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ACRONYMS 

 

AWGN  additive white Gaussian noise 

CDMA  code division multiple access 

DIV-MIMO diversity systems multiple input multiple output 

DSL  digital subscriber line 

DOF  degree of freedom 

ISI  intersymbol interference 

LR  lattice reduction 

MIMO   multiple input multiple output 

MSE  mean square error 

PHY  physical layer 

QAM  quadrature amplitude modulation 

QPSK  quaternary phase shift keying 

SA-MIMO smart antenna multiple input multiple output 

SEP  symbol-error probability 

SINR  signal to interference plus noise ratio 

SM-MIMO spatial multiplexing multiple input multiple output 

SNR  signal to noise ratio 

STC-MIMO space-time coding multiple input multiple output 

TDD  time division duplex 

TH  Tomlinson–Harashima precoding 

WLAN  wireless local area network 

ZF  zero-forcing 
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INTRODUCTION 

 

Theoretical results describing the sum capacity when using multiple antennas to communicate with 

multiple users in a known rich scattering environment have not yet been followed with practical 

transmission schemes that achieve this capacity. The vector perturbation technique introduced a 

simple encoding algorithm that achieves near-capacity at sum rates of tens of bits/channel use. The 

algorithm is a variation on channel inversion that regularizes the inverse and uses a “sphere encoder” 

to perturb the data to reduce the power of the transmitted signal. The technique is comprised of two 

parts: it has shown in the first part that while the sum capacity grows linearly with the minimum of the 

number of antennas and users, the sum rate of channel inversion does not. This poor performance is 

due to the large spread in the singular values of the channel matrix. It introduces regularization to 

improve the condition of the inverse and maximize the signal to interference plus noise ratio (SINR)1 

at the receivers. Regularization enables linear growth and works especially well at low signal to noise 

ratios (SNRs), but an additional step is needed to achieve near-capacity performance at all SNRs. In 

fact, looking in the second part, before the regularization of the channel inverse, a certain perturbation 

of the data using a “sphere encoder” can be chosen to further reduce the energy of the transmitted 

signal. The performance difference with and without this perturbation is shown to be dramatic. With 

the perturbation, we can achieve excellent performance at all SNRs. 

 

Figure 0.1 Block diagram representation of a generically “Vector Perturbation” system. 

 

 

 

 

                                                           

1 The SINR also known as the carrier-to-interference ratio, is the quotient between the average received modulated carrier 

power and the average received co-channel interference power, i.e. cross-talk, from other transmitters than the useful signal. 
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Chapter 1 

 

MIMO SYSTEMS [9] 

 

Multi-antenna based multi-input multi-output (MIMO) communications first burst onto the scene in 

the mid-1990s. The pioneering work by Telatar, Foschini and Gans at Bell Labs demonstrated that 

MIMO in a wireless communication system can greatly improve performance, as much as one order of 

magnitude or more, without requiring any additional bandwidth. In the decade since, thousands of 

research papers have been written on the topic dealing with both physical layer (PHY) and network 

layer ramifications of the technology. MIMO has gone through the adoption curve for commercial 

wireless systems to the point that today, all high throughput commercial standards (i.e., WiMAX, Wi-Fi, 

cellular, etc.) have adopted MIMO as part of the optional, if not mandatory, portions of their standards. 

 

1.1 Introduction to MIMO 

A MIMO wireless system consists of M-transmit antennas and K-receive antennas; the spectral 

efficiency can (for large signal-to-noise ratios) in principle grow linearly with the minimum over the 

number of transmit and receive antennas. However, unlike phased array systems where a single 

information stream is transmitted on all transmitters and then received at the receiver antennas, 

MIMO systems transmit different information streams, say x1, x2 and x3, on each transmit antenna. 

These are independent information streams being sent simultaneously and in the same frequency 

band. At first glance, one might say that the transmitted signals interfere with one another. In reality, 

however, the signal arriving at each receiver antenna will be a linear combination of the M transmitted 

signals. Figure 1.1 shows a MIMO system with three transmit and three receive antennas. The received 

signals y1, y2, y3 at each of the three received antennas are a linear combination of x1, x2 and x3. 

 

 

 
Figure 1.1 MIMO transmission and reception in a dispersive environment. In a MIMO system, different information is 

transmitted simultaneously on each transmit antenna. 
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The coefficients {hij} represent the channel weights corresponding to the attenuation seen between 

each transmit-receive antenna pair. The effect is that we have a system of three equations and three 

unknowns as shown below 

 � � � �x�x�x	
. (1.1) 

In general, in a system with M-transmit antennas and K-receive antennas, the channel is characterized 

by its K × M channel matrix H, of channel coefficients {hij}, that must be invertible for MIMO systems to 

live up to their promise. It has been proven that the likelihood for H to be invertible increases as the 

number of multipaths and reflections in the vicinity of the transmitter or receiver increases. The 

impact of this is that in a Rayleigh fading environment with spatial independence, there are essentially 

MK levels of diversity available and there are min��,�� independent parallel channels that can be 

established. Increases in the diversity order results in significant reductions in the total transmit 

power for the same level of performance. On the other hand, an increase in the number of parallel 

channels translates into an increase in the achievable data rate within the same bandwidth.  

Let us now quantify the benefits of MIMO-based systems operating in a typical Rayleigh fading 

wireless channel. Figure 1.2 compares the achievable 95-percentile capacity (minimum capacity 

achieved over 95 percent of wireless channels encountered, or in other words, given a channel, there 

is a 95 percent chance that the capacity of that channel is higher than the capacity shown in the plot) 

for single antenna systems (yellow dot), for a phased array multi-antenna system (blue curve), and for 

MIMO systems (red curve). 

 

 

 
Figure 1.2 MIMO capacity increases with array size, whereas phased array smart antenna systems only improve 

logarithmically 
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As shown, the capacity of the phased array system grows logarithmically with increasing antenna 

array size, whereas the capacity of the MIMO system grows linearly. With four antennas, the phase 

array system provides a capacity of 8 bps/Hz, whereas the MIMO system provides a capacity of 19 

bps/Hz. It is also worth noting that in a phased array system, the array coefficients must be calculated 

to point the beam in the “best direction”. MIMO systems do not suffer from this problem as the 

geometry of the environment and position of the reflectors are automatically taken into account 

during the decoding of the MIMO signal. The benefits of MIMO will now be considered in a different 

light. Assume that there is a fixed capacity that is desired, say 1 bps/Hz, and ask the question, “How 

much total transmit power is needed to achieve a 95-percentile capacity of 1 bps/Hz?”. The results are 

summarized in Table 1.1. 

 

Antenna Configuration MIMO 

SISO (1 × 1) 12.8 dB 

2 × 2 1.2 dB 

3 × 3 -4.9 dB 

4 × 4 -9.3 dB 

 

Table 1.1 Receive SNR required to achieve a 95-percentile capacity of 1 bps/Hz 

 

As is seen from the table, as the numbers of antennas increase in a MIMO system, less and less receive 

power is needed to achieve the same data throughput rate. So if a conventional single antenna system 

required 1 W of transmit power to achieve a certain throughput, then an 8×8 MIMO system would 

require only 6 mW of power to achieve the same performance. 

 

1.2 A multiplicity of MIMO modes 

The appeal of spatial multiplexing MIMO systems has captured many people’s attention. This has been 

taken to the extreme whereby spatial multiplexing MIMO schemes have been suggested to solve any 

and all wireless communication issues. In fact, there are four unique multi-antenna MIMO techniques 

available to the system designer as follows: 

 

• Spatial multiplexing (SM-MIMO): In SM systems multiple antennas are used to transmit 

independent and separately encoded signals, so-called streams, from each of the multiple 

transmit antennas. As such SM-MIMO can result in much improved throughput without 

increasing bandwidth. The downside to SM is the need for highly complex matrix inversion 

operations in the receiver, and the added sensitivity to impairments when the system is driven 

into “full-multiplexing” (number of spatial streams is equal to the number of transmit antennas 

which in turn is equal to the number of receive antennas) mode of operation. 
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• Space-time coding (STC-MIMO): Space-time coding  rely on transmitting multiple, redundant 

copies of a data stream to the receiver in the hope that at least some of them may survive the 

physical path between transmission and reception in a good enough state to allow reliable 

decoding. Compared to spatial multiplexing systems, STC-MIMO systems provide robustness of 

communications without providing significant throughput gains. Moreover, they are well 

suited to asymmetric situations where the transmitter may have more antennas at its disposal 

than the receiver. 

 

• Diversity systems (DIV-MIMO): Diversity is a traditional form of multi-antenna processing that 

looks to counteract fast fading effects by creating independent channels between the TX and 

RX, transmitting the same signal on all independent channels and optimally combining the 

received signals. 

 

• Smart antenna (SA-MIMO): These systems are best described as adaptive phased array 

antenna systems that can adaptively beam-form or beam-null in a particular direction.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2
 Beamforming is a signal processing technique used in sensor arrays for directional signal transmission or reception. This 

spatial selectivity is achieved by using adaptive or fixed receive/transmit beam-patterns. The improvement compared with 

an omnidirectional reception/transmission is known as the receive/transmit gain (or loss). 
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Chapter 2 

 

THE VECTOR PERTURBATION TECHNIQUE [2], [3], [12] 

 

2.1 Vector-Perturbation in MIMO systems 

Current information theoretic interest in MIMO communications has shifted, in part, away from point-

to-point links and into multiuser (or “broadcast”) links. Many of the advantages of using multiple 

antennas in a single-user scenario also translate to large gains in multi-user scenarios. We are 

interested to find simple techniques to achieve this multi-user gain. It is well known that the point-to-

point capacity of M-transmit, N-receive antenna link grows linearly in a Rayleigh fading environment, 

with the minimum of M and N when the receiver knows the channel. We also know that K users, each 

with one antenna, can transmit to a single receiver with M antennas and the sum-capacity (total of 

transmission rates from all K users) grows linearly with the minimum of M and K. It has been more 

recently shown that this “uplink” transmission has a symmetric “downlink” where the M antennas are 

used to transmit to the K users; the sum-capacity grows linearly with min��,��, provided the 

transmitter and receivers all know the channel. This particular use of multiple antennas to 

communicate with many users simultaneously is especially appealing in wireless local area network 

(WLAN) environments such as IEEE 802.11 and other time-division duplex (TDD) systems where 

channel conditions can readily be learned by all parties. Some multi-antenna multiuser concepts have 

also been applied to digital subscriber line (DSL) services, where many twisted pairs of telephone lines 

are bundled together in one cable leading to interference between users. We are interested primarily 

in designing a coding technique for the downlink, where an access point (or base-station, or telephone 

switch) with M antennas (or a bundle of M wires) wants to communicate simultaneously with K users. 

To date, schemes to achieve the sum-capacity in these multi-antenna links are largely information-

theoretic and rely on layered applications of “dirty paper coding” and interference cancellation. Dirty 

paper coding is first described for the Gaussian interference channel by Costa [1], where he finds that 

the capacity of an interference channel where the interfering signal is known at the transmitter (but 

not necessarily under its control) is the same as the channel with no interference. Costa envisioned the 

interference as dirt and his signal as ink; his information-theoretic solution is not to oppose the dirt, 

but to use a code that aligns itself as much as possible with the dirt. Dirty-paper techniques are natural 

candidates for achieving sum-capacity in multi-antenna multi-user links because the transmitted 

signal for one user can be viewed as interference for another user, and this interference is known to 

the transmitter (the transmitter knows everybody’s channel). However, it has not been shown that 

dirty paper coding is necessary for achieving the majority of the capacity. Unlike Costa’s original 

premise that the transmitter knows the interference but cannot control it, in our scenario the 
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transmitter creates all of the signals, and thereby can also control the interference seen by all the 

users. 

 

A suitably modified form of channel inversion can achieve near-sum-capacity performance. Channel 

inversion is one of the simplest modulation techniques for the multi-user channel. This technique 

multiplies the vector-signal to be transmitted by the inverse of the channel matrix; the result is an 

“equalized” channel to each user. In the first part it shown that the sum-rate for channel inversion 

(sometimes also referred to as “zero-forcing (ZF) beamforming”) in its plain form is poor. The authors 

of the technique develop a regularized form of inversion that improves performance, especially at low 

SNRs, and then they find the regularization parameter that maximizes the signal to interference plus 

noise ratio (SINR) at each receiver. While regularization improves performance significantly, 

especially at low SNRs, another step is still needed to obtain near-capacity performance: vector 

perturbation technique that is used in conjunction with regularization to obtain good performance at 

all SNRs. The authors modify the data that is transmitted by judiciously adding an integer vector offset. 

An important data-modifying technique originally developed for the intersymbol interference (ISI) 

channel is Tomlinson–Harashima (TH) precoding [4], [5]. This technique applies a scalar integer offset 

at the transmitter that allows cancellation of the interference after application of a modulo function at 

the receiver. A technique related to both TH precoding and channel inversion can achieve near-sum-

capacity even at high SNR, with each user receiving 1/�	th of the sum-capacity. The following method 

does not require explicit dirty paper techniques. In fact, while the technique requires the transmitter 

to know the channel, each receiver needs to know only a single prearranged scalar related to the SNR 

of the channel.  

 

The method requires the joint selection of a vector perturbation of the signal to be transmitted to all 

the receivers. In general, techniques such as the Fincke–Pohst algorithm [6], [7] (which in our context, 

we label “sphere encoding”), can aid in selecting the desired vector perturbation. In all cases, however, 

the processing at the receiver is simple. 

 

2.2 The model 

A general model for the forward link of a multiuser system includes an access point with M transmits 

antennas and K users, each with one receive antenna. The received data at the kth user is 

 

 �� = � ℎ�,��� + �!
�"�  (2.1) 
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where ℎ�,� is the zero-mean unit-variance complex Gaussian fading gain between transmit antenna m 

and user k, �� is the signal sent from the mth antenna, and  � is standard complex Gaussian receiver 

noise at the kth user. The corresponding vector equation is 

 � = �# +$ (2.2) 

where � = %��, … , �'() represents the received signals for each users, # = %��, … , �!()  denotes the 

normalized transmitted signals with a power constraint E‖#‖� = 1, and $ = % �, … ,  '() represents 

the additive white Gaussian noise (AWGN) with covariance matrix E%$$∗( = -�.. The K × M matrix H 

has hk,m as elements  

 � = /ℎ�,� … ℎ�,!⋮ ⋱ ⋮ℎ',� … ℎ',!2.  

 

It is often convenient to construct an unnormalized signal s, such that 

 # = 3√5 (2.3) 

where 5 = ‖3‖�. With this normalization, x obeys ‖#‖� = 1. We can, alternatively, let 

 # = 36E%5(. (2.4) 

In this case, E‖#‖� = 1. Equation (2.3) has the advantage that E%5( does not need to exist (we see later 

that in simple channel inversion, E%5( = ∞), but has the disadvantage that the receivers generally need 

to know 5, a channel-and data-dependent quantity, to decode their data properly.  In the normalization 

(2.4), the receiver needs to know only E%5(, which is neither channel nor data dependent. Although it is 

more practical to use (2.4) (when it exists), we choose, for convenience, in most of the simulations to 

use the instantaneous power normalization (2.3). A discussion of the expected performance difference 

of using (2.3) versus (2.4) may be found in Section 2.8. Generally, we find that the performance 

difference to be very small. The simulations, therefore, represent the performance of either 

normalization, and we assume that the receivers need to know only E%5(.  
We concentrate on the scenario where all K users are serviced at the same rate, and assume that H is 

constant for some interval long enough for the transmitter to learn and use it until it changes to a new 

value. We are interested in the behavior of the system (2.2), its capacity, and the algorithms to achieve 

capacity. Many of our theoretical results are obtained for large M and K limits, because the limiting 

results are often tractable. Nevertheless, we often consider M as small as four in our examples. 

An important figure of merit for (2.2) is the ergodic sum capacity  

 

 89:; = E%sup?@A log�|.! + F�∗G�|(. (2.5) 

 

Where IM is the M × M identity matrix, A is the set of K × K diagonal matrices with nonnegative 

elements, such that tr�G� = 1, and we define F = 1 -�⁄ . The Hermitian transpose (conjugate 
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transpose) of H is denoted �∗. We assume the logarithm is base-two and therefore 89:; is measured in 

bits/channel use. Although the total transmitted power is one, the quantity F is directly related to, but 

is not necessarily the same as, the SNR at each receiver.  

By simply choosing G = �1 �⁄ �.', we can easily infer that 89:; grows linearly with min��,��. The 

expectation in equation (2.5) assumes that coding is done over multiple intervals with independent H. 

The maximization in (2.5) has no simple closed-form solution, so the authors compute (2.5) 

numerically using a gradient-type method as needed, but we omit the details from our discussion.  

When K < M, the optimization over GJA given in (2.5) gives nonzero energy to all K users when F is 

large enough. This occurs because omitting any user by setting any diagonal entry of D to zero gains 

signal energy for the remaining users (which has a logarithmic effect) but loses a transmission degree 

of freedom (DOF) (which has a more dramatic linear effect). On the other hand, when K > M, we know 

from the formula (2.5) that although transmitting to at least M out of the K users simultaneously uses 

all of our available DOFs, we may gain by judiciously choosing a subset of fewer than all K users. We do 

not pursue the choice of subset here; in the interests of fairness to all users, we assume that a random 

choice of M users is made. In this study, we therefore generally consider the case K = M to be most 

important.  

In (2.2) the users all have the same average (but not instantaneous) received signal power, so our 

model assumes that the users are similar distances from the access point and are not in deep shadow 

fades. We also comment that the forward-link problem we are considering needs a fundamentally 

different solution than the reverse-link problem. In the reverse link, the K users are transmitting 

simultaneously to the access point that is now acting as the receiver. The reverse link problem has 

readily available solutions. It is known that it is optimal for the K users to use independent code books, 

subject to their own power constraints; the receiver can use many forms of decoding such as 

successive nulling/canceling or maximum-likelihood with reduced complexity (using the sphere 

decoder). We therefore omit considerations of the reverse link. 

 

2.3 Channel Inversion: some old and new results 

2.3.1 An old result (K<M) 

Channel inversion, when done at the transmitter, is sometimes known as ZF precoding, and entails 

deciding that the symbols KL�, … ,L'M seen at receivers 1,…,K should be chosen independently, 

according to the independent data desired for users 1,…,K. We assume that the entries of the vector N = %L�, … , L'() are chosen from the same constellation with E|L�|� = 1 (ensuring equal rate to the 

users), and the transmitter then sets 

 3 = �∗���∗�O�N. (2.6) 

Generally, the inverse in (2.6) can be done only when P = � �⁄ ≥ 1. In this case, the asymptotic (as M 

and K go to infinity in this fixed ratio) sum rate of channel inversion is 
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 limK!,'M→S8TU� = 1P logV1 + F�P − 1�X. (2.7) 

Let PY = PY�F� be the β that maximizes (2.7). Then β0 > 1 is the optimum antenna/user ratio, and at 

this ratio, we can get to within roughly 80% of 89:; (2.5) computed at the same ratio. However, at 

other ratios, the difference between 8TU and 89:; can become much more pronounced. For example, 

we see that as P → 1, we have 8TU/� → 0. The implication is that for K = M, the sum rate of raw channel 

inversion does not increase linearly with K (or M), while 89:; clearly does. We analyze this 

shortcoming more closely in the next section. 

 

2.3.2 A new result (K=M) 

When K = M, channel inversion (2.6) becomes simply 

 3 = �O�N. (2.8) 

This equation can obviously be problematic when H is poorly conditioned3, and this problem manifests 

itself in the normalization constant (2.3) 

 5 = ‖3‖� = u*���∗�O�u. (2.9) 

Let the entries of u be zero-mean unit-variance independent complex Gaussian random variables. 

Then γ has density 

 [�5� = � 5'O��1 + 5�'\�. (2.10) 

A preview of the poor performance of channel inversion can be gleaned by observing that this density 

has infinite mean E%5( = ∞. The received data at the kth user is 

 �� = L�√5 +  �. (2.11) 

The receivers all know 5, and we assume that K is large enough so that any user’s data does not 

significantly affect the value of 5. Then, conditioned on 5, the channel becomes a scaled Gaussian 

channel; the capacity of this channel is 

   8TU,� = E ]log ^1 + F5_` = a log ^1 + F5_� 5'O��1 + 5�'\� b5
S
Y . (2.12) 

A change of variables yields 

   8TU,� = a log c1 + F5� d 1ce' + 1d'\� b5
S
Y . (2.13) 

                                                           
3
 For square matrices we can measure the sensitivity of the solution of the linear algebraic system  fg = h with respect to 

changes in vector b and in matrix A by using the notion of the  condition number of matrix A. Condition number is defined as 

the product of the norm of A and the norm of A-inverse: i�f� = ‖f‖‖fO�‖. If it is close to one, the matrix is well conditioned 

which means its inverse can be computed with good accuracy. If the condition number is large, then the matrix is said to be 

ill-conditioned. It gives an indication of the accuracy of the results from matrix inversion and the linear equation solution. 
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Using the large K approximation 1 ��5 � � 1⁄ �'\��⁄ ~kOe in (2.13) (we omit the technical details 

showing that this substitution is valid in the integral) gives 

   8TU,� l a log c1 � F5� d kOeb5 � kmno� ^�F_ log k
S
Y

 (2.14) 

where 

 o���� � a kOpq bq
S
r

 (2.15) 

is the exponential integral. Since there are K users, each with receive (2.11), the sum rate for channel 

inversion is approximated for large K = M by 

 8TU l �kmno� c'sd log k	%bits	per	channel	use]. (2.16) 

We finally use the approximation o����~kOr �⁄  for large � to conclude that 

 lim'→S 8TU � F log k	%bits	per	channel	use]. (2.17) 

The unfortunate conclusion is that the sum rate for K = M users with channel inversion is constant as a 

function of K, as K→∞. This is in contrast to (2.5), which grows linearly with K. An explanation for this 

poor capacity comes from looking at the eigenvalues of ���∗�O� (or singular values of �O�). The 

smallest eigenvalue of ��∗ has distribution [�x� � �kO'y, which is an exponential distribution. The 

largest eigenvalue of ���∗�O� therefore has the distribution 

 [�z� � ^�z�_ kOm{ (2.18) 

which is sometimes called the inverse-gamma distribution with parameter one. This density is zero at 

µ = 0, but decays as 1/ µ2 as µ→∞ for any K. Hence, it is a long-tailed distribution with infinite mean. It 

turns out that the remaining K – 1 eigenvalues of ���∗�O� are significantly better behaved.  

See Figure 2.1 for a numerical comparison of the largest four eigenvalues of ���∗�O� as a function of K. 

In fact, the smallest eigenvalue of ���∗�O� concentrates (probabilistically) around 1/�4�� as K→∞. 

Therefore, any approach to improve channel inversion must seek to reduce the effects of the largest 

eigenvalue. 

Figure 2.1 Numerical comparison of the mean 

behavior of the four largest eigenvalues of ���∗�O� as a 

function of K. The figure was generated using 5000 

trials, and the eigenvalues are normalized by K. The 

largest eigenvalue has an erratic plot because its true 

mean is infinite (for all K), and it is clearly orders of 

magnitude larger than the remaining eigenvalues. 
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Figure 2.2 shows the sum rate for channel inversion evaluated numerically, the large-K expression 

(2.17) and the sum capacity (2.5). We can see that as the number of transmit antennas and users grow 

simultaneously, the sum rate for channel inversion approaches, while the sum capacity grows linearly. 

 
Figure 2.2 Comparison of the sum capacity (2.5) (blue line) as a function of K for F = 10	dB, with the channel-inversion sum 

rate (K times the value in (2.12)) (red line). Rather than growing linearly, 8TU approaches the large-K limit (2.17), which is 

shown as a black line. 

 

We assume that K = M in the remainder of this study. 

 

2.4 Regularizing the inverse 

One technique often used to “regularize” an inverse is to add a multiple of the identity matrix before 

inverting. For example, instead of forming s using (2.8), we use 

 3 � �∗���∗ � �.'�O�N. (2.19) 

After going through the channel, the unnormalized signal s becomes 

 

 H3 � ��∗���∗ � �.�O�N. (2.20) 

The signal received at user k is no longer simply a scaled version of uk, but also includes some 

“crosstalk” interference from the remaining users. 

To evaluate the amount of desired signal and interference, it use the eigenvalue decomposition ��∗ � �Λ�∗ for nonnegative diagonal eigenvalue matrix Λ and unitary eigenvector matrix Q to find 

 �3 � � ΛΛ � �I�∗N. (2.21) 

(We use the convention that commuting matrices can be treated as scalar, and therefore, may appear 

in fractional form.) The (unnormalized) signal and interference received by user k is the kth entry of 

Hs. Using (2.21), we may find this entry 

 %�3(� � ]��,� x�x� � � … ��,' x'x' � �` /
��,�∗ … �',�∗⋮ ⋱ ⋮��,'∗ … �','∗ 2 �L�⋮L'
 (2.22) 
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where ��,� is the (k,l)th entry of the matrix Q. The (unnormalized) desired signal term in (2.22) is 

 �� x�x� + � ���,���
'
�"� �L� . (2.23) 

All the remaining terms in (2.22) involving ul (l ≠ k) are interference. The kth user models its 

(normalized) received signal as 

 �� = ^ 1√5_�� x�x� + �
'
�"� ���,����L� + ��  (2.24) 

where the Gaussian  ��  combines the additive receiver noise  � and the interference. The receiver 

makes its decisions about the transmitted signal by forming the likelihood function from (2.24). The 

amount of interference is determined by � > 0; when � = 0, we return to (2.8). It is clear that, no 

matter how poorly conditioned H is, the inverse in (2.19) can be made to behave as well as desired by 

choosing α large enough. We examine the optimum value of α to choose. The amount of interference 

increases with α, so one possible metric for choosing α is to maximize the SINR in (2.24). We compute 

the SINR by computing the expected power of the desired signal and dividing it by the expected power 

of the interference plus noise. 

 

The noise power at each receiver is given by -�.  

 

From (2.2), the signal (without noise) observed at the K receivers is �# = c1 6E%γ(⁄ d�3 (we assume 

that the average power normalization (2.4) is used). We need to examine the relative strengths of the 

desired signal and interference at each receiver; we first examine the behavior of γ = ‖3‖� .  

 

We use the eigenvalue decomposition of ��∗ to obtain 

 5 = N∗���∗ + �.�O���∗���∗ + �.�O�N 

             				= tr%��Λ�∗ + �.�O��Λ�∗��Λ�∗ + �.�O�NN∗( 
           									= tr%��Λ + �.�O��∗�Λ�∗��Λ + �.�O��∗NN∗(  	 								= tr ] Λ�Λ + α.���∗NN∗�`.																															 

 

 

We assume that the data u1,…,uK are independently chosen with zero-mean and unit-variance. Taking 

the conditional expectation of γ with respect to u and using E%NN∗( = .' , we get 

 E%γ( = tr ] Λ�Λ + α.��` =� x��x� + ��� .
'
�"�  (2.25) 

It’s convenient to take expectations only with respect to u and Q when evaluating the quantities 

needed to compute the SINR. The expectations with respect to Λ are generally difficult. It shows later 

that, fortunately, the final result does not require taking the expectation with respect to Λ. From (2.21), 

the total expected power in Hs is 
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 E‖�3‖� = E �N∗� ^ ΛΛ + α._��∗N� =� x���x� + ��� .
'
�"�  (2.26) 

Was still avoided the expectation with respect to Λ. The desired signal for the kth user is given by 

(2.23). To find the expectation power of the signal, it computes the expectation over Q in [2], using the 

fact that Q and Λ are statistically independent 

Desired = E /�� x�x� + � ���,���
'
�"� ��2 = 1��� + 1� /�� x�x� + �

'
�"� �� +�^ x�x� + �_�

'
�"� 2.																						 (2.27) 

This is the unnormalized power of the desired signal at the receiver. Observe that this power is one 

when α = 0 (plain channel inversion). The normalized power divides (2.27) by E%γ(. The total signal 

and interference power at any receiver is 1 �⁄ th of the total (unnormalized) power appearing at all 

the receives (2.26), which is �1 ��∑ x�� �x� + ����'�"�⁄ . Hence, subtracting off the power of the desired 

signal (2.27) leaves the power of the interference ul (l ≠ k) at receiver k as 

 Undesired = 1��^ x�x� + �_� − 1��� + 1�'
�"� /�� x�x� + �

'
�"� �� +�^ x�x� + �_�

'
�"� 2. (2.28) 

This is the unnormalized power of the interference at each receiver. Observe that this power is zero 

when α = 0. The normalized power divides (2.28) by E%γ(. Putting (2.27) and (2.28) together, 

normalized by γ as given by (2.25), yields  

 

SINR = c∑ y�y�\�'�"� d� + ∑ c y�y�\�d�'�"�-���� + 1�∑ y��y�\���'�"� +�∑ c y�y�\�d� − c∑ y�y�\�'�"� d�'�"� .												 (2.29) 

 

Because of the symmetry in the distribution of H, (2.29) is not a function of the user k. Rather than 

optimize (2.29) directly over α, it prefers to optimize a simpler large-K approximation to (2.29). The 

large-K approximation follows from removing the second summation in the numerator of (2.29), 

which is dwarfed by the first summation, and replacing ��� + 1� by ��. We then obtain 

 

SINR ≈ c∑ y�y�\�'�"� d�
-���∑ y��y�\���'�"� + �∑ c y�y�\�d� − c∑ y�y�\�'�"� d�'�"� .												 (2.30) 

 

Remarkably, the large-K approximation (2.30) in maximized for � ≥ 0 at ���� = �-� = � F⁄ , 

independently of x�, … , x'. For a proof, consult [2]. Simulations indicate that (2.30) is close to the true 

SINR, for even small values of K; ���� is proportional to K and the noise variance. As we decrease the 

noise variance at each receiver, thereby increasing the SNR, ���� → 0. 
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The above analysis only uses the fact that the eigenvector matrix Q has the so-called isotropic 

distribution, whose defining characteristic is that pre-or-post multiplying Q by any unitary matrix does 

not affect its distribution. Physically, this means that the channel is not affected by arbitrary rotations, 

and that paths between the antennas and the users are statistically equivalent. It is this feature that 

allows us to examine the SINR of any user and claim that this analysis applies equally to the remaining 

users. This analysis, therefore, applies to other channel distributions with this rotational-invariance 

property, and not just a Gaussian H. 

 

2.5 Performance and capacity 

Three figures show the trends in performance. Figure 2.3 shows the symbol-error probability (SEP) 

for plain and regularized channel inversion as a function of ρ for K = 4 and K = 10. The curves indicate 

that while the performance of plain channel inversion worsens with K, the performance of regularized 

inversion improves slightly with K. 

 

 

Figure 2.3 Comparison of the SEP for plain (2.8) and regularized (2.19) channel inversion for K = 4 and K = 10. The raw error 

rate as a function of K worsens for plain channel inversion, but improves (slightly) for regularized inversion. 

 

A comparison of the sum capacity and sum rates for regularized and plain channel inversion as a 

function of K is shown in Figure 2.4. The sum rate for regularized channel inversion is obtained using a 

numerical estimate of the SINR with � = � F⁄  

 

 8��� ≈ � log�1 � SINR�. (2.31) 

 

Unlike channel inversion, the sum rate of regularized inversion has growth with K, although its slope is 

different from the sum capacity. 
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Figure 2.4 Comparison of the sum capacity (2.5) (blue line) as a function of K (where M = K) for ρ = 10 dB, with the 

regularized channel-inversion sum rate (2.31) (purple line) and the plain channel-inversion sum-rate (red line). Unlike plain 

channel inversion, regularized inversion has linear growth with K. 

 

Figure 2.5 shows that for a fixed K, as ρ→∞ (σ2→0), the sum rate of regularized inversion approaches 

plain inversion 8��� → 8TU. Thus, we still do not have a modulation technique which is close to capacity 

for all ρ and K. 

 

Figure 2.5 Comparison of sum capacity (2.5) (blue line) as a function of ρ for K = M = 10, with the regularized channel-

inversion sum rate (2.31) (purple line) and the plain channel-inversion sum rate (red line). At low power, regularized 

inversion approaches 89:;, while for high ρ, it approaches 8TU. 
 

 These three figures show that although regularization is a big improvement over plain inversion, a 

gap to capacity remains, especially at high SNR. This gap is dramatically reduced in the next section, 

which shows how to combine regularization with a carefully chosen integer vector perturbation of the 

data to be transmitted to reduce the power of the transmitted signal dramatically. 
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2.6 Perturbing the data 

In the previous sections we argue that many of the problems with inverting the channel when K = M 

are due to the normalization constant γ, which is often very large because of the large singular values 

in the inverse of the channel matrix H. One way to help H is to regularize its inverse, as described. This 

section presents a way to “perturb” the data in a data-dependent way (unknown to the receivers). The 

goal is to form a N� from the data vector N such that 

 3 = �O�N� (2.32) 

has norm (much) smaller than �O�N, but the entries of N� can still be decoded individually at the 

receivers. We cannot, in general, perturb by an arbitrary complex vector, because this perturbation is 

not known to the receivers and would, therefore, cause decoding errors. We can, however, use an idea 

derived from TH precoding, where we allow each element of N to be perturbed by an integer. In the 

simplest case, we set 

 N� = N + �  (2.33) 

where � is a positive real number and   is a K-dimensional complex vector a + ib, where a and b are 

integers. The scalar 5 = ‖3‖� is computed as before, and the transmitted signal is 

 # = 1√5 �O�N�. (2.34) 

The scalar �, that is known to the receivers, is chosen large enough so that the receivers may apply the 

modulo function 

 ¡¢��� = � − £� + � 2⁄� ¥ � (2.35) 

where the function ¦∙¨ is the largest integer less than or equal to its argument. The function (2.35) 

removes the effect of the integer multiple of  �. (The function ¡¢��� is applied separately to the real and 

imaginary components of a complex y.) After passing through the channel H, the transmitted signal x 

in (2.34) appears at receiver k as 

�� = 1√5 L©� + � . 
If we ignore for the moment the effect of  �, and assume that 5 = 1, then ¡¢���� = ¡¢�L� + �ª�� = L� 

and we recover the transmitted symbol. The receivers know 5, and therefore, may compensate for 5 ≠ 1 by dividing τ by √5. As we note in Section 2.2, the transmitter may instead divide by 6E%5(; 
Figure 2.9 shows that the performance difference is not significant. The other figures assume that the 

transmitter divides by √5. An error is made at the receiver if the additive channel noise pushes the 

received signal across the standard symbol decoding boundaries or across the nonlinear boundaries of ¡¢��� at ±� 2⁄ . 
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2.6.1 Choice of   and τ 

An obvious choice of   at the transmitter minimizes 5 = ‖3‖�, in fact if 5 is very large the SINR is small 

and hence overall system performance (error probability) degrades significantly 

 

   = arg	min 5 = arg	min �N + τ ��∗���∗�O��N + τ ��. (2.36) 

 

This is a K-dimensional integer-lattice4 least-squares5 problem, for which there is a large selection of 

exact and approximate algorithms. See, for example, the Fincke-Pohst algorithm [6], that is used for 

space-time demodulation in [8], where it is called a sphere decoder. Because we are using this 

algorithm for encoding data to be transmitted, we refer to it as the sphere encoder. This algorithm 

avoids an exhaustive search over all possible integers in the lattices by limiting the search space to a 

sphere of some given radius centered around a starting point. In our case, the center is the vector u. 

Generally, the sphere encoder works on real lattices, so we assume that a complex version is used, or 

that (2.36) has been converted to a 2K-dimensional real lattice problem. 

Various precoding techniques can be interpreted as approximations of (2.36). This includes ZF 

precoding without perturbation (  = 0), Tomlinson-Harashima precoding [4], [5], and LR-assisted 

vector perturbation [11]. 

 

The scalar � > 0 is a design parameter that may be chosen to provide a symmetric decoding region 

around (the real or imaginary part of) every signal constellation point. It chooses 

 � = 2�|¯|;°± + Δ 2⁄ � (2.37) 

where |¯|;°± is the absolute value of the constellation symbol(s) with largest magnitude, and Δ is the 

spacing between constellation points. If we want to reduce the effects of the perturbation vector  , we 

may increase �, thereby increasing the decoding region at the upper and lower extremes of the  

constellation. While this improves error performance in these decoding regions, the 5 that results is 

typically also larger, possibly reducing total error performance. If � is made too large, the minimization 

in (2.36) yields   = 0 independently of u, and the perturbation technique reduces to simple channel 

inversion. If � is made smaller than 2|¯|;°±, then error-free decoding becomes impossible, even in the 

absence of channel noise. It has found that choosing � as in (2.37) often works well. 

 

                                                           

4 The n-dimensional integer-lattice, denoted ³´ , is the lattice in the Euclidean space µ´ whose lattice points are n-tuples of 

integers. 

5 The term least-squares describes a frequently used approach to solving overdetermined or inexactly specified systems of 

equations in an approximate sense. Instead of solving the equations exactly, we seek only to minimize the sum of the squares 

of the residuals. It has an important statistical interpretation: if appropriate probabilistic assumptions about underlying error 

distributions are made, least squares produces what is known as the maximum-likelihood estimate of the parameters. Even if 

the probabilistic assumptions are not satisfied, years of experience have shown that least-squares produces useful results. 
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2.6.2 Analysis of Vector-Perturbation Technique 

As shown in Section 2.3.2, plain channel inversion performs poorly, because ���∗�O� has a badly 

behaved large eigenvalue. In this section, we provide a brief theoretical discussion of why using the 

perturbation vector �  improves the performance significantly, especially for large K. The discussion is 

confined to large K, where the analysis is most tractable. The vector   is chosen to minimize the norm 

of 3 = �O�N�  in (2.32) (using the cost function (2.36)). Using the eigenvalue decomposition ���∗�O� = �ΛO��∗, we can express the cost function as 

 5 = ‖3‖� =�z�¶��'
�"�  (2.38) 

where z� = 1 x�⁄ , ¶� = |·�∗N�|, and ·� is the kth column of Q. We assume that z� > z� > ⋯ > z� . The 

vector-perturbation algorithm minimizes (2.38) over N�, where N� = N + τ , and we search over the 

integer vector  . We would like to examine the behavior of E%5( as a function of K. In 2.3.2, it is shown 

that E%5( = ∞ for plain (without the perturbation) channel inversion. We argue that with the 

perturbation, E%5( is approximately constant with K, and therefore, the sum-rate for the method grows 

linearly with K. 

Recall that τ is chosen large enough so that no element of N� can be made zero. In fact, with our choice 

of τ, the norm of N� is minimized by choosing   = 0. Thus, although a nonzero   increases the norm of N�, the norm of 3 = �O�N� is decreased in the process. There is no norm constraint on  , and hence, the 

choice of possible points N� form an infinite lattice.  

Define 

 ¹ = E �º¶��¯�'
�"� 
� '⁄

 (2.39) 

where 

 ¯� = E‖N�‖��  (2.40) 

and the expectation is over Q and u. It takes as empirical axiom that ¹ is positive and approximately 

independent of K as K → ∞. Equation (2.39) is the expected geometric mean of ¶�, … , ¶' . The fact that ¹ > 0 is a consequence of the constraints on N�, for if N� is unconstrained, then ¹ = 0 (the minimizer of 

(2.38) is parallel to ·', and, therefore, obeys ¶� = ⋯ = ¶'O� = 0, ¶' = ‖N�‖). We contend that forcing   

to have integer components when minimizing (2.38) does not generally permit N� to be chosen exactly 

parallel to ·' (an axis in a random coordinate system), and thus, the   that minimizes (2.36) generates 

a N� that can only be coarsely oriented in the coordinate system defined by ·�,⋯ , ·' . The orientations 

with respect to ·�,⋯ , ·' do not change significantly with K, and hence, the expected geometric mean 

of ¶�, … , ¶'  is approximately independent of K. A similar statement can be made for the expected mean ¶�, … , ¶' .  
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Since the columns of Q form an orthonormal basis 

 �¶�� = ‖N�‖�.'
�"�  (2.41) 

Combining (2.41) and (2.40), we see that ¯� can also be rewritten 

 ¯� = 1� E ��¶��'
�"� 
 (2.42) 

and is approximately independent of K. Applying the arithmetic-geometric-mean inequality6 

 E%5( = E ��z�¶��'
�"� 
 ≥ �E /�ºz�'

�"� �� '⁄ �º¶��'
�"� �� '⁄ 2. (2.43) 

 

It can be shown that �V∏ z�'�"� X� '⁄ → k as � → ∞ (observe that no expectation in seeded here). 

Equation (2.39) implies that E¼∏ ¶��'�"� ½� '⁄ = ¹¯�. Therefore, (2.43) becomes 

 E%5( ≥ k¹¯�. (2.44) 

By combining (2.44) with (2.42), we also conclude that 

 E%5( ≥ k¹ E‖N�‖��  (2.45) 

equality in (2.44) and (2.45) is achieved if 

 E%z�¶��( = ⋯ = E%z'¶'�( = k¹¯�� . (2.46) 

Thus, a way to minimize E%5( is to have the optimum N� orient itself toward each eigenvalue in inverse 

proportion to the eigenvalue (on average). The values of c and ¹ are determined by simulation. 

Observe that the lower bound (2.44), if achievable, suggests that 5 is approximately independent of K 

as K → ∞. It turns out that the vector-perturbation algorithm minimizing (2.36) nearly achieves the 

lower bound (2.45).  

 

We conclude that optimizing (2.36) tends to generate a N� that, on average, is oriented toward each 

eigenvalue of ���∗�O� in inverse proportion to the eigenvalue as in (2.46). The value of 5 that results 

nearly achieves the lower bound (2.45), and is approximately independent of K. 

 

 

                                                           

6 The arithmetic mean of a list of n numbers ��, … , �´ is 
�́∑ �¾¾́"� ; the geometric mean is 6∏ �´¾́"�¿

. The arithmetic-geometric-

mean inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the 

geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same.  

1À��¾ ≥´
¾"� Áº�´´

¾"�
¿

 



27 
 

2.6.3 Performance with the perturbation 

Figure 2.6 provides an uncoded symbol probability of error plot for plain channel inversion, 

regularized inversion, vector perturbation and a regularized version of the sphere encoder that is 

presented in Section 2.7. The probability of error is shown for 16-QAM signaling with K = 10 transmit 

antennas and users, as a function of ρ. Although the vector-perturbation technique does not do as well 

as the successive algorithm or regularized inversion for low ρ, it achieves a significant gain in 

performance for high ρ. The regularized perturbation technique described next in section performs 

well for all ρ. Figure 2.6 shows that the beneficial effect of regularization is generally a gain in ρ, with 

little effect on the high-ρ slope (or “diversity”) of the error curve. The linear inversion-based methods 

have the lowest diversity. Only the vector-perturbation method retains a high diversity at high ρ. 

 

 

Figure 2.6 Uncoded probability of symbol error for channel inversion (Section 2.3) (x’s, solid red line), regularized inversion 

(Section 2.4) (diamonds, dash-dotted red line), the vector-perturbation algorithm (2.36) (triangles blue line), and the 

regularized perturbation technique (2.47) (dashed blue line, using � = 1 F⁄  – see Section 2.7). 

 

2.7 Regularized perturbation 

We can marry the regularized inversion method of Section 2.4 with the vector-perturbation technique 

of Section 2.6 to reduce γ more than either method could alone over a wide range of ρ. The choice of 

the integer vector   that minimizes γ is made with the modified cost function 

 

   � arg	min ‖�∗���∗ � �.'�O��N � τ ��‖�. (2.47) 

 

Unfortunately, the analysis of the combined method appears to be difficult. In Section 2.4, � is chosen 

to maximize an approximation to the SINR. The authors do not know how to compute the average 

SINR after the minimization (2.47), and ���� is generally no longer � F⁄  when regularization is 

combined with perturbation. Because γ is significantly smaller in (2.47) than with regularization alone, � � � F⁄  is too large, and gives too much crosstalk from the other users. The optimum � is generally 



28 
 

significantly smaller. For example, probability-of-error simulations show that ���� ≈ 1 �5F�⁄  for K = 4, 

and ���� ≈ 1 F⁄  for K = 10. The authors do not have a good explanation for these choices, but in the 

next Section is proposed a systematic manner to find ����. 
 

2.7.1 Optimizing α 

With the regularized perturbation, the received signal can be written as 

 � = 1√5��∗���∗ + �.�O��N + � � +$																		  

 			= 1√5 %. − . + �. + ����∗�O��O�(�N + � � + $ (2.48) 

 = 1√5 %.�N + � � + f�N + � �( + $																				  

where f = K�. + ����∗�O��O� − .M. The received signal for user k is 

  �� = %�L� + �ℓ�� + 〈f�N + � �〉�(√5 +  � (2.49) 

where the notation 〈�〉� represents the kth row of the matrix M. It is clear that 〈f�N + � �〉� is 

potentially correlated with L� and ℓ�. By modeling this correlation, we may model the received signal 

per user as 

 �� = %�L� + �ℓ�� + �P�L� + ¶��ℓ�� + Å�(√5 +  � (2.50) 

where Å� is uncorrelated with L� and ℓ�, and P� and ¶�  represent the correlation coefficients of the 

term 〈f�N + � �〉� with L� and ℓ�. To solve P� and ¶�  we use the requirements 

 
E%Å�L�∗ ( = 0 E%Å��ℓ�∗ ( = 0 

(2.51) 

by defining 

 �� = 65�� − �L� + �ℓ�� = P�L� + ¶��ℓ� + Å� +65 �  (2.52) 

we employ (2.51) to obtain 

 
E%��L�∗ ( = P�E%|L�|�( + ¶��E%ℓ�L�∗ ( 	E%���ℓ�∗ ( = P��E%L��ℓ�∗ ( + ¶���E%|ℓ�|�(. (2.53) 

We may solve for P� and ¶�  using these two equations. Generally P� and ¶�  are real, because the real 

and imaginary parts of the constellation symbols are uncorrelated. The SINR is 

 

 SINR = �1 + P��� E%|L�|�( 5⁄E¼%|Å�|�(½ 5 + -�⁄ . (2.54) 

We define the optimum regularization parameter as 

 ���� = max�SINR. (2.55) 

The effect of α in SINR is through the normalization factor γ, the correlation P�, and the variance of Å�. 

Increasing α generally decreases γ, thus potentially increasing the SINR, but increases the variance of 
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 Å�, thus potentially decreasing the SINR. The overall effect on the SINR is difficult to determine 

analytically so we use numerical methods. Figure 2.7 shows (2.54) as α is varied from 0 to 2 F⁄  for M = 

K = 10 and F � 14	dB. The maximum SINR occurs at ���� � 1.2 F⁄ , compare � � 1 F⁄ , which minimizes 

the bit-error-rate in Section 2.7. 

 

 

Figure 2.7 Average SINR versus regularized inverse parameter α as a multiple of 1/ρ, for M = K = 10, ρ = 14 dB. The value   α 

= 0 corresponds to channel inversion. Increasing α at first increases the SINR by reducing γ. However, as α increases further, 

the interference created by the regularized inverse overcomes the advantage obtained from reducing γ. 

 

2.7.2 Simulation of a complete system 

To check the distance from capacity, the authors of the technique simulated a complete system for M = 

K = 4 antennas/users and M = K = 10 antennas/users. The transmitted signal is 

 # � 1√5�∗���∗ � �.�O��N � � �. (2.56) 

The receivers know τ, but not  . The K users receive (as a vector) 

 Æ � 1√5��∗���∗ � �.�O��N � � � � $. (2.57) 

User k models its received signal as 

 �� � 1√5 �L� � �ª�� �  ��  (2.58) 

where  ��  contains not only the receiver noise  �, but also the crosstalk from other users introduced 

by α. Each user then passes this signal through a modulo function that removes the effects of the 

unknown ª�, and uses a turbo decoder to decode its intended data L�. Since we are making 

comparisons with the ergodic sum-capacity (2.5), we allow the channel matrix H to be chosen 

randomly with every use. This randomly chosen effect is obtained on a smoothly varying channel by 
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using an interleaver7 over a long block of many consecutive channel uses. To compare the results with 

the sum-capacity, we first examine both M = K = 4 and M = K = 10, using 16-QAM constellations with 

either rate Ç = 1 2⁄ 	(2 bitinfo/symbol) and rate Ç � 3 4⁄ 	 (3 bitinfo/symbol) codes. The sum rate is 

therefore 

 

 µ9:; � 4Ç�	%bits/channel use]. (2.59) 

 

The possible sum-rates for Ç � 1 2⁄  are, therefore, µ9:; � 8 [bits/channel use] and for and µ9:; � 20 

for K = 4 and K = 10, respectively. The sum-rates for Ç � 3 4⁄ 	 are µ9:; � 12 and µ9:; � 30. To find 

the receiver operating points that correspond to these sum rates, we turn to Figure 2.8, which shows 

the sum capacity for K = 4 and K = 10 systems as a function of F � 1 -�⁄ . These sum-capacity curves 

are computed by evaluating (2.5) numerically (details are omitted). The operating point for Ç � 1 2⁄  is 

approximately F � 7	dB for either K = 4 or K = 10, and the operating point for Ç � 3 4⁄ 	 is 

approximately F � 11.2	dB for either K.  

 

 

Figure 2.8 Sum-capacity for M = K = 4 (blue curve) and M = K = 10 (red curve) as a function of the receiver additive-noise 

variance. The marker lines shows that to achieve C = 8 (K = 4) or C = 20 (K = 10), the (reciprocal) noise variance must be F � 1 -� � 7	dB⁄ . For C = 12 (K = 4) or C = 30 (K = 10), the noise variance must be F � 1 -� � 11.2	dB⁄ . 

 

 

 

 

 

 

 

                                                           
7
 Interleaving is a way to arrange data in a non-contiguous way to increase performance. 
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2.8 Discussion 

Even if we transmit at very high sum-rates (ten of bits/channel use), we are reasonably close to 

capacity. There are ways to get closer, like transmit at higher rates to the users whose channels 

happen to be best, since the sum-capacity is not necessarily attained by transmitting at equal rates to 

all of the users, or compute and overcome the penalty for using the modulo operation at the receiver. 

We have almost no analysis of the combination of regularization and perturbation, nor do we have any 

information-theoretic limit for the basic perturbation method. Although not rigorous, the analysis of γ 

in Section 2.6.2 predicts the approximate behavior of the integer minimization (2.36), and suggests 

that the basic perturbation algorithm should work for any K, limited only by the complexity of the 

minimization (2.36). The sphere encoder allows us to handle up to K = 15 with relative ease. The 

transmitter power-normalization constant γ seems to go to a limiting constant as K → ∞, implying that 

we may be a fixed distance from the sum-capacity for any K. We would like a theory that predicts the 

limiting value of γ as K → ∞. 

Another area we treated only superficially is computing the exact effect on performance of 

normalizing at the transmitter with √5, versus normalizing with 6E%5( (see 2.3 and 2.4). The most 

practical choice is 6E%5(, because the receivers then do not need to know γ. We, however, chose √5 for 

three reasons:  

 

1) E%5( does not need to exist;  

2) It is simpler in the simulations to instantly compute √5 rather than to compute E%5(; 
3) It has found the performance difference to be very small. For example, it has shown in Figure 

2.9 the bit probability of error for rate Ç � 3 4⁄  turbo-encoded data using 16-QAM symbols 

when normalizing by √5 (instantaneous) and by 6E%5( (average). We see that the performance 

is actually improved very slightly by normalizing by 6E%5(. 
 

Figure 2.9 Bit probability of error for rate Ç � 3 4⁄  

turbo-encoded data using 16-QAM symbols, for M = K = 

10. The curve on the right (instantaneous power 

constraint) uses normalization at the transmitter by √5; 

the curve on the left (average power constraint) uses 

normalization by 6E%5(. The difference in performance 

is small. 
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When the transmitter normalizes by 6E%5(, the receivers do not need to know anything at all about the 

channel for the techniques to work. Perhaps we should be comparing the results with the channel 

capacity that is attained when only the transmitter knows the channel. Unfortunately, this capacity is 

apparently not as easy to compute as when both transmitter and receivers know the channel. 

We have not analyzed the optimum τ to choose; for example, increasing τ reduces decoding errors due 

to the mod-operation, but increases γ. Finally, we have also not discussed how to handle users with 

differing average received signal power. This extension would be particularly useful for systems where 

there are many users, and some are much nearer to the access point than others. 
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Chapter 3 

 

A CONTINUOS VECTOR PERTURBATION [10] 

 

The sum-rate of the broadcast channel in a MIMO communication system can be further improved by 

using a new technique, which adds a continuous perturbation to the data. The perturbation vector will 

be treated as interference at the receiver, thus it will be transparent to the receiver. The derivation of 

the continuous vector perturbation is provided by maximizing the SINR or minimizing the minimum 

mean square error of the received signal. 

 

3.1 Introduction 

The model for the forward link is the same of Section 2.2; it includes a base-station with M transmit 

antennas and K users, each with one received antenna. Previously it has shown that the first approach 

is to multiply a precoding matrix G (Ë = �∗���∗ + �.�O� in the regularized perturbation of Section 

2.7) to the data vector u at the base-station before transmitting. This technique is commonly known as 

precoding. Besides precoding, the base-station can also add perturbation to the data vector u called 

vector perturbation. It has been shown that by adding a discrete perturbation vector  � , where τ is a 

constant value and   is a vector consisting of only integer value, to the data vector, can reduce the 

energy of the transmitted signal so as to achieve excellent sum-rate. In this chapter a new perturbation 

technique that uses a continuous perturbation vector to improve the performance of multi-antenna 

multi-user communication system is presented. Moreover, when we combine the continuous 

perturbation with the discrete perturbation, the performance is better than with only the discrete 

perturbation alone.  

 

3.2 Continuous perturbation 

3.2.1 With continuous perturbation only 

In this section, we propose a continuous perturbation, where �  = Ì. It is different from discreet 

perturbation, where   consists of only integers, Ì can be any real or complex value. 

When inverse precoding, Ë = �∗���∗�O�, is used, the received signal is 

 

 � = �Ë�N + Ì�√5 + $ = ��∗���∗�O��N + Ì�√5 + $ = �N + Ì�√5 + $. (3.1) 

 

Where N √5⁄  is the desired signal, Ì √5⁄  is considered interference to the decoder, and w is the AWGN. 
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The main objective of adding a continuous vector p to the data vector is to achieve a higher 

throughput. Thus, an obvious choice of p is to maximize the SINR 

 SINR = ‖N‖�‖Ì‖� + 5�-�. (3.2) 

The normalization constant γ is 

 5 = ‖Ë�N + Ì�‖� = N∗Ë∗ËN + 2Re�N∗Ë∗ËÌ�Ì∗Ë∗ËÌ. (3.3) 

When (3.2) and (3.3) combined, it becomes 

 SINR = N∗NÌ∗Ì + �-��N∗Ë∗ËN+ 2Re�N∗Ë∗ËÌ� + Ì∗Ë∗ËÌ� = N∗NG  (3.4) 

where 

 G = Ì∗�. + �-�Ë∗Ë�Ì + 2�-�Re�N∗Ë∗ËÌ� + �-�N∗Ë∗ËN.  

Since p is continuous, unlike the sphere encoding scheme in Section 2.6 which is a discrete value, it can 

be optimized analytically. Next, we are going to derive p by maximizing the SINR, in other words, we 

take the derivative of (3.4), we can maximize SINR by minimizing its denominator D by taking the 

derivative of D with respect to p. 

 ÍGÍÌ = 2�. + �-�Ë∗Ë�Ì + 2�-�Ë∗ËN. (3.5) 

Next, we let ÍG ÍÌ� = 0, to find the optimal p 

 Ì = −�-��. + �-�Ë∗Ë�O�Ë∗ËN. (3.6) 

Similarly, we can maximize the total mean square error (MSE) of the received signal to find p. From 

(3.1), the estimate signal is 

 NÎ = N + Ì + 65$ (3.7) 

the total mean square error of the received signal is 

 MSE = ‖NÎ − N‖� = ÐÌ + 65$Ð�. (3.8) 

Thus we can find p by minimizing (3.8) by taking its derivative 

 ÍMSEÍÌ = 2�. + �-�Ë∗Ë�Ì + 2�-�Ë∗ËN = 0 

Ì = −�-��. + �-�Ë∗Ë�O�Ë∗ËN. (3.9) 

It can be seen that (3.9) is the same as (3.6), this implies that p can be found by using either 

maximizing the SINR or minimizing the total mean square error of the received signal. 

 

3.2.2 Combine continuous perturbation with discrete perturbation 

In this section we are going to investigate the effect of continuous perturbation when it is combined 

with the discrete perturbation. When both the discrete perturbation τ  and continuous perturbation p 

to the data vector u, i.e. v = τ  + p, the received signal becomes 

� = �Ë�N + �  + Ì�√5 + $ = �N + �  + Ì�√5 + $ = N√5 + � √5 + Ì√5 +$. (3.10) 
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Where N √5⁄  is the desired signal, �  √5⁄  will be removed by the modulo function, Ì √5⁄  is considered 

interference to the decoder, and w is the AWGN.  

The normalization constant γ is 

 5 = ‖Ë�N + �  + Ì�‖�  

The value of τ is known to the receiver, hence the second term on the right hand side of (3.10) can be 

removed by the modulo function (2.35). 

 

Since the vector perturbation consists of both the continuous and discrete vectors, the cost function of 

finding   by minimizing γ in Section 2.6.1 is no longer valid. It is found contradicting as the value of p 

becomes −  to satisfy the cost function, thus resulting in canceling the discrete perturbation. Thus, 

when we find the continuous perturbation, the discrete perturbation can be added to the data vector u 

to find p. As a result, the continuous perturbation p becomes 

 Ì = −�-��. + �-�Ë∗Ë�O�Ë∗Ë�N + � �. (3.11) 

In this case, the choice of integer vector   is found concurrently with the continuous vector p, which is 

made with the modified cost function that minimizes the total mean square expected received signal. 

 

From (3.10), the estimate signal is 

 NÎ = N + Ì + 65$ (3.12) 

hence, the total mean square error of the received signal is 

 MSE = ‖NÎ − N‖� = ÐÌ + 65$Ð�. (3.13) 

The choice of   and p is found by minimizing (3.13) 

 �Ì,  � = argminÌ,  ÐÌ� +65$Ð�. (3.14) 

Since p is given in (3.11), when we combine (3.11) and (3.14), the choice of   becomes   = argmin  Ñ−�-��. + �-�Ë∗Ë�O�Ë∗Ë�N + � ��
+ 6N∗Ë∗ËN +  �∗Ë∗Ë � + Ì∗Ë∗ËÌ + 2Re�N∗Ë∗ËÌ� + 2Re�N∗Ë∗Ë �� + 2Re� �∗Ë∗ËÌ�6�-�Ñ� 

(3.15) 

or 

   = argmin  ÐÌ� +65$Ð� (3.16) 

 

where 5 = N∗Ë∗ËN +  �∗Ë∗Ë � + Ì∗Ë∗ËÌ + 2Re�N∗Ë∗ËÌ� + 2Re�N∗Ë∗Ë �� + 2Re� �∗Ë∗ËÌ�  
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3.3 Simulations results 

Figure 3.1 and Figure 3.2 compare inverse precoding with continuous perturbation to the inversion 

and regularize inversion precoding without perturbation using uncoded QPSK and 16-QAM with M = K 

= 4 respectively. 

 

Figure 3.1 Probability of bit error of inverse precoding with continuous perturbation, inverse and regularize-inversion 

without perturbation using uncoded QPSK symbols, M=K=4. 

 

 

Figure 3.2 Probability of bit error of inverse precoding with continuous perturbation, inverse and regularize-inversion 

without perturbation using uncoded 16QAM symbols, M=K=4. 

 

In the case of QPSK, the probability of bit error of the inverse precoding with continuous vector 

perturbation is identical to regularize-inverse precoding without perturbation. Moreover, it has a 5dB 

gain over the same precoding without perturbation. Likewise, the difference in probability of bit error 

between the inverse precoding continuous vector perturbation and the regularize-inverse precoding 

without perturbation is negligible for 16QAM. However the inversion precoding with continuous 

perturbation is at least 2dB better than the same precoding without continuous perturbation. It is 
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worth to note that from the results of Figure 3.1 and Figure 3.2, continuous perturbation can be used 

for any constellation symbols. The comparison of the three techniques using turbo coded 16QAM with 

M = K = 4, using with symbol rate ½ and ¼ respectively is shown in Figure 3.3 and Figure 3.4. The 

difference between the inverse precoding with continuous vector perturbation and the regularize-

inverse precoding without any perturbation at turbo coded rate ½ and ¼ is 0.5dB and 1dB 

respectively. However, inverse precoding with continuous vector perturbation is 1.5dB and 2.5dB 

better than the same precoding without perturbation at turbo coded rate ½ and ¼ respectively. 

 

 

Figure 3.3 Probability of bit error of inverse precoding with continuous perturbation, inverse and regularize-inversion 

without perturbation using rate ½ turbo coded 16QAM symbols, M=K=4. 

 

 

Figure 3.4 Probability of bit error of inverse precoding with continuous perturbation, inverse and regularize-inversion 

without perturbation using rate ¼ turbo coded 16QAM symbols, M=K=4 
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The results in Figure 3.5 shows the probability of bit error of inverse precoding with continuous plus 

discrete perturbation is better than inverse precoding with discrete perturbation and regularize-

inverse precoding with discrete perturbation by 1.5dB and 0.5dB respectively. 

 

 

Figure 3.5 Probability of bit error of inverse precoding with continuous plus discrete perturbation, inverse and regularize-

inversion with discrete perturbation using uncoded 16QAM symbols, M=K=4. 

 

3.4 Conclusions 

In this chapter, we show that by adding a continuous vector perturbation to the data vector, which is 

treated as interference by the receiver, can achieve a better decoding performance than the system 

without perturbation.  

 

It is also worth to note that when the continuous perturbation is combined with discrete perturbation, 

the performance of the inverse precoding continuous plus discrete perturbation is better than inverse 

precoding or regularize inverse precoding with discrete perturbation only. 
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