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1 Abstract  
 

Carbon-dense forests are defined by the high capacity to store carbon in the biomass of various 

layers aboveground and  belowground. This phenomenon is associated mainly with humid and 

relatively cold climatic conditions. Typically, temperate forests are found in this kind of 

environment, which may allow the storage of large quantity of carbon in the soil. 

 Temperate forests store globally less carbon in comparison with boreal and tropical forests, with 

most of the total carbon stored in the soil, due the particular condition in which they are 

developed. 

The fallowing study was conducted in 2017 in 2017 on Chiloé Island, in Southern Chile. The 

alternation of different types of ecosystems after the last glaciation, such as wetlands (wet 

climate) and forests (dry climate), may conferred to the soil peculiar properties. In this last Era, 

however, the climate on the Island permitted the development of a type of vegetation dominated 

by forest, known as the northern Patagonian old-growth temperate rainforest. 

Therefore, this study focused on estimating the storage of carbon in the soil, with qualitative (n-

alkane biomarker) and quantitative (TOC, GC-MS) analyses, in order to discriminate what kind of 

vegetation dominated this area in the past and consequently, discover the possible carbon 

content stored in soil that contributed each ecosystem. 

The high concentration of long n-alkane chains (nC27-nC31 homologues) in the leaf waxes, which 

are typical of dry environments, provides positive results about the prevalence of the forest 

ecosystem over that of peatlands. 
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3 Riassunto esteso 
 

Le foreste primarie sono caratteristiche per la loro elevata capacità di sequestrare il carbonio e 

trasformarlo in sostanza organica (biomassa) sia in superficie, che negli strati sotto superficiali. 

Il grado di conservazione della sostanza organica dipende da diversi fattori climatici, in particolare 

da temperatura e umidità. La sostanza organica si conserva più efficientemente in condizioni 

fredde e umide, condizioni tipiche delle foreste temperate. Questo tipo di ecosistema, infatti, è in 

grado di stoccare elevate quantità di carbonio. A livello globale, le foreste temperate sequestrano 

minori quantità di carbonio rispetto a quelle boreali e tropicali, ma sono in grado di 

immagazzinarne la maggior parte nel suolo, creando quindi una cospicua e durevole riserva. 

Lo studio presentato in questo elaborato è stato realizzato con profili di suolo prelevati nella 

foresta temperata dell’isola di Chiloé, situata lungo la costa del Cile meridionale. Precedenti studi 

hanno messo in evidenza un’alternanza di differenti tipologie di vegetazione (foreste e paludi) 

susseguitesi dopo l’ultima glaciazione. Le condizioni climatiche verificatesi nell’ultimo millennio, 

invece, hanno permesso lo sviluppo e la crescita di una foresta temperata primaria tipica della 

Patagonia settentrionale. 

L’obiettivo di questa ricerca è quello di analizzare i campioni di suolo al fine di identificarne e 

valutarne la quantità di carbonio stoccata e il tipo di vegetazione responsabile dello stoccaggio nel 

corso dei millenni. Per lo svolgimento della ricerca sono state utilizzate tecniche sia di tipo 

qualitativo (biomarcatori lipidici e gas cromatografia) che quantitativo (analisi del carbonio 

organico totale (TOC) e spettrometria di massa).  

Lo studio ha prodotto risultati che hanno mostrato la prevalenza di un ecosistema di tipo forestale 

rispetto a quello palustre. L’abbondanza di lunghe catene carboniose (omologhi nC27-nC31) che 

compongono le cere delle foglie di queste piante, sono indice, infatti, di un ambiente 

prevalentemente terrestre. 
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4 Introduction 
 

4.1 Carbon and Carbon Cycle 

 

Life on Earth is balanced on natural cycles, which involves four different spheres: biosphere, 

hydrosphere, lithosphere, and atmosphere. This four elements are strictly connected and they 

host all the biogeochemical processes and elements of the Earth.  

As carbon (C) is one of the most ubiquitous components in biological compounds and minerals, its 

cycle is a fundamental contributor and regulator to the Earth’s system It is present in all known life 

forms, making up to 50% of the dry weight of living things (Ussiri et al, 2017). 

Carbon is naturally found in different physical states and compounds, depending on its physico-

chemical and allotropic properties and on the environmental conditions. It can be found as 

elemental carbon, and as inorganic or organic compounds. 

Elemental C is usually found in soil and sediments as a product of an incomplete combustion of 

organic matter (charcoal, graphite) and as geological sources from the occur f other processes 

(coal, diamond) (Schumacher, 2002). 

Inorganic C is mostly present as a gas like CO2 and CH4, or in mineral form such as carbonates; the 

two most commons are calcite (CaCO3) and dolomite [CaMg(CO3)2]. These rocks are originated in 

absence of biological activity or they could be formed by fossilized organic matter,for instance, by 

ancient seashells. 

The Organic C  in the soil is originated by the growth and dead of living organisms suchplants and 

animals, and their decomposition. Different degradation states of the matter, from freshly 

deposited litter (leaves, stems, branches) to highly decomposed forms, such as hummus and 

humic acids (Schumacher, 2002). 

Carbon can also be found in unnatural states through the addition of anthropogenic inputs. Most 

of them are derived-organic compounds (volatile organic compound (VOC), chlorofluorocarbon 

(CFC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCB), halogenated 

compounds, pesticides, etc.) products originated by human activities, such as contaminants from 

oil spills, industries, urban waste, traffic, livestock’s, tanneries, wood production, deforestation, 
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agricultural and food processes. These types of molecules are detrimental artificial substances 

introduced into the environment, capable of alter the balanced of the ecosystem and to modify 

the life-compatible quantities and concentrations naturally present in these environments. 

These various carbon compounds react, move and change state through different steps and 

interactions between living organisms and the biogeochemical spheres in a complex process called  

carbon cycle (Fig. 1). This cycle is characterized from continuous exchanges of energy and matter, 

through fluxes which determine places where carbon accumulates (called pools, stocks or 

reservoirs), or it is released and absorbed from another one. These destinations are commonly 

defined as sinks (storage of C) and sources (loss of C).  

 

Fig. 1: The Global Carbon Budget, Ussiri et al. 2017) 

 

Carbon is present in the atmosphere mostly in form of carbon dioxide (CO2), the most oxidant 

state of carbon, with a minor concentration of methan (CH4) and other compounds. CO2 in the 

atmosphere is fundamental because it contributes to the greenhouse effec , which allows 
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maintenance of an Earth surface temperature that will favor life. Currently, its stock in the 

atmosphere is around 750 PgC (concentration of  ̴400 ppm). A sudden increase (from 560 

PgC,  ̴280ppm) began over 200 years ago, when the industrial age started (Falkowski et al., 2000). 

Various predictions anticipate that this concentration will continue to rise with future climate 

change and the continuous anthropogenic input of CO2 into the atmosphere, causing greenhouse 

effect intensification and consequently, a rise in temperatures on Earth’s surface. 

CO2 is transferred from atmosphere to the biosphere and geosphere pools through the plant's 

activity.  

Photosynthesis is the chemical process by which plants use inorganic carbon (CO2) and sunlight to 

convert nutrients into organic compounds and carbohydrates, producing biomass and releasing 

oxygen (Gorte, 2009)  

6 CO2+ 6 H2O + solar energy → C6H12O6+ 6 O2 

Leaves, roots, limbs, and stems are composed of carbon in different quantities depending on the 

plant species, age, environmental conditions, growth pattern (Gorte, 2009). Thus, different species 

of plants are able to sequester CO2 from the atmosphere in various amounts. For example, woody 

stems produced by trees have the greatest ability to store carbon, because of the density of wood 

and the large size of trees (University of New Hampshire-UNH, 2014). Therefore, the plant system 

is a form of carbon sink, which can collectively stores about 560 PgC; with photosynthesis, carbon 

is removed about  1̴20PgC/year from the atmosphere and is transferred into the terrestrial and 

biosphere. However, there are many processes in which plants are losing carbon: respiration of 

living biomass, where a portion of the CO2 previously captured (almost 50%) is released back into 

the atmosphere as a product of metabolism (UNH, 2014); tree mortality, microbial decomposition 

of litter; oxidation and mineralization of soil carbon; degradation and disturbance, such as land use 

change, fires, withdraw of fossil fuel. All these processes drive carbon as a source.  

The intensity of these carbon losses is related to time scale diurnal-seasonal factors and climatic 

and environmental variables (Malhi, Baldocchi, & Jarvis, 1999). The plant can store carbon 

throughout their life (decades or thousands of years), when they die, fall to the ground, forming 

the litterfall and the organic matter in the soil (SOM). Their tissues can rapidly decay (leaves, small 

roots, and stems) or persist longer (wood, large roots, and branches). Until their decomposition, 
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they store carbon as organic matter (OM). As decomposition begins, a variety of microorganisms 

in the soil (bacteria, fungi), breakdown the plant and C through the respiration process, which 

generates a rate of  6̴0 PgC/y as flux in the atmosphere, known as soil respiration (UNH, 2014). 

Also oceans store huge amount of carbon, but this stay mainly in form of dissolved inorganic 

carbon (DOM) at high depths, which is stored for long periods of time (  ̴38000 PgC). On the 

surface resides a small amount of carbon (  ̴1000 PgC): CO2 is absorbed and located as air bubbles 

on the ocean surface. These bubbles are entering then into the water through the diffusion 

phenomena and dissolve into the water, forming carbonic acid (H2CO3). For its frequent and 

continuous exchanges with the atmosphere, carbon has a smaller residence time in the superficial 

layers of the ocean. Contrary, when the carbonic acid dissolves, it forms hydrogen ion (H+) and 

carbonate ion (CO3
-). The latter one composes carbonates through reactions with minerals and 

other components and organisms, forming shells and rocks during the time, which deposit to the 

bottom of oceans. As opposed to terrestrial vegetation, biological processes and storage of carbon 

in marine plants are reduced because of their high breakdown rate (UNH, 2014). 

All the mentioned carbon pools are in constant flux, ranging from few years to millennia, with 

large exchanges of fluxes and rapid reservoir turnover. However, the greatest carbon pool is found 

in the Earth’s crust and mantle (lithosphere) with an amount of   ̴100 000 000 PgC. This reservoir 

has a much slower turnover rate, with a range of millions of years (geological time)(Ussiri et al., 

2017). Carbon in lithosphere derives from sedimentary and silicate rocks, agglomerates of calcium 

carbonate, dolomites, shells, skeletons of marine organisms, hardening of mud and limestone. 

Carbon in this shape could be reintroduced into the cycle with weathering erosion (rain, wind, 

snow, river, vulcan activity, etc), which forms soil particles and minerals that are transported in the 

atmosphere, biosphere, and hydrosphere to restart the cycle again (UNH, 2014; Ussiri et al., 2017). 

In modern times, a human carbon input is also necessary to be considered in this natural process. 

Copious amounts of CO2 comes from anthropogenic activities, such as fossil fuel combustion, land 

cover change, deforestation, transport, and human settlements, which are substantially 

influencing the cycle and introducing carbon into the atmosphere. This amount reaches more or 

less the  ̴7PgC; though it may seems to be a small quantity in comparison of other carbon 

emissions and stocks on Earth, it is sufficient enough to create a disequilibrium in the carbon cycle 

that was once regulated and controlled by natural flows between sinks and sources. The storage 

of carbon in vegetation, accumulated then as fossil fuels (coal, oil, natural gasses) for millions of 
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years are now being released too quickly back into the atmosphere, compared to the natural  time 

scale that occurred before anthropogenic influences causing a disruption in the natural cycle of 

carbon 

There is, therefore, a high risk which is causing a disturbance in what was a functional balance of 

the carbon cycle prior to human influences, which has previously regulated life on earth for 

millions of years.  
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4.2 Carbon storage in soil Earth ecosystem 

 

Carbon cycle is characterized by exchanges of fluxes and reservoirs, which are balanced  between 

them (Ussiri et al.l, 2017). This balance is identify as “dynamic equilibrium”, because the carbon 

itself is moving among comparts, but it is in equilibrium as the system try to keep it in balance, and 

the net fluxes of inputs and outputs compensate each other. When the inputs to the reservoirs 

exceed outputs the amount of storage increases, and vice versa (UNH, 2014; Ussiri et al., 2017) 

Quantify fluxes and storage of carbon in the terrestrial biosphere is not easy, because of the 

complex biology underlying carbon storage, the variety and heterogeneity of vegetation and soil, 

and in addition also the effects of human activities and the land cover change and management 

(Ussiri et al., 2017). These inputs could bring an imbalance between sectors. 

Soil sector is a habitat which contains all variety of life and ranges in size from small niches to 

entire landscapes. Soil compart is essential to sustain the primary production in an ecosystem, 

through the formation of organic matter (Appendix 1). Organic matter is composed of different 

organic compounds: from a relatively fresh vascular plant and microbial biomass to refractory 

components, which are accumulating slowly over thousands of years (Trumbore, 1993). Soil sector 

is important also for the nutrient cycling, climate control, determination of chemical, physical and 

biological properties of the environment, support of plants and animals life. In soil occur the 

decomposition of SOM and the transformation and storage of nutrients (Brevik et al., 2015). 

Carbon has an abundant stock that resides in soil ( ̴1500 PgC) (UNH, 2014; Trumbore, 1993) and 

every different kind of ecosystem or landscape which it sustains, holds different capacity to store 

carbon, depending on many environmental and climate factors (Appendix 2).  

 

 

4.2.1 Forest ecosystems 
 

One of the highest carbon net sinks in the world is forest ecosystem. Forests, covering about 4.1 

billion hectares of land area globally (Dixon et al., 1995; Lal, 2005), ~30% of the land surface (Fig. 

2A)(Bonan, 2008). Forest biomes (Appendix 3) are the main reserves for terrestrial carbon on 

Earth. They are one of the major components of Gross Primary Production- GPP  (Malhi, Baldocchi, 
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& Jarvis, 1999) and contribute ~50% of terrestrial Net Primary Production - NPP (Bonan, 2008). 

GPP represent the total uptake of CO2 by photosynthesis (Baker et al. 2016) and NPP is defined as 

the difference between GPP and autotrophic respiration (Ra) (Aragao, 2014). 

More of being an important carbon sink in the Earth system, forest biome is also fundamental 

since it provides ecological, economic and social services. It offers protection for biodiversity, and 

soil resources, sustaining of the hydrologic cycle, provision of food, medicinal, wood products, and 

recreational uses for the various human needs. 

Carbon is stored in different amounts in the different forest type: boreal, tropical and temperate 

forest (Fig. 2B). Temperate forests generally store less carbon (6-14% of the total C pool) (Pan et 

al., 2011), in comparison with boreal (23-49%) and tropical (17-60%) forests (Malhi et al. 1999, 

IPCC 2001, Gorte 2009). This is more related to the area that each forest type cover in the world 

than to the amount of C stored per hectare. 

It is estimated that boreal forests, which cover 

1135 million ha (Pan et al. 2011), store the largest 

amount of carbon in their soils (about 84%), 

compared to other ecosystems in the world 

(Gorte, 2009). This figure is due to the low 

degradation rate of the organic matter in the soil, 

caused by the cold and anoxic conditions, which 

allow the accumulation of a huge quantity of 

carbon (Gorte, 2009). Contrariwise, tropical 

forests (1392 million ha) (Pan etal. 2011), store 

the largest amount of carbon in their 

aboveground vegetation (44 Mg C ha-1) but a 

modest amount in their soil (45-50%) (Gorte 

2009, IPCC 2001), due to the high decomposition 

rates in zones with humid and warm conditions  

(Gorte, 2009). Temperate forests store an 

amount of carbon between 100-300 Mg C ha-1, 

depending on the site (Mahli et al., 1994, Dixon 

Fig. 2: A) Geographic extent (km 2) and 

B). Total (plant nd soil) C stock (PgC) of 

non forest and forest (tropical, temperate 

and boreal) biomes (Bonan, 2008) 
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et al. 1994, IGBP-DIS, 1999, IPCC 2001), and about 62% of the total carbon is stored in the soil. 

They have higher mean biomass density per hectare (270 Mg C ha-1in comparison with boreal 

forests (83 Mg C ha-1) (Houghton et al., 2009) and store more carbon in the soil (147 Mg C ha-1) 

compared to tropical forests (122 Mg C ha-1) (IGBP-DIS, 1999; IPCC 2001), due also to the slow 

organic matter decomposition process. 

 

 

4.2.1.1 Temperate forest 

 

Temperate forests cover a global area of about 1038 million ha (Pan et al., 2001). This ecosystem is 

characterized by relatively cold temperatures, ranging from -30°C to 30°C with mean annual 

temperatures of 5-10°C. Humidity and precipitation are high ranging from 50-200cm yr-1, and its 

climate is characterized by warm, mild summers and cool, or cold winters (Lal, et al. 2012). Though 

not as diverse as tropical forests, temperate forests host a wide variety of vegetation and plant 

species such as: temperate coniferous, broadleaf evergreen or deciduous trees, shrubs, herbs, 

mosses, and lichens. As the biodiversity varies considerably within the region, it serves as a useful 

indicator of site-specific climate (Lal, et al. 2012). 

 

Typically, temperate forest soil is defined by high fertility containing high amounts of organic 

matter. The net primary production in this biome is significant, making the environment suitable 

to support a considerable amount of biomass production. In contrast with tropical rainforest, 

temperate forest store more carbon in the soil (about 100 MgC ha-1, and often more) than in 

biomass and it has slower decomposition rates than that of tropics (Lal, et al. 2012). The high 

capacity to store carbon and the suitable conditions for the conservation of organic matter, lead 

this biome to have an important role in the global carbon cycle (Lal, et al. 2012; IPCC, 2014). 

Despite the minor global vegetation cover of this biome compared to the other forests, it contains 

~50% of the worlds plant biomass, and~10% of its terrestrial carbon (Bonan, 2008). Furthermore, 

it acts as an important global carbon sink, as its absorption rate was measured at  ~0.8Pg yr -1 in the 

last decade, 35% of global carbon storage in intact forests and 65% of the global net forest carbon 

sink (Pan et al., 2001; IPCC, 2014). 
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4.2.2 Peatland ecosystem 
 

A significant carbon reservoir on Earth is also peatland ecosystems. Although they occupy only the 

3% of the world surface (400 million ha) (Joosen et al. 2002, Parish etal. 2008), they have an 

extraordinary capacity for storing carbon (Fig. 4). Indeed, peatland is the most efficient carbon 

storage of all terrestrial environment: it contains more carbon per ha than other ecosystems on 

mineral soil. More than one third of carbon earth stock is sequestered by this system (400-600 Gt), 

making peatlands the top long-term carbon storage in the terrestrial biosphere.  

 

 

Fig. 4: Carbon storage by peatland system (VITRI) 

 

Peatlands are wetlands characterized by the accumulation of peat, dead and decaying plant 

material under permanent water saturation environments (Parish et al., 2008). The anaerobic 

condition prevents the enzyme phenol oxidase from eliminating phenolic compounds (Freeman, 

Ostle, & Kang, 2001). In this circumstance, the activities of decomposing organisms are inhibited, 

leading to a decreased rate of decay of dead organic material and consequently, to the 

accumulation of peat (Freeman et al., 2001; Joosen & Clarke, 2002). Because of their slow decay 

rates, peatlands are considered systems with a positive balance between the Net Primary 

Production (NNP) and decomposition rate (Loisel  et al., 2010; Tolonen et al. 1992, Clymo 1984).  

However, this delicate balance could be easily disturbed and can become a potent and dangerous 

source of CO2, CH4 and N2O, due to human interventions and the diffuse land degradation and 

land use change. Therefore, peatlands are one of the most threatened ecosystems in the world. 
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About 14-20% of peatlands are used for agriculture, and undefined peat swamp forests are 

transforming through drainage and burning into cultivated and harvested plots (IPCC, 2007). 

 

Thus, natural ecosystems could be at the same time sink or source of carbon, depending on the 

process (natural or anthropogenic) wherein are involved (Gorte, 2009). Human interventions are 

typically fast and violent, producing discrepancy among the balance of the natural environmental 

dynamics. The change does not permit the ecosystem to adapt itself immediately, because of the 

high rate and speed of variation. Carbon sequestration, inversely, is a long and slow process, which 

takes hundreds or thousands of years to occur and it involves delicate dynamics in the 

environment. The break of this equilibrium could lead to consequences that are unexpected, 

unpredictable, and hard to manage. 

Therefore, it is important to understand and investigate these natural mechanisms, their 

development, and their possible external disturbances. 
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4.3 Chiloè Island 

 

The Island of Chiloé (41”30’-43”30’ S Latitude) is the major Island of the Archipelago of Chiloé 

(Hajek et. al, 1975) and is situated in the Region de Los Lagos in Chile ( ̴39- 42”s latitude). This 

region has been the object of several paleoclimate investigations, which made extensive and 

detailed records of Quaternary glaciation, and it is an important region for the study of 

interhemispheric comparison and reconstruction of glacial chronologies. The optimal climate 

permits the preservation of organic matter, making it suitable for radiocarbon and macrofossil 

dating even for non-glacial intervals (Porter, 1981). 

The Island of Chiloé constitutes a unique situation of climatically and biogeographical interests. 

Indeed, its history has allowed it to maintain curious features and interest for the evaluation of the 

effects of the Pleistocene glaciations on the flora, on the climate and for the establishing patterns 

of the postglacial recolonization vegetation (Heusser et al., 1977). 

The Island, in general, is characterized by a temperate rainy weather, with many variations. The 

mean annual precipitation ranges from 1,900 to 2,300 mm, sometimes receiving as much as 5,000 

to 6,000 mm in some areas (Perez et al., 2003) and the annual mean temperature is about 9.6°C 

(Perez, et al. 2010).   

The Chiloè’s region along the Pacific coast is defined by an Oceanic climate with smaller seasonal 

differences between the wettest and the driest months, and between the maximum and minimum 

monthly temperatures. The part in Andean Chiloé is identified by a more continental climate, 

represented by low winter temperatures and a wide temperature range (Di Castri et al., 1976). 

The zone which comprises the Cordillera de la Costa (known locally as Cordillera de Piuchué) is 

characterized by wetter and colder climate conditions. The summit of this chain mountain is the 

highest peak on the Island and rises to 700-800 m, while the southern and Eastern part of the 

Island has low and undulating terrain, with elevations only up to 400 m. In this area, a 

Mediterranean climate is established with warmer and drier zones expressed mainly by greater 

summer dryness (Castri et al., 1976). 

Because of its height (823 masl), the Cordillera de la Costa (Castri et al., 1976) would not have 

been glaciated, since it has constituted a barrier to the advance of glaciers. As a result, the Chiloé’s 

Island is considerate the boundary between the territory that was completely covered by glacier 

and was only partially covered by ice (Appendix 4)(Villagrán 1990). 
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The topography of the Island is therefore characterized by the colonization and post-glacial 

colonization vegetation. Indeed, the sectors of a low latitude of the north and coastal east of the 

Island were covered at least three times by glaciers during the Pleistocene (Heusseret al., 1977). 

The ice flowed down from the western slope of the Cordillera de Los Andes (higher altitudes about 

2,000 m) crossed and merged with the strait that separates the island from the mainland 

(Villagran et al, 1997). The glaciers advanced through the Island and reached the Pacific Ocean at 

the latitude of 42’’40’S (Heusser et al., 1977). 

  

Three major glacial drifts in the northern part of the Island can be recognized: 

- The Fuerte San Antonio Drift. It is the oldest drift in the Ancud’s region and is dated to be 

hundreds of thousands of years old (Villagran, 1988). 

- The Intermediate Drift. Represents the middle unit and may have encountered more than one 

glaciation (Villagran, 1988). It contains many stratifications and various types of rock, including 

that of Andean. This drift has, however, been exposed to massive erosions over time which has 

made investigations into its history challenging. Date the interill wood is the best source of 

understanding, which attributes its age to more than 57,000 radiocarbon years old (Villagran, 

1988). 

- The Llanquihue Drift. Was named so because of its emplacement during the last glaciation, the 

Llanquihue Glaciation (Villagran. 1988). From their exhaustive radiocarbon chronology defined the 

timing of the local LGM between 34,300 and 18,000 cal yr BP. The Llanquihue drift overlies the 

other glacial layers and covers almost completely the eastern part of the Island (Villagran. 1988). 

This drift was subdivided into three components of different age (Porter, 1981), named Llanquihue 

I, II and Ill, listed by age from oldest to youngest. The first date is predicted older than the range of 

conventional radiocarbon dating, the second date is dated from the peat clasts in the till of 20,100 

+1-500 yr BP and the third date seems to have been deposited by a readvance of the Llanquihue 

glacier following an interval of recession when it withdrew to the eastern end of the Lago 

Llanquihue basin (Porter, 1981). It is predicted that it occurred around 14 500 yr BP, with a 

deglaciation after 13 000 yr BP, culminating about 11.000 yr B.P. when outlet glaciers of the 

Patagonian ice caps reached their present extent (Villagran, 1987). 

 

As this island represents a boundary between glaciated and only partially glaciated in the last 

glaciation (Villagran, 1990), it uncovers many unique characteristics which are observable today. 
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For example the climate variations (rainfall occurring throughout the year, but also 

Mediterranean-type climate and regions with relatively drier summers), floristic composition, 

vegetation distribution, and forest successions of temperate old-growth evergreen rainforest 

(Valdivian, North-Patagonian, and Subantarctic forests) and soil’s structure. (Villagran, 1988). In 

particular, the alternation of different types of ecosystems after the last glaciation, such as 

peatlands (wet climate) and forests (drier climate), conferred to the soil peculiar properties. 

 

 

4.3.1 Chiloè native forest 

 

Many authors consider that the Cordillera de la Costa as the main refuge of the forest during the 

Pleistocene (Skottsberg 1916, Looser 1935, Heusser 1972, 1982). Since the last glaciation, many 

floristic compositions have been changed in this territory. Furthermore, from paleontological 

records it could be possible that different patterns of late Quaternary forest succession occured, 

which can be recognized on the basis of changes in floristic composition (Heusser 1972): 

·         Valdivian forest. This formation is distributed in sectors of low altitude in the 

northern part of the Island, until 250 masl. It is dominated mainly by species in 

temperate temperatures (Villagran, 1985), like Aextoxicon, Eucryphius cordifolia, 

Gevuina avellana, Caldcluvia paniculata, Laurelia philippiana, Nothofagus tipo-obliqua, 

and various taxa in the family of Myrtaceae. This type of forest typically grows on well-

drained substrates and its soils have a brown-earth profile. The soils show a rapid 

incorporation of litter into the upper layers and are not very acidic (Castri et al., 1976) 

·         North-Patagonian forest. It is distributed on both slopes of the Cordillera of Piuchué, 

between altitudes of 250 and 450 m. It is characterized by Myrtaceae and Laurelia 

philippiana, tipo-Myrceugenia, tipo-Amomyrtus Hydrangea, Pseudopanax laeteviren 

(Villagran, 1985), Nothofagus nitida, Tepualia stipularis, and Weinmannia 

trichosperma. The soil of this landscape, of the valley floors and areas of impeded 

drainage, where Tepualia vegetation dominates, have a thick superlicial mat of acid 

humus or peat with only a moderate amount of downwashing of organic material into 

the mineral substrate (Castri et al., 1976) 

·         North-Patagonian-Sub-Antarctic forest. It is distributed in the low altitude in the 

southern part of the Island and above 450 masl. On both sides of the Piuchué Range, 
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are presented discontinuous forest patches which alternate with sectors of Magellanic 

tundras dominated by conifers, Nothofagus tipo-dombey, Weinmannia trichosperma, 

Podocarpus nubigena, Drimys winteri, Saxegothaea conspicua, Desfontainea spinose, 

Fitzroya/Pilgerodendron Escallonia, Maytenus magellanica, Tepualia stipularis 

(Villagran, 1985). Of the conifers, several species of southern beech, and Drimys 

winteri, and cushion bogs of Astelia pumila, Gaimardia australis, and Donatia 

fascicularis (Villagran, 1985). In these uplands, peat formation occurs chiefly in hollows 

gleys and peaty gleys are widespread, and forest patches occur only on shallow 

superficial acid (mor) humus layers (Castri et al., 1976) 

 

The archipelago of Chiloé represents a confluence region of very important floristic elements of 

the southern Chilean forests (Valdivian, north Patagonian and Subantarctic forests), which is an 

element of extraordinary biogeographical interest (Perez, 2003). 

.  

 

 

4.3.2 Chiloe’s Island degradation 
 

The rural landscape of Chiloé Island is characterized nowadays by a mosaic of remnant forest 

fragments, woodlands, peatlands and grazing pastures, due also to intense human activities. The 

clearcutting and burning of the tepu forest, the native forest which occupied earlier this area, is 

replaced now by a wetland environment dominated by Sphagnum sp. (Díaz et al. 2007, 2008, 

Cabezas et al. 2015), called anthropogenic peatlands.  

Sphagnum-dominated ecosystems, locally named as “mallines” o “pomponales”, from the 

Mapuche term poñpoñ (moss or sponge) (María F. Díaz et al., 2008), are characterized by a 

particular tissue structure, formed by big hydrophilic cells, which can absorb a huge quantity of 

water, accumulating up to 20 times its weight (Zegers et al. 2006, Iturraspe et al. 2000). Their 

leaves are small and composed of only a layer of these cells. This kind of tissue leads the variation 

of the water content in the plant during the different period of the year, depending on the 

evapotranspiration and the availability of water in the environment (Iturraspe et al. 2000). This 

property confers an important reservoir of water in the peat soil in the dry period. 
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These kind of peatlands may reach many meters of depth, do the accumulation of organic matter 

in hundreds or thousands of years. Above the peat soil lies a top layer formed by a continuous 

matrix of Sphagnum mosses. It forms an environment poor in nutrients (low concentration of 

nitrogen), with acidic, anoxic and colder conditions, which protect this zone from molds and 

bacteria, permit the peat to grow (María F. Díaz et al., 2008) and provide a difficult environment 

for the growth of different species. Furthermore, Sphagnum moss itself produce sphagnol, a 

complex phenolic compound which has antibiotic properties and inhibits the life of other plants, 

sequestering essential nutrients and suppressing microbial activity (Aerts, D. F. Whigham, & 

Verhoeven, 1999; Zegers et al., 2006). All these conditions result in the accumulation of the 

organic matter with a very low decomposition rate (Aerts et al. 1999, Clymo et al. 1998). 

The slow decomposition of organic matter due the anoxia, permits a high accumulation of carbon 

in the soil, which allows species from the Sphagnum genus to be the main contributors that can 

incorporate carbon. This peculiarity is a positive vantage for the sequestration of the carbon from 

the atmosphere, but it is also dangerous for the release of carbon when this ecosystem is 

degraded, such as the most of these environs in the world. 

The major cause of the degradation, threat, and overexploitation of the natural peatlands and 

forests in the Chiloé Island is the cutting of the forest, the drainage of peatlands, the fire for the 

industrial trees plantation, its use as energy and the commercial harvesting of the Sphagnum 

mosses. The main uses of Sphagnum mosses are in horticulture, fruit trees, orchids plantation, for 

the absorbent products and packaging material, and diverse uses as plant medicinal (María F. Díaz 

et al., 2008; Rochefort, 2000). It is extracted the acrotelm, the active upper soil layer, and once 

harvested it could regrow depending on the way of management, the availability of light and 

water, the distance to the water table and the air temperature (Gerold 1995, Clymo et al. 1998, 

Gunnarsson etal. 2004, Díaz et al. 2012).  

Unfortunately, these activities lead a landscape with a poor drainage, with a sporadic 

accumulation of peat and the exclusive growth of Sphagnum mosses, almost the only species that 

is adapted to this flooded condition (Carmona et al., 2010; M. Francisca Díaz et al., 2007; María F. 

Díaz et al., 2008). All these processes cause the fall of the water table level to the depth of the 

most decomposed level, characterized by a high density and water retention, decreasing the water 

availability for the Sphagnum mosses up in the surface, whose has a weak capillarity uptake 

capability. Thus, it is unable to tap water during strong evaporative demand period, losing its 
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capacity of store water even with fluctuations through wet and dry periods, causing flooding 

during wet months and a waters evaporation increase during the warm months (Price, 1996; 

Zegers et al., 2006). 

The conversion of forests into anthropogenic peatlands caused, besides of all the issues 

mentioned above, the loss of a high amount of carbon, and the increase in decomposition rate of 

organic matter. Hence, this may be triggering a positive feedback system over global warming, 

with the release of CO2 into the atmosphere. Moreover, recent studies discovered that old-growth 

forests, like that one subject of our research, are not carbon neutral, as usually thought (Gower et 

al. 1996), but they can act efficiently in sequestering carbon like younger and more productive 

forests. This transformation then not only causes the loss of carbon store but cut also a possible 

important sink of carbon out.  

After all, anthropogenic peatlands contain significant amounts of carbon (115 Mg C ha-1) in the soil 

(Cabezas et al., 2015), therefore it is important to preserve both of these actual ecosystems, 

forests and peatlands, to avoid further losses of carbon and decomposition of organic matter. This 

should start by preserving these species-rich ecosystems. For those that are already degraded, 

there should be ecological restoration and a more sustainable method for the harvesting 

Sphagnum mosses and cutting of the forest trees.        

  



25 
 

4.4 Theoretical framework 

 

4.4.1 Total Organic Carbon - TOC 
 

The total organic carbon (TOC) amount in the soil is an important proxy which indicated the 

accumulation and distribution of total organic matter (OM) in the soil (Meyers et al., 2005).  

TOC concentration is dependent on climate conditions, especially temperature, moisture, pH, 

precipitation and anaerobicity (Ronkainen, 2015; Zhou et al., 2005). In wet environments such as 

peatlands and bogs, organic matter is well preserved, under condition of limited oxygen and 

therefore, biodegradability is slowed (Meyers et al., 1993; Lallier-vergès at al., 1999). In drier and 

warmer environments, microbiological activity is enhanced and consequently, there is an increase 

in post-decomposition and a reduction of OM accumulation in soil, even if these climatic settings 

provide the conditions for a remarkable vegetative growth (Guifang et al.,2008). 

OM is accumulated by plants during their life through the photosynthesis process. When the 

vegetation dies, it releases carbon into the atmosphere with a different rate depending on the 

ecosystem type. Thus, the amount of carbon sequestered from vegetation depends on the type of 

vegetation, mode of death, the rate of decomposition, environment, and history of the site. 

(Gorte, 2009) 

 

Organic carbon (OC) is found in the upper soil layers and in the surface as partially decomposed 

vegetation (humus), roots and in decomposer organisms. OC is lost when the decomposition 

process begins (Gorte, 2009). OM is also found in the subsoil, but mostly comes from root input 

and in the form of dissolved organic matter (DOC) (Lorenz and Lal 2005). This occurs especially in 

temperate forest ecosystems, where a wet and humid environment is characteristic. DOC has 

different pathways, dynamics, and properties, which allow the movement and the shift of OM 

particles into deeper layers. These migrations are depending on the climate, vegetation, plant 

cover, living organisms in the area, soil texture, root systems and on bioturbation. Actually, the 

decrease of organic matter in the soil is a natural process explained by the different balance 

between the rate of accumulation and degradation of the organic matter. 
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Several studies suggest that soil OM in subsoil is more enriched in microbial-derived carbon 

compounds and depleted in energy rich-plant-derived carbon compare to the topsoil. This means 

that in the deeper layers the microbiological activity is higher in comparison to the surface 

(Rumpel et al., 2011). This is also confirmed from the decrease of the Carbon/Nitrogen (C/N) ratio, 

and the increase of the stable C and N isotope ratios with the depth, which indicates a high 

decomposing process in deep soil (Rumpel et al., 2011). Decomposition in soil is made principally 

from microorganisms and enzymes, which destabilize and disrupt the physical structure of OM, 

decomposing it with the loss of the significant amounts of soil OM, with a consequent release of 

CO2 (Krull et al., 2003; Rumpel et al., 2011) 

 

There are many methods to quantify total carbon, but at the same time, it is not possible to 

determine where the sources of C are coming from. In soil and sediments, the total carbon (TC) is 

measured by summing the amount of inorganic C (TIC) and TOC (Schumacher, 2002).  

TC= TIC + TOC 

All methods of measuring the TOC are based on the oxidation (thermal or chemical) of organic 

carbon with carbon dioxide (CO2). This is detected and determined quantitatively trough CHN 

analyzers. 
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4.4.2 Geochemical biomarkers 
 

In the last decade, the use and application of geochemical biomarkers have exponentially 

increased in ecological, environmental and paleoclimate research.  

Biomarkers are organic molecules that can be traced to a particular source organism, a group of 

organisms or to a process. They can be used as a direct indicator of specific environmental, climate 

and vegetation condition changes, paleo-elevation and human impact changes, for past terrestrial 

and aquatic ecosystem reconstructions. Parameters that can be obtained with this method are 

lake surface temperature, hydrology, salinity, temperature, pH, vegetation type, organic soil 

matter input, and soil carbon storage.  

Examples of biomarkers are bacterial and plants membrane lipids, N-C-H-isotope analysis, specific 

molecules, compound-specific isotopes, organisms. They are used differently in various research 

fields, such as clinical sciences, as indicators of the presence of a disease or response to treatment 

(Brennan et al., 2013; Van Bon et al., 2014), in toxicology, to analyze the effect of a toxic species in 

a biota (Clemente et al., 2014), in the forensic sciences, to furnish information about crimes 

(Concheri et al, 2001), in environmental sciences, as an indicator of possible pollution, signal or 

presence of a substance in an area (Tissot et al. , 2005). 

Biomarkers have peculiar characteristics which allow them to conserve themselves throughout 

millennia: 

• Biomarkes are studied through the geochemical biomarker method, which is based 

on organic geochemistry and the presupposition that carbon is one of the main 

constituents of all living organisms on Earth (Ronkainen, 2015a). Therefore, they 

are easily dispersed in the environment, simply to find and to observe them.  

• Biomarkers are or form strong organic compounds with high stability and resistance 

against decomposition. 

• Biomarkers are preserved in biological and geological material. Terrestrial plants 

are the major producers of biological components (root, resin grains, phytoclasts, 

leaf wax), but most of them are mineralized and transformed during the phase of 

transport or diagenesis. Only a little part of these is well conserved in geologic 

materials (sediment, soil, rock, coal, petroleum, waxes) (Hautevelle et al., 2006), 
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but even a small amount of organic matter that is well preserved can provide a 

wealth of information (Castañeda et al., 2011; Jansen et al., 2017). The modality of 

their conservation depends on their “packaging”, their entrapment or their 

encapsulation in different matrixes. Examples are mineral matrix, shell, bones, 

rocks; biopolymer matrix, cell walls, leaves, insect cuticles, pollen grains, colloidal 

matrix, humic acids, and detrital debris (Eglinton et al., 2008). Some compounds 

could reach their matrix or may become adsorbed or dissolved within them, 

conserving themselves in this way. 

Every kind of biomarker has a different history, with diverse modality of transport (i.e. by wind, 

rivers, sea and animals), different path and timing of sedimentation, from land to sedimentary 

basins, and different diagenesis (Hautevelle, et al., 2006), which characterize them and give them 

unique attributes. 

 

4.4.2.1  Lipid wax n-alkane biomarkers 
 

In geochemistry, the most important classes of macromolecules are carbohydrates, proteins, and 

lipids. These make up every organism on Earth, and they change in relation to the environment. 

Taller plants, for example, are mostly composed by lignin and cellulose, the main components of 

the supportive and structural tissue of plants, but these are degradable and they may transform or 

degrade over time (Ronkainen, 2015, Killops et al., 2008). On the contrary, lipids are compounds 

that are quite stable and can be preserved in a relatively unaltered state (Pancost, Baas, & Geel, 

2002). 

Lipids are organic molecules that have scarce solubility in water but they are extractable from 

organisms through apolar solvent. They are substances such as fats, oils, wax, hormones, steroids, 

vitamins, phospholipids with no protein components on the cell wall (McMurry, 2008).  

Plants are composed of two types of lipids: structural and deposit lipids. The first one has a 

protective function with impermeable action (mostly waxes), which form the membrane structure 

and the cell organelles (glyco and phospholipids). They are supporting the cell walls (phospholipid 

bilayer) and are employed to transport electrons and organic substrates. The second type has a 

deposit function in fruits and seeds (oils) with the important role of providing energy reserves. 



29 
 

They are formed by triglycerides, or rather esters derived from glycerol and three fatty acid 

molecules (McMurry, 2008).  

Lipids in plants are mostly components parts that are in contact with the atmosphere in order to 

protect them. Therefore, they form cell walls, waxy components of leaf cuticles, stems, spores, 

pollen, resinous tissues, and petals. 

This protective lipid stratum is called the cuticle, and it is composed of cutin, which is bound by a 

layer of wax: epicuticular and intracuticular waxes (Eglinton et al., 1967). The epicuticular 

structure is formed by waxy components, and cutin in terrestrial plant. This layer acts as a barrier 

against uncontrolled water evaporation, but also minimizes mechanical and chemical damage to 

leaf, cells and inhibits fungal, bacterial, parasites and insect attacks (Eglinton et al., 1967; 

Ronkainen, 2015). They also regulate albedo, wettability and excessive ultraviolet radiation, and 

are composed by aliphatic acyclic compounds, such as fatty acids, primary and secondary alcohols, 

alkanes, aldehydes and ketones (Ardenghi, et al., 2017; Eglinton et al., 1967). 

The intracuticular structure is formed by waxes which prevent uncontrolled transpiration and are 

composed mostly of cyclic triterpenoids (Ardenghi et al., 2017; Ronkainen, 2015). 

Next to the waxy layer, just outside the leaves (cuticle) on the inside, is a layer of pectin, followed 

by the cellulose cell wall.  

Pectins are, therefore, structural components fulfilling important functions of protecting plants 

against withering and drought, and support growth and development of cells and cell walls (Yapo, 

2011). 

Cellulose is the most common organic polymer. It is a complex molecule, formed by many glucose 

molecules (300 to 3000 molecules) joined by glycosidic β(1→4) bonds. This strong arrangement 

forms the plant skeletal component and with hemicellulose, lignin and pectin confer to plants that 

allows for extraordinary structural and defensive properties. According to the species type and life 

stage, plants have different cellulose conformation, orientation, and biodegradability (Klemm et 

al., 2005). 

Hence, among the different structures that make up leaves, surely the most resistant to diagenesis 

and degradation are waxes. They more faithfully maintain the properties and characteristics of the 

plant over time. Wax lipids, instead of carbohydrates (readily degradable components), for 

example, are the most studied biomarkers in paleogeological science (Pancost et al., 2002). 
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Lipid n-alkanes are hydrocarbons that are found in the cuticle of leaves and steams of terrestrial 

plants (Eglinton et al., 2008; Sachse et al., 2006, Gamarra et al., 2015). The have strong structure, 

composed by non-polar covalent bonds among their hydrogen atoms, which make them resist 

exchanges based on the environment. Moreover, their water insolubility, negligible volatility (for 

compounds with more than 20 carbon atoms), chemical inertness (Eglinton et al., 2008) and lack 

of functional groups, implies a high resistance to diagenesis and biodegradation. That may create 

an accumulation in soil and sediments (Ardenghi et al., 2017; Eglinton et al., 2008; Kahmen et al., 

2013). As they preserve their primary structure over geological time, it makes them useful 

research proxies (Ardenghi et al., 2017; J. Nichols et al., 2010; Niedermeyer et al., 2016; Sachse et 

al., 2006). They originate from plant remains, and they can reflect original organisms, local 

vegetation cover and climate (Zheng et al., 2009). N –alkanes derive from different biological 

sources, and can be classified according to (based on) to the length of the carbon chain.  

Recent studies (Eglinton et al., 2008; Ficken et al., 1998, 2000; Pancost et al., 2002, Li et al., 2016; 

Nichols et al., 2006) discovered that short carbon chain mainly derived from bacterial and algal 

input (C14-19 n-alkane chains) (Han and Calvin, 1969; Albro, 1976; Weete, 1976; Wakeham, 1990), 

mid carbon chain derived principally from submerged aquatic plants (C23-25 n-alkane chains), long 

C chains come mostly from terrestrial higher plants, tree, and shrubs (C27-31 n-alkane chains), and 

higher C chains (>n-C31 n-alkane chains) represent mostly input  from grasses and herbs (Maffei, 

1996).  

For instance, various studies show how n-C23 and n-C25 are maximizing in Sphagnum sp. (Sachse 

et al. 2006). N-C27 are maximizing in alder, birch, willow, shrubs, sedges, Fagus sp., herbaceous 

taxa and in Sphagnum sp. too (Ficken et al., 1998; Sachse et al., 2006; Tarasov et al., 2013). N-C29  

is common in Alnus, Quercus, Carpinus species, (Sachse et al., 2006) and shrubs. N-C31 in Arctous, 

Vaccinium, Quercus ,Carpinus, Myrtus species (Sachse et al., 2006, Tarasov et al., 2013). N-C33 in 

Myrtus species, R. lanuginosum and grasses in general(Sachse et al., 2006 Ficken et al., 1998) 

There are, however, species that can grow within different environments, with variations in n-

alkane distribution, such as Sphagnum species, which were found both in hollow areas of bogs (Sp. 

recurvum, Sp. papillosum and Sp. cuspidatum) with a maximum of C23 n-alkane chains (Xie et al., 

2000), and in drier hummock tops (Sp. magellanicum, and Sp. capillifolium), with great abundance 

also of n-C31 homologues (Nichols et al., 2006)  
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Also deciduous and evergreen trees, angiosperm, and gymnosperm produce different amount of 

n-alkanes. In deciduous tree leaves, n-alkanes with nC25–nC31 carbon atoms and a strong odd 

over even carbon number predominance, are much more present rather than in coniferous tree 

needles (Maffei, 1996; Sachse et al., 2006). Since deciduous trees are producing more biomass 

each year and consequently, litter and organic matter accumulation (Sachse et al., 2006). 

The distribution of n-alkanes is mostly dependent on the place where the species are grown. Two 

plants of the same species, therefore, could have different n-alkane patterns if they live in 

different places. For example, a previous study (Sachse et al., 2006) observed that the average 

chain length (ACL) of Betula species, changes along the European latitude. Precisely, mean ACL 

value increased towards the southern regions, assuming probably that southwards there is a 

longer vegetation period and a more potential incoming radiation. Thus, plants are producing 

longer n-alkane chains to protect their leaves from water loss. 

 

 

4.4.2.1.1  Suppositions 
 

It is supposed that long n-alkane chains in leaf waxes are synthesized from plants to protect from 

potential incoming radiation, evaporation and water loss (Eglinton et al., 2008; Gamarra et al., 

2015). This phenomenon could be caused also by evaporative loss of shorter chain due to 

increases in evaporation. 

Leaves waxes are produced from plants during the whole growing season, to protect every 

external part of the plant, and mainly the most sensitive ones (Li et al., 2016; Sachse et al., 2006). 

Indeed, researchers show that there are high productions of long n-alkane chains in 

inflorescences, which are the most critical organ in a plant to ensure their reproduction. 

Therefore, in grasses, whose boundary layer is in direct contact with atmospheric agents and  is 

exposed to an intense evaporative demand, long n-alkane chain (C31-C33 homologues) are well 

abundant (Dietrich et al., 2014) to conserve as much water as possible to avoid desiccation of 

inflorescences (Gamarra, 2015). 

Other parts of the plant that are not directly enrolled in evaporative processes are less enriched 

with long chains, and they may have other epithelial structures with different functions. Such as 
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roots, which are the less enriched long n-alkane chain parts, because the root tip is meant to be 

permeable to facilitate water and other substance uptake by the plant. Likewise, a water 

impermeable waxy layer in this structure would be counter-productive for the plant. So, every 

species, part and organs have their own function with their own structure. The more exposed and 

sensitive these components, the more they will be protected by thick waxy layers and long n-

Alkane chains (Gamarra et al., 2015). 

With these assumptions it is possible to discriminate between species there are diversified in short 

or long n-alkane chains enrichment. Therefore, with this kind of analysis, it is thinkable to discover 

the vegetation that live or has lived in an area, more or less resistant to drier or humid environments. 

This technique then, is well applicate to differentiate between vascular and no-vascular plants, 

such as mosses or trees, for example. 
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4.4.2.1.2  Ratios used to explain n-alkane distribution 
 

Many studies have used different ratios to estimate the contribution of various species and their 

relative n-alkane abundance in the soil. For example, the n-C23/n-C25 ratio is used for 

distinguishing among different Sphagnum species and computing their relative abundance 

(Andersson et al., 2011; Bingham et al., 2010). The corrected-model n-C23/n-C29 n-alkane ratio is 

used to differentiate between inputs from Sphagnum and non-Sphagnum species (Nichols et al., 

2006b). It is used n-C29, because it is quite rare in Sphagnum species and abundant in other plant 

species, but other homologue, for example n-C31, is abundant in both non-Sphagnum and 

Sphagnum species. The C23/(C27 + C31) ratio is used to describe the relative moisture in peat 

profile and to separate fen and bog phases in permafrost environments (Andersson et al., 2011). 

Various observations (Bingham et al., 2010; Ficken, et al., 2000a) illustrate that the latter ratio 

represents better inputs from Sphagnum and vascular plants, because the C23/C29 n-alkane ratio, 

in general, does not completely reflect  the vegetation input and the moisture conditions in the 

profile (Andersson et al., 2011).   

Mosses/Tree Ratio – MT  

MT ratio - C23/(C27+C29+C31) - indicates the abundance of the distribution of short chains (n-C23 

alkane homologues) representative of mosses (Sphagnum species), over long chains (n-C27, n-C29, 

n-C31 alkane chains), indicative of trees. This ratio estimates, therefore, the prevailing abundance 

of one kind of vegetation, which could be a Sphagnum mosses, on the other, a forest, for example.  

Aquatic Ratio - Paq 

Paq ratio reflects the abundance relative to submerged vascular macrophytes to terrestrial plants. 

It was described by Ficken et al. (2000) in lacustrine circumstances, and it expresses the relative 

proportion of mid-length chain length (n-C23, n-C25) to long-chain length (n-C29, n-C31): 

Paq=(C23 +C25)/(C23 +C25+C29+C31) 

Paq values >0.4 indicate the probably dominance of submerged and floating macrophytes; Paq <0.4, 

instead, indicates dominance of vascular plants (Ficken et al., 2000). 
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Waxy ratio - Pwax 

The ratio that reflects the relative proportions of waxy hydrocarbons derived from emergent 

macrophytes and terrestrial plants to total hydrocarbons is the Pwax (Guifang et al., 2008): 

Pwax= (C27 + C29 + C31)/(C23+ C25 + C27 + C29 + C31)  

High Pwax ratio suggests a strong input from vascular plants and dry conditions, while low Pwax 

values indicate Sphagnum domination and wetter conditions (Zheng et al., 2007; Andersson et al., 

2011). 

Carbon Preference Index - CPI 

N-alkanes in this range of carbon chain (>C21), show predominantly strong odds over even carbon 

chain predominance (Eglinton et al., 1967; Kolattukudy, 1977; Li et al., 2016), rather than other 

carbon chains (alkanols, alkanoic, n-alcohols and n-fatty acids) which derived mainly from higher 

plant, but have typically an even carbon number preference. Even numbered n-alkanoic acids are 

precursors of the odd-numbered n-alkanes, after losing a single carbon. Therefore, this 

characteristic odd/even carbon-number distribution is a consequence of the universal polyketide 

(acetate, malonate) biosynthetic pathway. Biosynthetic reactions of this type give rise to the 

observed compound biases that are evident in extracts of representative vascular plant-surface 

waxes (Saliot et al., 1988). This preference of the carbon chain is represented by the carbon-

number preference index (CPI) (Eglinton et al., 2008).  

CPI is a measure of the alteration of organic matter, used as degradation proxy by quantifying the 

predominance of the carbon chains and furnishes an estimation of the continental/marine quality 

of the organic matter (Saliot et al., 1988)  

CPI is an important parameter which describes the molecular distribution of long n-alkanes chains, 

with the relative proportion of even or odd-numbered chain lengths in biological and geological 

samples. Biomarkers from different origins have different CPI values. CPI > 1 means a 

predominance of odd over even chain lengths, indicating a terrestrial plant source (Bush et al., 

2013). N-alkane from the cuticular waxes of higher plants have a strong odd/even predominance 

and give a CPI values >5. These results show larger differences between the chains, and vice versa 

(Rao et al., 2009). Low CPI values mean mature or degraded organic matter (J. Strauss et al., 2015). 
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N-Alkane from bacteria and algae, for example, show a weak odd-over-even predominance with 

low CPI values (Zhou, Xie, Meyers, & Zheng, 2005) 

Average Chain Length  - ACL 

Average chain Length (ACL) is the weighted average of the various carbon chain lengths. Usually, it 

defines chain length of the C27 to C33 n-alkanes present in a geological sample (Bush et al., 2013). 

It is one of the main average chain length tools together with CPI, and both are indicative of the 

biogenic sources, alteration, and organic matter overprint (Ronkainen, 2015).  
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4.4.2.1.3  Limitation of n-alkane biomarker method 
 

Even if the lipid biomarker method is rapid, easy to apply and brings immediate results with 

differentiation also of different sources, it has many limitations.  

• Plants in general contain less than 2% of lipids as biomass. Thus, the plant lipid 

represents only a low percentage of the total OM (Eglinton et al., 2008; Ronkainen, 

2015) and could not fully reflect the OM sources (Zheng et al., 2007).  

• There is variability in the molecular composition of the plant-derived OM, caused by 

diverse sources (different species, plant parts, genetic assembly), develop in different 

settings, climate, and environmental conditions. Also, conservation, ontogenesis 

and/or degradation in soil could furnish different pathways in the soil, depending on 

external environmental factors, age and microbiological activity (Jansen et al., 2017). 

• The airborne contribution might have considerable relevance, as it could cause the 

input of alien molecules, such as dust particles and aerosols, transported from large 

distances that may influence the local signal (Conte et al., 2002). 

• The contribution of modern roots could obscure the sample signal, for this reason, the 

preparation phase is significant to provide a clean and reliable sample.  

• It is important to also pay attention to the source of the scan chain. Every species 

maximizes the n-Alkane chains at a specific carbon number, but it is possible that a 

species contains a high abundance of more C, as Sphagnum sp. with both n-C23 and n-

C31 abundant carbon chains. This is depending also on the condition in which the plant 

is growing (Sachse et al., 2006). 

Hence, although recently a lot of research has been conducted on this molecular proxy method 

and it is still in development, limitations are present. Also available data on plant and soil chemical 

composition for different substance classes are still limited. Thus, sometimes it is helpful in 

paleoenvironmental studies and reconstructions to combine and cross-check with geolipid 

biomarker or other non-molecular methods and techniques, such as fossil pollen data, δD, δ13C, 

testate amoebae, rhizoliths (Jansen et al., 2017; Ronkainen, 2015). 
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4.4.2.1.4  Roots contribution 
 

More recent studies (Huang et al., 2011; Huguet et al., 2012; Kuhn et al., 2010; Nichols et al., 2006; 

Nierop et al., 2005) show that roots represent >70% of global net primary productivity of total 

carbon plant-derived carbon and they improved the carbon storage in the soil (Rasse et al., 2005).  

Roots are growing in plants with the function of catching water, minerals, and nutrients from 

various parts of the soil layers. The more plant growth in a humid environment with high water 

availability and high water table, the more its radical apparatus won't be developed deep in the 

soil. If the plant grows in an arid environment, with low water availability, it needs to develop a 

more extensive, deep root system, in order to access water for its growth which is present at 

greater depths in more arid climates. Examples of these ecosystems which foster deep root 

growth are desert regions i.e. desert biomes, which could host species with 68m root system 

depth such as Acacia erioloba, Kalahari, Botswana (Jennings, 1974). Differently, boreal forest 

ecosystem are reaching  ̴3,3 m rooting growing depth, and tundra biomes  1̴m (Canadell et al., 

1996). 

Temperate forest biomes typically have maximum rooting depth of 3.7 m, but only 35% of the root 

biomass is growing below 0.3 m. That means that the most of the roots and their C contribution 

are allocated in the first 0.3-0.5 m.  

Chiloé forest is characterized by a horizontally root system, developed mostly in the first 50 cm 

(Schulze et al., 1996). Hence, most of the root systems are allocated in these layers.  

 

Root input, therefore, could be an issue when applied as molecular proxies because of two 

reasons: 

1.    Occlusion of leaf wax lipid signal: roots may contain different lipid composition, in quantity 

and quality in comparison to other plant organs (Jansen et al.2006; Martelanc et al. 2007). 

Nevertheless, root biomass contribution in soil (20-50% depending on the biome) is not 

necessarily proportionate to their n-alcan lipid input (Gamarra et al., 2015) 

2.    The contribution of young root input: they may overprinting the original signal input and 

disturb the chronology (Gocke et al., 2014; Lavrieu et al., 2012). 
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Root n-alkane input varies significantly among many factors, such as different site, plant species, 

biome, depth. Therefore, the real contribution of roots is quite difficult to measure and evaluate 

and this topic is still the center of scientific debate, without any founded conclusions (Gocke et al., 

2013; Jansen et al., 2017, Lavrieux et al., 2012).  
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4.4.3 Gas Chromatography - Mass Spectrometry (GC-MS) 
 

Chromatography is a technique used for the separation of the components of a mixture based on 

the division between phases. The underlying principle of chromatography is based on the 

separation through different affinity of the compounds between two phases: 

- a fixed phase, or stationary phase, which can be a solid or a liquid supported on solid; 

- a mobile, liquid or gaseous phase, which is continuously flowed on the stationary phase. 

The stationary phase, consisting of a finely divided powder, made to increase the surface 

development, is contained within a thin tube (chromatographic column). The mixture which 

should be separate and placed on top of the chromatographic column and the mobile phase, also 

called eluent, is continuously flowed through the column, moving through the interstices of the 

mobile phase and filling them. 

The Gas Chromatography (GC) is a technique used exclusively for analytical purposes that uses a 

gas (carrier gas) as a mobile phase. It transports the sample through the column. It is, therefore, 

used to analyze gaseous substances, but also liquid or solids, as long as they are volatile in the 

range 0-500 °C. In the GC there are no significant interactions between the molecules of the 

mixture to be analyzed and the mobile phase (a carrier gas, N2, He, Ar). The components of the 

mixture, in fact, are separated above all according to their different volatility: the more a 

component is volatile, the lower its retention time in the column, and the faster will be eluted. 

According to their different affinity for the stationary phase, the more a component is similar to 

the stationary phase, the higher its retention time will be.  

The column is inserted in a thermostat (oven) that allows choosing the most suitable temperature 

for a given chromatographic analysis (constant temperature or variable by gradient). So, the liquid 

or solid compounds (<1 mg) is separated in their elemental components by the gas 

chromatograph. The detection of the signal is made by the mass spectrometry (MS). The signal 

produced by the detector is sent to a computer which records the chromatogram. With this 

coupled GC-MS system it is possible to obtain qualitative and quantitative determination of 

organic compounds in a variety of matrices. This technique provides molecular profiles of organic 

compounds which could be compared with standards molecules or mass spectra libraries. It is also 

possible to discover the composition of natural substances with the analysis of the presence of 

specific molecular biomarkers (Ronkainen 2015).
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5 Research question 
 

The interesting peculiarities of the forest of Chiloè Island and its soil and the incumbent threat of 

climate change and human activities in this area motivated us to investigate more in depth on this 

site.  

The aim of this research was to quantify the amount of carbon sequestered by the different kinds 

of vegetation during the past. This estimation was done by using quantitative analysis (TOC 

measurement, MS) to evaluate carbon content in the soil profile, combined with qualitative 

analysis (n-alkane biomarkers, GC-MS) to estimate the contribution of vegetation types. 

Investigate the past is necessary and very useful to act accordingly in the present, with the 

necessary and correct tools to ameliorate and amend the future. 
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6 Material and Methods 
 

6.1 Study area  

 

The study was carried out at the Senda Darwin Biological Station (EBSD, 42º53’ S, 73º40’ O) (Fig. 

5), a private protected area located in the north of the Chiloé Island, 15 km east from Ancud. The 

EBSD covers more than 113 ha and is formed by forest, shrubs, peatlands and forest plantations. 

The study site is a 100-ha forest patch, dominated by native North-Patagonian rainforest species, 

with evergreen, mixed broad-leaved trees, reaching 25 m high, such as Coigue de Chiloé 

(Nothofagus nitida), Canelo (Drimys winteri), Tepú (Tepualia stipularia), Olivillo (Aextoxicon 

punctatum), Avellano (Gevuina avellana), Luma (Amomyrtus luma), Ulmo (Eucryphia cordifolia), 

Tiaca (Caldcluvia paniculata), Trevo (Dasyphyllum diacanthoides) and also narrow-leaf conifers, 

Mañío hembra (Saxegothaea conspicua) and Mañío macho (Podocarpus nubigena). Also the 

abundant cover of the native bamboo Quila (Chusquea quila) takes part to this floristic assemblage 

(Aravena et al., 2002; Villagran, 1985). 

 

 

 

 

Fig. 5: Study area: senda darwin in Chiloé Island 
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The climate of the area is characterized by a temperate rainy weather, with oceanic influence 

(Aravena et al., 2002). The mean annual precipitation ranges from 1,900 to 2,300 mm, reaching 

even 6,000 mm in some areas (Perez et al., 2003). The annual mean temperature is about 9.6°C 

(Carmona et al., 2010) with maximum monthly temperatures in January (16°C) and minimum 

monthly temperatures in July-August (5 ºC) (Aravena et al., 2002).  

 

A recent study (Perez-Quezada et al., u.n.) revealed that this forests store 211 Mg C ha-1 in tree 

biomass and 764 Mg ha-1 in soil (72% of total), which is significantly higher than the average in 

temperate forests.  

 

 

 

6.2 Field Collection Samples 

 

For this study, there were three cores collected from 

the forest of the Senda Darwin Station. 

The drilling locations were established with a 

standard distance of approximately 100 m from 

each other (Fig. 6).  

The study site area had a soil depth of 

approximately 50 cm, and at some points, it reached 

1 m. At every extraction point, the soil was full of 

roots and branches, which presented challenges to 

the collection of the samples.               
Fig. 6: Three site area (above), soil core and Senda 

Darwin forest (below) 
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The first two profiles (Core 1 and 2) were taken from inaccessible areas of the forest. The roots 

and lianas of the trees have made the transition crucial. The main trees found on this site were 

canelo, coigue and the ulmo. Core 3 was withdrawn from a moister area, where trunks of the trees 

rest lying horizontally and vertically on a carpet of moss and marsh plants. The first soil layers 

were only soft spongy moss. 

The vegetation in the Senda Darwin area has developed a significant root system in the first layers 

of soil (0.5- 1m) due to the shallow depth of the soil, even though the trees have been observed to 

grow as high as 25 m. 

The three soil cores were taken from a depth of 50 cm using a Russian peat core auger 

(Eijkelkamp, Giesbeek, Holand). For each sample point, three cores were collected to ensure there 

was enough material for analysis. Each soil core was then divided into 5 cm thick layers, resulting 

in 10 samples for each core (3x(10x3)= 90 samples in total). The samples were stored in plastic 

bags and transported to the Laboratory of Ecosystem Ecology, of the Agronomy Faculty of the 

University of Chile. 
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6.3 Laboratory Procedure 

 

6.3.1 Physical Analysis 
 

The sections of equal depth at each sampling point were placed together in aluminum tubes, 

weighted and dried in an oven at 40°C for 48 hours. Afterward, they were weighted again, coarsely 

ground, and stored in plastic tubes of 10 ml volume for further analyses. The core samples data 

were then gathered to estimate the water content, weight, volume and dry bulk density of each 

profile (Appendix 5). 

The further analyses (TOC measurements and n-alkane biomarkers analyses) were performed at 

the Senckenberg Institute - a Research Centre of Climate and Biodiversity in Frankfurt am Main, in 

Germany. 

 

6.3.2 Roots separation 

 

Each sample was divided into different fractions, to separate the roots from the soil as much as 

possible. 

Plant roots play an important role in terms of contribution to organic matter into subsoil horizons. 

With dissolved organic matter and bioturbation (biotic activity which rework the soil and creating 

conditions for the nutrient alteration and chemical and physical change of the sediment texture), 

root biomass (also litter and root exudates) are one of the main sources of carbon input in the soil. 

Thus, to avoid misunderstandings between leaves/roots signal for this study, which could bring 

modern lipid n-alkane inputs to the soil sample, a method of precision root separation was carried 

out. 

The largest root particles were separated with tweezers (Fraction O), the smaller particles using 

different size sieves: fraction A of >0.2 mm, fraction B of <0.063 mm, fraction C of >0.063 and 0.2 

mm, and fraction D with the finest roots (Fig. 7). 
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Fraction O  Fraction A Fraction B 

  

Fraction C Fraction D 

 

Fig. 7: An example of each fraction 
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The C fraction is derived from the amount of material that did not pass through the 0.063mm 

sieve and was filtered with filter paper in distilled water. The moist soil samples were frozen 

overnight. The next day, the C fraction was put in the freeze dryer ALPHA 1-2 LDplus to extract 

water from the frozen material. This process, known as sublimation, converts ice directly to vapor. 

This is possible because the material is put under vacuum conditions, at temperatures lower than -

10°C. Through this process, a water soluble product can be obtained, which will have the same 

characteristics as the original product after addition of water. Thus, the compounds remain 

qualitatively and quantitatively unchanged. The C fraction samples were then put at -55°C ice 

condenser and 0.099 mbar vacuum. 

Afterward, the dried samples were stored in separate beakers, and the different roots deposited 

on the filter paper were dried and separated in different containers (fraction D). The B fraction 

was the finest and cleanest of all the samples, and it was used for further analyses because of its 

purity. The processes of these operations were essential to process a clean, uncontaminated and 

sample, free of roots. 

So, the finest fraction (<0.063mm) were used for the TOC measurements and then-alkane 

biomarker analyses. 
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6.3.3 TOC measurements 
 

For the analyses of this study, the direct quantitation of TC was made through the destruction of 

organic matter present in the soil via heat at high temperatures. These analyses were performed 

with an analyzer Leco EC-12. This device does not distinguish between organic and inorganic 

carbon.  

However, for the Chiloé forest soil, which contains a large amount of organic matter, the 

decarbonization process was not necessary, due to the execution of a test method done with  

hydrochloric acid, HCl (10%: 771 ml Distilled water, 240 ml HCl 37%). The method provides the 

application of many drops of HCl on the sample, and if it doesn’t form bubbles and nothing was 

dissolved, it indicates that there was no presence of carbonates (HCl is a strong acid, that in 

contact with carbonates, it decomposes them). 

The analyzer determines the TOC amount by the combustion of the sample material. During the 

sample material combustion in a high-temperature induction furnace at ~1000°, carbon is 

transformed into carbon dioxide. The carbon dioxide is trapped in a measuring cell where the gas 

concentration is determined by an infrared detector. TOC content is defined according to sample 

weight and is given in percentage of weight.  

Once collected, the samples were stored at 4°C, and dried in the oven immediately followed by 

sealing them properly in storage containers. Before the effective measure of TOC, it is necessary to 

remove all the larger organic particles by physically pulling particles out or by sieving the samples, 

leading to a more accurate evaluation of the soil and sediment C amount. 

Small portions from the finest size fraction (<0,063mm) of each sample were weighed (Appendix 

5).  

Under normal circumstances, carbon in soil should decrease with increasing depth due to the high 

ratio of organic matter accumulation in the first layers of soil and the increase of the degradation 

phenomena in the deepest layers. Taking this into account, it was taken a TOC values range of 10% 

(most superficial layer) to 1% (deepest layer), with the corresponding ideal sample and standard 

weight.  
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The detection limit of the Leco EC-12 is 0.001% and the precision is ± 0.004 at a sample weight of 

0.5 g (Leco company brochure). Analyses were performed in the laboratory of the Riedberg 

Campus, Biocentre of the Goethe University in Frankfurt am Main. 
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6.3.4 N-Alkane Biomarker Analysis 
 

Because of their abundance in the environment, their ease and rapid identification, extraction, 

isolation and purification and the minimal required quantity (<1g), n-alcane are widely used as 

proxy for many paleoenvironmental studies. In particular, there are often investigated with a 

geolipids method, an advantageous and useful technique.  

From the soil samples with <0,063 mm size, was extracted the organic compounds and analyzed 

the n-alkanes composition. 

 

6.3.4.1 Organic extraction 
 

The extraction of organic matter from the soil sample was realized using the fast Pressurized 

Solvent Extraction method (PSE). To achieve it, it was handled the BUCHI SpeedExtractor E-914/E-

916 in the Senckenberg Institute in Frankfurt am Main (Germany) (Fig. 8, Appendix 6). 

Pressurized solvent extraction is an efficient way to extract organic compounds from various solid 

or semi-solid matrices at elevated temperatures and pressure. This is an optimization process 

which reduces time and solvent consumption, 

ensures high recoveries and avoids the cross-

contamination between adjacent samples. A pre-

treatment is required to reach a successful 

extraction. In particular, samples should be 

perfectly dry: wet samples reduce extraction 

efficiency and may cause blowback due to 

restricted flow through the sample bed and may 

cause interferences due to co-extractions.  

Fig. 8: BUCHI SpeedExtractor E-914/E916 

For the analysis was used the finest size fraction (<0,063mm) obtained from sieving, as the 

efficiency of the extraction is proportional to the surface area in contact with the solvent, the 

smaller the particles and the large the relative surface area, the more efficient is the extraction. 

However, very fine-meshed samples may form tightly compressed beds which restricted solvent 
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penetration and may impede solvent discharge. To avoid this, it is ideal to mix the sample dust 

with combusted sand (sample/sand 1:1). The cell preparation for extraction is done with the use 

of 20 ml cells, filled with 3 g of sand, sample/sand 1:1, and sand again, retaining a void approx. 1 

cm in height between the sample bed and the upper filter (to ensure uniform flow and avoid 

samples clogging). Cells were closed with opportune glass fiber thimbles and paper filter, to 

reduce the sample loss upon transfer, and avoid clogging the samples and simplify the cleaning 

procedure. 

The extraction cycle involves three steps: heat up step, where temperature and pressure are 

slowly increased until the default parameter setting; hold step, where parameters remain 

constant; discharge step, in which the extraction product is discharged via pressure compensation 

and collected in the vials at temperature and pressure of 76 °C and 100 bar.  

The solvent has the major impact on the extraction result, this is important to choose a solvent 

which has similar polarity to that of the analytes. It had been arranged a process with 4 cycles with 

the use of dichloromethane (CH2Cl2) and methanol (CH3OH) as solvents, in the proportion of 

DCM/MeOH 9:1 (duration: 1.5 h ca) (Appendix 6). 

Before and after the extraction it was made a flush cycle with fresh solvent (100% Methanol, 

2min) and gas (N2, 1min) to clean up and to dry the cell, avoiding contamination of extract 

residues and remaining liquids from the last cycle to a subsequent run. 

Total lipid extracts (TLE) were collected in 240ml vials with proper porous caps (Fig. 9). They were 

transferred in  40ml vials and dried under a flow of nitrogen in a Bio-tage Turbovap LV at 36°C and 

10-15bar for 20-30 min. Dried samples were stored in the fridge at 4°C. 

 

 

 

 

 

 

           Fig. 9: Total Liquid Extract – TLE- after organic extraction  
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6.3.4.2 Fractionation 
 

For the fractionation and purification, the dried samples were dissolved in hexane (HEX). Five 

fractionation were made with different solvents:  

•    Fraction A with hexane, HEX 

for the separation of apolar compounds, polycyclic aromatics, aliphatic compounds (alkanes) 

•    Fraction B with hexane and dichloromethane, HEX:DCM (4:1) 

for the separation of polar compounds: alcohols, aromatics, aldehydes, and ketones 

•    Fraction C with dichloromethane and acetone, DCM: C3H6O (9:1) 

for the extraction of polar organic acids 

•    Fraction D with methanol, MeOH  

for the extraction of hetero components  

•    Fraction E with Formic Acid in dichloromethane (2% in DCM) 

for the extraction of fatty acids 

Each fraction was dried with TurboVap and stored in the fridge. Only A fraction was used for the 

alkanes analyses, the other ones have been kept for any future studies. 
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6.3.5 GC-MS 
 

For the GC-MS measurement, the apolar fraction (fraction A) containing n-alkanes was eluted 

using n-hexane as carrier gas and further purified using AgNO3 coated silica-gel. n-Alkanes were 

analyzed by gas chromatography/mass spectrometry (GC/MS) using a ThermoScientific Trace GC 

Ultra – AS al/AS1310 - DSQII equipped with a HP-5MS SiO2 column (30m x 0.25 nm x 0.25 mm). 

The GC oven was held at 70°C for 1 min, ramped at 10°C/min to 180°C (5 min hold), ramped at 

3°C/min to 320°C (25 min hold). N-Alkanes were identified by comparing their retention time and 

mass spectrum to an external standard (n-C7 to n-C40; Supelco 49452-U1000ηg/µl, with a 

concentration of 25ηg/µl in (cyclo)hexane and quantified using peak areas calibrated against the 

corresponding standard peak (Appendix 7).  

The profile of TOC and n-alkane analysis was graphically compared to investigate (Fig. 12) the 

carbon provision of each plant-type, hypothesizing that a high content of short-n-Alkane chains 

(C23-C25) are referable to a more humid environment, and, therefore, similar to a peatland 

ecosystem. On the contrary, an abundance of longer n-alkane chains is attributable to a drier 

environment, populated by more terrestrial and high plant vegetation. 
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7 Results 
 

 

In the three soil profiles, different pattern could be observed in the amount of soil organic carbon 

(kg/m2) from the surface to the deepest layers. In contrast, the percentage of TOC decreases 

proportionally with depth and bulk density trends show regular tendency along the depth in all 

three profiles (Figure 10).   

 

Core 1 shows an irregular trend along the profile: it starts with an increase of OC content (0.31 

kg/m2) until 20 cm (2.90 kg/m2). From 20 cm depth values stabilize roughly around value 2,9. On 

the other hand, %TOC has a regular downward trend from the surface (30.9%) to the deepest 

layer (4.5%).  

Core 2 has a more regular pattern with a range between 1.4 and 2.9 kg/m2. There is an increasing 

trend from the surface until 20 cm depth (2.9 kg/m2), and a small decrease until the deeper layers 

(up to 1.44 kg/m2). The percentage of TOC decreases regularly along the profile, obtaining results 

starting from 32.5% to 7.1% in depth. 

Core 3 shows a mean content of C lower than the other two cores, with a minimum of 1.02 kg/m2 

at 15 cm depth, and a maximum of 2.2 kg/m2 at 35 cm depth. The TOC content in this case also 

decreases proportionally and remains in the range between 30% and 9%, from the upper layer to 

the bottom. 
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C content TOC 

  
 

Bulk density 

 
 
Figure 10:  Carbon content (kg/m2), Total Organic Carbon (%) and Bulk Density (kg/m3) along the depth in 
cores 1, 2, 3.  -TOC values come with an error of ±10%, due to linearity effects-. 
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Figure 11: Comparison of C content (kg m-2) and n-alkanes concentration (g g-1) in the three profiles 
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Figure 12: Comparison of TOC values(%) and n-alkanes concentration(g g-1) in the three profiles 
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In soil profiles 1 and 2, n-alkane concentrations are highest in the upper layers, and decrease with 

depth. This pattern is reflected in TOC values as well. However, core 3 display a very different pattern, 

with highest n-Alkanes concentration between 25 and 40 cm. OC content shows irregular patterns, as 

mentioned above, in line or not with the n-alkane concentration among the different study sites 

(Fig.11, 12). 

Cores 1 and 2 show a highest concentration of n-Alkane in the first layers (<15cm), with 

concentrations mostly higher than 100 g/g. As depth increases, the mean n-alkane concentration 

declines. 

N-alkanes concentration in core 1 is significantly high in values. For the first 15 cm the most abundant 

n-alkane homologues are n-C27, n-C29, and n-C31, exceeded 100 µg/g. The C31 homologue for 

example reached a peak value of 180 µg/g. In deep layers, the quantity of n-Alkane decreases, 

remaining however these three chains the most preponderant. In this profile is noticeable the 

divergent trends between OC content and n-alkane concentration: in the upper layers there is a high 

concentration of n-alkane homologues, rather than a small, but increasing, content of OC at the same 

levels. When n-alkane concentration declines, OC content is reaching a regular trend. 

In core 2, there is a high abundance of n-alkanes for the first 10 cm, especially with the carbon chains 

of C27, C29, and C31, with a maximum value of 210 µg/g for n-C31 homologue concentration. There 

is, however, a strong decrease in the concentration of n alkanes from 20 cm onwards (values of the 

order of just units/decimals). Both TOC and OC content trends are slowly decreasing along the depth. 

Depth profile of n-alkane concentration in core 3 differs from those of cores 1 and 2, showing higher 

concentration of n-alkanes, with maximum values between 25 and 45 cm depth, which are surpassing 

270 µg/g. In the deepest layers n-alkane concentrations is then lowering. Also for profile 3 the 

preponderant n-alkane homologue is the n-C31.  

 

TOC values indicate a regular decreasing downward trend, even if n-alkane concentration is high in 

the middle layers. Accordingly with this concentration’s pattern, OC content shows a possible linear 

relation with n-alkane trends. 
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As a result, from measurements of OC content, TOC and n-alkane concentration is it possible to detect 

similar patterns of TOC values, but different OC content and n-alkane concentration among the three 

profiles. 

The diverse distributions of n-alkanes homologues through the profiles are expressed by different 

ratios that are choose to interpret these patterns (Fig.13, Appendix 18). 

Also the ratio results illustrate the dissimilarity among the three study areas. 

Paq ratio reflects the abundance of terrestrial plants (longer n-alkane chains) over the submerged 

vegetation (shorter n-alkane chains). It shows a mean values in a range between 0.1 and 0.5. Core 1 

illustrates Paq values around 0.2 in the superficial layers and with depth values until 0.4 fluctuating 

between 0.2 and 0.4. Core 2 has an irregular but increasing pathway, from a low value in the 

superficial layer (0.1 ) to higher values reaching 0.6 in the deeper layer. Profile 3 starts with high 

values of almost 0.5, and decreasing rapidly to 0.1-0.2 with depth. 

The Pwax ratio indicates the probably origin of waxy hydrocarbons in n-alkane homologues. It shows 

fluctuations between 0.7 and 0.9, with the exception of core 2, which has a decreasing trend and 

reaches 0.63 in the deepest layer and the superficial layer of profile 3 as well (0.63).  

CPI observes the grade of degradation of organic matter, identifying the predominance of the n-

alkane chains. CPI values in all samples show high values, with an average of 9. A decrease of values 

with the depth is perceivable mostly in the core 2, where a lower value is in the deeper zone (from 10 

to 5); in the other specimens trends fluctuate between 7-10. 

MT (Mosses/Tree) Ratio is chosen in order to study the distribution of short chains, which are 

indicative of mosses, versus long chain, which are indicative of trees. In the core analyses it shows a 

mean regular trend for all the samples in the middle zone, but a different situation happens for the 

superficial and deeper layers. Principally, in profile 2, values around 0.2 are reached in the deeper 

layers, unlike the average of the other cores (<0.1). Furthermore, core 3 delineates higher values in 

the superficial layers, reaching 0.4. 

The ACL (fig.8) index expresses the average of the length n-alkane chains concentration. It represents 

a main value of 28.9 among all the profiles. Core 1 varies in a range between 28.7 and 29.2 along the 

whole profile. For profile 2 the trend is decreasing along the profile: superficial layers seemed to 
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contain longer chain compounds (max 29.4) compared to the deepest values, which show lower ACL 

values (27.8). Core 3 shows an irregular trend for the first 20 cm, then the fluctuation stabilizes 

around value 29. 
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8 Discussion  
 

As it is visible from data in Fig. 11 and Fig. 12, the amount of C (kg/m2) in the soil is generally 

increasing with depth, but the relative percentage of TOC decreases proportionally.  

The C content trend could be related to the bulk density values, which in turn are depending 

mostly on soil texture and the organic matter content (Daddow et al., 1987). Generally, bulk 

density in the three profiles increased with depth. This may be possible due the soil compaction in 

the deeper layers, which caused a bulk volume reduction, and consequently, an increase of 

density section. Indeed, the C content trend seems to follow that one of the bulk density.  

The opposite tendency of TOC may be due to the enrichment of C in the upper layers, in form of 

OC, derived from rest of vegetation, roots, shrubs, organisms, but with increased depth, the OC 

could be more decomposed or mineralized, decreasing in content. 

In all the samples it is evident a relation among n-alkanes concentration and %TOC. TOC content 

and n-Alkanes concentration are decreasing with depth. It is appreciable that in all the samples for 

the first layers there is a highest concentration of n-Alkanes which is continuously decreasing. TOC 

decreases with depth and so does n-alkanes content. This could be plausible because n-alkanes 

are part of TOC. 

For profiles 1 and 2, the trends are similar, but core 3 shows differences as it is visible an increase 

of the n-alkanes concentration around 25-40 cm depth. This divergent trend is probable due to the 

different environment where the profiles originate. The location of core 3 is attributable to a wet 

superficial environment, with mosses and high moisture content. Data of this profile show a mean 

concentration of OC content of 1.7 kgC/m2 and %TOC of 18%. Cores 1 and 2 bring values of 2.35 – 

2.32 kgC/m2 and 14.3 – 15.40 %TOC respectively. 

Core 3 shows also very high n-alkane concentration in the middle layers, which is completely 

different from patterns of profiles 1 and 2. As well as the natural high presence of n-alkane 

concentrations, this increase could be attributable to a high presence of roots in this profile 

section, or a possible contamination of the core during the sampling, due to the moist superficial 

layers. 
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In general, it could be expected that all three areas were characterized from terrestrial vegetation, 

interspersed by spot with a moister environment.  

Paq describes the relative abundance of short (C23 and C25) and long (C27 – C31) n-alkane chains.  

It is typically used as indicator of lacustrine versus terrestrial condition and indicates the different 

categories of vegetation in a particular area. In this study it may possible to applicate it for 

expressing higher plants (trees, grasses, shrubs) versus mosses (Sphagnum) presence. 

While looking at core 1, the range of values (0.2-0.4) is more representative of higher plants. Core 

2 shows values which conduct drier situation (terrestrial vegetation), reaching high values (0.65), 

and indicating a moister environment. Profile 3 shows an interesting tendency, starting with high 

values, and lowering abruptly to a 0.2-0.1 range. This trend could be explained by the 

environmental conditions in which the core was levied from a semi-swamp area with mosses 

underneath trees in forest. The superficial zone of mosses, peat and organic matter may have 

contaminated the subsequent layers with a large amount of C23 n-Alkane chain, or in the past, a 

sudden change in vegetation may have occurred, from dry period to wet conditions. 

Pwax shows the relative contribution of waxy hydrocarbons from emerged macrophytes and 

terrestrial plants to the total hydrocarbons. Pwax is an index which compares the proportions of 

long-chain n- alkanes (n-C27+n-C29 +n-C31) to the sum of short and long chain n-alkanes (n-C23+ 

n-C25+ n-C27+ n-C29+ n-C31) (Ronkainen, 2015). It aims to show the relative proportion of waxy 

hydrocarbons over the total proportion of hydrocarbons. High Pwax ratio suggests a strong input 

from vascular plants and dry conditions, while low Pwax values indicate Sphagnum domination and 

wetter conditions (Andersson et al., 2011; Ronkainen, 2015; Zheng et al. 2007). In this case, high 

values of Pwax, indicate a relatively dry environment, but the peak of lower rates in according with 

the results of the other ratios, show moister conditions in the deeper layers of core 2 and in the 

first layer of core 3. 

MT (Mosses/Trees) ratio indicates relative contribution of n-C23 alkane chain over long chains. 

Long chain n-Alkanes (C27, C29, and C31) maximize their abundance in woody and terrestrial 

species; in fact, these chains are related to vascular plant waxes. In particular, low values indicate 

a strong input of vascular plants over Sphagnum species. Relative low values are discovered in the 

middle layers with modest changes in the extreme parts of the profiles. Most noteworthy the 

value of core 2 increases more than in the other profiles, and core 3 shows higher values in the 
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upper layers, with a decrease in the deeper ones. This is justifiable from the study site of profile 3, 

in which there were present mosses on the surfaces layers. 

CPI shows a strong odd-to-even carbon number predominance that could mean that these lipid 

chains come from the terrestrial plant, particularly from cuticular waxes. The general high values 

that are slowly decreasing among the profile may represent a less decomposed organic matter 

source. Contrary, the deeper layers of profile 2 decreased in values to around 6 or 5, indicating a 

more decomposed source of organic material.  

To summarize a CPI value holds significance. Many factors influence it during times of microbial 

reworking and diagenesis, which are contingent on different rates of degradation and alteration 

under different climatic conditions on. For example, under a cold, dry climate, microbial 

degradation and diagenesis of organic matter are slowed, and may preserve a high CPI value, and 

consecutively a conservation of the organic matter too (Xie et al. 2007; Zhou, et al.,2005). In 

contrast, in a warm, wet climate, the microbial degradation and diagenesis accelerate and may 

result in lower CPI values (Zhou, et al., 2005). 

It is notable how Paq and CPI of sample 2 have an opposite tendency, representing a notable 

situation: the first layers, expressed with low Paq values and high CPI values, indicating a drier 

situation rather than one in the deeper zone ones, which suggest that there were more humid 

conditions.  

From the ACL results, it is possible to predict the average of the n-alkane chain along the profiles. 

In general, the average holds high values around 29, with differentiation in some points of the 

sundry profile depths, such as from 30cm onwards in core 2 (>28.5) and at 15 cm depth in core 3. 

Despite these small fluctuations, the ACL present data that are traceable to areas with a 

predominantly terrestrial type of vegetation with typical higher plants n-alkane chains, rather than 

shorter n-Alkane chains, attributable to a more humid and aquatic environment. 

ACL doesn’t show much variation between the three soil profiles, which is to be expected as they 

derive from spatially nearby locations.  
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9 Conclusions 
 

Carbon quantification analysis revealed high organic carbon (OC) concentration and content in the 

soil, confirming findings from a previous study. The relationship observed between OC content 

and the lipid n-alkane distributions suggests a high concentration of both OC and long carbon 

chains. Notably, n-C31 homologue is detected as the most abundant lipid chain in all three 

profiles, which usually maximizes its concentration in terrestrial plants, such as trees and woody 

species. Therefore, these data allow us to suppose the dominance of forest vegetation in this area 

over time. 

N-alkane distributions and ratios provide important information on the separation between 

vegetation types, but are not conclusive. In particular, the use of the Paq ratio in these analyses did 

not provide answers on the types of ecosystems in the area, but gives information regarding the 

precise location and time where cores were withdrawn. In fact, this index does not tell whether or 

not there was a peat environment. That is expected from the higher Paq value in upper layers of 

profile 3, where mosses are growing underneath trees within the forest at the study site. 

Consequently, it is possible to reach quite high Paq values in upper layers, even if the surface is 

dominated by forest. Therefore, from the analyses, this proxy should not be used to determine 

forest versus peatland conditions at the study sites.  

A better indicator for monitoring the presence of mosses in a specific area could be n-C23 

homologues, in which n- are being produced predominately by Sphagnum species. This is the MT 

ratio, which discriminates the presence of mosses (no vascular plants) and terrestrial vegetation 

(vascular plants) in a specific spot. This, in fact, is confirmed exactly from the situation existent in 

study site 3. Here, the first soil layer is dominated by Sphagnum mosses, and the results illustrate 

higher ratio values rather the other sampling sites, where the first layers are characterized mostly 

by topsoil, roots and humus, and their ratio values stay lower. Remembering that high value of MT 

ratio indicate a predominance of n-C23 homologues, and consequently, the presence of mosses 

(wetter environment). 

Furthermore, it is possible to observe that there is a high heterogeneity in the area. In fact, it can 

be detected that despite the proximity of the sampling sites, there are different trends both in the 

n-alkane homologues distributions, and also in terms of OC content, and consequently, of n-

alkanes concentration. This opens the possibility for future studies relating, for example, to the 
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heterogeneity of an ecosystem or to the n-alkane homologue distributions of the current floristic 

vegetation in the area. 
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10 Comments 
 

The study site forest can be considered a symbol of conservation and protection of biodiversity on 

Chiloé’s Island. Without human influence, the forest thrived as soil and growing conditions were 

left to natural processes, but nowadays they are disappearing due to deforestation and 

detrimental human influences. Deforestation occurs for wood extraction, the creation of pastures 

and agricultural land, the creation of peatlands, and development of Sphagnum cultivation land 

which is high in commercial demand. 

All these disturbances could have dire repercussions for the forest’s biodiversity, but also for the 

global carbon cycle. In fact, further disruption is likely to cause a long-term disequilibrium in the 

global carbon cycle. 

For these reasons, this island’s vegetation must be conserved and protected. Fortunately, 

protections are already mandated in some areas, sites for this study for example. And thanks to 

the activity of the staff of Senda Darwin Biological Station, who is taking actions to preserve, 

reconstruct research and monitor  human influence effects are being slowed. Additionally, they 

are educating the people, with guides, lectures, meetings at schools, universities, and privates 

institutes to bring awareness to their cause of conservation and preservation of this ecosystem.  

It is essential to give the land back to inhabitants who wish to use its resources sustainably and not 

cause irreversible damage with intentions of preserving its long term well being. Younger 

generations will depend on it for years to come and it is crucial that the carbon cycle is maintained 

and systems are not unbalanced by detrimental human influences. 

 

  



70 
 

  



71 
 

11 References 

 
Aerts, R., D. F. Whigham, D. F., & Verhoeven, J. T. A. (1999). Plant-Mediated Controls on Nutrient Cycling 

in Temperate Fens and Bogs. Ecology, 80(7), 2170–2181.  

Andersson, R. A., Kuhry, P., Meyers, P., Zebühr, Y., Crill, P., & Mörth, M. (2011). Impacts of 

paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the 

eastern European Russian Arctic. Organic Geochemistry. 42(9), 1065–1075.  

Aravena, J. C., Carmona, M. R., Pérez, C. A., & Armesto, J. J. (2002). Changes in tree species richness, 

stand structure and soil properties in a successional chronosequence in northern Chiloé Island, 

Chile. Revista Chilena de Historia Natural, 75(2), 339–360.  

Ardenghi, N., Mulch, A., Pross, J., & Maria Niedermeyer, E. (2017). Leaf wax n-alkane extraction: An 

optimised procedure. Organic Geochemistry, 113, 283–292.  

Baas, M., Pancost, R., Geel, B. Van, & Damste, J. S. S. (2000). A comparative study of lipids in Sphagnum 

species. Organic Chemestry, 31, 535–541. 

Baker, A., Routh, J., & Roychoudhury, A. N. (2016). Biomarker records of palaeoenvironmental variations 

in subtropical Southern Africa since the late Pleistocene : Evidences from a coastal peatland, 451, 

1–12.  

Bingham, E. M., McClymont, E. L., Väliranta, M., Mauquoy, D., Roberts, Z., Chambers, F. M., & Evershed, 

R. P. (2010). Conservative composition of n-alkane biomarkers in Sphagnum species: Implications 

for palaeoclimate reconstruction in ombrotrophic peat bogs. Organic Geochemistry, 41(2), 214–

220. 

Bonan, G. B. (2008). Forests and Climate Change : Forcings, Feebacks, and the Climate Benefits of 

Forests. Science, 320(June), 1444–1450. 

Bush, R. T., & McInerney, F. A. (2013). Leaf wax n-alkane distributions in and across modern plants: 

Implications for paleoecology and chemotaxonomy. Geochimica et Cosmochimica Acta, 117, 161–

179. 

Cabezas, J., Galleguillos, M., Valdés, A., Fuentes, J. P., Pérez, C., & Perez-Quezada, J. F. (2015). Evaluation 

of impacts of management in an anthropogenic peatland using field and remote sensing data. 

Ecosphere, 6(December), 1–24. 

Canadell, J., Jackson, R. ., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). Maximum 

rooting depth of vegetation types at the global scale. Oecologia, 108, 583–584. 

Carmona, M. R., Aravena, J. C., Bustamante-sánchez, M. A., Celis-Diez, J. L., Charrier, A., Díaz, I. A., & 

Armesto, J. J. (2010). Estación Biológica Senda Darwin: Investigación ecológica de largo plazo en la 

interfase ciencia-sociedad. Revista Chilena de Historia Natural, 83(1), 113–142.  

Castañeda, I. S., & Schouten, S. (2011). A review of molecular organic proxies for examining modern and 

ancient lacustrine environments. Quaternary Science Reviews, 30(21–22), 2851–2891.  



72 
 

Castanha, C., & Trumbore, S. E. (2008). Methods of Separating Soil Carbon Pools Affect the Chemistry 

and Turnover Time of Isolated Fractionsì. 

Centre for Sustainability and the Global Environment, Nelson Institute, University of Wisconsin-Madison. 

http://nelson.wisc.edu/sage/index.php  

Clymo, R. S. (1984). The Limits to Peat Bog Growth. Philosophical Transactions of the Royal Society of 

London. Series B. Biological Sciences, 303(1117), 605–654.  

Clymo, R. S., & Hayward, P. M. (1998). The ecology of Spagnum. Sphagnum, the peatland carbon 

economy, and climate change. British Bryological Society, 361–368. 

Daddow L. & Warringto G.E. (1987): Growth limiting soil bulk densities as influenced by soil texture. 

Watershed systems development group, USDA Forest Service , Colorado. 

Díaz, M. F., Bigelow, S., & Armesto, J. J. (2007). Alteration of the hydrologic cycle due to forest clearing 

and its consequences for rainforest succession. Forest Ecology and Management, 244(1–3), 32–40.  

Díaz, M. F., Larraín, J., Zegers, G., & Tapia, C. (2008). Caracterización florística e hidrológica de turberas 

de la Isla Grande de Chiloé, Chile. Revista Chilena de Historia Natural, 81(4), 455–468.  

Díaz, M. F., Tapia, C., Jiménez, P., & Bacigalupe, L. (2012). Sphagnum magellanicum growth and 

productivity in Chilean anthropogenic peatlands. Revista Chilena de Historia Natural, 85(4), 513–

518. 

Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC,& Wisniewski J. (1994). Carbon Pools and 

Flux of Global Forest Ecosystems. Science 263. 

Eglinton, G., & Hamilton, R. J. (1967). Leaf Epicuticular Waxes. Science, 156(3780), 1322–1335.  

Eglinton, T. I., & Eglinton, G. (2008). Molecular proxies for paleoclimatology. Earth and Planetary Science 

Letters, 275(1–2), 1–16. 

Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., & Steffen, W. (2000). The global 

carbon cycle: A test of our knowledge of Earth as a system. Science’s Compass, 290(5490), 291–

296. 

Ficken, K. J., Barber, K. E., & Eglinton, G. (1998). Lipid biomarker , d 13 C and plant macrofossil 

stratigraphy of a Scottish montane peat bog over the last two millennia, 28(3). 

Ficken, K. J., Li, B., Swain, D. L., & Eglinton, G. (2000b). An n -alkane proxy for the sedimentary input of 

submerged /Floating freshwater aquatic macrophytes. Organic Geochemistry, 31, 745–749.  

Freeman, C., Ostle, N., & Kang, H. (2001). An enzymic “latch” on a global carbon store. Nature, 

409(6817), 149.  

Gamarra, B., & Kahmen, A. (2015). Concentrations and δ2H values of cuticular n-alkanes vary 

significantly among plant organs, species and habitats in grasses from an alpine and a temperate 

European grassland. Oecologia, 178(4), 981–998.  



73 
 

Gerold, J. (1995). The Growth Dynamics of Sphagnum Based on Field Measurements in a Temperate Bog 

and on Laboratory Cultures Author. Journal of Ecology, 83(3), 431–437.  

Gocke, M., Kuzyakov, Y., & Wiesenberg, G. L. B. (2013). Differentiation of plant derived organic matter in 

soil , loess and rhizoliths based on n -alkane molecular proxies. Biogeochemistry, 112, 23–40.  

Gocke, M., Peth, S., & Wiesenberg, G. L. B. (2014). Catena Lateral and depth variation of loess organic 

matter overprint related to rhizoliths — Revealed by lipid molecular proxies and X-ray tomography. 

Catena, 112, 72–85 

Gorte, R. W. (2009). Carbon Sequestration in Forests. Congressional Research Service, 4, 2–37.  

Guifang, Y., Shucheng, X. I. E., Junhua, H., & Zhongyuan, C. (2008). Microbial Characteristics and 

Vegetation Changes as Recorded in Lipid Biomarker of Tianmushan Peat Bog. 15(4). 

Gunnarsson, U., Granberg, G., & Nilsson, M. (2004). Growth, production and interspecific competition in 

Sphagnum: Effects of temperature, nitrogen and sulphur treatments on a boreal mire. New 

Phytologist, 163(2), 349–359. 

Hautevelle, Y., Michels, R., Malartre, F., & Trouiller, A. (2006). Vascular plant biomarkers as proxies for 

palaeoflora and palaeoclimatic changes at the Dogger/Malm transition of the Paris Basin (France). 

Organic Geochemistry, 37(5), 610–625 

Houghton RA, Goetz SJ, 2008: New satellites help quantify carbon sources and sinks, Eos Trans. AGU, 

89(43), 417 – 418. 

Huang X, Wang C., Zhang J., Wiesenberg L.B.G., Zhang Z., Xie S., (2011): Comparison of free lipid 

compositions between roots and leaves of plants in the Dajiuhu Peatland, central China. 

Geochemical Journal, 45(2010), 365–373. 

Huguet, A., Wiesenberg, G. L. B., Gocke, M., Fosse, C., & Derenne, S. (2012). Branched tetraether 

membrane lipids associated with rhizoliths in loess: Rhizomicrobial overprinting of initial biomarker 

record. Organic Geochemistry, 43, 12–19. 

IGBP-DIS: International Geosphere-Biosphere Programme, Data Information Service 

IPCC report : https://www.ipcc.ch/ipccreports/tar/wg1/099.htm 

IPCC. (2000). Land use, land-use change, and forestry. Cambridge University Press. 

Iturraspe, R., & Roig, C. (2000). Aspectos hidrológicos de turberas de Sphagnum de Tierra del Fuego-

Argentina. ResearchGate, 1(January), 85–93.  

Jansen M., Martelanc M., Vovk, I., & Simonovska, B.(2006). Determination of three major triterpenoids in 

epicuticular wax of cabbage (Brassica oleracea L.) by high-performance liquid chromatography 

with UV and mass spectrometric detection. 1164, 145–152. 

Jansen, B., & Wiesenberg, G. L. B. (2017). Opportunities and limitations related to the application of 

plant-derived lipid molecular proxies in soil science. Soil, 3(4), 211–234.  

John McMurry (2008): Organic Chemistry, 7° ed., Cornell University.  



74 
 

Joosen, H., & Clarke, D. (2002). Wise use of mires and peatlands- Background and priciples including 

framework for decision makin. Saarijärvi, Finland: International Mire Conservation Group and 

International Peat Society. 

Kahmen, A., Schefuß, E., & Sachse, D. (2013). Leaf water deuter ium enrichment shapes leaf wax n -

alkane d D values of angiosperm plants I : Experimental evidence and mechanistic insights. 

Geochimica et Cosmochimica Acta, 111, 39–49. 

Killops S. and Killops V (2008). Introduction to organic geochemistry. 2nd edition. Blackwell Ltd. 

Klemm, D., Heublein, B., Fink, H., & Bohn, A. (2005). Cellulose : Fascinating Biopolymer and Sustainable 

Raw Material. Polymer Science, 44, 3358–3393.  

Krull ES, Skjemstad JO (2003): d13C and d15N profiles in 14C-dated Oxisol and Vertisols as a function of 

soil chemistry and mineralogy, Geoderma 122(1):1-29. 

Kuhn, T. K., Krull, E. S., Bowater, A., Grice, K., & Gleixner, G. (2010). The occurrence of short chain n -

alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry, 

41(2), 88–95. 

Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220, 242–258.  

Lavrieux, M., Bréheret, J., Disnar, J., & Jacob, J. (2012). Organic Geochemistry Preservation of an ancient 

grassland biomarker signature in a forest soil from the French Massif Central. Organic 

Geochemestry, 51, 1–10.  

Li, Y., Yang, S., Wang, X., Hu, J., Cui, L., Huang, X., & Jiang, W. (2016). Leaf wax n-alkane distributions in 

Chinese loess since the Last Glacial Maximum and implications for paleoclimate. Quaternary 

International, 399, 190–197. 

Loisel, J., & Garneau, M. (2010). Late Holocene paleoecohydrology and carbon accumulation estimates 

from two boreal peat bogs in eastern Canada: Potential and limits of multi-proxy archives. 

Palaeogeography, Palaeoclimatology, Palaeoecology, 291(3–4), 493–533.  

Maffei, M. (1996). Chemotaxonomic significance of leaf wax n-alkanes in the umbelliferae, cruciferae 

and leguminosae (subf. Papilionoideae). Biochemical Systematics and Ecology, 24(6), 531–545.  

Malhi, Y., Baldocchi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal 

forests. Plant, Cell and Environment, 22, 715–740. 

Nichols, J. E., Booth, R. K., Jackson, S. T., Pendall, E. G., & Huang, Y. (2006). Paleohydrologic 

reconstruction based on n -alkane distributions in ombrotrophic peat, 37, 1505–1513.  

Nichols, J., Booth, R. K., Jackson, S. T., Pendall, E. G., & Huang, Y. (2010). Differential hydrogen isotopic 

ratios of Sphagnum and vascular plant biomarkers in ombrotrophic peatlands as a quantitative 

proxy for precipitation/evaporation balance. Geochimica et Cosmochimica Acta, 74(4), 1407–1416.  

Niedermeyer, E. M., Forrest, M., Beckmann, B., Sessions, A. L., Mulch, A., & Schefuß, E. (2016). The 

stable hydrogen isotopic composition of sedimentary plant waxes as quantitative proxy for rainfall 

in the West African Sahel. Geochimica et Cosmochimica Acta, 184, 55–70.  



75 
 

Nierop, K. G. J., Naafs, D. F. W., & Bergen, P. F. Van. (2005). Origin, occurrence and fate of extractable 

lipids in Dutch coastal dune soils along a pH gradient. Organic Geochemestry, 36, 555–566.  

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., … Hayes, D. (2011). A Large and 

Persistent Carbon Sink in the World’s Forests. Science, 333(6045), 988–993.  

Pancost, R. D., Baas, M., & Geel, B. Van. (2002). Biomarkers as proxies for plant inputs to peats : an 

example from a sub-boreal ombrotrophic bog. Organic Chemestry, 33, 675–690. 

Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva, T., Silvius, M., & Stringer, L. (2008). Assessment 

on Peatlands, Biodiversity and Climate Change: Main Report. Wageningen, Nederlands: Global 

Environment Centre, Kuala Lumpur & Wetlands International,.  

Paul EA, Follett RF, Leavitt SW, Halvorson A, Peterson GA, Lyon DJ (1997) Radiocarbon dating for 

determination of soil organic matter pool sizes and dynamics. Soil Sci Soc Am J 61:1058–1067). 

Perez, C. A., Armesto, J. J., Torrealba, C., & Carmona, M. R. (2003). Litterfall dynamics and nitrogen use 

ef ciency in two evergreen temperate rainforests of southern Chile. Austral Ecology, 28(6), 591–

600.  

Perez-Quezada  F, Pérez CA, Brito CE, Fuentes JP, Gaxiola A: Carbon, nitrogen and phosphorous pools in 

a temperate rainforest in northern Patagonia. Unpublished data. 

Price, J. (1996). Hydrology and microclimate of a partly restored cutover bog, Quebec. Hydrological 

Processes, 10(10), 1263–1272. 

Rao, Z., Zhu, Z., Wang, S., Jia, G., Qiang, M., & Wu, Y. (2009). CPI values of terrestrial higher plant-derived 

long-chain n-alkanes: A potential paleoclimatic proxy. Frontiers of Earth Science in China, 3(3), 

266–272.  

Rao, Z., Zhu, Z., Wang, S., Jia, G., Qiang, M., & Wu, Y. (2009). CPI values of terrestrial higher plant-derived 

long-chain n-alkanes: A potential paleoclimatic proxy. Frontiers of Earth Science in China, 3(3), 

266–272.  

Rasse, D. P., Rumpel, C., & Dignac, M. (2005). Is soil carbon mostly root carbon? Mechanisms for a 

specific stabilisation. Plant and Soil, 269, 341–356.  

Rattan L, Lorenz K,  2012: Carbon Sequestration in Temperate Forests. Recarbonization of the Biosphere: 

Ecosystems 187and the Global Carbon Cycle, Ch. 9.  

Rethemeyer, J., Kramer, C., Gleixner, G., John, B., Yamashita, T., Flessa, H., Grootes, P. M. (2005). 

Transformation of organic matter in agricultural soils: Radiocarbon concentration versus soil depth. 

Geoderma, 128(1–2), 94–105.  

Rochefort, L. (2000). Invited essay: New Frontiers in Bryology and Lichenology Sphagnum—A Keystone 

Genus in Habitat Restoration. The Bryologist, 103(3), 503–508.  

Ronkainen, T. (2015). Plant Biomarkers As a Proxy To Study Highly Decomposed Fen Peat. Helsinki: 

Hansaprint Helsinki. 



76 
 

Rumpel, C., & Kögel-Knabner, I. (2011). Deep soil organic matter-a key but poorly understood component 

of terrestrial C cycle. Plant and Soil, 338(1), 143–158.  

Sachse, D., Radke, J., & Gleixner, G. (2006). dD values of individual n -alkanes from terrestrial plants 

along a climatic gradient – Implications for the sedimentary biomarker record. Organic 

Geochemistry, 37, 469–483.  

Saliot, A., Tronczynski, J., Scribe, P., & Letolle, R. (1988). The application of isotopic and biogeochemical 

markers to the study of the biochemistry of organic matter in a macrotidal estuary, the Loire, 

France. Estuarine. Coastal and Shelf Science, 27(6), 645–669.  

Scharpenseel HW, Becker-Heidmann P (1989). Shifts in 14C patterns of soil profiles due to bomb carbon, 

including effects of morphogenetic and trubation processes. Radiocarbon 31:627–636  

Schulze, E. D., Mooney, H. A., Sala, O. E., Buchman, N., Jobbagy, E., Bauer, G., Ehleringer, J. R. (1996). 

Rooting depth, water availability , and vegetation cover along an aridity gradient in Patagonia. 

Oecologia, 108, 503–511. 

Sriamornsak, P. (2003). Chemistry of Pectin and Its Pharmaceutical Uses : A Review. ResearchGate, 

(January 2003). 

Tarasov, P. E., Müller, S., Zech, M., Andreeva, D., Diekmann, B., & Leipe, C. (2013). Last glacial 

vegetation reconstructions in the extreme-continental eastern Asia: Potentials of pollen and n-

alkane biomarker analyses. Quaternary International, 290–291, 253–263.  

Tissot, B. P. and Welte, D. H.: Petroleum Formation and Occurrence, 2nd Edn., Springer-Verlag, Berlin, 

Germany, 1984.  

Tolonen, K., Vasander, H., Damman, A. W. H., & Clymo, C. R. . (1992). Preliminary estimate of long term 

carbon accumulation and loss in 25 boreal peatlands. Helsinki. 

Trumbore, S. E., & Zheng, S. (1996). Comparison of fractionation methods for soil organic matter 14C 

analysis. Radiocarbon, 38(2), 219–229.  

Trumbore, S.E., Druffel, E.R. (1995). Carbon isotopes for characterizing sources and turnover of nonliving 

organic matter. In: Zepp, R.G., Sonntag, C. (Eds.), The Role of Nonliving Organic Matter in the 

Earth’s Carbon Cycle. John Wiley & Sons, Chichester, England, pp. 7–22 

University of New Hampshire. (2014). An introduction to the Global Carbon Cycle. GLOBE Carbon Cycle, 

12. 

University of New Hampshire: Balancing the Global Carbon Budget. Annu. Rev. Earth Planet. Sci 

007.35:313-347, Carbon Budjet Project 2009 

Ussiri, D. A. N., & Lal, R. (2017). Carbon Sequestration for Climate Change Mitigation and Adaptation. 

Springer International Publishing.  

Vikki Tropical Resource Institute (VITRI), University of Helsinki 

Villagran C., (1988): Expansion of Magelianic Moorland during the Late Pleistocene: Palynological 

Evidence from Northern lsla de Chiloé, Chile, Quaternary Research 30, 30, 314.  



77 
 

Villagran C, 1990: Glacial climates and their effects on the history of the vegetation of Chile: A synthesis 

based on palynological evidence from Isla de Chiloe’. Review of Palaeobotany and Palynology 65: 

17-24 . 

Villagran C, Hinojosa LF, 1997: Historia de los bosques del sur de Sudamérica, II: Análisis fitogeográfico. 

Revista Chilena de Historia Natural, 70:241-267. 

Villagran, C. (1985). Análisis palinológico de los cambios vegetacionales durante el Tardiglacial y 

Postglacial en Chiloé , Chile. 57–69. 

Xie, S., Nott, C. J., Avsejs, L. A., Volders, F., Maddy, D., Chambers, F. M. & Evershed, R. P. (2000). 

Palaeoclimate records in compound-speci ® c D values of a lipid biomarker in ombrotrophic peat, 

31, 1053–1057. 

Yapo, B. M. (2011). Pectic substances : From simple pectic polysaccharides to complex pectins — A new 

hypothetical model. Carbohydrate Polymers, 86(2), 373–385.  

Zegers, G., Larraín, J., Díaz, M. F., & Armesto, J. (2006). Impacto ecológico y social de la explotación de 

pomponales y turberas de Sphagnum en la Isla Grande de Chiloé. Revista Ambiente y Desarrollo de 

CIPMA, 22(1), 28–34. 

Zheng, Y., Zhou, W., Meyers, P. A., & Xie, S. (2007). Lipid biomarkers in the Zoigê-Hongyuan peat deposit: 

Indicators of Holocene climate changes in West China. Organic Geochemistry, 38(11), 1927–1940.  

Zheng, Y., Zhou, W., Xie, S., & Yu, X. (2009). A comparative study of n-alkane biomarker and pollen 

records: An example from southern China. Chinese Science Bulletin, 54(6), 1065–1072.  

Zhou, W., Xie, S., Meyers, P. A., & Zheng, Y. (2005). Reconstruction of late glacial and Holocene climate 

evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Organic 

Geochemistry, 36(9), 1272–1284.  

Zoli C.: Report applicativo analisi di laboratorio TOC, Hach Lange, United for Water Quality, Lab L.A.V. s.r. 

 

 

  



78 
 

  



79 
 

12 Acknowledgments 

 

 

At the end of this path I think it is important and essential to thank the people who have allowed 

me to reach this awaited goal. 

I am infinitely grateful to my parents for the support, love, patience and energy that they have 

dedicated to me. 

I thank Professor Pitacco for the availability and patience, and for following me and supporting me 

also from far away in all these months. 

I thank Professor Malagoli for the help and assistance given to me for my internship experience in 

Santiago de Chile. 

I would like to thank Professor Perez, who has been patient and available for the whole period 

abroad and during the whole process of drafting and correcting my thesis. 

I thank Dr. Niedermeyer for having welcomed me in her research team in Frankfurt and for having 

followed and supported me during the realization of the laboratory analysis and during the 

correction of the thesis work. 

I thank the guys of LECS in Chile, in the Senckenberg Institute team, all my classmates and all the 

people who have been close to me and who have shared with me this year full of beautiful and 

fundamental experiences for my work and personal growth. 

 

  



80 
 

  



81 
 

13 Appendices 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 1: Net Primary Productivity: Global (above) and of South America (below) 
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Appendix 2: Soil Organic Carbon: Global (above) and of South America and Chiloè Island (below) 
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Appendix 3: Global distribution of the different biome type  
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Appendix 4:  

On the left: Sketch map of southern 

Chile showing the distribution of 

Magellanic moorland and rainforest 

at present time (Villagran, 1988) 

Below: Cordillera of Southern Chile 

between 40 and 43°S latitude showed 

mapped inferred (dashed ticked line) 

limit of ice during maximum 

Llanquihue advance in Chile.and 

glacial limits for isla Chiloè from 

Heusser and Flint (1977) 
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Appendix 5: Collection of data: physical analyses, TOC measurements, extraction analyses, calculation of bulk density and organic carbon content

NAME DEPTH GWW T tube WW GDW T box DW H20 CONTENT Vol sampler Vol sample BD Tot W sample B fraction <0,063mm BD OC 

cm g g g g g g g cm3 cm3 g/cm3 g g %TOC ideal µg ideal (+- 10/20%) µg samples C µg Cc (kg) TOC % TOC fraction Lab code Weight (g) Note remained sample (g) kg/m3 kg/m3

1A 0-5 7,73 1,67 6,06 5,37 4,15 1,22 4,84 3003,96 60,07 0,02 5,49 1,176 0,10 1200 1151,00 355,43 0,31 30,88 0,31 2AB 1,21 B+E fractions / 20,31 3,14

1B 5-10 33,00 1,67 31,33 9,70 4,01 5,69 25,64 3003,96 60,07 0,09 6,00 1,154 0,09 2070 2102,00 487,54 0,23 23,19 0,23 2BB 1,18 B+E fractions / 94,72 10,98

1C 10-15 59,58 1,67 57,91 16,75 4,17 12,58 45,33 3003,96 60,07 0,21 6,85 1,783 0,08 2940 2973,00 572,57 0,19 19,26 0,19 2CB 1,01 B+E fractions / 209,41 20,17

1D 15-20 67,79 1,67 66,12 23,61 4,18 19,43 46,69 3003,96 60,07 0,32 7,99 2,225 0,07 3360 3503,00 608,00 0,17 17,36 0,17 2DB 1,00 B fraction 1,13 323,44 28,07

1E 20-25 77,95 1,67 76,28 29,65 4,11 25,54 50,74 3003,96 60,07 0,43 10,77 3,27 0,06 4680 4752,00 649,37 0,14 13,67 0,14 2EB 1,01 B fraction 1,31 425,14 29,05

1F 25-30 84,22 1,67 82,55 31,88 4,09 27,79 54,76 3003,96 60,07 0,46 11,37 3,626 0,05 6000 5961,00 729,09 0,12 12,23 0,12 2FB 1,00 B fraction 2,64 462,60 28,29

1G 30-35 98,85 1,67 97,18 41,73 4,08 37,65 59,53 3003,96 60,07 0,63 11,56 6,19 0,04 7500 7538,00 708,12 0,09 9,39 0,09 2GB 1,01 B fraction 5,24 626,73 29,44

1H 35-40 101,80 1,67 100,13 53,45 4,17 49,28 50,85 3003,96 60,07 0,82 12,01 6,295 0,03 9000 9075,00 678,10 0,07 7,47 0,07 2HB 1,00 B fraction 5,37 820,32 30,65

1I 40-45 103,38 1,67 101,71 66,81 4,15 62,66 39,05 3003,96 60,07 1,04 14,84 5,678 0,02 10500 10482,00 574,00 0,05 5,48 0,05 2IB 1,01 B fraction 4,72 1043,05 28,56

1J 45-50 108,79 1,67 107,12 77,75 4,33 73,42 33,70 3003,96 60,07 1,22 16,89 6,018 0,01 12000 12068,00 538,44 0,04 4,46 0,04 2JB 1,01 B fraction 5,01 1222,16 27,26

2A 0-5 44,27 1,67 42,60 14,85 5,70 9,15 33,45 3003,96 60,07 0,15 6,99 1,191 0,10 1200 1259,00 409,44 0,33 32,52 0,33 4AB 1,18 B+E fractions / 152,31 24,77

2B 5-10. 53,30 1,67 51,63 18,00 6,16 11,84 39,79 3003,96 60,07 0,20 8,70 1,203 0,09 2070 2065,00 513,53 0,25 24,87 0,25 4BB 1,23 B+E fractions / 197,09 24,51

2C 10-15. 65,32 1,67 63,65 22,48 6,26 16,22 47,43 3003,96 60,07 0,27 8,97 1,816 0,08 2940 2963,00 593,05 0,20 20,02 0,20 4CB 1,01 B fraction 0,83 270,00 27,02

2D 15-20 72,22 1,67 70,55 25,18 6,20 18,98 51,57 3003,96 60,07 0,32 10,09 2,283 0,07 3360 3324,00 612,13 0,18 18,42 0,18 4DB 1,01 B fraction 1,32 315,94 29,09

2E 20-25 76,09 1,67 74,42 26,59 6,17 20,42 54,00 3003,96 60,07 0,34 9,99 2,716 0,06 4680 4707,00 712,42 0,15 15,14 0,15 4EB 1,00 B fraction 1,73 339,92 25,72

2F 25-30 78,52 1,67 76,85 27,44 5,50 21,94 54,91 3003,96 60,07 0,37 11,15 3,079 0,05 6000 6056,00 795,89 0,13 13,14 0,13 4FB 1,00 B fraction 1,90 365,22 24,00

2G 30-35 82,80 1,67 81,13 34,63 6,12 28,51 52,62 3003,96 60,07 0,47 11,85 4,93 0,04 7500 7501,00 709,46 0,09 9,46 0,09 4GB 1,00 B fraction 3,93 474,58 22,44

2H 35-40 87,48 1,67 85,81 45,26 6,20 39,06 46,75 3003,96 60,07 0,65 11,17 5,587 0,03 9000 9027,00 631,68 0,07 7,00 0,07 4HB 1,01 B fraction 4,58 650,20 22,75

2I 40-45 85,82 1,67 84,15 39,38 6,18 33,20 50,95 3003,96 60,07 0,55 13,24 5,76 0,02 10500 10535,00 680,58 0,06 6,46 0,06 4IB 1,00 B fraction 4,76 552,65 17,85

2J 45-50 73,47 1,67 71,80 30,74 6,19 24,55 47,25 3003,96 60,07 0,41 12,90 3,97 0,01 12000 11990,00 847,24 0,07 7,07 0,07 4JB 1,00 B fraction 2,97 408,66 14,44

3A 0-5 32,62 1,67 30,95 10,80 5,49 5,31 25,64 3003,96 60,07 0,09 5,04 0,10 1200 / / / / / / / just roots 88,39 /

3B 5-10 36,07 1,67 34,40 12,22 5,68 6,54 27,86 3003,96 60,07 0,11 4,95 0,23 0,09 2070 2061,00 605,07 0,29 29,36 0,29 5BB 0,47 B+E fractions / 108,87 15,98

3C 10-15 32,36 1,67 30,69 10,66 5,65 5,01 25,68 3003,96 60,07 0,08 5,70 0,26 0,08 2940 2948,00 721,59 0,24 24,48 0,24 5CB 0,38 B+E fractions / 83,40 10,21

3D 15-20 52,53 1,67 50,86 15,63 5,62 10,01 40,85 3003,96 60,07 0,17 6,90 0,39 0,07 3360 3360,00 771,46 0,23 22,96 0,23 5DB 0,63 B+E fractions / 166,63 19,13

3E 20-25 53,93 1,67 52,26 17,58 5,62 11,96 40,30 3003,96 60,07 0,20 7,92 0,49 0,06 4680 4666,00 879,60 0,19 18,85 0,19 5EB 0,76 B+E fractions / 199,09 18,77

3F 25-30 55,63 1,67 53,96 18,18 5,80 12,38 41,58 3003,96 60,07 0,21 7,46 0,38 0,05 6000 6007,00 1001,89 0,17 16,68 0,17 5FB 0,79 B+E fractions / 206,08 17,19

3G 30-35 72,29 1,67 70,62 22,94 5,60 17,34 53,28 3003,96 60,07 0,29 8,64 1,829 0,04 7500 7528,00 1146,27 0,15 15,23 0,15 5GB 1,22 B+E fractions 0,61 288,64 21,98

3H 35-40 62,61 1,67 60,94 22,26 5,62 16,64 44,30 3003,96 60,07 0,28 9,29 3,361 0,03 9000 9053,00 1229,19 0,14 13,58 0,14 5HB 1,00 B+E fraction 2,36 276,99 18,80

3I 40-45 66,38 1,67 64,71 24,30 5,52 18,78 45,93 3003,96 60,07 0,31 10,09 4,333 0,02 10500 10516,00 1261,81 0,12 12,00 0,12 5IB 1,00 B fraction 3,34 312,62 18,76

3J 45-50 75,66 1,67 73,99 31,36 5,76 25,60 48,39 3003,96 60,07 0,43 10,41 4,829 0,01 12000 12001,00 1100,19 0,09 9,17 0,09 5JB 1,01 B fraction 3,82 426,14 19,53

TOC EXTRACTION
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Appendix 6: Procedure program for the organic extraction 
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Appendix 7: Example of n-alkane concentration peaks of sample(above) and standards (below) 
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Appendix 8 – Table results CORE 1 
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Appendix 9 – Table results CORE 2 
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Appendix 10 – Table results CORE 3 
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Appendix 11: odd n-Alkanes distribution and concentration of CORE 1 

  

A B C D E F G H I J

C21 3,92 3,42 3,39 1,71 1,00 1,77 1,23 0,82 0,56 0,34

C23 14,98 14,23 14,25 7,50 4,41 9,39 6,36 4,00 1,52 1,09

C25 53,34 52,04 54,81 25,63 13,56 35,89 24,70 12,92 2,91 3,00

C27 118,09 112,87 120,02 46,40 22,09 66,72 51,42 29,17 6,93 7,16

C29 128,36 117,67 121,37 38,43 16,65 56,37 46,43 24,74 4,86 6,48

C31 181,97 161,79 161,36 44,49 18,18 65,88 56,32 28,66 5,42 9,24

C33 52,60 45,61 41,38 8,91 3,04 13,25 11,95 5,84 0,87 2,42

C35 6,12 5,17 4,51 0,58 0,16 0,66 0,72 0,00 0,07 0,22
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Appendix 12: odd n-Alkanes distribution and concentration of core 4 

 

A B C D E F G H I J

C21 2,29 1,99 1,60 0,09 1,10 0,12 0,12 0,06 0,15 0,19

C23 7,50 7,05 5,70 0,28 4,80 0,37 0,38 0,16 0,25 0,31

C25 28,53 28,47 17,21 0,92 14,90 0,96 1,04 0,40 0,42 0,49

C27 102,84 98,96 39,77 2,11 30,89 1,78 2,48 1,33 1,15 1,00

C29 139,44 128,57 37,31 1,51 24,37 1,15 1,67 0,97 0,66 0,38

C31 210,67 186,82 46,38 1,39 26,18 0,80 1,33 0,68 0,41 0,14

C33 41,30 36,72 6,36 0,12 3,23 0,04 0,07 0,03 0,00 0,00

C35 3,55 3,23 0,00 0,00 0,14 0,00 0,00 0,00 0,00 0,00
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Appendix 13: odd n-Alkanes distribution and concentration of core 5 

 

B C D E F G H I J

C21 3,71 0,96 0,26 1,68 2,67 2,34 8,73 4,59 2,78

C23 47,60 7,15 1,83 12,34 20,06 14,77 23,13 8,08 5,17

C25 57,10 14,72 5,51 37,69 50,81 32,55 40,28 11,20 7,08

C27 61,96 29,62 17,02 117,65 147,70 107,38 159,67 37,29 25,89

C29 63,37 13,89 13,93 106,02 129,50 120,11 189,63 37,97 27,98

C31 85,73 13,34 19,47 161,25 181,63 187,06 271,33 48,41 33,84

C33 23,85 2,87 7,00 66,37 71,71 82,73 116,71 17,41 11,81

C35 1,53 0,19 0,00 9,41 10,49 14,89 22,06 2,60 1,50
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sample depth C content (kg(m3) % TOC

2A 5 3,14 30,88

2B 10 10,98 23,19

2C 15 20,17 19,26

2D 20 28,07 17,36

2E 25 29,05 13,67

2F 30 28,29 12,23

2G 35 29,44 9,39

2H 40 30,65 7,47

2I 45 28,56 5,48

2J 50 27,26 4,46
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Appendix 14: OC content, %TOC, n-alkanes 

concentration of CORE 1 
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sample depth C content (kg/m3) % TOC

4A 5 24,77 32,52

4B 10 24,51 24,87

4C 15 27,02 20,02

4D 20 29,09 18,42

4E 25 25,72 15,14

4F 30 24,00 13,14

4G 35 22,44 9,46

4H 40 22,75 7,00

4I 45 17,85 6,46

4J 50 14,44 7,07
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Appendix 15: OC content, %TOC, n-alkanes 

concentration of CORE 2 
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sample depth C content (kg/m3) % TOC

5A 5 / /

5B 10 15,98 29,36

5C 15 10,21 24,48

5D 20 19,13 22,96

5E 25 18,77 18,85

5F 30 17,19 16,68

5G 35 21,98 15,23

5H 40 18,80 13,58

5I 45 18,76 12,00

5J 50 19,53 9,2
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Appendix 16: OC content, %TOC, n-alkanes 

concentration of CORE 3 
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depth 5 10 15 20 25 30 35 40 45 50 

sample A B C D E F G H I J 

1 0,20 0,22 0,22 0,32 0,38 0,30 0,26 0,27 0,34 0,23 

2 0,18 0,19 0,40 0,53 0,47 0,44 0,36 0,28 0,42 0,64 

3   0,45 0,48 0,21 0,18 0,21 0,15 0,14 0,21 0,19 
 

 
 
 
 
 

 

depth 5 10 15 20 25 30 35 40 45 50 

sample A B C D E F G H I J 

1 0,85 0,84 0,84 0,77 0,74 0,79 0,81 0,81 0,77 0,83 

2 0,92 0,91 0,83 0,79 0,78 0,71 0,77 0,83 0,75 0,63 

3   0,63 0,70 0,86 0,87 0,85 0,88 0,89 0,85 0,86 
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depth 5 10 15 20 25 30 35 40 45 50 

sample A B C D E F G H I J 

1 29,21 29,16 29,12 28,89 28,79 28,91 28,98 28,91 28,74 29,09 

2 29,38 29,33 29,02 28,64 28,81 28,43 28,52 28,51 28,29 27,85 

3   29,14 28,37 29,00 29,14 29,06 29,29 29,26 29,09 29,10 
 

 
 
 
 

 
 
 
 

depth 5 10 15 20 25 30 35 40 45 50 

sample A B C D E F G H I J 

1 9,61 9,50 9,48 8,94 9,08 8,66 9,31 9,10 7,88 8,86 

2 10,72 10,13 9,59 10,92 9,48 7,45 8,15 8,80 6,77 5,04 

3   10,88 8,51 9,66 9,76 9,46 9,48 9,18 10,35 10,97 
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depth 5 10 15 20 25 30 35 40 45 50 

sample A B C D E F G H I J 

1 0,04 0,04 0,04 0,07 0,09 0,06 0,05 0,06 0,10 0,06 

2 0,02 0,02 0,06 0,07 0,07 0,12 0,08 0,06 0,13 0,24 

3   0,27 0,15 0,04 0,04 0,05 0,04 0,04 0,08 0,07 
 

 
 
 
 
 
 
 
 

 

 

 

 

Appendix 17: Tabs & graphs ratios 
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Appendix 18: Comparison of MT ratio and OC content (kg/m2) of the three profiles 
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