blocks used in this work is provided in Tab. 10.

Dimension Option

X1-beg userdef

X1-end userdef

X2-beg periodic

X2-end periodic

X3-beg periodic

X3-end periodic

Dimension Option

X1-beg userdef

X1-end reflective

X2-beg periodic

X2-end periodic

X3-beg periodic

X3-end periodic

Table 10: Boundary block and selected options in the pluto.ini initialization file.

16The HLL solver, developed by Ami Harten, Peter Lax and Bram Van Leer, gives an approximate

solution to the Riemann problem. It is based on the integral form of the conservation laws and the largest

and smallest signal velocities at the interface.
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• The [Static Grid Output] block controls the output in the static grid version of

PLUTO. In particular, the uservar option defines additional variables that must be

written in the disk, with an integer representing the number of such variables. The

output dir option sets the name of the directory where the output files will be writ-

ten (it must already exist at runtime or an error will occur). The subsequent options

assign the output intervals for different data types. For each line, the first field speci-

fies the time interval in code units between two consecutive outputs, with a negative

value used to suppress the output for a specific format. The second field gives the

number of steps and in this case negative values will be ignored. Finally, the last

field can be set either to single file in order to have one single output containing all

the variables, or to multiple files to have different variables written in different files.

Note that the string dbl refers to double precision (8 bytes) binary data, while flt to

single precision (4 bytes) ones. The last line defines instead the call frequency of

the Analysis() function present in the init.c configuration file. The values adopted

in this work are shown in Tab. 11.

Option Value

uservar 0

output dir ./out

Option Time interval N° of steps Output

dbl 100.0 -10000 single file

flt -1.0 -1 single file

analysis -1.0 10

Table 11: Static grid output block options and selected values in the pluto.ini initialization

file.

• The [Parameters] block is used to provide user-defined input parameters, which

will be read at runtime. The six parameters used in this work were already pre-

sented in the definitions.h subsection, where they were set and labelled. The se-

lected values of these parameters are shown in Tab. 12, which will be used in the

low and high density regimes, respectively.

5.5 Planet.ini

It was said in the definitions.h subsection that the NBODY SYS option is used to acti-

vate the PLUTO N-body module. The initial conditions for the planets present in the

simulation are stored in the planet.ini configuration file. In particular, since the option

PLANET FORMAT was set to ORBIT in the definitions.h file, the user must specify the

orbital elements of each planet.
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Parameter Value

M CO 1.0

ASPECT RATIO 0.05

ALPHA SIGMA 1.e-3

SIGMA REF 40.0

SIGMA FLOOR 1.0e-6

PROFILE P 1.0

Parameter Value

M CO 1.0

ASPECT RATIO 0.05

ALPHA SIGMA 1.e-3

SIGMA REF 1500.0

SIGMA FLOOR 1.0e-6

PROFILE P 1.0

Table 12: User-defined parameters and selected values in the parameters block of the

pluto.ini inizialization file.

The required orbital elements are the mass of the planet, the semi-major axis, the eccen-

tricity, the inclination, the longitude of the ascending node, the argument of periapsis, the

true anomaly and the disk feedback. All these quantities are shown in Tab. 13, together

with the correspondent values used in this work.

m a e i Omega omega f Feedback

9.546e-4 4.0 0.0 0.0 4.7123893+00 3.141593e+00 0 1

2.858e-4 6.0 0.0 0.0 0.0 0.0 0 1

Table 13: Values of the orbital elements used in the planet.ini initialization file.

Note that the N-body module writes the following files to the disk:

• The nbody com.dat file contains the Cartesian coordinates of the center of mass of

the central object and the center of mass of all objects (i.e. the central object and

the planets).

• The nbody coordinates.dat file contains the Cartesian coordinates of all objects.

• The nbody orbital elements.dat file contains the orbital elements of the objects in

Jacobian coordinates.

The output frequency of these three files is the same as the output frequency of the PLUTO

Analysis() function defined in the [Static Grid Output] block in the pluto.ini initialization

file.

5.6 Init.c

The source file init.c provides a set of functions that are used to define the fluid configu-

ration for a specific problem. In particular, the following functions are included:

• The Init() function is used to assign the fluid initial conditions as functions of the

spatial coordinates. By denoting as v a pointer to a vector of primitive quantities
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and as x1, x2, x3 the coordinates x1, x2, x3 of the computational cell where v is

initialized, the required syntax is:

void Init (double ∗ v, double x1, double x2, double x3)

Note that the expression for the azimuthal velocity of the disk takes into account

the presence of a pressure gradient that decreases its value.

• The UserDefBoundary() function sets user-defined boundary conditions at the phys-

ical boundary sides of the computational domain if the option userdef is chosen

inside the pluto.ini configuration file. Moreover, as already said in the definitions.h

subsection, this function can be used to control the solution array at the beginning

of every time step inside the computational domain if the INTERNAL BOUNDARY

option is set to YES. Thanks to this feature it is possible to adjust the value of se-

lected variables inside a specific region rather than at the boundaries. The syntax

required from this function is:

void UserDefBoundary (const Data ∗ d, RBox ∗ box, int side, Grid ∗ grid)

In this expression ∗d is a pointer to the PLUTO data structure, which contains a

four-index array of primitive variables defined at the cell center17. The argument

∗box is a pointer to the RBox structure and it defines the rectangular portion of

the domain over which ghost zone values should be assigned. However, the use

of the box structure is not mandatory and the two options X1 BEG LOOP() and

X1 END LOOP() may be employed. The argument side specifies on which side

of the physical domain user-defined values should be prescribed. Possible values

are X1 BEG and X1 END in order to assign boundary conditions in the ghost zones

at the beginning and end of the physical domain in the x1 direction. The value

0 instead controls the solution inside the domain and it can be used only if the

INTERNAL BOUNDARY option is set to TRUE in the definitions.h configuration

file. Finally, the argument ∗grid is a pointer to the grid structure that contains all

the relevant grid information. In the present work, this function is exploited to

implement damped outflow boundary conditions at the borders of the disk.

• The Analysis() function is used to perform run-time data analysis in order to save in-

put or output data for the post-processing phase. The call frequency of this function

is set in the [Static Grid Output] block of the pluto.ini initialization file.

17The syntax is d → V c [nv][k][j][i], where the integer nv labels the variable, while k, j, i are the indices

of the x3, x2, x1 directions, respectively.
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• The BodyForceVector() function and the textitBodyForcePotential() functions de-

fine the vector components of the acceleration and the gravitational potential. How-

ever, in this work it was decided to not enable the BODY FORCE flag in the defini-

tions.h file, so these functions will not be exploited.

5.7 Comparison between PLUTO and FARGO3D

While PLUTO and FARGO3D are both hydrodynamical codes used for simulating fluid

dynamics, they have some differences in their features and focus areas.

The main distinction between the two codes is based on the fact that they use different

numerical methods to solve the equations of fluid dynamics. In particular, PLUTO em-

ploys a Godunov-type shock-capturing scheme using the finite volume formalism. Within

this context, volume averages are first reconstructed employing piecewise monotonic in-

terpolants inside each computational cell. Subsequently, a Riemann problem is solved at

each interface and the solution is evolved in time. This approach is well-suited for cap-

turing highly supersonic flows in the presence of strong discontinuities.

Conversely, FARGO3D is based on a finite-difference method that employs operator split-

ting and upwind techniques. Instead of using the Riemann problem to evaluate the fluxes

at each interface, it exploits the staggering of the velocity field to express the flux in a sim-

pler way. This code is specifically designed for modeling accretion disks in astrophysical

contexts. As a result, it is highly compatible with the study of planet-disk interactions and

planet migration.

It is worth to note that the construction of codes based on Godunov’s methods, such as

the PLUTO code, involves some notable differences compared to staggered mesh codes,

like the FARGO3D code. In particular, let’s consider the following salient points:

• The computational cost of performing a full time-step using a staggered mesh code

is considerably lower compared to that of employing Godunov’s method.

• Codes that employ the Godunov’s method, where a Riemann’s problem is used to

compute the fluxes at the cell interfaces, automatically ensure the conservation of

the physical quantities. Conversely, the FARGO3D code lacks such conservation

properties, which must be addressed separately.

• Unlike Godunov’s methods, staggered mesh codes do not encounter difficulties

when handling steady flows with source terms. This fact is important in numer-

ous scenarios within protoplanetary disks, where it is crucial to accurately capture

the vertical and rotational equilibrium of the unperturbed disk, as well as the equi-

librium of the envelope surrounding embedded planets.
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• Codes utilizing Godunov’s method typically employ fluxes of total energy, thus en-

suring the energy conservation with high precision. On the other hand, staggered

mesh codes employ fluxes of internal energy and they do not achieve machine-

accurate conservation of energy. While this may initially appear as a drawback,

it is not the case. In fact, protoplanetary disks often exhibit large Mach numbers,

which causes the kinetic energy to surpass the internal energy by two or three or-

ders of magnitude. As a consequence, truncation errors affecting the kinetic energy

can propagate to the internal energy budget, thus amplifying the relative error. This

challenge is commonly referred to as the high Mach number problem [49]. Since

many problems involving planet-disk interactions necessitate precise entropy ad-

vection in the co-orbital region of the planet, it is preferable to treat the internal

energy separately.

• The inclusion of new processes within the code typically involves a more extensive

effort when using Godunov’s method, often requiring the rewriting of the Riemann

solver. Conversely, it is comparatively easier to introduce new or different physics

in staggered mesh codes by employing the operator splitting technique.

It is safe to conclude that the choice between PLUTO and FARGO3D depends on the

specific simulation requirements and scientific objectives related to the study of fluid

dynamics, with PLUTO offering a more general-purpose and flexible framework, while

FARGO3D providing specialized capabilities for accretion disk simulations.
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6 Results

As it was anticipated in Sec. 4.1, it was chosen to investigate the coupled evolution of

a Jupiter-Saturn pair within its parent protoplanetary disk by using the PLUTO hydro-

dynamical code. This was done in order to understand whether the observed outcomes

obtained by the preliminary simulations performed with the FARGO3D code are due to

an intrinsic issue within the code or if the resolution of the model influences the type of

resonance capable of driving the outward planet migration.

The setup conditions of the simulations are the same used with the FARGO3D code.

The 2-dimensional hydrodynamic simulations are done in polar cylindrical coordinates

{x1, x2} = {r, ϕ}. The adopted non-rotating reference frame is centred on the central

star, which is assumed to have the same mass of the Sun. The disk is supposed to be

locally isothermal and its radius ranges from Rmin = 0.4 AU to Rmax = 12.0 AU . The

surface density is set to Σ = 40 g/cm2 at r = 1 AU , while the aspect ratio is constant

through the disk and it is equal to h = H
r
= 0.05. The two planets have the same masses

of Jupiter and Saturn and their initial conditions are aj = 4 AU and as = 6 AU . More

specifically, they are assumed to start with zero mass, which linearly increases until it

reaches its final value. At that point, the entire system begins to evolve. The viscosity

parameter α is supposed to be constant through the disk and it is set to α = 1 ·10−3, while

the kinematic viscosity is given by ν = α
√
r.

6.1 Medium-Resolution Simulations

It was firstly chosen to implement damped outflow boundary conditions at both the inner

and outer border of the disk, as it was done with the FARGO3D code. The adopted grid

resolution is Nr = 256 and Nθ = 512.

As it was said in Sec. 3.1, a planet exerting its gravitational force to the disk has the ability

to initiate waves at Lindblad resonances, whose combination results in the formation of

a spiral density wave with a single-arm pattern, namely the wake. The inner part of the

spiral wave rotates faster than the planet, thus exerting a positive gravitational torque on

it. This tends to accelerate the planet, which is forced to migrate outwards. Conversely,

the outer part of the spiral wave rotates slower than the planet, thus leading to a negative

gravitational torque that tends to slow it down and causing an inward migration. Gener-

ally, the sum of the two torques is negative and causes an overall inward migration. This

mechanism, called type I migration, acts until a gap is created in the disk. At that point,

type II migration takes place when a gap forms around the orbit of the massive planet,

leading to a migration which is coupled to the viscous evolution of the disk. As evidence
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of this behaviour, Fig. 18 provides the time evolution of the semi-major axes of Saturn

and Jupiter.

Figure 18: Time evolution of the semi-major axis for the external (top panel) and internal

planet (bottom panel). The simulation is made with PLUTO, using a grid resolution of

256 x 512 and damped outflow boundaries at both the inner and outer border of the disk.

It is observed that the inner planet firstly migrates inward with a speed progressively de-
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creasing as it opens a gap in the gas around its orbit and thus leading to a type II migration,

which follows the viscous evolution of the disk. In the meanwhile, the less massive outer

planet undergoes a faster inward migration, since it only opens a partial gap in the disk,

leading to a convergent migration of the two planets. However, it does not take long for

Saturn to start perturbing the outer part of the Jupiter’s spiral wave. As a consequence,

the positive torque exerted by the inner part of the spiral wave dominates on the other and

Jupiter begins to migrate outwards. This leads to an even faster convergent migration,

which drives the planets into resonance. After about 3 · 104 yr, the two planets success-

fully merge their gaps and they start migrating together. Since the inner planet is more

massive than the outer one, the positive torque exerted by the inner disk overtakes the

negative torque exerted by the outer disk, thus forcing the planets to migrate outwards.

However, it can be observed that the migration occurs at a very slow pace, with the two

planets being almost stationary in their positions.

The resonance lock of the two planets is proven by the fact that the ratio of their semi-

major axes remains constant over time, as it is observed in Fig. 19.

Figure 19: Time evolution of the ratio between the semi-major axes of the two planets.

The simulation is made with PLUTO, using a grid resolution of 256 x 512 and damped

outflow boundaries at both the inner and outer border of the disk.

Although the model resolution is not very high, the simulation already shows that the

resonance capable of driving the outward migration for a Jupiter-Saturn pair is the second

order 5:3 mean motion resonance and not the usual first order 3:2 commensurability. This
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is illustrated in Fig. 20, which displays the libration of the resonant argument associated

with the 5:3 mean motion resonance.

Figure 20: Time evolution of the resonant argument associated with the 5:3 mean motion

resonance. The simulation is made with PLUTO, using a grid resolution of 256 x 512 and

damped outflow boundaries at both the inner and outer border of the disk.

It is interesting to note that the two-planet system attempted to enter both the first order

2:1 and 3:2 resonances at the beginning of the simulation, but eventually crossed these

types of commensurability and continued its evolution until the final capture in the 5:3

mean motion resonance. This behaviour is shown in Fig. 21, which provides the resonant

arguments related to the 2:1 and 3:2 mean motion resonances.

As it was said in Sec. 3.4, there are two angles describing the capture in resonance of two

planets. If a system is considered to be in a p + q : p mean motion resonance, they are

given by:

ϕ1,2 = (p+ q)λ2 − pλ1 − qω̄1,2

In this expression, λ1 and λ2 denote respectively the mean longitudes of the inner and

outer planets, while ω̄1 and ω̄2 refer to the longitude of their pericentres.

Typically, a stable resonance capture implies the libration of both the resonant angles ϕ1

and ϕ2, as it happens fort the 5:3 mean motion resonance. Nevertheless, it may occur that

the presence of dissipative terms within the N-body simulation causes the libration of only

one of them. This is exactly what comes out from the analysis of the time evolution of the

resonant arguments associated to the 2:1 and 3:2 mean motion resonances. The system
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is only temporarily captured in resonance and, after crossing these commensurabilities, it

continues its evolution.

Figure 21: Time evolution of the resonant arguments associated with the 2:1 (top panel)

and 3:2 (bottom panel) mean motion resonances. The simulation is made with PLUTO,

using a grid resolution of 256 x 512 and damped outflow boundaries at both the inner and

outer border of the disk.
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The time-evolution of the superficial density of the disk is illustrated by the six snapshots

provided in Fig. 22. Let’s refer for simplicity to simulation times, which in PLUTO

Figure 22: 3-dimensional snapshots of the superficial density of the disk at simulation

times t = 0 syr, t = 103 syr, t = 104 syr, t = 105 syr, t = 2 ·105 syr and t = 5 ·105 syr.
The density is given in code units, being it a factor 8 · 106 smaller than the real value in

g/cm2. The simulation is made with PLUTO, using a grid resolution of 256 x 512 and

damped outflow boundaries at both the inner and outer border of the disk.

are related to real times by a factor of 2π (1 simulation year = 1 syr = 2π yr). At

time t = 0 syr (top left panel), the superficial density has a value of Σ0 = 40 g/cm2

at r = 1 AU and its profile is given by Σ(r) = Σ0 · r−1. At time t = 103 syr (top

right panel), the presence of the two planets has ignited the propagation of several density
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waves through the disk. At time t = 104 syr (middle left panel), Jupiter is starting to open

a gap in the disk. At time t = 105 syr (middle right panel), Jupiter has already opened

a deep gap in the disk, while Saturn has only created a partial one. At t = 2 · 105 syr
(bottom left panel), the two planets have merged their gap into a single one and they are

starting to migrate together. Finally, at t = 5 · 105 syr (bottom right panel), the disk has

already considerably dissipated, with the common gap being almost devoid of material.

Let’s now analyze the choice of using damped outflow boundary conditions at both the

inner and outer border of the disk. At the inner border this type of boundary simulates

the accretion of disk material onto the central star with good accuracy. On the other hand,

at the outer border, the dissipation of material seems to be too high possibly due to the

formation of waves which drive the gas out of the outer border, with the disk being trun-

cated at roughly r = 10 AU after around 5 · 105 syr. In order to avoid such high mass

dissipation, it was chosen to run a simulation with a damped outflow boundary condition

at the inner border of the disk and a reflective boundary at the outer border. All the other

simulation parameters are kept the same as in the previous setup.

Figure 23: 2-dimensional plot of the superficial density of the disk. The x-axis represents

the radial distance from the star, given in terms of the grid resolution. The y-axis expresses

the superficial density in code units. The red and green profiles are both computed at a

simulation time t = 5 · 105 syr, while the blue profile gives the initial superficial density

of the disk. The simulations are made with PLUTO, using a grid resolution of 256 x 512

and a damped outflow boundary condition at the inner border of the disk.
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As it is shown in Fig. 23, in this case the disk is able to retain significantly more mate-

rial compared to the previous scenario. This fact is also observed in the 3-dimensional

representations of the superficial density of the disk. As it was previously done, Fig.

24 provides six snapshots evaluated at the simulation times t = 0 syr, t = 103 syr,

t = 104 syr, t = 105 syr, t = 2 · 105 syr and t = 5 · 105 syr.

Figure 24: 3-dimensional snapshots of the superficial density of the disk at simulation

times t = 0 syr, t = 103 syr, t = 104 syr, t = 105 syr, t = 2 ·105 syr and t = 5 ·105 syr.
The density is given in code units, being it a factor 8 · 106 smaller than the real value in

g/cm2. The simulation is made with PLUTO, using a grid resolution of 256 x 512 and

damped outflow boundaries at inner border of the disk, while a reflective boundary is

implemented at the outer border.
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It is straightforward to notice how the outer edge of the disk has a higher surface density

compared to the case in which the damped outflow boundary condition was implemented.

However, this does not seem to affect the simulation results. In Fig. 25 it is given the time

evolution of the semi-major axis of the two planets (green curves) superimposed to the

results obtained previously (red curves).

Figure 25: Time evolution of the semi-major axis for the external (top panel) and internal

planet (bottom panel). The simulations are made with PLUTO, using a grid resolution of

256 x 512 and damped outflow boundaries at the inner border of the disk. The green curve

refers to the case in which a reflective boundary is used at the outer border, while the red

curve represents the results obtained previously with the damped outflow condition.
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The migration of both Jupiter and Saturn within their parent protoplanetary disk is very

similar in the two simulations, leading always to a capture in resonance after about

3 · 104 yr from the start of their evolution. Once the two planets have merged their gaps,

they start migrating together at a very slow pace.

It is clear from the figures that the two simulations involve the same type of resonance

capture for the Jupiter-Saturn system. This fact is particularly evident in Fig 26, which

shows the time evolution of the ratio between the semi-major axes of the two planets.

Figure 26: Time evolution of the ratio between the semi-major axes of the two planets.

The simulations are made with PLUTO, using a grid resolution of 256 x 512 and damped

outflow boundaries at the inner border of the disk. The green curve refers to the case in

which a reflective boundary is used at the outer border, while the red curve represents the

results obtained previously with the damped outflow condition.

Therefore, the resonance capable of driving the outward migration for a Jupiter-Saturn

pair is again the second order 5:3 mean motion resonance, whose resonant argument’s li-

bration is provided in Fig. 27. Also in this case, the system attempts to enter the first order

2:1 and 3:2 mean motion resonances at the beginning of its evolution, quickly crossing

them only to be finally captured in the 5:3 mean motion resonance.

6.2 Low-Resolution Simulations

The medium resolution case discussed in Sec. 6.1, based on a grid with Nr = 256 and

Nθ = 512, found that the resonance with the ability to induce an outward migration for a
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Figure 27: Time evolution of the resonant argument associated with the 5:3 mean motion

resonance. The simulation is made with PLUTO, using a grid resolution of 256 x 512

and damped outflow - reflective boundaries at the inner and outer border of the disk,

respectively.

Jupiter-Saturn pair is the second order 5:3 mean motion resonance and not the usual 3:2

commensurability.

In order to understand if the resolution of the model influences the type of resonance ca-

pable of driving the outward planet migration, it was chosen to run two simulations with a

grid resolution ofNr = 128 andNθ = 256. This choice corresponds to the low-resolution

case, having a resolution of one order of magnitude lower than the medium-resolution

case. The setup conditions of the two simulations are the same used with the FARGO3D

code and in Sec. 6.1. Both the simulations adopt a damped outflow boundary condition

at the inner border of the disk. The first one uses a damped outflow boundary also at

the outer border, while the second one implements a reflective boundary condition. In

other words, it was decided to recreate the same simulations previously conducted, but at

a lower resolution.

As it is shown in Fig. 28, in these new simulations the capture in resonance of the two

planets occurs at a slightly longer time compared to the medium-resolution case. In par-

ticular, it takes place at a time of the order of t = 4 · 104 yr, with a small difference based

on the boundary condition implemented at the outer border of the disk. Nevertheless, the

ratio’s value of about a2/a1 ≈ 1.41 again indicates that the two-planet system experiences
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a second order 5:3 mean motion resonance.

Figure 28: Time evolution of the ratio between the semi-major axes of the two planets.

The simulations are made with PLUTO, using a grid resolution of 128 x 256 and damped

outflow boundaries at the inner border of the disk. The red curve refers to the case in

which a reflective boundary is used at the outer border, while the green curve represents

the results obtained with the damped outflow condition.

This fact is also confirmed by the libration of both the resonant arguments associated to

the 5:3 mean motion resonance, whose time evolution in the two different simulations is

provided in Fig. 29.

As previously observed in the medium-resolution case, the system attempts to enter the

first order 2:1 and 3:2 mean motion resonances at the beginning of its evolution, but it is

again able to surpass these types of commensurability and to reach the final capture in the

5:3 mean motion resonance.

6.3 High-Resolution Simulations

To conclude the investigation about the influence of the model resolution on the resonance

capable of driving the outward migration for a Jupiter-Saturn pair, it was decided to run

a simulation with a grid resolution of Nr = 384 and Nθ = 768. This way, the resolution

of the grid is increased by a factor of 3 compared to the low-resolution case. Damped

outflow boundaries are used at both the inner and outer border of the disk.

The time evolution of the ratio between the semi-major axes of the two planets and of the
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Figure 29: Time evolution of the resonant argument associated with the 5:3 mean motion

resonance. The simulations are made with PLUTO, using a grid resolution of 128 x 256

and damped outflow boundaries at the inner border of the disk. The red curve (top panel)

refers to the case in which a reflective boundary is used at the outer border, while the green

curve (bottom panel) represents the results obtained with the damped outflow condition.
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resonant argument associated to the 5:3 mean motion resonance are given in Fig. 30 and

Fig. 31, respectively.

Figure 30: Time evolution of the ratio between the semi-major axes of the two planets.

The simulation is made with PLUTO, using a grid resolution of 384 x 768 and damped

outflow boundaries at both the inner and outer border of the disk.

It is immediate to note that they show the same results already obtained at lower resolu-

tions. Independently on the model resolution, PLUTO finds that the resonance capable of

driving the planets outward migration is the 5:3 mean motion resonance. The usual 3:2

commensurability is only approached at the beginning of the simulation as well as the 2:1

mean motion resonance, but they are easily surpassed by the Jupiter-Saturn system.

6.4 High Density Simulations

Historically, the first order 3:2 mean motion resonance was found using numerical pro-

grams with very high superficial densities, being them of the order of Σ = 1000 −
1500 g/cm2 at r = 1 AU . However, the formation of planets was taken into account

in this study, resulting in a lower superficial density. In particular, its value was set to be

equal to Σ = 40 g/cm2 at r = 1 AU , according to the study conducted by D’Angelo et

al. [13].

In order to investigate the ability of PLUTO in handling the study of planet-disk interac-

tions and planet migration, it was chosen to run a high density simulation, expecting to
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Figure 31: Time evolution of the resonant argument associated with the 5:3 mean motion

resonance. The simulation is made with PLUTO, using a grid resolution of 384 x 768 and

damped outflow boundaries at both the inner and outer border of the disk.

find the common 3:2 mean motion resonance. The adopted grid resolution is Nr = 256

and Nθ = 512, while the superficial density is set to Σ = 1500 g/cm2 at r = 1 AU . A

damped outflow boundary condition is implemented at the inner border of the disk, while

a reflective boundary is used at the outer border. The other setup parameters are the same

used in all the previous simulations.

In Fig. 32, it is shown the time evolution of the semi-major axes of Saturn and Jupiter.

In this high density case, the inward migration rate experienced by the two planets is

much higher compared to the results obtained in the low-density case. Furthermore, the

system covers a larger radial distance before being captured in resonance. By comparing

the two density regimes, Saturn undergoes an inward migration of r = 0.35 AU when

Σ0 = 40 g/cm2, while it reaches a radial displacement of the order of r = 1.4 AU when

Σ0 = 1500 g/cm2. Jupiter’s inward migration switches instead from r = 0.015 AU to a

value of r = 0.65 AU , without reversing the direction of its motion in the high density

regime.

The time evolution of the ratio between the semi-major axes of Saturn and Jupiter is pro-

vided in Fig. 33. The capture in resonance of the two planets starts with a certain degree

of instability early on in the simulation and then it progressively stabilizes over time. This

happens much earlier with respect to the results obtained previously, when it was found a
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Figure 32: Time evolution of the semi-major axis for the external (top panel) and internal

planet (bottom panel). The simulation is made with PLUTO, using a grid resolution of

256 x 512 and a superficial density of Σ = 1500 g/cm2 at r = 1 AU . A damped outflow

boundary condition is implemented at the inner border of the disk, while a reflective

boundary is used at the outer border.
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capture in resonance after about t = 3 · 104 yr.

Figure 33: Time evolution of the ratio between the semi-major axes of the two planets.

The simulations are made with PLUTO, using a grid resolution of 256 x 512 and a super-

ficial density of Σ = 1500 g/cm2 at r = 1 AU . A damped outflow boundary condition

is implemented at the inner border of the disk, while a reflective boundary is used at the

outer border.

Fig. 34 provides instead the time evolution of the resonant argument associated with the

first order 3:2 mean motion resonance. The libration of this angle demonstrates the ca-

pability of the PLUTO code to find the commonly accepted mean motion resonance that

drives the planets’ outward migration in the case of high superficial density. As a conse-

quence, it is possible to conclude that PLUTO is able of effectively studying planet-disk

interactions and specifically planet migration.

6.5 Discussion

As it was anticipated in Sec. 4.1, the hydrodynamical code PLUTO was used to analyze

the results obtained in the preliminary simulations conducted with the FARGO3D code.

In these 2-dimensional simulations, performed in the low-density regime, it was found

that the type of commensurability capable of driving the outward migration for a Jupiter-

Saturn pair changes depending on the model resolution.

In particular, it was observed that by increasing the grid resolution by a factor of 3, it is

the second-order 5:3 mean motion resonance to drive the planet outward migration and
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Figure 34: Time evolution of the resonant argument associated with the 3:2 mean motion

resonance. The simulations are made with PLUTO, using a grid resolution of 256 x 512

and a superficial density of Σ = 1500 g/cm2 at r = 1 AU . A damped outflow boundary

condition is implemented at the inner border of the disk, while a reflective boundary is

used at the outer border.

not the usual 3:2 commensurability. Therefore, the aim of this work was to investigate

whether the observed outcomes were due to an intrinsic issue within the FARGO3D code

or if the resolution of the model indeed influences the type of resonance capable of driving

the outward migration.

In order to verify which of the two solutions is correct, it was chosen to run several sim-

ulations with the PLUTO code, by adopting the same setup conditions that were used

with the FARGO3D code. More specifically, simulations covering three orders of mag-

nitude in grid resolution have been executed, ranging from Nr = 128 and Nθ = 256 to

Nr = 384 and Nθ = 768. It was chosen to use a damped outflow boundary condition at

the inner border of the disk, which enables the accretion of disk material onto the central

star. At the outer border, it was decided to employ both a damped outflow boundary and

a reflective boundary. The low-density condition implies a superficial density of the order

of Σ = 40 g/cm2 at r = 1 AU , a value that takes into account the time required for the

formation of planets within the protoplanetary disk.

Independently of the model resolution, all the results obtained suggest that the resonance

capable of driving the outward migration for a Jupiter-Saturn pair is the second order 5:3
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mean motion resonance. The two-planet system attempts to enter both the first order 2:1

and 3:2 resonances at the beginning of the simulation, but eventually crosses these com-

mensurabilities and it continues its evolution until its final capture in the 5:3 mean motion

resonance.

It was then decided to investigate the ability of PLUTO in handling the study of planet-

disk interactions and planet migration. Historically, the 3:2 mean motion resonance was

found using numerical programs with much higher densities, i.e. without taking into ac-

count planet formation within the disk. For this reason, it was chosen to run a simulation

with a superficial density of the order of Σ = 1500 g/cm2 at r = 1 AU , expecting to find

the common 3:2 commensurability. This is precisely what comes out of the simulation,

thus confirming that PLUTO is effectively able to study this type of problems.

In Sec. 5.7, it was pointed out that while PLUTO and FARGO3D are both hydrodynami-

cal codes used for simulating fluid dynamics, they have some differences in their features

and focus areas. In particular, the main distinction between the two codes is based on the

different numerical methods used to solve the equations of fluid dynamics. PLUTO ex-

ploits a Godunov-type shock-capturing scheme using the finite volume formalism. Within

this context, volume averages are first reconstructed employing piecewise monotonic in-

terpolants inside each computational cell. Subsequently, a Riemann problem is solved at

each interface and the solution is evolved in time. This approach is well-suited for cap-

turing highly supersonic flows in the presence of strong discontinuities.

Conversely, FARGO3D is based on a finite-difference method that employs operator split-

ting and upwind techniques. Instead of using the Riemann problem to evaluate the fluxes

at each interface, it exploits the staggering of the velocity field to express the flux in a sim-

pler way. This code is specifically designed for modeling accretion disks in astrophysical

contexts and it is highly compatible with the study of planet-disk interactions and planet

migration.

Both PLUTO and FARGO3D are capable of achieving similar levels of numerical preci-

sion. However, PLUTO is a more versatile hydrodynamical code, offering many capabil-

ities that can contribute to obtain accurate simulations of planet migration. On the other

hand, FARGO3D is specifically designed for modeling accretion disks, but it provides a

simpler treatment of the fluxes.

Based on this information and on the results obtained from the performed simulations, it

is possible to conclude that PLUTO seems to handle the study of planet migration more

precisely. In fact, it provides the same results achieved with the FARGO3D code when

using a very dense grid even in the case of low resolution. In other words, it appears to be

comparable to the use of FARGO3D with a higher grid resolution. The resonance capable

of driving the outward migration for a Jupiter-Saturn pair in the low-density regime seems
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to be the second order 5:3 mean motion resonance and not the usual 3:2 commensurabil-

ity. This fact is independent on the model resolution, which implies that the question

arising from the preliminary simulations conducted with FARGO3D is due to an intrinsic

issue within the code.
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7 Conclusions

In this work, it was chosen to use numerical modeling in order to investigate the outward

migration of a Jupiter-Saturn pair in resonance within a circumstellar disk. The aim was

to understand the effects of model resolution on the migration behaviour and to compare

the performances of two hydrodynamical codes, namely FARGO3D and PLUTO, in han-

dling planet-disk interactions.

The 2-dimensional preliminary simulations conducted with FARGO3D in the low-density

regime revealed that the type of resonance capable of driving the planet outward migra-

tion changes depending on the model resolution. Specifically, the low-resolution case

exhibited the usual 3:2 commensurability, while increasing the resolution by a factor of 3

resulted in the second-order 5:3 mean motion resonance driving the migration.

To verify the validity of these findings and explore the role of model resolution further,

2-dimensional hydrodynamical simulations were conducted using the PLUTO code with

different grid resolutions. In particular, it was chosen to use a 128 x 256 grid for the low-

resolution case, a 256 x 512 grid for the medium-resolution case and a 384 x 768 grid for

the high resolution case. It was also decided to use different boundary conditions at the

outer border of the disk, implementing both a damped outflow and a reflective boundary.

All the results consistently showed that the second order 5:3 mean motion resonance is

the driving force behind the outward migration of a Jupiter-Saturn pair in the low-density

regime. The first order 3:2 commensurability is only crossed at the beginning of the simu-

lation, as well as the 2:1 mean motion resonance, but they are surpassed by the two-planet

system. This outcome is achieved regardless of the model resolution, thus suggesting that

the question arising from the preliminary simulations is due to an intrinsic issue within

the FARGO3D code.

Additionally, by performing simulations in the high-density regime, it was proved that

PLUTO is capable of accurately studying planet migration and handling planet-disk in-

teractions. This follows from the fact that the 3:2 mean motion resonance was historically

discovered by using numerical models that did not account for planet formation within

the disk and used high values for the gas surface density. Since PLUTO effectively finds

this type of commensurability under the above mentioned conditions, it means that the

code has the ability to treat this type of problems.

PLUTO’s versatility and numerical precision make it a valuable tool for investigating

complex phenomena in astrophysical contexts. While FARGO3D is specifically designed

for modeling accretion disks, PLUTO offers comparable results that are not influenced

by the resolution of the model. Until the issue encountered within the FARGO3D code is

fixed, it is safe to conclude that PLUTO offers a more accurate and reliable approach to

the study of the outward migration of two planets in resonance.
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In conclusion, the investigation of resonant migration between two planets is a fascinating

area for future research, thanks primarily to increasingly available computational power.

By refining our understanding of planetary dynamics and of the complex interactions

within planetary systems, future studies can explore the mechanisms and consequences

of resonant migration in greater detail. Exploring different scenarios, boundary condi-

tions and numerical models can contribute to a more comprehensive understanding of this

phenomenon. Furthermore, advancements in observational techniques and data analysis

will also contribute to the validation of theoretical predictions and to the improvement of

present-day models. This way, it will be possible to obtain new insights into the formation

and evolution of planetary systems.
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