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Abstract

The Eigenstate thermalization hypothesis (ETH) represents the current most de-
veloped framework to explain the onset of thermalization in isolated many-body
quantum systems. In this thesis we will focus on quantum many-body scars, and
in particular on their asymptotic version. Quantum many-body scars are notori-
ously associated to a non-ergodic dynamics and to relaxation times that diverge in
the thermodynamic limit; brieŕy, these states fail to thermalize. The goal of this
thesis is to investigate the violation of ETH associated to asymptotic quantum
many-body scars.
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Introduction

Thermalization, the process through which a physical system reaches equi-
librium and exhibits macroscopic behaviour consistent with the laws of thermo-
dynamics, has intrigued scientists for centuries. Despite the remarkable success
of statistical mechanics in describing the macroscopic properties of systems, the
fundamental connection with microscopic dynamics remains a subject of ongoing
investigation and debate. This is true for quantum and classical systems.

To introduce the problem, let us consider a classical example. Imagine a Becher
őlled with water, where a drop of colourant is added at a speciőc time. As time
progresses, one can expect that the system will reach an equilibrium, the colourant
is spread in the entire liquid. The thesis investigates the behaviour of quantum
systems in comparison to classical mechanics. The work aims to examine whether
a quantum system exhibits similar behaviour.

Remarkably, the recent Eigenstate thermalization hypothesis (ETH) has put
the problem of understanding thermalization in quantum systems on more solid
foundations. This hypothesis is devoted to unravelling the mechanisms underlying
the temporal evolution of systems initially prepared in states markedly distant
from equilibrium, eventually transforming into states that conform to the frame-
work of thermal equilibrium [1].
ETH combines ideas of chaos and typical conőgurations in a clear mathematical
form that is unparalleled in classical systems and enables us to predict how ob-
servables behave when the system is left to evolve.
The ETH establishes a robust correspondence between the microcanonical pre-
dictions about observables and the protracted temporal behaviours exhibited by
their corresponding matrix elements. This nexus engenders a profound linkage
that connects the statistical attributes of observables in conditions of equilibrium
with their behaviours during temporal evolution.
Numerical evidence of the occurrence of Eigenstate thermalization has been found
in several strongly correlated nonintegrable lattice models in őelds ranging from
condensed matter to ultracold quantum gases. Such evidence was őrst reported for
a two-dimensional system of hard-core bosons and interacting spin chains, spinless
and spinful fermions, soft-core bosons and the transverse őeld Ising model in two
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dimensions [2ś6].
However, within the domain of quantum many-body systems, instances arise

wherein certain behaviours manifest deviance from the predictions set forth by the
ETH. In these particular circumstances, discernible discrepancies give rise to states
referred to as scars. When a many-body system is prepared within one of these
states, its subsequent dynamics veer conspicuously away from thermal behaviour.
Most of the present interest in quantum many-body scars (QMBS) originates from
an experiment on a chain of interacting Rydberg atoms, in which the authors ob-
served unexpected non-thermal behaviours when the array of atoms was prepared
in a particular initial state [7].
The non-thermal features of which we are mentioning may be broadly classiőed
[8]:

1. The existence of certain species of inőnitely long-lived quasiparticles;

2. Persistent many-body revivals at őnite times in the dynamics;

3. Non-thermal stationary states that have atypically low entanglement.

All of these points signal an absence of thermalization, touching on different as-
pects of the phenomenon. We stress that these non-thermal features are found in
particular states sprinkled throughout the many-body spectrum, and these unique
states coexist with typical thermal states at the same energy densities. The nomen-
clature of scarring has variously been used in the literature to signify the presence
of any of the above features, or of all three at the same time [9].

Up to now, we have spoken of eigenstates which violate ETH. However, there
exist states that are a particular combination of eigenstates of Hamiltonian that fol-
low singularly the ETH predictions, that seem to behave as a quantum many-body
scar (QMBS) [10]. They have an energy variance that goes to zero in the thermo-
dynamic limit and asymptotically display the typical dynamical phenomenology
of a QMBS, i.e. the lack of thermalization; hence we refer to such states as asymp-
totic QMBS (AQMBS).
These states possess the potential to illuminate novel categories of ETH violations,
consequently forging a novel avenue to comprehend our initial inquiry: the inves-
tigation of quantum many-body system thermalization. These emergent states
will serve as the central focus, forming the nucleus for the original contributions
presented within this thesis.

In this thesis, our investigation unfolds across distinct sections, each unravelling
a facet of quantum phenomena. We embark on our discussion by delving into the
Eigenstate thermalization hypothesis and the realm of scar states in Chap. 1
and Chap. 2. Subsequently, our focus shifts to a compelling case study within a
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spin-1 XY chain, meticulously introduced and discussed in Chap. 3. Within this
captivating system, we encounter scars and the enigmatic asymptotic quantum
many-body scar states (AQMBS). The subsequent sections harbour our original
contributions. Chap. 4 scrutinizes the intricate relationship between the ETH and
AQMBS, particularly concerning their slow dynamics. In conclusion, Chap. 5, we
expound upon the process of crafting states that mirror the attributes of AQMBS
through the transformation of thermal states. As such, this thesis introduces
novel contributions that augment the ongoing advancement of our comprehension
concerning quantum systems and their intricate behaviours.
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Chapter 1

Eigenstate thermalization

hypothesis

In the following chapter, we shall provide a short description of the funda-
mental principles encompassing chaos and Random Matrix Theory (RMT). These
concepts stand as pivotal underpinnings of the Eigenstate thermalization hypoth-
esis (ETH). The latter constitutes the principal statistical proposition within the
paradigm of the thermalization problem.

1.1 Chaos in Physics

The concept of chaos started with the discovery of differential calculus applied
to classical physics.
In this mathematical framework, a deterministic system is a system whose present
state is in principle fully determined by its initial conditions, in contrast to a
stochastic system. For a stochastic system, the initial conditions determine the
future only partially, due to noise or other external circumstances beyond our
control: the present state reŕects the past initial conditions plus the particular
realization of the noise encountered along the way.
A deterministic system with sufficiently complicated dynamics can fool us into
regarding it as a stochastic one; disentangling the deterministic from the stochastic
is the main challenge in many real-life settings, from stock markets to palpitations
of chicken hearts. So, what is "chaos"?
In a game of pinball, any two trajectories x(t) that start out very close to each
other separate exponentially with time, and in a őnite number of bounces, their
separation δx(t) attains the magnitude of L, the characteristic linear extent of the
whole system. This property of sensitivity to initial conditions can be quantiőed
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Figure 1.1: Trajectories in a circular billiard and a stadium billiard. The motion
in the circle is regular or ordered, while in the stadium it is irregular or chaotic
[13].

as
|δx(t)| ≈ eλt|δx(0)| (1.1)

where λ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any őnite accuracy δx = |δx(0)| of the initial data, the
dynamics is predictable only up to a őnite Lyapunov time

TLyap ≈ −1

λ
ln

∣

∣

∣

∣

δx

L

∣

∣

∣

∣

. (1.2)

A positive Lyapunov exponent does not in itself lead to chaos [11, 12]. One could
try to play a 1- or 2-disk pinball game, but it would not be much of a game;
trajectories would only separate, never to meet again. What is also needed is
mixing, the coming together again and again of trajectories. While locally the
nearby trajectories separate, the interesting dynamics is conőned to a globally
őnite region of the state space, and thus the separated trajectories are necessarily
folded back and can re-approach each other arbitrarily closely, inőnitely many
times, as depicted in Fig. 1.1. In a general context, the enumeration of unique
trajectories involving a speciőc number n of bounces, respecting the boundaries
where the dynamics happens (in the considered case, the boundaries of the pinball),
can be precisely characterized as follows:

N(n) ≈ ehn (1.3)

where h, the growth rate of the number of topologically distinct trajectories, is
called the topological entropy [11].
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When a physicist designates a particular system as exhibiting chaos, the impli-
cation is that the system adheres to deterministic laws of evolution, albeit the
outcome is exceedingly susceptible to minute uncertainties in the speciőcation of
the initial state. Within this context, the term chaos has adopted a specialized
technical signiőcance. If a deterministic system demonstrates local instability (pos-
itive Lyapunov exponent) and global mixing (positive entropy) it is characterized
as chaotic [11, 14].
Although the deőnition of chaos as "positive Lyapunov exponent + positive en-
tropy" is correct from a mathematical standpoint, its practical utility is limited,
given that the quantiőcation of these attributes is inherently asymptotic and re-
mains elusive for systems observed in natural contexts. More potent is the char-
acterization of chaotic behaviour through the phenomenon of the disappearance
of invariant tori in the phase space. The concept of invariant torus necessitates a
discussion on what is the nature of an integrable system.

Speciőcally, let a classical system whose Hamiltonian is H(p, q), with canon-
ical coordinates q = (q1, . . . , qN) and momenta p = (p1, . . . , pN), it is said to
be integrable if it has as many functionally independent conserved quantities
I = (I1, . . . , IN) as degrees of freedom N:

{Ij, H} = 0, {Ij, Ik} = 0, where {f, g} =
N
∑

j=1

(

∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj

)

. (1.4)

From Liouville’s integrability theorem [15], it follows that there is a canonical trans-
formation (p, q) → (I,Θ) (where I,Θ are termed action-angle variables) such that
H(p, q) = H(I) [16]. Consequently, the solutions of the equations of motion for the
action-angle variables are trivial: Ij(t) = I0j is constant, and Θj(t) = Ωjt+Θj(0).
This motion transpires on an N-dimensional torus, and it exhibits non-chaotic be-
haviour [17].
Consequently, within a non-integrable system, thus a system characterized by
chaos, the count of functionally independent quantities must be less than the tally
of degrees of freedom. In such a scenario, the feasibility of mapping the system’s
dynamics onto invariant tori is negated.

Now the question emerges naturally: how can we quantify chaos within the
system? As previously discussed, a pronounced manifestation of chaos within
classical systems is intrinsically interwoven with the intricacies of the phase space
and how the dynamics spread over the phase space. In the realm of classical
chaotic systems, a fundamental measure of chaoticity comes up: the Kolmogorov-
Sinai entropy (KSE).
The Kolmogorov-Sinai entropy is established through an observation of a general
nature. Speciőcally, γ exponential terms, presented in the form eλit, where λi is a
Lyapunov exponent of the system, each possessing non-negative values, contribute
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to the expansion of the separation between points residing within the phase space.
In this context, the Kolmogorov-Sinai entropy is deőned as [18]:

ΛKS =
1

γ

γ
∑

i=1

λi. (1.5)

Thus, the Kolmogorov-Sinai entropy decisively encapsulates the rate at which vol-
umes of regions within the phase space undergo propagation.
One could measure this propagation or delocalization with the differently deőned
entropy [1]:

SA = − 1

(2πℏ)D

∫

dx dp ρA(x, p) ln[ρA(x, p)], (1.6)

where D is the dimensionality of the phase space and ρA(x, p), is the classical
reduced probability distribution (we are considering only the distribution NA par-
ticles), obtained by averaging over the positions and momenta of the remaining
N −NA particles:

ρA(x1, . . . , xNA
, p1, . . . , pNA

, t) =

=

∫

dxNA+1 dpNA+1 . . . dxN dpN ρ(x1, . . . , xN , p1, . . . , pN , t). (1.7)

It is important to note that the entropy SA is expected to increase in time to the
maximum value given by the Gibbs distribution

p(E) =
1

Z
e
− E

kbT (1.8)

where kB is the Boltzmann constant, E and T are the energy and the temperature
of the state achieved and Z is the partition function of the system.

In quantum systems, the situation is very similar. One can treat quantum chaos
on the same footing as classical chaos analysing the delocalization of the system
in the phase space. In particular, to measure the quantum chaos we redeőne the
probability distribution with a density matrix ρ̂ in Eq. 1.6. More in detail, here,
for subsystem A, we deőne the Von Neumann entropy:

SA
V N = −TrA [ρ̂A ln ρ̂A] , (1.9)

where:
ρ̂A = TrB[ρ̂] (1.10)

is the reduced density matrix.
We will focus on the case where SA

V N have ρ̂ = |ψ⟩⟨ψ| and the subsystem A half
of the total system. We call this bipartition entanglement entropy.
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Alternatively, another avenue to gauge quantum delocalization lies in investi-
gating the density matrix within the energy space. In the absence of degeneracies,
the off-diagonal elements of the density matrix in the Hamiltonian’s basis follow:

ρmn(t) = ρmn(t0)e
−i(Em−En)(t−t0) (1.11)

Therefore, time averaging:

ρ̂DE ≡ ρ̄ ≡ lim
t0→∞

1

t0

∫ t0

0

ρ̂(t)dt =
∑

m

ρmm|m⟩⟨m| (1.12)

constituting the diagonal subspace of the Hamiltonian, commonly referred to as
the diagonal ensemble. This perspective establishes a linkage between the energy
space and the phase space in the long-time regime.
Consequently, delving into the quantum system’s delocalization in the phase space
over extended temporal scales equates to probing the propagation of the initial
density matrix within the spectrum of the Hamiltonian’s eigenstates. In essence,
this equates to exploration in the energy space [1].
The implications of investigating chaos through the energy space will be particu-
larly noteworthy as we delve into the principal consequences arising from the ETH
in Sec. 1.3.1.

1.2 Random Matrix theory

Quantum chaos is founded upon a pivotal array of outcomes, the bedrock of which
is rooted in the fundamental endeavours of physicists such as Wigner, Dyson,
and their contemporaries. Their endeavours culminated in the establishment of a
comprehensive framework for understanding the spectral characteristics of intri-
cate atomic nuclei. This seminal framework is known as Random matrix theory
(RMT).
Central to the realm of quantum chaos is the profound capacity to scrutinize quan-
tum energy levels. The examination of their statistical behaviour is in connection
with the RMT. Among the principal facets engendered by this theory, the statisti-
cal attributes of level spacings (Level Spacing Statistics, LSS) take on a paramount
signiőcance. This junction of quantum chaos and the RMT has endowed the realm
of physics with a profound toolset for unravelling the intricate dynamics of quan-
tum systems characterized by chaotic dynamics.

Let us consider, for the sake of simplicity, a Hamiltonian Ĥ = Ĥ0 + ϵĤ1 that
comprises an integrable component Ĥ0 and a perturbing component Ĥ1 governed
by a solitary parameter ϵ. Our investigation pertains to the manner in which
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the energy levels of this Hamiltonian respond to variations in the perturbation
parameter. Typically, when ϵ assumes small values, energy levels may intersect,
yet as ϵ intensiőes, a phenomenon emerges wherein the levels exhibit a propensity
to "repel" each other. This phenomenon, known as level repulsion, constitutes an
intrinsic attribute of non-integrable systems [19, 20]. A breif, albeit non-rigorous,
elucidation of this phenomenon follows.

In particular, we consider a 2× 2 Hamiltonian:

Ĥ = Ĥ0 + ϵĤ1 =

(

E1 0
0 E2

)

+

(

0 H12

H∗
12 0

)

=

(

E1 H12

H∗
12 E2

)

(1.13)

where H12 ∝ ϵ, and E1 and E2 are the eigenvalues of the unperturbed Hamiltonian
Ĥ0. The eigenvalues of Ĥ are expressed as:

E± =
1

2
(E1 + E2)±

√

(E1 − E2)2

4
+ |H12|2. (1.14)

Upon deőning ∆E = E1−E2 to denote the disparity in unperturbed energy levels,
an observation becomes apparent: only setting ϵ = 0, the levels of Ĥ coincide in
energy (E+ = E−), in particular only when ∆E = 0. This signiőes that, devoid
of perturbation, a crossing of energy levels is feasible. However, the presence
of the generic perturbation forestalls such crossings, even in the case ∆E = 0,
engendering the phenomenon of level repulsion.

Now if we calculate the statistics of the level separation P (E+ − E− = ω) ≡
P (ω), using Eq. (1.14):

P (ω) = N

∫

dE1

∫

dE2

∫

dH12 δ

(
√

(E1 − E2)2

4
+ |H12|2 − ω

)

×

× p(E1, E2, H12)

(1.15)

where p(E1, E2, H12) is the probability to have a certain E1, E2 and H12.
If we assume this probability Gaussian and we properly normalize the probability
distribution P (ω), one gets the result found by Wigner [21]:

P (ω) =
π2

2
ωe−(

π
4 )ω2

. (1.16)

It turns out that the features described above are not unique to the 2×2 Hamilto-
nian. This simple example can be generalized to larger matrices using an ensemble
of matrices (we will not go into the details), however, even if it does not exist a
closed analytic form for this case, it is possible to say that the distribution is
qualitatively and quantitatively close to Eq. (1.16) [1].
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Figure 1.2: Level spacing statistics for different regimes. The Wigner-Dyson for-
mula, Eq. (1.16), is related to the statistics in chaotic systems. The Poissonian
distribution, instead, is related to integrable systems.

In conclusion, the manifestation of Wigner-Dyson statistics in the distribution
of level spacings illustrated in Fig. 1.2 stands as a characteristic hallmark fre-
quently ascribed to quantum chaotic systems [22]. This phenomenon is in stark
contradistinction to the Poissonian statistical regime typifying quantum integrable
systems, elucidated in the work by Coux et al. [23]. The discernible prevalence of
Wigner-Dyson statistics in such contexts affords discerning insights into the fun-
damental behaviour of quantum chaotic systems, substantiating their deviation
from the ordered regularity inherent to integrable systems.

1.2.1 Matrix elements of operators

The RMT allow us to demonstrate an important statement about the eigenvectors
of random matrices:

the eigenstates of a chaotic Hamiltonian in non-fine-tuned bases, are essentially

random vectors with no structure.

This statement has consequences in the structure of the matrix elements of Her-
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mitian operators. Let a Hermitian operator:

Ô =
∑

i

Oi|i⟩⟨i| where Ô|i⟩ = Oi|i⟩ (1.17)

within RMT. For any given random Hamiltonian, for which the eigenkets are
denoted by |m⟩ and |n⟩,

Omn ≡ ⟨m|Ô|n⟩ =
∑

i

Oi⟨m|i⟩⟨i|n⟩ =
∑

i

Oi (ψ
m
i )

∗ ψn
i , (1.18)

where ψm
i ≡ ⟨i|m⟩ and similarly for ψn

i . Exploiting the fact that the eigenstates
of random matrices in any basis are essentially random orthogonal unit vectors,
therefore, to leading order in 1

D
, where D is the dimension of the Hilbert space,

we have

(ψm
i )

∗ (ψn
j ) =

1

D
δmnδij, (1.19)

where the average (ψm
i )

∗ (ψn
j ) is over random eigenkets |m⟩ and |n⟩. This implies

that one has very different expectation values for the diagonal and off-diagonal
matrix elements of Ô. Indeed, using Eqs. (1.18) and (1.19), we őnd

Omm =
1

D

∑

i

Oi ≡ O, (1.20)

and

Omn = 0, for m ̸= n. (1.21)

Now let us consider the quantity:

O2
mm −Omm

2
=
∑

i,j

OiOj(ψm
i )

∗ψm
i (ψ

m
j )

∗ψm
j −

∑

i,j

OiOj(ψm
i )

∗ψm
i (ψm

j )
∗ψm

j

=
∑

i

O2
i

(

|ψm
i |4 − (|ψm

i |2)2
)

=
3− β

D2

∑

i

O2
i ≡

3− β

D2
O2

(1.22)

where β = 1 for ψm
i real and Hij = Hji and β = 2 for ψm

i complex and Hij = H∗
ji.

In the őrst case, we have used the relation (ψm
i )

4 = 3[(ψm
i )

2]2, while for the second
case the relation used is |ψm

i |4 = 2(|ψm
i |2)2.

If instead we consider the off-diagonal element of the operator, one gets:

|Omn|2 − |Omn|2 =
∑

i

O2
i |ψm

i |2|ψn
i |2 =

1

D
O2. (1.23)
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Combining these expressions, we see that, to leading order in 1/D, the matrix
elements of any operator can be written as

Omn ≈ Oδmn +

√

O2

D
Rmn, (1.24)

where Rmn is a random variable, real or complex, with zero mean and unit vari-
ance.
In deriving Eqs. (1.20)-(1.23), we averaged over a őctitious ensemble of random
Hamiltonians. However, from Eq. (1.24), it is clear that for large D the ŕuctu-
ations of operators are small and thus one can use the ansatz (1.24) for a given
őxed Hamiltonian [1].

1.3 ETH

In 1929, Von Neumann discussed in very detail how statistical mechanics behaviour
could emerge in quantum-mechanical systems evolving under unitary dynamics
[24].
He studied the behaviour of the macroscopic observables, instead of the wave func-
tion or the density matrix of the entire system.
He proved what he named the quantum ergodic theorem, which has been recently
discussed in detail by Goldstein et al. [25]. In this last review, the quantum er-
godic theorem states:

Let a typical finite family of commuting macroscopic observables. Lifting evolves

an initial wave function taken from a microcanonical energy shell, for most times

in the long run, the joint probability distribution of these observables, obtained from

the unitarily time-evolved wave function, is close to their microcanonical distribu-

tion.

This theorem was one of the őrst studies regarding thermalization in quantum
systems. However, comparing the concepts up to now discussed, some problems
could arise reading the theorem. For example, the theorem makes no distinction
between integrable and nonintegrable systems.
After Von Neumann’s work, problems regarding the thermalization of quantum
systems are now one of the biggest topics of interest to the scientiőc community.

Suppose that one prepares an isolated system in a nonstationary state with
well-deőned mean energy and sub-extensive energy ŕuctuations.
An observable, particularly its expectation value, is said to thermalize if, during the
time evolution of the system, it relaxes to the microcanonical prediction. Whether
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the isolated system is in a pure or mixed state is immaterial to the question of
thermalization.

To understand the essential ingredients needed for thermalization to occur,
let us consider a simple setup in which an isolated system is initially prepared
in a pure state |ψI⟩ and evolves under a time-independent Hamiltonian Ĥ. We
assume that the Hamiltonian has eigenvectors |m⟩ and eigenvalues Em, that is,
Ĥ|m⟩ = Em|m⟩. The time-evolving wave function can be written as

|ψ(t)⟩ =
∑

m

Cme
−iEmt|m⟩ (1.25)

where Cm = ⟨m|ψI⟩.
We are interested in t ≥ 0. In particular, let us look at the time evolution of

some observable Ô, which in the basis of the eigenstates of the Hamiltonian can
be written as:

O(t) ≡ ⟨ψ(t)|Ô|ψ(t)⟩ =
∑

m,n

C∗
mCne

i(Em−En)tOmn =

=
∑

m

|Cm|2Omm +
∑

m,n ̸=m

C∗
mCne

i(Em−En)tOmn

(1.26)

where Omn = ⟨m|Ô|n⟩.
As stated before, we say that the observable Ô thermalizes if:

1. after some relaxation time, the average expectation value of this observable
agrees with the microcanonical expectation value;

2. temporal ŕuctuations of the expectation value about the microcanonical pre-
diction are small at most later times.

This implies that the long-time average accurately describes the expectation value
of Ô at almost all times and agrees with the microcanonical prediction.

The initial difficulties in reconciling these requirements with Eq. (1.26) are
obvious. In the long-time average, the second sum in Eq. (1.26) averages to zero
(provided there are no degeneracies) and we are left with the sum of the diagonal
elements of Ô weighted by |Cm|2.
At this point, several thoughts may arise:

• since the probabilities |Cm|2 are conserved in time, how is it possible for
∑

m |Cm|2Omm to agree with the microcanonical average?

• In many-body systems, the eigenenergies are exponentially close to each
other. Therefore, to ensure that the second sum in Eq. (1.26) averages to
zero, one might potentially need to wait an exponentially long time. How
can we reconcile this with experimental observations?
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One can note that if the Hamiltonian Ĥ is a random matrix, one őnds, using
Eq. (1.24), that the observables thermalize in the sense just speciőed. This is
because the őrst sum in Eq. (1.26) becomes independent of the initial state:

∑

m

|Cm|2Omm ≈ O
∑

m

|Cm|2 = O, (1.27)

that is, it agrees with the microcanonical result.
It also becomes clear that exponentially long times may not be needed for relax-
ation: the off-diagonal matrix elements of Ô are small (they depend on 1/

√
D),

so by destroying phase coherence between a őnite fraction of the eigenstates with
a signiőcant contribution to the expectation value, it is possible to approach the
inőnite-time prediction with high accuracy in a time much shorter.

In order to describe observables in experiments, however, one needs to go be-
yond the RMT prediction. This is because, in contrast to random matrices, in real
systems:

• thermal expectation values of observables depend on the energy density (tem-
perature) of the system;

• relaxation times are observable-dependent.

Hence, there is information in the diagonal and off-diagonal matrix elements of
observables in real systems that cannot be found in RMT.

In 1994, Srednicki, after similar ideas introduced by Deutsch in 1991 [26],
provided the generalization of the RMT prediction that is needed to describe
observables in physical systems [27ś29].
Srednicki’s ansatz is known as the ETH. It was őrst shown to apply to realistic
quantum systems, where thermalization was observed for a strikingly small number
of particles (5 bosons in 21 lattice sites), by Rigol et al.[30]. We have to notice
that the smallness of the system they studied precluded them from observing a
qualitatively different behaviour between nonintegrable and integrable systems.
In particular, in more detail, Srednicki’s ansatz states:

Omn = O(Ē)δmn + e−
S(Ē)

2 f(Ē, ω)Rmn (1.28)

where O is the observable in the basis of the eigenstates of a Hamiltonian, Ē =
(Em +En)/2, ω = En −Em, A(Ē) and f(Ē, ω) are smooth functions, S(E) is the
thermodynamic entropy and Rmn is a random real or complex variable with zero
mean and unit variance (R2

mn = 1 or |Rmn|2 = 1 respectively)[1].
One has to note also that the matrix elements of observables can be real or com-
plex. It depends on the symmetries of the Hamiltonian and the basis used to
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diagonalize it. If the system obeys time-reversal symmetry, the eigenstates of the
Hamiltonian can be chosen to be real, and so will be the matrix elements of observ-
ables (Hermitian operators). This is not possible if the symmetry is not valid. By
taking the Hermitian conjugate of Eq. (1.28), we see that the function fO(Ē, ω)
and the random numbers Rmn must satisfy the following relations (the őrst line
for the real case and the second line for the complex case):

Rnm = Rmn, fO(Ē,−ω) = fO(Ē, ω)

R∗
nm = Rmn, f ∗

O(Ē,−ω) = fO(Ē, ω).
(1.29)

Moreover, the ETH ansatz reduces to the RMT prediction if one focuses on a very
narrow energy window where the function fO(Ē, ω) is constant.

Let us now describe what the ETH ansatz entails in the thermalization of
quantum systems.

1.3.1 ETH and thermalization

Let us focus on the long-time average of observables. If there are no degeneracies
in the energy spectrum, which is a reasonable assumption for generic quantum
systems after removing all trivial symmetries, we can calculate, using Eq. (1.26):

O ≡ lim
t0→∞

1

t0

∫ t0

0

Ô(t) dt =
∑

m

|Cm|2Omm = Tr
(

ρ̂DE Ô
)

(1.30)

where ρ̂DE is deőned in the Eq. (1.12).
Let us also consider the microcanonical average value of the operator Ô: OME =

Tr
(

ρ̂ME Ô
)

, where ρ̂ME is the density matrix of the microcanonical ensemble (we

can use also that of the canonical ensemble, since the equivalence of the ensembles).
Then, expanding around the mean energy value ⟨E⟩ the value Omm, deőned in the
Eq. (1.28), we get:

Omm ≈ O(⟨E⟩) + (Em − ⟨E⟩)dO
dE

∣

∣

∣

∣

⟨E⟩
+

1

2
(Em − ⟨E⟩)2d

2O

dE2

∣

∣

∣

∣

⟨E⟩
, (1.31)

that applied in Eq. (1.30), we obtain:

O ≈ O(⟨E⟩) + 1

2
(δE)2O

′′

(⟨E⟩) ≈ OME +
1

2

(

(δE)2 − (δEME)
2
)

O
′′

(⟨E⟩) (1.32)

where we have deőned Em = ⟨E⟩+ δE and used δEME as the energy ŕuctuations
of the microcanonical ensemble.
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In the end, using the ETH ansatz and the fact that the energy ŕuctuation involved
in the above calculations is sub-extensive, we arrive at:

O ≈ O(⟨E⟩) ≈ OME (1.33)

This result can be seen as the bridge between the classical and the quantum be-
haviour of operators in many-body systems.

1.3.2 ETH and ergodicity

Having formalized the ETH and observed its implications for the dynamics of
isolated quantum systems, we now revisit von Neumann’s ergodic theorem and
elucidate its connection to ETH.
As previously mentioned, von Neumann’s inquiry revolved around comprehending
the evolution of observables as the unitary time evolution acts upon the entire
set of states originating from the microcanonical ensemble. We will follow the
discussion in Ref. [1, 25].

Von Neumann’s considerations involve a Hamiltonian operator Ĥ with eigen-
states |m⟩ and corresponding eigenvalues Em, i.e. Ĥ|m⟩ = Em|m⟩. He focused his
attention on a microcanonical energy window characterized by a width δE around
an energy E. This energy window demarcates a Hilbert space H of dimension D,
spanned by D energy eigenstates |m⟩ with energies Em ∈ (E − δE/2, E + δE/2).
Notably, any state within this microcanonical energy range can be expressed as
|ψ⟩ =∑m∈HCm|m⟩, where Cm = ⟨m|ψ⟩.
Consequently, the Hilbert space H can be partitioned into orthogonal subspaces
Hν of dimensions dν , such that H = ⊕νHν and D =

∑

ν dν . Finally, observables

within H can be written as Ô =
∑

ν ÔνP̂ν , where P̂ν is the projector onto Hν . It
is assumed that both D and dν are large.

Deőning the expectation value of the observable at time t as

O(t) = ⟨ψ|eiĤtÔe−iĤt|ψ⟩ (1.34)

and its microcanonical average as

⟨Ô⟩ME =
∑

m∈H
⟨m|Ô|m⟩/D, (1.35)

von Neumann’s quantum ergodic theorem asserts that if the following conditions
are fulőlled:

1. Em − En ̸= E ′
m − E ′

n unless m = m′ and n = n′, or m = n and m0 = n0;
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2. for any ν, the quantities

max
m

(

⟨m|P̂ν |m⟩ − dν
D

)2

+max
m ̸=n

|⟨m|P̂ν |n⟩|2 (1.36)

are exponentially small;

then, for all times t except for a small initial fraction δ of times, it holds that

|O(t)− ⟨Ô⟩ME|2 < ϵ⟨Ô2⟩ME, (1.37)

where ϵ is a small parameter.
It is possible to see that Eq. (1.36) guarantees that the eigenstate expectation

value of Ô is identical to the microcanonical prediction [31]. In fact, we observe
that:

⟨m|Ô|m⟩ =
∑

ν

Oν⟨m|P̂ν |m⟩ ≈
∑

ν

Oν
dν
D

=
∑

m∈H,ν

Oν
⟨m|P̂ν |m⟩

D
= ⟨Ô⟩ME, (1.38)

where the second equality holds up to corrections that are exponentially small as
stipulated by Eq. (1.36). We also exploit the property that

∑

m∈H⟨m|P̂ν |m⟩ = dν .
Additionally, we őnd that:

⟨m|Ô|n⟩ =
∑

ν

Oν⟨m|P̂ν |n⟩, (1.39)

which is exponentially small if ⟨m|P̂ν |n⟩ satisőes the exponential smallness re-
quirement stated in Eq. (1.36), and if Oν does not scale exponentially with system
size.

Hence, we discern that Eqs. (1.38) and (1.39) precisely mirror the predictions
of RMT, i.e. Eq. (1.24), or equivalently, of the ETH within the energy window
δE ∼ ℏD/L2, where the function f(Ē, ω) is approximated as a constant.
In conclusion, the ETH is a sufficient condition to have quantum ergodicity [1, 25].

1.3.3 Example of application of ETH

In this section, our objective is to introduce an example that enables us to quan-
tify the concepts delineated in Sec 1.3. Speciőcally, our focus shall be directed
toward scrutinizing the diagonal constituent of the ETH. To this effect, we hereby
introduce the spin-1 XYZ Hamiltonian in 1D, deőned as:

Ĥ = J
∑

i

(

Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1

)

+ h
∑

i

Ŝz
i + Jz

∑

i

Ŝz
i Ŝ

z
i+1, (1.40)

26



Figure 1.3: We consider {J, h, Jz, L} = {0.5, 1, 0.5, 10}. The plot depicts the
expectation values of the eigenstates of the Hamiltonian for Â = 1

L

∑

i(Ŝ
z
i )

2 on
the ordinate and the corresponding energy Ei on the abscissa. It is possible to see
that all the points align along a smooth curve A(Ei).

where the index i = 1, . . . , L denotes the lattice sites. The operators Ŝα
i with

α = x, y, z are spin-1 operators, while we establish a local basis |±i⟩, |0i⟩ which
are eigenvectors of eigenvalue ±1 and 0 under Ŝz

i correspondingly. Crucially, this
model, by its non-integrable nature, is anticipated to adhere to the ETH [32].
The ETH posits that when considering the diagonal components of an observ-
able, the corresponding values are delineated by a continuous function contingent
uniquely upon the energy Ei inherent to the eigenvector |Ei⟩ of the Hamiltonian
under consideration. In particular, from Eq. (1.28) it holds:

Oii ≈ O(Ei). (1.41)

To manifest this distinctive feature, we diagonalize exactly the model through
the implementation of a Fortran code. The Hamiltonian is evaluated within the
context of the zero magnetization sector basis, where the magnetization operator
M̂ =

∑

i Ŝ
z
i assumes values of 0 when applied to a basis vector. Concomitantly,
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the operator of interest is deőned as Â ≡ 1
L

∑

i

(

Ŝz
i

)2

.

In Figure 1.3, a visual representation is provided. Data points demonstrate align-
ment along a continuous curve A(Ei) as expected from ETH predictions. This
behaviour signiőes that the eigenstates of the Hamiltonian tend towards conform-
ing to the predictions set forth by the microcanonical ensemble.
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Chapter 2

Quantum many-body scar states

Quantum many-body scar states, particular eigenstates of the Hamiltonian,
hold now noteworthy importance for multiple reasons, rendering them a subject of
pronounced signiőcance within the domain of quantum physics. In this chapter, we
will explore the reasons why scar states are crucial and the potential implications
they have on our understanding of quantum systems. Here are some key points to
consider:

1. Weak ETH violation and thermalization: quantum many-body scars vio-
late explicitly the ETH, which is, as said above, a fundamental principle
governing the thermalization of closed quantum systems. Scar states re-
sist thermalization and exhibit persistent non-thermal properties, leading to
deviations from standard statistical mechanics predictions. Understanding
the origin and characteristics of scar states could clarify the boundaries and
limitations of ETH, helping us reőne our understanding of quantum ther-
malization. In general, it is important to note that a system that presents
scar states violate ETH only in some state, we refer to it as an example of
weak ETH violation [33].

2. Non-equilibrium phenomena: scar states are fascinating examples of non-
equilibrium phenomena in quantum systems. Their long-lived oscillations
indicate that these states have unique dynamical properties, unlike most
eigenstates that relax to equilibrium. Investigating the mechanisms that
sustain these non-equilibrium features could provide valuable insights into
the dynamics of complex quantum systems [34, 35].

3. Quantum information and entanglement : the study of scar states is rele-
vant to the őeld of quantum information theory. These states often possess
unique entanglement properties and correlations, which could be exploited
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for quantum information processing tasks. Moreover, the existence of long-
lived coherent oscillations in scar states can be used for quantum memory
and control applications [36, 37].

4. Experimental observability : advances in experimental techniques have made
it possible to probe quantum many-body systems with high precision. Scar
states, with their distinctive non-thermal signatures, offer an excellent oppor-
tunity to test and validate theoretical predictions in real-world experiments.
Observing scar states experimentally could help establish a deeper connec-
tion between theory and observation, bridging the gap between quantum
theory and practical applications [38, 39].

In conclusion, the signiőcance of quantum many-body scar states extends our
comprehension of quantum systems beyond the conőnes of the ETH. These states
provide a distinct perspective into the realm of non-equilibrium dynamics and
quantum information within intricate quantum systems. Furthermore, their fea-
sibility for experimental observation positions them as an important tool for vali-
dating theoretical conjectures regarding quantum system behaviours. By delving
into the intricacies of scar states, we can enrich our understanding of quantum
mechanics and potentially uncover novel advancements in the realms of condensed
matter physics and quantum information science.

2.1 Ergodicity breaking phenomena

We begin by reviewing aspects of the dynamics of isolated quantum systems. For
the sake of concreteness, we focus on a system with L spin-particles and Hamil-
tonian Ĥ. We are typically interested in the dynamics of a simple wavefunction
|ψ(0)⟩ under the Hamiltonian Ĥ, where simple wavefunctions are those that are
experimentally accessible, for example, product states or ground states of simple
local Hamiltonians. The system evolves the state unitarily, and the wavefunction
of the full system at time t is given by |ψ(t)⟩ = e−iĤt|ψ(0)⟩.

An isolated quantum system without any other symmetries is said to be ergodic or

thermal if the reduced density matrix of any small subsystem A of LA ≪ L spins,

defined as ρ̂A(t) ≡ TrB(|ψ(t)⟩⟨ψ(t)|), evolves to a Gibbs density matrix:

lim
t→∞

ρ̂A(t) = TrB(ρ̂
eq) ≈ ρ̂eq

A (2.1)

where ρ̂eq = 1
Z
e−βĤ , B is the complementary subsystem of A, Z is the partition

function for the subsystem, and β is an inverse-temperature associated with the
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initial state [40].

Most local interacting Hamiltonians are commonly postulated to exhibit a non-
integrable nature, thereby complying with complete ergodic behaviour wherein all
their eigenstates adhere to the ETH, we refer to it as strong ETH behaviour. Nev-
ertheless, intriguingly, instances of systems manifesting varied levels of ergodicity
breakdown have been identiőed within the quantum realm [40]. We stress that
ETH, as discussed in Sec. 1.3.2, serves as a sufficient criterion for ensuring ergod-
icity in a quantum system.
In this context, two distinctive forms of partial ergodicity deviations have come
to light, delineated by the designations Quantum Many-Body Scars (QMBS) and
Hilbert Space Fragmentation. These phenomena underscore breaches in ergodic-
ity within isolated quantum systems. Below, we furnish a brief overview of these
two phenomena, each contributing to the understanding of ergodicity breakdown
within quantum dynamics:

• QMBS : some systems exhibit a few highly excited eigenstates that violate
diagonal ETH, i.e. they possess atypical features compared to most other
eigenstates at the same energy density. These ETH-violating eigenstates in
the middle of the spectrum are referred to as QMBS.
Typically, the number of QMBS grows exponentially slower than the Hilbert
space dimension (either polynomially in system size or exponentially with
a smaller base), and they constitute an important point to study the ther-
modynamic limit of the system. Systems in which QMBS appear as equally
spaced towers in the spectrum are of particular interest since equal spacings
result in perfect revivals from particular initial states, a phenomenon that
has been observed in Rydberg atom experiments [7, 41].

• Hilbert space fragmentation: another type of ergodicity breaking of a different
origin can occur in constrained systems, where the Hilbert space splits into
exponentially many dynamically disconnected parts, such that large parts of
it are inaccessible to particular initial states.
Fragmented systems are characterized by eigenstates that can show any scal-
ing of entanglement entropy from area-law to volume-law, depending on the
size of the dynamically disconnected part of the Hilbert space they belong
to [42].

In the following Sec. 2.2 and Sec. 2.3, we will describe these two scenarios.
Additionally, we shall explore potential interrelations that could emerge within
this contextual framework.
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2.2 QMBS

Much of the present interest surrounding quantum many-body scars őnds its in-
ception in an experimental investigation documented within the Ref. [7]. This
study discerned unexpected coherent oscillations during the temporal evolution
of a system comprising interacting Rydberg atoms. The emergence of these os-
cillations manifested exclusively when the array was prepared in a speciőc initial
state. In these speciőc states, the system deviates from the anticipated relaxation
behaviour outlined by standard statistical mechanics predictions. For the sake of
simplicity and clarity, we stress that in the upcoming Sec. 3, we will abstain from
discussing the Rydberg atoms experiment.
This peculiar behaviour prompted a focused inquiry, prompting physicists to scru-
tinize the underlying model to understand new insights into the realm of QMBS.
Given the noteworthy proliferation of models thus far discovered that exhibit
QMBS characteristics, a concerted endeavour has arisen to consolidate them into
systematic formalisms [43ś48]. These endeavours seek to establish unifying frame-
works that comprehensively elucidate these phenomena.

The extent of exhaustiveness in these endeavours remains uncertain, and the
intricate interconnections among these formalisms remain subjects yet to be rig-
orously elucidated. Nonetheless, we proceed to provide a comprehensive survey
of distinct methodologies aimed at unifying QMBS. These approaches, broadly
categorized into two groups that are not mutually exclusive [33], are outlined as
follows:

• Shiraishi-Mori embedding formalism,

• spectrum generating algebras-based formalism (SGA-based formalism).

These categories represent diverse paths taken in the pursuit of understanding and
unifying QMBS, shedding light on their nature.

2.2.1 Shiraishi-Mori embedding formalism

The inaugural methodological framework for systematically "embedding" precise
eigenstates into non-integrable Hamiltonians was pioneered by Shiraishi and Mori
(SM), as introduced in Ref. [43]. The crux point of their approach is born from
the premise that, within a given model, the ground state can be strategically ma-
nipulated by adjusting the model’s couplings. This manipulation is executed to
transform the ground state into a highly excited state while simultaneously pre-
serving the inherent attributes of its low entanglement characteristics. Through
this process, a unique state emerged, distinguished by a discernibly low entan-
glement entropy positioned within the middle of the energy spectrum. This trait
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Figure 2.1: Typical example of an energy spectrum with solvable ETH-violating
eigenstates that show sub-volume law entanglement in a sea of ETH-satisfying
states that show volume-law entanglement. In general, states close to the edges
of the spectrum such as the ground state (GS) or low-energy excitations (GS-like)
show area-law entanglement and are not expected to satisfy ETH [40].

aligns with the hallmark of systems in which a violation of the ETH occurs [40].
This phenomenon is illustrated in Fig. 2.1.

The SM formalism uses a set of local (generically multi-site) projectors {P̂i}
that need not commute with each other, and a target space T deőned as the
common subspace of states annihilated by all the projectors, i.e., T = {|ψi⟩ :
P̂i|ψi⟩ = 0 ∀i}. Given a target space T , any term Ĥ0 that commutes with all
of the P̂i’s leaves the target space invariant (i.e., Ĥ0|ψi⟩ ∈ T if |ψi⟩ ∈ T since
P̂iĤ0|ψi⟩ = Ĥ0P̂i|ψi⟩ = 0). Hence, Ĥ0 can be diagonalized within T , and the
corresponding eigenstates are the eigenstates of any Hamiltonian ĤSM of the form:

ĤSM =
∑

i

P̂iĥiP̂i + Ĥ0, [Ĥ0, P̂i] = 0 ∀i. (2.2)

where ĥi is an arbitrary local operator. The Hamiltonian is constructed to be
block-diagonal since Ĥ0 does not mix states in T with those in its complement T .
Thus, ĤSM can be diagonalized in T and T independently.
The energy eigenvalues of the eigenstates |ψi⟩T in T are set entirely by Ĥ0 and
these could be anywhere within the spectrum of ĤSM . The other states at the
same energy density in T are, however, expected to reproduce thermal expectation
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values, as ĤA ≡ P̂iĥiP̂i (and thus ĤSM) should be non-integrable for generic
Hermitian ĥi.
An alternative perspective is to think of T and T as dynamically disconnected
subspaces that do not couple to each other under the action of ĤSM . In other
words, ĤSM can be decomposed as

ĤSM = Ĥscar
T ⊕ Ĥthermal

T . (2.3)

Several examples of embedded towers of states lie within the SM construction.
In this class of models, we can put the QMBS towers in the spin-1 XY model [49]
(it will be studied in detail in Sec. 3) and η-pairing in the Hubbard model [50],
although recasting these Hamiltonians in the form of Eq. (2.2) can be difficult.
For illustrative purposes, we consider the introduction of a simpliőed model, as
proposed in the work by Choi et al. [51].
Motivated by recent experimental observations of coherent many-body revivals in a
constrained Rydberg atom chain, they constructed a weak quasi-local deformation
of the Rydberg blockade Hamiltonian, which makes the revivals virtually perfect.
The analysis of the perturbed system suggests them the existence of an underly-
ing non-integrable Hamiltonian which supports an emergent SU(2)-spin dynamics
within a small subspace of the many-body Hilbert space.
In light of these insights, the authors proceeded to construct a toy model that
interpolates this intrinsic SU(2) structure. This model, while encapsulating the
emergent spin dynamics, also accommodates the intriguing phenomenon of Quan-
tum Many-Body Scars (QMBS).
In particular, they considered a system of N spin-1/2 particles on a ring. The
subspace T of the model is deőned as the common null space of N projection
operators P̂i,i+1 = 1

4
(1 − ˆ̃σi · ˆ̃σi+1) onto neighbouring pairs of singlets, where σ̂µ

i

(µ ∈ {x, y, z}) are standard Pauli operators at site i.
Such a subspace is spanned by the N + 1 states of the largest spin representation
s = N/2 of the SU(2) algebra. The basis states of T is enumerated by eigenstates
of the Ŝx =

∑

i σ̂
i
x/2 operator, |s = N/2,mx⟩ with mx ∈ {−s, . . . , s} eigenvalue of

Ŝx. Now, one considers a Hamiltonian of the form

Ĥtoy =
Ω

2

∑

i

σ̂i
x +

∑

i

V̂i−1,i+2P̂i,i+1, (2.4)

where V̂ij is a generic two-spin operator acting on spins i and j, e.g. V̂ij =
∑

µν J
µν
ij σ̂

µ
i σ̂

ν
j with arbitrary coefficients Jµν

ij . Ĥtoy does not commute with P̂i,i+1

nor Ŝx; thus, it does not have any obvious local symmetries. However, it can be
easily veriőed that the states |s = N/2,mx⟩ ∈ T are eigenstates with harmonically
spaced energies E = Ωmx. On the other hand, the states in the Hilbert space that
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do not belong to T are affected by the second term in Eq. (2.4), and hybridize to
form ergodic eigenstates [51].
In conclusion, the toy model here constructed is reminiscent of Shiraishi and Mori’s
work, where a set of local projectors was used to embed certain nonergodic energy
eigenstates into the bulk of a many-body spectrum.

2.2.2 SGA-based formalism

The towers of QMBS assume fundamental signiőcance within our discourse, owing
to their pivotal role in orchestrating many-body revivals, as observed in the context
of the Rydberg atom experiment. In this section, we start by elucidating how to
construct a tower of states within a quantum many-body system. Subsequently,
we delve into characteristics inherent to the presence of such a tower of states
composed of QMBS.
In the interest of clarity and simplicity, we opt to provide explicit elucidation of
the towers of exact eigenstates within the renowned Hubbard model, known as the
η-pairing model. The model facilitates a comprehensive examination of the core
attributes inherent to the Spectrum-Generating Algebra (SGA) formalism.

The Hubbard Hamiltonian is [52, 53]:

ĤHub =
∑

σ∈{↑,↓}



−
∑

⟨r,r′⟩
tr,r′(ĉ

†
r,σ ĉr′,σ + h.c.)− µ

∑

r

n̂r,σ



+ U
∑

r

n̂r,↑n̂r,↓ (2.5)

where r labels the sites of a lattice, ⟨r, r′⟩ denotes neighbouring sites, and hr,r′
denotes the corresponding hopping strength, which is typically chosen to be site-
independent. ĉ†r,σ and ĉr,σ denote the fermion creation and annihilation operators
on site r, and the on-site fermion number operator is deőned as n̂r,σ ≡ ĉ†r,σ ĉr,σ.

In particular, this model has two SU(2) symmetries, the conventional one and
the dynamical one, respectively related to Ŝ and Q̂ operators here deőned:

Ŝ+ =
∑

r

ĉ†r,↑ĉr,↓, Ŝ− = (Ŝ+)†, Ŝz =
1

2

∑

r

(n̂r,↑ − n̂r,↓),

S⃗2 =
1

2
(Ŝ+Ŝ− + Ŝ−Ŝ+) + (Ŝz)2

(2.6)

and

Q̂† =
∑

r

eiπ·rĉ†r,↑ĉ
†
r,↓, Q̂ = (Q̂†)†, Q̂z =

1

2

(

∑

r,σ

n̂r,σ − L

)

,

Q⃗2 ≡ 1

2
(Q̂†Q̂+ Q̂Q̂†) + (Q̂z)2.

(2.7)
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One can demonstrate [40] that:

[Ŝz, Ŝ+] = Ŝ+, [Ŝz, Ŝ−] = −Ŝ−, [Q̂z, Q̂†] = Q̂†, [Q̂z, Q̂] = −Q̂ (2.8)

and

[ĤHub, Q̂
z] = 0, [ĤHub,

ˆ⃗
Q2] = 0, [ĤHub, Ŝ

z] = 0, [ĤHub,
ˆ⃗
S2] = 0. (2.9)

Therefore, one can name the states of the system with the quantum numbers given
by these two SU(2) symmetry since they satisfy respectively the su(2) algebra.
However, the main difference between the two symmetries is in the following com-
mutation relations [54]:

[ĤHub, Ŝ
+] = 0, [ĤHub, Q̂

†] = (U − 2µ)Q̂† ≡ ωQ̂† (2.10)

The commutation relations presented in Eq. (2.10) assume a fundamental role
in establishing the framework necessary for the instantiation of a tower of states
within the system. In a broader context, we can initiate our discussion by intro-
ducing a creation operator Q̂+. Subsequently, we impose the condition that the
commutator of Q̂+ with the Hamiltonian HSGA adheres to the following constraint:

[ĤSGA, Q̂
+] = ωQ̂+, for ω ̸= 0. (2.11)

If |ψ0⟩ is an eigenstate of ĤSGA with eigenvalue E0, then (Q̂+)n|ψ0⟩ is also an
eigenstate with eigenvalue E0+nω for any integer n > 0 (as long as (Q̂+)n|ψ0⟩ ≠ 0).

Furthermore, in the study presented in Ref. [55], the researchers derived an
exact closed-form expression for the entanglement spectrum of precise many-body
excited eigenstates within the framework of the Hubbard model. Interestingly,
despite their status as exact excited eigenstates characterized by a higher őnite
energy density than the ground state energy, these states exhibit a sub-extensive
entanglement entropy (∼ lnN) as opposed to the anticipated volume law behaviour
(∼ N), where N denotes the size of the system.
To really qualify the high excited tower of states as examples of Quantum Many-
Body Scars (QMBS), they should be in the middle of the spectrum after resolving
symmetries of the system [1, 56].
Refs. [45, 50] showed that local terms can be added to the Hubbard model that
breaks either one of the two SU(2) symmetries and translation symmetry while
preserving some of the analytically tractable towers as eigenstates. In such models,
the remaining towers of states are generically in the middle of the spectrum after
resolving all the conventional symmetries of the model and hence are examples of
towers of QMBS.

In summary, the SGA formalism hinges upon the utilization of Eq. (2.11) to
systematically construct towers of states. When these towers of states, subsequent
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to the resolution of all inherent symmetries, exhibit entanglement entropy deviat-
ing from the anticipated volume law behaviour within the middle of the spectrum,
we are confronted with the manifestation of towers comprising Quantum Many-
Body Scars (QMBS) states.

2.3 Hilbert space fragmentation

Hilbert space fragmentation stands as a correlated phenomenon of ergodicity break-
down [40]. Within this section, we engage in an examination of this phenomenon,
delving into its parallels and distinctions with QMBS.

Given a quantum system with Hilbert space H and Hamiltonian Ĥ, we can
decompose the Hilbert space into dynamically disconnected subspaces, referred to
as Krylov subspaces, as follows:

H = ⊕K
j=1Kj, Kj = spant

{

e−iĤt|ψj⟩
}

(2.12)

where

spant

{

e−iĤt|ψj⟩
}

≡ span
{

|ψj⟩, Ĥ|ψj⟩, Ĥ2|ψj⟩, . . .
}

, (2.13)

denotes the subspace spanned by the time evolution of the state |ψj⟩ and K is
the number of Krylov subspaces. Note that the |ψj⟩’s are chosen such that the
subspaces Kj’s are distinct.
Hilbert space fragmentation refers to the phenomenon where the system possesses
exponentially many Krylov subspaces, i.e. K ∼ exp(L) for a system of size L.
The decomposition outlined in Equation (2.12) presents an elementary task when
the states |ψj⟩ are eigenstates of the operator Ĥ. This decomposition becomes

achievable when the Hamiltonian Ĥ incorporates speciőc symmetries that give
rise to distinct symmetry quantum numbers associated with different |ψj⟩ states
within Equation (2.12).
However, for a non-integrable Hamiltonian, the different Krylov subspaces Kj in
fragmented systems are not distinguished by quantum numbers corresponding to
any obvious local symmetries of Ĥ. Second, for generic systems with conventional
symmetries such as Z2, U(1), or SU(2), the number of Krylov subspaces K either
stays constant or grows polynomially with increasing system size, whereas it grows
exponentially in fragmented systems [42, 57, 58].
A signiőcant distinction arises from the examination of the relationship between
the system’s dimension Dmax and the dimension of an individual symmetry sector
D. In the scenario where the ratio Dmax/D for a given sector tends to unity in the
thermodynamic limit, it is termed weak fragmentation. Conversely, when this ratio
tends to zero for all sectors, the phenomenon is denoted as strong fragmentation.
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Figure 2.2: Schematic depiction of the block diagonal structure of the Hamilto-
nian showing the dynamically disconnected Krylov subspaces in systems with (a)
conventional symmetries (b) Hilbert space fragmentation (c) QMBS [40].

The phenomenon of fragmented dynamics is acknowledged for its association
with scarred characteristics, primarily attributable to its pronounced susceptibility
to the initial state. This susceptibility spans a spectrum ranging from localized
behaviour to behaviour that converges with thermal expectations, contingent upon
the speciőc dynamical sector from which the system originates. Of particular note,
even initial states characterized by low entanglement exhibit distinctive or arrested
dynamics, failing to transition to the equilibrium state that aligns with the sym-
metry quantum numbers of the initial state, thereby encapsulating quintessential
features of Quantum Many-Body Scars (QMBS) [33].
In scenarios characterized by strong fragmentation, there emerges an exponential
proliferation of dynamically disjoint sectors, as visually depicted in Figure 2.2,
resulting in dynamics that resist thermalization, even when initiated from states
typifying the system. In contrast, weak fragmentation presents a more pervasive
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situation for our discussion, wherein thermalization towards the pertinent thermo-
dynamic ensemble is expected for a broad spectrum of initial states [40].

In conclusion, the phenomena of QMBS and Hilbert space fragmentation have
garnered considerable attention, particularly due to their experimental realization
in quantum simulators and the availability of an array of exact results and sim-
pliőed models, a remarkable rarity in the domain of strongly correlated quantum
systems. Nevertheless, the array of unresolved challenges we have delineated here
is poised to stimulate profound discussions and the exploration of novel physics.
However, we stress the fact that the connection will not be an argument in this
work.
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Chapter 3

Case study for QMBS and

asymptotic-QMBS

In this chapter, we explore the spin-1 XY chain model. This model serves
as a crucial case study, possessing various violations of the ETH, the presence of
QMBS and asymptotic quantum many-body scar states (AQMBS). Our discussion
starts with examining the non-integrability of the model, followed by elucidating
its principal characteristics. Subsequently, we delve into the phenomena of QMBS
and subsequently AQMBS, which stand as our central subjects of inquiry in the
future Chapters 4 and 5.

Consider the introduction of the one-dimensional (1D) spin-1 XY model, cou-
pled with an external magnetic őeld h and an axial anisotropy J3. The correspond-
ing Hamiltonian can be explicitly stated as follows:

Ĥ = J
∑

j

(Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1) + h

∑

j

Ŝz
j +D

∑

j

(Ŝz
j )

2 + J3
∑

j

(Ŝx
j Ŝ

x
j+3 + Ŝy

j Ŝ
y
j+3)

(3.1)
where j = 1, . . . , L labels lattice sites. The operators Ŝα

j (α = x, y, z) are spin-1

operators, and we choose a local basis |±j⟩, |0j⟩ whose eigenvalues under Ŝz
j are

±1 and 0, respectively.
In the context of the system under consideration, the Hamiltonian Ĥ, can be
subjected to the condition where J3 is set to zero. As a consequence, Ĥ possesses
a global U(1) symmetry, which is responsible for inducing rotations of the spins
about the z-axis. Depending on the speciőc boundary conditions at play, the
system may further exhibit symmetries related to translation and/or point-group
properties. To note that when the dimension of the system is one and Open
Boundary Conditions (OBC) are in effect, an additional non-local SU(2) symmetry
emerges within Ĥ, as established in Ref. [59]. However, it is worth emphasizing
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that the presence of this SU(2) symmetry is not an indispensable requirement for
the phenomenon of quantum scarring and can be eliminated by the inclusion of
terms incorporating non-zero values of J3, thereby altering the symmetry landscape
of the system [49].

In the subsequent sections of this work, we will adopt OBC as our chosen
boundary conőguration. With this choice established, we now proceed to engage
in a comprehensive examination of the integrability aspects of the model, which
is intrinsically intertwined with the symmetrical characteristics inherent to the
system.

3.1 Non-integrability of the model

In Chap. 1, we have discussed various methodologies for scrutinizing the con-
cept of system integrability. In this section, our focus will be directed towards a
comprehensive examination of level spacing statistics, wherein we introduce the
parameters denoted as s, r, and r̃ and their corresponding probability density
functions [60]:

1.

si =
Ei+1 − Ei

(Ei+α − Ei−α)/δE
(3.2)

where δE = 2α and Ei are the ordered eigenvalues of the Hamiltonian with
E0 < E1 < . . . < EN , E0 the ground state and EN the maximum energy;

2.
ri =

si
si−1

; (3.3)

3.

r̃i =
min(si, si−1)

max(si, si−1)
= min

(

ri,
1

ri

)

. (3.4)

The authors in Ref. [60] employed the framework of random matrix theory within
the context of Gaussian orthogonal ensembles of matrices (GOE) to derive the an-
alytical expressions for the aforementioned probability distributions. Speciőcally,
the distribution P (s) is identiőed as the re-scaled Wigner-Dyson distribution, as
introduced by the equation (1.16). This yields to the expression

P (s) = a · s e−bs2 , (3.5)

where a and b stand as known normalization constants according to [61]. Mean-
while, the distribution P (r) is governed by the equation

P (r) =
1

Z

r + r2

(1 + r + r2)
5
2

, (3.6)
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Figure 3.1: P(s) distribution with α = 10, L = 16, M̂ =
∑

i Ŝ
z
i = −12 and

Iλ = −1. The red line is the theoretical Eq. (3.5). The behaviour of the si is
compatible with the analytical results. 1

where Z denotes a normalization factor.
The distribution P (r) has the same level of repulsion at small r as P (s), namely
P (r) ∼ r, while for large r the asymptotic behaviour is P (r) ∼ r−3, contrary to the
fast exponential decay of P (s). The Eqs. 3.5 and 3.6 yield an analytic expression
for the mean-values ⟨r⟩ and ⟨r̃⟩ widely used in the literature as a measure of chaos
and integrability.

We have diagonalized the Hamiltonian for small values of L, speciőcally focus-
ing on a sector of magnetization M̂ =

∑

i Ŝ
z
i where we could gather a signiőcant

amount of data for robust statistical analysis. This consideration has taken into
account the limitations imposed by the chosen L and the available RAM capacity
for the simulations.
Additionally, we have eliminated any inherent symmetries in the model. In this
context, our study was conőned to the spatial inversion sector characterized by
Iλ = −1, where we are considering the action of the spatial inversion operator Î

1If si is globally normalized, resulting in its expression as Ei+1−Ei

(EN−E0)/(N−1) , the resultant distri-

bution should exhibit comparability with the depiction in Fig. 1 of the Ref. [49]. Nevertheless,
the outcomes we have obtained do not align with the conclusions presented in their work.
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Figure 3.2: P (r) distribution with α = 10, L = 16, M̂ =
∑

i Ŝ
z
i equal to −12 and

Iλ = −1. The red line is the theoretical Eq. (3.6). The behaviour of the ri is
compatible with the analytical results.

on the wavefunction ψ(x) as Îψ(x) = Iλψ(−x).
The outcomes of our model are depicted in Figures 3.1 and 3.2, with further

details presented in Table 3.1. These őndings strongly suggest that the Hamil-
tonian Ĥ is non-integrable. It is well-known that level statistics alone are not
sufficient to guarantee the validity of the ETH. In certain speciőc cases, a weaker
version of the ETH may hold, as suggested by Biroli et al. [62], allowing for a
small set of anomalous eigenstates that violate the ETH. Notably, this possibility
is remarkable considering that there are no protecting symmetries preventing the
anomalous states from mixing with thermal states at the same energy. However,
we proceed to demonstrate that this scenario holds for the spin-1 XY model as
described in [49].

Theoretical value Calculated value
⟨r⟩ 1.7781(1) 1.81
⟨r̃⟩ 0.5307(1) 0.53

Table 3.1: Comparison between theoretical [60] and computed ⟨r⟩ and ⟨r̃⟩ param-
eters. α = 10, L = 16, M =

∑

i S
z
i = −12 and Iλ = −1.
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3.2 Quantum many-body scar state of the model

In the previous section, we have demonstrated the non-integrability of the model.
Consequently, we expect the model to adhere to the ETH once all symmetries are
resolved. However, it is noteworthy that the model has a tower of exact quantum
many-body scar states that exhibit a straightforward structure and display distinct
properties in comparison to other eigenstates sharing the same energy density.

The system admits a tower of exact bimagnon states:

|n, π⟩ = 1
√

Nn,π

(J+
π )

n| ⇓⟩, (3.7)

where n = 0, . . . , L, Nn,π represents a normalization constant, |⇓⟩ = | − . . .−⟩
is the fully polarized state wherein all spins exist in the eigenstate of Ŝz

j with
eigenvalue -1. The bimagnon operator is deőned as follows:

Ĵ±
k =

1

2

L
∑

r=1

eikr
(

Ŝ±
r

)2

. (3.8)

Starting from the family of states {|n, π⟩}n, numerous analytical outcomes can be
derived [10, 33, 49, 63]:

• The state satisőes a total magnetization equivalent to Mn = 2n − L (M̂ =
∑

i Ŝ
z
i ) and fulőlls the stationary Schrödinger eigenvalue equation:

Ĥ|n, π⟩ = (−Lh+ 2nh+ LD)|n, π⟩. (3.9)

It’s important to note that, for generic values of h and D, the state lies in
the middle of the spectrum of the Hamiltonian.

• They form a spin-L/2 representation of an SU(2) algebra generated by the
raising and lowering operators Ĵ±

π :

[Ĵ+
π , Ĵ

−
π ] = 2Ĵz, [Ĵz, Ĵ±

π ] = ±Ĵ±
π , (3.10)

where Ĵz = 1
2

∑L
i=1 Ŝ

z
i = 1

2
Ŝz.

• The ETH does not hold for these states, given the presence of off-diagonal
long-range order in correlation functions, as evidenced by the following ex-
pression:

4

L2
⟨n, π|Ĵ−

π Ĵ
+
π |n, π⟩ =

[

1−
(

2n− L

2L

)2
]

+O
(

1

L

)

. (3.11)
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Figure 3.3: Adapted from [33, 49]. F(t) = |⟨ψ(0)|ψ(t)⟩|2 = |L(t)|2 for various

initial states (L = 8). The nematic Néel initial state |ϕ⟩ = ⊗r

[

|+r⟩−(−1)r|−r⟩√
2

]

,

state included in Eq. (3.14), exhibits perfect revivals described by Eq. (3.15),
while generic initial state decay rapidly (red line). Inset: Entanglement dynamics
after a quench, showing that generic initial states lead to rapid entanglement
growth and saturation near the value for a random state (dashed line), while the
special initial state does not.

It is worth noting that, unless n = 0 or L, the right-hand side of the above
equation remains őnite in the thermodynamic limit. This indicates that the
eigenstates |n, π⟩ with scarring properties encompass long-range connected
correlations (note that ⟨n, π|Ĵ±

π |n, π⟩ = 0).
Conversely, for a generic eigenstate situated in the middle of the energy
spectrum, the anticipated value of this correlation function, based on ETH,
is derived from the inőnite-temperature average:

1

3L
Tr

(

4

L2
Ĵ−
π Ĵ

+
π

)

=
4

3L
, (3.12)

a quantity that diminishes as L→ ∞.

• Using simple combinatorics, it is possible to calculate the entanglement en-
tropy of the eigenstates |n, π⟩ [49]. For example, the scaling with ln(L) of
the entanglement entropy of the state |L/2, π⟩ as L → ∞ can be explicitly
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Figure 3.4: We consider the Hamiltonian eigenstates |Ei⟩ in the sector m = 0 (we
are consideringm the eigenvalue of M̂ =

∑

i Ŝ
z
i ) with parameters {J, h,D, J3, L} =

{1, 0, 0.1, 0.1, 8}. The plot depicts the bipartition entanglement entropy s(Ei) =
− 2

L
Tr[ρA,Ei

log ρA,Ei
] where we set A as the set of sites {i | 1 ≤ i < L/2} on the

ordinate, and the corresponding energy Ei on the abscissa. It is highlighted the
scar state point with a red circle. Values computed via exact diagonalization.

shown through saddle point arguments:

lim
L→∞

SA =
1

2

(

ln
πL

8
+ 1

)

, (3.13)

where SA = −Tr(ρ̂A ln ρ̂A), ρ̂A = TrB|L/2, π⟩⟨L/2, π|, and TrB denotes the
trace over sites 1, . . . , L/2.
This result contrasts with the prediction of the ETH, as it asserts that őnite-
energy-density eigenstates of non-integrable models adhere to the volume-law
scaling SA ∼ L. This different scaling will be visually evident when we
analyse the system numerically.

• In the presence of a őnite magnetic őeld h, any state of the form

|ψ0⟩ =
L
∑

n=0

cn|n, π⟩, (3.14)
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Figure 3.5: We consider {m, J, h,D, J3, L} = {0, 1, 0, 0.1, 0.1, 10} (see for the pa-
rameters Fig. 3.4). The plot depicts the expectation values of the eigenstates of
the Hamiltonian for Â = 1

L

∑

i(Ŝ
z
i )

2 on the ordinate and the corresponding energy
Ei on the abscissa. It is highlighted the scar state point with a red circle. Values
computed via exact diagonalization.

experiences periodic revivals due to the equally spaced eigenenergies En.
This phenomenon is more apparent by considering:

L(t) ≡ ⟨ψ0|e−iĤt|ψ0⟩ = eihLt
L
∑

n=0

|cn|2e−in(2h)t, (3.15)

Where, up to an unimportant global phase, L(t) exhibits periodic behaviour
with a period of π/h. This time-periodic behaviour stands in contrast to
the anticipated behaviour in quantum chaotic systems, where typical initial
states are expected to exhibit rapid decay in their expectation values (refer
to Fig. 3.3 for numerical simulations).

It is noteworthy to emphasize that the considered model possesses a signiőcant
array of analytical results, a circumstance that is relatively uncommon within
the domain of quantum many-body interacting systems. The existence of QMBS
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states within the model, apart from analytical derivations, can be recognized as
outliers with regard to the expectation values of standard operators, for instance,
local operators, as observed in numerical simulations.

To offer a numerical exposition of the distinctive attributes displayed QMBS
states, we have generated a plot depicting the entanglement entropy, denoted as
s(Ei) = − 2

L
Tr[ρ̂A,Ei

log ρ̂A,Ei
], associated with the reduced density matrix ρ̂A,Ei

,

against the energy Ei of the eigenstates of Ĥ. This density matrix corresponds to
the eigenstate |Ei⟩ of the system, wherein our focus is directed towards a speciőc
subsystem A. Speciőcally, we deőne A as the set of sites {i | 1 ≤ i < L/2} within
the chain.
The respective values of both operators are evaluated through exact diagonaliza-
tion utilizing a Fortran code.
Remarkably, as evidenced by Fig. 3.4 a signiőcant majority of the eigenstates
exhibit volume law entanglement entropy behaviour and adhere to the ETH along
a smooth curve function of energy. Additionally, these states manifest higher lev-
els of entanglement compared to QMBS states, which solely exhibit an area law,
thereby explicitly violating the ETH.
In a broader context, the presence of QMBS states becomes also apparent when

considering a more general local operator, for instance, Â = 1
L

∑

i

(

Ŝz
i

)2

, as illus-

trated in Figure 3.5. Also, in this case, the QMBS state emerges as an outlier,
showcasing distinct behaviour in contrast to all other eigenstates.

Up to this point, we have not only demonstrated the presence of QMBS within
the model but also characterized their intrinsic properties. Moving forward, we
will introduce in the model a family of states that exhibit particular resemblances
to the QMBS states discussed in this section.

3.3 Asymptotic quantum many-body scar states

Up to this point, we have brought attention to deviations from the ETH exhibited
by QMBS states, which are speciőc eigenstates of the Hamiltonian.
In a recent investigation detailed in Ref. [10], novel combinations of states, which
are generally non-eigenstates of the Hamiltonian, exhibit a semblance of behaviour
similar to QMBS in the thermodynamic limit within the framework of the model
described by Eq. (3). These states have been termed asymptotic Quantum Many-
Body Scar (AQMBS) states.
In this section, we shall introduce and examine the fundamental attributes of these
newly discovered states.

AQMBS arise as linear combinations of "thermal" eigenstates that individually
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adhere to the expected behaviour stipulated by the ETH. Hence, considering a
őxed value of L and allowing t to approach inőnity ∞, one could expect that the
AQMBS states progressively converge towards statistical predictions. However,
the authors of the study [10] have effectively demonstrated that AQMBS possess
attributes characterized by constrained entanglement and distinctive signatures of
slow relaxation dynamics. Consequently, the presence of AQMBS introduces an
alternative avenue to QMBS, for potential deviations from the ETH.
Consider the family of states within the context of Eq. (3.1) as follows:

|n, k⟩ = 1
√

Nn,k

Ĵ+
k

(

Ĵ+
π

)n−1

|⇓⟩, (3.16)

where Nn,k represents the usual normalization constant, already introduced in Eq.
(3.7). Let us now enumerate several properties of |n, k⟩:

• They are deformations of exact QMBS. Studies involving models where such
categories of multimagnon states serve as exact eigenstates have been ex-
plored in Ref. [64]. The referenced work establishes that these states do not
qualify as eigenstates of the spin-1 XY model when k ̸= π.

• For k ̸= π and k an integer multiple of 2π
L

, ⟨n, k|n′, π⟩ = δn,n′δk,π for any
1 ≤ n, n′ ≤ L− 1 [10].

• The expectation energy of these states does not depend on k and reads [10]

⟨n, k|Ĥ|n, k⟩ = −Lh+ 2nh+ LD. (3.17)

• An estimation of the bipartition entanglement entropy can be computed as
detailed in references such as [40, 49, 55, 65]. In particular, in Ref. [10], it
was demonstrated that by considering a bipartition with LA = LB = L/2
and focusing on states characterized by an extensive number of bimagnons
(those with n = αL and 0 < α < 1), these states exhibit the following
bipartition entanglement entropy relationship: SA ∼ logL + logα. For the
AQMBS states |n, k⟩, an additional correction of at most log 2 is observed.
Speciőcally, SA ∼ log 2 + logα + logL.

• The characterization of the states presented in Eq. (3.16) is attainable
through the computation of the energy variance ∆H2 (we report the result
of the calculation in OBC):

∆H2 = 4

(

J2 cos2
(

k

2

)(

1− 1

L

)

+ J2
3 cos

2

(

3k

2

)(

1− 3

L

))

(3.18)
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Figure 3.6: Projection of AQMBS |n, k⟩, n = L/2, k = π − 2π
L

, L = 10 with
eigenstates |Ei⟩ of the Hamiltonian in the sector parameters {m, J, h,D, J3} =
{0, 1, 0, 0.1, 0.1}. Two bands are visible: the bottom one is compatible with the
numerical 0; from the top one is possible to see the small variance ∆H2 of the
state |n, k⟩. Values computed via exact diagonalization.

Among the states deőned in Eq. (3.16), only the |n, π⟩ states qualify as
eigenstates of the Hamiltonian, as ∆H2 = 0 solely for k = π.
In cases where k ̸= π, the state |n, k⟩ must inevitably be a linear superpo-
sition of energy eigenstates of Ĥ. These eigenstates predominantly span a
range centred around the same energy as |n, π⟩, with a width of approxi-
mately ∆H, as depicted in Fig. 3.6.
A notable observation arises when k ̸= π and k correspond to an integer
multiple of 2π

L
. In such instances, |n, π⟩ is not included in the set of states

that compose the AQMBS due to orthogonality constraints, therefore we
deduce that states |n, k⟩ must inherently constitute linear superpositions of
"thermal" eigenstates.

At this point, it is important to underscore three distinctive attributes that render
the AQMBS states particularly interesting:

1. They manifest a limited amount of entanglement, while simultaneously pos-
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Figure 3.7: Adapted from Ref. [10]. Properties of the state e−iĤt|n, k⟩ for n = L
2

and k = π − 2π
L

as a function of time for various system sizes L. Left: time

evolution of the operator Â = 1
L

∑

i

(

Ŝz
i

)2

. Right: time evolution of the survival

probability with the initial state F (t) = |⟨n, k|e−iĤt|n, k⟩|2.

sessing an extensive amount of energy.

2. They display slow dynamics, i.e. in terms of the survival probability F (t) =

|⟨n, k|e−iĤt|n, k⟩|2, due to the small ∆H2.

3. As the system approaches the thermodynamic limit (L→ ∞), when consid-
ering the state |n, k⟩ with k = π + 2π

L
m and m ∈ Z, the scaling behavior

of ∆H2 is proportional to 1
L2 , resulting in the convergence of ∆H2 towards

zero. This leads to the term asymptotic QMBS (AQMBS), signifying that
the system gradually reaches a state of increasing immobility over timescales
that demonstrate polynomial growth with the system size (see Fig. 3.7),
beyond encompassing the main characteristics associated to QMBS states.

Importantly, the three properties we have described constitute pivotal character-
istics that signiőcantly diverge from typical behaviour. Construct states that are
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linear combinations of thermal eigenstates, and simultaneously possess a small en-
ergy variance (resulting in slow relaxation) while maintaining low entanglement
represents a difficult challenge. A typical state with low entanglement often ex-
hibits an energy variance that increases with the system size, implying shorter
relaxation times [66] (where F (t) decays on timescales that decrease with system
size), while the expectation values of typical observables relax on timescales that
do not undergo drastic changes with system size [67ś74].

The existence of AQMBS states might lead to the temptation of inferring a
form of "non-thermal" behaviour [75] or even a potential violation of the ETH
within the "thermal" states orthogonal to the exact QMBS states, even at őnite
system sizes. However, it is important to stress that the ETH encompasses two
fundamental aspects [1, 27, 76], addressing both diagonal and off-diagonal matrix
elements of local operators within the energy eigenbasis. The diagonal matrix
elements govern the late-time expectation values of observables, and we do not
expect a violation of diagonal ETH since the asymptotic QMBS states eventually
thermalize. On the contrary, the relaxation timescale is inŕuenced by both the
energy variance of the initial state and the off-diagonal matrix elements, though
establishing a precise connection remains intricate [67].

In conclusion, the set of characteristics outlined above leads us to consider the
possibility of an off-diagonal ETH violation, particularly within a portion of the
Hamiltonian spectrum.
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Chapter 4

Slow dynamics and function f (Ē, ω)

In this chapter, we delve into the signiőcance of AQMBS states introduced
in the previous chapter, particularly in relation to the off-diagonal elements of
the ETH. We have already highlighted a crucial aspect of AQMBS: their slow
dynamics and the prolonged relaxation time as they approach the equilibrium
state. This remarkable behaviour is intimately tied to the off-diagonal properties of
the observables under consideration, with the f(Ē, ω) introduced in Chap. 1. We
will investigate the feasibility of establishing a relation between the slow dynamics
and the spectral properties of observables.
We will analyze, in this chapter, the relation by examining the system within the
magnetization sector, speciőcally when the magnetization parameter is set to zero
(i.e., m = 0). This choice is motivated by the objective of obtaining a sufficient
quantity of data to conduct a rigorous statistical analysis. Furthermore, we select
the quantum state denoted as |n, k⟩, where k = π − 2π

L
, primarily due to its

distinctive ∆H2 scaling properties, as described in Sec. 3.3.

4.1 AQMBS and thermalization

We start our analysis by delineating critical distinctions between states of AQMBS
and the category we designate as a "thermal" state. For illustrative purposes, we
adopt the staggered state denoted as | + − + − . . . + −⟩ as our representative
example of a "thermal" state.
The choice of the staggered state is motivated by its equating energy with that of
the |n, k⟩ state while exhibiting a divergent energy variance, consequently leading
to distinct relaxation dynamics towards the equilibrium state. Speciőcally, under
the conditions introduced in the beginning of this chapter, the following holds:

⟨n, k|Ĥ|n, k⟩ = ⟨+− . . .+−|Ĥ|+− . . .+−⟩ = LD. (4.1)
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Figure 4.1: Time evolution e−iĤt of |n, k⟩ state (blue points) and of the staggered
state |+− . . .+−⟩ (orange points). Parameter used for |n, k⟩: n = L/2, k = π− 2π

L
.

Hamiltonian parameters sector {m, J, h,D, J3, L} = {0, 1, 0, 0.1, 0.1, 10}.

In contrast, the variance for the staggered state is expressed as:

⟨+− . . .+−|∆H2|+− . . .+−⟩ = (J2 + J2
3 )L. (4.2)

Meanwhile, for the AQMBS state, the validity of Equation (3.18) persists.
Remarkably, as the system size approaches inőnity (referred to as the thermo-
dynamic limit), the variance ∆H2 scales proportionally with L in the staggered
state, which increases with system size. This stands in contrast to the behaviour
observed in the variance of the AQMBS state with k = π − 2π

L
, where, in the

thermodynamic limit, ∆H2 scales inversely with 1
L2 , resulting in a decrease as the

system size grows.
As discussed in Chap. 3, the variance plays a pivotal role in inŕuencing the relax-
ation time. From Fig. 4.1, it becomes evident that, despite both states possessing
identical energies, the staggered state exhibits a rapid decay and departs signif-
icantly from its initial state much more rapidly in comparison to the behaviour
observed in the AQMBS state. An additional implication of the disparate vari-
ances ∆H2 is manifest in the projection of the state onto the eigenstates of the
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Figure 4.2: Comparison of projection of staggered state |ϕ⟩ = |+− . . .+−⟩ (orange
points) and AQMBS |ϕ⟩ = |n, k⟩ (blue points), n = L/2, k = π − 2π

L
, L = 10 with

eigenstates |Ei⟩ of the Hamiltonian in the parameters sector {m, J, h,D, J3} =
{0, 1, 0, 0.1, 0.1}. The discernible disparity in the distribution of data points is a
consequence of the variance dissimilarity in energy between the "thermal" state
and the AQMBS state.

Hamiltonian. As visible in Figure 4.2, the staggered state, by virtue of its higher
variance ∆H2 with respect to the AQMBS, exhibits a broader spectral overlap
with the eigenstates of the Hamiltonian.

In conclusion, the observed variance disparity constitutes a potentially discrim-
inative instrument for distinguishing between a "thermal" state and an AQMBS,
thereby affording us the capability to predict the system’s behaviour as it evolves
towards the equilibrium state.

4.2 Study of off-diagonal matrix elements

In Sec. 4.1, we have previously delineated features associated with slow dynamics,
characterized by an extended relaxation time toward the equilibrium state. In the
present section, we initiate an examination of the off-diagonal matrix elements of
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Figure 4.3: Matrix elements |⟨Ei|Â|Ej⟩|2 with Hamiltonian parameters
{m, J, h,D, J3, L} = {0, 1, 0, 0.1, 0.1, 10}. It is possible to see in the z-axis the
matrix elements in log10-scale with a value greater than 10−20. We consider the
elements in the set described by a őxed mean energy around the QMBS (red circle)
ĒQMBS ≡ [(Ei + Ej)/2L]QMBS

= 0.1 and δĒQMBS = 0.002. This dataset will be
used for further analysis in this chapter. Values computed via exact diagonaliza-
tion.

a local observable.

Speciőcally, we consider the observable operator Â, deőned as Â = 1
L

∑

i

(

Ŝz
i

)2

,

within the theoretical framework of the spin-1 XY chain, as introduced in Chap-
ter 3. In Fig. 4.3, our analysis centres on a distinct energy interval, speciőcally
focused around the QMBS energy, which is demarcated by the red circle in the
őgure. Within this energy range, our study is directed towards a subset of matrix
elements associated with the operator Â, expressed as Aij = ⟨Ei|Â|Ej⟩, where Ei

and Ej correspond to the energies of the eigenstates of the Hamiltonian |Ei⟩ and
|Ej⟩.
These matrix elements, depicted along the z-axis in a logarithmic scale and ex-
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Figure 4.4: Matrix elements |⟨Ei|Â|Ej⟩|2 within the energy band ĒQMBS = 0.1
and width δĒQMBS = 0.002 (see Fig. 4.3), with Hamiltonian parameters
{m, J, h,D, J3, L} = {0, 1, 0, 0.1, 0.1, 10}. The "averaged" matrix elements (or-
ange points) are constructed taking intervals of 250 points and then averag-
ing the points both in x and y axis; the red line is a representation of the
|f(Ē, ω)|2, up to a normalization factor. The function plotted on the orange point
is ax4 + bx2 + c+ d cos(x).

hibiting values greater than the threshold of 10−20, thus belong to the same mean
energy interval. To be precise, we set this mean energy, denoted as ĒQMBS, equiv-

alent to D, the parameter met in Eq (3) (to note that ⟨n, π|Ĥ|n, π⟩/L = D).
Additionally, we introduce a variation in this mean energy, denoted as δĒQMBS,
set at a őxed value of 0.002.

The central focus of our investigation within this analysis is around the exam-
ination, at őxed mean energy, of the dependence of the matrix elements on the
energy difference parameter, denoted as ω = Ei − Ej.
As depicted in Figure 4.3, it becomes evident that the matrix elements exhibit
signiőcantly higher magnitudes in proximity to the diagonal elements (Ei = Ej)
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when compared to the values observed in the off-diagonal region. This observed
behaviour, at least in a qualitative sense, conforms to the ETH hypothesis of
Eq. (1.28), particularly with regard to the distinctive decay manifested in the
off-diagonal elements.
The examination of plots of this nature will prove instrumental in establishing a
correlation between the spectral characteristics of observables and the slow dy-
namics present in the system.

4.3 Thermalization and f (Ē, ω)

In the previous section, we embarked upon an investigation centred on the off-
diagonal matrix elements, speciőcally focusing on the squared modulus |Aij|2, as-

sociated with the local observable Â. Within the framework of the ETH, the
off-diagonal elements are described by the function f(Ē, ω). Our current objective
is to establish a connection between the study presented in Fig. 4.3 and a well-
deőned function f(Ē, ω).
Let us start with the ETH (see Chap. 1):

Aij = A(Ē)δij + e−
S(Ē)

2 f(Ē, ω)Rij. (4.3)

Speciőcally, we focus on matrix elements that fall within the energy interval deőned
as E = [

Ei+Ej

2
− δĒ,

Ei+Ej

2
+ δĒ], which can be expressed as E = [Ē − δĒ, Ē + δĒ]

deőning Ē =
Ei+Ej

2
, and we introduce the energy difference Ω = [(Ei − Ej) +

δω, (Ei−Ej)−δω] ≡ [ω−δω, ω+δω], where we deőne ω = Ei−Ej. In our analysis,
we shall scrutinize the squared modulus |Aij|2, incorporating typical global scaling
factors within the function f(Ē, ω), as outlined below:

∑

Ei,Ej

Ei ̸=Ej

(Ei+Ej)/2∈E
Ei−Ej∈Ω

|Aij|2
(1)
=

∑

Ei,Ej

Ei ̸=Ej

(Ei+Ej)/2∈E
Ei−Ej∈Ω

|f(Ē, ω)|2|Rij|2e−S(Ē) =

(2)
= e−S(Ē)|f(Ē, ω)|2

∑

Ei,Ej

Ei ̸=Ej

(Ei+Ej)/2∈E
Ei−Ej∈Ω

|Rij|2 =

(3)≃ α |f(Ē, ω)|2
∑

Ei∈E 1
.

(4.4)

In (1), we have invoked Eq. (4.3), in (2), the functions S(Ē) and f(Ē, ω) are
explicitly noted to be independent of the individual energies Ei and Ej and in
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(3) we exploit the fact that |Rij|2 = 1, approximating |Rij|2 to 1. We have also
introduced the constant

α ≡
∑

Ei,Ej

Ei ̸=Ej

(Ei+Ej)/2∈E
Ei−Ej∈Ω

1 (4.5)

as the number of microstates presents into a small interval with őxed Ē and ω and
the entropy S(Ē) as:

S(Ē) = log Ω̃(Ē) (4.6)

where

Ω̃(Ē) =
∑

Ei∈E
1 (4.7)

is the number of microstates in an interval with őxed Ē.
Therefore, the study of the quantity |Aij|2 in a band of energy, fundamentally
involves the assessment of the squared modulus of a well-deőned function f(Ē, ω).
Building upon the preceding calculations, our objective is to investigate the pat-

terns exhibited by the matrix elements within a deőned energy range. Speciőcally,
we concentrate our analysis on an energy band situated around the energy asso-
ciated with the QMBS, as explored in the previous section. Subsequently, we will
recover the corresponding function f(Ē, ω) and use it as a bridge between ther-
malization of the states and spectral properties.
Starting from Fig. 4.3, our approach involves projecting the data points onto the x-
z-plane. Subsequently, we partitioned these points into intervals, with each interval
accommodating 250 data points. Within each interval, we performed an averaging
operation, resulting in a őnal dataset comprising "averaged" points. These "aver-
aged" data points serve as the basis for őtting the function |f |2. This systematic
procedure ensures a rigorous and precise characterization of the data, enhancing
the reliability of our analysis [1]. Fig. 4.4 illustrates the method previously delin-
eated. Notably, the function |f |2 exhibits a discernible plateau in proximity to the
diagonal matrix elements and subsequently diminishes as it extends toward the
edges of the distribution.

Moving forward, we focus again to Fig. 4.4, but with a particular condition
imposed. Here, we conőne our consideration to the distribution of matrix elements
calculated exclusively using eigenstates of the Hamiltonian that simultaneously ex-
hibit overlaps with either |n, k⟩ or | +− +− . . . +−⟩ greater than a user-deőned
threshold. As elucidated in Sec. 4.1, we stress that the magnitude of these overlaps
is inherently contingent upon the energy variance ∆H2 of the state.
Upon examining the new distributions of |Aij|2 in Fig. 4.5, we observe two signif-
icant trends:
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Figure 4.5: Matrix elements |Aij|2 within the energy band ĒQMBS = 0.1
and width δĒQMBS = 0.002, Hamiltonian parameters {m, J, h,D, J3, L} =
{0, 1, 0, 0.1, 0.1, 10}, őlter based on overlaps greater than 10−3.5 with AQMBS |n, k⟩
with n = L/2, k = π− 2π

L
(orange points) and with the staggered state |+− . . .+−⟩

(blue points).

1. the curve-őtting results (red line) for the points őltered based on the stag-
gered state | + − + − . . . + −⟩ (represented by blue points) appear to be
compatible with the line derived from the complete set of "average" matrix
elements depicted in Fig. 4.4 (represented by the blue line).

2. On the other hand, the points őltered using the AQMBS state |n, k⟩ (de-
picted as orange points) display a different behaviour. They exhibit a higher
degree of localization around the diagonal matrix elements of the observable,
and this subset of data does not reconstruct the curve observed in Fig. 4.4.
We emphasize that the absence of outliers in the őltered distribution under-
scores our assertion that there are no explicit violations of the off-diagonal
components of the ETH, at least in this context.

In conclusion, the analysis of the function f(Ē, ω) following the implementation
of a őltering procedure, which retains exclusively off-diagonal points correspond-
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Figure 4.6: Energy density of states in the spatial inversion sector Iλ = −1.
Hamiltonian parameters:{m, J, h,D, J3, L} = {0, 1, 0, 0.1, 0.1, 10}.

ing to eigenstates showcasing substantial overlaps with the speciőcally considered
state, introduces a novel method for discerning whether a particular state adheres
to "thermal" behavior (conforming to the aggregate traits of the entire ensemble
of states) or, conversely, corresponds to an AQMBS state.
Of fundamental importance is to acknowledge that the method outlined herein is
inherently reliant on the speciőc state under consideration, a trait that warrants
in-depth investigation in future research endeavours. Thus far, our inquiry has en-
compassed the analysis of various "thermal" states; nonetheless, it is noteworthy
that the observed localization of data points around the diagonal matrix elements
following the őltering process using an AQMBS is a novel observation. This őnd-
ing imparts valuable insight and serves as a catalyst for further exploration in this
research trajectory.

In conclusion, we have identiőed a well-deőned function, denoted as f , which
serves as a valuable criterion for discerning the "thermal" or non-thermal nature
of a state. Furthermore, our őndings indicate that the utilization of AQMBS pri-
marily samples a speciőc segment of the energy spectrum and does not inherently
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exhibit outliers in terms of the distribution of off-diagonal matrix elements. This
observation, in turn, allows us to assert that explicit violations of the off-diagonal
aspects of the ETH are not manifest in this context.

4.4 Off-diagonal matrix elements and energy den-

sity of states

In this brief section, we diverge slightly from the main discussion, yet our aim
is to underscore the presence of a semi-periodic structure concealed within the
distribution of off-diagonal matrix elements.
In Sec. 4.3, as depicted in Figure 4.4, we conducted an examination of the off-
diagonal matrix element distribution. Speciőcally, we observed the presence of
a plateau in the vicinity of the diagonal matrix elements and discerned different
behavior at the edge of the spectrum. Upon a deeper analysis, it come up that the
point distribution exhibits a semi-periodic structure, characterized by peaks that
oscillate within the distribution.
In light of this observation, we resolved to investigate the energy density of states.
As illustrated in Figure 4.6, this distribution in the spatial inversion sector Iλ = −1,
also exhibits pronounced peaks, with a particular presence of three distinct peaks
situated within the middle segment of the spectrum. However, it is essential to
note that we do not possess complete knowledge of these phenomena, and further
investigation is warranted.
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Chapter 5

Construction of slow dynamics state

Until now, our discourse has revolved around the deőning attributes of AQMBS,
speciőcally their small energy variance and a limited amount of entanglement en-
tropy. These distinctive traits facilitate the establishment of a relationship with
the spectral properties of a local observable. Conversely, within this framework, we
have not encountered any violation of the ETH, particularly about the off-diagonal
component of the ETH, which plays a pivotal role in the system’s long-term dy-
namics.
Hence, it may become imperative to both theoretically and experimentally engineer
states that manifest comparable properties to those of AQMBS. Notably, this un-
dertaking may start by considering "thermal" states, which typically occupy a more
prominent presence within an energy spectrum when contrasted with AQMBS.
Additionally, this approach could yield a deeper comprehension of AQMBS states
within the framework of statistical mechanics, since we are approximating them
with states that thermalize in the standard manner and thus well-described by the
statistical mechanics. Subsequently, these artiőcially generated states can serve as
a foundation for unveiling novel physical phenomena and furthering our compre-
hension of the underlying principles.

In this chapter, we introduce a numerical method for the generation of states
that exhibit similar characteristics to those of AQMBS. Our approach starts with
a brief analytical justiőcation, highlighting the feasibility, particularly in the ther-
modynamic limit, of crafting states, with the asked features, derived from a pure
state. These derived states are characterized by a small energy variance while con-
currently allowing for controlled manipulation of the level of entanglement entropy
employed. We clarify that this introductory analytical section serves solely as a
means to introduce the conceptual framework that we intend to implement numer-
ically. Our primary objective does not encompass a comparative evaluation of the
results yielded by the analytical calculations. Therefore, at the end of the chapter,
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we present numerical őndings that serve as an initial foundation for subsequent
research endeavours.

5.1 Theoretical framework

In Ref. [66], the authors have undertaken an investigation aimed at establishing
a correlation between the energy variance and the entanglement entropy within
a speciőc pure state. Their approach involved the introduction of a systematic
method that initiates from a product state and subsequently constructs states
characterized by decreasing energy variance, all while maintaining precise control
over the degree of entanglement. This method was designed to be applicable to
any local one-dimensional Hamiltonian.

We start by introducing the energy variance for a pure state |ψ⟩ as follows:

∆H2 ≡ δ2 = ⟨ψ|Ĥ2|ψ⟩ − ⟨ψ|Ĥ|ψ⟩2. (5.1)

This expression pertains to a spin chain with a local dimension of d and a local
Hamiltonian Ĥ that can be represented as the summation of local operators ĥi.
Notably, each of these operators ĥi acts on adjacent spins, speciőcally, spin i and
spin i+ 1.
To investigate the entanglement within a state, it is possible to introduce a "cut"
at the i-th link of the chain, where i ∈ {1, . . . , N − 1}. This action effectively
divides the chain into two distinct regions, each characterized by its number of
spins: i spins in one region and (N − i) spins in the other. The entanglement
entropy, concerning this particular partition, is formally deőned as:

Si = −Tr(ρ̂i log2 ρ̂i) = SN−i, (5.2)

where the reduced state ρ̂i = Tri+1,...,N |ψ⟩⟨ψ|.
We consider entangled states of the form

|ψ⟩ = 1

N
+∞
∑

m=−∞
cme

i2mĤ/N |p⟩, (5.3)

where |p⟩ is a product state with energy Ep = ⟨p|Ĥ|p⟩ = 0, variance σp =
a√
N

with

a = O(1), and N is the normalization factor.
They applied an operator such that the variance of the resulting state |ψ⟩ sys-
tematically decreases in the number of terms in the sum. In particular, let the
following operator:

[

cos
Ĥ

N

]M

=
1

2M

M/2
∑

m=−M/2

(

M

M/2−m

)

ei2mĤ/N . (5.4)
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The operator’s effect on the state |p⟩ can be represented using Eq. (5.3), with
−x

√
M ≤ m ≤ x

√
M terms, x = O(1), thereby reducing the energy variance of

the resulting state. Importantly, we stress that for values of |X| where |X| < 1,
the expression cosM(X) can be approximated as e−MX2/2. This approximation is
particularly relevant for our numerical calculations, where the exponential operator
plays a pivotal role.
Specially, from the application of the operator in Eq. (5.4) the resulting state’s
variance is then determined for sufficiently large systems, it scales as [77]:

δ =

√

N

2M
. (5.5)

It is important to note that the entanglement of any state conforming to the struc-
ture described by Eq. (5.3) can be bounded from above by a function dependent
on the bond-dimension D associated with the corresponding Matrix Product State
(MPS) representation of the state. Utilizing results from Ref. [66, 78ś82] about
limiting the bond-dimension D, thus the amount of entanglement entropy since it
holds

S ≈ log(D), (5.6)

in the thermodynamic limit, we recover that

S ≤ log2
k1
δ

+
1

2
log2N + k2, (5.7)

where k1 and k2 are constants of order O(1). This analysis reveals the possibility
of constructing states with small energy variance and sub-extensive entanglement
entropy, features that characterize AQMBS states, from product states.

5.2 Numerical study

Building upon the discussion in the previous section, we advance towards the
implementation of a Gaussian őlter applied to a general quantum pure state |ψ⟩.
This state is not necessarily an eigenstate of the Hamiltonian speciőed in Eq. (3.1),
and notably, we have established the condition J3 = 0.
Within this framework, we adhere to the following sequential procedure:

1. We commence by subjecting the quantum state |ψ⟩ to the operator e−τ(Ĥ−E0)
2

,
where τ ∈ C, and E0 represents the energy associated with the QMBS |n, π⟩
of the model.

2. We calculate the energy variance ∆H2 and the bipartition entanglement
entropy s(Ei) = − 2

L
Tr[ρ̂A,Ei

log ρ̂A,Ei
] (as discussed in Chap. 3) of the evolved

state, before appropriate normalization.
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Figure 5.1: Evolution of the energy variance ∆H2 and the bipartition entanglement
entropy s using the Gaussian őlter algorithm. The initial state is | + − . . . +
−⟩, and the model corresponds to the Hamiltonian in Eq. (3.1) with parameters
{m, J, h,D, J3, L} = {0, 1, 0, 0.1, 0, 8}. The orange point, highlighted by the red
circle, represents the AQMBS |n, k⟩ state with n = L/2 and k = π − 2π

L
. The

values were computed using exact diagonalization.

3. The procedure is then iteratively repeated by applying the exponential op-
erator once again to the evolved state.

The outlined procedure undoubtedly leads to the creation of states characterized
by reduced variance in energy and a sub-extensive degree of entanglement entropy.
However, we stress that these criteria alone may not guarantee that the resulting
states exhibit the salient features of AQMBS.
Speciőcally, while our procedure may generate states with sub-extensive entan-
glement entropy, it remains possible that the magnitude of this entropy is not
sufficiently small to be directly comparable with well-established AQMBS states.
The presence of sub-extensive entanglement alone may not guarantee the unique
characteristics associated with AQMBS.
Therefore, it is important to employ additional measures to rigorously determine
whether the states produced through this procedure indeed exhibit the deőning
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properties of AQMBS.

In our investigation, we employed the numerical technique of exact diagonal-
ization. As our starting point, we adopted the usual staggered state, denoted as
|ψ⟩ = | + − + − . . . + +−⟩. Subsequently, we executed the algorithm outlined in
the previous sections.
As depicted in Fig. 5.1, the alignment of our evolving state with AQMBS char-
acteristics becomes increasingly pronounced as the algorithm progresses. This
observation underscores the effectiveness of our approach in generating states that
exhibit behaviors and properties akin to AQMBS states.
Despite the valuable insights gained through exact diagonalization, it is essential
to recognize that this method does not provide conclusive information regarding
the behavior of systems in the thermodynamic limit (L→ ∞), where experimental
comparisons become feasible. To address this, we turned to tensor network meth-
ods, speciőcally leveraging the Time Dependent Variational Principle (TDVP)
[83ś86]. It is important to acknowledge that our mastery of this approach is not
yet comprehensive, which implies that we refrain from making deőnitive inferences
concerning the behavior of our states in comparison with AQMBS states.

It is crucial to acknowledge that our utilization of the aforementioned tensor
network method is not in our full control. Consequently, to date, we are not
able to draw deőnitive conclusions regarding the behavior of our states when com-
pared to AQMBS states. Nevertheless, it is paramount to highlight that, despite
these methodological challenges, our endeavors have yielded noteworthy accom-
plishments. In particular, we have successfully created quantum states that exhibit
distinctive characteristics, including minimal energy variance and a restricted level
of entanglement entropy, particularly within the thermodynamic limit.
Furthermore, our research endeavors have encompassed the execution of numerical
simulations encompassing signiőcant chain sizes, extending to systems containing
up to 100 particles. Our objective in these simulations is to investigate and ana-
lyze the behavior of the generated quantum states while systematically varying the
system size denoted by L. As elucidated in Fig. 5.2, we have conducted a compar-
ative analysis of the state’s behavior under varying system sizes. Speciőcally, we
have examined the relationship between the intensive energy variance ∆H2 and
the extensive entanglement entropy. Notably, our őndings reveal a qualitatively
correlation between these two key properties, which provides a valuable foundation
for future explorations and investigations.

In summary, our research endeavors have led to the creation of quantum states
derived from an initial "thermal" state. These newly constructed states exhibit
noteworthy characteristics that are comparable to those of AQMBS, particularly
evident when considering smaller system sizes denoted as L. Furthermore, we have
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Figure 5.2: Comparison of the TDVP evolution at different L. The initial
"thermal" state is | + − . . . + −⟩. Hamiltonian parameters: {m, J, h,D, J3} =
{0, 1, 0, 0.1, 0.1, 0}.

embarked on the exploration of the thermodynamic limit (L → ∞). At present,
drawing deőnitive conclusions in this context remains challenging. Nevertheless,
the observed correlation, as highlighted, between the state’s properties, such as in-
tensive energy variance and extensive entanglement entropy, serves as a promising
point of departure for future investigations and studies.
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Conclusions

This thesis has delved into the realm of thermalization, a concept that has fas-
cinated scientists for centuries as they seek to bridge the gap between macroscopic
behaviour and microscopic dynamics. While statistical mechanics has successfully
described the macroscopic properties of systems, the profound link between these
properties and microscopic interactions continues to be a subject of exploration
and discussion.
In this research, our initial focus centres on the review and the discussion of the
behaviour of quantum systems, particularly highlighting the distinctions and dis-
parities between quantum systems and their classical counterparts. The analogy
of a coloured drop diffusing within a liquid introduced us to the concept of ther-
malization in classical systems and prompted the question of whether quantum
systems exhibit similar behaviour.
The recent and signiőcant advancement embodied by the Eigenstate Thermaliza-
tion Hypothesis (ETH) has introduced a robust and comprehensive framework
for comprehending the phenomenon of thermalization in quantum systems. This
framework unites concepts of chaos and ergodicity within a distinctive mathemat-
ical formulation. The ETH, as systematically deőned in Chap. 1, constitutes a
statistical statement that elucidates the behaviour of observables, particularly their
convergence towards equilibrium conditions in chaotic quantum systems. Nonethe-
less, the emergence of exceptional states that overtly contravene the diagonal as-
pect of the ETH has given rise to a novel realm of inquiry known as quantum
many-body scars (QMBS). These particular states are Hamiltonian eigenstates.
They typically occupy a position within the middle segment of the spectrum of
eigenstates. What sets QMBS different is their distinctive behaviour with regard
to entanglement entropy when compared to other states residing within the same
energy shell. The entanglement entropy exhibited by QMBS states stands out as
anomalous or unique in contrast to its counterparts, rendering them a distinctive
class of quantum states within the spectrum. Therefore, these QMBS challenge
traditional conceptions of thermalization by unveiling distinct manifestations of
non-thermal behaviour within observables.
Recent research őndings, as documented in Ref. [10], have extended the con-
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cept of quantum many-body scars to encompass a broader category referred to as
asymptotic quantum many-body scar states (AQMBS). AQMBS states are conjec-
tured to play a pivotal role in the violation of the off-diagonal aspect of the ETH
due to their primary characteristic: slow relaxation dynamics towards equilibrium
conditions.

In Chap. 4, we have undertaken a comprehensive investigation of the AQMBS
states present in a spin-1 XY chain. Our primary focus was to explore their be-
haviour about the violation of the off-diagonal elements of the ETH. Speciőcally,
we examined the connection between the function f deőned in ETH, thus the spec-
tral properties of observables, with the slow dynamics that AQMBS presents. We
have successfully identiőed and characterized a well-deőned function f , which can
be used as a valuable criterion for making clear distinctions between the "thermal"
and non-thermal attributes of a quantum state. Our research őndings substantiate
that the utilization of AQMBS predominantly targets a speciőc sector within the
energy spectrum, bringing us to a very different function f with respect to what
we would obtain if we analyse "thermal" states. Moreover, the selection does not
inherently introduce outliers or anomalies in the distribution of off-diagonal matrix
elements. Consequently, based on our observations, we can conődently assert that
explicit violations of the off-diagonal aspects of the ETH are not manifest in the
context of AQMBS states.

In Chap. 5, we have devised a systematic procedure for the generation of quan-
tum states that exhibit similar properties of the AQMBS. This approach starts
with an initial "thermal" state and subsequently transforms it into states bringing
the distinctive characteristics associated with AQMBS. The achievement, at least
for small systems, of generating AQMBS-like states through this procedure opens
up avenues for more extensive investigations. These investigations may lead to the
revelation of additional and hitherto undiscovered characteristics and properties in-
herent to AQMBS states, thereby enriching our comprehension of these remarkable
quantum states. Nonetheless, to match experiments with theoretical constructs,
we need the capability to scrutinize physical systems in the thermodynamic limit.
The progression of such an inquiry necessitates supplementary investigations, the
study of which remains, as of the present, incompletely mastered.

The observations and discoveries elucidated within this thesis serve as a cat-
alyst, inspiring and motivating further research endeavours and advancements
aimed at deepening our comprehension of the behaviour exhibited by exceptional
states within quantum many-body systems. Furthermore, we stress that the re-
search journey embarked upon in this study has its roots in an experiment involving
Rydberg atoms. This experimental endeavour represents one of the promising av-
enues towards the realization of quantum hardware, which is at the forefront of
contemporary quantum technology development.
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In conclusion, this study not only enriches our understanding of quantum phenom-
ena but also offers tangible prospects for the practical implementation of quantum
hardware, thereby contributing to the ongoing evolution of quantum science and
technology.
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