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ABSTRACT 

 

This thesis deals with the speed optimization problem concerning a fixed container ship 

route. The objective of the model is to maximize the operator’s daily profit. The literature 

provides many models concerning the speed optimization in container line shipping, which 

either maximize the profit or minimize the costs. However, such models take into 

consideration a fixed transport demand hence fixed revenue. Consequently, the effect of 

freight rate, which is a representative value of the market condition, is not taken into account 

by the current models. The thesis addresses the optimization problem considering a non-fixed 

transport demand. In order to do that, the optimization problem contains three linked decision 

variables: the speeds along the legs, the number of ships deployed and the service frequency. 

In addition, the thesis analyses the effect of the bunker price and the effect of the daily fixed 

operating costs on the optimal solution. 

Another novelty introduced by the thesis concerns the inventory costs. Such costs, as well as 

the bunker price, influence the optimal speeds along the legs. The effect of inventory costs is 

to adopt a higher speed along the legs on which these costs are higher.  

In addition, the model can calculate the CO2 emissions produced by the fleet employed on 

the considered route. The thesis also deals with the impacts of two speed reduction policies, 

which are the implementation of a bunker levy and a speed limit policy. 

In the beginning of the thesis, we provide a review regarding the shipping industry, the 

emissions in the seaborne transport and the slow steaming practice. 
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CHAPTER 1 

1.INTRODUCTION 
 

1.1 MANAGEMENT SCIENCE AND OPERATIONS MANAGEMENT 

Management Science (MS) is closely connected to Operations Research (OR) and is a 

discipline that regards the application of advanced analytical methods as decision-making 

tool. Typically, OR problems are composed by objectives, such as determining the 

maximum or minimum of a function, and constraints, which determines the limits within 

variables, can range. In this way, mathematical tools can tackle real-world issues. OR 

employs mathematical tools provided by many field of mathematics such as statistical 

analysis, mathematical modelling and mathematical optimization; in fact, it is often 

considered as a sub-field of mathematics. In the same way as lots of others discipline, the 

modern field of OR arose during wartime, precisely during the Second World War: Great 

Britain employed it to plan military operation and to optimize the utilization of limited 

resources. Subsequently OR has occupied about engineering, financial field, management 

and many other sectors. Since MS can be employed on practical applications, it overlaps 

with other disciplines: among these, there is Operations Management (OM). OM regards 

designing and controlling of processes in the production of goods or services ensuring 

that business operations are efficient and effective: i.e. OM uses OR to employ as few 

resources as needed in order to satisfy costumers’ requirements. OM deals with 

management problems such as order quantity and production planning: we can say that it 

is to employ a scientific method to solving management problems. Nowadays, resources 

shortage and global competition force companies to pay close attention to OM: not only 

products and services have to be provided to costumers but also the processes used have 

to be quality. In general, business language, quality refers to costumer’s satisfaction, 

which has a wide significance: 

 Reliability of the product or the service 

 

 Efficiency of the process 

 

 Effectiveness of the process 

 

 Price 

 

 Environmental effects 

 

 Social effects 
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Quoting Frederick Winslow Taylor, a pioneer of OM:” This paper has been written to 

prove that the best management is a true science, resting upon clearly defined laws, rules, 

and principles, as a foundation. And further to show that the fundamental principles of 

scientific management are applicable to all kinds of human activities, from our simplest 

individual acts to the work of our great corporations, which call for the most elaborate 

cooperation.” 

1.2   PROJECT OBJECTIVES 

This thesis regards the speed optimization problem in container liner shipping industry: 

given a fixed route, through a mathematical model it may provide a decision-making tool 

to set the sailing speed. The container liner shipping market presents a peculiar 

characteristic: the carriers provide a specific service frequency on their routes. Such 

feature links the number of ships deployed on the route to and the sailing speeds on the 

route’s legs. The main objective of the thesis is to assess whether and how the market 

condition, that is fundamentally the freight rate value, affect the speed in the containership 

industry. In order to do so, the model introduces two novelties concerning the speed 

optimization problem:  

 

 The transport demand is not fixed 

 

 The service frequency is an optimization variable 

 

 

Besides the thesis employs the model to evaluate the effect of other two main parameters 

that affect the shipping market: the bunker price and the daily fixed operating costs. The 

model takes into account another significant parameter, which usually is not considered 

in the speed optimization issues: the inventory costs. Although ship owners do not bear 

such costs, their impact should be considered as the goods’ owners prefer a faster service 

than a slower service. Summarizing, the thesis aim is to assess the effect upon the model 

of the following factors: 

 

 Freight rate 

 

 Bunker price 
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 Daily fixed operating costs 

 

 Inventory costs 

Subsequently, the thesis deals with the effect of such parameters on the CO2 emissions 

produced by the ships and it evaluates how a bunker levy policy and a speed limit policy 

may influence such emissions. Nowadays, the increasing attention on global warming 

leads government to regulate emissions, especially in terms of greenhouse gases (GHG) 

and specifically in terms of CO2 emissions, in order to curb the environmental effects of 

these gases. In order to simulate the real industry conditions, the model employs data as 

realistic as possible. 

1.3   PROJECT STRUCTURE 

The thesis is divided in two main topics. The first one is the review concerning the 

features of the container ship industry: namely, it gives the basic knowledge with regard 

to the characteristics of the vessels, the common rules of the market; moreover, it 

introduces the CO2 emissions-issue related to the seaborne trade industry. The second 

principal topic concerns the model, explaining how it works and providing the results of 

the simulations. The section provides a briefly description of each chapter treated in the 

thesis: 

 

 Chapter 2: the second chapter contains the main information regarding the 

containership industry and the seaborne market. It reports a classification 

concerning the type of ships and as well as the type of cargoes transported. 

Moreover, the chapter lists the fuels used in the shipping industry and the type of 

contract employed with their main traits; 

 

 Chapter 3: the third chapter deals with the environmental issues in the maritime 

transport industry; specifically, it regards the CO2 emissions. It explains the 

evaluation methods to calculate the emissions produced by the word fleet. It 

reports several statistics concerning the CO2 emissions, such as the emissions for 

type of ships and the weight of the maritime transport emissions upon the global 

pollution. Subsequently, it analyses the feasible measures to curb such emissions 

and a method to assess their cost efficiency. At the end of the chapter, a 

comparison between the seaborne transport and the other transport means, 

concerning their environmental-efficiency is reported; 
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 Chapter 4: the fourth chapter introduces the “slow steaming” practice. The 

reasons beyond his application and the strong impact on the market are 

approached. Instead, the second part of the chapter addresses the model 

formulation, introducing the objective function and  constraints; 

 

 Chapter 5: the fifth chapter contains all the information regarding the evaluation 

of the parameters employed in the model, such as the formulation of the fuel 

consumption function and the calculation of the revenue. Besides, it describes the 

main characteristics of the routes treated in the thesis; 

 

 Chapter 6: the sixth chapter focuses on the results of the simulation. The chapter 

reports the most significant results obtained from the model through which the 

impacts of the market conditions, such as the bunker price and the freight rate, are 

evaluated. Fundamentally, such chapter is the core of the thesis; 

 

 Chapter 7: the last chapter concerns the conclusions. Basically, the conclusions 

briefly summarize the results obtained in the chapter 6; 
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CHAPTER 2 

2.MARITIME TRANSPORT 

Ship transport is one of the most important transport means along with aviation and land 

transport, which comprises both rail transport and road transport. Each of these transport 

means has its specific features, hence when one selects the proper transport mode for his 

freight, one has to consider some variables such as speed, costs and the nature of cargo 

itself. A first significant subdivision with regard to what is transported can be made 

between: 

 

 Transport of passengers 

 

 Transport of goods 

 

As regards the transport of commodities, maritime transport is accountable for 90%  of 

the overall world trade (source: www.ics-shipping.org/shipping-facts/shipping -and-

world-trade, 17-11-2016). Therefore, it is evident that ship transport is the most 

significant factor within the global trade as it makes possible to move goods in every 

place in the world. This chapter furnishes information concerning structure and 

composition of the world fleet, focusing on the container sector. The fuels employed and 

the contracts that are usually adopted in ship transport are analysed, besides it is provided 

a classification of the costs that a ship owner incurs when his ships are operative. At last, 

the container fleet’s characteristics and the major trade route involved in the containership 

liner market are studied. 

2.1   CARGO AND VESSEL CLASSIFICATION 

According to (Stopford, 2009), cargoes can be classified at two different levels. The first 

classification sorts goods in six groups which represent six specific industries. Thus, one 

can analyse a specific commodity within his economy sector and see the relationship 

among the goods of the same group. For example, if the global energy demand falls, the 

demand of crude oil as well as the demand of liquefied gas may decrease. Similarly, if 
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the crude oil’s price rises, the demand of other energy sources, such as liquefied gas, may 

probably increase. The six economy sectors in which commodities are grouped are: 

 Energy trade: this group includes crude oil, coal, oil products, liquefied gas; 

 

 Agricultural trade: cereal, wheat, barley, sugar as well as refrigerated food are 

comprised in this category;  

 

 Metal industry trade: it comprises both raw materials and products of steel and 

non-ferrous industries as mineral ore; 

 

 Forest products trade: this class includes all materials regarding paper industries 

and wood products as timber and boards; 

 

 Other industrial materials: a wide range of materials are comprised such as 

cements, chemicals, salt; 

 

 Other manufacturers: this section typically includes high value goods; for 

instance, machinery, vehicles, furniture;  

 

The second classification subdivides goods with respect to how the shipping industry 

transports such commodities. Indeed, a commodity is transported in a specific range of 

quantity, depending on his demand characteristics. For instance, an iron parcel that is an 

individual consignment of cargo, ranges between 40000 and 100000 tonnes (Stopford, 

2009). This characteristic is described by the parcel size distribution (PSD) for each 

commodity. The PSD essentially describe which is the usual parcel size for a particular 

commodity. The PSD allows to subdivide commodities in two class depending on the size 

of parcel: 

 Bulk cargo: (parcel >2000-3000 tonne) a commodity is considered a bulk cargo 

when the typical parcel is big enough to fill a whole ship. The bulk cargoes can 

be divided in four categories: 

 

o Liquid bulk: these cargoes require tanker transportation. The main product 

in such class is crude oil; 

 

o Major bulk: in the major bulk class are comprised iron ore, grain, coal, 

phosphate and bauxite. These commodities are transported by dry bulk 

carrier; 

 

o Minor bulk: the most important commodities in such group are steel 

products, cement and non-ferrous metal ores; 
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o Specialist bulk cargoes: it includes any bulk commodity which require 

specific handling or storage necessity, such as motor vehicle and 

prefabricated building; 

 

 General cargo: (parcel <2000-3000) general cargo is a commodity whose parcel 

size is insufficient to fill a ship. Therefore, this type of cargo is delivered in small 

consignments and a single ship at the same time transports different general cargo 

commodities. Moreover, such kind of cargo are often high-value. As the bulk 

cargo group, it can also be subdivided in several sub-categories: 

 

o Loose cargo: such as individual items and boxes: 

 

o Containerized cargo: this is currently the principal form of cargo transport; 

 

o Palletized cargo 

 

o Pre-slung cargo: items lashed together into standard-size packages; 

 

o Liquid cargo: liquids ship in deep tanks or liquid container; 

 

o Refrigerated cargo: perishable goods which have to be shipped in reefer 

containers; 

 

o Heavy and awkward cargo 

 

 Since for many commodities the parcel size distribution contains both small and big 

parcels, the commodities cannot be neatly subdivided in these two classes but often the 

same commodity can belong to both the categories. The classification of commodities in 

bulk cargo and general cargo allows to divide the shipping market in two categories. 

These two markets are strictly related to the types of vessel employed and require 

different types of shipping operation: 

 Bulk shipping industry: the principle of this market is “one ship, one cargo” and 

it is also called tramp shipping. In such market ships have no fixed route, but the 

visited ports are set depending on the shipper necessity. Carriers in the bulk 

shipping industry mainly employs tankers and bulk vessels; 

 

 Liner shipping industry: liner ships follow a fixed route and operate a scheduled 

service. The schedules are typically published on the company’s website where 

the ports of call are indicated, the route and the duration of the voyage in days. 

Moreover, shipping companies generally provide a weekly service frequency, that 

means each port is served once a week. Containerships are usually involved in the 

liner market. 
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Therefore, the decision regarding which type of vessel is employed depends on the cargo 

characteristics. Within the shipping market are employed many different types of ship, 

the major types present in the international shipping industry are: 

 

 Container ship: container vessels 

transport commodities which are 

contained in in standardized 

containers. The capacity of such ships 

is measured in twenty-foot equivalent 

units (TEU) that is the usual size of a 

container. Container ships are 

generally faster than bulker carriers 

and tankers. According to (Equasis, 

2015), there are 5174 containerships 

operating; 

 

 

Figure 2.1: Picture of a containership 

 

 Tanker ship: tankers are merchant 

vessel designed to ship liquids or gases, 

such as ammonia, crude oil, liquefied 

natural gas and fresh water. Generally, 

tankers are subdivided in four category 

depending on the commodity 

transported: oil tanker, liquefied gas 

tanker, chemical tanker and tankers for 

other liquid. The cargo capacity of 

these vessels is measured in tons. 

According to (Equasis, 2015) there are 

15391 ships of this type; 

 

Figure 2.2: Picture of a LNG tanker 

 

 Bulk carriers: they are designed to 

transport unpackaged bulk cargoes. 

Bulk carriers have large cargo holds 

wherein the payload is stored. Bulk 

carriers are usually loaded and 

unloaded with either conveyor belts or 

gantry cranes, depending of the cargo. 

There are 11289 (Equasis, 2015) bulk 

carriers in the merchant fleet; 

 

Figure 2.3: Picture of a bulk carrier 
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Besides, other ships are used in maritime transportation, such as Ro-Ro which is a vessel 

designed for transporting cars and other wheeled vehicles, general cargo ships and 

passenger ships.  

Figure 2.4 depicts the loaded quantity in millions of tonnes loaded with regard to 

containers, oil and gas and dry bulk commodities. Besides, the percentage of the 

containers on the total is also plotted. As one can see, the utilization of containers to 

transport cargoes has sharply increased from 1980 to 2005. Furthermore, one should take 

into consideration that typically containers contain high-value commodities, hence if the 

economic value of transported goods is considered, the container weight on freight market 

will considerably higher. The rise of container freight is due to him characteristic. Until 

mid-1960s most general cargoes were shipped loose, such practice forced carriers to 

spend two-thirds of their time in port for the handling operations. Since the increasing 

demand of freight transport, carriers were not able to furnish the required service at an 

economic cost. In order to shrink handling time hence the related costs, carriers started to 

adopt container to unitize goods. Containers are the unit of containerization system which 

is an intermodal freight transport method. An intermodal freight transport is a transport 

system in which are involved multiple transport means, without necessity of handling 

operation when the freight is moved among the different mode of transportation.  

 

Containers mainly come in two different standardized sizes: twenty-foot equivalent 

(TEU) containers, which are 6.1 meters long, 2.44 meters wide and 2.59 meters high, and 

forty-foot equivalent containers, which are wide and high as TEUs but are longer (12.2 

meters), that is twice TEU’s length. The term “TEU” is commonly used to describe the 

cargo capacity of a containership or to quantify the transport demand. The paper employs 

the TEU-size as unit of measurement concerning the transport demand, however there are 

many other available container’s sizes, such as 45 feet high cube, which are employed in 

the maritime commerce. 
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Figure 2.4: Goods loaded quantity in 1980-2015 for containerships, tankers and bulk carriers 

Adapted from: (UNCTAD, 2016), Figure 1.2  

2.2  MARINE FUELS 

Oil is currently the only significant energy source for maritime industry. Marine fuels are 

divided in two main classes, which include the different type of fuels: 

 Distillate fuel oil: the distillate fuels are manufactured with the vapours produced 

during the distillation process 

 

o MGO (Marine Gas Oil) 

 

o MDO (Marine Diesel Oil) 

 

 Residual fuel oil: the residual fuels are produced using the residue of the 

distillation process 

 

1980 1985 1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
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o IFO 180 and IFO 380 (Intermediate Fuel Oil): the figure indicate the 

maximum viscosity measured in centistokes at 50°. Generally, IFO fuels 

are also called HFO (Heavy Fuel Oil) in literature; 

 

o HFO (Heavy Fuel Oil) 

 

 

All the marine fuels are produced from refining of crude oil; in fact, their prices are strictly 

linked to the crude oil price per barrel. MGO is made from distillate only whereas MDO 

is a blend of heavy fuel oil and gas oil. IFO is a blend of gasoil and heavy fuel oil however 

it contains less gas oil than MDO. MDO and MGO are considerably more expensive than 

IFO moreover IFO 180’s price is slightly higher than IFO 380’s. On 9 November 2016 

MGO was sold for 404 [USD/tonne] whereas IFO 180 and IFO 380’s prices were 279 

and 251 [USD/tonne] respectively. Because of this low price HFO is the most employed 

fuel in maritime industry, counting about for 84% of the overall marine fuel consumption. 

However, it is also more pollutant in respect to the distillate fuels. Specifically, MGO 

maximum sulphur content is 1,5% whereas the maximum sulphur content of HFO is 

3,50% (source of figures: www.shipandbunker.com, 08-11-2016). The International 

Maritime Organization (IMO) has made a decisive effort to diversify the industry 

consumption away from HFO toward cleaner fuels. In fact, in 2008 IMO adopted a 

resolution to update MARPOL (MARPOL is the International Convention for the 

Prevention of Pollution from Ships) annex VI regulation 14, which contains limitation 

regarding the sulphur content of the fuel used by shipping sector; as of 1.1.2020, sulphur 

content should not be more than 0,5%. This regulation forces ship owners to use low 

sulphur fuel oil such as MGO or MDO within the emissions control areas and also limits 

the sulphur emissions outside these areas. The emission control areas are the Baltic Sea 

area, the North Sea area, the North American area (covering designated coastal areas off 

the United States and Canada) and the United States Caribbean Sea area. 

 

An alternative to oil-based fuels is the Liquefied Natural Gas (LNG). LNG is the cleanest 

fossil fuel and allows to reduce CO2 emissions as well as pollution by sulphur. In fact, 

LNG contains both less carbon and sulphur than fuel oil. Moreover, the cost of LNG is 

about the same of residual fuel oil and it is significantly less expensive than distillate 

fuels. Currently, several technical challenge has to be faced for employing LNG as a real 

alternative to fuel oils. The main issues with regards to LNG as a marine fuel are its 

availability in the bunkering ports and the large space required to storage the fuel on 

board. In figure 2.5 are reported the utilization percentages of distillate fuels, residual 

fuels and liquefied natural gas in international shipping. The figure shows a slightly trend 

from utilization of residual fuel oil toward LNG and distillate fuel oil. 
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Figure 2.5: Utilization percentage of HFO, MDO and LNG in international shipping1 

Adapted from: (IMO, 2014), Table 3 

2.3  SHIP COSTS 

Assessing the daily costs of a ship is not a trivial operation. The costs are largely 

influenced by type of vessels besides the daily cost may also be different for the same 

ship type.  In fact, the ship costs depend on a wide set of vessel’s features such as age of 

the vessel and the ship’s size. The aim of this section is to provide a review regarding the 

which cost must be considered when the daily ship cost is assessed, without taking into 

account of all parameters that influence such evaluation. According to Stopford, (2009), 

the costs of a ship in the maritime cargo market can be classified into five categories as 

shown in figure 2.3: 

 Operating costs: the operating costs are the expenses which must be paid to make 

the ship be operative, except for the fuel expenditure that is considered separately. 

These costs are independent whether the ship is in port or at sea whereas they are 

connected to the operative days of the ship. The principal elements which are 

comprise in such category are:  

 

                                                 
1 See appendix A for the calculations method 
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o Crew costs: this item includes all the charges concerning the seafarers, 

such as salaries, pensions and social insurance. Crew costs mainly depend 

on the number of crew on the ship, which is principally linked to the degree 

of automation of the vessel. In recent years, the number of seafarers 

required in order to run a vessel has declined hence this expenditure 

currently has a small weight upon the overall costs;  

 

o Stores costs: such category comprises all the cost related to consumable 

supplies such as spare parts, cabin stores and lubricant. Since most vessels 

have diesel engine the lubricant expense is by the far the most influential 

cost item for this class; 

 

o Repairs and maintenance costs: this category contains the costs concerning 

the routine maintenance of the ship as well as the costs related to 

breakdowns. The difference between these two items is basically that the 

maintenance is scheduled by the ship owners whereas the breakdowns 

cannot be scheduled, being random events; 

 

o Insurance costs: all the ships are furnished with an insurance in order to 

protect the ship owner from casual occurrences. For example, insurances 

typically cover injuries of crew members, damage of cargoes or damage 

of the ship’s components;  

 

o Administration costs: these costs are due to managing of the fleet;  

 

 Periodic maintenance costs: all merchant ships must be undergone to regular 

surveys. These surveys assess the seaworthiness of the ship and are carried out 

when the ship is dry-docked. Generally, it is required to replace some components 

which do not reach the minimal requirements; 

 

 Voyage costs: the voyage costs are principally related to the fuel expenditure but 

this class also comprises port fees and canal charges. These costs depend on the 

speed of the vessel and on the number of port of calls involved during the voyage; 

 

 Cargo handling costs: these costs comprise cargo loading cost, cargo discharging 

cost and cargo claims. Generally, such costs are expressed as USD per TEU or 

per tonne and it is a significant expenditure for carriers. These expenses have a 

heavily impact in liner trades;  

 

 Capital costs: the cost of purchasing the ship is not reported in the company’s 

balance as a single expenditure. Indeed, the cost of the ship is spread over the 

ship’s span time, which is typically equal to 20 years. This practice is generally 

applied by all accountants for reporting large capital items in the profit and loss 
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account otherwise the company would report a massive loss for every investment. 

Besides, as reported in (Počuča, 2006), from the purchasing value is subtracted 

the value of the ship at scrapheap in order to consider the earning for demolishing 

the vessel. Another name to refer to capital cost is depreciation cost. 

 

Ship Costs

Periodic Maintenance Costs

Voyage Costs

Cargo Handling Costs

Capital Costs

Crew Costs

Operating Costs

Store Costs

Repairs and Maintenance Costs

Insurance Costs

Administration Costs

 

Figure 2.6: Cost classes in maritime cargo market 

Therefore, according to (Počuča, 2006), the daily ship cost can be evaluated as follows. 

In such analysis are exclusively considered the operating cost and the depreciation cost 

because in the model present in this thesis the handling costs and the voyage costs are 

separately treated, being dependent by the speed and the service frequency. For this 

reason, the cost here calculated can be called daily fixed cost as it is the daily cost to 

deploy a new vessel on the route. The daily fixed cost E can be computed in the following 

way: 

 𝐷𝑂𝑃 =  
𝑌𝑂𝑃

𝑂𝐷
 (2.1) 

Where DOP is the daily operating cost, YOP is the yearly operating cost and OD are the 

ship’s operating days per year. Subsequently the daily depreciation cost DD is calculated 

as follow: 
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 𝐷𝐷 =  
𝐴𝐷

𝑂𝐷
 (2.2) 

 

𝐴𝐷 =  
𝑉𝑆 − 𝑉𝑆𝑆

𝐷𝑃
 (2.3) 

Where AD is the yearly depreciation cost, VS is the value of the ship, VSS is the value 

of the ship at scrapheap and DP is the depreciation period. At last, the daily fixed cost E 

is the sum of the daily depreciation cost and the daily operating cost:  

 𝐸 =  𝐷𝐷 + 𝐷𝑂𝑃 (2.4) 

 

The result reported in (OpCost, 2014), regarding the daily operating cost, estimates as 

7398 [USD/day] the daily operating cost for a container ship of 2000-6000 TEU capacity. 

(Murray, 2016) estimates such cost as about 10000 USD for vessels with a capacity over 

12000 TEU. The daily depreciation cost has to be added to the figure above, as it does 

not take into account of such cost.  

2.4   CONTRACT CLASSIFICATION 

The market in which sea transport is bought is sold is called freight market. The contracts 

in the freight market are called charterer-party and regulate the employment relationship 

between carriers and shippers (or charterers). The freight rate value depends on the market 

involved hence freight rates are different for container ships, tankers and bulk carrier.  

Within the freight shipping industry there are four principal types of contracts (Stopford, 

2009): 

 

 Voyage charter: a voyage charter is the transporting of the cargo between two 

ports. The carrier and the shipper involved set out a contract in which the price 

for a certain amount of good is fixed, that is the freight rate. The cargo must be 

delivered in a specific date otherwise if the cargo is delivered after the due date, 

carrier will pay a demurrage for delay. Contrarily, if the cargo is delivered before 

the committed date, carrier will receive a despatch payment. The ship owner 
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manages the ship and bears all the costs. The freight rate is the price at which a 

certain amount of cargo is transported, such as USD per tonne or USD per TEU. 

 Contract of affreightment: this contract is similar to a voyage charter but in this 

case the carrier commits to transport a set of cargo for a fixed price per tonne. The 

set of cargoes must be delivered in a fixed time interval and the carrier can arrange 

the details of each voyage in order to use his ships in the most efficient manner. 

The carrier bears all the costs as in the voyage charter. This kind of contract is 

especially employed for cargoes in dry bulk market, such as iron ore and coal;  

 

 Time charter: shipper hires the vessel for a specific period of time and is in 

charge to pay the voyage and the handling costs, such as fuel consumption and 

port charges. The shipper arranges the details of the voyage, such as the speed and 

which port are involved but the managing of the ship owner is still carried out by 

the ship owner who pays for the cost related to the crew and for the maintenance. 

Generally, the price for hiring a ship is stated as USD per day; 

 

 Bare boat charter: the bare boat charter is a contract similar to time charter but 

in such contract the charterer obtains full control of the vessel. As a consequence, 

shipper is in charge to pay the operating costs and the maintenance costs. 

Basically, the charter has full operational control of the ship but does not own it; 

2.5 CONTAINER SHIPS 

The container-shipping industry is composed by many trade routes. Container shipping 

companies, such as Maersk and MSC, provide several freight services and each one of 

these services is scheduled and visits specific ports, depending on the route. Thereby, 

routes form a global network which enables to transport commodities from a certain port 

A to a port B, given a certain price per TEU delivered and within a scheduled time, as 

shown in figure 2.7. The first ship designed for container transportation was built in 1960, 

as of that moment the quantity of containerized commodities moved all over the world 

has rapidly increased. In fact, as of 2009, around 90% (Ebeling, 2009) of cargo worldwide 

is moved by container ships, excluded bulk cargoes. Therefore, container freight transport 

can be considered as the international transport mode par excellence with regard to high-

value commodities. As discussed in section 2.1, containerization allows to reduce the 

handling time of cargoes hence the overall costs of freight transport means. The reduction 

of handling time is a paramount challenge in the freight transport as the continuous 

increasing in the transport demand.  

The freight transport demand is strictly related to the economic growth, which is 

measured through the gross domestic product (GDP). Despite the economic recession in 
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2009, when the global containerized trade decreased, in 2015 the global volume of 

container trade reached the record figure of 175 million TEUs and this value is predicted 

to increase over 180 million TEUs in 2016 (UNCTAD, 2016). The continuous rise of 

containerized trade is associated to the globalization of the economic market. Even better, 

one can say that container ships have been a paramount driver of globalization, allowing 

transporting goods all over the world at a reasonable price. In this section the 

characteristics of the major route are discussed, moreover the currently and future 

composition concerning the container ship fleet is analysed. 

 

 

Figure 2.7: Representation of global maritime traffic  

Source: (Halpern et al., 2008) 

 

2.5.1   CONTAINER LINER SHIPPING ROUTE NETWORK 

In the liner shipping market ships travel along fixed route within a fixed scheduled time, 

such as the timetable in figure 2.7 which depicts the service provided by Maersk for the 

Europe-Asia route. The behaviour of a liner ships is thus similar to bus and train services. 

Currently, there are around 400 liner services in operation, which links the major ports in 

the world (source: www.worldshipping.org/about-the-industry/liner-ships, 21-11-2016). 
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Figure 2.8: Maersk line’s East-West service schedule and route 

One can notice the weekly frequency of such service, moreover table also furnishes the voyage 

duration in days. For instance, every Friday a vessel leaves Dalian’s port and it will reach 

Rotterdam on Saturday, after 36 days. 

Source: http://www.maerskline.com/en-sc/shipping-services/routenet/maersk-line-network/east-

west-network, 21-11-2016 

 

According to (UNCTAD, 2016) and (Stopford, 2009), the global network, concerning the 

container shipping trade, can be subdivided in four classes:  

 East-West lane: which connects three main economic regions, namely Asia 

(especially China) the manufacturing centre of the world, and Europe and North 

America, which are the principal consumption markets. The East-West line can 

be divided in two sub-class: 

 

o Mainline: the mainline comprises the transatlantic routes which link 

Europe to North America, the transpacific routes which connect North 

America to Asia and the routes between Asia and Europe; 

o Secondary line: which includes the other routes; 

 

 North-South lane: the north-south line links the three major in the North, such as 

Europe, North America and Far East, with the economies in the South; 

 

 South-South lane: this line connects the economies in the South each other, such 

as South Africa and South America; 
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 Intraregional lanes: the intraregional market comprises routes, which bring 

together ports belonging the same region. For instance, Maersk provides an Intra-

Europe service, which allows delivering goods among European ports. Most 

intraregional lanes use small ships and voyages of few days, such as three or four 

days; 

 

 The global network of shipping market, composed by such international and 

intraregional lanes, is constantly changing in order to meet the development of new 

economies, hence depending on the freight transport demand. 

Currently, the major trade lane is 

the East-West route which counts 

for 42%, whether the overall 

cargo’s flow is considered, as 

shown in figure 2.9. As stated in 

(Vad Karsten et al., 2015), 

containers move along the 

network, however in order to 

transport a certain container from 

A to B more than one service may 

be involved. One can refer to the 

transit between two distinct routes 

as transshipment. 

Basically, transshipment means 

employing more than a service for 

delivering goods. Such practice 

requires storing of containers at 

the transshipment port, moreover 

loading and unloading activity are 

necessary when the cargo moves 

on another route. 

 
Figure 2.9: Global containerized by route, percentage 

share in TEU 

Adapted from: (UNCTAD, 2016), Figure 1.5 

 

 Therefore, transshipment allows to link ports, which are not directly connected by a 

service, nevertheless, it entails a longer handling time hence higher costs. 

2.5.1.1   MAINLANE EAST-WEST 

The mainlane East-West is the major liner route and during 2015 through this lane were 

transported about 52,5 million of TEU (UNCTAD, 2016). The East-West trade lane 

connects the three major economic centres that are Europe, North America and Eastern 

Asia (especially China). As depicted in figure 2.10, these three continents are connected 

by three trade routes: transatlantic lane, Europe-Asia lane, and transpacific lane. The 

Intraregional 
and South-South
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transpacific lane is the primary of them and counts for 46% of the overall container trade 

on the East-West route, whereas Europe-Asia lane counts for 41% and transatlantic lane 

counts for 13% (UNCTAD, 2016). Figure 2.11 reports the quantities of TEU moved along 

the three routes. 

 

Transatlantic
WB: 4.1
EB: 2.7

Europe-Asia
WB: 14.9

EB: 6.8

Trans-Pacific
WB: 7.2
EB: 16.8

 

Figure 2.10: Container flows on Mainlane East-West route [million TEUs], 2015 

Adapted from: (UNCTAD, 2016), Table 1.7 

 

 

Figure 2.11: Containerized trade on Mainlane East-West route, 1995-2015 

Adapted from: (UNCTAD, 2016), Figure 1.7 

 

The characteristics of a route, such as the freight rate, are not constant all over the route 

itself. Indeed, several parameters are heavily influenced by the travel direction, namely, 

the eastbound direction and the westbound direction with regard to the mainlane East 

West. The major parameters influenced by the travel direction are the followings: 

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Translatlantic 3 3 4 4 4 4 4 4 5 5 6 6 6 6 5 6 6 6 6 7 7

Europe-Asia 4 5 5 6 6 7 7 8 11 12 14 16 18 19 17 19 20 20 22 22 22

Trans-Pacific 8 8 8 8 9 11 11 12 13 15 16 18 19 19 17 19 19 20 22 23 24

0

10

20

30

40

50

60

C
o

n
ta

in
er

iz
ed

 C
ar

go
 F

lo
w

s 
[M

ill
io

n
s 

o
f 

TE
U

s]



  2. MARITIME TRANSPORT 

 

Speed optimization and environmental effect in container liner shipping Page  29 

 

 Freight rate: freight rates are different and depend on the travel direction. As 

reported in table 2.1, freight rates are very influenced by the travel direction, 

especially when the Asian market is involved.; 

 

Imbalance in Freight Rate 

Route Eastbound [USD/TEU] 
Westbound 
[USD/TEU] 

Ratio 

North Europe-US 800 650 1,231 

Far East-North Europe 1200 1900 1,583 

Far East-Us 1800 1100 1,636 

Table 2.1: Eastbound and Westbound freight rates in the fourth quarter of 2010 

Adapted from: (FMC, 2012), Table TE-20, AE-19 and TP-19 

  

 Capacity utilization: the capacity utilization is the percentage of payload carried 

by a ship in respect to his potential capacity. Especially, in the Europe-Asia lane 

this value is significantly different in the eastbound direction and the westbound 

direction. For instance, as reported in (FMC, 2012), in the fourth quarter of 2010 

this value was 54% as regards eastbound and 78% as regards westbound; 

 

 Number of containers transported: the quantity of cargoes hauled along a route 

is different in the two directions. Using the ratio between the number of containers 

transported westbound and eastbound, one can analyse such significant aspects of 

a trade route. In 2015 such ratio was equal to 2,33 as regards the transpacific lane 

whereas it was equal to 2,2 and 1,52 (in this case the ratio is defined as the cargoes 

transported westbound divide by the cargoes transported westbound) for the East-

Asia lane and transatlantic lane respectively (UNCTAD, 2016); 

 

 Average value of cargo: as reported in (Psaraftis and Kontovas, 2013), the 

monetary value of containers is influenced by the specific trade. Indeed, the paper 

claims that in the Europe-Asia lane the average cargo values are about double in 

the westbound direction than in the eastbound direction. As discussed in chapter 

4, the cargo value influences the optimal speed of the vessel hence it is significant 

considering such aspect.  
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2.5.2   FLEET CHARACTERISTICS 

The size of containerships normally refers to the number of TEU-size containers that it is 

able to carry, which is the vessel’s freight capacity. Since the ship dimensions depend on 

the number of transportable containers by the ship itself, stating the freight capacity also 

means stating the ship size. Some different classifications depending on the transport 

capacity are stated in literature; this thesis relies on the nomenclature present in (MAN, 

2013) and reported in figure 2.12. 

Small Feeder 

Feeder

Panamax

Post-Panamax

New-Panamax

ULCV

<1000 TEU

1000-2800 TEU

5500-10000 TEU

2800-5100 TEU

12000-14500 TEU

>14500 TEU

 

Figure 2.12: Container ship classification depending on the TEU-capacity 

Adapted from: (MAN, 2013), Propulsion Trends in Container Vessels: Two-stroke engines 

 

Container ships are relatively faster than tanker ships and bulk carrier. Indeed, as shown 

in figure 2.13, the average design speed for medium-size and large vessels is about 25 

knots. As a consequence, fuel consumption is higher for containerships and the policy of 

slow steaming has a greater impact for such type of ships than for bulk carrier and tankers. 

The chapter 4 deals with such topic, analysing deeply which effects slow steaming entails 

in the liner trade market.  
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Figure 2.13: Average design speed of container 

Source: (MAN, 2013), Propulsion Trends in Container Vessels: Two-stroke engines 

 

According to (UNCTAD, 2016) the global TEU capacity for container ships is about 19,9 

million TEUs. Currently as reported in figure 12.13, most containerships have a TEU 

capacity lower than 4000, however in 2016 the average capacity of containerships in the 

order book is 8508 (UNCATD, 2016) which is more than double the average vessel size 

of the current fleet. Therefore, the average size of the container fleet is destined to increase 

in the next years. Carriers employ larger vessels in order to reduce costs and increase their 

market share.  

 

Figure 2.14: Number of containerships for TEU capacity 

Adapted from: (IMO, 2014), Table 14 
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Indeed, according to (Murray, 2016), there are indisputable benefits in using larger 

vessels. Such study claims that there are three economies of scale in container ship 

market. Namely, there is a marginal decrease in cost as ship size increases hence larger 

ships are cheaper than smaller ones. The three economies of scale are related to three 

costs sources as listed below: 

 

 Economy of scale in capital cost: in 2015 the average construction cost of a 

containership was 64 million USD, whereas the cost for a vessel with a capacity 

higher than 13300 was about 140 million USD (Murray, 2016). Dividing the 

construction cost of a vessel by his TEU capacity it clearly appears the evidence 

of an economy of scale as shown in figure 2.15; 

 

 

Figure 2.15: Construction cost of a container ship per TEU 

Source: (Murray, 2016) 

 

 Economy of scale in fuel consumption: as depicted in figure 2.16, the fuel 

burned per day for transporting a TEU decreases as the vessel capacity increases. 

This means that the number of transportable TEU increases faster than the fuel 

consumption for an increasing ship’s capacity; 
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Figure 2.16: Fuel consumption of a container ship at 23 knots per TEU per day 

Source: (Murray, 2016) 

 

 Economy of scale in operating costs: in figure 2.17 contains the curves with 

regard to the daily operating cost per TEU as the vessel capacity varies. Another 

time, the cost per transported TEU is lower for larger vessels, hence an economy 

of scale is also present as regards the operating costs; 

 

Figure 2.17: Fuel consumption of a container ship at 23 knots per TEU per day 

Source: (Murray, 2016) 

 

Despite the presence of such economies of scale, it is not straightforward assessing the 

actual impact of employing larger vessels into the freight market. Indeed, (UNCTAD, 

2016) states that larger ships may shrink the unit costs for carriers, however the overall 

costs of handling these huge vessels regarding their management and the related logistic 

system required might outweigh such benefits. For example, employing larger vessels 

leads to require more transshipment operations and less direct services, as less vessels 

provide the same transport capacity. Furthermore, the increasing demand of larger 

containerships entails an amplification of the overcapacity issue, which is addressed in 

chapter 4.  
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CHAPTER 3 

3.ENVIRONMENTAL EFFECTS 

It is well-accepted that human activities are leading to an increase of the global average 

temperature as shown in figure 3.1. due to the pollutant gases emissions. Fossil fuels 

produce the emission of several gases when are burned, some of which are called 

greenhouse gases (GHGs). These gases are the responsible for the climate change, which 

will entail many catastrophic consequences, such as rising sea level, loss of bio-diversity, 

mass migration along with all the predictable consequences concerning international 

diplomacy and the plausible beginning of new conflicts. In the GHG list are comprised 

numerous gases such as CH4 and N2O, nevertheless the most relevant is surely the carbon 

dioxide whose chemical formulation is CO2 (these three are the main GHGs for shipping). 

Their interaction with the sun light, within the infrared range of wavelength, causes the 

so-called Greenhouse Effect. Basically, these gases partially absorb the sunlight reflected 

by Earth. Therefore, a higher content of GHG in the atmosphere implies an increase of 

temperature, being the average temperature on our planet principally affected by the 

energy balance of incoming and outgoing solar energy. This physical phenomenon allows 

maintaining an average temperature on Earth, which permits to establish suitable 

conditions for life, otherwise this temperature would not be reached.  

 

 

Figure 3.1: Temperature anomaly from 1880 to 1900 

Source: www.co2.earth, 31-10-2016 
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Therefore, such effect it is necessary however the recent increase of GHG in the 

atmosphere has alarmed the whole scientific world. Since the Kyoto protocol in 1997, the 

environmental effect of the human activities has been deeply examined and several 

measures and policies in order to curb the emissions of GHG in the atmosphere were 

developed. Indeed, in the recent years, a new concept of developing has arisen which 

considers not only the economic aspects but also the environmental and social effects, as 

shown in fig 3.2. Such idea is called Sustainable Development.  

 

Environment

Social

Economic

Sustainability

 

Figure 3.2: Sustainable development 

The Venn diagram shows that sustainability involves aspects regarding environmental, economic 

and social feasibility. Indeed, the new concept of sustainable development evaluates the 

effectiveness of a project or a product not only taking into account the economic aspect but also 

its social and ecological impact 

This increasing commitment to arrest the global warming led to hold the United Nations 

Climate Change Conference in December 2015 in Paris. The main aim of such 

convention, as described in the article 2 of the agreement is: “Holding the increase in the 

global average temperature to well below 2 °C above pre-industrial levels and to pursue 

efforts to limit the temperature increase to 1.5 °C above pre-industrial levels, recognizing 

that this would significantly reduce the risks and impacts of climate change” (source: Text 

of the Paris Agreement). Nevertheless, a lot of criticism have surfaced regarding this 

agreement because there is not a legal commitment but it is all based upon promises  

(www.theguardian.com/environment/2015/dec/12/james-hansen-climate-change-paris-

talks-fraud, 31-10-2016). This section deals with the emissions in the maritime transport 

and assesses the weight of such transport through several data and statistic, principally 

reported in (IMO, 2014) and (Psaraftis, 2012). Besides, the measures available as well as 

the methods to evaluate their economic effectiveness are analysed. 
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3.1   EVALUATION METHODS 

Before examining all the statistics regarding the emission in maritime transport is 

meaningful to be aware how these figures are obtained. There are fundamentally two main 

methods for computing the CO2 emissions that are produced by a specific transport means 

(Psaraftis and Kontovas, 2009): 

 Bottom-up approach: the emissions are calculated using simulation models 

calibrated on the ships activity; 

 

 Top-down approach: this method basically computes the total emissions through 

the fuel sales data; 

 

 Estimates vary in respect to which of these two approaches is employed, besides the 

results are also affected by how data are elaborated and which assumption are made.  In 

figure 3.3 are reported the result of the third IMO study as example of the relevant 

differences in the results between the bottom-up approach and the top-down approach. 

 

 

Figure 3.3: CO2 emissions for the Top-Down approach and the Bottom-Up approach 

This graph regards the emissions of the international shipping. 

Adapted from: (IMO, 2014), Table 2 and Table 3 
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3.1.1  TOP-DOWN APPROACH 

The top-down approach is based on the fuel sales data, indeed it is also called “fuel-

based”. Fundamentally, this method consists in computing the emissions multiplying the 

amount of fuel sold by the CO2 emission factor. Usually, in the maritime field different 

type of fuels are used for the main engine and the auxiliary engine. Ships principally use 

oil-based fuels such as HFO (heavy fuel oil) and MDO (maritime diesel oil). Therefore, 

if different fuels are taken into account, the total CO2 emissions, 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝐶𝑂2
 [tonne],  

can be calculated by the following equation: 

  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝐶𝑂2
=  ∑ 𝐹𝑆𝑖 𝐸𝐹𝐶𝑂2,𝑖

𝑖

 (3.1) 

Where FSi is the amount of fuel sold ith [tonne] and 𝐸𝐹𝐶𝑂2,𝑖 is the emissions factor of such 

fuel. The value of emissions factor for the typical maritime fuel are reported in section 

3.1.1.  The data regarding the fuel sales are collected from database provided by the 

Energy Information Administration (EIA), the International Energy Agency (IEA) and 

the United Nations Framework Convention on Climate Change. For example, the IEA is 

the data source used in the inventory of CO2 emissions elaborated by (IMO, 2014). This 

approach would be the most reliable however the data about fuel sales are sometimes 

considered not dependable2. Indeed, the results obtained from the top-down approach 

considerably differs from those furnished by the bottom-up approach.  

3.1.2 BOTTOM-UP APPROACH 

The bottom-up method computes emissions by modelling the fleet activity, indeed this 

method is also called “activity-based”. Namely, this means that some activity data are 

required, such as travelled kilometres per year or day at sea per year. These activity data 

are then multiplied by some emission factors such as fuel consumption per km in tonnes 

or daily fuel consumption in tonnes respectively. Obviously, it is difficult to calculate a 

proper value of these emission factors hence many uncertainties are present in such 

studies. For instance, the fuel consumption per day of a vessel is a function of the sailing 

speed as well as of the payload and other factor therefore in order to compute the daily 

fuel consumption it is necessary to be aware about the vessel’s speed, the payload and 

other activity features. Moreover, once the daily consumption for the single ship is 

estimated, by this value it has to be calculated the global fleet’s total emissions and this 

is not a trivial challenge. Indeed, the sailing speed as well as the other activity 

                                                 
2The reasons that lead not to rely on fuel sales’ data are reported in (Psaraftis and Kontovas, 2009) 
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characteristics are different for each vessel, moreover these sort of data is not available, 

especially on a global scale. As a consequence, many assumptions a simplification are 

required. As an example, (Psaraftis and Kontovas, 2009) provide a study which estimate 

the CO2 emissions of world commercial fleet, using the bottom-up approach. In this study, 

assuming the operative days per year, the time at sea hence the time in port and finally 

the daily fuel consumption at sea and the daily fuel consumption in port, the yearly 

emissions are computed for several size brackets and for different types of vessels such 

as container ships, tanker ships and bulk carriers. Some results of this study are reported 

and elaborated in the next section. Another example can be (Gkonis and Psaraftis, 2012) 

into which the emissions of the global fleet of a specific tanker segment are estimated. 

Such study takes into account that the speed depends on both the bunker price and the 

freight rate, thus allowing to evaluate how these two factors influence the amount of 

emissions produced. According to (IMO, 2014), the best estimate for years’ emissions for 

GHG is provided by the bottom-up approach hence the results obtained from such 

analysis must be considered as benchmarks. Therefore, all the data provided in this thesis 

refers to the bottom-up method. 

3.1.3   EMISSION FACTORS 

The emission factors EF are fundamentally coefficients that allow evaluating the 

emission of a certain gas. Multiplying the EF by the fuel consumption FC, for example 

in [tonne/day], permits to compute the amount of emissions E produced by burning the 

fuel: 

 𝐸 =  𝐹𝐶 𝐸𝐹 (3.2) 

In fact, the EF is the number of gas tonnes produced per tonnes of burned fuel. The 

common values of EF are reported in table 3.1 for three different types of fuel, regularly 

used in maritime transport. However, in some articles a unique emission factor is used 

for each type of fuel. For instance, this was made in the first IMO GHG study of 2000 

(Psaraftis and Kontovas, 2009) wherein the EF is equal to 3.17. 

Similarly, the emission factors are furnished for each GHG and more in general for each 

pollutant agent whose environmental impact must be evaluated.  
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CO2 Emissions Factors 

Fuel Emissions Factor 

HFO 3,021 

MDO 3,082 

LNG 2,7 

Table 3.1: Emissions factor for HFO, MDO and LNG  

The EF are in tonne of CO2 produced per tonne of fuel burned. 

Adapted from: (Psaraftis and Kontovas, 2009) 

 

Instead, in (IMO, 2014) a different value for the CO2 emission factor is provided, which 

is higher than the previous, as shown in table 3.2, such values are employed in the thesis 

to evaluate the emissions of the fleet. LNG contains less carbon than the other fuels hence 

the emissions of CO2 are lower. Nevertheless, using LNG increases the CH4 emissions 

(methane slip is the proper name for methane that is not used as a fuel and basically 

escapes into the atmosphere) hence the net effect of employing this type of fuel is a 

reduction by 15% of CO2eq. 

 

CO2 Emissions Factors (IMO, 2014) 

Fuel Emissions Factor 

HFO 3,114 

MDO 3,206 

LNG 2,750 

Table 3.2: Emission factor provided by the third IMO GHG study 

The EF are in tonne of CO2 produced per tonne of fuel burned. 

Adapted from: (IMO, 2014), Page 248 

 

Besides, in order to evaluate the effectiveness of using a specific fuel, it is also necessary 

to take into account the SFOC’s value (Specific Fuel Oil Consumption) for each type of 

bunker. Indeed, this parameter allows assessing the grams of fuel required to maintain a 

given power for one hour. This value depends on the vessel’s speed, however some values 

are reported in table 3.3 as indicative values. 

 

SFOC [g/kWh] 

Fuel Specific Fuel Oil Consumption 

HFO 215 

MDO 205 

LNG 166 

Table 3.3: SFOC for different fuel type 

Data source: (IMO, 2014), Table 24 
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3.1.4   CARBON DIOXIDE EQUIVALENT 

As said in section 3, the main GHG is the carbon dioxide however also the methane CH4 

and the nitrous oxide N2O are greenhouse gases. These two gases are produced when the 

fuel is burned as well as the CO2. Therefore, their influence on pollution must be taken 

into account when emissions are computed. In order to assess the environmental effect of 

CH4 and N2O is introduced a new concept: the carbon dioxide equivalency CO2e. As 

claimed in (IMO, 2014) the carbon dioxide equivalency is “a quantity that describes, for 

a given amount of GHG, the amount of CO2 that would have the same global warming 

potential (GWP) as another long-lived emitted substance, when measured over a specified 

timescale (generally, 100 years)”. The GWP expresses the contribution of a gas on the 

greenhouse effect relatively to effect of CO2. The GWP is equal to 25 and 2983 for 

methane and nitrous oxide respectively, considering a time scale of 100 years. This means 

that one tonne of N2O has the same consequence upon the greenhouse effect of 298 tonnes 

of CO2. 

Table 3.3 reports the CO2e for each GHG and points out as the carbon dioxide is by far 

the most influential greenhouse gas, being responsible of the pollution about by 98%. As 

consequences, this thesis does not consider the pollution derived by N2O and CH4, as it 

remarked in section 4.2. 

 

CO2e Emissions [Mtonne] 

 2007 2008 2009 2010 2011 2012 

CO2 884,900 920,900 855,100 771,400 849,500 795,700 

CH4 5,929 6,568 6,323 7,969 9740 9,742 

N2O 12,152 12,689 11,860 10,615 11,473 10,931 

Table 3.4: CO2e emissions for GHGs in million tonnes produced  

This graph regards the emissions of the international shipping. 

Adapted from: (IMO, 2014), Table 19 

 

 

 

 

 

 

                                                 
3 IPPC Fourth Assessment Report, Climate Change 2007-The physical science basis, Table TS.2 



3. ENVIRONMENTAL EFFECTS   

 

PG. 42 
 

Page  42 Speed optimization and environmental effect in container liner shipping 

 

3.2   GLOBAL EMISSIONS 

According to (IMO, 2014) and as reported in table 3.4, maritime transport’s contribution 

on the global CO2 emission amounts about by 3%. As reported in (Eide et al., 2009), if 

global shipping was treated as a country, it would be considered the sixth larger producer 

of GHG all over the world, that is above the Germany’s ranking position. Moreover, 

international shipping is far more pollutant than domestic shipping, weighing for about 

the 2,2% of the total emissions in 2012. The weight of the shipping transport on the global 

CO2 emissions is currently decreasing: in fact, the shipping share was by 3,5% in 2007 

whereas his contribution has decreased by up to 2,6% in 2012. Besides, the overall 

amount of tonnes emitted has decreased, diminishing from 885 million of tonnes in 2007 

to 796 million of tonnes in 2012. 

 

Global and Shipping CO2  Emissions [Mtonne] 

 Global Shipping 
Percentage of 

global 
International 

shipping 
Percentage of 

global 

2007 31409 1100 3,5% 885 2,8% 

2008 32204 1135 3,5% 921 2,9% 

2009 32047 978 3,1% 855 2,7% 

2010 33612 915 2,7% 771 2,3% 

2011 34723 1022 2,9% 850 2,4% 

2012 35640 938 2,6% 796 2,2% 

Table 3.5: Global and shipping CO2 emissions in 2007-2012 

International shipping is defined as shipping between ports of different countries, as opposed to 

the domestic shipping, which is defined as shipping between ports of the same country. These 

definitions involve that the same ship is usually employed both in domestic and international 

shipping market. Besides, both fields do not consider military and fishing vessels. 

Adapted from: (IMO, 2014), Table 1 
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Figure 3.4: CO2 emissions  from shipping compared with global total emissions 

Data source: (IMO, 2009), Figure 1-1 

 

This decrease is not correlated to a contraction in the demand for maritime transport 

services. Indeed, over the last few years the volume of world seaborne shipment has 

grown, as stated in (UNCTAD, 2015). The cause is likely attributable to use of slow 

steaming. Slow steaming is a measure adopted by carriers in order to cut fuel consumption 

and relative costs. Furthermore, the slow steaming practice mainly appeared in order to 

deal with the depressed market condition due to The section 4.1.3 treats slow steaming in 

detail; nevertheless, it is sufficient being aware that this practice allows to reduce ships 

emissions as well as facing the market conditions 

Figure 3.4 shows the quantities of emissions per cargo transported regarding the 

international shipping, called emission-activity index, whereby the fleet’s emissions trend 

can be evaluated, taking into account of his throughput. The emission-activity index 

decrease proves the previous statement. In fact, despite of the increasing transport demand 

the international fleet has emitted less CO2 in the atmosphere hence this implies that the 

average CO2 emission per vessel has diminished. 
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Figure 3.5: CO2 shipping emissions and emission-activity index 

The emission-activity index4 is the ratio between the emissions of CO2 produced in Mtonne and 

the load transported in Mtonne. In 2009 the emissions reduction is caused by a contraction of the 

demand. Indeed, the index has almost the same value of the previous year hence the emissions 

contraction is surely due to a reduction in the required services. 

Data source: (IMO, 2014), Table 1 and (UNCTAD, 2015), Figure 1.2 

3.2.1  INTERNATIONAL SHIPPING EMISSIONS 

Principally, international shipping emissions are composed by those in three seaborne 

transport sectors: 

 Container 

 

 Crude oil tanker 

 

 Bulk carrier 

 

These three shipping markets are accountable for 63% of the total CO2 emissions 

produced by the international fleet, as shown below in figure 3.6. Other influential sources 

of emissions are chemical tanker, general cargo carriers and liquefied gas tankers. 

                                                 
4 See appendix B for the calculation method 
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Figure 3.6: CO2 emissions from international shipping by ship type 

Data Source: (IMO, 2014), Figure 27 

 

This section is based upon (Psaraftis and Kontovas, 2009) whose study regards an 

estimation of CO2 emissions of the world commercial fleet subdivided into ship-type and 

size brackets. The article employs the bottom-up approach whereby is compute an 

interesting parameter regarding the efficiency of container, oil tanker and bunker carriers. 

Such parameter is the CO2 emission efficiency (IMO, 2009) evaluated in [(gramsCO2)/ 

(km tonne)] and defined as (Notice, the term efficiency is misleading. Indeed, one would 

like that such efficiency takes the as low as possible value): 

 𝐶𝑂2𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 =  
𝐶𝑂2

𝑇𝑜𝑛𝑛𝑒 𝐾𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟
 (3.3) 

 

Where CO2 is the carbon dioxide emitted [gram] and Tonne Kilometre is the number of 

work done measured in cargoes transported [tonne] and leg travelled [km]. All these 

factors are evaluated for a given period, typically per year. This analysis allows to make 

some considerations regarding the environmental impact of the international shipping. 

Moreover, the CO2 emission efficiency values provided in this section are used to furnish 

a comparison among the shipping transport and the other transport means in section 3.4.  

The results of (Psaraftis and Kontovas, 2009) regarding the yearly emissions produced by 

containerships, crude oil tanker and dry bulk carriers are reported in figure 3.7. Such 

results show that containership bracket is significantly the most pollutant. In fact, his 

emissions are about double the emission of the dry bulk brackets (the ratio is equal to 

1,78) and almost three times if compared to the crude oil tanker segment’s emissions (the 

ratio is equal to 2,54). The containerships produce higher emissions because of their 
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higher sailing speed, as discussed in section 4. Indeed, a higher speed entails higher CO2 

emissions. 

 

 

Figure 3.7: CO2 emissions for size bracket for containerships, oil tanker and bulk carriers5 

Adapted from: (Psaraftis and Kontovas, 2009) 

 

Figure 3.8 reports the emissions percentage for each size bracket within the containership 

class. Post Panamax vessels produce 41% of the containerships’ emissions. Besides, the 

containerships’ size bracket Post Panamax results to be by far the most pollutant, emitting 

more than the whole tanker group. Finally, the CO2 emission efficiency values for each 

class are displayed in figure 3.9. The efficiency for each ship type follows the same trend, 

being higher for small vessels and significantly lower for large vessels. As regards 

containerships, the efficiency trend is less sharply compared to the trend of dry bulk ships 

and crude oil ships. This observation is correlated to the economy scale discussed in 

section 2. In fact, the CO2 efficiency is connected to the ship’s fuel consumption since the 

emissions are correlated to the fuel consumption through the emission factor. Therefore, 

a lower value of the emissions efficiency implies a lower fuel consumption per work 

done. In brief, larger ships are more efficient as regards both economic reasons and 

environmental reasons. 

                                                 
5 The dwt (dead weight tonnage) are expressed in thousand tonnes 
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Figure 3.8: CO2 emissions in container liner shipping for size segment 

The values in brackets are the vessels’ capacity range in TEU 

Adapted from: (Psaraftis and Kontovas, 2009) 

 

 

Figure 3.9: CO2 emissions efficiency for size bracket for containerships, oil tanker and bulk 

carriers 

Adapted from: (Psaraftis and Kontovas, 2009) 
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3.3   EMISSIONS REDUCTION MEASURES 

The significant impact of maritime transport upon the global emissions and the projects, 

which shows an increasing trend, has forced the international community to work on 

several measures able to abate the amount of CO2 produced. The International Maritime 

Organization (IMO) is currently in charge to develop the most suitable approach, which 

is able to obtain the emissions reduction required in the shipping market. This challenge 

is non-trivial since in the shipping market are employed both different type of vessels and 

operational practices which complicate the evaluation of such measures. Indeed, as said 

in section 2, the maritime transport is a variegated market whose characteristics vary in 

respect to the specific branch examined. Moreover, the effectiveness of the proposed 

solution should involve the interest of both stakeholders concerned, i.e. ship owners and 

shippers. These solutions frequently allow achieving significant economic benefits since 

such measures involve fuel savings hence permitting to reduce the bunker expenditure, 

which is a significant cost source. As reported in (Cariou and Cheaitou, 2014), IMO has 

established the aim of a 30% GHGs reduction by 2030 (based on the 1990 levels).  

According to (Gkonis and Psaraftis, 2012), the reducing measures can be divided in three 

categories: 

 

 Technological measures: this category includes several measures such as 

employing more efficient engines, cleaner fuels and other technological 

improvements. A complete survey concerning the technological measures is 

provided in (IMO, 2009) and it comprises the information on emission reduction 

which these solutions allow to achieve; 

 

 Logistic-based measures:  also called operational measures, this class includes 

all the measures related to an improvement in the logistic efficiency such as speed 

optimization and optimized weather routing; 

 

 Market-based measures: MBMs are policy-makers’ instruments that employ 

economic variables of the market (for example prices or fees) in order to provide 

incentives for polluter to reduce environmental externalities. This category 

comprises the adoption of regulatory, such as carbon tax and fuel levy. MBMs 

can influence the technological and logistic-based measures that are employed by 

ships owner. For instance, the issuance of a carbon tax would lead ship owners to 

emit less CO2 hence it would lead to employ more efficient engines, or other 

reducing measures. Briefly, a MBM influences economically the market’s 

conditions, making valuable the employment of technological and logistic-based 

measures. 
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In table 3.6 are reported several available measures in order to reduce the CO2 emissions. 

Additionally, in the same table are reported the CO2 savings obtainable using such 

measures. Subsequently, it is provided a review regarding the Energy Efficiency Design 

Index (EEDI) and the most discussed MBM, that is the employment of a carbon tax. 

 

Measures reducing emissions 

Measure Relative CO2 savings 
Percentage of 

application 
(2007-2011) 

Speed reduction 17-34% 0-50% 

Propeller and rudder upgrade 3-4% 0-0% 

Hull coating 2-5% 0-50% 

Waste heat recovery 2-6% 0-0% 

Optimization of trim and ballast 1-3% 0-50% 

Propeller polishing 1-3% 75-75% 

Hull cleaning 1-5% 75-75% 

Main engine tuning 1-3% 75-75% 

Autopilot upgrade 1-1,5% 75-75% 

Weather routing 1-4% 75-75% 

Table 3.6: Measures reducing emissions and their cost-effectiveness 

Adapted from: European Union, Time for international action on CO2 emissions from shipping, 

2013 

3.3.1 ENERGY EFFICIENCY DESIGN INDEX 

In July 2011, IMO adopted the Energy Efficiency Design Index (EEDI), which has 

defined the end of the unregulated era for shipping regarding CO2 emissions. Currently, 

this index is the most important technical solution for reducing GHGs emissions from 

shipping. The EEDI is a mandatory index for newest ships produced and forces the ship 

designers to build ships with a minimum efficiency level. Indeed, the EEDI requires a 

minimum energy efficiency level per capacity mile (for example tonne mile) for different 

ship type and size segments, such as container ships, tankers and bulk carriers.  
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The new ships affected have to respect the limits required in the regulation, as follows: 

 𝐴𝑡𝑡𝑎𝑖𝑛𝑒𝑑 𝐸𝐸𝐷𝐼 ≤ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐸𝐸𝐷𝐼 (3.4)6 

 
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐸𝐸𝐷𝐼 = (1 −

𝑋

100
) ∗ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑙𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 

(3.5) 

Where X is the reduction factor and the reference line value has to be calculated using the 

coefficients obtained from a regression analysis. These parameters are reported in the 

regulation7. The following equation allows computing the EEDI, which estimates ship 

CO2 emissions per tonne-mile: 

 𝐸𝐸𝐷𝐼 =  
𝑃 ∗ 𝑆𝐹𝐶 ∗ 𝐶𝑓 

𝐷𝑊𝑇 ∗ 𝑉𝑟𝑒𝑓
 (3.6)8 

Where P [kW] is 75% of the maximum power of the ship’s main engine, SFC [gfuel/kWh] 

is the specific fuel consumption, Cf is the CO2 emission factor based on fuel type 

[gCO2/gfuel], DWT [tonne] is the ship deadweight and Vref  [knots] is the ship’s design 

speed. According to (Gkonis and Psaraftis, 2012), the EEDI imposes a limit on the ship’s 

speed design. In fact, the denominator of the equation is a function of the design speed. 

Thus, this technological solution entails building more efficient vessels as well as a 

reduction of the design speed for new ships. However, this influence on the speed must 

not be confused with the slow steaming practice as slow steaming is a measures employed 

by ship owners to cut the fuel expenditure in specific market condition, as widely analysed 

in section 4.1.3. 

3.3.2 CARBON TAX 

A carbon tax is a form of explicit carbon pricing directly linked to the level of carbon 

dioxide emissions. This measure allows internalizing the currently external cost of the 

pollutant emissions. Basically, this means polluters would have to pay the social cost born 

by society currently, paying for their emissions. One of the most debated aspect with 

regard to such topic is the proper value that should be paid by polluters. Indeed, as 

reported in (Bergh and Botzen, 2015), the monetary evaluation of the social cost of CO2 

emissions is a discussed and troublesome challenge. The social cost of carbon (SCC) is 

                                                 
6 Resolution MEPC.203(62), Annex 19, adopted on 15 July 2011 
7 Resolution MEPC.203(62), Annex 19, adopted on 15 July 2011, Pages 11-12 
8 (ICCT, 2011) 
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an estimation of the cost over time caused by CO2 emissions produced [USD/tonne]. 

Since the SCC is computed through simulations, its value depends on which pollutant 

effects of CO2 are considered and depends on which scenarios are taken into account in 

such simulation. Consequently, the results regarding the evaluation of the SCC are quite 

dispersive. It is clear that a proper evaluation of the carbon’s social cost is the first step 

for implementing a carbon tax regulation.  

Alternatively, the application of a bunker levy may be taken into consideration. Since the 

fuel consumption are linearly related to the CO2 emissions, the impact of such solution 

would be the same of the one entailed by a carbon tax. Several studies deal with the effect 

of employing both carbon tax or bunker levy. For instance, (Cariou and Cheaitou, 2012) 

treat which impacts would entail different level of carbon levy within a containership 

route. As expected, the results show that applying a fuel fee leads ship owners to slow 

down their fleet employing more vessels in order to reduce the fuel consumption. 

3.3.3 MARGINAL ABATEMENT COST CURVE 

The Marginal Abatement Cost Curve is the representation of maximum abatement 

potential for a set of reducing measures, which do not exclude each other. Then, these 

measures are subdivided by their cost efficiency, in this way the MACC describes which 

is the cost born per tonne of CO2 averted for the set of measures involved. The maximum 

abatement potential of a measure is the maximum amount (generally in Mtonne) CO2 that 

can be avert to emit in a year if all the vessels which can employing such measure make 

use of it. For example, according to (IMO, 2009) study concerning the projection for 

2020, if all vessels apply a speed reduction by 10% the maximum abatement potential 

will be about 100 Mtonne of CO2. The cost efficiency of a certain measure is the net costs 

for reducing a tonne of CO2 emissions in a year. As explained in (Psaraftis, 2012), where 

the cost efficiency is called Marginal Abatement Cost (MAC), the cost efficiency CE 

[USD/tonne] for a certain measure can be computed as follow: 

 𝐶𝐸 =  
𝑁𝑒𝑡𝐶𝑜𝑠𝑡𝑠

∆𝐶𝑂2
 (3.7) 

Where NetCosts is the sum of the costs due to the application of the measures minus the 

saving concerning the fuel consumption due to the measures, whereas ∆CO2 is the 

emissions reduction achievable by implementing such measure. Indeed, the equation 

below can also be written as: 

 𝐶𝐸 =  
𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 −  ∆𝐹𝑢𝑒𝑙 𝑃𝑏𝑢𝑛𝑘𝑒𝑟

∆𝐶𝑂2
 (3.8) 
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Where ∆Fuel is the reduction of the fuel consumption [tonne] and Pbunker is the bunker 

price [USD/tonne]. Therefore, applying a certain measure whose CE is negative, is 

profitable and it may be applied without any MBM whereas if the CE is positive such 

measure may not spontaneously because it is economically disadvantageous. Since the 

CO2 reduction is related to the fuel reduction through the emission factor EF: 

  ∆𝐶𝑂2 =  𝐸𝐹 ∆𝐹𝑢𝑒𝑙 (3.9) 

 

 Therefore, the 3.8 can be written in order to reveal a significant characteristic of the 

MACC: 

  𝐶𝐸 =  
𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

∆𝐶𝑂2
−  

𝑃𝑏𝑢𝑛𝑘𝑒𝑟

𝐸𝐹
  (3.10) 

Indeed, equation 3.10 shows that the bunker price is a paramount parameter when a 

MACC is made. Since the emissions factor is constant the bunker price value can shift 

the curve hence applying a bunker levy has the same effect as his effect is basically 

increase the bunker price. Furthermore, can be easily demonstrated that the same effect 

can be produced by implementing a carbon tax. In fact, the equation 3.10 if a carbon tax 

is present can also be written as:     

 𝐶𝐸 =  
𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠

∆𝐶𝑂2
−  

𝑃𝑏𝑢𝑛𝑘𝑒𝑟

𝐸𝐹
− 𝐶𝑡𝑎𝑥 (3.11) 

Where Ctax is the monetary value of the carbon tax [USD/tonne]. These remarks are 

reassumed in figure 3.7 where the effects of bunker price, bunker levy or carbon tax 

alternatively are depicted. 

 

Figure 3.109: Effect of a higher bunker price, a carbon tax and a bunker levy on a MACC 

                                                 
9 This curve is not based on real data 
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Figure 3.11 is the MACC provided by (IMO, 2009) for 2020, considering three levels of 

bunker price. Moreover, in table 3.7 are reported the reducing measures involved in such 

analysis with their respective values concerning the cost efficiency and maximum 

abatement potential. As one can see, the cost efficiency for the speed reduction measure 

is positive. This is because in the IMO’s study it is assumed that the decrease in the freight 

capacity due to the speed reduction is faced by deploying new vessels. As consequence, 

if these projections are correct, slow steaming will not be applied unless several MBMs 

will be implemented. Currently, as explained in section 4.1.3, the shipping capacity is 

higher than the supply demand hence a speed reduction does not involve new vessels but 

the idle capacity can be used for facing the decrease of freight capacity. Therefore, the 

current cost efficiency of speed reduction is negative. Such statement means that a speed 

reduction policy leads to environmental benefits as well as economic benefits. This claim 

is reported in many study. For several examples see chapter 4. 

 

Figure 3.11: MACC in 2020 for three levels of bunker price  

Source: (IMO, 2009), Figure A4.2 

Reducing Measures 

Measure 
Cost efficiency 

[USD/CO2tonne] 
Maximum Abatement 

Potential [Mtonne] 

Retrofit hull -155 30 

Voyage and operational options -150 25 

Air lubrication -130 20 

Propeller upgrades -115 50 

Other retrofit options -110 70 

Hull coating and maintenance -105 40 

Propeller maintenance -75 45 

Auxiliary systems 80 5 

Speed reduction 110 100 

Main engine improvements 175 5 

Table 3.7: Cost efficiency and maximum abatement potential for several reducing measures 

The cost efficiency for the speed reduction measure is positive. This is because in the IMO’s study 

they assume that the decrease in the freight capacity due to the speed reduction is faced by 

deploying new vessels 

Adapted from: (IMO, 2009), Table A-4.1 
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3.4  COMPARISON WITH OTHER TRANSPORT MEANS 

The transport sector produces 7 GtCO2eq in 2010 (including both passenger transport and 

freight transport) that is approximately 23% of total CO2 emissions (IPPC, 2014). In spite 

of more efficient vehicles and policies being adopted, transport emissions are increasing 

at a faster rate than other sectors. This rise is due to the growth of the transport demand 

especially regarding the developing economies. Therefore, the environmental impact of 

the different transport means should be an influential attribute when shippers select how 

hauling their goods. The main freight transport means are: 

 Seaborne transport 

  

 Road freight transport 

 

 Rail freight transport 

 

 Air freight transport 

Airfreight is the fastest transport mode however it is also the most expensive. This 

characteristic leads to employ airfreight only for types of cargoes wherein speed is an 

essential factor, such as perishable goods, critical spare part and vaccines. Rail transport 

and road transport are part of the land-based transport means: the first one, from an 

ecological point of view, is preferable; nevertheless, road freight is more flexible, 

allowing hauling goods everywhere all around the world. Electricity is usually an 

important source of energy for rail freight hence the evaluation of the emission efficiency 

for this type of shipment mode has to deal with the CO2, which is emitted from the 

production of the electricity. The CO2 emissions efficiency can be used in order to 

compare the environmental impact of these transport means. Indeed, this coefficient is 

used in all transport sector as a measure of the emissions produced per transport work 

made. Nevertheless, the CO2 emissions efficiency is heavily influenced by several 

specific conditions characterizing the journey. For instance, the transport efficiency of 

rails depends by type of cargo, speed as well as transport efficiency of road is affected by 

traffic, type of road and other factors. Therefore, this analysis should be considered as a 

comparison between average value of efficiency, keeping in mind that any specific 

journey has features which could considerably change the proper transport mode. 

Besides, generally carriers will select for their cargoes the most convenient freight modes 

as long as the emissions are not regulated or included in their expenditures as internalized 

cost. 

 

The main result of this comparison is that shipping is the most ecological shipment mode. 

As shown in figure 3.12, shipping achieves the best results for each ship type and only 

freight rail can be compared regarding the environmental efficiency. Therefore, shippers 

should be encouraged to employ shipping such as through market-based measures, 
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allowing to decrease the emissions produced by the freight transport sector. Moreover, 

the potential saving in CO2 emissions in shipping sector is by far more interesting whether 

compared to the saving achievable in the other transport modes or economic sector. 

Several studies claim that the shipping sector can save by up to 55% of CO2 emissions 

(source: European Union, Time for international action on CO2 emissions from shipping, 

2013)  by adopting some eco-friendly measures as reported in section 3.3, such as slow 

steaming and weather routing. 

 

 

Figure 3.12: CO2 emission efficiency: comparison of different transport means 

The emission efficiency range for shipping are the minimum value and the maximum value present 

in figure 3.9, for each ship type respectively. Airfreight’s range is not present in the graph since 

its value (435-1800) is too high to be compared with the others.  

Adapted from: (Psaraftis and Kontovas, 2009) provide data regarding shipping whereas data 

regarding the other transport means can be found in (IMO, 2009), Chapter 9 

A similar analysis is undertaken in the (IPPC, 2014) paper10 , which deals with the 

transport of passengers. In such study the CO2 emission efficiency coefficient is evaluated 

as grams of carbon dioxide emitted per passengers-kilometres, that is the work-done 

parameter for the passenger transportation. The result of this study claims waterborne 

transportation is still a sustainable option as regards transport of passengers. Although, 

for this transport sector, rail mode and road transport are an efficient alternative. 

 

 

                                                 
10 IPCC (2014), Climate Change 2014: Mitigation of Climate Change, Figure 8.6 
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3.5  FUTURE SCENARIOS 

This section provides a brief summary concerning the development of a simulation model 

for estimating the emissions future scenarios. In particular, the attention is focused on the 

parameters and factors, which influence the future emissions of shipping sector. 

Moreover, the results reported in (IMO, 2009) and (IMO, 2014) are presented at the end 

of the section.  Emissions scenarios are useful tools able to provide information to 

policymakers and other stakeholders with regard to the future impacts of shipping. This 

information allows evaluating the effects of policies and measures that aim to curb 

emissions.  

(IMO, 2009) identifies the following categories, which contain the key driving variables: 

 Economy 

 

 Transport efficiency 

 

 Energy 

The parameters for each category are assessed employing the “open Delphi process”. 

Fundamentally, the Delphi process relies on expert opinions and analysis and the base-

concept of this method is that “judgments derived from multiple experts are generally 

more accurate than those of individual experts” as stated in (Rowe and Wright, 2001). 

Subsequently, the parameters’ values are applied to a model of global fleet emissions 

inventory calibrated using an inventory based on current data. Different scenarios are 

simulated through this method, principally based on the scenarios provided by the 

Intergovernmental Panel on Climate Change (IPPC) SRES storylines. These scenarios 

include various possible future development, for instance regarding future technological 

improvement or regulatory. 

 

As said at the beginning of this section, there are three main categories, which contains 

the driving parameters for the evaluation of future emissions scenarios: economy, 

transport efficiency and energy. The first one, that is economy, deals with the shipping 

transport demand evaluated in tonne-miles required per year. This parameter is mainly 

related to economic growth but also to changes in the transport patterns. The economic 

parameter that can be exploited in order to provide a relationship between economic 

growth and shipping demand is the Gross Domestic Product (GDP). Indeed, there is a 

strong historical correlation between GDP and shipping. Moreover, there may be 

significant future developments regarding trade patterns or changes in transport means 

such as the commissioning of a new oil pipeline or the modernization of the Siberian 

railroad, which may partially shift the trade from shipping to land-based transport means.  
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According to (IMO, 2009), this category is divided in three sub-categories: 

 Ship size (Efficiency of scale) 

 

 Speed 

 

 Ship design 

The first item is required to simulate the better efficiency of larger vessels. In fact, larger 

vessels are more efficient than smaller vessels hence it is needed estimating the future 

size of the fleet. Forecasts concerning the future fleet composition foresee an increase of 

the vessels size in the future because of the economy of scale in using larger vessels. The 

second item is the sailing speed of the future fleet. As treated in this thesis, there is a strict 

link between emissions and speed. Therefore, the future speed must be modelled, taking 

into account that the speed is driven by the economic condition of the market. Another 

significant aspect which has to be stated is the ship design. This category includes 

technological improvement such as a better design of the hull or more efficient engines. 

In addition, such category also comprises the development of regulatory that may affect 

the fuel consumption such as air emissions requirements. Lastly, an estimation regarding 

the future developments in marine fuels must be involved in such analysis as CO2 

emissions from ship depends on the type of fuel used (as seen in section 3.1.3, each type 

of bunker has a different emission factor value). For instance, it is foreseen that the LNG 

utilization might increase in the future. Since the LNG’s emission factor is lower than the 

emission factor of MDO and HFO this change of fuel may entail a reduction of CO2 

emissions.  

 

The results provided by (IMO, 2009) and (IMO, 2014) essentially claim the same 

conclusions. As reported in figure 3.13, according to the scenarios involved the CO2 

emissions produced by the international shipping sector will increase by 2050: 

(IMO,2015) claims that this increase will be of 50%-250% in the period up to 2050. 

Moreover, such article states that containership sector will show a larger increase 

regarding produced emissions. Indeed, while in 2012 the unitized cargo ship sector 

accounted about for 40% of the CO2 emissions, this percentage is projected to account up 

to two thirds in 2050. This projection regarding the CO2 emissions produced by shipping 

sector is one of the main reasons for which IMO is in charged to elaborate measures able 

to curb this trend. Besides, both the studies claim that the most important parameter 

affecting the growth in future emissions is the increase of the transport demand. As a 

consequence, if the global economic grows, the CO2 emissions by the international 

shipping will likely increase. However, this growth in the demand may be due to balance 

a decrease of the use of other transport means such as road freight or air freight, which 

are more pollutant than the maritime freight as seen in section 3.4. Thus, there may be an 

overall beneficial impact with regard in the total CO2 emissions by the whole transport 

sector. 
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Figure 3.13: Forecast of CO2 emissions  from international shipping 

The central blue line represents the future emissions considering the mean of the “base 

scenarios” involved in the study. The upper and lower borderline represent the maximum value 

for the “high scenarios” and the minimum value for the “low scenarios” respectively. The 

emissions in 2012 are the value computed in (IMO, 2015).  

Data source: (IMO, 2009), Table 7.23 
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CHAPTER 4 

4.PROBLEM DESCRIPTION AND 

MODEL FORMULATION 

The optimization of speed is a paramount challenge in sea transportation. The benefits of 

a high speed are relevant in every transport mode, nevertheless this is especially true in 

maritime transport. In fact, ships are slower than other delivering method (for example an 

average container ship can travel at 25 knots (MAN, 2013), which corresponds to 46.3 

Km/h). Long voyages can last up to 1 month or more hence significant benefits can be 

achieved travelling at high speed. The advantages of travelling faster are: firstly, reduced 

inventory cost, secondly, a larger delivering capacity which increases carrier’s revenue. 

These favourable reasons and growing global trade market entailed to develop faster 

ships, through technological advances regarding for instance hull design, engine 

efficiency and hydrodynamic performance. However, travelling at the maximum speed is 

not always the best decision since both fuel consumption and GHG are related to ship 

velocity. In fact, increasing bunker price, shipping market crisis and expanding interest 

in environmental impact lead carriers to give more attention on speed decision. As a 

consequence, many models have been developed in order to provide tools that can support 

transportation companies on speed determination (Psaraftis and Kontovas, 2013).  

 

Optimizing ship speed is a wide topic, which has several distinct characteristics 

determined primarily by market peculiarities. For instance, the speed optimization 

problem in tanker ship market is quite different compared to container liner shipping. 

Nowadays, high bunker prices and depressed shipping markets make carriers operators 

travel at a lower speed than the design speed in order to curb fuel consumption and at the 

same time decreasing the transport capacity: this strategy is called slow steaming. In fact, 

this logistic-based strategy allows decreasing fuel costs thanks to the non-linear 

relationship between speed and fuel. Moreover, slow steaming help operators to deal with 

low freight rate due to market crisis, balancing the mismatch between supply and demand 

of transport capacity. Therefore, operators apply slow steaming strategy for economic 

reasons. However, it also has considerable environmental effects thanks to the fuel 

consumption reduction which cuts down CO2 fleet emissions. Slow steaming is practiced 

in container shipping because of the high design speed; 25 knots, for instance tanker ships 

have a design speed about 16 knots, as reported in (Gkonis Psaraftis, 2012). Nevertheless, 

it is reported in every shipping market. Speed optimization obviously includes slow 

steaming as response to the boundary conditions of the model since speed can be 

considered as function of scenario attributes which is simulated inside the model. In brief, 

speed optimization problem arises to help carriers to define the speed within a market 

where sailing at maximal speed is not always the proper decision.    



4. PROBLEM DESCRIPTION AND MODEL FORMULATION   

 

PG. 60 
 

Page  60 Speed optimization and environmental effect in container liner shipping 

 

4.1   SPEED OPTIMIZATION PROBLEM 

This section firstly introduces optimization problem as well as speed influences in order 

to give the necessary acknowledge, allowing a full comprehension of section 4.2. 

Additionally, the logic behind slow steaming and its effects are examined, reporting 

actual market situation and bunker price trend. Furthermore, below it is furnished a review 

of the papers which concern ship speed optimization problem and slow steaming. 

Regarding this point, the paper (Psaraftis and Kontovas, 2013), which provide an 

exhaustive taxonomy concerning speed models in maritime transportation is strongly 

recommended. Such article lists the mainly characteristics of many speed optimization 

model and it is a useful tool to start dealing with ship speed optimization problem.  

 

(Wang and Meng, 2012) elaborated a model whose aim is minimizing the total operating 

cost, dealing with a set of routes in container liner business. Mandatory weekly frequency 

is imposed. The objective function comprises container-handling costs, fuel cost and 

fixed operating cost, besides the decisional variables are the number of vessels deployed 

on each route, speed on each leg and transported cargoes on each leg. Since the problem 

is non-linear it is applied an approximation resolution method which exploit the convex 

property of the objective function, thus the problem is linearized replacing the fuel 

consumption function with an approximated function. This article also provides a 

calibration of fuel consumption for different capacity of container ship. (Vad Karsten et 

al., 2015) consider a similar situation, however this model contemplates a set of different 

type of goods. Besides, the available speed on each leg are fixed. The resolution method 

is based on the decomposition of the problem. (Gkonis and Psaraftis, 2012) determine the 

optimal speed (laden and ballast) of a tanker and afterwards it estimates the emissions of 

the global fleet in a specific tanker segment. The fundamental characteristic is that this 

model encompasses revenue because of non-fixed quantity. Moreover, it takes into 

account of inventory cost as well.  

 

(Psaraftis and Kontovas, 2014) collect the mainly factors involved in the speed 

optimization problem. The form of fuel consumption formulation is discussed as well as 

which parameters should be considered in his estimation, such as pay-load, weather 

conditions and hull conditions. Furthermore, the influence of market state, fuel price and 

inventory cost is addressed and a mathematical formulation of these factors is embedded 

in an optimization equation. Then finally, the paper provides several significant 

conclusions about the effects on speed of inventory cost and pay-load. (Meyer et al., 2012) 

furnish an optimization model regarding container shipping and through some 

simplification assumptions estimates the main economic effects of slow steaming. In this 

paper  the oil consumption is taken into account and, more interesting, it also factors in 

revenues in the objective function as well. (Cariou, 2011) obtains an estimation of the 

bunker break-even point price, which is the minimum fuel price that make slow steaming 

economically advantageous. In this estimation fuel cost, inventory cost and are 

considered, additionally the number of vessels along the route depends on speed. (Ronen, 

2011) basically states the number of vessels deployed and the sailing speed are related 
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whether a constant weekly frequency is required along the loop, that is the usual practice 

in container liner shipping.  

 

(Notteboom and Vernimmen, 2009) evaluate the effect of high fuel cost on liner service 

configuration. The paper claims slowing down vessels entails an improvement in liner 

service, increasing the buffer time, as well as a significant increase in average vessel size. 

Besides, the effect of bunker price on the number of ports of call is examined. (Yin et al., 

2013) furnish a simple model, which shows the relationship between sailing speed and 

bunker price, providing the optimal speed as a function of fuel consumption savings, 

operating costs, idle costs and involving also a carbon tax. (Corbett et al., 2009) address 

the cost-effectiveness of CO2 in different scenarios. Firstly, they analyse the reduction in 

CO2 emission for different fuel price, secondly, they estimate the marginal abetment cost 

when a speed limit is imposed. (Maloni et al., 2013) mainly deal with the advantages 

involved in slow steam practice, sorting between carriers and shippers. Thus, it clearly 

lists which are the trade-off encompassed in slow steaming and the equity of such measure 

in the shippers-carriers’ rapport. (Woo and Moon, 2014) assess the effects of employing 

slow steaming in a route regarding the operating costs and the environmental effect, 

through a simulation model. Inside the paper is studied the CO2 elasticity of voyage speed, 

which allows to find the speed range where it is more advantageous to reduce the speed 

in order to achieve higher emission abetment. Eventually, it is provided a sensitive 

analysis involving the enlargement of vessel size in respect of operating cost and CO2 

emissions. (Eide et al., 2009) evaluate the cost-effectiveness of several CO2 reducing 

measures such as slow steaming, optimized hull design and other technological measures. 

Such analysis furnishes a decisional parameter called CATCH (cost of averting a tonne 

of CO2-equivalent heating) which is the ratio between the costs born in order to apply the 

measure and the expected reduction of CO2 achieved. Such parameter allows to compare 

the feasible different measures, from an economical point of view. (Cariou and Cheaitou, 

2012) assess the economic consequences both simulating the introduction of a European 

speed limit and the introduction of a bunker levy. The conclusion is that issuing a 

European speed limit the GHG emissions may increase; moreover, this limitation entails 

carriers to bear costs per CO2 saved which are higher than they would like to pay. 
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4.1.1  SPEED OPTIMIZATION 

The optimization problem concerning the ships speed is analysed employing tools 

furnished by operations research. Therefore, it is necessary to develop objective function, 

constraints and ranges of variables involved in the model (for example it must be stated 

whether a certain variable is integer). The objective function is dependent of optimization 

variables, which may be one or more. This function is the mathematical description of the 

interesting features regarding the model, such as profits, costs and others. Constrains are 

a set of either inequality or equality equation that permit to describe mathematically the 

domain of the problem. The resolution of optimization problem is a wide argument and 

it is not an objective of this thesis dealing with it. Generally, elaboration of a speed 

optimization problem consists in two stage: firstly, the optimization problem is expressed; 

secondly, the resolution method that may be an exact or a heuristic algorithm is 

formulated (Psaraftis and Kontovas, 2014). However, it is essential to be aware that the 

solution method depends on the mathematical properties of both objective function and 

constrain. In fact, the first differentiation can be made between linear and non-linear 

problem, subsequently it is legitimate to divide between problems which have only 

integer variables, problems that have only continuous variable and then finally, problem 

with integer and continues variable. Since most decision problems in the management 

sector involve both integer and continuous variables, many optimization problems are 

likely included in one of these categories: 

 MILP (mixed-integer linear programming): both objective function and 

constraints are linear hence the mathematical formulation of the optimization 

problem can be expressed as: 

 𝑚𝑎𝑥{𝑐𝑇 𝑥} (4.1) 

Where x represents the vector of decision variables, which comprises at least one 

integer variable, and c is vector of coefficients; 

 

 MINLP (mixed-integer non-linear programming): either objective function or 

constrains is non-linear. MINLP includes most optimization problem because of 

the intrinsic non-linear nature of most model in order to replicate properly the 

reality. Combining difficulty of optimizing over integer variables with the 

challenges of handling non-linear function make these models troublesome to be 

solved (Belotti et al., 2012); 

 

 

Moreover, it is relevant to be aware that mathematical features of the problem influence 

which software can be used to find the solution. For instance, CPLEX is a optimization 

software and handles integer, mixed-integer, linear and quadratic programming (www-

01.ibm.com, 12-10-2016). Therefore, not every software may be suited to find the 
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solution of a certain problem and every problem has specific features, which can be 

exploited in order to find the optimal solution. Additionally, the computing time and the 

calculation power is related to the complexity of the problem hence to the cost, which has 

to be borne. As consequence, a proper formulation of the problem should take into 

account which are the objectives of the analysis hence which simplifying assumption can 

be made in order to reach a good trade-off between complexity and information collected. 

4.1.2  SPEED INFLUENCES 

The ship speed optimization problem has an objective function which is either the 

maximization of profit or the minimization of cost. Both costs and profits are typically 

evaluated in a period, for instance many model computes daily costs or weekly cost. The 

first decision in sailing speed optimization problem is to define whoever decides the speed 

(Gkonis and Psaraftis, 2012). As said in section 2.4, there are distinct types of contract in 

shipping market, which define who pays for the fuel. In fact, the speed decision is taken 

by who manages the ship, which depends on the stipulated contract: 

 In spot charter market the cargo owner pays a freight rate [USD/TEU] to the ship 

owner which delivers the cargo along the ship route, therefore speed decision is 

made by ship owner. The ship owner purpose is to maximize his profits; 

 

 In bareboat charter market and time charter market the cargo owner hires a vessel 

and obtains full control of it. In this case, cargo owner pays for the bunker hence 

his aim is minimizing costs. Nevertheless, ship can also be rented in order to haul 

someone else’s cargoes, hence to realize a profit: in this case the objective is 

maximize the profit as expected;   

 

Regarding the container liner market, operators haul cargoes using both owned ships and 

chartered ships: about 50% of vessels are chartered in the bareboat market (UNCTAD, 

2015). Although there are obviously several economic distinct characteristics in these two 

situations, these differences do not influence the result since they are independent of 

speed. In fact, in case carrier hires a ship, the charter rate should be contemplated, 

however this expenditure is not related to speed. As a result, the speed determination in 

container liner shipping regards the maximization of the operator´s profits. Nevertheless, 

in case of problem that allows to rearrangement the number of ships deployed, since this 

number is a decisional variable, the rent cost is not negligible. Therefore, in this type of 

optimization issue, the fixed operating cost weights in the final result. 

Once the decision respecting whoever sets speed, the objective function must be 

formulated. The purpose of this step is to establish all the items, which weights upon 
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profit. The proper identification and formulation of every element involved into the 

function is fundamental otherwise the model may not actually represent the real 

characteristics of the market. Since speed is the decisional variable of the problem, it is 

more significant assessing the items which are dependent of speed. In fact, elements that 

do not depend of speed are negligible because optimal speed is not affected by them, 

hence it is straightforward to add these items as they are constant factor. A general 

objective function, in a speed optimization problem, consequently can be expressed for 

example as: 

 𝑎 𝑓(𝑣) + 𝑏 𝑔(𝑣) − 𝑐 𝑓(𝑣) ℎ(𝑣) + 𝐾 (4.2) 

Where a, b and c are constant parameters which do not depend on speed, K represents the 

items which are independent of speed and do not influence the result and then finally f, g 

and h are functions of speed and can be either linear or non-linear. For example, one can 

consider the objective function in figure 4.13, the inventory costs item and the fuel 

consumption item are two examples of speed function. Several costs and revenues depend 

on sailing speed. These items determine the result of the optimization, i.e. the optimal 

speed. In fact, the objective of the problem is to compute the speed that realize the best 

trade-off between them. Literature furnishes a wide set of models, which usually 

considers the same aspect even if in different way. However, some models involve cost 

that are not provided in others. Therefore, this list is a gathering of costs and incomes 

determined by speed as well as: 

 

 Fuel cost: fuel costs are clearly related to fuel consumption. As well-known fact, 

the relationships between speed and fuel consumption is non-linear. Usually, the 

fuel consumption function is stated as: 

 𝑓(𝑣) = 𝐴 + 𝐵𝑣𝑛 (4.3) 

Where f(v) [tonne/day] is the daily consumption of bunker at a certain speed v [kn] 

and A, B and n are coefficients that should be calibrated with real consumption 

data for a proper evaluation. These coefficients depend heavily on the type of the 

vessel. Although usually a cubic relationship is applied. As stated in (Psaraftis and 

Kontovas, 2013) and (Meyer et al, 2012) for container ships the exponent should 

be up to 4-5 or higher, because the cubic function is not suitable for the commonly 

high speeds of container vessels. However in (Wand and Meng, 2012) 11  is 

provided a calibration of bunker consumption for container ships of different 

cargo capacity, based on real data, whose results state that third power relationship 

is a good approximation. This formula consumption takes into account also 

auxiliary fuel consumption, indeed when ship is at port the consumption is not 

equal to zero: the coefficient A involves the fuel consumption when vessel is 

                                                 
11 The calibration encompasses 20 historical data for each leg hence the statistical basis is restricted.  
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stationary. Typically, it is assumed that only one type of fuel used on the ship in 

order to simplify the model. Sailing speed is the main element in fuel consumption 

nevertheless other conditions affect the daily fuel function at a fixed speed12 

(Psaraftis and  Kontovas,  2013):              

 

o Pay-load: another influencing factor on fuel consumption is the 

carried payload. In order to include his effect can be adopted the 

following approximation: 

 𝑓(𝑣, 𝑤) = (𝐴 + 𝐵𝑣𝑛)(𝑤 + 𝐿)
2
3 (4.4) 

Where w is the payload and L is the weight of the vessel empty. 

Payload impacts on ship resistance hence can be decisive, 

especially in tanker and bulk shipping where generally ships travel 

either completely filled or empty. Conversely, in container 

shipping ships are usually intermediately laden (although, on the 

Far East to Europe route ships are frequently more full in one 

direction). Nonetheless, in both cases, pay-load could lead to cause 

non-trivial, entailing an incorrect estimation of fuel consumption;   

 

o Weather condition: implementing the effect of weather condition 

is a non-trivial challenge. There are different complexity levels to 

include weather conditions in fuel consumption: through either a 

simple coefficient or sophisticated approaches that consider wave 

height, wind speed and other factors;  

 

o Hull condition: the frictional resistance of a ship is associated to 

the condition of its hull, more the hull is rough higher is the friction 

with water, hence the fuel consumption rises; 

 

Therefore, the fuel consumption function may be more or less complex. A 

complex function obviously can simulate more aspects hence the fuel 

consumption computed may be a more accurate estimation of the real 

consumption. Nevertheless, such function has to be calibrated using real data and, 

as expected, the increasing complexity also entails that the calibration requires 

more real consumption data and a non-trivial calibration.  For example, in order 

to develop a function which embeds the dependency on the payload, it is necessary 

to have real data showing, at a fixed speed, the trend of the consumption varying 

the payload. The factors, which can be embedded into the fuel consumption 

function are reassumed in figure 4.1. 

                                                 
12 (Wang and Meng, 2012) claim the daily fuel consumption function is also a function of leg involved. 

This fact is probably because the calibration is based upon real data. In fact, using real data the consumption 

is without doubt influenced by weather condition and other factor. 
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Figure 4.1: Fuel consumption function’s influencing factors 

Speed, payload, hull condition and weather condition are the influencing factor on the fuel 

consumption at sea per vessel. 

 

 

 Inventory cost: this cost is directly borne by the cargoes owner. Inventory costs 

represent the capital costs of transported cargoes during the travel as goods are 

cargo owner’s capital whose monetary value may be employed in other way (in 

other words it is the opportunity cost of cargoes). Speed affects this item because 

inventory cost is related to travel time, which is obviously a function of speed. 

Moreover, inventory cost depends on goods quantity and also it depends on 

monetary value of transported goods and may be computed by: 

 𝛽 =
𝑃 𝑖

365
 (4.5)  

Where β is the daily inventory cost per cargo quantity [USD/TEU], P is the 

monetary value of good [USD/TEU] and i is the cargo owner’s yearly capital cost. 

Therefore, cargo inventory cost may be influential mainly in the liner market 

where voyage time and ship size are usually high and freights may have high unit 

value, especially in container liner shipping. Although, charterer bears this cost 

and it is not included when ship owner negotiates the freight rate with the 

charterer, owner should take into account inventory cost because of the increasing 

supply chain cost and the related competitiveness loss (Jasper Meyer, 2012). 
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Indeed, a shipper may prefer a fast service than a slower if they are proposed one 

at the same price;    

 

 Revenue: a critical decision regarding the model formulation is to state whether 

the quantity of cargoes, which have to be transported are either fixed or non-fixed. 

In fact, there is a remarkable difference between models, which consider fixed 

quantity and model which does not consider fixed quantity. Most model 

contemplates, explicitly or implicitly, fixed quantities of cargoes: since the 

amount of cargo to be transported in a certain period is fixed there is no doubt that 

revenues are also fixed in the same period therefore earnings may be neglected 

and the objective function is independent of revenues. Thus, the model does not 

take into account the carrier may want to increment his income by delivering as 

much goods as possible when freight rate is higher within a definite period, hence 

ships must sail at high speed. Instead, when freight rate is lower carrier would like 

to slow down his vessels, delivering fewer cargoes in order to curb expenditure. 

Therefore, ships may travel at a lower speed, applying the slow steam strategy. 

Considering the following objective function, provided in (Psaraftis and 

Kontovas, 2013), this matter is straightforward to be comprehended: 

 𝑚𝑎𝑥𝑣 {
𝑠 𝐶 𝑣

𝑑
− 𝑝 𝑓(𝑣)} (4.6) 

The purpose of this equation is the maximization of the carrier’s daily profits upon 

a route between two ports; where C is the ship’s cargo capacity [TEU], d is the 

roundtrip distance [NM], v is the sailing speed [NM/day], p is the bunker price 

[USD/tonne], s is the freight rate [USD/TEU] and then finally f(v) is the daily fuel 

consumption [tonne/day]. The first part regards daily revenue and assumes non-

fixed quantities: in fact, since there are always goods to be transported 

hypothetically the vessel is allowed to cross countless times the route. However, 

if goods are fixed, for instance a fixed weekly demand is stated, the voyage 

number will be fixed as well as revenue. As an example, even if (Vad Karsten et 

al., 2015) furnish a model which takes into account revenue, this revenue is 

considered fixed as cargo quantity is fixed and hence is independent of speed; 

 

 Vessels deployed: moreover, in the market of container liner shipping, as said in 

section 2.5, at least weekly service frequency is needed for each port of call 

therefore the decision concerned speed must take into consideration the number 

of vessels as well. Indeed, as reported in (Ronen, 2011) and shown in figure 4.2, 

in order to provide weekly service on a route the number of vessel deployed must 

be equal to: 
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 𝑁 =
𝑆 + 𝑃

16813
 (4.7) 

 𝑆 =
𝐷

24 𝑣
 (4.8) 

Where N is the number of vessel shipping upon the route, P is the port time [h], 

S [h] is the sailing time, which is equal to the route length D [NM] divided by 

the sailing speed v [kn]. For instance, whether at a certain speed the route is 

travelled in 28 days then at least 4 vessels must be deployed. Going faster less 

ships are needed because the time to complete such route is fewer. Therefore, 

not only the speed must be optimized in order to achieve best profits but the issue 

also must involve the number of ships deployed as variable, which, as stated in 

equation 4.7, is a non-proportional constraint function of speed. This peculiarity 

discriminates the speed issue between liner shipping market and others, which 

do not have a mandatory schedule. 

Vessels 
deployed

Sailing speed

Weekly service 
frequency

 

Figure 4.2: Relationship between sailing speed and number of vessels deployed 

The peculiarity of container liner shipping market is the bond between sailing speed and number 

of vessels deployed along the route in order to respect the scheduled frequency. 

 

                                                 
13 This value is the result of multiplying 24 by 7, in order to convert P and S in [week] 
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Additionally, in order to evaluate properly profit, it is meaningful to take into account 

costs, which are typically independent from speed: 

 Operating fixed cost: several cost items are comprised underneath operating cost 

such as crew costs, insurance costs, administration cost and others (Počuča, 2006). 

These costs are not directly function of speed. Nevertheless, as said, in the speed 

optimization problem regarding the liner container market, the decisional 

variables are both the speed and the number of ships as the number of vessel is a 

function of the speed. Therefore, this cost item related to the vessels number, it is 

not negligible and has to be considered in the objective function; 

 

 Others: there are many other costs which can be encompassed within the profit 

function. For instance, some papers involve container handling cost (Wang and 

Meng, 2012), harbour fees or lubricant consumption (Meyer, 2012); 

 

It must be noted that when are considered non-fixed quantity of cargoes transported and 

when the objective function it is evaluated in a time frame, as it is made in this thesis, 

each cost items are dependent on speed. Such significant aspect it is analysed in section 

4.2.2.  

4.1.3 SLOW STEAMING 

Slow steaming can be basically defined as operating along a route sailing at certain speed 

which is lower than the design speed in order to achieve economic improvement. World’s 

shipping community has implemented slow steaming since 2007 (MAN, 2012) 14 . 

According to (Woo and Moon, 2014) carriers have generally selected speed to 15-18 

knots on major routes, achieving significant economic advantages. Although the primary 

purpose of carriers in implementing slow steaming regarding economic aspects, it has 

relevant environment effect as well. For this motive, slow steaming can be considered as 

a win-win proposal in order to curb maritime emissions (Psaraftis and Kontovas, 2013). 

According to Alphaliner, 45% of container liner capacity has been using slow steaming 

(Yin et al., 2013).  

It is reasonable subdividing the practice of slowing down ships depending on the speed 

that is set (Maloni et al., 2013)15: 

 

 24 knots, full steaming; 

 

                                                 
14 MAN, Slow Steaming practices in the Global Shipping Industry, 2012 
15 These speed values are general; indeed, a more proper classification should be made dealing with the 

vessel type 
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 24-21 knots, slow steaming; 

 

 21-18 knots, extra slow steaming; 

 

 18-15 knots, super slow steaming; 

 

 

The ship’s engines are designed to operate constantly at maximum power, however there 

are two feasible approaches to implement slow steaming. The first one is the simplest, 

that is basically slowing down vessels, the second one involves some engine retrofit. 

Engine retrofit means derating engine such as implementing slide fuel valve and 

turbocharger cut-out: applying these technological measure allows to improve engine 

efficiency hence to cut more fuel costs (MAN, 2012) 16 . It is well-know that the 

relationship between daily fuel consumption FC [tonne/day] and main engine power is 

(Cariou, 2011): 

 𝐹𝐶 = 24 𝐵𝑆𝐹𝐶 𝐸𝑙𝑜𝑎𝑑  𝑃𝑒𝑛𝑔𝑖𝑛𝑒 (4.9)17 

Where BSFC is the brake specific fuel consumption (also called SFOC, specific fuel oil 

consumption) [g/kWh], Eload is the engine load and Pengine [kW] is the main engine power. 

In fact, as fig. 4.3 shows, BSFC varies with speed. Besides, being ships designed to sail 

at about 25 knots, around this value of speed BSFC reaches the lowest value. Employing 

one of the kit available, specifically developed to adopt slow steaming, the BSFC curve 

can be shifted to lower speed values in order to obtain a better efficiency.   

 

 

Figure 4.3: BSFC trend 

This graph shows the BSFC trend. Container ships are designed to travel at a certain speed, 

around 25 knots, indeed the BSFC value is lowest around this speed value. Employing a slow 

steaming kit, it is possible obtaining a considerable improvement of engine efficiency also at 

lower speed. In this way the fuel consumption savings are greater 

Source: (Wiesmann, 2010) 

                                                 
16 MAN, Slow Steaming practices in the Global Shipping Industry, 2012 
17 Being engine power commonly a cubic function of speed, this equation is fundamentally the starting 

point for obtaining the cubic relationship between speed and daily fuel consumption 
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The reasons that lead ship operators to practice slow steaming are: 

 Fuel price 

 

 Market condition 

 

 Environmental issues 

 

Principally, slow steaming strategy arose when bunker price increased. As shown in fig. 

4.4, bunker price sharply increased since early 2000s, making fuel cost by the far the main 

cost item for carriers. Although, since 2015 bunker price has been decreasing, recently 

the MDO value is decreasing, attaining about 500 USD/tonne. Nevertheless, fuel 

expenditure is still crucial for shipping companies. Prices that are more recent are reported 

in figure 4.5, additionally are presented prices regarding IFO 180 and IFO 380. Slow 

steaming represents the most effective measure to reduce fuel expenditure (MAN, 

2012)18. 

 

 

Figure 4.4: BRE and MDO price trend 

Brent crude oil (BRE) is a sweet light type of crude oil. Notice the correlation between BRE price 

and MDO price. 

Source: (UNCTAD, 2010) 

 

 

                                                 
18 MAN, Turbocharger Cut-Out, 2012 
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Figure 4.5: Singapore bunker price trend 

Adapted from: www.transport.govt.nz, New Zealand Ministry of Transport, 19-10-2016 

 

Since fuel cost is a substantial expense in liner shipping, the bunker price rise led carriers 

to cut fuel consumption for economic purpose. Indeed, slow steaming represents the most 

effective measure to reduce fuel expenditure (MAN, 2012)19. As reported in (Ronen, 

2012), if the fuel price per bunker tonne is 500 USD, about 75% of the operating cost for 

a large containership are attributable to the fuel consumption. The objective of reducing 

fuel consumption can be achieved following three different strategies (Notteboom and 

Vernimmen, 2009): 

 Changing fuel grades: using cheaper bunker fuels, such as IFO 420, 500, 600 

and 700, considerable cost savings can be obtained (up to 16 USD per tonne). 

These fuels are more viscous than usual bunker fuels IFO 380 and IFO 180. 

Indeed, vessels should be able to deal with these high-viscosity combustible and 

especially old vessels are not capable to work with them. As a consequence, 

despite the increasing interest in high-viscosity grades, conventional fuels still 

remain the most popular choice;  

 

 Technological advances: this strategy regards the improvement of the ship 

efficiency. This can be made through a better design of vessels, for instance 

improving aerodynamic characteristics, main and auxiliary engine efficiency. 

Moreover, the new generation of container vessels are designed to sail at lower 

speed, avoiding all the problems related to the engine efficiency (Psaraftis and 

Kontovas, 2013). Nevertheless, these technological measures are not applicable 

in short term;  

                                                 
19 MAN, Turbocharger Cut-Out, 2012 
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 Vessel speed: the most valuable method to reduce ship fuel consumptions is 

certainly speed reduction. As said in section 4.1.2, the relationship between speed 

and fuel consumption is non-linear and typically it is considered as cubic. Thus, a 

20% reduction in speed allows a 50% reduction in daily fuel consumption (Ronen, 

1982). Although the cubic relationship between speed and daily fuel consumption, 

fuel savings per travel are not a cubic function of speed. Indeed, the increasing 

transit time entails more fuel burning days. As reported in (Wiesemann, 2010), a 

speed reduction from 27 to 22 knots allows to save approximately 58% of hourly 

main engine consumption. However, considering the increasing voyage time, the 

fuel savings are reduced by 45%. This remark can easily be demonstrated as the 

fuel consumption along a leg FC is roughly related to the square of the vessel’s 

speed. Indeed, replacing the voyage time T the result is:  

 𝑇 =
𝐷

𝑣
  (4.10) 

 

𝐹𝐶 = 𝑓(𝑣) 𝑇 = 𝑘 𝑣3  
𝐷

𝑣
= 𝑘 𝐷 𝑣2 (4.11) 

Where f(v) is the daily fuel consumption function [tonne/day] approximated as a 

cubic function of speed, v is the speed [mile/day] and D is the leg length [mile]; 

In addition, one should observe that changing the vessel speed is a short-term 

measure as it can be practically applied in any moment; 

 

In table 4.1 data concerning the employment of slow steaming in 2007 and 2012 for 

container ships sorted by TEU capacity are provided. The data shows clearly the 

increasing utilization of slow steaming from 2007 to 2012, moreover one can see that the 

speed is decidedly lower for larger vessels. Lastly, the average data regarding bulk carrier 

and oil tanker are provided. The comparison of these data shows clearly that the container 

ship sector is the most affected shipping sector because of their higher design speed, as it 

will explain below. 

In addition to the bunker price rise, world economic crisis and increasing transport 

capacity have curbed freight rate as reported in figure 4.6, whose value depends on global 

container demand and supply capacity. Indeed, if supply capacity is bigger than the actual 

transport demand, freight rate value will consequently decrease. As shown in figure 4.7, 

demand and supply in container shipping growth rate follow an analogous trend, except 

in 2009 as global crisis brought down required global demand.  
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Slow Steaming for 2007 and 2012 

Ship Type Size [TEU] 
Average at sea 

speed/design speed 
in 2007 

Average at sea 
speed/design 
speed in 2012 

Percentage 
change of daily 

fuel consumption 

Container 

0-999 0.82 0.77 -19% 

1000-1999 0.80 0.73 -26% 

2000-2999 0.80 0.70 -37% 

3000-4999 0.80 0.68 -42% 

5000-7999 0.82 0.65 -63% 

8000-11999 0.85 0.65 -71% 

12000-14500 0.84 0.66 -73% 

>14500 / 0.60 / 

Bulk Carrier / 0.88 0.83 -19% 

Oil Tanker / 0.89 0.78 -25.3% 

Table 4.1: Slow steaming data for 2007 and 2012 

Data Source: (IMO, 2014), Table 17 

 

 

 

Figure 4.6: Average freight rate trend along the Asia-Europe route 

The economic crisis and the overcapacity curbed the freight rates. 

Source: (FMC, 2012), Figure AE-19 
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Figure 4.7: Demand and supply, the percentage variation trend 

This graph shows both demand trend and supply capacity trend. Freight rate is determined by 

these factors because of the well-known law of supply and demand. Notice the demand collapse 

in 2009 due to the global economic crisis. 

Adapted from: (UNCTAD, 2015), Figure 3.7 for 2000 data and (UNCTAD, 2016), Figure 3.1 

(percentages for 2016 are projected figures) 

However, it should be noticed that freight rate is decidedly volatile, changing 

considerably in respect to time and ship route involved, as shown in table 4.2 and figure 

4.8. Moreover, one can notice that the container freight rates have sharply declined in 

2015, reaching record low prices as reported in (UNCTAD, 2016). 

 

Container freight rate  

Market 2009 2010 2011 2012 2013 2014 2015 

Trans-Pacific USD per FEU20  

Shanghai-United States West 
Coast 

1372 2308 1667 2287 2033 1970 1506 

Percentage change - 68.21 -27.77 37.19 -11.11 -3.10 -23.55 

Shanghai-United States East 
Coast 

2637 3499 3008 3416 3290 3720 3182 

Percentage change - 47.84 -14.03 13.56 -3.7 13.07 -14.45 

Far East-Europe USD per TEU  

Shanghai-Northern Europe 1395 1789 881 1353 1084 1161 629 

Percentage change - 28.24 -50.75 53.58 -19.88 7.10 -45.82 

Shanghai-Mediterranean 1397 1739 973 1336 1151 1253 739 

Percentage change - 24.49 -44.05 37.31 -13.85 8.86 -41.02 

Table 4.2: Freight rate trend for different routes 

Adapted from: (UNCTAD, 2016), Table 3.1 

                                                 
20 FEU is a container 40-foot-long, i.e. it is equal to 2 TEU 
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Figure 4.8: Freight rate trend on different routes 

Freight rate trends and values are strictly related to the route examined and are highly volatile 

in time. Notice the steep decrease in 2015. 

Adapted from: (UNCTAD, 2016), Table 3.1 

 

This discrepancy between capacity and demand is a direct consequence of world 

economic crisis. Due to the generally long vessel’s building time, in high market periods 

ship operators ordered new vessels. However, these orders cannot be deleted when low 

market time approaches. Indeed, in the time previous such crisis, ship building request 

was considerably high: according to (UNCTAD ,2010), during 2009 the striking number 

of 3,658 new ships were built, which was a new historical record. As stated in section 

3.3.3, the idle capacity is a paramount characteristic that allows slow steaming to be a 

profitable solution. Indeed, the economic benefits, which are currently provided by slow 

steaming could disappear if in order to maintain the freight capacity, the manufacturing 

of new ships is required. As stated above, slow steaming is determined by freight rate and 

bunker price trend in the market: this aspect is fully present in (Gkonis and Psaraftis, 

2012) and (Psaraftis and Kontovas, 2013), providing the following simple equation 

regarding a single leg (notice, this model considers non-fixed cargo): 

 𝑚𝑎𝑥𝑣 {
𝐶 𝑣

𝑑
−  𝜌 𝑓(𝑣)} (4.12) 

 𝜌 =  
𝑃

𝑠
 (4.13) 
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With C as ship cargo capacity, v as ship speed, d as voyage distance, f(v) as daily fuel 

consumption, P as bunker price and then finally s as freight rate. Equation (4.10) clearly 

explains how the non-dimensional ratio ρ determines the optimal speed. 

Another decisive impulse towards slow steaming strategy is the increasing interest in 

environmental aspects, especially regarding GHGs. The increasing focus on 

environmental aspect is evidently connected to rising concern on global warming and 

climate change. Indeed, IMO is searching a measure which is able to curb CO2 emissions 

produced by maritime transport with a high sense of urgency. This topic is addressed in 

section 4.1.3.1 in order to distinguish between economic and environmental effects. 

Since speed has a crucial effect in each aspect regarding maritime logistics, it is very 

significant to analyse which effects leads slow steaming strategy: 

 

 The first clear consequence of reducing sailing speed is a reduction of fuel 

consumed by the vessel. Therefore, this entails shrinking fuel cost borne by carrier 

and as we will see it involves a reduction of emission produced by the vessel as 

well. Since, as said in section 4.1.2, the relationship between speed and daily fuel 

consumption is non-linear this effect is stronger for high speed. Moreover, as 

container ships travel at a higher speed than other ships and the exponent for a 

container vessel is higher as well, this aspect it is especially true in liner container 

market. This statement is effortless demonstrated analysing the general equation 

of fuel consumption fuel and the first derivative of speed and exponent: 

 𝐹𝐶 = 𝐴 𝑣𝑛 (4.14) 

 
𝑑𝐹𝐶

𝑑𝑣
= 𝑛 𝐴 𝑣𝑛−1 (4.15) 

 
𝑑𝐹𝐶

𝑑𝑛
= 𝐴 𝑣𝑛 log (𝑣) (4.16) 

In fact, the fuel consumption variation is a function of speed to the power of n-1. 

Therefore, it is clear-cut that such variation is higher for higher speed value and 

for higher value of exponent n, considering a changing speed. Besides, 

considering equation 4.16, for a fixed speed value, fuel consumption decreases 

more for a higher exponent value. 

  

 The mismatch between supply and demand has drawn to increase the number of 

vessel in lay-up, especially during the economic crisis (Meyer et al., 2012). Idle 

vessels are a cost for carriers because these ships have to be stored. Furthermore, 

this discrepancy entailed a decrease of the freight rate value hence of the carrier’s 

revenue. It is estimated that adoption of slow steaming in 2014 have absorbed 2.5 

million TEUs of global nominal capacity, which is around 19 million TEUs (13%) 
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(UNCTAD, 2015).  Nevertheless, in a high market state, i.e. when freight rate is 

high, carrier would like to transport as many cargoes as possible. Hence, traveling 

at lower speed, in order to cut fuel cost, may be economically disadvantageous 

and a proper trade-off must be sought; 

 

 Slower speed also implies longer transit time. Hence, another effect of slow 

steaming is the possibility of improving the customer’s service level. In fact, 

according to (Vernimmen et al., 2007) and as reported in fig 4.9, over 40% of 

container vessels deployed in liner shipping have delays of one or more day. 

Specifically, 52% of vessel, involved in the survey, were on time. Approximately 

43% of ships were late, of these: 21% were one day late, 8% were 2 days late and 

14% arrived 3 or more days behind the schedule. The remaining 4% arrived before 

the scheduled time. Commonly, the reasons that lead a vessel to be late are: 

weather condition, port congestion, labour strikes and other unpredictable events. 

Slow steaming allows taking a higher buffer time and allows dealing with delays 

by increasing sailing speed. Therefore, achieving better service levels. In brief, 

whether ship is late, ship operator can speed up in order to recover the loss time. 

Schedule unreliability impact the level of safety stocks that should be kept by a 

manufacture or someone else into supply chain hence the supply chain economic 

competitiveness. Indeed, the required level of safety stock SS is calculated by this 

equation: 

 𝑆𝑆 = 𝐾 𝜎 (4.17) 

Where K is the safety factor and σ is the standard deviation of the demand’s 

statistical distribution within the lead time. The value of σ is given by the 

following equation: 

 𝜎 = √𝐿 𝜎𝐷
2  +  𝐷2𝜎𝐿

2  (4.18) 

Where L is the average lead-time, D is the average demand, σD is the standard    

deviation of the demand and σL is the standard deviation of lead time. It is clear 

that an unreliable service entails a rise of the safety stock, with the obvious 

consequences regarding warehouse costs. Moreover, whether the supply chain 

becomes economically non-competitive, when it is feasible, cargo owner may 

prefer a land-based transport. However, shippers bear higher inventory cost, 

linked to the opportunity cost of goods, whether transit time is higher although 

this cost is not borne by carrier it should be taken into account because of, as said 

before, the economic competitiveness of the supply chain; 
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Figure 4.9: Delays in container liner shipping 

Adapted from: (Vernimmen et al, 2007) 

 

 At the end, in order to maintain weekly service in each port call for the route, the 

number of vessel deployed rise. More vessel means increasing fixed operating 

cost. However, there is a beneficial effect in deploying more vessel. (Maloni et al, 

2013) estimate approximately 5% of overall container ships is idle because of 

demand lack. Slow steaming allows to resolve these problems as it is a tools in 

the carriers’ hand enabling to reduce the supply capacity. Thus, carriers are able 

to influence the market without laying-up.   

 

An overall overview is provided in fig. 4.10. Notice that this list gathers each effect which 

may be involved by slow steaming. However, depending on the case examined, not each 

item may be present and the effects can be considerably distinct in various scenarios.  For 

instance, considering a depressed market, there is no revenue loss in slowing down since 

the supply demand is low.  

On time
52%

Delayed
43%

-21%, one day
-8%, two days
-14%, three or more days

In advance
4%



4. PROBLEM DESCRIPTION AND MODEL FORMULATION   

 

PG. 80 
 

Page  80 Speed optimization and environmental effect in container liner shipping 

 

 

Figure 4.10: Slow steaming’s causes and effects diagram 

This diagram reassumes the causes and the conceivable effects involved in the practice of slow 

steaming. Such effects are related and they depend on the actual conditions considered. A 

complete model regarding the speed optimization problem should encompass all these factors.  
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4.1.3.1  ENVIRONMENTAL IMPACTS 

Slow steaming has indisputable economic consequences, as stated in the previous section. 

Besides, as obviously expected, slowing down also entails  beneficial environmental 

effects. As deeply analysed in section 3.1, international liner shipping heavily contributes 

to the global GHG emissions. This contribution is estimated to be around 3% of global 

emissions (Eide et al., 2009). Therefore, the liner sector as well as each maritime transport 

area are under pressure to diminish their emissions. Since ship fuel consumption is related 

to CO2 emissions, it is manifest that a reduction of the first factor leads to reduce the latter 

as well. As reported in (Woo and Moon, 2014), a deceleration by 20% entails a reduction 

of fuel consumption by more than 40% and a reduction in CO2 emissions by 20%.   

However, reducing the speed also implies that the number of vessels deployed along the 

route increases because of voyage transit time’s increase. More vessels deployed signifies 

more pollutant sources. Therefore, there is a dual effect when the sail speed is reduced. 

Nevertheless, according to (Kontovas and Psaraftis, 2011) and (Woo and Moon, 2014), it 

is certified that slow steaming has beneficial effects on environment. The effectiveness 

of slow steaming in reducing emission is also estimated in (Cariou, 2011) and reassumed 

in table 4.3: 

 

Impact of slow steaming on CO2 emissions 

Route 
Slow steaming 

vessels 
CO2 emissions 2010 

[tonne] 
Emissions variation 

2008-2010 

Europe-Far East 78,6% 12,900,000 -16.4% 

Asia-North America 42,3% 29,400,000 -9.7% 

North Atlantic 22,7% 5,778 -6.7% 

Table 4.3: Slow steaming impact on CO2 emissions 

Adapted from: (Cariou, 2011) 

This claim can theoretically be validated through a simple example, which is defined as 

scenario 1st. Such scenario does not consider neither port times nor emissions at ports and 

it deals with a route which involves only two ports of call: 

 The time between two consecutive arrivals t0 [days] is: 

 𝑡0 =  
 𝐿

24 𝑁 (𝑣1 + 𝑣2)
=

𝑇0

𝑁
 (4.19) 

Where N is the number of ships, L is the round-trip length, T0 is the roundtrip time 

[day] and v1 and v2 are the speeds along the two legs [knots].  

Taking for simplicity the same speed along the outward leg and the back way leg, 

the equation becomes: 
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 𝑡0 =  
 𝐿

48 𝑁 𝑣
 (4.20) 

The service frequency is considered constant hence also the throughput Q 

[TEU/day] along the route is constant: 

 𝑄 =  
𝑐 48 𝑁 𝑣

𝐿
=

𝑐

𝑡0
  (4.21) 

Where c is the amount of cargoes [TEU] transported by each ship.  

Assuming a cubic fuel consumption function f(v) [tonne/day] such as: 

 𝑓(𝑣) = 𝑘𝑣3 (4.22) 

The total emission produced per roundtrip E [tonne/day] during the roundtrip time 

is: 

  𝐸 =  
𝐸𝑀𝐶𝑂2

 𝑘 𝑣3 𝐿
48 𝑁 𝑣

𝑡0
=

𝐸𝑀𝐶𝑂2
 𝑘 𝐿 𝑣2

48 𝑁 𝑡0
 (4.23) 

Where 𝐸𝑀𝐶𝑂2
 is the emission factor. Replacing v in the equation 4.23 with the 

equation 4.20, which states the link between N and v, the result is: 

 𝐸 =  
𝐸𝑀𝐶𝑂2

 𝑘 𝐿3 

483 𝑡0
3

𝑁3
= 𝐴

1

𝑁3
 (4.24) 

 𝐴 =  
𝐸𝑀𝐶𝑂2

 𝑘 𝐿3 

483 𝑡0
3   (4.25) 

Therefore, this equation claims that adding more ships, which sail at a lower 

speed, is an effectively measure to reduce the CO2 emissions if the service 

frequency is constant. This aspect is reassumed in fig. 4.11. 

 

Despite this ecological implication, shipping companies are more interested in making 

profits. Therefore, as long as the slow steaming practice is economically advantageous 

they will adopt it but if, for any reasons, sailing at lower speed becomes a burden on the 

operators’ account balance they will not employ such practice. Indeed, at the moment 

there is no regulation regarding the speed that liner companies should adopt. According 

to (Cariou, 2011), a bunker break-even price (BEP) can be estimated: in case the bunker 

price reaches a value higher than BEP, employing slow steaming carriers can achieve 

better economic results. The results of this study is reported in table 4.4:  
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Bunker BEP price21 

Route [USD/tonne] 

Europe-Far East 394 

Asia-North America 345 

North Atlantic 440 

Table 4.4: Bunker break-even point price 

Adapted from: (Cariou, 2011) 

 

This factor is extremely significant as it shows that without any market-based measure, 

slow steaming may not be a long-term strategy to curb liner-shipping emissions because 

it remains economically sustainable only for high bunker price level. In case of the bunker 

price is higher than BEP, slow steaming is a win-win strategy because it allows both 

curbing CO2 emissions and increasing operators’ profits. These aspects are treated in 

section 3.3. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

                                                 
21 These values refer to the IFO price 
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Figure 4.11: Slow steaming’s environmental effects 

Reducing the speed entails both the fuel consumption reduction of the single vessel and the 

increase of the vessel deployed in order to maintain the same throughput. These consequences 

might lead to increase the overall emissions; however, it is demonstrated that putting into action 

slow steaming is an ecological measure 
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4.2   MATHEMATICAL MODEL 

The main aim of this thesis is providing a model, which allows computing the effect of 

freight rate on the speed in the container liner industry. The route as well as the legs are 

considered fixed, therefore the optimization problem’s objective is to maximize the 

economic performance of such fixed route. The model present in this thesis considers 

carrier as the speed decision maker, hence the objective function’s purpose must be the 

maximization of the carrier’s revenue. As said in section 4.1.2 and stated in (Psaraftis and 

Kontovas, 2013), in order to evaluate the influence of freight rate on speed it is necessary 

to consider a non-fixed transport demand, otherwise the revenue would be constant and 

as a consequence the optimization problem would not take freight rate into account. The 

freight rate is certainly not the unique parameters that influence the optimal speed, indeed, 

there are other influential factors which have to be considered inside the objective 

function, such as bunker price, operating costs and inventory costs. Besides, the required 

service frequency constrains the problem and binds the number of vessels to the sailing 

speeds. The next sections introduce the model function as well as its inputs and 

constraints; moreover, they explain the main characteristics regarding the resolution 

method adopted. 

4.2.1  LIST OF PARAMETERS AND VARIABLES 

The parameters and variables involved in the model are: 

 N: number of ships deployed on the route; 

 

 Fxz: freight rate for transporting a TEU from the port x to the port z [USD/TEU]. 

Notice, the freight rate value depends on the direction therefore: 

 

𝐹𝑥𝑧  ≠  𝐹𝑧𝑥 

 

For example, the freight rate from Vancouver to Shanghai is about 305 USD 

whereas the freight rate from Shanghai to Vancouver is about 900 USD (source: 

www.worldfreightrates.com, 08-12-2016); 

 

 Cxz: transport demand between the port x and the port z [TEU]. As for the freight 

rate, the transport demand depends on the direction hence: 

 

𝐶𝑥𝑧  ≠  𝐶𝑧𝑥 
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 P: bunker price [USD/tonne]; 

 

 E: operating costs per vessel per day [USD/day]; 

 

 vi: speed along the ith leg [knots]. The speed is bound above by vmax and bounded 

below by vmin; 

 

 f(vi): daily fuel consumption at sea [tonne/day]. As explained in section 4.1.2, the 

fuel consumption for a ship depends on his speed. The daily fuel consumption 

function includes both the main engine fuel consumption and the auxiliary engine 

fuel consumption at sea; 

 

 Fp: auxiliary fuel consumption at port [tonne/; 

 

 Li: length of ith leg [NM]; 

 

 Ti: required time to complete the leg ith [days]. The value of Ti is given by the 

following equation: 

 𝑇𝑖 =  
𝐿𝑖

24 𝑣𝑖
 (4.26) 

 Ci: goods quantity transported along the leg ith [TEU]; 

 

 Wi: average monetary value of cargoes on the leg ith [USD/TEU]. The cargo’s 

value depends on the leg involved for example because the average value may be 

substantially different from eastbound and westbound; 

 

 i%: annual capital cost; 

 

 αi: daily inventory costs on the leg ith per TEU [USD/(TEU*day)], which is equal 

to: 

 𝛼𝑖 =  
𝑊𝑖 𝑖%

365
 (4.27) 

 tj: time spent at port jth [hours]; 

 

 Cj: cargoes loaded and unloaded at the port jth [TEU]; 

 

 H: handling cost per TEU [USD/TEU]; 

 

 T0: time for one ship to complete the route [days]. The value of T0 is equal to: 
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 𝑇0 =  ∑
𝐿𝑖

24 𝑣𝑖
𝑖

+  ∑ 𝑡𝑗
𝑗

 (4.28) 

Which is basically the sum of the time spent at sea and the time spent at ports 

along the route by one vessel; 

 

 t0: service period [days]. For example, if the service period is equals to 7, each 

ports is visited by a vessel every 7 days; The service period is the inverse of the 

service frequency. For example, if the service period is equal to 7, then the service 

frequency is one time a week; 

 

 Cap: transport capacity of one vessel [TEU]; 

 

 Ed: daily CO2 emissions produced by the fleet [tonnes/day]; 

4.2.2   OBJECTIVE FUNCTION 

The first step in order to develop the objective function of the optimization problem is to 

define the total carrier’s profit for the considered route. For instance, one can consider a 

general route such as the route shown in figure 4.12: 
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Figure 4.12: Representation of a general service lane 

 



4. PROBLEM DESCRIPTION AND MODEL FORMULATION   

 

PG. 88 
 

Page  88 Speed optimization and environmental effect in container liner shipping 

 

The total profit π [USD] that the carrier earns for the considered route is: 

𝜋 = 𝑁 ∑ ∑ 𝐹𝑧𝑥 𝑐𝑧𝑥

𝑧𝑥

 −  𝑁 ∑ 𝑃 𝑓(𝑣𝑖) 𝑇𝑖

𝑖

− 𝑁 ∑ 𝑃 𝐹𝑝 𝑡𝑗

𝑗

− 𝑁 ∑ 𝛼𝑖  𝐶𝑖 𝑇𝑖

𝑖

− 𝑁𝐸 𝑇0 − 𝑁 ∑ 𝐻 𝐶𝑗

𝑗

 

 
(4.29) 

Where the first term regards the revenue, the second and the third terms regard the 

expenditures for fuel at sea and at ports respectively, the third item concerns the inventory 

costs, the fourth term concerns the operating costs and the last item is the sum of the 

handling costs. Subsequently, in order to compute the daily carrier’s profit 𝜋̇ for the route, 

the total profit must be divided by the time to complete the route T0: 

𝜋̇ =  
𝜋

𝑇0
=

𝑁 ∑ ∑ 𝐹𝑧𝑥  𝑐𝑧𝑥𝑧𝑥  −  𝑁 ∑ 𝑃 𝑓(𝑣𝑖) 
𝐿𝑖

24 𝑣𝑖
𝑖 − 𝑁 ∑ 𝑃 𝐹𝑝 𝑡𝑗𝑗 − 𝑁 ∑ 𝛼𝑖  𝐶𝑖  

𝐿𝑖

24 𝑣𝑖
𝑖 − 𝑁𝐸 𝑇0 − 𝑁 ∑ 𝐻 𝐶𝑗𝑗

𝑇0
 

 

(4.30) 

The daily profit function can be rewritten employing the equation that establishes the 

relationship between T0 and t0: 

 𝑡0 =  
∑

𝐿𝑖

24 𝑣𝑖
𝑖 +  ∑ 𝑡𝑗𝑗

𝑁
=  

𝑇0

𝑁
 

 

(4.31) 

 This equation is the most significant constraint for the model and his meaning is 

explained in section 4.2.3. Employing such formula, the equation 4.30 becomes: 

𝜋̇ =
1

𝑡0

(∑ ∑ 𝐹𝑧𝑥 𝑐𝑧𝑥

𝑧𝑥

 −  ∑ 𝑃 𝑓(𝑣𝑖) 
𝐿𝑖

24 𝑣𝑖
𝑖

− ∑ 𝑃 𝐹𝑝 𝑡𝑗

𝑗

− ∑ 𝛼𝑖  𝐶𝑖  
𝐿𝑖

24 𝑣𝑖
𝑖

− ∑ 𝐻 𝐶𝑗

𝑗

) − 𝑁 𝐸 

 

(4.32) 

Therefore, the objective function is: 

𝜋̇ = 𝑀𝑎𝑥𝑣𝑖,𝑡0,𝑁 {
1

𝑡0
(∑ ∑ 𝐹𝑧𝑥  𝑐𝑧𝑥

𝑧𝑥

 −  ∑ 𝑃 𝑓(𝑣𝑖) 
𝐿𝑖

24 𝑣𝑖
𝑖

− ∑ 𝑃 𝐹𝑝 𝑡𝑗

𝑗

− ∑ 𝛼𝑖 𝐶𝑖  
𝐿𝑖

24 𝑣𝑖
𝑖

− ∑ 𝐻 𝐶𝑗

𝑗

) − 𝑁 𝐸 } 

 

(4.33) 

Figure 4.13 reassume the total profit equation and his factors, besides it contains the 

objective function. As said, the main purpose of this thesis is to assess the freight rate 

influence on the containership’s speed optimization problem. In order to achieve such 

aim, the revenue must be variable, which means that the model must consider the service 

frequency (similarly the service period) as a variable of the problem.  

 

 



  4. PROBLEM DESCRIPTION AND MODEL FORMULATION  

 

Speed optimization and environmental effect in container liner shipping Page  89 

 

Revenue

Fuel expenditures at sea

Fuel expenditures at ports

Total profit on the route

Objective Function

 

Figure 4.13: Total profit equation and objective function 
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4.2.3 CONSTRAINTS 

The problem is subject to three constraints, which are: 

 

 Speed bounds: the sailing speed of the ships along each leg is bounded above by 

vmax and bounded below by vmin. Both such bounds are due to technological limits, 

indeed the upper speed limit is imposed by the max power that the main engine 

can provide, whereas the lower limit is caused by the minimum operating 

condition of the main engine. Therefore, the speed of each vessel on each leg has 

to respect the following constraints: 

 𝑣𝑖  ≤  𝑣𝑚𝑎𝑥             ∀ 𝑖 
 

(4.34) 

 

𝑣𝑖  ≥  𝑣𝑚𝑖𝑛            ∀ 𝑖 
 

(4.35) 

 N integer: The number of ships obviously has to be integer and positive, therefore: 

 𝑁 ∈  ℕ  + 
 

(4.36) 

 Service period: as said in section 4.1.2, in the containership liner market the 

number of ships deployed and the sailing speeds on each leg are linked by the 

service period. Basically, such constraint assures that the number of ships is 

sufficient to provide the specific required period and can be expressed as: 

 𝑡0 =  
∑

𝐿𝑖

24 𝑣𝑖
𝑖 +  ∑ 𝑡𝑗𝑗

𝑁
=  

𝑇0

𝑁
 

 

(4.37) 

Since the speeds vi as said above are bounded, one can clearly observe that given 

a certain period t0*, the possible values for N are restricted. In fact, supposing that 

ships sail at the maximum allowable speed and at the minimum allowable speed, 

one can find the minimum and the maximum required number of ships, rounding 

up and down the following equations: 

 

 𝑁𝑚𝑖𝑛 =  ⌈
∑

𝐿𝑖

24 𝑣𝑚𝑎𝑥
𝑖 +  ∑ 𝑡𝑗𝑗

𝑡0
∗ ⌉ 

 

(4.38) 
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 𝑁𝑚𝑎𝑥 = ⌊ 
∑

𝐿𝑖

24 𝑣𝑚𝑖𝑛
𝑖 + ∑ 𝑡𝑗𝑗

𝑡0
∗ ⌋ 

 

(4.39) 

Subsequently, the number of ships can be bounded between Nmax and Nmin: 

 𝑁𝑚𝑎𝑥  ≥ 𝑁 ≥ 𝑁𝑚𝑖𝑛 
 

(4.40) 

One can exploit this fact in order to shrink the set of value analysed by the 

resolution software hence the computing time. This fact is especially significant 

when the problem is non-linear; 

4.2.4   LINEARIZATION 

The objective function of the model is clearly non-linear. In fact, the variables vi and t0 

are in the denominator and the daily fuel consumption function is a nonlinear function. 

Moreover, the constraint in equation 4.37 is also non-linear, being the speeds in the 

denominator. A non-linear problem is not trivial to be analysed and there is no certainty 

with regard to the optimality of the solution, besides the computing time required could 

be very long Nevertheless, in order to simplify the resolution of the problem, both the 

objective function and the constrain can be linearized. Doing that, any linear resolution 

software such as CPLEX can find the optimal solution quickly and properly. The stages 

in order to linearize the problem are: 

 

 The service period can reasonably assume a prescribed set of values. For example, 

a value t0 equals to √2 is absurd because of obvious reasons. In addition, such 

value cannot practically be equal to 1000 or 0,01. Therefore, one can fix a set of 

possible values for t0 (such as 3,4,5 etc.) and make the simulation for each value 

in the set. Thereby, being a fixed value t0 is not a problem’s variable and the 

optimal solution can be manually find from the optimal solution obtained for each 

value of t0. As a consequence, the objective function can be written as: 

 

 

𝜋̇ = 𝑀𝑎𝑥𝑣𝑖,𝑁 {
1

𝑡0
(∑ ∑ 𝐹𝑧𝑥  𝑐𝑧𝑥

𝑧𝑥

 −  ∑ 𝑃 𝑓(𝑣𝑖)  
𝐿𝑖

24 𝑣𝑖
𝑖

− ∑ 𝑃 𝐹𝑝 𝑡𝑗

𝑗

− ∑ 𝛼𝑖  𝐶𝑖  
𝐿𝑖

24 𝑣𝑖
𝑖

− ∑ 𝐻 𝐶𝑗

𝑗

) − 𝑁 𝐸 }     ∀𝑡0 

 

(4.41) 
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 The variable vi must be replaced by the variable ui which is his reciprocal: 

 
𝑢𝑖 =  

1

𝑣𝑖
 

 

(4.42) 

Replacing the variable ui into the objective function, the equation (4.33) can be 

expressed as: 

𝜋̇ = 𝑀𝑎𝑥𝑢𝑖 ,𝑁 {
1

𝑡0
(∑ ∑ 𝐹𝑧𝑥  𝑐𝑧𝑥

𝑧𝑥

 −  ∑ 𝑃 𝑓(𝑢𝑖) 
𝐿𝑖 𝑢𝑖

24
𝑖

− ∑ 𝑃 𝐹𝑝 𝑡𝑗

𝑗

− ∑ 𝛼𝑖 𝐶𝑖  
𝐿𝑖 𝑢𝑖

24
𝑖

− ∑ 𝐻 𝐶𝑗

𝑗

) − 𝑁 𝐸 }     ∀𝑡0 

 

(4.43) 

After the substitution, the objective function is linear in the new variable ui, 

excepted for the daily fuel consumption function. Moreover, the constraint (4.37) 

also becomes linear: 

 
N 𝑡0 =  ∑

𝐿𝑖 𝑢𝑖

24 𝑖 + ∑ 𝑡𝑗𝑗 =  𝑇0 

 
(4.44) 

Finally, the constraints 4.34 and 4.35 can be rewritten as: 

 𝑢𝑖  ≤  𝑢𝑚𝑎𝑥             ∀ 𝑖 
 

(4.45) 

 𝑢𝑖  ≥  𝑢𝑚𝑖𝑛            ∀ 𝑖 
 

(4.46) 

Where umax and umin definitions are: 

 𝑢𝑚𝑎𝑥 =  
1

𝑣𝑚𝑖𝑛
 (4.47) 

 

𝑢𝑚𝑖𝑛 =  
1

𝑣𝑚𝑎𝑥
 

 

(4.48) 
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4.2.4.1   LINEARIZATION OF THE FUEL CONSUMPTION FUNCTION 

Given a general daily fuel consumption function at sea, expressed as a power function of 

speed:  

 𝑓(𝑣) =  𝑎 𝑣𝑏 
 

(4.49) 

One can substitute, as previously made, the variable v with his reciprocal u: 

 𝑓(𝑢) =  𝑎 𝑢−𝑏 
 

(4.50) 

The function 𝑄(𝑢) is a convex function. Therefore, as explained in (Wang and Meng, 

2012), it is possible to use a piecewise linear function to approximate such function, 

making the objective function of the model a linear function. The linearization regards 

the fuel consumption per nautical mile function, that is: 

 𝑄(𝑢) =  
𝑎 𝑢1−𝑏

24
 

 

(4.51) 

The linear approximation entails to make an error one the fuel consumption function, 

which is called 𝑒̅ [tonne/NM]. Such error entails to make an error 𝑒  on the evaluation of 

the optimal solution which is proportional to 𝑒̅: 

 
𝑒 = 𝑃 𝑒̅ ∑ 𝐿𝑖

𝑖

  

 

(4.52) 

Therefore, the optimization error can be managed by setting a proper value of the error 

regarding the approximation of the fuel consumption function. The following algorithm, 

reported in (Wang and Meng, 2012), whose aim is the linearization of the fuel 

consumption function is coded in MATLAB and the program is attached in the appendix 

C. The first step is to define the first derivative of the function Q: 

 𝑄′(𝑢) =  
𝑎 (1 − 𝑏) 𝑢−𝑏

24
 

 

(4.53) 

The piecewise linear function which approximates the fuel consumption function is 

defined by the points on the y-axis and the points on the x-axis for each approximant 

segment, which are Qk+1, Qk, uk+1 and uk respectively. Moreover, each segment is 

characterized by the slope mk which is equal to: 

 
𝑚𝑘 =  

𝑄𝑘+1 −  𝑄𝑘

𝑢𝑘+1 −  𝑢𝑘
 

 

(4.54) 
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Consequently, the final approximation is a set of k segments. Figure 4.14 depicts a general 

piecewise function. 

Q(u)

u

umin

umax

(uk+1;Qk+1)

(uk;Qk)

mk=(Qk+1-Qk)/(uk+1-uk)

 

Figure 4.14: Example of the piecewise linear function in MATLAB 

 

Therefore, the algorithm task is to calculate every segment of the piecewise function, 

assuring that the approximation error is lower than 𝑒̅(𝑢𝑖). The algorithm is subdivided in 

several steps which are: 

 Step 1 

The first point, for k=0, is defined as: 

 
𝑢1 =  𝑢𝑚𝑖𝑛   𝑎𝑛𝑑  𝑄1 = 𝑄(𝑢1) −  𝑒̅(𝑢) 

 

(4.55) 

 Step 2 

For k=k+1, if the inequality in 4.56, that means the point (uk, Q(uk)) is on or below 

the tangent line in umax, holds: 

 

𝑄(𝑢𝑚𝑎𝑥) −  𝑄𝑘

𝑢𝑚𝑎𝑥 −  𝑢𝑘
=  𝑄′(𝑢𝑚𝑎𝑥) 

 

(4.56) 
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Add the line k, defined as: 

 𝑄(𝑢) =  𝑄(𝑢𝑚𝑎𝑥) − 𝑄′(𝑢𝑚𝑎𝑥) (𝑢𝑚𝑎𝑥 −  𝑢) 
 

(4.57) 

 to the set of line Ψ and go to the step 4. Else, add to Ψ the line that passes to the 

point (uk, Qk) and is tangent to the graph of Q(u). Such line can be obtained as 

follows. Supposing that the tangent point of such line is (𝑢̂𝑘 , 𝑄̂𝑘 ) hence the 

following equations are valid: 

 𝑄̂𝑘 =  
𝑎 𝑢̂𝑘

1−𝑏

24
 

 

(4.58) 

 
𝑄̂𝑘 −  𝑄𝑘

𝑢̂𝑘 −  𝑢𝑘
=  𝑄′(𝑢̂𝑘) =  

𝑎 (1 − 𝑏) 𝑢̂𝑘
−𝑏

24
 

 

(4.59) 

Combining equation (4.58) and equation (4.59), one can estimate 𝑢̂𝑘  by the 

bisection method and subsequently 𝑄̂𝑘 from equation (5.58). The equation of such 

line is: 

 𝑄(𝑢) =  
𝑄̂𝑘 −  𝑄𝑘

𝑢̂𝑘 −  𝑢𝑘
 (𝑢 −  𝑢𝑘) −  𝑄𝑘 

 

(4.60) 

 

 Step 3 

For the line found in equation (4.60), if the following inequality is valid: 

  𝑄𝑘 +  
𝑄̂𝑘 −  𝑄𝑘

𝑢̂𝑘 −  𝑢𝑘
 (𝑢𝑚𝑎𝑥 −  𝑢𝑘)  ≥ 𝑄(𝑢𝑚𝑎𝑥) −  𝑒̅ 

 

(4.61) 

Go to step 4. 

This statement means that the difference between the approximation line and the 

function Q(u) is lower than 𝑒̅ even u is equal to umax hence the gap does not exceed 

the error for any value within uk and umax. Otherwise, it exactly exists one point 

(uk+1, Qk+1) along the line within uk < uk+1 < umax such that: 

 𝑄𝑘+1 = 𝑄(𝑢𝑘+1) − 𝑒̅ 
 

(4.62) 

The value of uk+1 can be obtained by the bisection method as previously made, 

combining the following equations: 

 𝑄𝑘+1 =  
𝑎 𝑢𝑘+1

1−𝑏

24
−  𝑒̅ 

 

(4.63) 
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𝑄̂𝑘 −  𝑄𝑘+1

𝑢̂𝑘 −  𝑢𝑘+1
=  𝑄′(𝑢̂𝑘) =  

𝑎 (1 − 𝑏) 𝑢𝑘+1
−𝑏

24
 

 

(4.64) 

Go to step 1; 

 Step 4 

The algorithm computes a set Ψ of lines. The generic form of such lines is: 

 𝑄 = 𝑢 𝑚𝑘 + 𝑄𝑘 
 

(4.65) 

Where mk is the slope and Qk is the intercept. Supposing the number of line is n, 

one can replace the fuel consumption function Q(u) with the approximated 

function 𝑄̅(𝑢), defined as follows: 

 𝑄̅(𝑢) = 𝑚𝑎𝑥{𝑢 𝑚𝑘 + 𝑄𝑘;  ∀𝑘 = 1, 2 … 𝑛  } 
 

(4.65) 

Subsequently, the objective function of the model can be linearized introducing the new 

variable Qi, which basically is the linearized fuel consumption per nautical mile: 

𝜋̇ = 𝑀𝑎𝑥𝑢𝑖,𝑁 {
1

𝑡0
(∑ ∑ 𝐹𝑧𝑥  𝑐𝑧𝑥

𝑧𝑥

 −  ∑ 𝑃 𝑄𝑖  𝐿𝑖

𝑖

− ∑ 𝑃 𝐹𝑝 𝑡𝑗

𝑗

− ∑ 𝛼𝑖 𝐶𝑖  
𝐿𝑖  𝑢𝑖

24
𝑖

− ∑ 𝐻 𝐶𝑗

𝑗

) − 𝑁 𝐸 }     ∀𝑡0 

 

(4.66) 

In addition, introducing a new set of constraints: 

 

 
𝑄𝑖  ≥  𝑢𝑖  𝑚𝑘 + 𝑄𝑘      ∀𝑘 = 1, 2 … 𝑛     ∀𝑖 

 
(4.67) 

As explained in figure 4.15, since the problem is the maximization of the objective 

function, given a generic value of ui, the resolver will take the feasible lowest value of 

Qi, respecting the constraints (6.67), that is the piecewise linear function. 

 

Figure 4.15: Area of feasible value for Qi 

The optimal value inside the area of the feasible solution is surely the lowest value of Qi, namely, 

the piecewise linear function used to linearize the fuel consumption function 
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4.2.5 LINEARIZED PROBLEM 

The optimization problem employed in this study is: 

𝜋̇ = 𝑀𝑎𝑥𝑢𝑖,𝑁 {
1

𝑡0
(∑ ∑ 𝐹𝑧𝑥  𝑐𝑧𝑥

𝑧𝑥

 −  ∑ 𝑃 𝑄𝑖  𝐿𝑖

𝑖

− ∑ 𝑃 𝐹𝑝 𝑡𝑗

𝑗

− ∑ 𝛼𝑖 𝐶𝑖  
𝐿𝑖  𝑢𝑖

24
𝑖

− ∑ 𝐻 𝐶𝑗

𝑗

) − 𝑁 𝐸 }     ∀𝑡0 

 

(4.68) 

  

Subjected to the following constraints: 

 

 
𝑄𝑖  ≥  𝑢𝑖  𝑚𝑘 + 𝑄𝑘      ∀𝑘 = 1, 2 … 𝑛     ∀𝑖 

 
(4.69) 

 
N 𝑡0 =  ∑

𝐿𝑖 𝑢𝑖

24 𝑖 + ∑ 𝑡𝑗           ∀𝑖     ∀𝑗 𝑗     

 
(4.70) 

 
𝑢𝑖  ≤  𝑢𝑚𝑎𝑥             ∀ 𝑖 

 
(4.71) 

 
𝑢𝑖  ≥  𝑢𝑚𝑖𝑛            ∀ 𝑖 

 
(4.72) 

 
𝑁 ∈  ℕ  + 

 
(4.73) 

The thesis employs an Excel spreadsheet in order to implement the model.  
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4.2.6 EMISSIONS 

The daily emissions of the deployed fleet can be computed as made for the calculation of 

the profits. The total CO2 emissions E [tonnes] produced by the fleet for one route are: 

 

 
𝐸 = 𝑁 𝐸𝐹𝐶𝑂2

 (𝐹𝐶𝑆𝑒𝑎 + 𝐹𝐶𝑃𝑜𝑟𝑡) 
 

(4.74) 

Where N is the number of vessels, 𝐸𝐹𝐶𝑂2
 is the CO2 emissions factor [tonnes of 

CO2/tonnes of fuel], FCSea is the fuel consumption of both main engine and auxiliary at 

sea for one ship [tons of fuel] and FCport is the fuel consumption of the auxiliary at port 

for one ship [tons of fuel]. 

The fuel consumption at sea, as previously said, is equal to: 

 

 
𝐹𝐶𝑆𝑒𝑎 =  ∑ 𝑄𝑖 𝐿𝑖

𝑖
 

 

(4.75) 

 

Whereas the fuel consumption at ports is equal to: 

 

 

𝐹𝐶𝑃𝑜𝑟𝑡 =  ∑ 𝐹𝑝 𝑡𝑗
𝑗

 

 

(4.76) 

Therefore, the total CO2 can be expressed as: 

 

 

𝐸 = 𝑁 𝐸𝐹𝐶𝑂2
 (∑ 𝑄𝑖 𝐿𝑖

𝑖
 + ∑ 𝐹𝑝 𝑡𝑗

𝑗
) 

 

(4.77) 

 

In order to evaluate the daily CO2 emissions produced by the fleet Ed [tonnes of CO2/day], 

the equation (4.77) must be divide by the route time T0 and considering the equation 

(4.31), such value is equal to: 

 

 

 
𝐸𝑑 =  

𝐸𝐹𝐶𝑂2
 (∑ 𝑄𝑖 𝐿𝑖𝑖  + ∑ 𝐹𝑝 𝑡𝑗𝑗 )

𝑡0
 

 

(4.78) 
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CHAPTER 5 

5. NUMERICAL STUDIES 
 

The chapter 5 deals with the application of the model on three real container liner routes 

which link: 

 North Europe and Asia 

 

 North America (West Coast) and Asia 

 

 North Europe and North America (East Coast) 

Such lanes are characterized by many parameters, such as ports distances, freight rates, 

transport capacity utilization along the legs and many others. Therefore, the chapter 

reports the sources of such parameters and the estimations made. 

As said in chapter 4, the model comprises three variables, correlated to each other, which 

are: the service period t0, the number of ships N and the speed on each ith leg vi. 

Consequently, the thesis analyses three different cases: 

 First case: the frequency is constant and the number of ships is variable. Therefore, 

the variables in such case are the speed and the number of deployed vessels; 

 

 Second case: the number of ships is constant and the frequency is variable hence 

the variables are the speeds and the service frequency; 

 

 Third case: both the frequency and the number of ships are variable however the 

number of ships is bounded above. This bound is implemented because otherwise 

the optimal number of ships may reach unrealistic values. Nevertheless, in order 

to prove this statement, an example in which the number of ships is unbounded is 

provided; 

 

 

For each case, the effect of the following parameters on the decisional variables of the 

problem is addressed: 

 Bunker price 

 

 Freight rate 

 

 Operating costs 

 

 Inventory costs 
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At the end of the chapter, it is present a study regarding the impact on the fleet CO2 

emissions of implementing either a carbon tax or a speed limit. 

5.1 ANALYSIS OF SIMPLE CASES 

The first and the second cases in which one of the variables is considered as constant can 

also be addressed analytically. Considering the simple case in which only two ports are 

present, as depicted in figure 5.1: 

 

A B

1

2
 

Figure 5.1: Example of a route in which only two ports are present 

 

Considering only the freight rate F, the bunker price P and the operating costs E, the daily 

profit can be computed by the following equation: 

 

𝜋̇ =  
𝑁 [𝐹1 𝐶1 + 𝐹2 𝐶2 −  𝑃 (𝑓(𝑣1)

𝐿
24 𝑣1

+ 𝑓(𝑣2) 
𝐿

24 𝑣2
) − 𝐸 𝑇0]

𝑇0
 

 

(5.1) 

Where C is the transported cargoes quantity, L is the leg’s length and f(v) is the daily fuel 

consumption function. One can establish the daily fuel consumption function as a third 

power function of speed: 

 

 
𝑓(𝑣) =  𝑘 𝑣3 

 
(5.2) 
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As a consequence, the equation 5.1 becomes: 

 

 
𝜋̇ =

 [ 𝐹1𝐶1 + 𝐹2𝐶2 − 𝐿 𝑃 𝑘 ( 
𝑣1

2

24 +  
𝑣2

2

24 ) ] 

𝑡0
− 𝑁 𝐸 

 

(5.3) 

In addition, the service frequency entails that the number of ships and the speeds are 

linked by the following constrain: 

 

 
𝑇0 = 2 𝐿 (

1

24 𝑣1
+  

1

24 𝑣2
) = 𝑁 𝑡0 

 

(5.4) 

In order to further simplify the analysis one can first assume that: 

 v = v1= v2 

 

 F = F1 = F2 

 

 C = C1 = C2 

 

Assuming such equalities, one can rewrite the daily profit equation and the constraint as: 

 

 
𝜋̇ = 𝑁  (

12 𝐶 𝐹 𝑣

𝐿
−  

𝑃𝑘 𝑣3

2
− 𝐸) 

 

(5.5) 

 

 𝑇0 =  
 𝐿

6 𝑣
=  𝑁 𝑡0 

 

(5.6) 

 

Moreover, the daily CO2 emissions are: 

 

 
𝐸𝑑 =  

  𝐸𝐹𝐶𝑂2
𝐿 𝑘 

𝑣2

12
 𝑡0

=   𝑁 𝐸𝐹𝐶𝑂2
𝑘 

𝑣3

2
  

 

(5.7) 

This simple model can explain which are the influencing parameters with regard to the 

optimization problem; moreover, the results provided by such model can be extended to 

realistic cases in which the number of variables, such as different speed along each leg, 

is much higher. The analytical results from these simple examples are subsequently 

validated through the simulation results. 
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5.1.1 FIXED FREQUENCY 

If the service frequency is constant, then the profit optimization problem can be written 

as: 

 

 
max𝑣,𝑁  {𝜋̇} = max𝑣,𝑁 {

2 𝐶 𝐹 − 𝑃 𝑙 𝑘 
𝑣2

12
𝑡0

− 𝑁 𝐸} 

 

(5.8) 

And being t0 fixed only the speed is a variable and the optimal speed value can be obtained 

from the following equation: 

 

 
min𝑣 {  𝑃 𝑘 

𝑣2

2
+  

𝐸 

𝑣
} (5.9) 

Therefore, it is clear that the speed’s optimal value depends on the operating costs and 

the bunker price: 

 

 
𝑣𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⟶ (

𝐸

𝑃
) 

 

(5.10) 

The arrow means that the optimal speed is connected to the ratio between E and P. 

Namely, the optimal speed depends on such ratio through a specific function. In order not 

to define e specific function for each decisional variable, the arrow is employed to define 

a dependency, which may be a different function depending on the specific case involved. 

Such convention is used throughout the paper. 

Because of the equation 5.4, the optimal number of ships is proportional to the reciprocal 

of speed, hence the number of ships depend on: 

 

 𝑁𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⟶ (
1

𝑣
)     𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒      𝑁𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⟶ (

𝑃

𝐸
) 

 

(5.11) 

As one can see, if the service frequency is fixed, the revenue does not influence neither 

the optimal speeds nor the optimal number of vessels. Such result is predictable, indeed 

if the service frequency is constant then the revenues are also constant. As regards the 

CO2 emissions, considering the equation 5.7 the emissions depend on the speed hence are 

related to the same parameters of speed: 

 

 
𝐸𝑑 ⟶ 𝑓(𝑣)    𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒   𝐸𝑑 ⟶ 𝑓 (

𝐸

𝑃
) 

 

(5.12) 
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5.1.2 FIXED NUMBER OF SHIPS 

The optimization problem in such case can be written as: 

 

 
max𝑣,𝑁 {𝜋̇} = max𝑣,𝑁 {𝑁  (

12 𝐶 𝐹 𝑣

𝐿
− 𝑃𝑘

𝑣3

2
− 𝐸)} 

 

(5.13) 

 

And being N fixed the only variable of the problem is the speed: 

 

 
max𝑣  {𝜋̇} = max𝑣 { 

12 𝐶 𝐹 𝑣

𝐿
− 𝑃𝑘

𝑣3

2
} 

 

(5.14) 

From this equation, it is clear that the optimal speed depends on the freight rate and the 

bunker price: 

 

 
𝑣𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⟶ (

𝐹

𝑃
) 

 

(5.15) 

Then, considering the equation 5.4, the optimal service period is proportional to the 

reciprocal of speed, hence the optimal period depends on: 

 

 
 𝑡0,𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⟶ (

1

𝑣
)       𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒    𝑡0,𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⟶ (

𝑃

𝐹
) 

 

(5.16) 

Basically, such case is similar to the  case addressed in (Psaraftis and Kontovas, 2012) 

with regard to the container liner market, that is considering the required service 

frequency. In fact, the optimization function is exactly the same. The daily CO2 emissions, 

as stated before, are proportional to the speed hence are proportional to the freight rate 

and to the reciprocal of the bunker price: 

 

 

 

𝐸𝑑 ⟶ (𝑣)     𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒    𝐸𝑑 ⟶ (
𝐹

𝑃
) 

 

(5.17) 
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5.2 PARAMETERS DETERMINATION 

The section deals with the definition of the parameters involved in the model. Collecting 

actual data regarding actual services is an exhausting challenge. For instance, there are 

no data available in literature and in the specialized magazines regarding specific routes 

or specific vessels. Since in order to simulate a real market case the model needs actual 

data with regard to several model’s parameters, such as freight rates on each leg and the 

transport demand between ports, these data has to be estimated properly. Indeed, using 

average and general data provided in some specialized studies and magazines, it is 

possible to make some estimation whereby the model can fit the actual conditions. For 

example, even finding the vessels employed in a specific service and their characteristics 

such as the transport capacity in TEU or the max sailing speed is a non-trivial challenge. 

Therefore, the following sections explain how all the data employed in the model are 

estimated and the data sources employed for the estimations. Although the data are only 

appraisals, the main objective of the thesis, that is to assess how the market condition 

influences the sailing speeds in the liner market, can be achieved. 

5.2.1.1 TRANSPORT DEMAND 

The data regarding the transport demand between ports are not freely spread by shipping 

companies. Therefore, in order to assess the transport demand, it is necessary to follow 

another way. In (FMC, 2012) are reported several data with regard to the average capacity 

utilization of containerships in 2010. Such data are available for each service analysed by 

the thesis, which are shown in section 5.3. The transport capacity utilization percentages 

usually refer to either the westbound direction or the eastbound direction. Therefore, it is 

essential to define properly the legs to which the percentages refer. Indeed, it is not 

completely clear which legs have to be considered as “westbound” or as “eastbound”. 

Typically, an international liner service is composed by two sets of ports: one in the first 

continent and one in the second one, as depicted in figure 5.2. 
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Figure 5.2: A typical arrangement of harbours in an international liner service 

The legs, which link the two sets are usually the longest in the route 

 

As a consequence, it seems to be logical to consider the legs which link these two sets as 

the eastbound leg and the westbound leg. Once defining the westbound leg and the 

eastbound leg, the demand between ports can be estimated. Basically, the transport 

demand between ports is hypothesized, ensuring that the capacity utilization on the 

westbound leg and the eastbound leg are approximately equal to the benchmark values. 

The schedule published on internet by shipping companies for the same service are always 

two: one schedule for the “eastbound transport demand” and one for the “westbound 

transport demand”, as shown in figure 5.3. Equally, the model supposes that the cargoes 

travel only from eastern ports to western ports and vice versa. Moreover, it supposes that 

the demand is approximately the same for each port. The transport demand tables, the 

capacity utilization tables and the data provided in (FMC, 2012) are reported in the 

appendix D. Figure 5.4 reports an example of transport demand table, explaining better 

the framework of such tables. 
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Figure 5.3: Example of the westbound and the eastbound schedule for the same route 

Source: www.maerskline.com/lt-lt/shipping-services/routenet/maersk-line-network, 20-10-2016 
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Transport demand table 

Demand Table Westbound 

FROM/TO [TEU] 4 5 6 7 

1 350 350 350 350 

2 350 350 350 350 

3 350 350 350 350 

Demand Table Eastbound 

FROM/TO [TEU] 1 2 3 

5 340 340 340 

6 340 340 340 

7 340 340 340 

8 340 340 340 

Table 5.1: Example of transport demand table 

The numbers in the tables refer to a specific port, the western ports set comprise the ports 1, 2 

and 3 whereas the eastern ports set comprises the ports 4, 5, 6 and 7. One can notice that the 

demand is the same for each western port or for each eastern port. Besides, the tables show that 

the demand is only among eastern ports and western ports 

5.2.1.2 INVENTORY COSTS 

In order to evaluate the inventory costs along each leg, it is needed to know the average 

monetary value of a TEU on each routes, regarding both westbound and eastbound 

direction. The (FMC, 2012) reports two significant figures with regard to the assessment 

of the inventory costs:  

 The annual monetary value of cargoes transported westbound and eastbound: 

MVWest and MVEast respectively; 

 

 The annual quantity of TEU transported westbound and eastbound: QWest and QEast 

respectively; 

 

Using such values, the average monetary value of a TEU transported westbound AVWest 

and eastbound AVEast [USD/TEU] can easily be computed as: 

 

 

 

𝐴𝑉𝑊𝑒𝑠𝑡 =  
𝑄𝑊𝑒𝑠𝑡

𝑀𝑉𝑊𝑒𝑠𝑡
 

 

(5.18) 
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𝐴𝑉𝐸𝑎𝑠𝑡 =  
𝑄𝐸𝑎𝑠𝑡

𝑀𝑉𝐸𝑎𝑠𝑡
 

 

(5.19) 

 

Subsequently, one can calculate the numbers of TEU heading to West and to East on each 

leg by the demand tables. Finally, considering the monetary value of TEU as AVWest for 

TEU heading to western ports and as AVEast for TEU heading to eastern ports, the 

monetary value of payloads on each leg can be computed as well as the related daily 

inventory costs by the equation 4.27. The average monetary values on each leg for the 

three routes and the benchmark values are reported in the appendix D. The annual capital 

costs i% is considered equal to 5% for each route. 

5.2.1.3 FREIGHT RATE 

In order to calculate the carrier’s revenue for transporting goods along the route it is 

necessary to know the freight rate per transported TEU between each couple of ports. 

Such information is not freely available besides it depends on many factors, such as the 

monetary value of the cargo and his dangerousness. Therefore, as done for the transport 

demand, the freight rates among ports must be estimated. Taking a couple of ports as the 

benchmarks, one can obtain the freight rate for such ports on the following website: 

http://www.worldfreightrates.com. The benchmark freight rate should be taken for both 

eastbound and westbound with regard to the same couple of ports. Indeed, as discussed 

in section 4.1.3, freight rates are significantly influenced by the voyage direction and the 

difference might be substantial. Moreover, one should select one port from the eastern set 

and the other one from the western set. For example, as regards the AE2 lane, one can 

take the Felixstowe’s port and the Shanghai’s port as benchmarks, finding the eastbound 

as well as the westbound freight rate between such ports in the worldfreightrates’s site. 

Subsequently, the freight rate values are divided by the distances of the involved ports, 

thus the result can be considered as the average income per TEU transported per nautical 

mile, eastbound and westbound respectively. Finally, one can calculate the freight rates 

table multiplying the previous values to the distances among ports. The freight rates table 

contains the freight rate for each couple of ports. The benchmark values and the freight 

rates tables for each route are reported in appendix D. 
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5.2.1.4 FUEL CONSUMPTION CALIBRATION 

Along each route are disposed different type of ships with different characteristics such 

as the transport capacity and the construction year. As a consequence, the fuel 

consumption for such vessels is different. Nevertheless, the model formulation considers 

only one possible fuel consumption function hence only a vessel type for the route 

because considering different type of vessels would require longer computing time and 

the complexity of the model would sharply increase. Therefore, the model needs an 

average fuel consumption function which must approximate the average characteristics 

of the ships. Shipping companies do not freely furnish actual data concerning the fuel 

consumption of ships therefore the fuel consumption data are estimated using an Excel 

spreadsheet provided in https://www.shipowners.dk/en/services/beregningsvaerktoejer 

(the spreadsheet is specifically designed for containerships). The spreadsheet requires 

some data regarding the ship, such as the dimensions, the deadweight and the capacity in 

TEU. The ship features employed in the spreadsheet are the average values concerning 

the vessels deployed on the route. Fundamentally, the spreadsheet computes the 

consumption per hour at sea of the main engine and the auxiliary and the consumption 

per hour at port of the auxiliary for a specific speed. Since the model requires the daily 

consumption function which is a function of the speed, the results obtained for a set of 

speeds must be represented in a graph, then the best interpolating function can be 

assessed, as shown in figure 5.4: 

 

 

Figure 5.4: Interpolating curve for the AE2 lane 

The grey line is the interpolating function 
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The interpolating function must have the following form: 

 

 

 

𝑓(𝑣) = 𝑘 𝑣𝑛 
 

(5.20) 

Subsequently, employing the linearization MATLAB program the function is linearized. 

The appendix D reports the values of k and n for each route and the interpolating graphs. 

The bunker prices are taken from the website: www. http://shipandbunker.com/prices. In 

the website are reported the prices for three type of fuel: IFO 380, IFO 180 and MGO, 

moreover the prices are provided for several harbours in different locations, such as 

Rotterdam, New York and Hong Kong. The table 5.2 reports the bunker price employed 

as base scenario in the thesis, such value is the average of the value for the ports involved 

moreover the model considers that the fuel employed by the fleet is IFO 180. 

 

Base Bunker Price [USD/tonne] 

Singapore 362 

Rotterdam 348 

Houston 387 

Fujairah 363,5 

LA-Long Beach 373 

Hong Kong 371 

Istanbul 361,5 

New York 360,5 

Rio de Janeiro 378 

Piraeus 356 

Gibraltar 350,5 

Average 364,6 

Table 5.2: Base bunker price considered in the model 

Adapted from: www. http://shipandbunker.com/prices, 6-01-2017 

Finally, the model considers the maximum speed equal to 24 knots while the minimum 

speed equal to 15 knots. 
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5.2.1.5 OPERATING COSTS 

(Drewry, 2015) reports the following operating costs for vessel size in figure 5.5: 

 

 

Figure 5.5: Daily operating costs for vessel size in 2014 

Adapted from: Drewry Maritime Research, Ship Operating Costs Annual Review and Forecast, 

Table 3.2.1. 

Since the AE2 comprises ships with a transport capacity higher than 12000 TEU, the 

operating costs for such lane must be estimated. Assuming a linear interpolating function, 

one can obtain the following equation: 

 

 

 

𝑂𝑃𝑑 = 0,5962 𝑇𝐸𝑈 + 4849,9 
 

(5.21) 

 

Where OPd [USD/TEU] are the daily operating costs and TEU is the capacity [TEU] 

Such equation can be employed to assess the daily operating costs for the vessels 

deployed along the route AE2 whereas the operating costs with regard to the TP1 lane 

and NEUATL1 lane are directly obtained from the table 2.7., moreover the results are 

reported in table 5.5. 
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Operating Costs 

Route Daily operating costs [USD/day] 

AE2 15357 

TP1 912522 

NEUATL1 8730 

Table 5.3: Daily operating costs for each route 

 

As discussed in section 2.3, the operating costs should also contain the depreciation cost 

which is the cost related to the ship purchase. The depreciation cost can be assessed using 

the equation 2.3 and assuming a depreciation period of 20 years. However, the value of 

the ship at scrapheap is not considered in this thesis. The assumed prices of a new ship 

for the three routes and the associated daily depreciation costs are reported in table 5.3; 

such prices obviously are different, mainly because they depend on the transport capacity 

of the vessels. 

Depreciation Cost 

Route Purchase price [millions of USD] 
Daily depreciation cost 

[USD/day] 

AE2 14023 19200 

TP1 98,424 13500 

NEUATL1 69,525 9500 

Table 5.4: Daily depreciation costs for each route 

 

Therefore, the values for the operating costs E employed in the model, whose results are 

reported in table 5.4, is the sum of the daily operating costs and the daily depreciation 

cost. 

E values used in the model 
Route Daily operating costs [USD/day] 

AE2 34557 

TP1 22625 

NEUATL1 18230 

Table 5.5: Operating costs used in the model 

 

One can consider daily fixed operating costs E as the daily payment for the rent of the 

ship. In such case, the value of E should refer to the current condition concerning the ship 

renting market. However, the optimization function has the same formulation. 

 

 

                                                 
22 The value is the average of the range 8000-9000 and the range 5000-6000 of figure 5.5 
23 Source: https://en.wikipedia.org/wiki/MSC_Zoe 
24 47 (Murray, 2016) 
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5.2.1.6 TIME AT PORTS 

The time at ports are derived from the ship schedules provided on the Maersk site. As 

shown in figure 5.5, such schedules contain the time of arrival and the departure time for 

each port. The difference between these two values is the time at port considered in the 

model. 

 

 

Figure 5.6: Example of a vessel schedule containing the arrival and departure times 

Source: www.my.maerskline.com/schedules, 20-10-2016 
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5.3 SERVICES 

The thesis deals with three routes on the mainlane East-West, which are: 

 AE2: such service links Asia to North Europe and is provided by Maersk. 

Nevertheless, the same service is also provided by MSC under the name SWAN. 

Indeed, both Maersk’s ships and MSC’s ships are deployed along the route; 

 

 TP1: the route connects Asia to the West Coast of North America. Maersk offers 

the service however, the same service is also provided by MSC and it is called 

EAGLE. As for the AE2 service, along the TP1 route are deployed Maersk’s 

vessels as well as MSC’s vessels; 

 

 NEUATL1: the NEUATL1 lane links North Europe to the US East Coast. The 

service is furnished by MSC or similarly by Maersk under the name TA1; 

 

The section contains the main features of such services. Fundamentally, the next three 

sections report the route maps and the legs’ length. The route maps allow to distinguish 

eastern ports and western ports as well as the eastbound leg and the westbound leg. 

Besides, the section contains the average characteristics of the fleet for each route, such 

as the average transport capacity and the average deadweight. The average vessel 

characteristics are the mean of the fleet’s value. The complete information regarding the 

characteristics for each vessel are reported in the appendix D. 
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5.3.1 NORTH EUROPE-ASIA LANE (AE2) 
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Figure 5.7: AE2 route maps 

The legs in blue are the westbound and the eastbound legs. The eastern ports set comprises the 

green ports whereas the western ports set comprises the red ports. The ports in grey are the 

intermediate ports. 

 

Distances [NM] 

1 to 2 141 

2 to 3 346 

3 to 4 63 

4 to 5 255 

5 to 6 6755 

6 to 7 1567 

7 to 8 1460 

8 to 9 41 

9 to 10 1406 

10 to 11 412 

11 to 12 502 

12 to 13 492 

13 to 14 127 

14 to 15 721 

15 to 16 1512 

16 to 17 6946 

17 to 1 1296 
 

Average vessel characteristics 

TEU Capacity [TEU] 18459,1 

Deadweight [tonnes] 192447,8 

Length Overall [m] 398,326 

Breadth Extreme [m] 58,487 

Power [kW] 57414 
 

Table 5.6: Distances between ports and average vessel characteristics for the AE2 route 

Data sources (the complete characteristics of the fleet is present in the appendix D):  

 The distances among ports are furnished in www.sea-distances.org, 10-12-2016 

 The transport capacity is reported in my.maerskline.com, 10-12-2016 

 The deadweight, the length overall and the breadth extreme are provided in 

www.marinetraffic.com, 10-12-2016 

 The power is reported in www.scheepvaartwest.be, 10-12-2016 
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5.3.2 ASIA-NORTH AMERICA LANE (TP1) 
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Figure 5.8: TP1 route maps 

The legs in blue are the westbound and the eastbound legs. The eastern ports set comprises the 

red ports whereas the western ports set comprises the green ports.  

 

Distances [NM] 

1 to 2 136 

2 to 3 4244 

3 to 4 687 

4 to 5 930 

5 to 6 339 

6 to 7 274 

7 to 8 545 

8 to 9 460 

9 to 1 4554 
 

Average vessel characteristics 

TEU Capacity [TEU] 7073 

Deadweight [tonnes] 77637 

Length Overall [m] 292,83 

Breadth Extreme [m] 36,52 

Power [kW] 48511,4 
 

Table 5.7: Distances between ports and average vessel characteristics for the TP1 route 

Data sources (the complete characteristics of the fleet is present in the appendix D):  

 The distances among ports are furnished in www.searates.com, 12-12-2016 

 The transport capacity is reported in my.maerskline.com and www.containership-

info.com, 12-12-2016 

 The deadweight, the length overall and the breadth extreme are provided in 

www.marinetraffic.com, 12-12-2016 

 The power is reported in www.containership-info.com, 12-12-2016 
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5.3.3 NORTH EUROPE-NORTH AMERICA LANE (NEUATL1) 
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Figure 5.9: NEUATL1 route maps 

The legs in blue are the westbound and the eastbound legs. The eastern ports set comprises the 

red ports whereas the western ports set comprises the green ports. 

 

Distances [NM] 

1 to 2 108 

2 to 3 245 

3 to 4 3623 

4 to 5 413 

5 to 6 433 

6 to 7 952 

7 to 8 1700 

8 to 1 3474 
 

Average vessel characteristics 

TEU Capacity [TEU] 4739 

Deadweight [tonnes] 61880 

Length Overall [m] 292,1 

Breadth Extreme [m] 32,33 

Power [kW] 44147,6 
 

Table 5.8: Distances between ports and average vessel characteristics for the NEUATL1 route 

Data sources (the complete characteristics of the fleet is present in the appendix D):  

 The distances among ports are furnished in www.searates.com, 13-12-2016 

 The transport capacity is reported in my.maerskline.com and www.containership-

info.com, 13-12-2016 

 The deadweight, the length overall and the breadth extreme are provided in 

www.marinetraffic.com, 13-12-2016 

 The power is reported in www.containership-info.com, 13-12-2016 
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   CHAPTER 6 

6. RESULTS 
 

Chapter 6 reports the results obtained by the model. The section splits in three main 

subsections: 

 Section 6.1, named “Sensitivity analysis”, contains the main results regarding the 

effects in the three analysed scenarios of a variation of the bunker price, the freight 

rate and the operating fixed costs. Indeed, such parameters influences the 

decisional variables of the problem which are the service frequency, the number 

of ships and the speed on each leg, hence influencing also the CO2 emissions; 

 

 Section 6.3 analyses the influence of the inventory costs with regard to the speed 

on each leg of the route; 

 

 Finally, section 6.2 deals with the impacts upon the CO2 emissions of applying 

two market based measures; namely a bunker levy (or likewise a carbon tax) and 

a speed limit; 

 

 

In order to facilitate the reading, the section does not contain all the results from the 

simulations but it reports only the most significant outcomes.  

6.1  SENSITIVITY ANALYSIS 

In order to assess the influence of freight rate, bunker price and the operating fixed costs 

it is necessary to vary such parameters. Fundamentally, for each of the three scenarios 

involved, such three parameters are changed, afterwards it is possible to evaluate the 

influence upon the model variables of such fluctuations. The thesis considers the 

parameters’ variation as a percentage fluctuation from the “base value”. The “base 

values” are the values of bunker price, freight rate and operating costs considered as basis 

for the study. From such benchmark values, the study considers different scenarios in 

which the variations are expressed as a percentage change of the “base values”. For 

example, considering the base bunker price as 300 USD/tonne, the impact of the bunker 

price is assessed by simulating some scenarios in which the bunker price is a percentage 

variation of such value, such as considering a bunker price of 360 USD/tonne which is a 
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percentage change of +20% from the base value. The “base values” are reported in the 

appendix D and in the chapter 5.2 e; anyway, the table 6.1 reassumes such parameters for 

the three routes involved. A scenario in which the parameters are “base values” is 

consequently the “base scenario”. Each scenario employs the base values of each 

parameter except for the parameters for which a table providing the new parameters’ 

values is furnished.  

 

Base parameters values 

Route 
Bunker price, P 

[USD/tonne] 

Freight rate-
westbound, F-WB 

[USD/TEU] 

Freight rate 
eastbound, F-EB 

[USD/TEU] 

Daily operating 
fixed costs for a 

ship, E 
[USD/day] 

AE2 364,6 690 675 34557 

TP1 364,6 360 1070 22625 

NEUATL1 364,6 1260 1150 18230 

Table 6.1: Base parameters values for the three routes involved 

For the sources of these data refers to section 5.2 and appendix D 

 

The sensitivity analysis employs the parameter called average speed vaverage. As reported 

in the equation 6.1, the average speed is equal to: 

 

 

 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒  =  
𝑅𝑜𝑢𝑡𝑒 𝐿𝑒𝑛𝑔ℎ𝑡

24 𝑇0
′  

 

(6.1) 

Where Route Length is the overall length of the route [NM] and 𝑇0
′ is the travel time 

[days] for the route without considering the time spend at ports. Namely, the value of 𝑇0
′ 

is given by the following relationship, which derives from the equation 4.28: 

 

 

 

𝑇𝑜
′ =  ∑

𝐿𝑖

24 𝑣𝑖
𝑖

=  𝑇0 −  ∑ 𝑡𝑗
𝑗

 
(6.2) 

 

The average speed is the sailing speed of a vessel if the vessel would travel at a constant 

speed. Such speed is useful to assess easily how the speed changes in different scenarios. 

Otherwise, it would be necessary to analyse the speeds on each leg, which would be 

difficult, moreover a clear representation would be unachievable.  The service periods 

employed for the simulations are: 3.5 (a twice a week frequency), 4, 5, 6, 7 (a weekly 

frequency), 8, 9, 10, 14 (a frequency of one time in two weeks). Finally, as defined in 

section 5.1.1, in order not to define a specific function for each decisional variable, which 

defines the link between the variable and the parameters of the problem, the paper 

employs an arrow in order to specify that there is a dependency. Such dependency 

depends on the specific case involved. 
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6.1.1   FIXED FREQUENCY SCENARIO 

The fixed frequency scenario’s service period employed in the simulations is equal to 7 

for each route as such value is the most common in the containership market. 

6.1.1.1   OPERATING COSTS EFFECT 

The daily fixed operating E costs influence the average speed of the vessels, the number 

of ships employed and hence the CO2 emissions. Increasing the value of E diminishes the 

number of ships deployed as the total daily expenditure is given by multiplying E to the 

number of ships N. Since the service frequency is constant, such effect also leads to 

increase the average sailing speed hence the daily CO2 emissions produced by the fleet. 

Therefore, one can state the following proportional relationships: 

 

 

 

𝑁 ⟶  (
1

𝐸
) 

 

(6.3) 

 

 

 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ⟶  𝑓(𝐸) 
 

(6.4) 

 

 

 

𝐸𝑑 ⟶  𝑓(𝐸) 
 

(6.5) 

 

Figures 6.1, 6.2, 6.3 depict the effect of E in the AE2 route on the average speed, the 

number of ships and the CO2 emissions respectively. Table 6.2 reports the daily operating 

costs’ values for the different scenarios. 

Daily operating costs 

Scenario E [USD/day] Variation 

1 6911,4 -80% 

2 20734,2 -40% 

3 31101,3 -10% 

4-base 34557 / 

5 38012,7 +10% 

6 48379,8 +40% 

7 62202,6 +80% 

Table 6.2: Fixed frequency scenario, daily operating costs (route AE2) 
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Figure 6.1: Fixed frequency scenario, effect of E on the average speed (route AE2) 

 

Figure 6.2: Fixed frequency scenario, effect of E on the number of ships (route AE2) 

 

Figure 6.3: Fixed frequency scenario, effect of E on the daily CO2 emissions (route AE2) 
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6.1.1.2    BUNKER PRICE EFFECT 

The bunker price variation has the opposite effect of the operating costs. Increasing the 

punker price decreases the average speed of the vessels hence their emissions whereas it 

increases the number of ships deployed. Since the fuel expenditure are related to the 

average sailing speed, if the bunker price increases the optimal decisions is to diminish 

the speed, increasing the number of ships in order to maintain the service frequency 

constant. As stated in section 4.1.3.1, increasing the number of ships deployed also 

reduces the CO2 emissions despite of the increasing number of vessels. Therefore, one 

can state the following proportional relationships: 

 

 

 

𝑁 ⟶  (𝑃) 
 

(6.6) 

 

 

 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ⟶ (
1

𝑃
) 

 

(6.7) 

 

 

 

𝐸𝑑 ⟶ (
1

𝑃
) 

 

(6.8) 

 

 

The previous statements are shown in figures 6.4, 6.5 and 6.6. Moreover, the table 6.3 

reports the bunker price used in the different scenarios. 

 

Bunker price 

Scenario P [USD/tonne] Variation 

1 146 -60% 

2 292 -40% 

3 328 -10% 

4-base 365 / 

5 401 +10% 

6 438 +40% 

7 583 +60% 

Table 6.3: Fixed frequency scenario, bunker price (route AE2) 

 

 

 

 



6. RESULTS  

 

Page  124 Speed optimization and environmental effect in container liner shipping 

 

 

Figure 6.4: Fixed frequency scenario, effect of P on the average speed (route AE2) 

 

Figure 6.5: Fixed frequency scenario, effect of P on the number of ships (route AE2) 

 

Figure 6.6: Fixed frequency scenario, effect of P on the daily CO2 emissions (route AE2) 
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Besides, as stated in the section 5.1.1, the number of ships and the average speed should 

be proportional to the ratio between the daily operating fixed costs and the bunker price. 

Such statement is true as long as the inventory costs and the handling costs are not 

considered in the model. Figure 6.5 depicts how the number of ships (one can see the 

same effect on the average speed as well as on the daily emissions) changes even if the 

ratio is constant. On the contrary, figure 6.6 shows that in the case in which the inventory 

costs and the handling costs are neglected, if the ratio is constant then the number of ships 

does not vary. Therefore, when the model considers the handling costs and the inventory 

costs, the problem’s variables depend on E and P but they are not a function of the ratio 

between E and P. The following equations describe such behaviour when the model takes 

into account the inventory and the handling costs: 
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The table 6.4 reports the scenarios’ parameters concerning the scenarios in figure 6.7 and 

figure 6.8. 

 

Ratio E/P 

Scenario E [USD/day] P [USD/tonne] Variation Ratio E/P 

1 17278,5 182,3 -50% 50 

2-base 34557 364,6 / 50 

3 69114 729,2 +100% 50 

Table 6.4: Fixed frequency scenario, daily operating costs and bunker prices (route AE2) 
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Figure 6.7: Fixed frequency scenario considering inventory and handling costs (route AE2) 

 

Figure 6.8: Fixed frequency scenario not considering inventory and handling costs (route AE2) 

 

When the model neglects the inventory costs and the handling costs, as previously said, 

the problem’s variables are directly related to the ratio E/P. The section 5.1.1 contains the 

analytical demonstration of such statement. Therefore, the links between the parameters 

E and P and the variables can be described by the following equations: 
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𝐸
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(6.14) 

 

Figuress 6.9, 6.10 and 6.11 show the influence of the ratio on the average speed, the 

number of ships and the daily CO2 emissions when both the inventory costs and the 

handling costs are neglected. Table 6.5 contains the values of E and P employed in the 

simulations. 

Ratio E/P 

Scenario E [USD/day] Variation P [USD/tonne] Variation Ratio E/P 

1 20734,2 -40% 510,44 +40% 41 

2 27645,6 -20% 437,52 +20% 63 

3 31101,3 -10% 401,06 +10% 78 

4-base 34557 / 364,6 / 95 

5 38012,7 +10% 328,14 -10% 116 

6 41468,4 +20% 291,68 -20% 142 

7 48379,8 +40% 218,76 -40% 221 

Table 6.5: Fixed frequency scenario, ratio between E and P (route AE2) 

 

 

 

Figure 6.9: Fixed frequency scenario not considering inventory and handling costs, effect of the 

ratio E/P on the average speed (route AE2) 
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Figure 6.10: Fixed frequency scenario not considering inventory and handling costs, effect of the 

ratio E/P on the number of ships (route AE2) 

 

 

Figure 6.11: Fixed frequency scenario not considering inventory and handling costs, effect of the 

ratio E/P on the daily CO2 emissions (route AE2) 
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6.1.1.3   FREIGHT RATE EFFECT 

Since the frequency service is constant, the revenue is also constant because the quantity 

of delivered goods is fixed. Therefore, as analytically demonstrated in section 5.1.1, the 

freight rate value does not influence any of the problem’s decision variables. For example, 

figure 6.12 depicts the influence of the ratio on the average speed whereas figure 6.13 

shows the influence on the number of ships. As one can see, the freight rates’ values does 

not affect the results of the simulations. Table 6.6 reports the data employed in the 

simulations. 

 

Freight rate 

Scenario F-EB [USD/TEU] F-WB [USD/TEU] Variation Faverage 

1 405 414 -40% 410 

2 540 552 -20% 546 

3 607,5 621 -10% 614 

4-base 675 690 / 683 

5 742,5 759 +10% 751 

6 810 828 +20% 819 

7 945 966 +40% 956 

Table 6.6: Fixed frequency scenario, freight rate values (route AE2) 

 

 

Figure 6.12: Fixed frequency scenario, effect of the freight rate on the average speed (route AE2) 

 

19,21 19,21 19,21 19,21 19,21 19,21
19,21

410

546
614

683
751

819

956

0

200

400

600

800

1000

1200

0,00

5,00

10,00

15,00

20,00

25,00

1 2 3 4 5 6 7

Fa
ve

rg
ae

, 
A

va
ra

ge
 f

re
ig

h
t 

ra
te

 [
U

SD
/T

EU
]

A
ve

ra
ge

 s
p

ee
d

 [
kn

o
ts

)

Scenario



6. RESULTS  

 

Page  130 Speed optimization and environmental effect in container liner shipping 

 

 

Figure 6.13: Fixed frequency scenario, effect of the freight rate on the number of ships (route 

AE2) 

6.1.2   FIXED NUMBER OF SHIPS SCENARIO 

The number of ships concerning the “base scenarios” is the actual number of ships 

employed on the route involved; the values are reported in the table 6.7. 

Number of ships 

Scenario Number of ships 

AE2 10 

TP1 5 

NEUATL1 5 

Table 6.7: Number of ships employed in the fixed number of ships scenario for each routes 
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costs does not influence the results obtained by the model. As explained in section 5.1.2, 
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service frequency, the average speed and the daily CO2 emissions. Table 6.8 contains the 

operating costs’ values employed in the scenarios. 

Daily operating costs 

Scenario E [USD/day] Variation 

1 4525 -80% 

2 13575 -40% 

3 20363 -10% 

4-base 22625 / 

5 24888 +10% 

6 31675 +40% 

7 40725 +80% 

Table 6.8: Fixed number of ships scenario, daily operating costs (route TP1) 

 

 

Figure 6.14: Fixed number of ships scenario, effect of E on the average speed (route TP1) 

 

 

Figure 6.15: Fixed number of ships scenario, effect of E on the optimal service period (route TP1) 
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Figure 6.16: Fixed number of ships scenario, effect of E on the daily CO2 emissions (route TP1) 

6.1.2.2    BUNKER PRICE EFFECT 

As in the fixed frequency scenario, if the bunker price rises the average speed decreases 

because the fuel consumption is strictly related to the average speed. The CO2 emissions, 

being related to the average speed, also decrease when the bunker price rises. If the 

number of ships is constant, the only way to reduce the speed is to decrease the service 

frequency hence increasing the service period. Mathematically, one can state the 

following proportional relationships: 
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Figures 6.17, 6.18 and 6.19 depict the result for the AE2 route. The table 6.9 contains 

parameters’ values for each scenario. 
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Bunker price 

Scenario P [USD/tonne] Variation 

1 146 -60% 

2 292 -40% 

3 328 -10% 

4-base 365 / 

5 401 +10% 

6 438 +40% 

7 583 +60% 

Table 6.9: Fixed number of ships scenario, bunker price (route AE2) 

 

 

Figure 6.17: Fixed number of ships scenario, effect of P on the average speed (route AE2) 

 

 

Figure 6.18: Fixed number of ships scenario, effect of P on the optimal service period (route AE2) 
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Figure 6.19: Fixed number of ships scenario, effect of P on the daily CO2 emissions (route AE2) 

 

The revenue in this scenario are not constant, being the service frequency variable, hence 
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change. Figure 6.20, regarding the effect of bunker price on the average speed in the route 

NEUATL1, confirms such statement. Indeed, the average speed (one can see the same for 

the optimal service frequency) is constant despite of the increasing values of P. The table 

6.10 reports the values of P employed in the analysis. 
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8 656 +80% 

Table 6.10: Fixed number of ships scenario, bunker price (route NEUATL1) 
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Figure 6.20: Fixed number of ships scenario, effect of P on the average speed (route NEUATL1) 

On the contrary, the daily CO2 emissions are slightly influenced by the bunker price, as 

shown in figure 6.21. Despite the average speed is constant, the speeds on each leg 

change, as shown in figure 6.22, because the influence of the inventory costs decreases if 

the bunker price increases. The section 6.2 deals with such effect. Indeed, the daily 
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scenario 5, in which the bunker price is higher, the speed decreases on the leg 3 whereas 
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inventory costs on the considered legs does not affect more on the optimal speeds. 

 

Figure 6.21: Fixed number of ships scenario, effect of P on the daily CO2 emissions (route 

NEUATL1) 

23,06 23,06 23,06 23,06 23,06 23,06 23,06 23,06

219

292
328

365
401

438

510

656

0

100

200

300

400

500

600

700

15,00

16,00

17,00

18,00

19,00

20,00

21,00

22,00

23,00

24,00

25,00

1 2 3 4 5 6 7 8

P
, B

u
n

ke
r 

p
ri

ce
 [

U
SD

/t
o

n
n

e]

A
ve

ra
ge

 s
p

ee
d

 [
kn

o
ts

)

Scenario

1572,9
1572,7 1572,7 1572,7

1569,7 1569,7 1569,7 1569,7
219

292
328

365
401

438

510

656

0

100

200

300

400

500

600

700

1568,0

1569,0

1570,0

1571,0

1572,0

1573,0

1574,0

1 2 3 4 5 6 7 8

P
, B

u
n

ke
r 

p
ri

ce
 [

U
SD

/t
o

n
n

e]

Em
is

si
o

n
s 

p
er

 d
ay

 [
to

n
n

es
/d

ay
]

Scenario



6. RESULTS  

 

Page  136 Speed optimization and environmental effect in container liner shipping 

 

 

Figure 6.22: Fixed number of ships scenario, effect of P on the speeds on each leg (route 

NEUATL1) 

Because of the bunker price rise, the speed on the leg 3 decrease whereas the speed on the leg 8 
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6.1.2.3   FREIGHT RATE EFFECT 

Since the service frequency is not constant, the revenue is also variable. As demonstrated 
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revenue increase. Therefore, the problem variables depend on the freight rate F as: 
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(6.20) 

 

Moreover, one can observe that the service frequencies available are limited whether the 

number of ships is constant. Indeed, as one can see from the equation 6.21, the speeds on 

each leg vi are bounded above and below therefore for a specific value of N there is a 

specific range of available service period t0. 
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(6.21) 

 

For example, for the route TP1, in which the number of ships is impose to be equal to 5 

(the number of ships actual deployed along the route TP1), the available service periods 

are 6, 7 and 8. Figure 6.23, 6.24 and 6.25 reports the effect of freight rate on the results 

regarding the route TP1. Table 6.11 contains the freight rates’ values employed in the 

simulations. 

 

Freight rate 

Scenario F-EB [USD/TEU] F-WB [USD/TEU] Variation Faverage 

0 588,5 198 -45% 393 

1 642 216 -40% 429 

2 856 288 -20% 572 

3 963 324 -10% 644 

4-base 1070 360 / 715 

5 1177 396 +10% 787 

6 1284 432 +20% 858 

7 1498 504 +40% 1001 

Table 6.11: Fixed number of ships scenario, freight rate values (route TP1) 
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Figure 6.23: Fixed number of ships scenario, effect of the freight rate on the average speed (route 

TP1) 

 

Figure 6.24: Fixed number of ships scenario, effect of the freight rate on the optimal service 

period (route TP1) 

 

Figure 6.25: Fixed number of ships scenario, effect of the freight rate on the daily CO2 emissions 

(route TP1) 
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Section 5.1.2 demonstrates that the optimal solution solely depends on the ratio between 

freight rate and bunker price. Such statement is true as long as the model does not consider 

the inventory costs and the handling costs, as made in section 5.1.2 indeed. When the 

model takes into account of inventory costs and handling costs, the optimal solution is 

different even if the ratio is constant. Namely, the optimal solution does not only depend 

on the ratio’s value but also it depends on the actual value of freight rate and bunker price. 

Figures 6.26 and 6.27 show such effect for the route TP1 (the same effect can be see for 

the average speed). As one can see, if the model comprises the inventory and handling 

costs the optimal solution varies despite the ratio is constant. Table 6.12 contains the 

ratio’s values employed in the analysis. 

 

Ratio Faverage/P 

Scenario 
F-EB 

[USD/TEU] 
F-WB 

[USD/TEU] 
Faverage 

[USD/TEU] 
P 

[USD/tonne] 
Variation 

Ratio 
Faverage/P 

1 535 180 375,5 182,3 -50% 1,96 

2-base 1070 360 715 364,6 / 1,96 

3 2140 1430 1430 729,2 +100% 1,96 

Table 6.12: Fixed number of ships scenario, daily operating costs and bunker prices (route TP1) 

 

 

Figure 6.26: Fixed number of ships scenario considering inventory and handling costs (route 

TP1) 
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Figure 6.27: Fixed frequency scenario not considering inventory and handling costs (route AE2) 

 As said previously, when the model does not consider the inventory costs and the 

handling costs, the optimal solution is directly dependent on the ratio between the freight 

rate and the bunker price hence one can formulate the following equation: 

 

 

 

𝑡0  ⟶  (
𝑃

𝐹
) 

 

(6.22) 

 

 

 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ⟶ (
𝐹

𝑃
) 

 

(6.23) 

 

 

 

𝐸𝑑 ⟶ (
𝐹

𝑃
) 

 

(6.24) 

Figure 6.28 reports the effect of the ratio on the service period when the model neglects 

the inventory and the handling costs, the ratio also influences the average speed and the 

daily CO2 emissions. Table 6.13 contains the values employed in the scenarios. 

Ratio E/P 

Scenario 
F-EB 

[USD/TEU] 
F-WB 

[USD/TEU] 
Faverage 

[USD/TEU] 
Variation 

P 
[USD/tonne] 

Variation 
Ratio 

Faverage/P 

0 428 144 286 -60% 593 +60% 0,25 

1 642 216 429 -40% 510 +40% 0,42 

2 856 288 572 -20% 437 +20% 0,66 

3 963 324 643,5 -10% 401 +10% 0,81 

4-base 1070 360 715 / 364 / 0,99 

5 1177 396 786,5 +10% 328 -10% 1,21 

6 1284 432 858 +20% 291 -20% 1,48 

7 1498 504 1001 +40% 218 -40% 2,30 

Table 6.13: Fixed number of ships scenario, ratio between Faverage and P (route TP1) 
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Figure 6.28: Fixed number of ships scenario not considering inventory and handling costs, effect 

of the ratio Faverage/P on the optimal service period (route TP1) 

6.1.3   NUMBER OF SHIPS BOUNDED ABOVE SCENARIO 

The scenario analysed in this section has some limitation regarding the maximum number 

of ships. The limit on the number of ships is imposed in order to avoid that the optimal 

number of ships calculated by the model would reach unrealistic values (for example for 

the AE2 scenario, considering a service period of 3,5 days the number of ships might be 

equal to 24). The number of ships limit for each route is arbitrarily chosen as the minimum 

number of ships necessary to provide the maximum service frequency (i.e. a service 

period of 3,5). The values of the number of ships limit for each route are reported in table 

6.14. 

 

Number of ships limits 

Route Number of ships limit 

AE2 18 

TP1 8 

NEUATL1 7 

Table 6.14: Number of ships limit for each scenario 
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Before analysing the effect of freight rate, bunker price and daily operating costs in the 

considered scenario, it is useful to be aware of the effect caused by a rise of the service 

frequency, which are depicted in figure 6.29. Providing a higher service frequency implies 

higher revenue, nevertheless in order to increase the service frequency it is necessary to 

deploy more vessels. Moreover, being the maximum number of ships bounded above, a 

higher service frequency also entails a higher average speed (namely, the speeds on the 

legs are higher). One can easily verify such statements through equation 4.37.  

 

Higher service 
frequency

Higher revenue

Higher number of ships

Higher fuel consumption

 

Figure 6.29: Effect of a higher service frequency 

6.1.3.1   OPERATING COSTS EFFECT 

As said in the previous section, a higher service frequency implies a higher number of 

vessels. Therefore, if the daily operating costs for one vessel E are high the optimal 

service frequency will be low. On the contrary, if the value of E is low, the increase in 

the daily total fixed operating costs caused by a higher service frequency will be lower 

than the increase in the revenue. Therefore, one can state that: 

 

 

 

𝑡0  ⟶  (𝐸) 
 

(6.25) 

Besides, a higher service frequency, as stated in section 6.1.3, implies a higher number of 

ships and a higher average speed hence daily CO2 emissions.  
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Consequently, the following equations are valid: 

 

 

 

𝑁 ⟶  (
1

𝐸
) 

 

(6.26) 

 

 

 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ⟶ (
1

𝐸
) 

 

(6.27) 

 

 

 

𝐸𝑑 ⟶ (
1

𝐸
) 

 

(6.28) 

Figures 6.30, 6.31, 6.32 and 6.33 report the results regarding the effect of E for the route 

AE2. The table 6.15 contains the values of the operating costs employed in the 

simulations. 

 

Daily operating costs 

Scenario E [USD/day] Variation 

1 13823 -60% 

2 20734,2 -40% 

3 31101,3 -10% 

4-base 34557 / 

5 38012,7 +10% 

6 48379,8 +40% 

7 55291 +60% 

8 58746,9 +70% 

Table 6.15: Number of ships bounded above scenario, daily operating costs (route AE2) 

 

 

Figure 6.30: Number of ships bounded above scenario, effect of E on the average speed (route 

AE2) 
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Figure 6.31: Number of ships bounded above scenario, effect of E on the number of ships (route 

AE2) 

 

Figure 6.32: Number of ships bounded above scenario, effect of E on the optimal service period 

(route AE2) 

 

Figure 6.33: Number of ships bounded above scenario, effect of E on the daily CO2 emissions 

(route AE2) 

18,0 18,0 18,0 18,0 18,0 18,0

16,0

5

13823

20734

31101
34557

38013

48380

55291
58747

0

10000

20000

30000

40000

50000

60000

70000

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

1 2 3 4 5 6 7 8

E 
[U

SD
/d

ay
]

N
u

m
b

er
 o

f 
sh

ip
s

Scenario

3,5 3,5 3,5 3,5 3,5 3,5
4

14

13823

20734

31101
34557

38013

48380

55291
58747

0

10000

20000

30000

40000

50000

60000

70000

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

E 
[U

SD
/d

ay
]

O
p

ti
m

al
  

se
rv

ic
e 

p
er

io
d

Scenario

8157,7 8157,7 8157,7 8157,7 8157,7 8157,7

6876,5

1590,5
13823

20734

31101
34557

38013

48380

55291

58747

0

10000

20000

30000

40000

50000

60000

70000

0,0

1000,0

2000,0

3000,0

4000,0

5000,0

6000,0

7000,0

8000,0

9000,0

1 2 3 4 5 6 7 8

E 
[U

SD
/d

ay
]

Em
is

si
o

n
s 

p
er

 d
ay

 [
to

n
n

es
/d

ay
]

Scenario



  6. RESULTS 

 

Speed optimization and environmental effect in container liner shipping Page  145 

 

6.1.3.2    BUNKER PRICE EFFECT 

In this scenario, the effect of the bunker price is similar to the effect in the previous two 

scenarios. Increasing the service frequency entails a higher number of ships and a higher 

average speed; therefore, if the value of P is high the advantage of having higher revenue 

is lower than the rise of the fuel expenditure. Consequently, one can write the equation: 

 

 

 

𝑡0  ⟶  (𝑃) 
 

(6.29) 

Since a higher service frequency entails to require a higher number of vessels and a higher 

average speed, hence higher daily emissions, the following equation are valid: 

 

 

 

𝑁 ⟶  (
1

𝑃
) 

 

(6.30) 

 

 

 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ⟶ (
1

𝑃
) 

 

(6.31) 

 

 

 

𝐸𝑑 ⟶ (
1

𝑃
) 

 

(6.32) 

One can notice that the number of ships in this scenario is proportional to the inverse of 

P whereas in the fixed frequency scenario the number of ships is proportional to the 

bunker price. Such difference is due to the effect of P on the service frequency. Since the 

service frequency is lower for higher bunker price’s values the number of ships required 

is lower. Figures 6.34, 6.35, 6.36 and 6.37 report the results regarding the effect of P for 

the route AE2. Table 6.16 contains the values of bunker price employed in the 

simulations. 

 

Bunker price 

Scenario P [USD/tonne] Variation 

1 146 -60% 

2 292 -40% 

3 328 -10% 

4-base 365 / 

5 401 +10% 

6 438 +40% 

7 583 +60% 

Table 6.16: Number of ships bounded above scenario, bunker price (route AE2) 
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Figure 6.34: Number of ships bounded above scenario, effect of P on the average speed (route 

AE2) 

 

Figure 6.35: Number of ships bounded above scenario, effect of P on the number of ships (route 

AE2) 

 

Figure 6.36: Number of ships bounded above scenario, effect of P on the service period (route 

AE2) 
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Figure 6.37: Number of ships bounded above scenario, effect of P on the daily CO2 emissions 

(route AE2) 

6.1.3.3   FREIGHT RATE EFFECT 

It is straightforward that a higher freight rate leads the ship owner to increase the service 

frequency. Indeed, if the freight rate is high than the further incomes due to increasing 

the service frequency are higher, which means that the disadvantages involved in a higher 

service frequency (namely, more ships and a higher average speed) are lower than the 

benefits. Therefore, as stated by the following equation, the service period is inversely 

proportional to the freight rate: 
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1

𝐹
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(6.33) 

Consequently, the relationships between the freight rate and the other variables of the 

problem are: 
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𝐸𝑑 ⟶ (𝐹) 
 

(6.36) 

Figures 6.38, 6.39, 6.40 and 6.41 report the results regarding the effect of F for the route 

TP1. Table 6.17 contains the values of the freight rate employed in the simulations. 

 

Freight rate 

Scenario F-EB [USD/TEU] F-WB [USD/TEU] Variation Faverage 

0 588,5 198 -45% 393 

1 642 216 -40% 429 

2 856 288 -20% 572 

3 963 324 -10% 644 

4-base 1070 360 / 715 

5 1177 396 +10% 787 

6 1284 432 +20% 858 

7 1498 504 +40% 1001 

Table 6.17: Number of ships bounded above scenario, freight rate values (route TP1) 

 

 

 

Figure 6.38: Number of ships bounded above scenario, effect of Faverage on the average speed 

(route TP1) 
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Figure 6.39: Number of ships bounded above scenario, effect of Faverage on the number of ships 

(route TP1) 

The number of ships is constant because all the frequency involved has the same optimal number 

of ships 

 

Figure 6.40: Number of ships bounded above scenario, effect of Faverage on the optimal service 

period (route TP1) 

 

Figure 6.41: Number of ships bounded above scenario, effect of Faverage on the daily CO2 emissions 

(route TP1) 
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6.1.3.4   UNLIMITED NUMBER OF SHIPS 

Considering an unlimited number of ships mitigates the effect of the bunker price on the 

optimal service frequency. As seen in section 6.1.3.2, a higher bunker price make the high 

service frequency disadvantageous since higher service frequency entails employing 

more ships and increasing the average speed, hence higher fuel expenditure. However, if 

the number of ships is unlimited the average speed can be lower in the case of a higher 

service frequency whereas it can be higher for lower service frequency (for example, 

considering the route AE2 and considering a bunker price of 438 USD/tonne, in the 

scenario in which the number of ships is unlimited the average speed for a service period 

of 3,5 is 18,00 knots, whereas for a service frequency of 4 the average speed is 18,5 

knots). Indeed, the effect of the upper limit on the number of ships is to force the ships to 

travel at a higher speed in order to maintain the required frequency since for  service 

frequency the maximum number of ships could be higher (as said in section 4.2.3, for a 

certain service frequency there is a maximum value of N for which the speeds are the 

lowest possible). For example, figures 6.42, 6.43, 6.44 and 6.45 reports the comparison 

between the results of the N limited scenario and the N unlimited scenario, for which table 

6.18 reports the bunker price employed. Observing such figures, one can see that the 

optimal service frequency is constant if the number of ships is free. Besides, the figures 

shown that the relationship between the bunker price and the average speed, the daily 

CO2 and the number of ships is the same reported for the limited scenario in section 

6.1.3.2. 

 

Bunker price 

Scenario P [USD/tonne] Variation 

1 146 -60% 

2 292 -40% 

3 328 -10% 

4-base 365 / 

5 401 +10% 

6 438 +40% 

7 583 +60% 

Table 6.18: Comparison between the unlimited number of ships scenario and the limited number 

of ships scenario, bunker price (route AE2) 
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Figure 6.42: Comparison between the N limited scenario and the N unlimited scenario, effect of 

the bunker price on the average speed (route AE2) 

 

 

Figure 6.43: Comparison between the N limited scenario and the N unlimited scenario, effect of 

the bunker price on the number of ships (route AE2) 
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Figure 6.44: Comparison between the N limited scenario and the N unlimited scenario, effect of 

the bunker price on the optimal service period (route AE2) 

 

 

Figure 6.45: Comparison between the N limited scenario and the N unlimited scenario, effect of 

the bunker price on the daily CO2 emissions (route AE2) 
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6.2 EFFECT OF INVENTORY COSTS 

As one can see in the objective function, equation 6.37, given a service frequency and a 

number of ships the optimal sailing speeds along the legs vi depend on two factors: 

 The bunker price P 

 

 The inventory costs 

 

𝜋̇ = 𝑀𝑎𝑥𝑣𝑖,𝑡0,𝑁 {
1

𝑡0
(∑ ∑ 𝐹𝑧𝑥  𝑐𝑧𝑥

𝑧𝑥

 −  ∑ 𝑃 𝑓(𝑣𝑖) 
𝐿𝑖

24 𝑣𝑖
𝑖

− ∑ 𝑃 𝐹𝑝 𝑡𝑗

𝑗

− ∑ 𝛼𝑖 𝐶𝑖  
𝐿𝑖

24 𝑣𝑖
𝑖

− ∑ 𝐻 𝐶𝑗

𝑗

) − 𝑁 𝐸 } 

 

(6.37) 

The influence of the bunker price and the inventory costs are opposite: the fuel 

consumption factor leads to reduce the speeds vi, respecting the service frequency, 

whereas the inventory costs factor leads to increase the speeds upon the legs in order to 

diminish the travel time on each leg hence the inventory costs undergone by the carrier. 

In order to assess the inventory costs’ impact on the speeds vi it is useful introducing the 

daily inventory costs the ship owner pays on the legs ith Id,i [USD/day]: 

𝐼𝑑,𝑖 =  𝛼𝑖  𝐶𝑖  
 

(6.38) 

Where 𝛼𝑖 is the daily inventory cost per TEU on the leg ith [USD/(day*TEU)] and  𝐶𝑖 is 

the quantity of TEU transported on the leg ith [TEU]. The effect of the daily inventory 

costs on the speeds vi is elementary to be comprehended: a higher value implies that the 

speed on the involved leg will be higher. One can verify the previous statement through 

figure 6.46, which depicts the speeds on the legs regarding the route NEUATL1. 

 

Figure 6.46: Effect of the inventory costs on the speeds along the legs (route NEUATL1) 

The figure refers to a base scenario in which  N=5 and t0=6 
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Nevertheless, it is significant to assess the influence of the bunker price. The inventory 

costs weight on the optimal speeds on the legs is stronger for low values of bunker price 

whereas their influence is weak when the bunker price is high. Indeed, if the bunker price 

is high, the carrier slow down his ships in order to curb the fuel costs, which are higher 

than the inventory costs in such case.  

 

Figure 6.47 proves such statement. Figure refers to the route AE2; the scenarios are “base 

scenario” except for the bunker price, which has three different values reported in table 

6.19. Besides, the scenarios consider a fixed service period and a fixed number of ships 

(the values are N=10 and t0=7, which are the actual values for the route considered). In 

the scenario one, in which the bunker price is low, the optimal speeds closely follow the 

trend of the inventory costs; namely, the speeds are low along the legs on which the daily 

inventory costs are low, whereas the speeds are high along the legs on which the daily 

inventory costs are high. On the contrary, in the third scenario, in which the bunker price 

is high, the optimal speeds are nearly constant because in order to minimize the fuel 

expenditure the speeds must be as lower as possible on each legs. However, one can still 

see the effect of the inventory costs: on the legs from 5 to 11, on which the daily inventory 

costs are lower than on the other legs, the optimal speeds are lower. Finally, one can 

notice that the average speed is constant, considering a fixed number of ships and a fixed 

service frequency, because of the following constraint: 

 𝑡0 =  
∑

𝐿𝑖

24 𝑣𝑖
𝑖 +  ∑ 𝑡𝑗𝑗

𝑁
=  

𝑇0

𝑁
 

 

(6.39) 

Therefore, the inventory costs in such case affect the speeds on each leg but they does not 

influence the average speed.   

 

Bunker price 

Scenario P [USD/tonne] Variation 

1 146 -60% 

2-base 365 / 

3 583 +60% 

Table 6.19: Inventory costs effect scenario, bunker price (route AE2) 
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Figure 6.47: Effect of the inventory costs and the bunker price on the optimal speeds (route AE2) 

The speeds are higher on the legs on which the daily inventory costs are higher 

6.3  EFFECT OF MARKET-BASED MEASURES 

The section deals with the effect of two possible market-based measures in order to reduce 

the CO2 emissions produced by the ships. The analysis considers a fixed service period 

equal to 7 whereas it considers the number of ships as variable. Consequently, the 

scenario analysed are similar to the fixed service frequency scenarios. Such solutions 

market-based measures are: 

 

 Bunker levy: a bunker levy is a cost added to the bunker price per tonne. Such 

measure has the same effect of a fuel price’s rise. The bunker prices employed in 

the study are reported in table 6.20 ; 
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Bunker price 

Scenario P [USD/tonne] Bunker levy [USD/tonne] 

1-base 365 / 

2 415 50 

3 465 100 

4-speed limit 365 / 

Table 6.20: Bunker prices concerning the scenarios simulated in the comparison between a 

bunker levy policy and a speed limit policy 

 

 Speed limit policy: a speed limit policy means imposing a maximum speed to the 

vessels. Strictly speaking, such policy is not a market-based measures however it 

is considered in such way in order to compare his effects with respect to the bunker 

levy’s effects.  The CO2 emissions are linked to the speed of the ship hence 

limiting the maximum speed entails a reduction concerning the CO2 emissions. 

However, limiting the maximum speed implies a rise of the number of ships 

deployed.  The study considers as upper limit a speed of 18 knots; 

The study assesses the measures through their cost efficiency. The cost efficiency CEi 

[USD/tonne] of such measures is calculated employing the equation 6.39. The difference 

between the daily revenue in the scenario 1  𝜋̇1−𝑏𝑎𝑠𝑒, which is the base scenario hence it 

does not involve any measure to reduce the CO2 emissions, and the daily profits in the 

considered scenario 𝜋̇𝑖 is the cost of implementing the measure. The difference between 

the daily CO2 emissions in the scenario 1 Ed,1-base and the daily CO2 emissions in the 

considered scenario Ed,i-base is the amount of emissions avoided through the measure. As 

explained in section 3.3.3, the ratio between these two values is the cost efficiency of the 

measure analysed: 

𝐶𝐸𝑖 =  
𝜋̇1−𝑏𝑎𝑠𝑒 −  𝜋̇𝑖

𝐸𝑑,1−𝑏𝑎𝑠𝑒 −  𝐸𝑑,𝑖
  

 

(6.40) 

Since the equation 6.39 contains the daily profits as well as the daily CO2 emissions, the 

result is the same in employing their values calculated over a specific time lapse. Indeed, 

in such case, each factor would be multiplied by the same duration of time. 

Table 6.21 contains the results concerning the analysis for each route. The results given 

by the model show that limiting the speed at the maximum value of 18 knots allows 

obtaining the best results in each route involved. On the contrary, the bunker price policy 

seems to be inefficient as the cost of avoiding the emissions of one ton of CO2 is by far 

higher than in the speed limit scenario. Besides, the bunker levy of 50 USD/tonnes is 

inapplicable since the cost efficiency is excessively high. Indeed, as shown in figure 5.57, 

despite the bunker levy, the fuel price is not enough to force the ship owner to deploy a 

new ship along the route, therefore in order to maintain the service frequency the average 

speed cannot largely vary. On the contrary, the 100-bunker levy scenario force the number 

of ships to increase, reducing the emissions. Nevertheless, the higher fuel expenditure 

reduces the carrier’s income more than in the speed limit scenario because in such 

scenario the ship owner has only to afford the cost of deploying a new vessel. The results 



  6. RESULTS 

 

Speed optimization and environmental effect in container liner shipping Page  157 

 

concerning the route TP1 are extremely high because neither the 100-scenario nor the 

speed limit scenario leads to increase the number of ships. For such scenario would be 

necessary a higher bunker levy or similarly a lower upper limit concerning the speeds in 

order to achieve some interesting results.  

 

Therefore, a market-based measure should take into account the specific characteristics 

of the routes involved. For example, for the route TP1 a specific speed limit should be 

imposed, lower than for the route NEUATL1 and AE2. Finally, one can observe that in 

the container ship industry, in which there is a mandatory service frequency, the only 

viable solution in order to curb the CO2 emissions has to force the carriers to increase the 

number of ships deployed along their services. Indeed, given a service frequency, the 

average speed along the route is about constant unless the number of ships increase. Table 

6.22 reports the results concerning the number of ships, the average speed, the daily profit 

and the daily CO2 emissions for the route NEUATL1.  

 

Comparison results 

Route AE2 

Scenario Cost efficiency [USD/tonne] 

2 9236 

3 168,7 

4-speed limited 32,44 

Route TP1 

Scenario Cost efficiency [USD/tonne] 

2 / 

3 22711 

4-speed limited 6488,3 

Route NEUATL1 

Scenario Cost efficiency [USD/tonne] 

2 159474,9 

3 84,7 

4-speed limited 20,1 

Table 6.21: Cost efficiency of the analysis concerning the effect of market-based measures 

 

 

Results route NEUATL1 

Scenario N 
Average speed 

[knots] 
Daily profit 
[USD/day] 

Daily CO2 emissions 
[tonnes/day] 

1-base 4 20,02 789509 911,1 

2 4 20,02 774879 911,0 

3 5 15,32 763887 608,5 

4-speed limited 5 15,32 783429 608,5 

Table 6.22: Results for the route NEUATL1 concerning the market-based measures effect 
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The results obtained in this paper can be compared with the results provided in (Cariou 

and Cheaitou, 2012). Such paper deals with the comparison between a bunker levy policy 

and a speed limit, however in such thesis the speed limit comprise only a specific area. 

Taking into account the differences between the model provided in the paper and the 

model contained in the thesis, the cost efficiency comparison between the two policies 

leads to the same results. (Cariou and Cheaitou, 2012) provide the results concerning the 

route Northern Europe/North America, which are reported in table 6.23. In the same table 

are reported the cost efficiencies obtained applying the two policies. The cost efficiencies 

are calculated as made for the results obtained in this paper, i.e. dividing the difference 

between the profit of the base scenario and the profit of the scenario in which the 

considered policy is applied by the difference of the CO2 emissions in the two scenarios. 

 

Results (Cariou and Cheaitou, 2012) 

Scenario Daily profit [USD/day] Daily CO2 emissions 
[tonnes/day] 

Cost efficiency 
[USD/tonne] 

1-base 1451041 1072 / 

2-bunker levy 
(95 USD/tonne) 

1420926 901 176,1 

3-speed limit 1442417 936 63,4 

Table 6.23: Cost efficiencies for (Cariou and Cheaitou, 2012) 
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CHAPTER 7 

7.CONCLUSIONS 
 

The section summarizes the main results the results obtained in the previous section. 

Therefore, the results concerning the effect of the freight rate, the bunker price and the 

daily fixed operating costs are divided with respect to the scenario considered: 

 Fixed frequency scenario: increasing the daily fixed operating costs decreases 

the optimal number of ships, thus the daily expenditure to maintain the fleet 

diminish. Since the service frequency is constant, the average speed of the ships 

must be higher in order to provide such frequency, hence the daily CO2 emissions 

are also higher. On the contrary, increasing the bunker price, the optimal number 

of ships increases because in order to curb the fuel costs the average speed must 

decrease. Therefore, being the average speed lower, the daily CO2 emissions are 

lower. The freight rate does not affect the optimal solution as the service 

frequency is constant therefore the revenue is also constant. The previous 

statement is reassumed in the following equation: 

 

 

 

 

𝑁 ⟶  (
1

𝐸
, 𝑃)      𝑤ℎ𝑒𝑟𝑒𝑎𝑠      𝑁 ⟶𝑁𝑂𝑇 (𝐹) 

(7.1) 

 

 

 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ⟶ (𝐸,
1

𝑃
)      𝑤ℎ𝑒𝑟𝑒𝑎𝑠      𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ⟶𝑁𝑂𝑇 𝑓(𝐹) 

 

(7.2) 

 

 

 

𝐸𝑑 ⟶ (𝐸,
1

𝑃
)      𝑤ℎ𝑒𝑟𝑒𝑎𝑠     𝐸𝑑 ⟶𝑁𝑂𝑇 𝑓(𝐹) 

 

(7.3) 

 

 

Figure 7.1 depicts the number of ships’ trend and the average speed’s trend at 

different bunker prices for the route AE2.  
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Figure 7.1: Fixed frequency scenario, optimal number of ships and optimal average speed at 

different bunker prices (route AE2) 

 

 Fixed number of ships scenario: Since the number of ships is constant, the daily 

operating costs do not affect the results. As observed in the fixed frequency 

scenario, a higher bunker price leads the operator to slow down his ships hence 

the average speed decreases. Consequently, the daily CO2 emissions diminishes 

as the average speed is lower. The freight rate influences the optimal service 

frequency. Indeed, if the freight rate increases, the optimal service frequency will 

be lower. Nevertheless, the number of ships is constant, hence a higher service 

frequency entails to speed up the average speed in order to provide the required 

frequency. Therefore, the higher average speed implies higher fuel costs as well 

as the daily emissions. The previous statements can be mathematically written as: 

 

  

 

 

𝑡0 ⟶ (
1

𝐹
, 𝑃)       𝑤ℎ𝑒𝑟𝑒𝑎𝑠     𝑡0 ⟶𝑁𝑂𝑇 (𝐸) 

(7.4) 

 

 

 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ⟶ (𝐹,
1

𝑃
)       𝑤ℎ𝑒𝑟𝑒𝑎𝑠     𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ⟶𝑁𝑂𝑇 (𝐸) 

 

(7.5) 

 

 

 

𝐸𝑑 ⟶ (𝐹,
1

𝑃
)      𝑤ℎ𝑒𝑟𝑒𝑎𝑠     𝐸𝑑 ⟶𝑁𝑂𝑇 (𝐸) 

 

(7.6) 
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Figure 7.2 depicts the service frequency’ trend and the average speed’s trend at different 

freight rate values for the route TP1.  

 

 

Figure 7.2: Fixed number of ships scenario, optimal service period and optimal average speed at 

different average freight rates (route TP1) 

 

 Number of ships bounded above scenario: considering the equation 7.7, one 

can see that if the service frequency is higher, the average speed must be higher 

because of the upper limit on the number of ships. Moreover, more ships are 

required in order to provide high service frequencies. 

  

 𝑡0 =  
∑

𝐿𝑖

24 𝑣𝑖
𝑖 +  ∑ 𝑡𝑗𝑗

𝑁
=  

𝑇0

𝑁
 

 

(7.7) 

 

Since adopting a high service frequency implies that the number of ships must 

increase in order to provide the required service frequency, the optimal service 

frequency is indirectly proportional to the daily fixed operating costs. 

Consequently, the number of ships and the average speed (hence the emissions) 

are lower when the daily fixed operating costs are higher. The optimal service 

frequency is indirectly proportional to the bunker price hence the bunker price’s 

effect is the same effect of the daily fixed operating costs. Indeed, a high bunker 

price leads the operator to decrease the average speed. Therefore, being the 

number of ships bounded above, the average speed cannot decrease unless the 

service frequency decreases.  
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The reduction of the average speed entails a reduction of the daily CO2 emissions 

whereas the reduction concerning the service frequency implies a lower number 

of ships. On the contrary, the service frequency is directly proportional to the 

freight rate. Since a higher service frequency implies that the average speed and 

the number of vessels must be higher, the number of ships and the average speed 

are proportional to the freight rate’s value. Obviously, the rise of the average speed 

entails that the emissions increase.  

The previous statements are summarized by the following equations: 

 

 

 

𝑡0 ⟶  (
1

𝐹
, 𝑃, 𝐸)  

(7.8) 

 

 

 

𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ⟶  (𝐹,
1

𝑃
,
1

𝐸
)  

 

(7.9) 

 

 

 

𝑁 ⟶  (𝐹,
1

𝑃
,
1

𝐸
)  

 

(7.10) 

 

 

 

𝐸𝑑 ⟶  (𝐹,
1

𝑃
,
1

𝐸
)  

 

(7.11) 

 

 

Considering an unlimited number of ships mitigates the effect of the bunker price 

on the optimal service frequency hence on the other decisional variables. In such 

case, the average speed is not related to the service frequency because the operator 

can deploy the optimal number of ships for the considered service frequency. 

Employing a higher service frequency, the average speed might be lower than 

employing a lower frequency; consequently, the operator can curb the rise of the 

fuel expenditure due to the higher service frequency.  

 

 

Figure 7.3 depicts the service frequency’ trend and the average speed’s trend at different 

freight rate values for the route TP1. Figure 7.4 shows the bunker price effect on the 

average speed and the service period for the route AE2. 
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Figure 7.3: Number of ships bounded above scenario, optimal service period and optimal average 

speed at different average freight rates (route TP1) 

 

 
Figure 7.4: Number of ships bounded above scenario, optimal service period and optimal average 

speed at different bunker prices (route AE2) 

 

 

Nevertheless, the influence of the freight rate, the bunker price and the daily operating 

fixed costs depends on the route’s characteristics, such as the distances between the 

harbours and the transport demand considered. For example, the bunker price does not 

influence the optimal number of ships in the “number of ships bounded” scenario within 

the range of bunker price’s values analysed. Therefore, the effects of these parameters 

should be analysed considering the actual features of the route involved. 
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Besides, one must notice that considering the service frequency as a variable entails that 

the transport demand is unlimited. Therefore, one must take into account the results 

obtained by the model can only be employed to analyse sort of scenario in which the 

transport demand, at least within the service frequency considered, as unlimited. 

 

The inventory costs influence the optimal speeds along the legs. As depicts in figure 7.5, 

the optimal speed is higher on the legs on which the daily inventory costs are higher 

whereas the optimal speeds are lower on the legs with lower values of inventory costs. 

Nevertheless, the bunker price mitigates such effect because the rise of the fuel cost leads 

the operator to adopt speeds as lower as possible in order to minimize the fuel 

expenditure. 

 

 

Figure 7.5: Effect of the inventory costs on the speeds along the legs (route TP1) 

The figure refers to a base scenario in which the N=5, t0=7 and the bunker price is equal to 219 

USD/tonne 

 

Finally, the results concerning the implementation of two market-based measures in order 

to reduce the CO2 emissions, which are the bunker levy policy and the speed limit policy, 

show the economic advantage of imposing a speed limit. Indeed, imposing a speed limit, 

the carriers are forced to increase the number of vessels deployed along the route, which 

is the only way to reduce the emissions produced by the fleet. A bunker levy may produce 

the same effect however the reduction of the operator’s profits are higher hence such 

solution is economically disadvantageous. Table 7.1 contains the results regarding the 

route AE2. 
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Comparison results 

Route AE2 

Scenario Cost efficiency [USD/tonne] 

2-bunker levy 50 [USD/tonne] 9236 

3-bunker levy 100 [USD/tonne] 168,7 

4-speed limited 32,44 

Table 7.1: Costs efficiencies of the bunker levy policy and the speed limit policy (route AE2) 

 

Nevertheless, the benefits of a speed limit policy are strictly related to the route’s 

characteristics. The specific features of the considered route might make the speed limit 

policy as well as the bunker levy policy completely inefficient, i.e. the cost per one tonne 

of CO2 avoided is extremely high. Furthermore, one should not claim that the speed limit 

policy is a better alternative with respect to the bunker levy policy. Indeed, the 

comparison is made taking into account only the economic impact on the carrier’s profit; 

however, such analysis should also comprise other stakeholders and other benchmark 

values.  
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APPENDICES 

APPENDIX - A 

The percentages reported in figure 2.1 are computed from the following table provided in 

the third IMO GHG study 2014: 

 

CO2 Emissions [million tonnes] 

Fuel 2007 2008 2009 2010 2011 2012 
HFO 773,8 802,7 736,6 650,6 716,9 667,9 
MDO 97,2 102,9 104,2 102,2 109,8 105,2 
LNG 13,9 15,4 14,2 18,6 22,8 22,6 

Table A.1: International emission for fuel type using bottom-up method 

Adapted from: IMO-International Maritime Organization, Third IMO Greenhouse Gas Study 

2014, Table 3 

These emissions values are divided by the emissions factor reported in (IMO, 2014): 

 

CO2 Emissions Factors (IMO, 2014) 

Fuel Emissions Factor 
HFO 3,114 
MDO 3,206 
LNG 2,750 

Table A.2: emission factors 

Adapted from: IMO-International Maritime Organization, Third IMO Greenhouse Gas Study 

2014, Page 248 

 

Thus, using the following equation the fuel consumption FC in million tonnes for each 

type of fuel are computed: 

 𝐹𝐶𝑖 =  
𝐸𝑖

𝐸𝐹𝑖
  (A.1) 

 

Where E is the amount of emission in million tonnes and EF is the emissions factor of 

the fuel considered. 
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APPENDIX - B 

The index reported in  figure 3.4 is computed employing the data present in table B.1 and 

table B.2, which refer to the CO2 emissions produced by the shipping transport and the 

load transported respectively.   

 

Global and Shipping CO2  Emissions [Mtonnes] 

Year Global International shipping 

2007 31409 885 

2008 32204 921 

2009 32047 855 

2010 33612 771 

2011 34723 850 

2012 35640 796 

Table B.1: Global and shipping CO2 emissions in 2007-2012 

Adapted from: IMO-International Maritime Organization, Third IMO Greenhouse Gas Study 

2014, Table 1 

 

International seaborne trade [Mtonnes] 

 Container 
Other dry 

cargo 
Five major bulks Oil and gas Total 

2007 1193 2141 1953 2747 8034 

2008 1249 2173 2065 2742 8229 

2009 1127 2004 2085 2642 7858 

2010 1280 2022 2335 2772 8409 

2011 1393 2112 2486 2794 8785 

2012 1464 2150 2742 2841 9197 

Table B.2: International seaborne trade in millions of tonne loaded in 2007-2012 

Adapted from: UNCTAD-United Nations Conference on Trade and Development, Review of 

Maritime transport, Figure 1.2, 2015 

 

Basically, the emission-activity index is computed for each year dividing the international 

emissions by the amount of cargoes loaded: 

 𝑖𝑛𝑑𝑒𝑥 =  
𝑌𝑒𝑎𝑟𝑙𝑦 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑌𝑒𝑎𝑟𝑙𝑦 𝐿𝑜𝑎𝑑
  (B.1) 
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APPENDIX - C 

function [m,A]=linearizzazione(a,b,error,Umax,Umin) 

Qr = @(u) (1/24)*a*u.^(1-b); 

Qr1 = @(u) (1/24)*a*(1-b)*u.^-b; 

Qrmax = Qr(Umax); 

for k=1:10000 

    u(1)=Umin; 

    Q(1)=Qr(Umin)-error; 

    clear uc; 

    clear ubk; 

    if (Qrmax-Q(k))/(Umax-u(k)) >= Qr1(Umax) 

        A(k)=Qrmax-Qr1(Umax)*Umax; 

        m(k)=Qr1(Umax); 

        if A(k)+m(k)*Umax >= Qrmax-error 

            u(k+1)=Umax; 

            Q(k+1)=A(k)+m(k)*Umax; 

        break 

    end 

    else 

        fx=@(ubj) (1/24)*a*(1-b)*(ubj.^-b)*(ubj-u(k))+Q(k)-(1/24)*a*ubj.^(1-b); 

        ubj=bisection(fx,u(k),Umax,0.000001); 

        ub(k)=ubj; 

        Qb(k)=(1/24)*a*ub(k)^(1-b); 

        A(k)=Q(k)-u(k)*((Qb(k)-Q(k))/(ub(k)-u(k))); 

        m(k)=(Qb(k)-Q(k))/(ub(k)-u(k)); 

        Qnk=@(u) A(k)+m(k)*u; 

        if A(k)+m(k)*Umax >= Qrmax-error 
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            u(k+1)=Umax; 

            Q(k+1)=A(k)+m(k)*Umax; 

        break 

    end 

    end 

    if (Qrmax-Q(k))/(Umax-u(k)) <= Qr1(Umax) 

     if Qnk(Umax)>(Qr(Umax)-error) 

        A(k)=Q(k)-u(k)*((Qb(k)-Q(k))/(ub(k)-u(k))); 

        m(k)=(Qb(k)-Q(k))/(ub(k)-u(k)); 

        if A(k)+m(k)*Umax >= Qrmax-error 

            u(k+1)=Umax; 

            Q(k+1)=A(k)+m(k)*Umax; 

        break 

    end 

     else 

        fx=@(uc) A(k)+m(k)*uc+error-(1/24)*a*uc^(1-b); 

        uc=bisection(fx,ubj,Umax,0.000001); 

        u(k+1)=uc; 

        A(k)=Q(k)-u(k)*((Qb(k)-Q(k))/(ub(k)-u(k))); 

        m(k)=(Qb(k)-Q(k))/(ub(k)-u(k)); 

        Q(k+1)=A(k)+m(k)*u(k+1); 

     end 

    end 

end 

j=length(m); 

for k=1:j 

    x=(u(k):0.000001:u(k+1)); 

    ux=Qr(x); 
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    y=@(x) A(k)+m(k)*x; 

    y1=y(x); 

    hold on 

    plot(x,ux,'b') 

    hold on 

    plot(x,y1,'g') 

    hold on 

    plot(u(k),Q(k),'r*') 

    hold on 

    plot(u(k+1),Q(k+1),'r*') 

end     

xlswrite('pendenze',m) 

xlswrite('Intercette',A) 

A 

M 
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APPENDIX - D 

Appendix D contains the input parameters such as demand tables and payloads on the 

legs, for each route. The parameters must be considered as the base scenario values and 

any variation reported in the analysis refers to these figures.  

 

 AE2 

 Capacity Utilization [%] 

 A to NE (Westbound) NE to A(Eastbound) 

1Q10 92% 62% 

2Q10 104% 66% 

3Q10 95% 54% 

4Q10 78% 54% 

Average 92% 59% 

Table D.1: Average capacity utilization in 2010 on the Europe-Far East lane 

Adapted from: Federal Maritime Commission, Study of the 2008 Repeal of the Liner Conference 

Exemption from European Union Competition Law, Table AE-20 

Demand Table Eastbound 

FROM/TO [TEU] 
Colombo

-6 
Singapore

-7 
Hong 

Kong-8 
Yantian

-9 
Xingang

-10 
Qingdao

-11 
Busan

-12 
Shanghai

-13 
Ningbo

-14 
Loaded 

Felixstowe-1 130 230 230 230 230 230 230 230 230 1970 

Antwerp-2 130 230 230 230 230 230 230 230 230 1970 

Wilhelmshaven-3 130 230 230 230 230 230 230 230 230 1970 

Bremerhaven-4 130 230 230 230 230 230 230 230 230 1970 

Rotterdam-5 130 230 230 230 230 230 230 230 230 1970 

Colombo-6 / 230 230 230 230 230 230 230 230 1840 

Unloaded 650 1380 1380 1380 1380 1380 1380 1380 1380  

 

Demand Table Westbound 

FROM/TO [TEU] Algericias-17 Antwerp-2 Wilhelmshaven-3 Bremerhaven-4 
Rotterdam-

5 
Felixstowe-1 Loaded 

Xingang-10 460 460 460 460 460 460 2760 

Qingdao-11 460 460 460 460 460 460 2760 

Busan-12 460 460 460 460 460 460 2760 

Shanghai-13 460 460 460 460 460 460 2760 

Ningbo-14 460 460 460 460 460 460 2760 

Yantian-15 460 460 460 460 460 460 2760 

Tanjung Pelepes-
16 

210 210 210 210 210 210 1260 

Unloaded 2970 2970 2970 2970 2970 2970  

 

Table D.2: Supposed demand tables for the AE2 lane 
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Capacity Utilization 

Leg-1 75% 

Leg-2 70% 

Leg-3 64% 

Leg-4 59% 

Leg-5 53% 

Leg-6 60% 

Leg-7 52% 

Leg-8 45% 

Leg-9 37% 

Leg-10 45% 

Leg-11 52% 

Leg-12 60% 

Leg-13 67% 

Leg-14 75% 

Leg-15 90% 

Leg-16 97% 

Leg-17 80% 

Table D.3: Capacity utilization on each leg for the AE2 lane 

The demand tables determine the capacity utilization table. As explained in section 5.3.1, the legs 

5 and 6 are imposed to be the eastbound leg whereas the legs 15 and 16 are imposed to be the 

westbound leg. On such legs, the average capacity utilization is by 57% and by 93% respectively, 

hence these values are almost equal to the benchmark values reported in table D.1. 

 

 

 Volume in TEUs [TEU] Annual Value of Liner Cargo [USD] Average Value per TEU 
[USD/TEU] 

 A to NE 
(Westbound) 

NE to A 
(Eastbound) 

A to NE 
(Westbound) 

NE to A 
(Eastbound) 

A to NE 
(Westbound) 

NE to A 
(Eastbound) 

1Q10 2122067 1112341 / / $34.166,26 $29.389,30 

2Q10 2232096 1133848 / /   

3Q10 2517504 1029319 / /   

4Q10 2310642 1055249 / /   

Average 9182309 4330757 $313.725.201.717 $127.277.933.979   

Table D.4: Average value per TEU in 2010 on the AE2 lane 

Adapted from: Federal Maritime Commission, Study of the 2008 Repeal of the Liner Conference 

Exemption from European Union Competition Law, Table AE-1 and AE-15 

 

 

 



APPENDICES  

 

Page  174 Speed optimization and environmental effect in container liner shipping 

 

 

Cargo Value [USD/TEU] 

Leg-1 33487 

Leg-2 32702 

Leg-3 31784 

Leg-4 30697 

Leg-5 29389 

Leg-6 29389 

Leg-7 29389 

Leg-8 29389 

Leg-9 29389 

Leg-10 30982 

Leg-11 32119 

Leg-12 32972 

Leg-13 33635 

Leg-14 34166 

Leg-15 34166 

Leg-16 34166 

Leg-17 34166 

Table D.5: Average cargo value on each leg for the AE2 lane 

The average value for the legs 5 and 6 is 29389 [USD/TEU] whereas the average value for the 

legs 15 and 16 is 34166 [USD/TEU]. These values are equal to the benchmark values in table 

D.4. 

 

 

Freight rate benchmark values [USD/TEU] 

Felixstowe to Shanghai (eastbound) 675 

Shanghai to Felixstowe (westbound) 690 

Table D.6: Freight rate benchmark values for the AE2 lane 

Data source: http://www.worldfreightrates.com, 18-12-2016 
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Freight Rate Table Eastbound 

FROM/TO 
[USD/TEU] 

Colombo-
6 

Singapore-
7 

Hong Kong-
8 

Yantian
-9 

Xingang-
10 

Qingdao-
11 

Busan-
12 

Shanghai-
13 

Ningbo-
14 

Felixstowe-1 380 458 532 534 604 625 650 675 681 

Antwerp-2 373 451 525 527 597 618 643 668 674 

Wilhelmshaven-3 355 434 507 509 580 601 626 651 657 

Bremerhaven-4 352 431 504 506 577 597 623 647 654 

Rotterdam-5 339 418 491 493 564 585 610 635 641 

Colombo-6 / 79 152 154 225 245 271 295 302 

 

Freight Rate Table Westbound 

FROM/TO 
[USD/TEU] 

Algeciras-17 Felixstowe-1 Antwerp-2 Wilhelmshaven-3 Bremerhaven-4 Rotterdam-5 

Xingang-10 585 656 663 682 686 700 

Qingdao-11 562 633 641 660 663 677 

Busan-12 535 606 614 632 636 650 

Shanghai-13 508 579 587 606 609 623 

Ningbo-14 501 572 580 599 602 616 

Yantian-15 462 533 540 559 563 577 

Tanjung Pelepes-16 379 450 458 477 480 494 

Table D.7: Freight rates tables for the AE2 lane 

The freight rates table contains the freight rates employed in the model 

 

 

Figure D.8: Daily fuel consumption at sea for the AE2 lane 

The black line is the interpolating function whereas the blue points depict the daily fuel 

consumption at different speed, obtained by the spreadsheet provided in 

https://www.shipowners.dk/en/services/beregningsvaerktoejer 
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Daily Fuel Consumption 

Speed [knots] 15 16 17 18 19 20 21 22 23 24 25 

Auxiliary at sea [tonne/day] 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 

Auxiliary at port [tonne/day] 27,9 27,9 27,9 27,9 27,9 27,9 27,9 27,9 27,9 27,9 27,9 

Main engine [tonne/day] 58,2 69,4 81,9 95,7 111,0 129,2 149,9 173,8 201,8 235,6 277,4 

Main engine and auxiliary at sea [tonne/day] 66,0 77,3 89,8 103,6 118,9 137,0 157,8 181,7 209,7 243,4 285,2 

Table D.9: Daily fuel consumption data for the AE2 lane 

 

 

Harbor time, tp [h] 

Leg-1 45 

Leg-2 40 

Leg-3 16 

Leg-4 18 

Leg-5 36 

Leg-6 16 

Leg-7 25 

Leg-8 17 

Leg-9 18,5 

Leg-10 50 

Leg-11 23 

Leg-12 18 

Leg-13 12 

Leg-14 24 

Leg-15 15 

Leg-16 31 

Leg-17 24 

Table D.10: Times at ports for the AE2 lane 
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TEU 

capacity 
[TEU] 

IMO 
number 

Deadweight 
[tonnes] 

Length 
Overall [m] 

Breadth 
Extreme 

[m] 
Year Built Main engine [kW] 

Msc Zoe 19437 9703318 199281 395,46 59,08 09-apr-15 

 
1x MAN-B&W/Hyundai 11S90ME-C10 - 2 
stroke 11 cylinder diesel engine - 67.100 

kW / 83.780 hp 

Msc Jade 19224 9762326 200148 398,4 59,07 10-dec-15  

Merete 
Maersk 
(triple E) 

18300 9632064 194916 399,2 60 22-aug-14 

2x Doosan 7S80ME-C - 7 cylinder 800 x 
3.450 mm diesel engine each 23.310 kW 

/ 31.692 hp at 72 rpm 
Manufacturer: Doosan Engine Co., Ltd. 

Msc Mirja 19600 9762338 194308 398,49 59,01 2016*  

Evelyn 
Maersk 

15550 9321512 158200 397,71 56,55 
29-mar-

07 

 
1x Doosan Sulzer 14RT-FLEX96C - 14 

cylinder 960 x 2.500 mm engine - 80.080 
kW at 102,0 rpm 

Manufacturer Name: Doosan Engine Co. 
Ltd 

Msc Ditte 19300 9754953 200148 398,4 59,08 22-jun-16  

Mathilde 
Maersk 
(triple E) 

18300 9632179 196000 399,2 59 30-jun-15 

2x MAN-B&W/Doosan 7S80ME-C9.4 - 2 
stroke 7 cylinder 800 x 3.450 mm diesel 

engines each 23.310 kW at 72,0 rpm 
Manufacturer: Doosan Engine Co., Ltd. 

Mogens 
Maersk 

(Triple E) 
18300 9632090 194679 399 60 17-sep-14  

Msc London 16980 9606302 186650 399 54 13-jul-14 
 

1x MAN-B&W-STX11S90ME-C9 - 2 stroke 
11 cylinder diesel engine 59.780 kW 

Msc Reef 19600 9754965 200148 398,4 59,08 2016*  

Table D.11: Vessels characteristics for the AE2 lane  

Data Sources: 

 The transport capacity, the IMO number and the built year are reported in 

https://my.maerskline.com (*data from https://www.marinetraffic.com)  

 The deadweight, the length overall and the breadth extreme are provided in 

https://www.marinetraffic.com 

 The power is reported in http://www.scheepvaartwest.be 

Accessed: 10-12-2016 

 TP1 

 Capacity Utilization [%] 

 
US to A 

(Westbound) 
A to 

US(Eastbound) 

1Q10 54% 79% 

2Q10 65% 100% 

3Q10 55% 86% 

4Q10 52% 74% 

Average 57% 85% 

Table D.12: Average capacity utilization in 2010 on the Asia-North America lane 

Adapted from: Federal Maritime Commission, Study of the 2008 Repeal of the Liner Conference 

Exemption from European Union Competition Law, Table TP-20 
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Demand Table Westbound 

FROM/TO [TEU] Yokohama-3 Busan-4 Kaoshiung-5 Yantian-6 Xiamen-7 Shanghai-8 Loaded 

Vancouver-1 350 350 350 350 350 350 2100 

Seattle-2 350 350 350 350 350 350 2100 

Unloaded 700 700 700 700 700 700  

 

Demand Table Eastbound 

FROM/TO [TEU] Vancouver-1 Seattle-2 Loaded 

Kaoshiung-5 600 600 1200 

Yantian-6 600 600 1200 

Xiamen-7 600 600 1200 

Shanghai-8 600 600 1200 

Busan-9 600 600 1200 

Unloaded 3000 3000  

Table D.13: Supposed demand tables for the TP1 lane 

 

 
Capacity Utilization 

Leg-1 72% 

Leg-2 59% 

Leg-3 49% 

Leg-4 40% 

Leg-5 47% 

Leg-6 54% 

Leg-7 61% 

Leg-8 68% 

Leg-9 85% 

Table D.14: Capacity utilization on each leg for the TP1 lane 

The demand tables determine the capacity utilization table. As explained in section 5.3.2, the leg 

2 is imposed to be the westbound leg whereas the leg 9 is imposed to be the eastbound leg. On 

such legs, the average capacity utilization is by 59% and by 85% respectively, hence these values 

are almost equal to the benchmark values reported in table D.10. 
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 Volume in TEUs [TEU] Annual Value of Liner Cargo [USD] Average Value per TEU [USD/TEU] 

 
US to A 

(Westbound) 
A to 

US(Eastbound) 
US to A 

(Westbound) 
A to 

US(Eastbound) 
US to A 

(Westbound) 
A to 

US(Eastbound) 

jan-10 430109 955535 / / $8.645,23 $30.514,61 

feb-10 459281 866915 / /   

mar-10 500822 872455 / /   

apr-10 498739 943258 / /   

maj-10 487786 1051020 / /   

jun-10 464090 1094163 / /   

jul-10 4654390 1087477 / /   

aug-10 467541 1200048 / /   

sep-10 448756 1128130 / /   

okt-10 530360 1141159 / /   

nov-10 519741 1059959 / /   

dec-10 523521 951023 / /   

Average 9985136 12351142 $86.323.832.060 $376.890.329.191   

Table D.15: Average value per TEU in 2010 on the TP1 lane 

Adapted from: Federal Maritime Commission, Study of the 2008 Repeal of the Liner Conference 

Exemption from European Union Competition Law, Table TP-1 and TP-15 

 

 

Cargo Value [USD/TEU] 

Leg-1 21510 

Leg-2 8645 

Leg-3 8645 

Leg-4 8645 

Leg-5 16598 

Leg-6 22457 

Leg-7 26954 

Leg-8 30515 

Leg-9 30515 

Table D.16: Average cargo value on each leg for the TP1 lane 

The average value for the legs 2 is 8645 [USD/TEU] whereas the average value for the legs 9 is 

30515 [USD/TEU]. These values are equal to the benchmark values in table D.14. 

 

 

Freight rate benchmark values [USD/TEU] 

Shanghai to Seattle (eastbound) 1070 

Seattle to Shanghai (westbound) 360 

Table D.17: Freight rate benchmark values for the TP1 lane 

Data source: http://www.worldfreightrates.com, 19-12-2016 
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Freight Rate Table Westbound 

FROM/TO [USD/TEU] Yokohama-3 Busan-4 Kaoshiung-5 Yantian-6 Xiamen-7 Shanghai-8 

Vancouver-1 225 260 308 325 339 367 

Seattle-2 218 253 301 318 332 360 

 

Freight Rate Table Eastbound 

FROM/TO [USD/TEU] Vancouver-1 Seattle-2 

Kaoshiung-5 1283 1311 

Yantian-6 1212 1240 

Xiamen-7 1155 1183 

Shanghai-8 1042 1070 

Busan-9 946 974 

 

Table D.18: Freight rates tables for the TP1 lane 

The freight rates table contains the freight rates employed in the model 

 

 

Figure D.19: Daily fuel consumption at sea for the TP1 lane 

The black line is the interpolating function whereas the blue points depict the daily fuel 

consumption at different speed, obtained by the spreadsheet provided in 

https://www.shipowners.dk/en/services/beregningsvaerktoejer 
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Daily Fuel Consumption 

Speed [knots] 15 16 17 18 19 20 21 22 23 24 25 

Auxiliary at sea [tonne/day] 6,9 6,9 6,9 6,9 6,9 6,9 6,9 6,9 6,9 6,9 6,9 

Auxiliary at port [tonne/day] 12,6 12,6 12,6 12,6 12,6 12,6 12,6 12,6 12,6 12,6 12,6 

Main engine [tonne/day] 45,4 54,3 64,6 76,4 89,7 104,6 121,7 141,3 164,5 192,7 228,2 

Main engine and auxiliary at sea [tonne/day] 52,3 61,2 71,5 83,3 96,6 111,5 128,5 148,2 171,3 199,5 235,1 

Table D.20: Daily fuel consumption data for the TP1 lane 

 

Harbor time, tp  [h] 

Leg-1 8,5 

Leg-2 53 

Leg-3 5 

Leg-4 14 

Leg-5 11 

Leg-6 20 

Leg-7 12 

Leg-8 12 

Leg-9 14 

Table D.21: Times at ports for the TP1 lane 

 

 

Vessels IMO 
number 

TEU 
Capacity 

Deadweight 
[tonne] 

Length Overall 
[m] 

Breadth Extreme 
[m] 

Power 
[kW] 

MSC Roberta 8511287 4500 43567 244 32 23147 

MSC Heidi 9309473 8870 114106 331,99 43,2 68510 

E.R. Vancouver 9285691 7849 93638 300,06 43 68640 

MSC Danang *9348687 *5085  68411 294,03 32,2 41130 

Maersk 
Denpasar 

*9348663 *5085 68463 294,08 32,2 41130 

Table D.22: Vessels characteristics for the TP1 lane  

Data Sources: 

 The transport capacity is reported in https://my.maerskline.com (*data from 

https://www.msc.com/search-schedules)  

 The IMO number is reported in https://my.maerskline.com (*data from 

http://www.containership-info.com)  

 The deadweight, the length overall and the breadth extreme are provided in 

https://www.marinetraffic.com 

 The power is reported in http://www.containership-info.com 

Accessed: 12-12-2016 
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 NEUATL1 

 Capacity Utilization [%] 

 US to E (Eastbound) E to US(Westbound) 

jan-10 78% 72% 

feb-10 81% 76% 

mar-10 103% 95% 

apr-10 92% 94% 

maj-10 87% 95% 

jun-10 88% 96% 

jul-10 86% 97% 

aug-10 92% 96% 

sep-10 89% 86% 

okt-10 79% 81% 

nov-10 83% 88% 

dec-10 82% 79% 

Average 87% 88% 

Table D.23: Average capacity utilization in 2010 on the North Europe-US lane 

Adapted from: Federal Maritime Commission, Study of the 2008 Repeal of the Liner Conference 

Exemption from European Union Competition Law, Table TA-23 

 

 

 

Demand Table Westbound 

FROM/TO [TEU] Norfolk-4 Charleston-5 Miami-6 Houston-7 Loaded 

Antwerp-1 350 350 350 350 1400 

Rotterdam-2 350 350 350 350 1400 

Bremerhaven-3 350 350 350 350 1400 

Unloaded 1050 1050 1050 1050  

 

Demand Table Eastbound 

FROM/TO [TEU] Antwerp-1 Rotterdam-2 Bremerhaven-3 Loaded 

Charleston-5 340 340 340 1020 

Miami-6 340 340 340 1020 

Houston-7 340 340 340 1020 

Norfolk-8 340 340 340 1020 

Unloaded 1360 1360 1360  

Table D.24: Supposed demand tables for the NEUATL1 lane 
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Capacity Utilization 

Leg-1 87% 

Leg-2 88% 

Leg-3 89% 

Leg-4 66% 

Leg-5 66% 

Leg-6 65% 

Leg-7 65% 

Leg-8 86% 

Table D.25: Capacity utilization on each leg for the NEUATL1 lane 

The demand tables determine the capacity utilization table. As explained in section 5.3.3, the leg 

3 is imposed to be the westbound leg whereas the leg 8 is imposed to be the eastbound leg. On 

such legs, the average capacity utilization is by 89% and by 86% respectively hence these values 

are almost equal to the benchmark values reported in table D.21. 

 

 Volume in TEUs [TEU] Annual Value of Liner Cargo [USD] Average Value per TEU [USD/TEU] 

 
US to E 

(Eastbound) 
E to 

US(Westbound) 
US to E 

(Eastbound) 
E to 

US(Westbound) 
US to E 

(Eastbound) 
E to 

US(Westbound) 

jan-10 89779 96901 / / $33.599,48 $55.087,12 

feb-10 91318 100124 / /   

mar-10 114419 123355 / /   

apr-10 108787 124368 / /   

maj-10 103587 124576 / /   

jun-10 102343 124408 / /   

jul-10 100425 131563 / /   

aug-10 105748 129134 / /   

sep-10 103063 116013 / /   

okt-10 109533 128647 / /   

nov-10 104484 128143 / /   

dec-10 102651 113699 / /   

Average 1236137 1440931 $41.533.561.828 $79.376.740.068   

Table D.26: Average value per TEU in 2010 on the NEUATL1 lane 

Adapted from: Federal Maritime Commission, Study of the 2008 Repeal of the Liner Conference 

Exemption from European Union Competition Law, Table TA-3 and TA-15 
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Cargo Value [USD/TEU] 

Leg-1 40901 

Leg-2 48062 

Leg-3 55087 

Leg-4 55087 

Leg-5 48062 

Leg-6 40901 

Leg-7 33599 

Leg-8 33599 

Table D.27: Average cargo value on each leg for the TP1 lane 

The average value for the legs 3 is 55087 [USD/TEU] whereas the average value for the legs 9 

is 33599 [USD/TEU]. These values are equal to the benchmark values in table D.24. 

 

 

Freight rate benchmark values [USD/TEU] 

Miami to Rotterdam (eastbound) 1150 

Rotterdam to Miami (westbound) 1260 

Table D.28: Freight rate benchmark values for the NEUATL1 lane 

Data source: http://www.worldfreightrates.com, 19-12-2016 

 

 

 

Freight Rate Table Westbound  

FROM/TO [USD/TEU] Norfolk-4 Charleston-5 Miami-6 Houston-7 

Antwerp-1 1063 1173 1289 1543 

Rotterdam-2 1034 1144 1260 1514 

Bremerhaven-3 968 1079 1194 1449 

 

Freight Rate Table Eastbound 

FROM/TO [USD/TEU] Antwerp-1 Rotterdam-2 Bremerhaven-3 

Charleston-5 1210 1230 1275 

Miami-6 1130 1150 1195 

Houston-7 955 974 1020 

Norfolk-8 641 661 706 

Table D.29: Freight rates tables for the NEUATL1 lane 

The freight rates table contains the freight rates employed in the model 
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Figure D.30: Daily fuel consumption at sea for the NEUATL1 lane 

The black line is the interpolating function whereas the blue points depict the daily fuel 

consumption at different speed, obtained by the spreadsheet provided in 

https://www.shipowners.dk/en/services/beregningsvaerktoejer 

 

 

Daily Fuel Consumption 

Speed [knots] 15 16 17 18 19 20 21 22 23 24 25 

Auxiliary at sea [tonne/day] 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 6,4 

Auxiliary at port [tonne/day] 24,3 24,3 24,3 24,3 24,3 24,3 24,3 24,3 24,3 24,3 24,3 

Main engine [tonne/day] 34,1 40,7 48,1 56,3 65,4 75,6 86,9 99,4 113,5 129,4 147,7 

Main engine and auxiliary at sea [tonne/day] 40,4 47,1 54,5 62,7 71,7 82,0 93,3 105,8 119,8 135,7 154,0 

Table D.31: Daily fuel consumption data for the NEUATL1 lane 

 

Harbor time, tp  [h] 

Leg-1 16 

Leg-2 20 

Leg-3 16 

Leg-4 11 

Leg-5 10 

Leg-6 10 

Leg-7 24 

Leg-8 18 

Table D.32: Times at ports for the NEUATL1 lane 
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Vessels IMO number TEU Capacity [TEU] 
Deadweight 

[tonne] 

Length 
Overall 

[m] 

Breadth 
Extreme 

[m] 
Power [kW] 

Maersk 
Carolina 

9155133 4824 62229 292,08 32,3 43070 

Maersk 
Wisconsin 

9193252 4658 61987 292,08 32,35 43070 

Maersk 
Montana 

9305312 4824* 61499 292,08 32,35 45764 

Maersk Iowa 9298686 4650 61454 292,08 32,35 45764 

Maersk 
Missouri 

9155121 4824 62229 292,08 32,3 43070 

Table D.33: Vessels characteristics for the NEUATL1 lane  

Data Sources: 

 The transport capacity is reported in https://my.maerskline.com (*data from 

https://www.msc.com/search-schedules)  

 The IMO number is reported in https://my.maerskline.com  

 The deadweight, the length overall and the breadth extreme are provided in 

https://www.marinetraffic.com 

 The power is reported in http://www.containership-info.com 

Accessed: 13-12-2016 
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