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Introduction

String theory is currently one of the best candidate to give a unified model of Nature’s forces,
including gravity, in a quantum-mechanical framework. The idea is to imagine the matter at
fundamental level not described by point-particles but as tiny strings that moving through the
space-time span two-dimensional surfaces called World-sheet. A general feature of string theory
is that in the low energy limit General Relativity and Yang-Mills theories naturally appear.
There are different string theories, the simplest being is surely the Bosonic String theory. How-
ever, it has some problems that lead to physical inconsistencies. The presence in the spectrum
of particles, called Tachyons, with negative mass squared leads to instability of the vacuum, the
absence of fermionic particles, necessary constituents of the matter, makes the theory difficult
to apply.
A way to solve some failure of Bosonic string is to introduce a new symmetry on the theory,
the supersymmetry (SUSY), characterized by fermionic generators that act on the Hilbert space
exchanging bosons and fermions. The commutation rules of the new generators, carrying a
fermionic index, with the generators of space-time symmetry imply that the pairs boson/fermion
under SUSY must have equal mass. However, no known bosonic particle has the same mass as
an electron. Therefore, if the fundamental interaction theory is supersymmetric then the super-
symmetry must be spontaneously broken in the observable range of energy.
Five different models of Superstring theories have been constructed: Type I, Type IIA, Type IIB,
Heterotic SO(32) and Heterotic E8 × E8. They can been seen as the same theory at different
regimes under a certain duality operation.
Another of the main features of string theory is the presence of extra-dimensions respect to
observed four-dimensional space-time in General Relativity. Indeed the Bosonic String and the
Superstring theories are defined in spaces-time with D = 26 and D = 10 dimensions respectively.
The idea is to split the full space-time into a d-dimensional Minkowski space (e.g. d = 4) and
some D − d dimensional compact Riemannian space. The physics at length scales much larger
than the size of compact space is the same as a d-dimensional Minkowski space: the remaining
D − d dimensions have been compactified.
However, just some compact manifold provide consistent theories. One of the simplest examples
of compactification is the Superstring compactification of the six extra-dimensions on a flat torus
M1,3×T 6, that still leads to phenomenologies that cannot be applied. These phenomenologies do
not reproduce the Standard Model at low energy. Generally, compactification schemes that lead
to realistic phenomenologies involve more complicate mathematical objects. Among these, one
of the most important classes of compactification manifold are the Calabi-Yau ones. Calabi-Yau
surfaces CYn are 2n-dimensional compact Ricci-flat manifolds with Holonomy group SU(n). The
reduced Holonomy group SU(n) ⊂ SO(2n) preserves only a certain number of supersymmetries
on extended dimensions. In particular, the class of CY2 surfaces K3 plays an important role in
various aspects of mathematics and string theory.
Type IIA string compactifications on K3×T d×R5−d,1 are one of the first examples of holografic
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duality in Ads/CFT correspondance, and they provided a suitable background for a microscopic
description for the Bekenstein-Hawking law of Black Hole entropy. [35] Moreover they lead to
exact results on the study of spectrum of states.
From a geometric point of view there are interesting connections between K3 symmetries and
the 26 sporadic simple groups: [36] [37] Mukai’s theorem provides a classification of geometrical
symmetries of K3 surfaces in terms of subgroups of the Mathieu group M23. This connection has
been implemented by the discovery of new moonshine phenomena, initiated by an observation
of Eguchi, Ooguri and Tachikawa [19]: the Elliptic Genus of K3 encodes an infinite-dimensional
graded representation of the largest Mathieu sporadic group M24 (of which M23 is a subgroup).
These observations led to the study of geometrical and non-geometrical symmetries of NLSMs
with K3 target space and it led to new conjectures, such as Conway moonshine relating the
stringy K3 symmetries to the finite Conway group CO0 .
A natural formalism to describe the worldsheet dynamics of open and closed strings is the con-
formal field theory (CFT) and its supersymmetric extension (SCFT) for the Superstrings. In
particular the dynamics of Superstrings compactified in some manifold is described by a two-
dimensional superconformal theory called Non Linear Sigma Model (NLSM).
Type IIA and IIB Supertrings compactified on M1,3 × T 2 × K3 lead to interesting NLSMs,
that are N = (4, 4) superconformal theories on the K3 surface. Because of the difficulty to
study string theories for a generic K3 surface, it is useful to study it for some special examples
of NLSMs on K3. In particular toroidal orbifolds T 4/G, where G is a finite group, are special
points of moduli space of K3 in which it is possible to obtain exact results (spectrum, boundary
states, symmetries...) for string applications. The drawback of these special models is that they
are rather special, so they might not be well-suited to study the typical proprieties of a generic
model.
So far the study focused on conformal theories on cyclic orbifolds or non-abelian orbifolds target
spaces constructed through groups G that act geometrically on the torus T 4. In order to closely
approach to more generic model, in this thesis we will concentrate on the study of NLSMs on
toroidal orbifolds constructed by groups G with non-geometric action, i.e. those that do not
descend from symmetries of T 4 space.

In the first chapter we introduce the Conformal Symmetry in a generic D-dimensional space,
and we analyse more specifically its main proprieties on D = 2 dimensions.

In the second chapter we describe the Bosonic String Theory as a classical field theory, its
symmetries and its Quantization through the different canonical, Lightcone and path integral
formalisms.

In the third chapter we solve the failure of Bosonic String Theory introducing the Supersymme-
try into the string theory through the Ramond-Neveu-Schwarz procedure. In particular we study
N = 1, 2, 4 superconformal theories.

In the fourth chapter we explore the principal schemes of compactification in String Theory. We
give the first definitions of Calabi-Yau manifolds and K3 surfaces. We also provide the construc-
tion of Moduli Space of complex structures, Einstein metrics and NLSMs on K3 surfaces.

In the fifth chapter we describe the Orbifolds technique to construct new conformal theories and
its consequences on the Hilbert space, where we are forced to introduce new sectors, Twisted, for
the theory to be consistent. In order to study the spectrum of these theories, we introduce new
functions as the Elliptic and Twining Genus. We compute explicitly them for the model T 4/2.A5.



In the last chapter we present the Boundary States formalism to describe the D-branes on
orbifold target spaces. First, we perform the calculation on T 4/2.A4, where 2.A4 is the subgroup
of 2.A5 containing only elements that act geometrically on T 4. Afterwards we proceed with a
symmetrization of the resulting branes with the action of non-geometric elements of 2.A5.





Chapter 1

The Conformal Group

In this first chapter we would like to provide a brief introduction to conformal symmetry in arbi-
trary dimension, then focus our attention on CFT in two dimensions because it turns out to be of
great interest to study world-sheet of both open and closed string. In this latter case there exists
an infinite variety of locally conformal coordinate transformations: holomorphic maps from the
complex plane into itself. Among this maps, we can identify 6 global parameters through which
it is possible to define a conformal group, made of one-to-one mappings of the complex plane
into itself. [1] [2] [3] [4]

1.1 The Conformal Symmetry
Let us consider the metric tensor gµν in a d-dimensional space-time. Let’s define conformal
transformation of the coordinates as a invertible map xµ → x′µ such that:

g′µν(x′) = Λ(x)gµν(x).

The set of this transformations forms the conformal group, and setting Λ(x) = 1 we see that, for
flat space-time, it has the Poincarè group as its subgroup.
Let’s consider the infinitesimal transformation:

xµ → x′µ = xµ + εµ(x), (1.1)

through which the metric changes, at first order, as follows:

g′µν =⇒ gµν − (∂µεν + ∂νεµ) .

In order to (1.1) be conformal the variation of the metric must be linear in the metric itself:

(∂µεν + ∂νεµ) = f(x)gµν , (1.2)

We assume that a conformal transformation is an infinitesimal deformation of the standard metric
ηµν , Euclidean or Minkowskian; after some manipulations we find

(2− d)∂µ∂νf(x) = ηµν∂
2f(x)

contracting with ηµν
(d− 1)∂2f(x) = 0.
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Now we can derive the explicit form of transformations in d dimensions.
If d = 1, there are no constraints on the function f(x), therefore any smooth map is a conformal
map.
If d ≥ 3 we have the condition ∂µ∂νf(x) = 0, which tells us that f(x) is a multilinear function
of the form f(x) = A+Bµx

µ. This implies that ∂µ∂νερ = const, which means that εµ is at most
quadratic in the coordinates, in particular we can write the following ansatz:

εµ = aµ + bµνx
ν + cµνρx

νxρ cµνρ = cµρν .

Analyzing the conformal constraints for the various terms we obtain the following splitting of
transformations:

i) The constant term εµ = aµ corresponds to constant translation.

ii) The linear term εµ = mµνx
ν , where mµν = −mνµ, corresponds to infinitesimal rigid rota-

tion.

iii) The linear term εµ = λxµ, coming from the part of pure trace on bµν , corresponds to
infinitesimal scale transformation.

iv) The quadratic term εµ = cµνρx
νxρ corresponds to special conformal transformation (SCT).

Through exponentiations we find the finite transformations summarized as follows:

Translation x′µ = xµ + aµ

Dilatation x′µ = αxµ

Rigid rotation x′µ = Mµ
ν x

ν

SCT x′µ = xµ−bµx2

1−2b·x+b2x2

The corresponding infinitesimal generators on the coordinates space are:

Translation Pµ = −i∂µ
Dilatation D = −ixµ∂µ
Rotation Lµν = i (xµ∂ν − xν∂µ)
SCT Kµ = −i

(
2xµxν∂ν − x2∂µ

)
satisfying the following commutation relations:

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i (ηµνD − Lµν)
[Kρ, Lµν ] = i (ηρµKν − ηρνKµ)
[Pρ, Lµν ] = i (ηρµPν − ηρνPµ)
[Lµν , Lρσ] = i (ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ) .

(1.3)



Furthermore, it is possible to simplify these rules, therefore we define the new generators:

Jµν = Lµν J−1µ = 1
2 (Pµ −Kµ)

J−10 = D J0µ = 1
2 (Pµ +Kµ)

Which obey to the so(d+ 1, 1) (respectively so(d− 1, 2)) commutation relations:

[Jab, Jcd] = i (ηadJbc + ηbcJad − ηacJbd − ηbdJac) ,

where a, b, c, d = −1, 0, 1, ..., d and ηab = diag (−1, 1, 1, ...., 1) (otherwise an additional component
is negative), if space-time is Euclidean (respectively Minkowskian). This latter relation shows the
isomorphism between so(d+ 1, 1), with 1

2 (d+ 2) (d+ 1) parameters, and the conformal algebra
on d dimensions.
For the case of dimensions d = p+ q ≥ 3, the conformal group of Rp,q is SO(p+ 1, q + 1).
If d = 2 the conformal invariance plays a special role: there exists an infinite dimensional group
of coordinates transformations that, although not everywhere well-defined, are locally conformal.
Let us consider the infinitesimal conformal condition (1.1), for d = 2 and ηµν = δµν we find the
Cauchy-Riemann conditions:

(i) ∂1ε1 = ∂2ε2

(ii) ∂1ε2 = −∂2ε1

Writing ε(z) = ε1 + iε2 and ε(z) = ε1 − iε2, and using the complex coordinates z = x1 + ix2
and z = x1 − ix2, the Cauchy-Riemann conditions in two dimensions define holomorphic and
anti-holomorphic analytic transformations on the complex plane C2:

z → f(z) z → f(z).

This implies that the metric tensor transforms under these maps as:

ds2 = dzdz → df

dz

df

dz
dzdz = Λ(z)dzdz.

In order to calculate the algebra of the group, we introduce a complete basis for these analytic
infinitesimal functions:

z −→ z′ = z + εn(z) z −→ z′ = z + εn(z) (1.4)

where:
εn(z) = −εnzn+1 εn(z) = −εnzn+1.

Therefore the corresponding infinitesimal generators are:

ln = −zn+1∂z ln = −zn+1∂z (1.5)

which satisfy the following commutation relations:

[lm, ln] = (m− n)lm+n[
lm, ln

]
= (m− n)lm+n[

ln, lm
]

= 0.
(1.6)



Each of the first two relations define one copy of the so-called Witt algebra: the full algebra is
the direct sum of two copies of the Witt algebra commuting with each other. Formally we could
regard z and z as independent variables and the transformations (1.4) as maps on C2.
Since n ∈ Z in (1.5), the number of independent infinitesimal conformal transformations is
infinite: this property is special in two dimensions and leads to important consequences.
It is important to note that not all the algebra generators are globally well-defined: so far we
have required only local constraints. Holomorphic conformal transformations are generated by
vector fields:

v(z) = −
∑
n

anln =
∑
n

anz
n+1∂z,

requiring v(z) be non-singular in the limit z → 0 allows us an 6= 0 only for n ≥ −1. In order to
analyze the behavior of v(z) at z →∞, let us take the change of variables z → −1/w:

v(z) =
∑
n

an

(
− 1
w

)n+1(
∂z

∂w

)−1
∂w =

∑
n

an

(
− 1
w

)n+1
∂w

Non-singularity as z → ∞ (w → 0) allows us an 6= 0 only for n ≤ 1. Finally, only conformal
transformations generated by l−1, l0, l1 are globally well defined. The same considerations can
be applied to the anti-holomorphic part.
The (Global) Conformal Group in two dimensions is the group of conformal transformations
well-defined and invertible on the Riemann sphere. This is generated by the globally defined
infinitesimal generators {l−1, l0, l1}

⋃{
l−1, l0, l1

}
. On this set we can identify this generators as:

l−1, l−1 Translations

l0 + l0 Dilatations

i(l0 − l0) Rotations

l1, l1 SCT

(1.7)

The finite form of this transformations is:

z −→ f(z) = az + b

cz + d

z −→ f(z) = az + b

cz + d

(1.8)

where a, b, c, d ∈ C such that ad−bc = 1. In the end, the conformal group of the Riemann sphere
is SL(2,C)/Z2 ∼ SO(3, 1).
The distinction encountered here between global and local conformal groups is unique to two
dimensions, in higher dimensions there exists only a global conformal group.
The Witt algebra admits a central extension, called Virasoro algebra with central charge c, whose
generators Ln obey:

[Lm, Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n,0. (1.9)

Of course, a similar analysis can be carried out for the generators Ln.
For m,n = −1, 0, 1, L−1 generates translations, L0 generates dilations and rotations, and L1
generates Special Conformal Transformations: therefore also {L−1, L0, L1} are generators of
SL(2,C)/Z2 transformations.



1.2 Conformal invariance in Field Theory
A classical field theory has conformal invariance if its action S is invariant under conformal
transformation. Except for some pathological case, the theories possessing scalar invariance and
Poincarè-invariance are conformally invariant. This last fact is important when we want to realize
the conformal invariance at quantum level. In fact, even when we start from a quantum theory
with a conformally invariant bare action, in the renormalized theory we are usually forced to
introduce a scale that breaks the conformal symmetry, except for particular values of parameters,
which constitute a renormalization group fixed point.
Les us first describe how classical fields transform under an element of the conformal group,
after which we analyze its behavior at quantum level. Let Φ(x) be a generic field defined on the
space-time with coordinates {xµ}. Let us denote by Tg the generators of the conformal algebra
on the fields space and by ωg the corresponding infinitesimal parameter. A multicomponent field
Φ(x) transforms as:

Φ′(x′) = (1− iωgTg) Φ(x).

Besides the action of the Tg generators on the field, we must include the transformation of the
argument. In order to find the form of this generators we start by studying the subgroup that
leaves the origin x = 0 invariant. This subgroup is generated by rotation, dilatation and SCT.
We denote by Sµν , ∆̃, κµ the values of Lµν , D,Kµ at x = 0: using the commutation rules (1.3)
and the Baker-Campbell-Hausdorff formula: 1

eix
ρPρLµνe

−ixρPρ = Sµν − xµPν + xνPµ

eix
ρPρDe−ix

ρPρ = D + xνPν

eix
ρPρKµe

−ixρPρ = Kµ + 2xµ∆̃− 2xνLµν + 2xµ(xνPν)− x2Pµ

from which we arrive finally at the following extra transformation rules:

PµΦ(x) = −i∂µΦ(x)
LµνΦ(x) = i (xµ∂ν − xν∂µ) Φ(x) + SµνΦ(x)
DΦ(x) =

(
−ixν∂ν + ∆̃

)
Φ(x)

KµΦ(x) =
[
κµ + 2xµ∆̃− xνSµν − 2ixµxν∂ν + ix2∂µ

]
Φ(x)

If we require that Φ(x) belongs to an irreducible representation of the Lorentz group, then every
matrix commuting with Sµν must be a multiple of the identity, in particular ∆̃, this enforce the
matrices Kµ to vanish. Therefore ∆̃ = −i∆, where ∆ is the scaling of field, and its Eigenvalues
are not real, then ∆̃ is not hermitian and its representation is not unitary.
Now we can define the finite transformations rules of fields. The case of a spinless field (Sµν = 0)
is particularly interesting, it transforms under conformal transformations according to:

Φ(x) → Φ′(x′) =
∣∣∣∂x′
∂x

∣∣∣−∆/d
Φ(x) (1.10)

where the Jacobian is related to scalar factor through
∣∣∣∂x′∂x ∣∣∣ = Λ(x)−d/2, and the field is called

quasi-primary .

1The Baker-Campbell-Hausdorff formula is e−ABeA = B + [B;A] + 1
2 [[B;A] ; ] + ....

This expression guarantees that the left-hand side is valued in the conformal algebra.



We know that under a arbitrary infinitesimal coordinates transformation xµ −→ xµ + εµ, the
matter action changes as:

δS =
∫
ddxTµν∂µεν = 1

2

∫
ddxTµν (∂µεν + ∂νεµ) ,

where the symmetric tensor Tµν is the energy-momentum tensor. If we consider the conformal
infinitesimal transformation (1.2), then the previous relation becomes:

δS = 1
d

∫
ddxTµµ ∂ρε

ρ.

From this last form we infer that a theory with traceless energy-momentum tensor must be a
theory conformally invariant, but the converse is not necessary true.
Under rather general condition in d = 2 scalar invariant theories owns traceless energy-momentum
tensors, and the whole conformal invariance follows from Poincarè and scalar invariances. [5]
Now we specialize our treatment to bidimensional case. Let’s start with an Euclidean two di-
mensional space R2 and perform the complexification R2 → C2 previously described, so z and z
are considered independent complex variables and the fields φ of our theory can be written as:

φ(x0, x1) → φ(z, z).

Fields depending only on z, i.e. φ(z), are called chiral fields or holomorphic, and fields φ(z)
depending only on z are called anti-chiral fields or anti-holomorphic.
According to (1.10), a field is called primary of conformal dimension

(
h, h

)
if it transforms as:

φ(z, z) → φ′(z, z) =
(
∂f

∂z

)h(
∂f

∂z

)h
φ(f(z), f(z)), (1.11)

under a conformal transformation. If the (1.11) holds only for global transformations, i.e.
f(z) ∈ SL(2,C)/Z2, then φ is called quasi-primary field.
Not all fields in a CFT are primary or quasi-primary: the other fields are called secondary fields.
Since the algebra of infinitesimal conformal transformations in two dimensions is infinite di-
mensional, and the energy-momentum tensor encodes the behaviour of the theory under these
transformations, it is possible to study such a conformal theory without knowing the explicit
form of its action, but only the energy-momentum tensor.
Using the fact that the energy-momentum tensor for a conformal field theory is traceless and
its translational invariance, i.e. ∂µTµν = 0, we conclude that in two dimensional CFTs with
Euclidean signature on complex coordinate its only non-vanishing components are a chiral and
an anti-chiral field:

Tzz(z, z) = T (z) Tzz(z, z) = T (z).

1.3 Radial quantization
On the previous sections we have introduced the fundamental concepts of conformal invariance
at the classical level. Now we would study the consequences of this invariance at the quantum
level through the construction of a operatorial formalism.
In general the operatorial formalism distinguishes a time direction from a space direction: this
is natural in a Minkowskian space-time but not for a Euclidean space-time. So let us consider
our theory in an infinite space-time cylinder S1 × R, where R parametrizes the Euclidean time
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Figure 1.1: Mapping from the cylinder to the complex plane.

direction t, whereas the space direction x runs along a circle S1, obtained by identifying the
endpoints of a segment [0;L]. Through an analytic continuation of the space, we introduce a
complex coordinate:

ξ = t+ ix. (1.12)
Now we map every point of cylinder to the complex plane:

z = e2πξ/L. (1.13)

We note that the positions at t→ −∞ are the origin z = 0 in the plane, while those at t→ +∞
are the point at infinity on the Riemann sphere.
Following this map, the time translations t → t + a on the cylinder are mapped to complex

dilation z → e2πa/Lz on the plane, and the space translations x→ x+ b are mapped to rotations
z → e2πib/Lz. Since in QM the generator of time translations is the Hamiltonian which in the
present case corresponds to the dilation operator, and the generator for space translations is the
momentum operator corresponding to rotations, we find that:

H = L0 + L0 P = i
(
L0 − L0

)
.

Let us consider the Hilbert space of asymptotic states at t → −∞, that corresponds to the
point z = 0 on the plane. In order to construct a CFT on this space, it is necessary to assume
the existence of a vacuum state on the Hilbert space |0〉 upon which be possible to build the
whole space by the application of creation operators. Within radial quantization the different
asymptotic "in" state are created acting on |0〉 with the fields in the t→ −∞ limit:

|φin〉 = lim
z,z→0

φ(z, z)|0〉.

In order to define a bilinear product on this Hilbert space we must to introduce "out" states
through the action of Hermitian conjugation on conformal fields. In the Minkowski space-time
the Hermitian conjugation does not act on the space-time coordinates, but in the Euclidean
space is different since the time τ = it is reversed upon conjugation. In radial quantization this
correspond to the map z → 1/z∗. Then we define:

[φ(z, z)]† = z−2hz−2hφ

(
1
z
,

1
z

)
, (1.14)

where φ(z, z) is a quasi-primary field with conformal weights (h, h). Then:

〈φout|φin〉 = lim
z,z,w,w→0

z−2hz−2h〈0|φ(1/z, 1/z)φ(w,w)|0〉 =

= lim
ξ,ξ→∞

ξ
2h
ξ2h〈0|φ(ξ, ξ)φ(0, 0)|0〉



The conformal field φ(z, z) having conformal weights (h, h) may be written through its Laurent
expansion around z0 = z0 = 0 as follows:

φ(z, z) =
∑
m∈Z

∑
n∈Z

z−m−hz−n−hφm,n (1.15)

where
φm,n = 1

2πi

∫
dzzm+h−1 1

2πi

∫
dzzn+h−1φ(z, z). (1.16)

The quantisation of this field is achieved by promoting the Laurent modes φm,n to operators.
Equating the hermitian conjugation on the real surface:

φ(z, z)† =
∑
n∈Z

z−m−hz−n−hφ†m,n

with the definition (1.14):

φ(z, z)† =
∑
n∈Z

z−m−hz−n−hφ−m,−n

we find that φ†m,n = φ−m,−n. Then the vacuum state must respect the following condition:

φm,n|0〉 = 0 if
(
m > −h, n > −h

)
,

and the definitions of asymptotic in and out-state can be simplified in the following way:

|φ〉 = lim
z,z→0

φ(z, z)|0〉 = φ−h,−h|0〉

〈φ| = lim
1
z ,

1
z
→0

(
1
z

)2h(1
z

)2h
〈0|φ(1

z
,

1
z

) = 〈0|φ+h,+h.

The convenience of CFTs in two dimension is the decoupling between the holomorphic and anti-
holomorphic parts that allows us to treat them separately.
From the Noether’s theorem applied to conformal symmetry, we can define a conserved current
Jµ = Tµνε

ν and a conserved charge Q at fixed time that within the radial quantization becomes
defined at constant radius, i.e. |z| = cost:

Q = 1
2πi

∮
C

(
dzT (z)ε(z) + dzT (z)ε(z)

)
, (1.17)

where the contour integral is performed over a circle of fixed radius and the sign conventions are
taken positive in clokwise sense.
This conserved charge is the generator of symmetry transformations for a generic operator, in
particular for the field φ(w,w) the infinitesimal transformations take the form:

δεεφ(w,w) = 1
2πi

∮
C

(
dz [T (z)ε(z);φ(w,w)] + dz

[
T (z)ε(z);φ(w,w)

])
. (1.18)

The ambiguity in this latter expression is to decide whether w and w are inside or outside the
contour C. From QFT we know that correlation functions are only defined as a time ordered
product, therefore, after the change of coordinates (1.13), in a CFT the time ordering becomes
Radial Ordering induced through the operator R:

Rφ1(z)φ2(w) =
{

φ1(z)φ2(w) |w| < |z|
±φ2(w)φ1(z) |w| > |z|

(1.19)
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Figure 1.2: Sum on contour integrals.

the signs ± are respectively for bosonic and fermionic operators. With this definition and the
help of Fig.(1.2) we have to interpret the previous integral as:∮

C
dz [φ1(z), φ2(w)] =

∮
|z|>|w|

dzφ1(z)φ2(w)−
∮
|z|<|w|

dzφ2(w)φ1(z) =∮
C(w)

dzR (φ1(z)φ2(w)) .

Thus we can express the infinitesimal transformation of φ(w,w) through:

δε,εφ(w,w) = 1
2πi

∮
C(w)

dzε(z)R (T (z)φ(w,w)) + anti− chiral.

Comparig this result with the transformation (1.10) of a primary-field, taking ε = 0 and em-
ploying the Cauchy-Riemann identities we obtain the following relation between the energy-
momentum tensor of the theory and this primary-field:

R (T (z)φ(w,w)) = h

(z − w)2φ(w,w) + 1
z − w

∂wφ(w,w) + finite terms (1.20)

This expression is called Operator Product Expansion (OPE) between these two fields, which
defines an algebraic product structure on the space of quantum fields. Through this new relation
we can give an alternative definition of a primary field with conformal dimension (h, h), like a field
whose OPE with the energy-momentum tensor is given by (1.20), and an analogous expression
for the anti-holomorphic part.
The OPE of the chiral energy-momentum tensor with itself reads:

T (z)T (w) = c/2
(z − w)4 + 2T (w)

(z − w)2 + ∂wT (w)
z − w

+ finite terms

A similar result holds for the anti-chiral part T (z), while the OPE T (z)T (w) contains only non-
singular terms. Computing the infinitesimal transformation of the energy-momentum tensor
through this latter result we obtain:

δεT (z) = −2∂εT (z)− ε(z)∂T (z)− c

12∂
3ε.

The last term is not present at the classical level, where c = 0, but appears when we consider
the quantum theory and the quantity c 6= 0 represents the so called Conformal Anomaly. We
conclude that T (z) is a quasi-primary field of conformal weight 2.
The exponentiation of this infinitesimal variation to a finite transformation z → w(z) leads to:

T ′(w) =
(
dw

dz

)−2 [
T (z)− c

12 {w; z}
]
, (1.21)



where we have introduced the Schwarzian derivative:

{w; z} = (d3w/dz3)
dw/dz

− 3
2

(
d2w/dz2

dw/dz

)2

It is convenient to define the Laurent expansion of energy-momentum tensor in the following
way:

T (z) =
∑
n∈Z

z−n−2Ln Ln = 1
2πi

∮
dzzn+1T (z)

T (z) =
∑
n∈Z

z−n−2Ln Ln = 1
2πi

∮
dzzn+1T (z)

(1.22)

If we use this expression for the conserved charge and choose a particular conformal transforma-
tion ε(z) = −

∑
n εnz

n+1 we obtain:

Q = −
∑
n∈Z

εnLn

namely Ln and Ln are the generators of local conformal transformations on the Hilbert space,
just like ln and ln on the function space. They generate the Virasoro algebra with central charge
c, and the same is true for the anti-holomorphic counterpart. It can be also shown that the
holomorphic and anti-holomorphic algebras commute.[

Lm;Ln
]

= 0

In particular L0, L1, L−1 generate sl(2, C), the maximal closed finite subalgebra of Virasoro, and
similarly the corresponding anti-holomorphic.

1.4 The CFT Hilbert space
In this section we want to build a representation of the conformal group on the Hilbert space of
a CFT.
Let be |0〉 the vacuum state: it has to be invariant under global conformal transformations.
This implies that the state be annihilated by L−1, L0, L1 operators and their anti-holomorphic
counterpart. This, in turn, can be obtained through the requirement that T (z) and T (z) are
well-defined as z, z → 0:

Ln|0〉 = 0 and Ln|0〉 = 0 n ≥ −1
〈0|Lm = 0 and 〈0|Lm = 0 m ≤ 1.

On the other hand, the states Ln|0〉 with n < −1 are non-trivial states of Hilbert space.
When primary-fields act on the vacuum state create asymptotic states, labelled by conformal
wheigt (h, h) of field:

|h, h〉 = φ(0, 0)|0〉.

This state is called Highest Weight State. This correspondence 1−1 between states and operator
is called state-operator correspondence.



From the OPE between the energy-momentum tensor and the primary field we find the following
commutation rules:

[Ln, φ(w,w)] = 1
2πi

∮
w

dzzn+1T (z)φ(w,w) = h(n+ 1)wnφ(w,w) + wn+1∂φ(w,w)[
Ln, φ(w,w)

]
= 1

2πi

∮
w

dzzn+1T (z)φ(w,w) = h(n+ 1)wnφ(w,w) + wn+1∂φ(w,w)

Applying these relations to asymptotic state, we deduce that |h, h〉 is eigenstate of Hamiltonian
H ∝ L0 + L0 with eigenvalue (h+ h):

L0|h, h〉 = h|h, h〉 L0|h, h〉 = h|h, h〉,

also:
Ln|h, h〉 = 0 and Ln|h, h〉 = 0 ∀n > 0.

If we expand the holomorphic field in modes, according to (1.15), we obtain:

[Ln, φm] = [n(h− 1)−m]φn+m, (1.23)

in particular
[L0, φm] = −mφm.

Therefore φm act as raising and lowering operators for the eigenstates of L0. Each application
of φ−m (m > 0) increases the conformal dimension of the state by m. Also Lm (m > 0) acts on
the same way, i.e.:

[L0, L−m] = mL−m.

In order to construct the whole Hibert space, we act with L−m on the Highest Weight State, so
we obtain the excited states:

L−k1L−k2 ...L−kn |h, h〉 with k1 ≥ k2 ≥ ... ≥ kn

called descendants of asymptotic state |h, h〉. The order of ki is conventional. We can label these
states by their eigenvalues respect to L0, in particular the eingenvalue of previous descendant
state is:

h′ = h+ k1 + k2 + ...+ kn = h+N

and N is called the level of the descendant. The number of states with level N is simply the
partitions number p(N) of integer N .
Since we have to construct the descend states of asymptotic state |h〉 through application of
conformal algebra generators Lm, this set of states is a subset of Hilbert space closed under
Virasoro algebra called Verma module Vh,c, thus forms a its representation.
In a Verma module, depending on the combination (h, c), there can be states of vanishing or
negative norm. For Unitary theories, the later should be absent and vanishing norm states should
be removed.
In order to find the null states we define for each level N a matrixMN (h, c), where the entries are
defined as the product of states in the Verma module at fixed level, and we study its determinant,
called Kac-determinant. We discover that if the Kac-determinant at any lever is negative, then
there exist negative norm states at that level and the representation of Virasoro algebra is not
unitary, while if the Kac-determinant is greater or equal to zero we find unitary representations
under certain conditions on the parameters (h, c).
A Unitary CFT with a finite number of Virasoro algebra representations is called Rational CFTs



or RCFTs.
Application of CFTs to statistical models don’t require the Unitarity as necessary condition.
Therefore we can to build theories whit central charges c and a finite set of highest weights: this
theories are called minimal models.

1.4.1 Correlation functions
At the quantum level, the correlation functions are the main object of study. Thus, let’s define
correlation function as the vacuum expectation values of the R-ordered products of field opera-
tors. Since we are considering theories with conformal invariance, whose fields transform suitably
under these transformations, the correlation functions of the theory have to be invariant under
SL(2,C),i.e. the conformal global group.
Let be given the n-points correlation function between n primary-fields expressed in terms of
holomorphic and anti-holomorphic coordinates:

G(n)(zi, z1) = 〈R (φ1(z1, z1)φ2(z2, z2)...φn(zn, zn))〉.

Under the conformal map z → w(z), the conformal transformations (1.10) for these primary-fields
with conformal dimension (hi, hi), impose that:

〈R (φ1(w1, w1)φ2(w2, w2)...φn(wn, wn))〉 =
n∏
i=1

(
dw

dz

)−hi
w=wi

(
dw

dz

)−hi
w=wi

〈R (φ1(z1, z1)φ2(z2, z2)...φn(zn, zn))〉.

Let’s focus our attention on the two-point function. The translations and rotation invariances
impose that it must depend on the modulus of the difference of the coordinates:

〈φ1(z, z)φ2(w,w)〉 = C12 (z − w)−(h1+h2) (z − w)−(h1+h2)
.

The invariance under special conformal transformations require that h = h1 = h2 and h = h1 =
h2:

〈φ1(z, z)φ2(w,w)〉 =
{

C12

(z−w)2h(z−w)2h
if(h1, h1) = (h2, h2)

0 if(h1, h1) 6= (h2, h2)
(1.24)

Therefore SL(2,C)/Z2 conformal symmetry fixes the two-point function of two quasi-primary
field up to a constant that can be rescaled by field redefinition, and tells us that the fields are
correlated if and only if they have the same conformal dimension.
Let us now consider the three-point function. The SL(2,C)/Z2 conformal symmetry fixes its
form up to a constant to:

〈φ1(z1, z1)φ2(z2, z2)φ3(z3, z3)〉 =
C123

zh1+h2−h3
12 zh2+h3−h1

23 zh1+h3−h2
13

· 1
zh1+h2−h3

12 zh2+h3−h1
23 zh1+h3−h2

13

,
(1.25)

where zij = (zi− zj) and zij = (zi− zj), and the structure constants C123 depend of the theory.
The n-points correlation functions, with n ≥ 4, can be written in terms of three independent
anharmonic ratio η:

η = zijzkl
zikzjl

zij = zi − zj .



The explicit form of these dependence is completely fixed by conformal invariance in terms of
the 3-points functions, that encode the whole dynamics.
The generic form of the two and three-point functions allows us to extract the general form of
OPE between two quasi-primary fields in terms of other quasi-primary fields.
Let us consider a primary-field φ(w) and its descendant fields obtained by the action of Virasoro
generators L−nφ(w), with n > 0. Those are just the fields appearing in the OPE :

T (z)φ(w) =
∑
n≥0

(z − w)n−2
L−nφ(w).

Let us focus on the holomorphic fields φ(w) of the theory and let us introduce the Normal
Ordering prescription on the product of two fields:

N (φ1φ2) (w) =: φ1φ2 : (w),

which places the annihilation operators on the right. If the conformal dimension of φ(w) is
integer for the first values of n we have the following descendants:

L0φ(w) = hφ(w) L−1φ(w) = ∂φ(w) L−2φ(w) = N(φT )(w).

Using the OPE just defined we can to write the correlator of a descendant field L−nφ with other
primary-fields applying a differential operator in the correlator involving the primary-field φ(w)
in the following way:

〈L−nφ(w)φ1(w1)...φN (wN )〉 = L−n〈φ(w)φ1(w1)...φN (wN )〉

with

L−n =
N∑
i=1

(
(n− 1)hi
(wi − w)n −

1
(wi − w)n−1 ∂wi

)
.

Another way to transfer the conformal symmetry to quantum level is to apply the path-integral
quantization. Due to the fact that the local symmetry makes equivalent infinity integrational
path, divergent integrals appear. In order to solve this problem we introduce on the theory a
gauge fixing that kills the equivalents paths but it breaks action invariance. If the variation
of the gauged action is a linear combination of fields, then the classical-quantum symmetry
transport theorem assures us conformal symmetry conservation at quantum level whether the
Ward identities are satisfied:

∂µ〈Tµν X〉 = −
∑
i

δ(x− xi)
∂

∂xνi
〈X〉

〈(T ρν − T νρ)X〉 = −i
∑
i

δ(x− xi)Sνρi 〈X〉

〈TµµX〉 = −
∑
i

δ(x− xi)∆i〈X〉

(1.26)

where X is the product of n local fields at the coordinates xi, i = 1, ...n.

1.5 Examples of CFTs
In the previous section we introduced CFTs through operator algebra and OPEs for the fields of
theory, now we want to establish a link with the usual Lagrangian formalism of quantum field
theory, that naturally appear in string theories. Therefore in this section we will treat some
simple examples of CFTs in terms of Lagrangian formalism.



1.5.1 The free Boson
Let’s start with a real massless scalar field φ(x, y) defined in a bidimensional space with Minkowskian
signature. The action for such a theory takes the following form:

S = 1
2g
∫
d2x∂µφ∂

µφ,

where g is some normalisation constant. Since in this theory there is no mass term setting a
scale, we expect this action to be conformally invariant.
In order to simplify our treatment, we consider the map to complex coordinates (z, z) previously
defined. The action in the new coordinates take the form:

S = 1
2g
∫
dzdz∂φ · ∂φ, (1.27)

where we defined ∂ = ∂z and ∂ = ∂z. The equation of motion for this action is obtained by
varying S respect to the field:

∂∂φ(z, z) = 0.

This expression tell us that:

j(z) = i∂φ(z, z) is a chiral field
j(z) = i∂φ(z, z) is a anti-chiral field.

Acting with a conformal transformation z, z → w(z), w(z) on the field φ(z, z) we notice that
the action is invariant iff the conformal dimension of φ(z, z) is (h, h) = (0, 0), then the fields
j(z), j(z) are primary-fields with conformal dimension respectively (1, 0) and (0, 1).
Remembering that the propagator is the Green function of the equation of motion of the theory,
we compute it for the previous action of the free boson and we obtain the following solution:

K(z, z, w,w) = 〈φ(z, z)φ(w,w)〉 = − 1
4πg ln|z − w|

2 + const (1.28)

Now we consider only the holomorphic part of (1.28) and, differentiating it respect to z and w,
we find:

〈j(z)j(w)〉 = 1
4πg

1
(z − w)2 .

This can be interpreted as the OPE of field j(z) with itself:

j(z)j(w) ∼ 1
4πg

1
(z − w)2 + ... (1.29)

A similar expression can be found for the anti-chiral field j(z). The (1.29) reflect the bosonic
character of field: the exchange of two factors leaves the correlator invariant.
We define the energy-momentum tensor by varying the action (1.27) respect to metric tensor
and we find the following result:

Tµν = ∂L
∂∂µφ

∂νφ− ηµνL = g

(
∂µφ∂νφ−

1
2ηµν∂αφ∂

αφ

)
that in complex coordinates has holomorphic part:

T (z) := −2πTzz = −2πg : ∂φ(z)∂φ(z) : .



Applying the Wick theorem to OPE between T (z) and ∂φ(w):

T (z)∂φ(w) = −2πg : ∂φ(z)∂φ(z) : ∂φ(w) =

= −4πg : ∂φ(z)∂φ(z) : ∂φ(w) ∼ ∂φ(z)
(z − w)2 + ...

∼ ∂φ(w)
(z − w)2 + ∂2

wφ(w)
z − w

+ ...

(1.30)

where in the last line we have expanded ∂φ(z) around to w.
The (1.30) shows that ∂φ(z), hence j(z), is a primary-field having conformal dimension (1, 0).
Using the Wick theorem also to compute the OPE of T (z) with itself:

T (z)T (w) = 4π2g2 : ∂φ(z)∂φ(z) :: ∂φ(w)∂φ(w) :

∼ 1/2
(z − w)4 − 4πg : ∂φ(z)∂φ(w) :

(z − w)2 + ...

∼ 1/2
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
(z − w) + ...

Then T (z) is not a primary field because of the anomalous first term, moreover this tell us that
the CFT of the free boson has central charge c = 1, i.e. the modes of T (z), and their correspon-
dent counterpart, generate the Virasoro algebra with this central charge.

1.5.2 Bosonic quantization
The map (1.13) assures us that the surfaces plane and cylinder are related by a conformal trans-
formation. Exploiting this link, we would like quantize the free bosonic system on the cylinder.
The bosonic field φ(x, t) defined on the cylinder of circumference L respect the periodicity pro-
priety:

φ(x, t) = φ(x+ L, t),
thus the expansion on Fourier modes of field is:

φ(x, t) =
∑
n

e2πinx/Lφn(t),

where the coefficients are:
φn(t) = 1

L

∫
dxe−2πinx/Lφ(x, t).

The Lagrangian in terms of these coefficients is:

L = 1
2gL

∑
n

[
φ̇nφ̇−n −

(
2πn

2

)2
φnφ−n

]
. (1.31)

The momentum conjugate to φn is:

πn = gLφ̇−n [φm;πn] = iδmn

and the Hamiltonian is:

H = 1
2gL

∑
n

[
πnπ−n + (2πng)2φnφ−n

]



We notice that φ†n = φ−n and π†n = π−n. H is the sum of decoupled harmonic oscillators with
frequencies ωn = 2π|n|/L.
Through the usual procedure, we consider the modes of field and momentum as operator and
define the usual creation and annihilation operators:

an = 1√
4πg

{
−i (2πg|n|φn + iπn) n > 0
i (2πg|n|φn − iπn) n < 0

and

an = 1√
4πg

{
−i (2πg|n|φ−n + iπ−n) n > 0
i (2πg|n|φ−n − iπ−n) n < 0

with the following commutation rules:

[an; am] = [an; am] = nδnm [an; am] = 0.

The zero mode needs to be treated separately.
The operatorial form of Hamiltonian is:

H = 1
2gLπ

2
0 + 2π

L

∑
n 6=0

(a−nan + a−na−n) .

The commutator
[H; a−m] = 2π

L
ma−m.

tell us that the operator a−m (m > 0) applied on the eigenstates of H with eigenvalue E produce
new eigenstates of H with energy E + 2πm/L. We write the modes expansion of field, making
clear the time dependence, in terms of constant operators:

φ(x, t) = φ0 + 1
gL

π0t+ i√
4πg

∑
n 6=0

1
n

(
ane

2πin(x−t)/L − ane2πin(x+t)/L
)

Performing a Wick rotation t → −iτ and using the conformal coordinates z = e2π(τ−ix)/L and
z = e2π(τ+ix)/L we obtain:

φ(z, z) = φ0 −
i

4πgπ0ln(zz) + i√
4πg

∑
n 6=0

1
n

(
anz
−n + anz

−n) .
φ(z, z) is not a primary-field, but ∂φ and ∂φ are. We write the expansion of holomorphic field:

j(z) = i∂φ(z) = 1√
4πg

∑
n

anz
−n−1 (1.32)

where the zero mode is a0 = a0 = π0√
4πg . Another primary-field that can be to build using the

non-conformal field φ(z, z) is the vertex operator :

V (z, z) =: eiαφ(z,z) : .

Through the modes expansion of φ(z), the Fourier expansion of the exponential operators and
the Wick theorem we can compute the OPE of the vertex operator with the energy-momentum



tensor:

T (z)Vα(w,w) = −2πg
∞∑
n=0

(iα)n

n! : ∂φ(z)∂φ(z) :: φ(w,w)n :

∼ − 1
8πg

1
(z − w)2

∞∑
n=2

: φ(w)n−2 : + 1
z − w

∞∑
n=1

(iα)n

n! n : ∂φ(z)φ(w,w)n−1 :

∼ α2

8πg
Vα(w,w)

(z − w)2 + ∂wVα(w,w)
z − w

(1.33)

The OPE with T has exactly the same form. This proves that Vα are primary-field with conformal
dimension

(
hα, hα

)
=
(
α2

8πg ,
α2

8πg

)
.

The action (1.27) is invariant under translations φ(z, z) → φ(z, z) + A. This invariance must
be respected by correlators 〈VαVβ〉, which implies the condition α + β = 0. Remembering the
previous discussion about two-point function of primary-fields, we find:

〈Vα(z, z)V−α(w,w)〉 = 1
(z − w)α2/4πg(z − w)α2/4πg .

We conclude this section building the Hilbert space of the theory. The independence of Hamil-
tonian on φ0 implies that the eigenvalues of π0 are a good quantum number which allows us
to label sets of eigenstates of H. Since π0 commute with all an and an, these operators cannot
change its value, then the Hilbert space will be construct upon a one-parameter family of vacua
|α〉 labelled by their continuous eigenvalues of a0:

an|α〉 = an|α〉 = 0 (n > 0) a0|α〉 = a0|α〉 = α|α〉. (1.34)

The energy-momentum tensor in terms of modes of field is:

T (z) = −2πg : ∂φ∂φ := 1
2
∑

n,m∈Z
z−n−m−2 : anam :

Using its expansion (1.22), we find the following identification between the modes of field with
the modes Ln, Ln:

Ln = 1
2
∑
m∈Z

: an−mam : L0 =
∑
n>0

a−nan + 1
2a

2
0 (1.35)

with n 6= 0, and similarly solutions for the anti-holomorphic counterparts. We have already
explained above that the effect of am on the conformal dimension of the states is the same that
Lm. The conformal dimension of the state |α〉 is α2/2 (setting g = 1/4π), and the states with
higher weight are obtained by acting through the creation operators on the vacua:

an1
−1a

n2
−2...a

n1
−1a

n2
−2...|α〉, (ni, nj ≥ 0) (1.36)

and they are eigenstates of L0, L0 with eigenvalues:

h = 1
2α

2 +
∑
j

jnj h = 1
2α

2 +
∑
j

jnj .

The vacua |α〉 of the theory can be obtained to start by an absolute vacuum |0〉 and acting on
it with the vertex operators |α〉 = Vα(0, 0)|0〉.



1.5.3 Compactified Boson

The invariance of Hamiltonian under translation φ→ φ+ const allows us to restrict the domain
of field variation to a circle with radius R, i.e. the identification:

φ+ 2πR = φ.

This brings two modification to our previous analysis. First, the center of mass π0 cannot longer
assume arbitrary value: in order to the vertex operator Vα be well-defined , its eigenvalues must
be integer multiples of 1/R. Second, the boundary condition take the form:

φ(x+ L, t) = φ(x, t) + 2πmR

where m, called winding number, counts the number of times that φ turn around the cylinder
circumference.
These two considerations lead to following modification of previous mode expansion :

φ(x, t) = φ0 + n

gRL
t+ 2πRm

L
x+ i√

4πg
∑
k 6=0

1
k

(
ake

2πik (x−t)
L − a−ke−2πik (x−t)

L

)
that in terms of complex coordinates becomes:

φ(z, z) = φ0 − i
(

n

4pigR + 1
2mR

)
lnz + i√

4πg
∑
k 6=0

1
k
akz
−k + anti− holomorphic

The holomorphic derivative has the expansion:

i∂φ(z) =
(

n

4πgR + 1
2mR

)
1
z

+ 1√
4πg

∑
k 6=0

akz
−k−1.

Inserting these results into the definition of energy-momentum tensor and writing its mode
expansion, we find the expression of holomorphic and anti-holomorphic zero mode in terms of
modes of field:

L0 =
∑
n>0

a−nan + 2πg
(

n

4πgR + 1
2mR

)2

L0 =
∑
n>0

a−nan + 2πg
(

n

4πgR −
1
2mR

)2
.

The last two terms of the latter results correspond to conformal dimension of possible vacuum
state of the theory:

hm,n = 2πg
(

n

4πgR + 1
2mR

)2
.

These vacuum state can be created through the action of vertex operators Vk, with momentum
quantized on the circle k = n

R , upon the absolute vacuum |0〉. Thus we obtain infinite states of
highest weight labelled by the momentum n and winding number m |n,m〉.



1.5.4 The free Fermions
A second simple example of CFT is given by a free Majorana fermion in two-dimensional
Minkowski space:

S = 1
2g
∫
d2xΨ+γ0γµ∂µΨ

where g is a normalisation constant,
{
γ0; γµ

}
are the bidimensional γ-matrix that satisfy to

Clifford algebra. We perform a Wick rotation and define the new complex coordinates z, z in
the usual way. The two-components spinor Ψ is written in terms of two real fields:

Ψ =
(

ψ(z, z)
ψ(z, z)

)
Ψ = Ψ+γ0,

in terms of which the action becomes:

S = 1
2g
∫
dzdz

(
ψ∂ψ + ψ∂ψ

)
. (1.37)

Through usual variational method we find the equation of motion for the real fields:

∂ψ = ∂ψ = 0

thus we can conclude that ψ(z) is a chiral field and ψ is an anti-chiral field.
Proceeding as for the example of the free boson, we see that the action (1.37) is invariant under
conformal transformations if and only if the fields ψ(z) and ψ(z) are primary with conformal
dimensions respectively

( 1
2 , 0
)
and

(
0, 1

2
)
.

The Green function of the equation of motion of the theory give us the form of propagators for
the fields:

〈ψ(z)ψ(w)〉 = 1
2πg

1
z − w

〈ψ(z)ψ(w)〉 = 1
2πg

1
z − w

from which we deduce the OPE of chiral fermion with itself:

ψ(z)ψ(w) ∼ 1
2πg

1
z − w

. (1.38)

This result reflects the anticommuting character of the field.
The energy-momentum tensor relating to action is:

T zz = 2gψ∂ψ T zz = 2gψ∂ψ T zz = −2gψ∂ψ.

We notice that the energy-momentum tensor is symmetric under the equation of motion. We
focus our attention on the holomorphic component:

T (z) = −2πTzz = −1
2πT

zz = −πg : ψ(z)∂ψ(z) : . (1.39)

Using the Wick theorem we obtain its OPE with the holomorphic fermionic field:

T (z)ψ(w) = −πg : ψ(z)∂ψ(z) : ψ(w)

∼ 1
2
∂ψ(z)
z − w

+ 1
2

ψ(z)
(z − w)2 ∼

1
2

ψ(w)
(z − w)2 + ∂ψ(w)

z − w



that is consistent with the conformal dimension of field ψ. Now we write the OPE of field T (z)
with itself:

T (z)T (w) = π2g2 : ψ(z)∂ψ(z) :: ψ(w)∂ψ(w) :

∼ 1
4

1
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
(z − w)

Again the first terms tell us that the energy-momentum tensor is not a primary-field and the
central charge of the CFT given by a real free fermion is c = 1

2 .

1.5.5 Fermionic quantization
As in the previous bosonic case, now we want to quantize the free fermionic system on the
cylinder.
Let’s consider a cylinder of circumference L, the fermionic character allows us to distinguish
between two periodicity conditions compatible with the action (1.37):

ψ(x+ L, t) = +ψ(x, t) Ramond Sector
ψ(x+ L, t) = −ψ(x, t) Neveu-Schwarz Sector.

(1.40)

We write the real fermionic field through the canonical quantization in terms of creation and
annihilations operators at fixed time t = 0:

ψ(x) =
√

2π
L

∑
k

ψke
2πikx/L (1.41)

with the anti-commutation rule {ψk;ψq} = δk+q,0. In the periodic case (R-sector) the label k on
the modes expansion takes integer values, whereas in the anti-periodic case (NS-sector) it takes
semi-integer values (k ∈ Z + 1

2 ).
The Hamiltonian can be written in terms of fermionic modes:

H =
∑
k>0

ωkψ−kψk + E0 ωk = 2π|k|
L

E0 is the vacuum energy of the system. The Hamiltonian related to anti-holomorphic field has
the same form: we have to consider their sum for the complete theory.
Introducing the temporal evolution up the modes ψk and performing aWick rotation to Euclidean
time (t→ −iτ), the complete expansion of holomorphic fermionic field is:

ψ(x, τ) =
√

2π
L

∑
k

ψke
−2πk(τ−ix)/L.

In the R-sector there exist the zero mode ψ0 that does not appear in H, thus it leads to a
degeneracy of the vacuum state |0〉 of the theory. By anti-commutation rules follows b20 = 1

2 .
Now we perform the map (1.13), since the conformal dimension of field ψ is 1/2, this transfor-
mation will affect the field itself:

ψcil(z) =
(
dz

dw

)1/2
ψpl(z) =

√
2πz
L
ψpl(z).

and the new mode expansion is:
ψ(z) =

∑
k

ψkz
−k−1/2.



The factor
√
z exchange the periodicity condition (1.40) after a rotation of 2π around the origin:

ψ(e2πiz) = −ψ(z) (k ∈ Z) Ramond

ψ(e2πiz) = +ψ(x) (k ∈ Z + 1
2) Neveu-Schwarz.

(1.42)

Let’s start computing the two-point function in the NS-sector from the mode expansion:

〈ψ(z)ψ(w)〉 =
〈 ∞∑
n=1/2

−∞∑
m=−1/2

ψnz
−n−1/2ψmz

−m−1/2

〉

=
∞∑

n=1/2

−∞∑
m=−1/2

z−n−1/2w−m−1/2 〈ψnψm〉

=
∞∑

n=1/2

z−n−1/2wn−1/2

=
∞∑
m=0

1
z

(w
z

)m
= 1
z − w

.

(1.43)

The result in the R-sector is different, we find:

〈ψ(z)ψ(w)〉A =
〈 ∞∑
n=0

−∞∑
m=0

ψnz
−n−1/2ψmz

−m−1/2

〉
A

=

= 1
2

1√
zw

+
∞∑
n=1

−∞∑
m=−1

z−n−1/2w−m−1/2 〈ψnψm〉 =

= 1
2

1√
zw

+
∞∑
n=1

z−n−1/2wn−1/2 =

= 1√
zw

(
1
2 + w

z − w

)
=

1
2
(√

z
w +

√
w
z

)
z − w

.

(1.44)

The fact that the results coincide in the limit w → z tell us that the theory is independent of
the periodicity condition at short distances.
We would like to compute the vacuum energy density in the two sector in the plane. Using the
normal-ordering prescription:

〈T (z)〉 = 1
2 limε→0

[
−〈ψ(z + ε)∂ψ(z)〉+ 1

ε2

]
we obtain:

〈T (z)〉 =
{

0 NS-sector
1

16z2 R-sector

We can now turn back to the cylinder and compute the vacuum expectation value of the stress-
energy tensor also in this space. Through the equation (1.21) of transformation under the map
(1.13) we find:

TCil(w) =
(

2π
L

)2 [
z2T (z)− c

24

]
. (1.45)



Now we want to find the expressions for the conformal generators Ln in terms of mode operator
for the two type of periodicity conditions on the plane and on the cylinder. The expression for
the energy-momentum tensor leads to:

Tpla(z) =
∑
n

Lnz
−n−2 = 1

2
∑
k,q

(
k + 1

2

)
z−q−

1
2 z−k−

3
2 : ψqψk :

= 1
2
∑
k,n

(
k + 1

2

)
z−n−2 : ψn−kψk :

Therefore we have the following expression for the conformal generators on the plane:

Ln = 1
2
∑
k

(
k + 1

2

)
: ψn−kψk : . (1.46)

Since L0 is the coefficient of 1/z2 in the mode expansion, the non-zero expectation value in the
Ramond-sector implies a constant term on its expression:

L0 =
∑
k>0

kψ−kψk NS-sector
(
k ∈ Z + 1

2

)
L0 =

∑
k>0

kψ−kψk + 1
16 R-sector (k ∈ Z) .

Applying these results to energy-momentum tensor on the cylinder using the (1.45), we obtain
the following vacuum expectation values:

〈T (w)〉Cyl =
{
− 1

48
( 2π
L

)2 NS-sector
1
24
( 2π
L

)2 R-sector

The mode expansion of energy-momentum tensor becomes:

TCil(w) =
(

2π
L

)2 ∑
n∈Z

Lnz
−n − c

24 =
(

2π
L

)2 ∑
n∈Z

(
Ln −

c

24δn0

)
e−2πnw/L.

In particular the zero modes on the two sectors are shifted by a constant respect to plane:

(L0)Cil =
[
L0 −

c

24

]
=
{∑

k>0 kψ−kψk −
1
48 NS-sector∑

k>0 kψ−kψk + 1
24 R-sector

The vacuum expectation values fix the constants added to the Hamiltonian (E0). The cylinder
Hamiltonian becomes:

H =
(

2π
L

)[
(L0)Cyl +

(
L0
)
Cyl

]
=
(

2π
L

)[
(L0) +

(
L0
)
− c

12

]
Considering only holomorphic part of Hamiltonian, the additive constants in two sectors are:

HR =
(

2π
L

)[
(L0)− c

24

]
=
(

2π
L

){∑
k>0 kψ−kψk −

1
48 NS-sector∑

k>0 kψ−kψk + 1
24 R-sector.



The Hilbert space of the free fermion theory on the NS-sector on the plane is built to acting with
the creation operator ψ−k and ψ−k, k ∈ Z+ + 1

2 up a vacuum state |0〉. In particular, due the
Fermi-statistics, each mode ψ−k, ψ−k can only appear once. For the chiral sector the states:

|0〉, ψ−1/2|0〉, ψ−3/2|0〉, ψ−3/2ψ−1/2|0〉, ...

are eigenstates of L0 operator with respective eigenvalues 0, 1
2 ,

3
2 , 2, ....

The Hilbert space of the theory for the R-sector deserve a special treatment because there are
present fermionic zero modes ψ0.

1.5.6 The Ghost Systems
After having studied free boson and free fermion CFTs, we will briefly describe a ghost system,
which play a fundamental role in the covariant quantisation of bosonic string.
The action of the (b, c) ghost system in two dimensional space is:

S = 1
2g
∫
dxbµν∂

µcν

where bµν is a symmetric traceless field, and both bµν and cµ are anti-commuting fields. The
equations of motion are:

∂αbµν = 0 ∂αcβ + ∂βcα = 0.

that in the holomorphic complex coordinates becomes:

∂b = 0
∂b = 0

∂c = 0
∂c = 0

∂c = −∂c.

After computing the propagator, we find the OPE of the fields is:

b(z)c(w) ∼ 1
πg

1
z − w

from which we also derive the following results:

〈c(z)b(w)〉 = 1
πg

1
z − w

〈b(z)∂c(w)〉 = − 1
πg

1
(z − w)2

〈∂b(z)c(w)〉 = 1
πg

1
(z − w)2 .

The canonical energy-momentum tensor of the theory is:

Tµν(c) = 1
2g
(
bµα∂νcα − ηµνbαβ∂αcβ

)
which is not symmetric. Through the Belinfante procedure we can define a new identically
symmetric traceless form, called Belinfante tensor :

TµνB = 1
2g
{
bµα∂νcα + bνα∂µcα + ∂αb

µνcα − ηµνbαβ∂αcβ
}
. (1.47)



The holomorphic component is:

T (z) = T zz = 4Tzz = πg : (2∂cb+ c∂b) : . (1.48)

In order to find the conformal dimensions of ghost fields we compute their OPE with the energy-
momentum tensor applying the Wick theorem:

T (z)c(w) = πg : (2∂cb+ c∂b) : c(w)

∼ − c(z)
(z − w)2 + 2 ∂c(z)

z − w

∼ − c(w)
(z − w)2 + ∂c(w)

z − w

i.e. c is a primary field with conformal dimension
(
h;h

)
= (−1, 0).

T (z)b(w) = πg : (2∂cb+ c∂b) : b(w)

∼ 2 b(z)
(z − w)2 −

∂zb(z)
z − w

∼ 2 b(w)
(z − w)2 + ∂wb(w)

z − w

thus b is a primary-field with conformal dimension
(
h;h

)
= (2, 0). Finally we compute the OPE

of energy-momentum tensor with itself:

T (z)T (w) ∼ − 13
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
(z − w) .

From this latter result we deduce that the central charge of the CFT given by a ghost system is
c = −26, which implies that the theory is not unitary. As we will see in the next chapters, the
value of the central charge is related to the critical dimension of the space-time on the bosonic
string theories. Indeed if we associate this system to a set of 26 bosonic field we could get a total
energy-momentum tensor that is a primary-field with conformal dimension h = 2.

1.6 CFTs on the torus
In this section we will describe conformal field theories on the torus, and we will introduce the
partition function for theories with fermionic and bosonic fields.

1.6.1 The torus
The torus T 2 is the only closed oriented Riemman surface with genus g = 1.
Let’s define two linearly independent vectors identified through two complex numbers on the
complex plane (ω1;ω2) ∈ C . They generate a lattice:

Λ = {mω1 +m′ω2|(m,m′) ∈ Z} ,

and we call them periods of lattice.
We define the torus by identification of lattice points T 2 = C/Λ with C covering space. Under
conformal invariance the only invariant quantity is the ratio:

τ = ω2

ω1
= τ1 + iτ2



called modular parameter. We can restrict the domain of τ in Imτ > 0. The upper half-plane
in which the values of τ run is called Teichmüller space and it is indicated with H+. There
are again residual transformations that change the modular parameter but leaves invariant the
conformal structure of torus. They are called modular transformations and are defined through
following parameters transformations:{

ω1 7−→ cω2 + dω1

ω2 7−→ aω2 + bω1

These generate the following transformations of modular parameter:

τ 7−→ aτ + b

cτ + d
(ad− bc) = 1

the unitary constraint arises from the require that the unit cell of the lattice should have the
same area whatever the periods we use. We also notice that changing sign of all parameters
(a, b, c, d), we obtain the same transformation of τ . Again, the residual transformations form the
Modular group SL(2,Z)/Z2 ≡ PSL(2,Z). The full group PSL(2,Z) can be generated by the
modular transformations:

T : τ 7−→ τ + 1

S : τ 7−→ −1
τ

that satisfy the conditions:
(ST )3 = S2 = 1.

Their matrix representation on the periods of lattice space is:

T =
(

1 0
1 1

)
S =

(
0 1
−1 0

)
.

We note that U = T ST : τ → τ
τ+1 , the latter transformation together with T are called Dehn

twists.
Let us define fundamental domain the set of points of Teichmüller space cannot be obtained from
each other through subsequent applications of T and S:

F =
{
Imτ > 0,−1

2 ≤ Reτ ≤ 0, |τ | ≥ 1 ∪ Imτ < 0, 0 < Reτ <
1
2 , |τ | > 1

}
. (1.49)

Applying modular transformations on a Fundamental domain we obtain another Fundamental
domain. The Moduli space of the torus is the quotient of the Teichmüller space and the modular
group:

M1 = Teichmüller space
PSL(2,Z) .

We note that the modular group does not act freely on the whole parameters space. Indeed
τ = i is a fixed point of S, and τ = e2πi/3 is a fixed point of ST . ThereforeM1 is not a smooth
manifold but is an orbifold.



1.6.2 Partition function on a torus
A theory defined on a torus can be treat through the path integral formalism. The difference
from the plane is that the action of the theory is invariant under translations of the periods.
This does not mean that the conformal fields of the theory be invariant but periodic respect to
translations of the periods. In the path integral quatization, where the invariance of the action
is guaranteed by the periodic boundary conditions of conformal fields, theories, we define the
partition function as:

Z =
∫
DXDcDbeiS[X,h,c,b]

where X indicates all matter fields and (c, b) are the ghost fields, obtained through the Faddeev-
Popov procedure so to regularize the integration measure.
We want to find an expression for the partition function Z of the theory in terms of Virasoro
generators. We can think of the torus with modulus τ as formed by taking a field theory on
a circle, evolving for Euclidean time 2πτ2, translating in σ1 by 2πτ1, and then identifying the
ends. Since the Hamiltonian and momentum operators are the generators of translation along
time and space directions, we can define the partition function as the sum of states propagating
around the torus in the τ2 direction and weights them with a factor e−2πτ2H . In the light-cone
gauge we have:

Z(τ) = TrH

[
e2π(iPτ1−τ2H)

]
. (1.50)

Using the form of operators H and P on the cylinder with circumference L = 2π, we obtain:

Z(τ, τ) =TrH
[
e

2πiτ1
[
(L0)cyl−(L0)

cyl

]
e
−2πτ2

[
(L0)cyl+(L0)

cyl

]]
= q−

c
24 q−

c
24TrH

[
qL0qL0

] (1.51)

where we introduced the quantities q = e2πiτ and q = e2πiτ . The domain of variation of mod-
ular parameter τ is the moduli space M1, therefore field theories defined up torus related by
modular transformations have the same function Z(τ, τ). In order to explain this propriety we
require that le partition function be modular invariant. We will just verify that it is invariant
under the generators T and U . In other words, since the modular transformations are conformal
transformations and we would expect that the vacuum amplitude be invariant respect to these
transformations, then the partition function must be modular invariant.
We notice that this procedure preserve all local symmetries of theory while the global groupSL(2,C)
with infinitesimal generators

{
L0;L±1;L0;L±1

}
is reduced to group U(1)× U(1) with infinites-

imal generators
{
L0;L0

}
.

1.6.3 Free fermion
Let us consider a system with one holomorphic free fermion

(
c = 1

2
)
and one anti-holomorphic

free fermion
(
c = 1

2
)
. Fermionic fields have two possible periodicity conditions along the two

circles of the torus; for the holomorphic part we have:

ψ(z + ω1) = e2πiuψ(z) ψ(z + ω2) = e2πivψ(z) (1.52)

and similar conditions for anti-holomorphic part. We denote with (u; v) the periodicity conditions
that are satisfied by holomorphic part. We have four possible sectors corresponding to four differ-
ent spin structures (0, 0) ;

( 1
2 , 0
)

;
(
0, 1

2
)

;
( 1

2 ,
1
2
)
, or respectively (R,R) ; (NS,R) ; (R,NS) ; (NS,NS)



and an analogue for the anti-holomorphic part.
We want to compute the partition function for this theory, using the expression (1.51). In or-
der to study the modular invariance of the partition function we analyze the transformation
proprieties of spin structures under modular transformations. We find:

(0; 0) T−→ (0; 0) (0; 0) S−→ (0; 0)(
0; 1

2

)
T−→
(

0; 1
2

) (
0; 1

2

)
S−→
(

1
2 ; 0
)

(
1
2 ; 0
)
T−→
(

1
2 ; 1

2

) (
1
2 ; 0
)
S−→
(

0; 1
2

)
(

1
2 ; 1

2

)
T−→
(

1
2 ; 0
) (

1
2 ; 1

2

)
S−→
(

1
2 ; 1

2

)
The totally periodic condition (0; 0) is modular invariant, but the corresponding sector give a
trivial contribution to the partition function. Since the total partition function must be modular
invariant, if we consider also the anti-holomorphic part and we assume that it takes a diagonal
form, then we obtain:

Z(τ, τ) =
∑
u,v

|Zu,v|2. (1.53)

We proceed with the calculation of quantities Zu,v by (1.51). In the Hamiltonian language Zu,v is
the trace on the periodic/anti-periodic sector respectively for u = 0, 1

2 . Since we have a partition
function defined on the cylinder and Virasoro zero modes on the plane, we have to implement
the periodicity conditions in the time direction inserting an operator that anticommutes with
the fermionic field. This operator is:

(−1)F F =
∑

r∈Z++ν

ψ−rψr

with F Fermion Number operator. Then we define:

Z0,0 = 1√
2
q−

1
48TrP (−1)F qL0 = 1√

2
TrP (−1)F q

∑
n>0

nψ−nψn+ 1
24 = 0

Z 1
2 ,0 = q−

1
48TrA (−1)F qL0 = TrA (−1)F q

∑
k>0

kψ−nψn− 1
48

Z0, 1
2

= 1√
2
q−

1
48TrP q

L0 = 1√
2
TrP q

∑
n>0

nψ−nψn+ 1
24

Z 1
2 ,

1
2

= q−
1

48TrAq
L0 = TrAq

∑
k>0

nψ−nψn− 1
48

where n ∈ Z and k ∈ Z + 1
2 .

Using the basis {|0〉;ψ−n|0〉}, we split the total Hilbert space in terms of two-dimensional sub-
spaces H = ⊗n>0Hn, and by basic propriety of the trace we find:

Z 1
2 ,0 = q−

1
48
∏
k>0

(
TrHk (−1)F qkψ−kψk

)
= q−1/48

∞∏
n=0

(
1− qn+ 1

2

)
=

√
θ3

η

Z0, 1
2

= q
1

24
∏
n>0

(
TrHnq

nψ−nψn
)

= q
1

24

∞∏
n=0

(1 + qn) =

√
θ2

η

Z 1
2 ,

1
2

= q−
1

48
∏
k>0

(
TrHkq

kψ−kψk
)

= q−
1

48

∞∏
n=0

(
1 + qn+ 1

2

)
=

√
θ3

η
.



In the last equality we used the Jacobi Theta functions θi = θi(0, τ) and the Dedekind eta
function η(q) defined in Appendix A.
Finally we can write the total partition function for fermions including all periodicity conditions:

Zferm(τ) = |Z0, 1
2
|2 + |Z 1

2 ,0|
2 + |Z 1

2 ,
1
2
|2 = |θ2

η
|+ |θ3

η
|+ |θ4

η
|. (1.54)

Through the proprieties of transformation of the θi(τ) and η(τ) functions under modular trans-
formations summed in the Appendix, we can easily verify that Zferm(τ) is modular invariant.

1.6.4 Free Boson
The next simplest case of CFT on a torus is that of free boson. We want to proceed analogously
to previous fermionic case, where we have imposed boundary conditions on a torus and calculated
the partition function by an Hamiltonian formalism.
Let us consider a bosonic field compactified on a circle of radius R:

X(z, z) = X(z, z) + 2πR.

When we calculate the partition function, we need to consider all sectors (n′, n) with boundary
conditions (for ω1 = 1):

X(z + τ, z + τ) = X(z, z) + 2πn′R X(z + 1, z + 1) = X(z, z) + 2πnR. (1.55)

We compute the partition function Zbos using the operatorial formalism. Let us start from the
(1.51) and substitute it the Virasoro zero modes of the compactified boson. We split the Hilbert
space in sectors labelled by the eigenvalues of H and P :

H|m,n〉 =
(
L0 + L0

)
|m,n〉 = 1

2
(
p2
L + p2

R

)
|m,n〉 =

(
m2

4R2 + n2R2
)
|m,n〉

P |m,n〉 =
(
L0 − L0

)
|m,n〉 = 1

2
(
p2
L − p2

R

)
|m,n〉 = mn|m,n〉

and we construct the excited states acting on these eigenstates by the oscillators. The trace split
into an oscillators contribute:

TrHq
L0 = Trq

∑∞
n=1

α−nαn =
∞∏
n=1

(
1 + qn + q2n + ...

)
=
∞∏
n=1

1
1− qn .

and a contribute of sum over winding-momentum. If we include also the anti-holomorphic oscil-
lators, we find:

Zbos(τ,R) = 1
ηη

∞∑
n,m=−∞

q
1
2p

2
Lq

1
2p

2
R . (1.56)

The partition function (1.56) is modular invariant. This can be understood in a more general
framework. Let’s consider a two-dimensional space with Lorentzian signature generated by

(
k, k
)
:

(pL; pR) = m

(
1

2R ; 1
2R

)
︸ ︷︷ ︸

k

+n (R,−R)︸ ︷︷ ︸
k

.



Then,
{
k, k
}

are generators of an even self-dual Lorentzian integer lattice Γ1,1
2. In general

partition functions of the form:

ZΓr,s = 1
ηrηs

∑
(pL,pR)∈Γr,s

q
1
2p

2
Lq

1
2p

2
R

are modular covariant provided that Γr,s is an r + s-dimensional even self-dual lattice of signa-
ture (r, s). The fact that p2

L − p2
R ∈ 2Z ensures the T -invariance (up to a possible phase from

(ηrηs)−1 when r − s 6= 0mod24), while the self-duality property guarantees invariance under S.
Such lattices exist in every r− s mod 8 dimensions, and for r− s 6= 0 are unique up SO(r, s). In
Euclidean case, there are a finite number of lattice in d = 0 mod 8 dimensions, unique up SO(d).

2See Appendix B





Chapter 2

Bosonic String theory

String theory is currently the best candidate to give a unified model of Nature’s forces (gravity
including) in a single quantum-mechanical framework. The basic assumption is to imagine the
matter at fundamental level described through tiny one-dimensional strings rather than through
point-particles. General relativity, electromagnetism and Yang-Mills gauge theories appear nat-
urally in low-energies limit. However, among its main features, it leads extra spatial dimension
to appear.
In this chapter we will give a brief description of the simplest string theory called Bosonic string,
both at the classical and quantum level [2], [6], [7], [8], [9]. However this theory presents different
problems, that will be solved with the introduction of supersymmetry on the next chapter, as the
presence of particles, Tachions, with negative mass in the spectrum and the absence of fermionic
particles. Despite these problems, it is useful to start describing the Bosonic String Theory so
to introduce the main concepts common to all String theories.
The String Theory becomes a CFT on two dimensions after the conformal gauge fixing. Before
we have a two-dimensional field theory coupled to two dimensions gravity with diffeomorphism-
invariance. In conformal gauge the diffeomorphism-invariance is reduced to conformal-invariance,
which is still infinite dimensional. However the String Theory remembers its diffeomorphism-
invariance through reparametrization ghosts, which appear in BRST quantization, the conformal
anomaly and the physical state condition, which is the relict of the equation of motion for the
world-sheet metric.

2.1 The relativistic string
A point-particle moving in a d-dimensional Minkoswki space-time describes a one-dimensional
line called world-line. Since a string is an one-dimensional object moving in the same space, it
will sweep a two-dimensional surface called world-sheet.
We start quickly studying the classical action of the point-particle and its quantization, later we
will extend the same treatment to the one-dimensional string.

2.1.1 Relativistic point-particle
Let us consider a point-particle with mass m in a d-dimensional Minkowski space-time with
metric ηµν = diag (−1, 1, 1, ..., 1). Its action is simply the length of its world-line parametrized
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as xµ = xµ(τ):

S = −m
∫
dτ

√
−dx

µ

dτ

dxν

dτ
ηµν . (2.1)

The action is manifestally Poincarè-invariant, moreover it is also invariant under reparameteri-
zation of τ by any monotonic function:

τ → τ̃ = τ̃(τ).

This latter is a gauge-invariance of the theory, i.e. in our description there is a non-physical
degree of fredoom. Indeed the conjugate momenta:

pµ = ∂L
∂ẋµ

are not all independent, they satisfy the mass-shell condition:

pµp
µ +m2 = 0.

From the world-line point of view, the particle cannot stay still, but it must move in a timelike
direction in which (p0) ≥ −m2.

2.1.2 The Nambu-Goto action
The string world-sheet is a bidimensional surface on d-dimensional Minkowski space-time parametrized
by a spatial coordinate σ and a temporal one τ , packaged into σa = (σ, τ). It this chapter we
will focus on closed string, thus the parameter σ is periodic with range σ ∈ [0; 2π). The string
evolution can be described as maps from two-dimensional world-sheet to space-time through the
coordinates:

Xµ(τ, σ) µ = 0, 1, ...d− 1
with the additional condition for closed string:

Xµ(τ, σ) = Xµ(τ, σ + 2π).

We need to generalize the action for the point-particle, proportional to the length of its world-
line, to that for the sting, proportional to the area of world-sheet. Let γab be the induced metric
inherited from the d-dimensional Minkowski space-time to bidimensional surface:

γαβ = ∂Xµ

∂σa
∂Xν

∂σb
ηµν ,

then the seeked action take the form:

SNG = −T
∫
d2σ
√
−detγab = −T

∫
d2σ

[
−
(
Ẋ
)2 (X ′)2 +

(
ẊX ′

)2]1/2
, (2.2)

where Ẋµ = ∂Xµ/∂τ is the "time" derivative, and X ′µ = ∂Xµ/∂σ is the "spatial" derivative.
The (2.2) is called Nambu-Goto action. Since the space-time coordinates have the dimension
[X] = M−1, while the parameters σa are dimensionless, then the proportional constant must
have the dimension [T ] = M2 so the action be dimensionless. T has the physical interpretation
of tension of string, which behaves as an elastic band and its potential energy increases linearly
with length. We introduce the Regge parameter α′ = 1

2πT , through which we define a string
length scale ls =

√
α′ and a string mass scale Ms ∼ 1√

α′
.

The principal symmetries of Nambu-Goto action are:



Poincarè-invariance of space-time. From world-sheet point of view, it is a global symmetry
because the parameters of transformation don’t depend on sheet-coordinates.

Reparameterization-invariance: σa → σ̃a(σ). This is a gauge-symmetry, it reflect the fact
that we have a redundancy in our description: the coordinates σa are not physical.

In order to derive the equation of motion associate to action (2.2) we introduce the momenta:

Πτ
µ = ∂L

∂Ẋµ
= −T

(
Ẋ ·X ′

)
X ′µ −

(
X ′2

)
Ẋµ√(

Ẋ ·X ′
)2 − Ẋ2X ′2

Πσ
µ = ∂L

∂Ẋµ
= −T

(
Ẋ ·X ′

)
Ẋµ −

(
X ′2

)
X ′µ√(

Ẋ ·X ′
)2 − Ẋ2X ′2

(2.3)

so the equation of motion obtained through the variational principle take the form:

∂Πτ
µ

∂τ
+
∂Πσ

µ

∂σ
= 0

2.2 The Polyakov action
The square-root in the Nambu-Goto action leads to complicated equation of motion and makes
rather difficult to quantize using path integral techniques. However we can define an equivalent
action to (2.2) without square-root at the expense of introducing an additional field on the world-
sheet. The new field is hαβ(τ, σ); it is a dynamical metric of the world-sheet with signature (−; +).
Let be given the Polyakov action:

SP = − 1
4πα′

∫
d2σ
√
−hhαβ∂αXµ∂βX

νηµν . (2.4)

From the world-sheet point of view this action is a set of scalar fields coupled to 2d gravity.
The equations of motion for the fields Xµ(τ, σ) are:

∂α

(√
−hhαβ∂βXµ

)
= 0.

Varying the action with respect to metric field we obtain its equation of motion:

δSP = −T2

∫
d2σδhαβ

(√
−h∂αXµ∂βX

ν − 1
2
√
−hhαβhρσ∂ρXµ∂σX

ν

)
ηµν ,

from which:
hαβ = 2f(τ, σ)∂αX · ∂βX

where the function f−1 = hρσ∂ρX ·∂σX. By comparison of this result with definition of induced
metric γαβ , we discover that they differ by the conformal factor f . Within this difference, the
equations of motion for the fields Xµ related to two actions are identical. The presence of this
conformal factor reflects the existence of an extra symmetry in the Polyakov action.
Let us summarize the symmetries of the Polyakov action.

Poicarè invariance, is a global symmetry from world-sheet point of view.

Xµ 7−→ ΛµνXν + cµ



Reparameterization invariance (also diffeomorphisms-invariance), is a gauge-symmetry on
the world-sheet. We define the change of coordinates on the worldsheet as σα → σ̃α(σ),
under which the fields Xµ transforms as worldsheet scalars, while hαβ as a 2d metric:

Xµ(σ) 7−→ X̃µ(σ̃) = Xµ(σ)

hαβ(σ) 7−→ h̃αβ(σ̃) = ∂σρ

∂σ̃α
∂σγ

∂σ̃β
hργ(σ).

If we consider an infinitesimal transformation σα → σ̃α(σ) = σα−ηα(σ), the corresponding
infinitesimal transformations of fields are:

δXµ(σ) = ηα∂αX
µ(σ)

δhµν(σ) = ∇αηβ +∇βηα,

where the covariant derivative is defined as:

∇αηβ = ∂αηβ − Γραβηρ

with Levi-Civita connection associated to worldsheet metric:

Γραβ = 1
2h

ργ (∂αhγβ + ∂βhγα − ∂γhαβ) .

Weyl-invariance, is a gauge symmetry defined by following fields transformations:

Xµ(σ) 7−→ Xµ(σ)
hαβ(σ) 7−→ Ω2(σ)hαβ(σ).

Infinitesimally we can write Ω2(σ) = e2φ(σ), for small φ(σ), thus:

δhαβ(σ) = 2φ(σ)hαβ(σ).

The Weyl symmetry in not a coordinates change, it is a theory invariance under a local
change of scale which preserves the angles between all lines. The string worldsheets in the
Fig.(2.1) are equivalent from the Polyakov action point of view.
This propriety is special for two-dimensional theory, however it restricts the kind of inter-
actions that can be added to the action, and these constraints becomes even more stringent
in the quantum theory.

The reparametrization-invariance allows us to choose a convenient gauge for the worldsheet
metric, called conformal gauge:

hαβ(σ) = e2φ(σ)ηαβ , (2.5)

i.e. the two degrees of freedom in the choice of parameters allows us to fix two of the three
degrees of freedom of the metric.
Again, using the Weyl-invariance we can remove the last independent component of the metric
and set φ(σ) = 0 such that hαβ = ηαβ . Through this choice the action (2.4) takes the simple
form:

SP = − 1
4πα′

∫
d2σ∂αX∂βX, (2.6)

and the equations of motion become:

∂α∂
αXµ = 0 (2.7)



Figure 2.1: Example of Weyl transformation.

We define the energy-momentum tensor to be:

Tαβ = − 2
T

1√
−h

δSP
δhαβ

= ∂αX∂βX −
1
2ηαβη

ργ∂ρX∂γX, (2.8)

where we performed the choice of flat metric.
The (2.7) are subject to two constraints arising from the equation of motion of the metric:

Tαβ = 0
{

T01 = Ẋ ·X ′ = 0
T00 = T11 = 1

2
(
Ẋ2 +X ′2

)
= 0.

(2.9)

The first condition tell us that we have to choose a parametrisation such that lines σ = const
are perpendicular to lines τ = const. Now we use the residual-gauge arising from Weyl transfor-
mations to introduce the statical gauge:

X0 = Rτ

with R = const. The previous constraints for the spatial components in this gauge becomes:

Ẋ ·X ′ = 0

Ẋ
2

+X
′2 = R2

The first condition tell us that the motion of string must be perpendicular to string itself, i.e.
the oscillations will be described by transverse modes. The second condition relates R with the
length of string when Ẋ = 0, i.e. starting from a stretched string at a time with Ẋ = 0, the
string will contract under its own tension to later times.

2.3 Modes expansions
We introduce the lightcone coordinates on the worldsheet:

σ+ = τ + σ

σ− = τ − σ.
(2.10)

The Minkowski metric in these coordinates takes the form:

ηαβ =
(

0 − 1
2

− 1
2 0

)
ηαβ =

(
0 −2
−2 0

)
.



The equation of motion of coordinated fields becomes:

∂+∂−X
µ = 0

whose more general solution separates the left- and right-moving modes of string:

Xµ(τ, σ) = Xµ
L(σ+) +Xµ

R(σ−).

Remembering the periodicity condition of closed string, we can perform a Fourier expansion:

Xµ
L(σ+) = 1

2x
µ + 1

2α
′pµσ+ + i

√
α′

2
∑
n 6=0

1
n
α̃µne

−inσ+

Xµ
R(σ−) = 1

2x
µ + 1

2α
′pµσ− + i

√
α′

2
∑
n 6=0

1
n
α̃µne

−inσ− .

(2.11)

The quantities xµ and pµ are respectively position and momentum of the center of mass of the
string. This can be easily proven by studying the Noether currents associated to symmetry
translation Xµ → Xµ + cµ. Since the coordinated fields are real, the coefficients of Fourier
satisfy:

(αµn) =
(
αµ−n

)∗ (α̃µn) =
(
α̃µ−n

)∗
.

The constraints (2.9) becomes on the lightcone coordinates:

(∂+X)2 = (∂−X)2 = 0.

Let us consider the field:

(∂−Xµ) = ∂−X
µ
R = α′

2 p
µ +

√
α′

2
∑
n 6=0

αµne
−inσ− =

√
α′

2
∑
n∈Z

αµne
−inσ− (2.12)

where we have defined the zero mode as αµ0 =
√

α′

2 p
µ. Therefore:

(∂−Xµ)2 =
[√

α′

2
∑
n∈Z

αµne
−inσ−

]2

= α′

2
∑
m,p

αm · αpe−i(m+p)σ−

= α′

2
∑
m,n

αm · αn−me−inσ
−

= α′
∑
n

Lne
−inσ− = 0

where we have defined the sum of oscillators modes:

Ln = 1
2
∑
m

αn−m · αm. (2.13)

The same analysis can be performed for the left-moving modes through an analogous sum:

L̃n = 1
2
∑
m

α̃n−m · α̃m, (2.14)



with αµ0 = α̃µ0 . The equations (2.9) impose an infinite number of conditions on the classical
string solutions:

Ln = L̃n = 0 ∀n ∈ Z.

In particular, the constraints arising from L0 and L̃0 have a rather special interpretation be-
cause they include the square of the momentum pµ that respect the mass-shell condition on the
Minkowskian space-time. Thus we have two expressions for the effective mass of string, one in
terms of left-oscillators and one in terms of right-oscillators, and they must be equal to each
other:

M2 = 4
α′

∑
n>0

αn · α−n = 4
α′

∑
n>0

α̃n · α̃−n. (2.15)

This is called level matching condition, and it will play an important role in the string quantiza-
tion.

2.4 Covariant quantization
The goal of this section is to quantize the string action (2.4) with flat metric through the covariant
quantization method. We promote the fields Xµ and their conjugate momenta Πµ = 1

2πα′ Ẋµ to
operator, and replace their Poisson brackets by commutators {, } → i−1 [, ]:

[Xµ(σ, τ),Πν(σ′, τ)] = iδ(σ − σ′)δµν
[Xµ(σ, τ), Xν(σ′, τ)] = [Πµ(σ, τ),Πν(σ′, τ)] = 0

The Fourier expansion coefficients of the equation of motion solutions are now operator which
satisfy the following commutation rules:

[xµ, pν ] = iδµν [αµn, ανm] = [α̃µn, α̃νm] = nηµνδn+m,0 [αµn, α̃νm] = 0.

The reality condition on the fields becomes the hermicity conditions on the operators: (αµn)† =
αµ−n and (α̃µn)† = α̃µ−n. Rescaling these operators by an = αn√

n
and a−n = α−n√

n
, we write the new

commutation rules:
[an, a−m] = δnm.

equal to those of harmonic oscillator. So each scalar field gives rise to two infinite towers, one
for right-moving modes and one for left-moving modes, of creation and annihilation operators,
with αn acting as a annihilation operator for n > 0 and as a creation operator for n < 0.
In order to construct the Hilbert space of the theory, we define the vacuum absolute state |0〉
annihilated by all αn and α̃n modes with n > 0. The difference with the QFT is that |0〉 is
not the vacuum state of space-time but those of a single string. In fact the operator xµ and pµ
add an extra-structure to the vacuum. In momentum representation the vacuum carries another
quantum number eigenvalues of momentum operator:

p̂µ|0, pµ〉 = pµ|0, pµ〉.

The other states are obtained acting on these vacua with the creation operators:(
αµ1
−1
)nµ1

(
αµ2
−2
)nµ2 ...

(
α̃ν1
−1
)nν1

(
α̃ν2
−2
)nν2 ...|0, p〉

and represent excited states of the string. Each state is a different species of particles in space-
time, and these species are an infinite number.



Exactly as the QED in Lorentz gauge, in our Hilbert space there are negative norm states, called
ghost, coming from the Minkowski metric on the commutation rules. In order to eliminate these
states we would like to impose appropriate gauge-fixing conditions on the operators.
Since Ln and L̄n are defined in terms of product of operators, in the quantum theory we have to
choose an order. In particular for the zero-modes L0 and L̄0 we discover to have an ambiguity
in this definition because the operators on the product do not commutate, i. e. they are not
completely determined by classical theory. Since the commutators are constant quantities, the
different choices of L0 and L̄0 are related by a constant shift L0 → L0 + a:

L0 =
∞∑
n=1

α−nαn + 1
2α

2
0

L̄0 =
∞∑
n=1

ᾱ−nᾱn + 1
2 ᾱ

2
0.

In order to fix the constants, we impose the standard condition:

[L1, L−1] = 2L0[
L̄1, L̄−1

]
= 2L̄0,

which are equivalent to require that {L−1, L0, L1} generate a subalgebra SL(2,C), and also their
analogues bar. Under these conditions the algebra of Ln, L̄n operators take the following form:

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1)δm+n,0[
L̄m, L̄n

]
= (m− n)L̃m+n + c̄

12m(m2 − 1)δm+n,0.
(2.16)

We find one couple of Virasoro algebra with central charges c and c̄. Physically these terms arises
as quantum effect due to the breaking of Weyl invariance at quantum level. In the representation
through d free bosons c = c̄ = d, d = ηµµ is related to the dimension of the embedding space-time.
Thus we can think that each boson contributes to central charge of one unity.
Let us now come back to the Virasoro generators. At classical level the constraints on the Fourier
components of energy-momentum tensor are Ln = L̄n = 0 but, because their commutations rules
are not trivial, the same conditions cannot be imposed at quantum level. However, we can require
that all positive mode-operators annihilate any physical state:

Ln|ψ〉phys = L̄n|ψ〉phys = 0 ∀n > 0
(L0 − a) |ψ〉phys =

(
L̄0 − a

)
|ψ〉phys = 0.

(2.17)

The first of these two conditions is called Virasoro condition. In second condition of (2.17) the
quantity a is some constant.
As we saw, the operators L0 and L̄0 play an important role in determining the spectrum of the
string because they include a term quadratic in the momentum αµ0 = α̃µ0 =

√
α′

2 p
µ. Using the

redefinitions L0 +a and L̃0 +a, the second constraint of (2.17) and the classical condition (2.15)
we obtain the quantum level condition:

M2 = 4
α′

(
−a+

∞∑
m=1

α−m · αm

)
= 4
α′

(
−a+

∞∑
m=1

α̃−m · α̃m

)
. (2.18)



We notice that the undetermined constant a has a direct physical effect: it changes the mass
spectrum of the string. We can write the (2.18) through the Number operators:

N =
∞∑
m=1

α−m · αm Ñ =
∞∑
m=1

α̃−m · α̃m (2.19)

that counts the number of excited modes of string. Then the level condition tell us that the
number of left-moving modes must be equal to right-moving modes. Finally we define the
Hilbert space of physical states as the quotient:

H = KerLn(n ≥ 0)
ImL−n(n > 0) .

2.5 Lightcone Quantization
This different method of quantization for the string theory consist in solving the constraints at
classical level, leaving only the physical degrees of freedom, and later performing the quantization
of classical solutions.
The gauge symmetries of the theory allow us to choose the light-cone coordinates (2.10), where
the metric take the form:

ds2 = −dσ+dσ−

However we still have a residual gauge, in fact transformations like σ+ → σ̃+(σ+) and σ− →
σ̃−(σ−) lead an overall factor on the metric that can be remove by a compensating Weyl transfor-
mation. Again, if we fixed 3 components of worldsheet metric corresponding to 3 gauge-invariance
degrees of freedom, then we wonder why do we still have some gauge symmetry left? The reason
is that σ̃+, σ̃− are functions of just a single variable, not two.
The physical implication of this residual gauge is to reduce the degrees of freedom of string so-
lutions. In fact the equation of motion solutions (2.11) are 2d functions of a single variable, the
constraints (2.9) reduces the number of independent functions to 2(d−1). The residual choice of
parameters σ̃± still lowers this number to 2(d−2): these are the degrees of freedom of transverse
fluctuations of string.
In order to remove the remaining invariance we want to impose the light-cone gauge. Let’s start
by choosing the space-time coordinates:

X+ =
√

1
2
(
X0 +Xd−1)

X− =
√

1
2
(
X0 −Xd−1) . (2.20)

We notice that this choice is not manifestally Lorentz-invariant.The new space-time metric is:

ds2 = −2dX+dX− +
d−2∑
i=1

dXidXi.

Now we fix the gauge by requiring that the equation of motion solution for X+ to be:

X+ = X+
L (σ+) +X+

R (σ−) = 1
2
(
x+ + α′p+σ+)+ 1

2
(
x+ + α′p+σ−

)
= x+ + α′p+τ. (2.21)



This is the light-cone gauge. Notice that X+ is a null space-time coordinate proportional to
timelike worldsheet parameter τ .
The constraint equations for this coordinate are trivial, thus we wonder if there are extra-
constraints on the other coordinate-solutions. Let’s consider the usual ansatz for X− to solve its
equation of motion:

X− = X−L (σ+) +X−R (σ−).

Now we impose the constraints (2.9) in these new coordinates for this solution:(
∂+X

−)2 =
(
∂−X

−)2 = 0,

using the gauge-fixing we find:

∂+X
−
L = 1

α′p+

d−2∑
i=1

∂+X
i∂+X

i

∂−X
−
R = 1

α′p+

d−2∑
i=1

∂−X
i∂−X

i.

So, up to an integration constant, the function X−(σ+, σ−) is completely determined by other
fields Xi(σ+, σ−):

X−L (σ+) = 1
2
(
x− + α′p−σ+)+ i

√
α′

2
∑
n6=0

1
n
α̃−n e

−inσ+

X−R (σ−) = 1
2
(
x− + α′p−σ−

)
+ i

√
α′

2
∑
n 6=0

1
n
α−n e

−inσ−

x− is a integration constant, while p−; ᾱ−n , α−n are fixed by previous conditions in terms of other
fields:

α−n =
√

1
2α′

1
p+

+∞∑
m=−∞

d−2∑
i=1

αin−mα
i
m

and an equivalent expression for ᾱ−n , while for α−0 =
√

α′

2 p
− we find:

α′p−

2 = 1
2p+

d−2∑
i=1

1
2α
′pipi +

∑
n6=0

αinα
i
−n


α′p−

2 = 1
2p+

d−2∑
i=1

1
2α
′pipi +

∑
n6=0

ᾱinᾱ
i
−n

 ,

from which we can reconstruct the classical level matching conditions:

M2 = 2p+p− −
d−2∑
i=1

pipi = 4
α′

d−2∑
i=1

∑
n 6=0

αi−nα
i
n = 4

α′

d−2∑
i=1

∑
n 6=0

ᾱi−nᾱ
i
n.

By comparison with the level condition (2.15), we observe that here the i-sum is only over
transverse oscillators. Thus, the general classical solution is written in terms of 2(d−2) transverse



oscillators and the zero-modes xi, pi, p+, x− describing the center of mass and momentum of the
string.
Finally, we promote these physical degrees of freedom to operators role, and we impose the
following commutation rules: [

xi, pj
]

= iδij
[
x−, p+] = −i[

αin, α
j
m

]
=
[
ᾱin, ᾱ

j
m

]
= nδijδn+m,0.

(2.22)

Now we have all the ingredients to construct the Hilbert space of the theory. Let |0, p〉 be the
vacuum states labelled by eigenvalues of momentum operator:

Pµ|0, p〉 = pµ|0, p〉
αin|0, p〉 = α̃in|0, p〉 = 0 n > 0

and the other excited states are given by acting with the creation operators αi−n, α̃i−n with
(n > 0) on these vacua. The difference with the covariant quantization is that now we are acting
only with transverse oscillators, for this reason the Hilbert space is, by construction, positive
definite.
Defining the new number operators:

N =
d−2∑
i=1

∑
n>0

αi−nα
i
n N̄ =

d−2∑
i=1

∑
n>0

ᾱi−nᾱ
i
n

and introducing the normal ordered into the level condition we find:

M2 = 4
α′

(N − a) = 4
α′
(
N̄ − a

)
,

where a is a normal ordering constant. In order to fix the a value we write the sum:

1
2

d−2∑
i=1

∑
n 6=0

αi−nα
i
n = 1

2

d−2∑
i=1

[∑
n>0

αi−nα
i
n +

∑
n<0

αi−nα
i
n

]

= 1
2

d−2∑
i=1

[
2
∑
n>0

αi−nα
i
n +

∑
n>0

[
αi−n;αin

]]

=
d−2∑
i=1

∑
n>0

αi−nα
i
n + d− 2

2
∑
n>0

n

where we used the oscillators’s commutation rules. We notice that a correspond to latter diver-
gent term of the last line. So, we consider the Riemann zeta-function:

ζ(s) =
+∞∑
n=1

n−s Re(s) > 1 (2.23)

that admits a unique analytic continuation to all s values, except one pole in s = 1. In particular
we find ζ(−1) = −1/12, therefore the quantum level matching condition becomes:

M2 = 4
α′

(
N̂ − d− 2

24

)
= 4
α′

( ̂̄N − d− 2
24

)
. (2.24)



2.6 The string spectrum
In this section we would like to make a brief analysis of the spectrum of a single free string.
Let us start with the ground state |0, p〉, that has not excited oscillators. The condition (2.24)
tells us that this state has a negative mass-squared:

M2 = − 1
6α′ (d− 2).

The corresponding particles in the space-time are called tachyons T (Xµ). This type of particles
are a problem for the bosonic string because correspond to unstable vacuum states. However,
there may be a stable vacuum which is not accessible by perturbative theory.
Before starting the analysis of excited states, we remember the Wigner representation of the
Poincarè group on a d-dimensional Minkowski space-time R1,d−1:

Massive particles are classified by representations of SO(d−1), little group in which trans-
forms internal index of momentum pµ with pµpµ = −M2.

Massless particles are classified by irreducible representations of SO(d− 2), little group of
momentum transformations with pµpµ = 0.

We now look at the first excited states N = N̄ = 1. Since the level matching condition tell
us that the number of states left and right are equal, we act on the vacuum state with both
operators αi−1 and ᾱi−1:

ᾱi−1α
i
−1|0; p〉. (2.25)

We obtain (d− 2)2 particle states with mass:

M2 = 4
α′

(
1− d− 2

24

)
.

Since there is no way to package these (d − 2)2 states into a representation of SO(d − 1), i.e.
the first excited string state cannot form a massive representation of Lorentz group. However
these states can provide irreducible representations of SO(d − 2), thus in order to respect the
Lorentz-invariance these states must be massless. And this is only the case if the dimension of
space-time is:

M2 = 4
α′

(
1− d− 2

24

)
= 0 7−→ d = 26. (2.26)

The bosonic string theory on d = 26 dimensions contains massless particle on its spectrum:
these particles are interesting because they give rise to long range interactions. The states (2.25)
transform on the representation 24⊗24 of SO(24), that can be decomposed into three irreducible
representations:

(d− 2)2 = (d− 2)(d− 3)
2︸ ︷︷ ︸

Anti-symmetricBij

⊕ (d− 2)(d− 1)
2︸ ︷︷ ︸

Traceless symmetricGij

⊕ 1︸︷︷︸
traceΦ

To each of these representations we associate a massless field on space-time, respectively:

Bµν(x) Gµν(X) Φ(X).

Bµν is the Kalb-Ramond field, and it defines a two-form on the space-time. The scalar field Φ(X)
is called dilaton. The field Gµν(X) represents a massless particle with spin 2 on the space-time



thus, pushed by the idea of Feynman and Weinberg , that any theory of interacting massless spin
two particles must be equivalent to general relativity, we would like to identify this field with the
space-time metric.
We analyse higher excited states of the spectrum. The string at level N = N̄ = 2 has two
different states both in left-sector and in right-sector, thus the total set of states at level 2 is:(

αi−1α
j
−1 ⊕ αk−2

)
⊗
(
ᾱi−1ᾱ

j
−1 ⊕ ᾱk−2

)
|0, p〉.

This states have mass M2 = 4/α′. In each sector we have 1
2d(d − 1) − 1 states, that does fit

nicely into a representation of SO(d − 1), in particular it is the symmetric traceless tensorial
representation.
The only consistency requirement that we need for Lorentz invariance is to fix up the first excited
states: the space-time dimension must be d = 26. In d = 26 all higher excited states will be
massive, so they will be representations of SO(25).

2.7 Open string
We would like to conclude this chapter with a brief introduction on open strings and D-branes.
A fundamental feature of open strings is the existence of two end points, indeed the spatial
coordinate of string runs in σ ∈ [0;π]. Since the dynamics of a generic point of string is governed
by local physics, then we can use to describe the open string dynamics by the Polyakov action
(2.4) with the same equation of motion of closed strings implemented with boundary conditions.
The request for validity of the variational principle is encoded in the following expression:

∂σX
µδXµ = 0 σ = 0, π.

There are two different types of boundary conditions that can be imposed, Fig. (2.2):

Neumann conditions: ∂σXµ = 0 at σ = 0, π
Since we don’t have restriction on δX for this type of conditions, the end-points of string
can move freely.

Dirichlet conditions: δXµ = 0 at σ = 0, π
The end-points of string will remain in a constant position of space-time.

Let us consider an open string in d-dimensional space-time. We impose Neumann conditions for
the first p+ 1 coordinates and Dirichlet conditions for the others:

∂σX
a = 0 a = 0, 1, ..., p

XI = cI I = p+ 1, ..., d− 1.

Thus, the end-points of string can move freely on a (p+ 1)-dimensional hypersurface of space-
time called Dp-brane, where p is its spatial dimension. The branes are dynamical object in string
theory.
However this boundary condition breaks space-time Poincarè invariance, i.e. the Lorentz group
is broken to:

SO(1, d− 1) 7→ SO(1, p)× SO(d− p− 1).



Dirichlet

Neumann

Figure 2.2: Neumann and Dirichlet conditions.

Let us start from the solutions of equation of motion written in terms of Fourier modes:

Xµ
L(σ+) = 1

2x
µ + α′pµσ+ + i

√
α′

2
∑
n 6=0

1
n
α̃µne

−inσ+

Xµ
R(σ−) = 1

2x
µ + α′pµσ− + i

√
α′

2
∑
n 6=0

1
n
αµne

−inσ− ,

we impose on them the boundary conditions:

Neumann ∂σX
a = 0 αan = α̃an

Dirichlet XI = cI xI = cI , pI = 0, αan = −α̃an

So for both boundary conditions, we only have one set of independent oscillators, the others are
then determined by the boundary conditions.
Now we want to quantize the theory, thus we promote xa, pa and αµn to operator, where a =
0, 1, ...p (Neumann directions). So we expect that the open string quantization gives rise to states
which are restricted to lie on the brane.
Defining the light-cone coordinates lying on the brane:

X± =
√

1
2
(
X0 ±Xp

)
we can proceed to quantization in the same manner as for the closed string. The mass formula
for the states is:

M2 = 1
α′

p−1∑
i=1

∑
n>0

αi−nα
i
n +

d−1∑
i=p+1

∑
n>0

αi−nα
i
n − a

 . (2.27)

As in the closed string case we have the normal-ordering constant a, and the require of reduced
symmetry SO(1, p)×SO(d− p− 1) leads to same constraints d = 26 and a = 1. The differences
with the closed case are the overall factor (4) and the presence of only α-modes.

2.7.1 The open string spectrum
The ground state is defined through:

αin|0, p〉 = 0 n > 0, i = 1, 2, ...p− 1, p+ 1, ...d− 1, (2.28)



and its mass is negative:
M2 = − 1

α′
.

So, also the open string spectrum contains tachyons with mass halved compared to those of
closed string.
In the first excited state, N = 11, we must distinguish between two classes of oscillators.
The oscillators longitudinal to brane:

αa−1|0, p〉 a = 1, ..., p− 1

where the space-time indices transform under SO(1, p). These states provide a vector repre-
sentation for SO(1, p), thus are massless particles (M2 = 0) with spin s = 1 on the brane, i.e.
photons.
The oscillators transverse to brane:

aI−1|0, p〉 I = p+ 1, ...d− 1.

These states are scalar under SO(1, p), therefore they can be thought of as arising from scalar
fields φI(ξa) living on the brane, where ξa are the brane coordinates. They describe transverse
movements of the brane, and their coordinates dependence tell us that also deformations are
allowed. The fields φI provide a vectorial representation of SO(d− p− 1).
The higher excited states at generic level N are labeled by their masses M2 = 1

α′ (N − 1) and
spins. We have a their representation through discrete points of Regge trajectories.

2.7.2 Brane Dynamics
The branes are dynamical objects, indeed the massless fields φI(ξ) have a natural interpretation
as transverse fluctuations of the brane. Therefore the brane should have an action which describes
how it moves into space-time. This is the Dirac action:

SDp = −Tp
∫
dp+1ξ

√
−detγ,

where Tp is the tension of Dp-brane, ξa with a = 0, ...p are the worldvolume coordinates of brane,
and γ is the determinant of pull-back of ηµν into the worldvolume:

γab = ∂Xµ

∂ξa
∂Xν

∂ξb
ηµν .

Finally, we wonder if it is possible to quantize the brane? The answer, currently, is no, because
technical and conceptual problems arise. One of the problem is that the quantization of object
with higher dimension of string leads to continuous spectra.

2.8 Path integral Quantization
The Feynmann path integral is a way to represent a quantum theory and it contains, within its
definition, the interactions in string theory. The classical action (2.4) does not contain interaction
terms, and the interaction is inserted by summing over all possible world-sheets.

1N is the number operator, defined separately for transverse and longitudinal modes.



Let us perform the sum over world-sheets through the integration over the Euclidean world-sheet
metric hab(σ1, σ2) and over all embeddings Xµ(σ1, σ2) of world-sheet in Minkowski space-time:

Z [λ] =
∫
DXDhe−S[h,X,λ], (2.29)

where S = SP + λχ, with:

χ (Σ) = 1
4π

∫
Σ
d2σ
√
hR(2) + 1

2π

∫
∂Σ
dsk.

where R(2) is the Ricci-curvature of the world-sheet, ds is the proper time along the boundary in
the metric h, and k is the geodesic curvature of the boundary.2 The quantity χ depends only on
the topology of the world-sheet, it is the Euler number of surface. In the closed string case the
boundary integration is zero, therefore for Ricci-flat surface we can write χ (Σ) = 2(1−g), where
g is the genus of two-dimensional surface. Using this definition on the path integral (2.29), we
can look it as a sum on all the different topologies of world-sheet weighing by the factor g2g−2

s ,
with gs = e−λ. Therefore gs can be interpreted as a coupling constant, and the world-sheet sum
as a perturbative expansion.
Now the problem is that the path integral (2.29) is not quite right. It contains a huge quantity
of equivalent fields configurations (h,X), i.e. they are related to one another by diff × Weyl
local transformations, thus they represent the same physical configuration. In order to solve the
problem we define a new regoularized partition function ZR [λ] dividing the previous one by the
volume of this local symmetry group:

ZR [λ] =
∫

DXDh
Vdiff×Weyl

e−S[h,X,λ].

A way to isolate the divergent part of integral is to use the Faddev-Popov method. The result
is a regularized function integrated over all the fields X(σ), and the measure of integration is
weighed with the new quantity ∆FP (h), called Faddev-Popov determinant :

ZR

[
λ; ĥ

]
=
∫
DX∆FP (ĥ)e−S

[̂
h,X,λ

]
.

The symbol ĥ represent a some fiducial metric chosen using the gauge freedom, and ∆FP incorpo-
rates all possible inequivalent gauge transformation. It is possible to show that the Faddev-Popov
operator can written introducing Grassmann ghost fields ca and bab through the Sg(c, b) action:

∆FP (ĥ) =
∫
DcDbe−

1
2π

∫
d2σ

√
ĥbab∇acb .

A key feature of string theory is that it is not consistent in all spacetime backgrounds, but only
in those satisfying certain conditions. For Bosonic String the theory is consistent just in D = 26
dimensional space-time, and for the Superstring the require will become D = 10. In the light-
cone analysis, this condition arises by requiring the Lorentz-invariance of space-time. From a
world-sheet point of view the problem is related to transport of Weyl symmetry (classical) to
quantum level. Classically the Weyl symmetry require that the world-sheet energy-momentum
tensor is traceless, while at quantum level it is generally non-vanishing for curved world-sheet:

T aa (σ) = a1R
(2),

2k = ±tanb∇att, where ta is a unit vector tangent to the boundary and na is an outward pointing unit vector
orthogonal to ta. The sign + is for Lorentzian world-sheets, while the sign − for Euclidian world-sheets.



where a1 is a constant (Weyl anomaly), while R(2) is the Ricci-scalar of world-sheet. This
quantity can be related to the central charge of a CFT on a flat world-sheet. Since a conformal
transformation consists of a coordinate transformation plus a Weyl transformation, we obtain
the following equalities:

c = −12a1 T aa (σ) = − c

12R.

The world-sheet theory contains the fields Xµ(σ), with total central charge cX = D, and the
ghost fields (c, b), with total central charge cg = −26, thus the total central charge of the theory
is c = cX + gg = D − 26. The theory is Weyl-invariant only for D = 26. When the Weyl
anomaly is non-vanishing, different gauge choices are inequivalent, and pathologies appear (non-
unitarity, non-covariance). We conclude that a flat world-sheet CFT can be coupled to a curved
metric in a Weyl-invariant way if and only if the total central charge c is zero. Moreover the
central charge of anti-holomorphic sector must be c̄ = c, so to couple CFT and two-gravity in a
diffeomorphic-invariant way.

2.9 String in curved space-time
In this section we would like to consider an extension of String theory to curved space-time.
The fields Xµ(σ) on the Polyakov action can be thought of as coordinates of world-sheet manifold
Σ into a D dimensional space-time. Since these coordinates define a differentiable map:

i : Σ −→ MD,

the final space is called target space, and the map is called immersion. So far we have considered
only Minkowski space-time as target, with metric ηµν . The extension to curved spaces can be
implemented by replacing the flat metric ηµν(X) in the Polyakov action (2.4) with a general
metric Gµν(X):

SG = 1
4πα′

∫
Σ
dσ
√
hhabGµν(X)∂aXµ∂bX

ν .

The graviton is a string state, and this new action can be thought of as describing a coherent
state of gravitons by exponentiating the graviton vertex operator.
The inclusion of graviton on the world-sheet string action suggests a way to insert other string
states. In particular we want to include all massless bosons of spectrum so to fix the background of
theory. The immersion map induces a new function, called pull-back, that allows us to transfer the
2-form B = Bµνdx

µdxν ofM into a 2-form on the worldsheet i∗(B). Then, the new worldsheet
string action takes the form:

S = −T2

∫
Σ
dσdτ {[Gµν(x)∂aXµ∂bX

ν ] ηab + i∗(B)}

For closed surfaces (∂Σ = 0) this action is invariant under the gauge-transformation3:

B 7−→ B + dΛ, (2.30)

which allows us to say that the strings are charged with respect to gauge-field B, and the charge
is the tension T . Finally the dilaton can be inserted through a term like:

SΦ =
∫

Σ
dσdτΦ(x)

√
−gRg

3This can be shown using the Stokes theorem on the variation of the action.



that respect the symmetries of initial action.
The total new action becomes:

Sσ = 1
4πα′

∫
Σ
d2σ
√
h
[(
habGµν(X) + iεabBµν(X)

)
∂aX

µ∂bX
ν + α′RΦ(X)

]
. (2.31)

We remember that Bµν(X) is an anti-symmetric tensor on the space-time, while the dilaton
involves both the scalar field Φ(X) and the diagonal of Gµν(X). The action (2.31) is space-time
invariant under general change of coordinates Xµ −→ X ′µ(X), in particular Gµν and Bµν trans-
form as tensors and Φ(X) as a scalar. Moreover, the gauge invariance (2.30) is a generalization
of the electromagnetic gauge transformation to a potential with two anti-symmetric indices.
A field theory such as (2.31), in which the kinetic term is field-dependent and no-longer quadratic
in X, is called Non Linear Sigma Model (NLSM).
We expand the path integral around the classical solution as Xµ(σ) = xµ0 +Y µ(σ), and we obtain:

Gµν(X)∂aXµ∂bX
ν =

[
Gµν(x0) + ∂ωGµν(x0)Y ω + 1

2∂ω∂ρGµν(x0)Y ωY ρ + ...

]
∂aY

µ∂bY
ν .

For the field Y µ we find an action with quadratic, cubic,... interactions, with coupling constants
given by subsequent derivatives of metric. If Rc is the curvature radius of target space, the
derivatives of the metric are of order R−1

c . The effective dimensionless coupling is
√
α′R−1

c .
Therefore if Rc is much greater that the string scale ls, the coupling constant is small and the
perturbative theory is valid. Moreover, since we are working with length scales much larger that
the string length, we can ignore the internal structure of string and use low energy effective field
theory.
Finally, NLSM is a renormalizable theory: the dimension of fields Y µ is zero and all interactions
have dimension two. Nevertheless the couplings are infinite in number.



Chapter 3

Supersymmetry

Supersymmetry (SUSY) is a space-time symmetry that maps particles and fields with integer
spins (bosons) into particles and fields with half-integer spins (fermions), and vice versa, through
certain G generators. In supersymmetric theories each one-particle state has at least a super-
partner, therefore we can organize the states through super-multiplets of single particle states.
If SUSY is a local symmetry for the theory, then the theory must be diffeomorphic invariant:
this tight tie between General Relativity and supersymmetry is holding in Supergravity theories.
The number N of supersymmetry generators (fermionic) for a local and interacting theory, with
maximal spin 2, is limited. In any dimension, if the maximal spin of the theory is 2 then there
is a maximal number of 32 supersymmetries. In a d = 4 dimensional space-time, where a spinor
has 4 real independent components, there are at most 32 = 4 · 8 supersymmetries (N = 8), for
analogous reasons in a d = 10 space-time there are at most 32 = 16 ·2 supersymmetries (N = 2),
while in a d = 11 space time there are at most 32 = 32 · 1 supersymmetries (N = 1).
There are several theoretical reasons that lead us to introduce the supersymmetry. On the one
hand, the fermionic generators allow us to extend the Coleman-Mandula theorem, that pro-
vides a symmetry group of type ’Poincarè×Internal symmetries’, where the Poincarè generators
commute with the Internal algebra, which generators must be scalars. On the other hand the
Supersymmetry is the most plausible candidate to describe an extension of Standard Model.
We are interested in introducing supersymmetry in string theory to solve some failure of bosonic
string. The presence of tachyons in the bosonic string spectrum leads to instability of the vac-
uum. One basic symmetry principle that guarantees the absence of a tachyon in the string
spectrum is space-time supersymmetry. In order to define such symmetry we need to introduce
fermionic degrees of freedom on the space-time, which come from fermionic degrees of freedom
on the worldsheet.
We will discuss in this chapter fermionic string theories with worldsheet supersymmetry ([2],
[6], [7], [12]), but that don’t necessarily possess space-time supersymmetry, thus they will not
all be tachyon-free. The way to introduce supersymmetry into string theory imposing world-
sheet supersimmetry is called Ramond-Neveau-Schwarz procedure(RNS) which features manifest
world-sheet supersymmetry but lacks manifest space-time supersymmetry.
Another way, called Green-Schwarz formalism, is to request manifest space-time supersymme-
try at the cost of manifest world-sheet supersymmetry. The last procedure is not manifestally
Lorentz-invariant. These two procedures are equivalent up to GSO-projection that remove all
the unphysical states from the string spectrum, tachyons included.
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3.1 Superconformal field theory
Since the world-sheet of a bosonic closed string is described by a two-dimensional Conformal
Field Theory,we have previously discussed CFTs with bosonic fields. Now we are interested
to provide a description of world-sheet of a closed Superstring that means a two-dimensional
Superconformal Field Theory (SCFT). The SCFT is the generalization of a CFT with both
bosonic and fermionic fields related by supersymmetry.

3.1.1 N = 1 Superconformal Model
Let us start exploring the simplest case of SCFT in two-dimensions containing a free bosonic
field X(z, z) and a free Majorana fermion ψ(z, z). Using the map from cylindrical coordinates
to complex coordinates z = τ + iσ, z = τ − iσ, the action of the theory becomes:

SN=1 = 1
4πα′

∫
dzdz

[
2∂X∂X − α′

(
ψ∂ψ + ψ∂ψ

)]
.

We immediately note that there is an extra local symmetry, beyond the known ones, defined
through the chiral fields transformations:

δX = ε(z)ψ δψ = ε(z)∂X δψ = 0, (3.1)

and anti-chiral fields transformations:

δX = ε(z)ψ δψ = ε(z)∂X δψ = 0. (3.2)

If the action is invariant under both chiral and anti-chiral transformations, we say that the theory
is N = (1, 1) supersymmetric.
Using the Noether’s theorem we compute the supercurrents associated to this symmetry:

G(z) = i

(
2
α′

)1/2
: ψ∂X : G(z) = i

(
2
α′

)1/2
: ψ∂X : (3.3)

where we have imposed the Normal Ordering necessary to quantum level.
Since the bosonic and fermionic free fields are independent of each other, the energy-momentum
tensor is simply the sum of the bosonic and the fermionic one:

T (z) = − 1
α′

: ∂X(z)∂X(z) : −1
2 : ψ(z)∂ψ(z) :

T (z) = − 1
α′

: ∂X(z)∂X(z) : −1
2 : ψ(z)∂ψ(z) : .

(3.4)

The periodic identification of cylinder z ' z + 2π plus Lorentz invariance lead to two possible
periodicity conditions for ψ:

ψ(z + 2π) = e2πiνψ(z)
ψ(z + 2π) = e−2πiνψ(z)

where ν, ν = 0 identifies the Ramond sector (periodic) and ν, ν = 1
2 the Neveu-Schwarz one

(anti-periodic). The supercurrents have the same periodicity as the corresponding field. Thus,
there are four different Hilbert space labeled by the periodicity conditions on the holomorphic
and anti-holomorphic sectors (ν; ν): (NS −NS), (NS −R), (R−NS), (R−R). Since the



holomorphic and anti-holomorphic fermionic fields have conformal dimensions
( 1

2 , 0
)
and

(
0, 1

2
)
,

then their Laurent expansion is:

ψ(z) =
∑

r∈Z+ν
ψrz

−r−1/2 ψ(z)
∑

r∈Z+ν
ψrz

−r−1/2. (3.5)

Let us also recall the bosonic expansions:

∂X(z) = −i
(
α′

2

)1/2∑
r∈Z

αrz
−r−1 ∂X(z) = −i

(
α′

2

)1/2∑
r∈Z

αrz
−r−1. (3.6)

We summarize their non-trivial quantization rules:

{ψr;ψs} =
{
ψr;ψs

}
= δr;−s

[αm;αn] = [αm;αn] = mδm,−n
(3.7)

Using the two-point functions of bosonic and fermionic fields calculated on the first chapter, we
obtain the following OPE of the chiral current G(z):

G(z)G(w) = 1
(z − w)3 + 2T (w)

z − w
+ finite

T (z)G(w) = 3
2

G(w)
(z − w)2 + ∂G(w)

z − w
+ finite.

We immediately notice that G(z) is a primary field of conformal dimension
( 3

2 , 0
)
, likewise we

can obtain that also G(z) is a primary field of conformal dimension
(
0, 3

2
)
. This suggest us the

Laurent modes expansion:

G(z) =
∑

r∈Z+ν
Grz

−r− 3
2 with Gr =

∑
s∈Z

αsψr−s. (3.8)

We expand the new energy-momentum tensor (3.4) in a Laurent series T (z) =
∑
m∈Z Lmz

−m−2

in the usual way. This implies Lm = Lbosm + Lfermm leading to:

Lm = 1
2

{∑
r∈Z

: αrαm−r : +
∑
s∈Z+ν

(
s+ 1

2

)
: ψm−sψs :

}
. (3.9)

The normal ordering shift the zero mode L0 by a constant 1/16 in the Ramond sector.
We know that Lbosm and Lfermm satisfy the Virasoro algebra with central charge c = 1 and c = 1

2
respectively. Since these algebras are independent of each other, i.e.

[
Lbosm ;Lfermn

]
= 0,then we

find that the new Lm satisfy the Virasoro algebra with central charge c = 1 + 1
2 = 3

2 .
Using the commutation rules (1.23) of primary fields ∂X(z) (h = 1) and ψ(z) h = 1

2 with the
modes of stress energy-tensor, we obtain the commutator of Lm with the mode Gr:

[Lm;Gr] =
∑
s∈Z

([
Lbosm , αs

]
ψr−s + αs

[
Lfermm ;ψr−s

])
=
∑
s∈Z

[
−sαm+sψr−s + αs

(
−m2 − r + s

)
ψm+r−s

]
=
(m

2 − r
)
Gm+r.



Again, we calculate also the anti-commutator of two Laurent modes Gr and Gs:

{Gr;Gs} =
∑
p,q∈Z

{αpψr−p;αqψs−q} =
∑
p,q∈Z

(αpαq {ψr−p;ψs−q}+ [αq;αp]ψs−qψr−p)

=
∑
p∈Z

αpαr+s−p +
∑

u∈Z+ν

(
u+ 1

2

)
ψs+r−uψu −

∑
u∈Z+ν

(
r + 1

2

)
ψr+s−uψu

= 2Lr+s + 1
2

(
r2 − 1

4

)
δr+s,0.

We have obtained an extension N = 1 of Virasoro algebra. The specification N = 1 refers to
the fact that there is one superpartner for each bosonic field of initial theory: the free fermion
ψ(z) is the superpartner of the free boson, and G(z) is the superpartner of T (z). Finally, we
summarize the rules of N = 1 super Virasoro algebra with central charge c:

[Lm;Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n,0

[Lm;Gr] =
(m

2 − r
)
Gm+r

{Gr;Gs} = 2Lr+s + c

3

(
r2 − 1

4

)
δr+s,0.

(3.10)

The anti-holomorphic fields give a second copy of these algebras. The (3.10) algebra is infinite-
dimensional, however it contains, on the NS sector, a finite subalgebra generated by

{
L0;L±1, G± 1

2

}
=

osp (1|2). The corresponding super groupOSP (1|2) plays the same role for SCFTs as SL(2,C)/Z2
does for usual CFTs and can be used to define super quasi-primary conformal fields.
In analogy to CFT, let us define N = 1 superconformal highest weight state by the conditions:

Ln|h〉 = 0 n > 0
Gr|h〉 = 0 r > 0.

Then we can study highest weight representations of the N = 1 super Virasoro algebra. Unitary
highest weight representations are possible only for discrete values of the central charge:

c = 3
2

(
1− 8

(m+ 2)(m+ 4)

)
, (3.11)

with 0 < c < 3
2 .



3.1.2 N = 2 Superconformal Model
In this section we deal with an extension of previous model with two superpartners for each
field of bosonic theory. The N = 2 Superconformal theories have special applications in String
Theory.
Let us define a complex free boson Φ(z, z) in terms of two real fields X1,2(z, z):{

Φ(z, z) = 1√
2

(
X(1)(z, z) + iX(2)(z, z)

)
Φ∗(z, z) = 1√

2

(
X(1)(z, z)− iX(2)(z, z)

)
.

and the corresponding currents j(z) = i∂Φ(z, z) and j(z) = i∂Φ(z, z). Similarly we introduce
the complex free fermionic fields Ψ(z) and Ψ(z). We consider only holomorphic part and we
write the fields through their real components:{

(i∂Φ) (z) = i√
2

(
∂X(1) + i∂X(2))

Ψ(z) = 1√
2

(
ψ(1)(z) + iψ(2)(z)

)
.

Since we are considering the free theory, the energy-momentum tensor will be the sum of a
bosonic part with a fermionic part:

T (z) = − :
(
∂Φ∂Φ

)
: (z) + 1

2 :
(
Ψ∂Ψ

)
: (z) + 1

2 :
(
Ψ∂Ψ

)
: (z), (3.12)

where Φ(z) and Ψ(z) denote the complex conjugate of bosonic and fermionic fields, they are not
the anti-holomorphic fields. The Laurent modes Lm associated to T (z) are written in terms of
fields modes and satisfy a Virasoro algebra with central charge:

c = 1 + 1 + 1
2 + 1

2 = 3.

When we deal with complex fermionic fields, there exists another field of conformal dimension
h = 1 expressed in the following way:

JU(1)(z) = − :
(
ΨΨ
)

: (z) = −i : ψ(1)ψ(2) : (z) (3.13)

and associated modes:

Jn = +i
(

: ψ(1)ψ(2) :
)
n

= −i
∑
s∈Z+ν

ψ
(1)
n−sψ

(2)
s .

In analogy with the previous section , we can construct two new supercurrents fermionic fields:

G+(z) =
√

2i :
(
∂ΦΨ

)
: (z) G−(z) =

√
2i :

(
∂ΦΨ

)
: (z). (3.14)

Using the ordinary modes expansion for the bosonic and fermionic fields, and the fact that their
corresponding theories commute, we obtain following modes expansions for the supercurrents:

G±(z) =
∑

r∈Z±ν
G±r z

−r− 3
2

G±r = 1√
2

∑
s∈Z

(
α(1)
s ∓ iα(2)

s

)(
ψ

(1)
r−s ± iψ

(2)
r−s

)
.



Now, we have everything we need to compute the commutators and anti-commutators between
modes. The N = 2 superconformal algebra is expressed in terms of the Laurent modes Lm
of the energy-momentum tensor (generators of conformal symmetry), its superpartners G(±)

r

(generators of supersymmetry) and the modes Jn (generators of U(1) current). For half-integer
labels of G±r this algebra is also known as Neveu-Schwarz algebra, while for integer labels is
called Ramond algebra. Summarize the results.

[Lm;Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n,0

[Lm; Jn] = −njm+n[
Lm;G±r

]
=
(m

2 − r
)
G±m+r

[Jm; Jn] = mδm+n,0[
Jm;G±r

]
= ±G±m+r{

G+
r ;G+

s

}
=
{
G−r ;G−s

}
= 0{

G+
r ;G−s

}
= 2Lr+s + (r − s)jr+s +

(
r2 − 1

4

)
δr+s,0.

(3.15)

The first line is the usual Virasoro algebra with central charge c. The second and the third lines
tell us that G±(z) and J(z), respectively, are primary fields of conformal dimension hJ = 1 and
hG = 3

2 . The next two lines specify the U(1) current algebra, under which G± have charge ±1.
The last two relations describe supercurrents algebra.
Since the (3.15) admits a commuting subalgebra of Cartan generates by L0 and J0, then we can
label the states of Hilbert space through their charges respect these operators:

L0|h, q〉 = h|h, q〉 J0|h, q〉 = q|h, q〉.

The unitarity require the condition h ≥ |q|
2 , which is saturated by the chiral and anti-chiral

states |h, q〉 defined by the following conditions in the NS sector:{
G+
−1/2|h, q〉 = 0 chiral

G−−1/2|h, q〉 = 0 anti− chiral

and analogue conditions with theG±0 operators on the R sector. Now we focus on the holomorphic
sector of the theory, and we define Super primary states via the following equations:

G+
n+1/2|h, q〉 = G−n+1/2|h, q〉 = 0 ∀n ≥ 0.

These states have conformal weight h = q
2 . The operators G±−1/2 acting on primary fields define

a super primary field with the following four components:(
|h, q〉, G+

−1/2|h, q〉, G
−
−1/2|h, q〉, G

+
−1/2G

−
−1/2|h, q〉

)
. (3.16)

In the case of a chiral field the (3.16) defines a short supermultiplet BPS. These states are often
present in unitary supersymmetric theories.

3.1.3 Spectral Flow
A special characteristic feature of N = 2 SCFT is the so-called Spectral Flow. There exists
a continuous class of automorphisms of the N = 2 superVirasoro algebra that acts through



deformation of generators modulated by a continuous parameter η:

Ln =⇒ L′n = Ln + ηjn + η2

6 cδn,0

jn =⇒ j′n = jn + c

3ηδn,0

G±r =⇒ G′±r = G±r±η.

(3.17)

The new generators still satisfy the super algebra (3.15). We notice that the moding of the
generators G±r is changed. In particular, if the parameter η ∈ Z + 1

2 , then the flow maps the
Neveu-Schwarz sector, with half-integer modes for the supercurrents, into Ramond sector with
integer modes: there exists a one-to-one mapping between the sectors.
We will investigate the behaviour of corresponding representations under the spectral flow. The
one-parametr transformations (3.17) can be written through a unitary one-parameter group that
acts on the quantum mechanical operators and on the states as:

L′n = UηLnU
+
η , j′m = UηjmU

+
η , |φη〉 = Uη|φ〉.

The eigenvalues of the new generators (L′0, J ′0) are the same of old generators (L0, J0). The
conformal dimension and the U(1)-charge of new states don’t change comparated to the original
theory:

L′0|φη〉 = UηL0U
+
η Uη|φ〉 = Uηh|φ〉 = h|φη〉

j′0|φη〉 = Uηj0U
+
η Uη|φ〉 = Uηq|φ〉 = q|φη〉.

Since the Spectral Flow has no effect on the moding of generators Lm and Jm, we can compare
the new states |φn〉 with the old ones. We conclude that the Spectral Flow transforms the original
states into the new states through the map:

hη = h− ηq + η2

6 c qη = q − c

3η.

Let us consider a Spectral Flow transformation with η = 1
2 , that maps the Neveu-Schwarz sector

into the Ramond sector, and we write its action on a chiral primary field of weight h0:∣∣∣h0 = q0

2 , q0

〉
NS

=⇒
∣∣∣h1/2 = c

24 , q1/2 = q0 −
c

6

〉
R
.

In the Ramond sector there are different ground states with the same weigh h1/2 and different
many U(1)-charge q1/2 as there are chiral primaries in the NS sector.
We call Specral Flow operator the operator that maps the NS vacuum with h = q = 0 to Ramond
sector. This field must have conformal weight h = c/24 and charge q = −c/6.

3.2 N = (4, 4) superconformal field theories
The matter field on the world-sheet are the coordinates of string on d-dimensional space-time.
The treatment in terms of two-dimensional CFT allows us to split our analysis on chiral algebras
in two sectors: one purely holomorphic and one anti-holomorphic. These sectors can be to treat
separately. We have discussed the N = 1, 2 Superconformal algebras, now we will discuss N = 4
SCA, in the holomorphic sector. In order to complete our Strings description, we must consider



also anti-olomorphic sector. The result is a pair of Superconformal algebras indicated with the
supersymmetries numbers on both sectors

(
N ,N

)
.

Let us consider an extension of N = (2, 2) superconformal algebra by a current su(2)⊕su(2) with
c = c̃ = 6k, we obtain a N = (4, 4) superconformal algebra at level k. We are interested to the
case k = 1. The holomorphic N = 4 algebra is generated by four supercurrents G±(z), G′±(z)
of conformal weight (3/2, 0), the stress energy tensor T (z) and a su(2) Kac-Moody algebra
whose currents J3(z), J±(z) are contained into fermionic so(4). The commutation relations are
summarized below: [

Lm; j3
n

]
= −nj3

m+n [Lm; j±n ] = −nj±m+n

[Lm;G±r ] =
(
m
2 − r

)
G±m+r

[
Lm;G′±r

]
=
(
m
2 − r

)
G
′±
m+r[

2J3
m; 2J3

n

]
= 2mδm+n,0

[
J3
m; J±n

]
= ±J±m+n

[J+
m; J−n ] = mδm+n,0 + 2J3

m+n [J±m; J±n ] = 0[
j3
m;G±r

]
= ± 1

2G
±
m+r

[
j3
m;G′±r

]
= ∓ 1

2G
′±
m+r

[j±m;G∓r ] = ±G
′∓
m+r [j±m;G±r ] = 0[

j±m;G′±r
]

= ∓G±m+r

[
j±m;G′±r

]
= 0{

G±r ;G′∓s
}

= 2(s− r)J±s+r
{
G±r ;G′±s

}
= 0

{G+
r ;G−s } =

{
G
′+
r ;G′−s

}
= 2Lr+s ±(r − s)J3

r+s + 2
(
r2 − 1

4
)
δr+s,0.

(3.18)

The subscripts r, s take half-integer values for the NS sector and integer values for the R sector.
If the (anti)holomorphic sector of space of statesH of a field theory is the space of a representation
of (N = 4) N = 4 superconformal algebra then the theory is N = (4, 4) supersymmetric.
Unitary representations of N = 4 SCA are possible only for values of central charge with positive
integer levels. Furthermore, if the highest weight state (N = 4 superconformal primary state)
has weight h and su(2)R spin l ∈ Z/2, unitarity imposes also the constraints h ≥ l in the NS
sector, and h ≥ k

4 in the R sector.
There are two classes of unitary representations of N = 4 SCA labelled by (h, l): the BPS
(massless or short) representations, and the non-BPS (massive or long) representations.

MASSLESS
{
h = l l = 0, 1

2 NS sector
h = 1

4 l = 0, 1
2 R sector

MASSIVE
{
h > 0 l = 0 NS sector
h > 1

4 l = 1
2 R sector

The characters for the BPS and non-BPS representations in the NS sector are tabulated in the
appendix B of [11].
In the full N = (4, 4) SCFT, operators wich are BPS on both the left and right sides are called
1
2 -BPS, the operators that are BPS on one side and non-BPS on the other one are called 1

4 -BPS.
A realisation of smallN = 4 SCA at level k = 1 is given by a SCFT related to Type II Superstring
theories compactified on a K3 surface. In this case the 1

2 BPS primaries in the (NS −NS) sector
are the identity operator

(
h = h = l = l = 0

)
and 20 others operators

(
h = h = l = l = 1

2
)
which

correspond to 20 (1, 1) harmonic forms on K3.
Under Spectral Flow the identity operator is mapped into the ground state of the (R−R) sector
labelled with

(
h = h = 1

4 ; l = l = 1
2
)
. The others 20 operators are mapped into 20 ground states

with
(
h = h = 1

4 , l = l = 0
)
.

The K3 CFT also contains 1
4BPS primaries of spin

(
s, 1

2
)
and

( 1
2 , s
)
for integer s ≥ 1. They are



captured by the K3 elliptic genus in the NS sector decomposed into N = 4 characters:

ZNSK3 = 20chBPS1/2 + chBPS0 − chnon−BPS0
(
90q + 462q2 + 1540q3 + ...

)
(3.19)

where the latter factor counts the
(
s, 1

2
)
BPS primaries. Here we have assumed the absence of

more currents at generic moduli of theK3 CFT which may be justified by conformal perturbation
theory. In this case the only currents that appear on the non-BPS characters are the 1

4BPS.
Currents with generic spins can appear at special point of moduli space, they can be viewed as
limits of non-BPS operators.

3.3 Superstring
Let us consider the bosonic string action (2.4) described through the fields Xµ(τ, σ) representing
their coordinates on the d-dimensional space-time. From a world-sheet point of view these are d
scalar fields, but vectors in space-time. In order to require the local world-sheet supersymmetry,
through the RNS procedure, we must add a set of fields ψµa (τ, σ) , where a is a spinorial world-
sheet index, and µ a vectorial space-time one. Similarly we must add a fermionic superpartners
to world-sheet metric hab: the Gravitino χa(τ, σ), a scalar space-time but with a spinorial world-
sheet index. The new full action is:

S = − 1
8π

∫
d2σ
√
−h
[

2
α′
hab∂aX

µ∂bXµ + 2iψµρa∂aψµ+

−iχaρbρaψµ
(√

2
α′
∂bXµ −

i

4χbψµ

)]
.

(3.20)

where ρa are two Gamma matrices in two dimensions. This action is invariant under global
space-time Poincarè transformations, while the local world-sheet symmetries are:

Supersymmetry

δεX
µ =

√
α′

2 iεψ
µ

δεψ
µ = 1

2ρ
a

(√
2
α′
∂aX

µ − i

2χaψ
µ

)
ε

δεχa = 2Daε

where ε(τ, σ) is a Majorana spinor.

Reparametrisations-invariance (τ, σ) 7−→ (τ̃ , σ̃).

Weyl transformations

δΛX
µ = 0

δΛψ
µ = −1

2Λψµ

δΛχa = 1
2Λχa

where Λ(τ, σ) is a scalar function.



Super-Weyl transformations
δηχa = ρaη

where η(τ, σ) is a Majorana spinor. The other fields transformations are trivial.

Let us use the light-cone coordinates σ± and choose the gauge:

hab = ηab and χa = 0,

then the action (3.20) becomes:

S = 1
πα′

∫
d2σηµν

[
∂+X

µ∂−X
ν + i

2α
′ (ψµ−∂+ψ

ν
− + ψµ+∂−ψ

ν
+
)]
. (3.21)

There is still one residual gauge, therefore we can choose to fix the light-cone gauge analogous
to the bosonic case:

X+ = βα′p+τ ψ+
a = 0.

Imposing the latter conditions on the equations of motion, we obtain X− and ψ−a in terms of
transverse coordinates XI and ψIa.

3.3.1 Open Superstring
Let us now focus on the fermionic part of action (3.21). The equation of motions of fermionic
fields for the transverse directions are:

∂+ψ
I
− = 0 ∂−ψ

I
+ = 0

to which we have to add boundary conditions to string extremes. We choose:

ψI+(σ = 0) = +ψI−(σ = 0) ψI+(σ = π) = ±ψI−(σ = π),

where the sign ’+’ defines the periodic Ramond sector, while the opposite sign the anti-periodic
Neveu-Schwarz one.
We choose to work with a unique field defined as:

ψI(τ, σ) =
{
ψI−(τ, σ) σ ∈ [0;π]
ψI+(τ,−σ) σ ∈ [−π; 0]

The periodicity conditions in terms of the new field become:

ψI(τ,−π) = ψI(τ, π) Ramond sector
ψI(τ,−π) = −ψI(τ, π) Neveu-Schwarz sector.

We would like to construct the Hilbert space of theory, knowing that the whole Hilbert space
will be the sum up two sectors. Let us start with the anti-periodic sector, the mode expansion
of the general solution of the equations of motion is:

ψI(τ, σ) =
∑

r∈Z+ 1
2

bre
−ir(τ−σ). (3.22)

Now we calculate the momenta conjugated to fields and we compute the common Dirac brackets.
Finally, through the usual quantization procedure, we promote the modes br to operators and
we replace the Dirac brackets with anti-commutator:{

bIr , b
J
s

}
= δIJδr+s,0.



This relations tell us that the modes br with r < 0 are the creation operators, and oscillators
with r > 0 are annihilation operators.
Let us define the vacuum state |0〉NS on the Neveu-Schwarz sector as the state annihilated by
each positive modes:

br|0〉NS = 0 if r > 0.
The other states are obtained acting with the creation operators on the vacuum:

...
(
bI2
−r2

)nr2
(
bI1
−r1

)nr1 |0〉NS︸ ︷︷ ︸
Fermionic part

⊗ ...
(
αI−n

)]n
...|0, p〉︸ ︷︷ ︸

Bosonic part

(3.23)

We notice that the power of fermionic operator is 0 or 1, and the entire Hilbert space is the
tensor product between bosonic and fermionic space.
The new Number Operator includes a fermionic part and a bosonic part:

N⊥ =
∞∑
n=1

n
(
αIn
)+
αIn +

∑
r∈N+ 1

2

rbI−rb
I
r .

From a space-time point of view the entire state is a bosonic state.
Imposing the constraints, arising from the equations of motion of the metric, we find the mass
condition:

M2 = 1
α′
(
N⊥ + a

)
, (3.24)

where aB = − 1
24 and aF = − 1

48 . In order for the theory to be Lorentz-invariant we will show
that a = − 1

2 , then the critical dimension of Superstring theory is:

a = −d− 2
24

(
1 + 1

2

)
7−→ d = 10. (3.25)

Let us now look at the spectrum of the fermionic string in the NS-sector.
Let us start with the ground state |0〉NS ⊗ |0, p〉 that has no excited oscillators. The condition
(3.24) tells us that this state has a negative mass-squared:

M2 = a

α′

The corresponding particle in the space-time is a tachyonic scalar field.
The first excited states have N⊥ = 1

2 and are obtained acting on the fermionic vacuum state:

bI− 1
2
|0〉NS ⊗ |0, p〉. (3.26)

The result are (d − 2) states. Since there is not way to package these state into a massive
representation of Lorentz group on (d−2) dimensions, they must be massless particles, therefore:

M2 = 0 a = −1
2 .

These states are photons of space-time. In d = 10 all higher excited states will be massive, so
they will be representations of SO(9).
Let us now examine the states in the Ramond sector of Hilbert space, with periodic boundary
conditions. The modes expansion becomes:

ψI(τ, σ) =
∑
n∈Z

dIne
−in(τ−σ). (3.27)



Promoting the oscillation modes to operator, their anti-commutation rules are:{
dIn, d

J
m

}
= δIJδn+m,0, (3.28)

where the positive modes are annihilation operators, and the negative ones are creation operators.
Since there are also zero modes that satisfy a Clifford algebra

{
dI0; dJ0

}
= δIJ on the Euclidian

space of transverse coordinates, we expect to have space-time spinors. We introduce a new
representation of Clifford algebra through the creation operators

{
Di
}
, i = 1, 2, 3, 4 and the

annihilation operators
{
D
i
}
:

D1 = d1
0 + id2

0√
2

D
1 = d1

0 − id2
0√

2{
D1;D1

}
= 1

and analogous relations for the other operators.
Let us define the vacuum state in the Ramond sector as the state annihilated by each positive
mode and such that:

Di|0〉R = 0 i = 1, 2, 3, 4.
The states: (

D
4)\ (

D
3)\ (

D
2)\ (

D
1)\ |0〉R ≡ |R〉A

with A = 1, 2, 3, ...16 and \ = 0, 1 are Ramond vacua and Dirac fermions on d−2 = 8 dimensions.
These states form a reducible representation of SO(8):

16 = 8s ⊕ 8s

respectively generated by an even/odd number of vacuum fermionic operators.
The mass condition is (3.24) with aB = aR = 1

24 . In this sector the bosonic contribute delete
exactly fermionic contribute. Therefore the ground level, i.e. N⊥ = 0, are 16 massless states.
The other states are constructed acting with the creation operators on these vacua:

...
(
dI−n

)\ |R〉a ⊗ ... (αI−m)]m ...|0, p〉.
3.3.2 GSO-projection
It can be shown that the fermionic string theory with all the states in both the NS and R sectors
is inconsistent. This can be reconciled by making a truncation of the spectrum, called the
GSO (Gliozzi-Scherk-Olive) projection, which renders the spectrum tachyon free and space-time
supersymmetric.
Let’s define a quantum number, eigenvalue of operator (−1)F , where F is the world-sheet fermion
number. We impose that the new operator anti-commutes with the fermionic modes in both
sectors: {

(−1)F ; bIr
}

= 0
{

(−1)F ; dn
}

= 0

and commute with Hamiltonian, i.e. (−1)F is a conserved charge.
We assign the charge −1 to vacuum state on NS sector:

(−1)F |0〉NS = −|0〉NS

while on the R sector we have:
(−1)F |R〉A = ±|R〉A



with the sign ’+’ for states on the even representation 8s of SO(8) and ’−’ for states on the odd
representation 8s.
The GSO projection amounts to demanding that all states have chirality (−1)F = +1. Now we
arrive at a supersymmetric spectrum between two sector. Since the NS sector provides space-
time bosons, and the R sector space-time fermions, through GSO-projection we have introduced
the space-time supersymmetry in d = 10 and we have deleted the tachionic particles from the
spectrum.
We can simply see that the number of massless bosons and fermions is equal, it can show for
each mass level, we have N = 1 space-time SUSY.

3.3.3 Closed Superstring
We obtain the closed string by formally considering two open strings identified respectively with
the Left and Right sectors. In order to build the closed string spectrum, we must take the tensor
product of two open string spectra.
Since we want to eliminate the tachyons, we consider (−1)F = +1 on the NS-sector. We still
have the sectors listed in Tab.(3.1).

(NS,NS) and (R,R) sectors lead to space-time bosons, while the two sectors (NS,R) and

Left Right
NS+ NS+
R± R±
NS+ R±
R± NS+

Table 3.1: Oper Supertring Sectors

(R,NS) lead to space-time fermions. On the Ramond sector we have two different chiralities,
therefore we can choose between two inequivalent possibilities: to have same chirality in both
left and right sectors, or to have opposite chirality. In particular, the theory with (−1)FR =
(−1)FL = 1 is called Type IIB Superstring, while the theory with (−1)FL = − (−1)FR = 1 is
called Type IIA Superstring. These theories have no tachyons in their spectrum, and they are
the only two possible consistent superstring theories.

(NS+, NS+) , (R+, R−) , (NS+, R−) , (R+, NS+) Type IIA
(NS+, NS+) , (R+, R+) , (NS+, R+) , (R+, NS+) Type IIB

The massless spectrum in terms of representations of products of little group SO(8) for the IIB
Superstring is:

Bosons: [(1) + (28) + (35)v]NS−NS + [(1) + (28) + (35)s]RR
Fermions: [(8)c + (56)c]NS−R + [(8)c + (56)c]R−NS .

We find a total of 128 bosonic and 128 fermionic states, indicating a supersymmetric spectrum.
The massless spectrum of this theory is that of type IIB supergravity in 10 dimensions. In the
NSNS sector we have always a dilaton, a B-field rappresented by (28)s representation, and one
graviton corresponding to (35)v representation. In the RR sector we have one 1-form, one 3-form
and one 5-form self-dual. The fermionic degrees of freedom are those of two on-shell gravitinos
(56)c with spin 3

2 and of two spin 1
2 fermions, called dilatinos. The presence of two spacetime



supersymmetries (two gravitinos) is the signature of an N = 2 supersymmetric theory.
The massless spectrum in terms of representations of products of little group SO(8) for the IIA
Superstring is:

Bosons: [(1) + (28) + (35)v]NS−NS + [(8)v + (56)v]RR
Fermions: [(8)c + (56)c]NS−R + [(8)s + (56)s]R−NS .

In the bosonic sector we find the same degrees of freedom of the type IIB in the NSNS sector,
while in the RR sector we have one 0-form, one 2-form and one 4-form of a graviton in (35)v, an
anti-symmetric rank three tensor (56)v, an anti-symmetric rank two tensor (28), one vector (8)v
and one real scalar (dilaton). In the fermionic sector, there are two gravitinos with spin 3

2 and
two dilatinos of spin 1

2 . Again, we have N = 2 spacetime supersymmetry.
Both Type IIA and Type IIB theories own two supersymmetry generators GI , with I = 1, 2, that
are Majorana-Weyl spinors of SO(1, 9).[7] They have 32 = 16 + 16 real components, therefore
we say that the theories of Type II have 32 supercharges.
When we compactifies on a torus T 4, the result is a four-dimensional theory withN = 8 spacetime
supersymmetry, then there are still 32 supercharges corresponding to eight fermionic generators
(Majorana spinors of SO(1, 3)). However, other types of compactification reduces the number of
supercharges, i.e. the compactification breaks some supersymmetries.



Chapter 4

String compactifications

In General Relativity the space-time is dynamic and 4-dimensional, while the Bosonic String and
the Superstring theories are consistent only in respectively D = 26 and D = 10 dimensional
spaces-time. The idea is to write the D-dimensional space-time as a product of a d-dimensional
Minkowski space (e.g. 4-dimensional ’space-time’) and a some D − d-dimensional compact Rie-
mannian space:

MD =Md ×KD−d. (4.1)

The physics on length scales much larger than the size of K is the same as in a d-dimensional
Minkowski space: D − d dimensions have been compactified.
In the next sections of this chapter we follow the analysis of compactiofications given in [2], [6],
[7].

4.1 Toroidal compactification

Let’s consider a D = d+ 1-dimensional space-time with direction Xd periodic:

Xd ∼ Xd + 2πR.

This is called toroidal compactification along the Xd direction. The metric tensor can be splitted
between compact and non-compact directions:

ds2 = GDMNdX
MdXN = GµνdX

µdXν +Gdd
(
dXd +AµdX

µ
)2

where indices µ, ν run on non-compact dimensions 0, 1, ..., d−1. Let’s suppose that Gµν , Gdd and
Aµ depend only on the non-compact coordinates. Then the metric GMN is the most general met-
ric invariant under traslations of Xd. Moreover this form allows us reparametrisation-invariance
under the gauge transformations:{

X ′d(XM ) = Xd + λ(Xµ)
A′µ = Aµ − ∂µλ

arise as part of the higher-dimensional coordinate group. This mechanism that incorporate gauge
transformation through compactification is called Kaluza-Klein mechanism.
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Now we take a CFT of a single periodic scalar field X(z, z) ≡ Xd and set Gdd = 1, then its
worldsheet action is the same as a noncompact theroy:

S = 1
2πα′

∫
d2z∂X∂X.

The periodicity of the field has two main effect. One is that string states must be identified
under X ' X + 2πR. This requires that the translation operator exp (2πiRp) leaves the string
states invariant, so the center of mass momentum is quantized:

p = n

R
n ∈ Z. (4.2)

Another feature is special to string theory. Closed string states are labelled by number w of
times that winds around the compact direction:

X
(
e2πiz

)
= X (σ + 2π) = X(σ) + 2πRw. (4.3)

The integer w is the winding number.
We consider the Laurent expansion of e.o.m solutions:

∂X(z) = −i
(
α′

2

)1/2 ∞∑
m=−∞

αm
zm+1 , ∂X(z) = −i

(
α′

2

)1/2 ∞∑
m=−∞

α̃m

zm+1 . (4.4)

The total change in coordinate X around the string is:

2πRw =
∮ (

dz∂X + dz∂X
)

= 2π(α′/2)1/2 (α0 − α̃0) , (4.5)

the total Noether momentum is:

p = 1
2πα′

∮ (
dz∂X − dz∂X

)
= (2α′)−1/2 (α0 + α̃0) . (4.6)

We set the left and right momentum:

pL ≡ (2/α′)1/2
α0 = n

R
+ wR

α′

pR ≡ (2/α′)1/2
α̃0 = n

R
− wR

α′

(4.7)

so the Virasoro generators are:

L0 = α′p2
L

4 +
∞∑
n=1

α−nαn

L̃0 = α′p2
R

4 +
∞∑
n=1

α̃−nα̃n

(4.8)

The CFT on torus are a good representation for toroidal compactified dimensions in String
theory, and allows us to describe the two compactification effects on the strings.



4.2 Narain compactification
Let us generalize the analysis to k periodic dimensions:

Xm ' Xm + 2πR 26− k ≤ m ≤ 25, (4.9)

therefore we have d−k non-compact dimensions and the spacetime is nowMd×T k. We display
in this section an elegant mathematical description for general toroidal compactifications.
For any given compactification the spectrum of momenta (pL; pR) form a lattice in a 2k dimen-

sional vector space R2k. Let us work with dimensionless momenta lL/R =
(
α′

2

)1/2
pL/R and be

Γ the corresponding lattice. The OPE of two vertex operators is:

: eipL·XL(z)+ipR·XR(z) :: eip
′
L·XL(0)+ip′R·XR(0) :

∼ zlL·l
′
LzlR·l

′
R : ei(pL+p′L)·XL(0)+i(pR+p′R)·XR(0) :

i.e. as one vertex operator circles the other, the product take a phase e2πi(lL·l′L−lR·l
′
R). Then we

must require for all momenta l, l′ ∈ Γ:

l ◦ l′ = lL · l′L − lR · l′R ∈ Z,

that defines an internal product with signature (k, k) in R2k. For each integer lattice the condition
Γ ⊂ Γ∗ holds the modular invariance. The invariance under T : τ → τ + 1 require that L0 − L0
be an integer for all string states (it suffices to see the (1.51)), from which it follows that Γ is an
even lattice. Modular invariance under S : τ → −1/τ requires a more detailed calculation. Let’s
start from the partition function (1.56) generalised to k compactification dimension, and use the
following identity of δ function on the Poisson resummation formula:∑

l′∈Γ
δ(l − l′) = V −1

Γ

∑
l′′∈Γ∗

e2πil′′◦l,

where the volume of a unit cell of lattice Γ fixes the normalization. Therefore we can write:

ZΓ(τ) = V −1
Γ (η(τ))2k

∑
l′′∈Γ∗

∫
d2kle2πil′′◦l+πiτl2L−πiτl

2
R

= V −1
Γ (ττ)−k/2(η(τ))2k

∑
l′′∈Γ∗

e−πil
2
L/τ+πil2R/τ

= V −1
Γ ZΓ∗

(
−1
τ

)
where we have used the modular transformation S on the η(τ) function. Then the condition for
modular invariance is that Γ = Γ∗. Thus, the consistency conditions require that Γ be an even
self-dual lattice of 2k dimensions with signature (k, k).
We notice that these conditions depend on the momenta l only through the internal product
◦, which is invariant under O(k, k,R) transformations. However O(k, k,R) is not a symmetry
of the theory, but the product O(k,R)L × O(k,R)R, that changes only the basis of subspaces
(lL, lR) separately, is a symmetry for the theory. Therefore the space of inequivalent theories
corresponding to "inequivalent" lattices is:

O(k, k,R)
O(k,R)L ×O(k,R)R

(4.10)

This is equivalent to the earlier description in terms of the backgrounds of Gµν and Bµν .



4.2.1 T-duality
Let us consider a bosonic string theory in D = 26 dimensions with only X25 compactified in a
circle of radius R. The mass-shell condition (2.24) becomes:

M2 = n2

R2 + w2R2

α′2
+
(
N + Ñ − 2

)
(4.11)

the first term comes from the compact momentum, the second term from the potential energy of
the winding state, the third term from the oscillators, and the last term from zero-point energy.
At a generic value of R there are 242 massless states, as in the non-compact case, obtained by
w = n = 0 and N = Ñ = 1. However these states can be divided in four groups according to to
whether the oscillations are in the non-compact directions µ or in the internal direction:

αµ−1α̃
ν
−1|0, p〉

(
αµ−1α̃

25
−1 + α25

−1α̃
µ
−1
)
|0, p〉(

αµ−1α̃
25
−1 − α25

−1α̃
µ
−1
)
|0, p〉 α25

−1α̃
25
−1|0, p〉.

The second states are Kaluza-Klein vectors on space-time, while the last state is a scalar. This
massless spectrum is the same that we find by considering low energy field theory.
In our discussion of massless states we have omitted states that are massless for special value of
R. For R = α′1/2, also the conditions:

n = w = ±1, N = 0, Ñ = 1 n = −w = ±1, N = 1, Ñ = 0
n = ±2, w = N = Ñ = 0 w = ±2, n = N = Ñ = 0

defines massless states. The first four states includes four new gauge bosons that extend the
Kaluza-Klein symmetry U(1)× U(1) into SU(2)× SU(2).
The relation (4.11) tell us that as R → ∞ winding states becomes infinitely massive, while the
compact momenta give a continuous spectrum. Looking the opposite limit we discover that the
states carrying compact momentum become infinitely massive, while the winding states become
continuous. Therefore the energy cost to warp a string around a small circle is low. Compact
theories with small radii have similar spectra with noncompact theories, thus the limits R → 0
and R → ∞ provide the same physical theory. This equivalence is known as T-duality. In
particular the spectra of String theories is invariant under:

R↔ α′

R
n↔ w,

the transformations of background fields under this symmetry is given from Buscher’s rules.
Again, compactifications on very small circles correspond to compactifications on very large
circles. This is possible thanks to the existence of a typical length of string ls = 2πα′1/2. Under
T-duality the type IIA String theory is mapped to type IIB String theory and viceversa. The T-
duality leaves fixed the holomorphic fields ∂Xµ, ψµ, while it changes sign of the anti-holomorphic
counterparts ∂̄Xµ, ψ̄µ. At quantum level this transformation is implemented by an operator that
act on the right RR sector changing chiralities.
The compactification on several dimensions k enlarges the T-duality transformations to the
automorphisms group O(k, k,Z) of lattice Γk,k. Therefore the space of inequivalent lattice, i.e.
inequivalent backgrounds, is:

MΓk,k = O(k, k,R)
O(k,R)L ×O(k,R)R ×O(k, kZ) . (4.12)



4.3 Calabi-Yau compactification
In this section we would like to deal other compactifications beyond the toroidal one. The
requirements for compact theories are to resolve the discrepancy between the critical dimension
D = 10 of Superstring and d = 4 observed dimensions, and to provide a suitable low energy
description of Standard Model of particle physics.
Let us require that the space-time manifold be given by (4.1) and keep only constant modes on
compactified dimensions, so to obtain a dimensional reduction. N = 1, 2 supersymmetric theories
in D = 10-dimensional manifolds with toroidal compactification KD−d = T 6 yield to N = 4, 8
supersymmetric theories in d = 4 upon dimensional reduction. This is due to decomposition of
Weyl representation of SO(1, 9), where the supercharge Q lives, under SO(1, 3)× SO(6):

16 = (2L,4) +
(
2R,4

)
. (4.13)

The large amount of supersymmetry renders toroidal compactifications of Superstrings unreal-
istic. The supersymmetric extension of Standard Model requires N = 1 and d = 4 dimensions.
To obtain such theories we must consider other ways of compactification that preserve just some
supersymmetries, in particular we must understand the relation between the conserved super-
charges on d = 4 dimensions and the manifold K6.
The requirement of some unbroken supersymmetry under compactification leads to the existence
of Killing spinors ε(xM ), which parametrizes the supersymmetry transformations, that satisfies
the Killing conditions:

〈0|∇M ε|0〉 = 0
where ∇M is the covariant derivative containing the spin connections. This imposes topological
and differential restrictions on the manifold. In particular, for D − d = 6, K6 must have
Holonomy group H = SU(3) (sufficient) and must be a compact Ricci-flat manifold (necessary).
The decomposition of spinor representations 4,4 of SO(6) ' SU(4) under the Holonomy group
H gives us the number of singlet representations of H that there are on it. Since H can be seen as
the set of possible transformations of a vector v transported along a closed curve of manifold K6,
and the Killing spinors must remain unchanged under parallel transport, then they are singlet
under H.
We suppose that H = SU(3), then the spinor representation 4 of SO(6) is decomposed into
4SU(4) = (1 + 3)SU(3), which contains a singlet and a tripled. Therefore, if H = SU(3) there
is one covariantly constant spinor of positive and one of negative chirality ε±. Starting from a
D = 10 dimensional theory with N = 1 supersymmetry, using the decomposition (4.13):

ε = (εR ⊗ ε+) + (εL ⊗ ε−) ,

since ε is a Majorana spinor, hence (εR, εL) form a single SO(1, 3) Majorana spinor associated
to a single supersymmetry generator in d = 4.
If H = SU(2), the spinor representation 4 of SO(6) ' SU(4) is decomposed into 4SU(4) =
(1 + 1 + 2)SU(2). There would exist two covariantly constant spinors of each chirality: we ob-
tain N = 2 supersymmetries in d = 4.
If we consider Type IIA and IIB Superstring theories, starting from D = 10 and N = 2, the
number of supersymmetries on d = 4 is doubled.
We define Calabi-Yau manifold CYn as 2n-dimensional compact Riemann manifolds with Holon-
omy group SU(n) ⊂ SO(2n). They admit covariantly constant spinors and they are Ricci-flat.
For n = 1 there is only a family of CY1 manifolds: the torus T 2 parametrized by moduli space
(4.12) with k = 2. There are two classes of CY2 manifolds that we know: one is the torus T 4,
and one are the K3 surfaces. For n ≥ 3 there is a large number of distinct CYn’s classes.



We are interested to consider compactifications from D = 10 , N = 1 to d = 6. The require of
unbroken supersymmetry allows us toroidal compactification T 4 or K3 compactification. The
first case does not reduce the number of real supercharges (16 in D = 10 dimensions), therefore
we obtain a theory in d = 6 with N = 2 supersymmetries, or rather (1, 1), one on the left-
handed and the other a right-handed Weyl representations. In order to analyze the second case,
we decompose the 16 Weyl representation of SO(1, 9) under SO(1, 5)× SO(4):

16 = (4L,2) + (4R,2) ,

where 4L/R are the Weyl spinors representations of SO(1, 5), and 2,2′ are those of SO(4). The
supersymmetry parameter ε is a Majorana-Weyl spinor in SO(1, 9) with 16 = 8 + 8 real com-
ponent contained into 4L/R representations. Under SU(2) only one SO(4) spinor is covariantly
constant,i.e. 2, therefore ε gives only a 4L supersymmetry.
Starting from N = 2 in D = 10, K3 compactification leads to N = (1, 1) supersymmetries for
Type IIA, and N = (2, 0) for Type IIB.
When we compactify a higher-dimensional theory D on MD, we distinguish between internal
directions, along the compact subspace KD−d, and external directions, along the d-dimensional
Minkowski spaceMd. Now, we would like to know the resulting theory on d dimensions and how
this is related to choice of KD. If we consider toroidal compactifications, the procedure begins
with a splitting of total metric between internal and external components:

GMN = Gµν +Gmn, (4.14)

where the greek indices run into external dimensions µ, ν = 0, 1, .., d − 1, and the latin indices
rus into internal dimensions m,n = d, d+ 1, ...D − 1. We replace the metric (4.14) in the action
(2.31), and we Fourier expand the solutions of equations of motion in the internal directions.
The result is a set of decoupled equations for all massive modes, and zero modes independent of
the internal coordinates. We study the limit of small compactification radii (R → 0), in which
only zero modes remain light, while the others become very heavy and can be discarded. The
heavy modes correspond to strings carrying momenta along the internal directions (torus). The
discarding of massive modes coincide to eliminate the internal directions: we obtain a dimensional
reduction.
Other types of compactification on curved internal manifolds allows us to discard massive modes
on the R̃ → 01 limit and to obtain massless field corresponding to zero modes on internal
directions. However the massive modes are no longer decoupled from each other, therefore
setting massive modes to zero may not be a solution of equations of motion. Therefore, it is not
immediate to write the effective action for the zero modes.
The equation of motion of a field φmn...µν... (xR) is written through differential operators O = Od +
Oint of order p (with p = 1 for fermions and p = 2 for bosons):

(Od +Oint)φ = 0.

The zero modes are eigenstates of Oint operator with zero eigenvalue. For massless scalar fields
with KD−d compact manifold, we find Oint = ∇ with only one scalar zero mode, thus a scalar
on D dimension produces just one massless scalar on d dimension.
For massless Dirac fields Ψ the operatorsO are Dirac operators, O = ΓMDM , where the covariant
derivative depends by background metric and gauge fields. If D = 10 and d = 4 the zero modes
of /Dint are spinors in d dimension. The number of zero modes of /Dint depend to topological
proprieties of compact manifold, for CY3 compactification we have two zero modes (ε±).

1R̃ is a typical length scale of manifold KD−d



For massless fields of higher dimensions there are p-form gauge fields A(p) in d dimension with
field strength F (p+1) = dA(p). Imposing the gauge fixing d∗A(p) = 0 we obtain the following
equation of motion:

∆A(p) = (∆d + ∆int)A(p) = 0 ∆d = dd∗ + d∗d,

therefore the number of massless d-dimensional fields is given by number of zero modes of internal
Laplacian ∆int. This is a cohomological problem, and the number of zero modes is the Betti
number bm. For example, let’s consider the two-form BMN , under compactification we can divide
internal and external directions in the following form:

BMN → Bµν ⊕Bµm ⊕Bmn,

where the first term is a scalar respect to internal manifold and, since b0 = 0, it corresponds to
a single zero mode onMd. The second term yields b1 zero modes that are vectors inMd. The
third term produces b2 zero modes that are scalars on d dimensions. In general for each p-form in
D dimensions, we obtain bn massless fields, n = 0, 1, ...p, that are (p−n)-forms in d dimensions.
Now we would like to analyze the zero modes of metric GMN (x), which decomposes as:

GMN → Gµν ⊕Gµm ⊕Gmn

Again, the first term correspond to a single zero mode, the second term has massless modes if
b1 6= 0 which corresponds to massless gauge bosons in d dimensions. The last term yields mass-
less modes that are scalars in d dimensions and it can written through a fluctuation term hmn
around to vacuum expectation value: Gmn = g̃mn + hmn. In order to unbroken supersymmetry
the internal manifold must preserve Ricci-flatness: Rmn(g̃ + h) = 0. Therefore the fluctuations
hmn are degeneracies of vacuum that preserve the Ricci-flatness. They are celled (metric) moduli,
and they change the size and shape of compactification manifold, but not its topology.
The torus T 2 has one Kähler modulus (the area of the torus) and one complex structure mod-
ulus (the ratio τ). A fundamental propriety of compactification in String theory is that the
same theory is obtained through different compactification manifolds, e.g. T-duality on toroidal
compactifications.
Another example, coming from Calabi-Yau compactification and involving topologically differ-
ent manifolds, is the mirror symmetry. For each Calabi-Yau manifoldM, there exists a mirror
manifold M̂ such that IIA(M) = IIB(M̂), including perturbative and non-perturbative effects.
The manifolds of mirror pair have opposite Euler numbers. The mirror mapM↔ M̂ exchanges
complex structure and Kähler moduli among manifolds.

4.4 The world-sheet perspective
We want to analyze string theories on K3 surfaces from the world-sheet point of view. The
world-sheet approach describes perturbative aspects of the string theory.
We remember that on the world-sheet point of view the string theory is a two dimensional theory
given by the map from a Riemann surface (the string world-sheet) into a target space X:

ξ : Σ → X.

In the conformal gauge the action (2.31) is:

S = i

4πα′

∫
Σ

(Gµν −Bµν) ∂Xi∂Xjd2z − 2π
∫

Σ
φR(2)d2z + ... (4.15)



where we have not considered the fermions, and Gij , Bij , φ are respectively the Riemann metric
of target space, the components of real 2-form B and the dilaton, while R(2) is the curvature of
Σ. This two-dimensional theory is a non linear sigma model described in the last section of the
second chapter.
In order to obtain a consistent string theory we require that the two dimensional theory be con-
formally invariant with a specific value of central charge. This determines specifics constraints
on the various parameters of the theory. One way of require the conformal invariance is to set φ
constant, B closed and Gij Ricci-flat.
Imposing supersymmetry on the non linear sigma models we obtain an interesting relation be-
tween these and the Kähler manifolds. A world-sheet supersymmetry transformation will be of
the form:

δεX
i = εlijψ

j . (4.16)

When N = 1 we have necessarily lij = δij , while when N > 1 each additional l̃ij (lij = δij + l̃ij)
acts as an complex structure and gives to X the structure of a Kähler manifold for N = 2 and
of hyperkähler manifold for N = 4.
The conformal invariance imposes a division into the holomorphic and anti-holomorphic parts.
When X is a smooth K3 manifold we have an N = (4, 4) superconformal field theory, at least
to leading order in α′/R2. On this case, it has been demonstrated that there are no corrections
to the Ricci-flat metric after the leading term: the Ricci-flat metric is the exact solution on K3
surfaces.
The goal is to find the moduli space of conformally invariant non linear sigma models with K3
target space. We have three fields in the action, their variations span the moduli space. Since a
complete analysis is more complicate, we take some assumptions on the parameters variation.
We assume that any generic deformation of the Ricci-flat metric gij provides another inequiva-
lent Ricci-flat metric with an inequivalent conformal field theory. We have 58 parameters for the
metric (the dimension of moduli space of Einstein metrics on K3 surfaces (C.7) ). The closed
2-form B accounts 22 parameters because we have negleted its exact part, because it is irrelevant
under the map into target space. Finally we consider the dilaton. Since Φ is constant over Σ,
we consider that the last term of (4.15) contributes to action by a sum over the genera g of Σ
through the fuction 2Φ(1 − g). Since we are considering the perturbative limit of the theory,
where we can use the CFT on the fixed Σ surface, we will ignore this sum, thus we ignore the
dilaton for the moment.
We have 58 + 22 = 80 parameters to describe the moduli space.
N = (4, 4) superconformal field theory contains an su(2) ⊕ su(2) ' so(4) symmetry, this sym-
metry acts on the tangent directions to a point in the moduli space and so will be a subgroup of
the holonomy group. Therefore we must find a 80 dimensional space that contains SO(4) in the
holonomy group.
The Berger and Simons theorem assures us that any smooth neighbourhood of the moduli space
of conformally invariant non linear sigma models with a K3 target space is isomorphic to an
open subset of:

Tσ = O(4, 20)
O(4)×O(20) (4.17)

where Tσ is called Teichmüller space. Now we want to know the global structure of moduli space.
For this we are obliged to make assumptions about our CFT: let’s assume that the moduli space
be a Hausdorff space, then it is isomorphic toMσ ' Gσ \Tσ, where Gσ is a some discrete group.
The space Tσ is the Grassmannian of space-like 4-planes in R4,20, and must contain the Grass-
mannian of space-like 3-planes in R3,19 as subspace since this parametrised the Einstein metrics
on K3 surfaces that appears in the action S.



Let us introduce the even self-dual lattice Γ4,20 ⊂ R4,20: we would like to show that Γ4,20 play
the same role for non linear sigma models as Γ3,19 for Einstein metrics and that Gσ ' O(Γ4,20).2
Indeed, considered the previous theorem and the assumption that the moduli space is Hausdorff,
we have that the moduli space of conformally invariant non linear sigma models on a K3 surface
is:

Mσ = O(Γ4,20) \O(4, 20)/ (O(4)×O(20)) (4.18)

where the Teichmüller space can be to decomposed as:

Tσ = O(4, 20)
O(4)×O(20) '

O(3, 19)
O(3)×O(19) × R22 × R+

The first factor is the Teichmüller space for the metrics on the K3 surfaces, the second for the
B-field and the last for the volume.

4.5 Elliptic Genus of K3
Let’s consider a conformal field theory sigma-moldel with target space K3. Since this theory has
N = (4, 4) superconformal symmetry on the world-sheet, his space of states can be decomposed
into representations of superconformal algebra N = 4 for left and right movers. We can to write
the space of states decomposition:

H = ⊕i,jNijHi ⊗Hj (4.19)

where i and j labelled the different N = 4 algebra representations, and Nij is the multiplicity of
Hi⊗Hj representation in the whole space. We remember that these representations are labelled
by two quantum number corresponding to Cartan generators L0 and J0 (respectively L0, J0).
Let us define the Ramond-Ramond ground states (RR) of a N = (4, 4) SCFT as the set of states
of Hilbert space that are annihilated by all the positive modes of the generators of two copy
of (3.18) algebra and by zero modes of the fermionic currents. At the moment we focus our
attention just to chiral sector of the Hilbert space and we introduce the Witten index through
the following definition:

W (τ) = TrH

[
(−1)J0 qL0− c

24

]
, (4.20)

where H is just the chiral sector of whole Hilbert space. Using the commutation relation of
superconformal algebra, we easily see that only Ramond ground states contribute to this quantity.
Therefore the Witten index is independent by τ and count the number of Ramond ground states
on H. If we perform the same analysis for a non-chiral theory, with both left- and right moving
degree of freedom, the Witten index will count the number of states that are Ramond ground
states for both left and right copy of N = 4 superconformal algebra.
[16] [17] Let us consider the partition function for a NLSM on some Calabi-Yau. While this can
been calculated explicitly at some special points in the moduli space, the exact expression for a
generic Calabi-Yau is not known. However, there exist a new function, independent of the metric
and the choice of B-field of target space manifold, but dependent of his topology, called Elliptic
Genus and defined as:

φ(τ, z) = TrRR

(
qL0− c

24 qL0− c
24 (−1)F+F yJ0

)
. (4.21)

2O(Γ4,20) contains elements that exchange two orthogonal Γ2,10 sublattices and which they identify a pair of
theories on K3 related by Mirror symmetry.



This trace is taken on the RR part of spectrum, the bar represents the right-moving modes,
q = e2πiτ and y = e2πiz, F and F are the left-right-moving fermionic number operator, and
J3

0 is the zero mode of current J3 coming from superconformal algebra. Notice that the elliptic
genus does not depend on τ , because only right-moving ground-states contribute to the function,
thus it is an holomorphic function. The other right-moving states that are not annihilated by
a supercharge zero mode appear always as a boson-fermion pair: their contribution vanishes
because (−1)F weighs the two states with opposite signs. The same thing does not happen for
left-moving contributions because of the yJ3

0 factor.
The partition function count all states of Hilbert space on the left and right sector, while the
Witten index counts only RR ground states. The Elliptic genus counts states that are Ramond
ground states on the right side and unconstrained on the left-moving of Hilbert space.
Since we are considering superconformal theories with K3 target space, in this thesis we will
focus on the Elliptic Genus for sigma models on K3.
A path integral interpretation shows that the (4.21) function has nice transformation proprieties
under modular transformations. Moreover the Spectral Flow automorphism of the algebra leads
constraints on the eigenspaces of L0, J0 operators. From this facts, it follows that the Elliptic
Genus defines a weak Jacobi form of weight zero and index one.
A weak Jacobi form of weight w and index m is a function:

φw,m : H+ × C →→ C

(τ, z) → φw,m(τ, z)

that satisfies the following transformation proprieties:

φw,m

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)w e2πim cz2

cτ+dφw,m (τ, z)
(
a b
c d

)
∈ SL (2,Z) (4.22)

φw,m (τ, z + lτ + l′) = e−2πim(l2τ+2lz)φw,m(τ, z) l, l′ ∈ Z, (4.23)
and admits the following Fourier expansion:

φ(τ, z) =
∑

n≥0,l∈Z

c (n, l)nnyl

with c (n, l) = (−1)wc (n,−l).
Weak Jacobi form have been classified and there is only one weak Jacobi form with w = 0 and
m = 1 up to normalisation. Therefore the (4.21) must agree with this unique form. We can
write the form φ0,1(τ, z) as

φ0,1(τ, z) = 8
∑

i=2,3,4

θi(τ, z)2

θi(τ, 0)2

where θi(τ, z) are the Jacobi Theta function defined in the Appendix A. Since the coefficients
of the function are integer numbers they cannot change continuously as one moves around in
the moduli space of K3 sigma-models: the Elliptic Genus must stay invariant under model
deformations.
Therefore we need to define only one topological invariant of target surface to fix the whole
elliptic genus. This quantity can be identify with φ(τ, 0), that correspond to topological Euler
characteristic of target surface. For two topologically distinct surface T 4 and K3, that are the
unique types of CY2, we obtain the following result:

φM(τ, z = 0) =
{

0 M = T 4

24 M = K3.
(4.24)



Let be H(0) the Hilbert space of states whose right-moving part are the ground state: they are all
states that contribute to Elliptic Genus. We can decompose H(0) on irreducible representations
of N = 4 superconformal algebra:

H(0) = 20 · Hh= 1
4 ,j=0 ⊕ 2 · Hh= 1

4 ,j=
1
2
⊕
∞∑
n=1
DnHh= 1

4 +n,j= 1
2

(4.25)

where Hh,j denotes the irreducible representation whose Virasoro primary states have conformal
weight h and transforms on spin j representation of su(2). In this language, we can write the
(4.21) as: [18]

φK3(τ, z) = 20χh= 1
4 ,j=0(τ, z)− 2χh= 1

4 ,j=
1
2
(τ, z) +

∞∑
n=1

Anχh= 1
4 +n,j= 1

2
(τ, z) (4.26)

where χ 1
4 ,j

is the character of the massless representation (BPS), while χ 1
4 +n,j is the characters of

the massive representation (non-BPS). Following Eguchi, Ooguri and Tachikawa observation[19]
the coefficients An are sums of dimensions irreducible representations of M24.
By analogy with Monstrous Moonshine, in order to study the origin of this coefficients An, we
introduce a discret symmetry group G of our superconformal angebra and see how his elements
g acts on the space H(0). Let us define the analogues of the McKay Thompson series, called
Elliptic Twining Genus:

φg(τ, z) = TrH(0)

(
gqL0− c

24 qL0− c
24 (−1)F+F yJ0

)
. (4.27)

This quantity is invariant under deformations of the model as long as g is a symmetry.
It is possible to shown that the Elliptic Twined Genera are also weak Jacobi form of weight
zero and a some index, with suitable proprieties of transformation under a modular subgroup of
SL(2Z) which depends on the twining symmetry g.
This new function can be seen like φK3 replacing dimension An = dim(Hn) by the trace of the
g element TrHn(g). Then the character decomposition of this new function has the form:

φg(τ, z) = 1
2

[
TrH 1

4 ,0
(g)χh= 1

4 ,j=0(τ, z)− TrH 1
4 ,

1
2

(g)χh= 1
4 ,j=

1
2
(τ, z)+

+
∞∑
n=1

TrHn(g)χh= 1
4 +n,j= 1

2
(τ, z)

] (4.28)

The character of g only depends on its conjugaty class.





Chapter 5

Orbifolds

Let us consider a differentiable manifoldM and let G be a finite group that acts onM through
the following map:

φg : G×M 7→ M
(g, x) 7→ φg(g, x) = g(x)

Let us define G-orbits inM as the equivalence classes respect to the group action:

[x] = {y ∈M| ∃g ∈ G such that y = g(x)}

Now we can introduce the quotient space of the orbits of G onM:

M/G = {[x] |x ∈M} . (5.1)

This space is not always a manifold, in general it defines a mathematical object called orbifold.
If the group of transformations acts on the coordinates of manifold without fixed points,then
the quotient space M/G is a non-singular smooth manifold. If the group G, or whatever its
subgroup, act on the manifold leaving fixed points,then the quotient space is an orbifold with a
certain discret number of singularities.
From now on we will focus on Riemannian manofoldsM, of which G is an isometry group.
We want to give now an example, let’s beM = R2 = C the initial manifold and Zn (n-th square
roots of complex unit group) the finite group that act on manifold through:

gz = e2πik/nz, ∀z ∈ C,

Orbifold
g′x gx

x

Figure 5.1: C/Z6 orbifold.
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this action identifies every z ∈ C with other (n−1) points in C. Notice in graphic representation
that this action identifies a fundamental domain under the Zn action. In other words, distinct
points in the fundamental domain belong to distinct orbits are between them non equivalent and
every C/Zn element has a representative on the fundamental domain.
The domain ends points (rays) are identified, therefore the geometrical representation of this
orbifold is a cone. Let us define fixed point on M respect to H < G action the point x ∈ M
such that:

h(x) = x ∀h ∈ H < G.

The origin represents a fixed point under the whole group action. In general it’s possible to own
more fixed points or entire subspace of manifold that are invariant under the action group. These
points, in this case the point x = 0, make the quotient space not everywhere differentiable: C/Zn
is not a manifold. The curvature of the geometric object is zero everywhere except in the fixed
points, where it is not well defined. For this reason, the quotient space is not a manifold and it
falls into the class of orbifolds.
In this brief introduction we have provided a geometrical idea of orbifold through a simple case
in which the group G is Abelian, but nothing prevents us to consider non-abelian group.
We seen now how to use this object in a CFT theory.

5.1 Orbifolds in CFT
A general CFT is made up of a set of conformal fields whose product operators generate a closed
algebra. For consistency it is necessary to restrict to CFT constructed by mutually local fields
that generate subalgebras that make the theory local: i.e. such that the operators products are
single valued.
The local fields create asymptotic string states, the string scattering amplitudes are written in
terms of the correlation functions.
The simplest conformal theories that we have described in the first chapter are those of free
bosons and fermions. Using the state-operator cerrespondence, for a boson we have the identity
operator and the operators associated to the fields ∂X(z), ∂X(z) and eik·X . If we take a field
X(z, z) compactified on a circle of radius R we obtain only a discrete set of exponential operators.
For a fermion, we have again the identity operator, the operators associated to fields ψ(z), ψ(z)
and spin fields σ(0)1 that change the sign of ψ when carried once around the origin: this set
of field is not local. The point z = 0 in the local conformal coordinates is a branch singularity
point. This forces us to take a cut on the target space and, so the correlators of the theory are
not local.
We might construct the twist field σ(w) around which the bosonic field X(z, z) is anti-periodic.
In order to obtain a local theory, we must impose several conditions on the geometry of the
space-time. Let X (z, z) be compactified in a circle of radius R (X ∈ [0, 2πR[), as this operator
turns around the twist operator σ(w) the map X(z) takes a minus sign. If we wanted to restore
the locality of the theory, we must identify the target space respect to Z2 symmetry: X ∼ −X.
Now, the twist fields, such that if X(z, z) turn around it transforms as X 7→ −X can be included
in the theory.The points X = 0 and X = πR are fixed under the Z2 action. Tracing X around
an infinitesimal contour about w, called punctures, shows that the string wraps once around one
of these fixed point. We can define a twist operator for each fixed point. [13]
The Hibert space of the new theory contains new sectors. The untwisted sector, containing the

1 σ(z) is the twist operator, whose operator product with the fermion operator is defined to have a square-root
branch cut. When the field ψ is transported around σ it changes sign and the twist field σ can be used to change
the boundary conditions on ψ.



vacuum state, its descendants and the Verma modules of combinations of highest weight fields
∂X and eik·X . The twisted sectors, containing the states created by various twisted operators
acting on the untwisted fields.
The twist fields provide local boundary condition to the map from a neighbour of wi, where
they are localized, to space-time. They also contain global information needed to determinate
the asymptotic behavior of the Green functions on the new theory through their OPE with
the bosonic and fermionic fields. These informations are not sufficient to uniquely determine the
Green functions: again other terms depending from classical fields having the correct monodromy
around the punctures wi can be added. In order to specify these terms, we need to see the global
change of the fields of the theory when they are transported through closed loops that turn
around two or more vertex punctures. The change can be understood by looking the string
on its world-sheet point of view. The geometry background should contain the global needed
information, and is responsible of existence of the twist fields: it is a geometry of orbifolds.
The require of locality imposes conditions on the choice of geometry of the target space-time.
Since we want a CFT that be a sigma model on an orbifold target space, we start from the sigma
model on the manifoldM, we implement its operator space through the G action and we impose
the locally conditions. Let us summarize the procedure of construction of a conformal theory on
a generic target spaceM/G, where G is a discrete group. Let us consider a CFT, the group G
is a symmetry for our theory if these conditions are respected:

• The vacuum is G-invariant ;

• The energy-momentum tensor T (z) is G-invariant;

• The correlation functions are G-invariant.

From a world-sheet standpoint, a string Xµ(z) is a map from string world-sheet (z coordinate)
to target space (Xµ, µ = 0, 1, ..d − 1) defined by the d- dimensional manifold M. Let G be a
symmetry of our theory: if G is an isometry ofM, then we can construct a CFT in the orbifold
M/G.
In order to build orbifold CFT, we start from states and operators in the manifold and keep
only those invariant under symmetry G (we could have said only operators exploiting the corre-
spondence State-Operator). The projection procedure will be necessary to assure us the locality
of the theory. There will be of course invariant operators, since we have supposed that G is a
symmetry for our theory: at least the vacuum state and the energy-tensor operator are invariant
under symmetry. This projection under invariant states define the untwisted sector of Hilbert
space of whole theory, closed respect to OPE.
Now we can write the partition function of theory on this untwisted sector: the result is a func-
tion non modular invariant: the new CFT theory is not consistent. The solution consists in
introducing new states in the initial theory: this states are contained in the twisted sectors.
The theory equipped with the new Hilbert space is non-local, we must perform a project opera-
tion on the G-invariant subspaces in the various sectors.
We said that the operators in the twisted sectors produce cuts in the target space, that make the
theory not local. In the other words the non-locality is due to the fact that an operator defined
in a point feels the action of another operator (twist operator) defined in another point.
In order to perform the projection we need to define the G action on the twisted operator. Let
us consider the G-action on operators in the untwisted sector:

Φ(g · z) = R(g)Φ(z).



In order to find the G-action on the twisted operators, let us define the G-action on the twisted
ground state:

ρ : G→ GL(twisted sector)
g → ρ(g)|tw〉

and let us consider a non-vanishing correlator of a certain untwisted operator Φ and two twisted
states |tw〉, |t̃w〉:

〈t̃w|Φ(z)|tw〉 (5.2)

If G is a symmetry of the theory, then the correlator (5.2) must be G-invariant. This condition
provides a connection between the G action on the untwisted operators (that corresponds to
an action on the untwisted states, via state-operator correspondence) and the G action on the
twisted states:

R(g)Φ(z) = ρ(g)Φ(z)ρ−1(g).

This tell us that the group representation on the twisted sector is defined by the representation
on the untwisted sector up a phase. To find the phase we consider the fact that the product of
two twisted operators is a untwisted operator:

Φtw(z)Φtw(0) = Φuntw

so:
ρ(g)Φtwρ(g)Φtw(0) = R(g) · Φuntw

here we have ρ2, therefore we can define the phase.

5.2 Strings on orbifold
We are interested in considering the string propagation on an orbifold target space.[15] In par-
ticular we will focus our attention on spaces constructed by quotient a torus T d with a discret
group G, called toroidal orbifolds. First, let us analyse a general method to construct of orbifold
spaces.
Let M be a manifold of Euclidean space and G a group that preserves his metric, then G is
necessarily a subgroup of rotations and translations Euclidean group. The torus T d could be
seen like the Euclidean space Rd quotiented with discrete translations d-dimensional group Zd.

T d = Rd/Zd. (5.3)

We would like to generalize this example, inserting inside the discrete group the rotations or more
rotations and translations combinations: this generalisation is called space group and indicated
with S. A generic element of the space group S can be to indicate with the notation g = (θ, v),
where θ is a rotation and v a translation. The g element acts on the space element x by:

g · x = θx+ v. (5.4)

The quotient space Rd/S is formed by set of orbits through g ·x ∼ x. The following relations are
valid in S:

(i) (θ, v)(ω, u) = (θω, v + θu)
(ii) (θ, v)−1 = (θ−1,−θ−1v)

(iii) (θ, u)(1, v)(θ, u)−1 = (1, θv)
(5.5)



Let Λ be the S subgroup of pure translations, defined by elements of type (1, v) that defines the
d-dimensional torus T d = Rd/Λ. We can also consider the point group P, subgroup of O(d), of
the rotations θ represented by an element g = (θ, v) ∈ S for a certain v. For each element θ ∈ P
there is a single v that defines the g element. This involves that P has a well defined action,
denoted with P = S/Λ, on T d. This brings us to two equivalent ways of describing orbifolds:
we can start with euclidean space and divide by the space group or equivalently consider the
corresponding torus and divide by the point group.

Ω = Rd/S = Rd/Λ
P

= T d

P
. (5.6)

We are interested in building orbifolds for compactification of superstrings onM1,3×T 2×M/G,
where dimM = 4. Therefore we would like to classify the four dimension space groups. Actually
we can limit this classification requiring particular proprieties for our theory. If we want to
preserve the supersymmetry N = 1 in four dimensions, the point group P should be a discrete
subgroup of SU(2), otherwise it could be a discrete subgroup of SO(4).
To describe the string Hilbert space on an orbifold we start by considering string propagation
on the manifold before dividing by the group action. To each element g in the group, there is
an operator g acting on the string Hilbert space. If we want that x and gx are the same point
in the orbifold we should consider the subspace of the Hilbert space invariant under the action
of g: g should act as the identity operator for the orbifold.
Let us start with Rd and divide it by the discrete translation group Zd to obtain the torus
T d. To each translation v ∈ Zd corresponds an operator eiPv that acts on the string Hilbert
space defined on Rd. The projection onto the subspace invariant under these actions amounts
to requiring that the eigenvalues of the momentum operator lie on the dual lattice to the lattice
defined by Zd. This subspace defines the string Hilbert space for T d, where the string states are
labelled by discrete values of the momentum.
If we were describing open strings that would be all that is necessary. For closed strings we must
increase our requires. The usual boundary condition for closed string is:

X(σ + 2π) = X(σ),

with minus signs in some fermionic sector. Now this is not the only possibility because on the
orbifold the identification gX ∼ X leaves that we could request X(σ + 2π) = gX(σ) for some
g ∈ G. This implies that for each g element we get a sector Hg of the Hilbert space in which
the boundary conditions are changed to periodicity up to g transformation. These are twisted
sectors.
In the previous example we should define sector Hv in which X(2π) = X(0) + v, where v is a
translation in T d. These sectors are just the winding sectors in which the string wraps around
the torus. The twisted sectors must be included since they can be pair produced in interactions
of untwisted strings. As we already said, they are also necessary to ensure modular invariance.
The projection of twisted sectors onto the group invariant subspaces is more complicated when
the group is non abelian because some group elements take one twisted sector to another. Let’s
consider the sector Hg and we act through h in a state of this sector. The start point is mapped
onto hX(σ) and the final point onto hX(σ + 2π) = hgX(σ) = hgh−1(hX(σ)). Now the string
periodicity is give by hgh−1, thus is in the Hhgh−1 twisted sector. So to form group invariant
states we will take a state in the sector Hg, project it onto invariant subspace of centralizer,
or little group, of g, and then take the sum of corresponding states from sectors in the same
conjugacy class: we build sectors divided by conjugacy classes.



5.3 NLSM on K3
Let us consider the superstring action with four pairs of bosonic currents ja(z) = i∂Xa(z) and
j̃b(z) = i∂Xb(z), and four pairs of free real fermions ψa(z) and ψ̃b(z) with a, b = 1, 2, 3, 4 on T 4.
The chiral algebra of any T 4 model contains a bosonic u(1)4 algebra, a fermionic so(4) algebra
generated by : ψa(z)ψb(z) : with 1 ≤ a ≤ b ≤ 4, , and 16 fields of weight (3/2, 0) of the form
: ψi(z)jk(z) :. In particular contains a small superconformal algebra N = 4 described in the
section 3.2.
It is useful to define the set of complex bosonic fields:

∂Z1(z) = 1√
2
(
j1(z) + ij3(z)

)
∂Z1∗(z) = 1√

2
(
j1(z)− ij3(z)

)
∂Z2(z) = 1√

2
(
j2(z) + ij4(z)

)
∂Z2∗(z) = 1√

2
(
j2(z)− ij4(z)

)
,

and the set of complex fermionic fields:

χ1(z) = 1√
2
(
ψ1(z) + iψ3(z)

)
χ1∗(z) = 1√

2
(
ψ1(z)− iψ3(z)

)
χ2(z) = 1√

2
(
ψ2(z) + iψ4(z)

)
χ2∗(z) = 1√

2
(
ψ2(z)− iψ4(z)

)
,

and their corresponding anti-chiral fields.
By the new complex fields we can define the N = 4 supercurrents:

G+(z) =
√

2i
(

: χ∗1(z)∂Z(1)(z) : + : χ∗2(z)∂Z(2)(z) :
)

G−(z) =
√

2i
(

: χ1(z)∂Z∗(1)(z) : + : χ2(z)∂Z∗(2)(z) :
)

G′+(z) =
√

2
(
− : χ∗1(z)∂Z∗(2)(z) : + : χ∗2(z)∂Z∗(1)(z) :

)
G′−(z) =

√
2
(
− : χ1(z)∂Z(2)(z) : + : χ2(z)∂Z(1)(z) :

)
(5.7)

Using the propriety so(4) = su(2)⊕ su(2), we define the two su(2) currents:

J3(z) = 1
2
(
: χ∗1(z)χ1(z) : + : χ∗2(z)χ2(z) :

)
J+(z) = i : χ∗1(z)χ∗2(z) : J−(z) = i : χ1(z)χ2(z) :,

(5.8)

and

A3(z) = 1
2
(
: χ∗1(z)χ1(z) : − : χ∗2(z)χ2(z) :

)
A+(z) = i : χ∗1(z)χ2(z) : A−(z) = i : χ1(z)χ∗2(z) : .

(5.9)

The first set of currents, J3(z) and J±(z), are exactly the ones that appear in the definition of
the N = 4 superconformal algebra.
NLSMs on K3 are two dimensional N = (4, 4) superconformal fields theories with central charge
c = c = 6. They arise as the worldsheet description of perturbative type IIA string theory on a
K3 surface.
In this thesis we want to consider toroidal orbifolds of type T 4/G, where G commutes with



the whole N = (4, 4) superconformal algebra. The resulting orbifold should still be a SCFT
with N = (4, 4) superconformal algebra and central charge c = 6. Since the only SCFT with
N = (4, 4) superconformal algebra are NLSMs on T 4 or K3, we expect that the conformal theory
on the orbifold target space T 4/G is one of them.
Through the computation of the Witten index (4.20) for the orbifold theory, we can distinguish
between these two cases.
In the next sections we are going to consider new orbifold models that had never been studied
before.

5.4 Orbifold T 4/Z2.A5

In this section we consider a N = (4, 4) superconformal theory with central charge c = c̃ = 6
and target space a K3 surface. In particular we study a K3 sigma-model constructed by taking
the orbifold T 4/2.A5.
The symmetry group G = Z2.A5 is the central extention of alternating group A5. The order of
the group is |G| = 120, we report below his character table, where the name of class follows the
Atlas notation for the classes of O+(2):

[g] 1A −1A 2B 3A −3A 5A −5A 5A′ −5A′
Order element 1 2 4 3 6 5 10 5 10
| [g] | 1 1 30 20 20 12 12 12 12

Order centralizer 120 120 4 6 6 10 10 10 10

The interesting feature of this group is that it is not Abelian.

5.4.1 Elliptic genus

In order to show that the orbifold theory T 4/Z2.A5 corresponds to K3 model we compute the
Elliptic genus of the theory. For this we need to project the Hilbert space onto G invariant states.
Let us define for each element h ∈ G the projector 1

|G| (1 + h) and insert this quantity on the
trace (4.21). As described in previous section an orbifold theory includes, over the Hilbert space
of the correspondent theory on T 4 called untwisted, twisted sectors. Then we have to project
onto invariant states in each sector. In the g-twisted sector one only needs to project over the
centralizer. The result is:

φorbifold(τ, z) = 1
|G|

∑
g,h|gh=hg

φg,h(τ ; z)
∑

classes[g]

1
|C(g)|

∑
h|gh=hg

φg,h(τ ; z) (5.10)

where |C(g)| is the order of centralizer of the element g, and φg,h is the twisted twining genus:

φg,h = TrHg

(
hqL0− c

24 qL0− c
24 (−1)F+F yJ0

)
(5.11)

defined as the h-twining trace over the g-twisted sector.
The calculation can be done in two ways: first building the Hilbert space and explicitly computing
the traces, or exploiting the construction of the Twining Genus for every conjugation class and
applying his modular propriety. [20]
In order to compute the whole Hilbert space let us introduce a suitable representation of the RR
states in T 4 NLSM. This can be to build from all possible combination of bosonic and fermionic



oscillators acting upon a suitable ground state. We remember that in the RR sector there are
fermionic zero modes that form a non-trivial algebra:{

χa0 , χ
b∗
0
}

= δab
{
χ̃a0 , χ̃

b∗
0
}

= δab (5.12)

that has a representation as matrices on 2d/2 = 24 dimensional space. Therefore there are
16 RR ground states that transform one into each other up fermionic zero modes. Let be
χ(a)∗, χ̃(a)∗, with a = 1, 2 the fermionic creation operators and χ(a), χ̃(a), with a = 1, 2, the
fermionic annihilation operators. We choose for RR ground states a basis of eigenstates for
currents operators J3

0 , J̃
3
0 , A

3
0, Ã

3
0:

|kL, kR, s1, s2, s̃1, s̃2〉 si, s̃i =
{
±1

2

}
. (5.13)

kL and kR label the winding-momentum contribution deriving from bosonic zero modes, while
s = (s1, s2, s̃1, s̃2) runs in the 16-dimensional representation of Clifford algebra. The action of
currents on these states is:

J3
0 |s1, s2, s̃1, s̃2〉 = (s1 + s2)|s1, s2, s̃1, s̃2〉 A3

0|s1, s2, s̃1, s̃2〉 = (s1 − s2)|s1, s2, s̃1, s̃2〉
J̃3

0 |s1, s2, s̃1, s̃2〉 = (s̃1 + s̃2)|s1, s2, s̃1, s̃2〉 Ã3
0|s1, s2, s̃1, s̃2〉 = (s̃1 − s̃2)|s1, s2, s̃1, s̃2〉.

The action of creation operators on this basis is the following:

χ
(1)∗
0 | − 1

2 , s2, s̃1, s̃2〉 = |12 , s2, s̃1, s̃2〉

χ̃
(1)∗
0 |s1, s2,−

1
2 , s̃2〉 = |s1, s2,

1
2 , s̃2〉

χ
(2)∗
0 |s1,−

1
2 , s̃1, s̃2〉 = |s1,

1
2 , s̃1, s̃2〉

χ̃
(1)∗
0 |s1, s2, s̃1,−

1
2 〉 = |s1, s2, s̃1,

1
2 〉

χ
(1)∗
0 |12 , s2, s̃1, s̃2〉 = 0

χ̃
(1)∗
0 |s1, s2,

1
2 , s̃2〉 = 0

χ
(2)∗
0 |s1,

1
2 , s̃1, s̃2〉 = 0

χ̃
(1)∗
0 |s1, s2, s̃1,

1
2 〉 = 0.

Let us focus our attention on the second term of (5.10): for the untwisted sector we have the
contribution of Elliptic Genus and of Twining Elliptic Genus for each element of the group,
for any g-twisted sector we have the contribution of Twisted h-Twining Genus for each element
h ∈ G that commute with g. Let us start from the untwisted sector and notice that the function
on this sector is given by:

φuntw,g(τ ; z) = φoscg (τ ; z)φgsg (z)φw−mg (τ) (5.14)

the product of the oscillators, winding-momentum, and fermionic ground states contributions.
Now we can explicitly compute the (5.14) for g = 1, this quantity corresponds to Elliptic Genus.
Let us begin with the ground states contribute. Since the ground states on the RR sector have
conformal weight h = h = c

24 the operators qL0−c/24qL0−c/24 do not give any contribute to trace.



We would like to build the Hilbert space HGS of ground states, we take the state annihichilated
from any χ(a), χ̃(a) operators:

|GS〉 = | − 1
2 ,−

1
2 ,−

1
2 ,−

1
2 〉

we act on this state with creation operators in order to generate the whole HGS . Let us call for
simplicity |χ(a)

0 〉 the state obtained by the action of the correspondent creation operator on the
ground state. The action of internal trace operator on these ground states is below summarised:

(−1)F yJ
3
0 | − 1

2 ,−
1
2 ,−

1
2 ,−

1
2 〉 = y−1| − 1

2 ,−
1
2 ,−

1
2 ,−

1
2 〉

(−1)F yJ
3
0 |12 ,−

1
2 ,−

1
2 ,−

1
2 〉 = −|12 ,−

1
2 ,−

1
2 ,−

1
2 〉

(−1)F yJ
3
0 | − 1

2 ,
1
2 ,−

1
2 ,−

1
2 〉 = −| − 1

2 ,−
1
2 ,−

1
2 ,−

1
2 〉

(−1)F yJ
3
0 | − 1

2 ,−
1
2 ,

1
2 ,−

1
2 〉 = −y−1| − 1

2 ,−
1
2 ,

1
2 ,−

1
2 〉

(−1)F yJ
3
0 | − 1

2 ,−
1
2 ,−

1
2 ,

1
2 〉 = −y−1| − 1

2 ,−
1
2 ,−

1
2 ,

1
2 〉

(−1)F yJ
3
0 |12 ,

1
2 ,−

1
2 ,−

1
2 〉 = y|12 ,

1
2 ,−

1
2 ,−

1
2 〉

(−1)F yJ
3
0 | − 1

2 ,−
1
2 ,

1
2 ,

1
2 〉 = y−1| − 1

2 ,−
1
2 ,

1
2 ,

1
2 〉

(−1)F yJ
3
0 |12 ,−

1
2 ,

1
2 ,−

1
2 〉 = |12 ,−

1
2 ,

1
2 ,−

1
2 〉

(−1)F yJ
3
0 |12 ,−

1
2 ,−

1
2 ,

1
2 〉 = |12 ,−

1
2 ,−

1
2 ,

1
2 〉

(−1)F yJ
3
0 | − 1

2 ,
1
2 ,

1
2 ,−

1
2 〉 = | − 1

2 ,
1
2 ,

1
2 ,−

1
2 〉

(−1)F yJ
3
0 | − 1

2 ,
1
2 ,−

1
2 ,

1
2 〉 = | − 1

2 ,
1
2 ,−

1
2 ,

1
2 〉

(−1)F yJ
3
0 |12 ,

1
2 ,

1
2 ,−

1
2 〉 = −y|12 ,

1
2 ,

1
2 ,−

1
2 〉

(−1)F yJ
3
0 |12 ,

1
2 ,−

1
2 ,

1
2 〉 = −y|12 ,

1
2 ,−

1
2 ,

1
2 〉

(−1)F yJ
3
0 |12 ,

1
2 ,

1
2 ,

1
2 〉 = y|12 ,

1
2 ,

1
2 ,

1
2 〉

(−1)F yJ
3
0 | − 1

2 ,
1
2 ,

1
2 ,

1
2 〉 = −| − 1

2 ,
1
2 ,

1
2 ,

1
2 〉

(−1)F yJ
3
0 |12 ,−

1
2 ,

1
2 ,

1
2 〉 = −|12 ,−

1
2 ,

1
2 ,

1
2 〉.

By computing the trace we obtain φgs1 (z) = 0 therefore φ1(τ, z) = 0 as we expected for the
Elliptic Genus of torus.
Now we have to calculate the (5.14) for each element of the group, but we have chosen complex
fermions such that each element g ∈ G acts on them by its eigenvalues in the 8-dimensional
representation, which is the same as for the bosonic currents because the superconformal algebra
must be preserved. Each element in the same conjugacy class acts through the same eigenvalues
on the currents, that’s why we can just calculate it for one element in each class.
Let us compute explicitly the (5.14) for the class 2B. In order to compute the ground states

contribute to φgsg∈2B , let us act with a generic element of the class on the states listed above and



Class ξL ξ−1
L ξR ξ−1

R

1A 1 1 1 1
−1A −1 −1 −1 −1
2B e

( 1
4
)

e
( 3

4
)

e
( 1

4
)

e
( 3

4
)

3A e
( 1

3
)

e
( 2

3
)

e
( 1

3
)

e
( 2

3
)

−3A e
( 1

6
)

e
( 5

6
)

e
( 1

6
)

e
( 5

6
)

5A e
( 1

5
)

e
( 4

5
)

e
( 2

5
)

e
( 3

5
)

−5A e
( 3

10
)

e
( 7

10
)

e
( 1

10
)

e
( 9

10
)

5A′ e
( 2

5
)

e
( 3

5
)

e
( 1

5
)

e
( 4

5
)

−5A′ e
( 1

10
)

e
( 9

10
)

e
( 3

10
)

e
( 7

10
)

Table 5.1: Eigenvalues of Z2.A5 conjugation classes in the ρψ representation of complex fermions

take their trace:

φgsg∈2B = y−1
(

1− e
(

1
4

))2(
1− e

(
3
4

))2
,

where the notation e (r) indicates e (r) = e2πir.
We can easily prove that for each element g of the group that acts on the complex fermions with
eigenvalues ξL, ξ−1

L , ξR, ξ
−1
R , the ground state contribute is:

φgsg (z) = y−1 − ξL − ξ−1
L − y

−1ξR − y−1ξ−1
R + yξLξ

−1
L + y−1ξRξ

−1
R + ξLξR + ξLξ

−1
R +

ξ−1
L ξR + ξ−1

L ξ−1
R − yξLξ

−1
L ξR − yξLξ−1

L ξ−1
R + yξLξ

−1
L ξRξ

−1
R − ξ

−1
L ξRξ

−1
R − ξLξRξ

−1
R =

y−1 (1− yξL)
(
1− yξ−1

L

)
(1− ξR)

(
1− ξ−1

R

)
.

The eigenvalues for all conjugacy classes are summarised in Tab.5.1.
Now we would compute the total contribution from the fermionic and bosonic oscillators. Let |Ω〉

be a generic ground state and we start by applying to it the left bosonic operators
(
∂Z

(i)
−n

)(∗)
,

according to the Tab.5.2:

(−1)F qL0qL0yJ
3
0 g|Ω〉 = (+1) |Ω〉

(−1)F qL0qL0yJ
3
0 g∂Z

(1)
−n|Ω〉 = ξLq

n∂Z
(1)
−n|Ω〉

(−1)F qL0qL0yJ
3
0 g
(
∂Z

(1)
−n

)2
|Ω〉 = ξ2

Lq
2n
(
∂Z

(1)
−n

)2
|Ω〉

... ... ...

We take the trace and we obtain the following contribute:

1 + ξLq
n + ξ2

Lq
2n + ... =

+∞∑
k=0

(ξLqn)k = 1
1− ξLqn

. (5.15)

Let us consider the same quantity for a gk element of the group:

(−1)F qL0qL0yJ
3
0 gk|Ω〉 = (+1) |Ω〉

(−1)F qL0qL0yJ
3
0 gk∂Z

(1)
−n|Ω〉 = ξkLq

n∂Z
(1)
−n|Ω〉

(−1)F qL0qL0yJ
3
0 gk

(
∂Z

(1)
−n

)2
|Ω〉 = ξ2k

L q
2n
(
∂Z

(1)
−n

)2
|Ω〉

... ... ...



∂Z(1)∗ ∂Z(2)∗ ∂Z(1) ∂Z(2) ˜∂Z(1)∗ ˜∂Z(2)∗ ˜∂Z(1) ˜∂Z(2)

g ξL ξ−1
L ξ−1

L ξL ξR ξ−1
R ξ−1

R ξR
yJ

3
0 1 1 1 1 1 1 1 1

Table 5.2: Eigenvalues of g ∈ Z2.A5 in the ρψ representation on bosonic fields.

χ(1)∗ χ(2)∗ χ(1) χ(2) χ̃(1)∗ χ̃(2)∗ χ̃(1) χ̃(2)

g ξL ξ−1
L ξ−1

L ξL ξR ξ−1
R ξ−1

R ξR
yJ

3
0 1 y y y−1 y−1 1 1 1

Table 5.3: Eigenvalues of g ∈ Z2.A5 in the ρψ representation on fermionic fields.

taking the trace the result is:

1 + ξkLq
n + ξ2k

L q
2n + ... =

+∞∑
h=0

(
ξkLq

n
)h = 1

1− ξkLqn
. (5.16)

Let us repeat the same calculation applying the bosonic operators
(
∂Z(2)), (∂Z(1))∗ , (∂Z(2))∗

to generic ground state |Ω〉. Therefore the total bosonic oscillators left-moving contribute is:

∞∏
n=1

[(
1− ξkLqn

)2 (1− ξ−1k
L qn

)2]−1
. (5.17)

We must add the fermionic oscillator contribute. by applying to the ground state |Ω〉 the left-

moving fermionic operators
(
χ

(i)
−n

)(∗)
, according to Tab.5.3, for a generical gk ∈ G we obtain:

(−1)F qL0qL0yJ
3
0 gk|Ω〉 = (+1) |Ω〉

(−1)F qL0qL0yJ
3
0 gkχ

(1)∗
−n |Ω〉 = −y−1ξkLq

nχ
(1)
−n|Ω〉

Tracing we find: (
1− y−1ξkLq

n
)
. (5.18)

So, we repeat the same computation for the other fermionic fields. The total contribute of the
bosonic and fermionic oscillators left-moving is:

φoscgk (τ, z) =
∞∏
n=1

(
1− y−1ξkLq

n
) (

1− y−1ξ−kL qn
) (

1− yξkLqn
) (

1− yξ−kL qn
)(

1− ξkLqn
)2 (1− ξ−1k

L qn
)2 . (5.19)

Finally we must find the winding-momentum contribute. According with description on [21],
this quantity is:

φw−mg (τ) =
∑

(kL,kR)∈(Γ4,4
w−m)g

ζg(kL, kR)q
k2
L
2 q

k2
R
2 (5.20)

where (Γ4,4
w−m)g is the sublattice fixed by g and ζg is a suitable phase that depends on the choice

of the lift from Z2.A5 to total symmetry group
(
U(1)4 × U(1)4) . (Z2.A5) of the torus. The part



(
U(1)4 × U(1)4), generated by zero modes of bosonic currents, has a non-trivial action only
on the states with winding-momentum different to zero. Notice that if ξR = 1 then φgsg = 0,
so φg(τ, z) = 0; while if ξR 6= 0 then φw−mg must be holomorphic in τ , because φg(τ, z) is an
holomorphic function.
Putting together the three resulting contributions, we can rewrite the (5.14) as:

φuntw,gk(τ, z) = y−1 (1− yξkL) (1− yξ−kL ) (
1− ξkR

) (
1− ξ−kR

)
·

∞∏
n=1

(
1− y−1ξkLq

n
) (

1− y−1ξ−kL qn
) (

1− yξkLqn
) (

1− yξ−kL qn
)(

1− ξkLqn
)2 (1− ξ−1k

L qn
)2 (5.21)

where the winding-momentum component is trivial because we are considering holomorphic
fields. This quantity can be written in terms of theta function, the proof is described in the
Appendix A:

φuntw,gk(τ, z) =
(
2− ξ−kL − ξkL

) (
2− ξ−kR − ξkR

) θ1(τ, z + krL)θ1(τ, z − krL)
θ1(τ, krL)θ1(τ,−krL) . (5.22)

where rL corresponds to eigenvalues e2πirL .
Now we have to calculate the twisted twining genus (5.11) for each conjugation class. Let us
start from the twisted not twining contribute and in particular from oscillators contribute to this
quantity. In the g-twisted sector Hg of the Hilbert space the bosonic oscillators, corresponded
to bosons with eigenvalues ξL = e(rL), are moded by integer numbers shifted by exponential
argument of correspondent eigenvalue n→ n+ rL. We write the action of bosonic operators in
this sector:

(−1)F qL0qL0yJ
3
0

(
∂Z

(i)
−r

)h
|Ω〉 = qrh

(
∂Z

(i)
−r

)h
|Ω〉 (5.23)

where r ∈ N + k/N . Therefore the trace over those states is:

1 + qr + q2r + ... = 1
(1− qr)

We take now fermionic operator and we obtain the action:

(−1)F qL0qL0yJ
3
0 |Ω〉 = (+1) |Ω〉

(−1)F qL0qL0yJ
3
0χ

(1)∗
−r |Ω〉 = −y−1qrχ

(1)
−r|Ω〉

Tracing we find: (
1− y−1qr

)
. (5.24)

We can to compute the contribute for any left fermionic and bosonic operators, the result is:

φg;e(τ ; z) = φgs(τ, z)φosc(τ, z) = φgs(z)
∏

r∈N+rL

(
1− y−1qr

)2 (1− yqr)2

(1− qr)4 .

We have to insert an element h ∈ C(g) in the trace so, repeating the same procedure, we can
calculate the oscillators contribute to φg,h:

φg,h(τ, z) = φgs(τ, z)φosc(τ, z) = φgs(z)
∏

r∈N+rL

(
1− y−1ξLq

r
) (

1− y−1ξ−1
L qr

)
(1− yξLqr)

(
1− yξ−1

L qr
)

(1− ξLqr)2 (1− ξ−1
L qr

)2 .



These last two quantities must be computed for each pairs of commuting elements.
We must be careful when we are considering twisted sectors generated by element with centralizer
formed by elements that don’t belong to the same conjugation class. An example is g ∈ 3A and
h ∈ 6A. Notice that in these cases the ground state of the g-sector, formed by elements of lower
order respect to other class, it can be seen as h2-twisted ground states. Therefore we compute
these twisted twining genera starting from twisted ground state of the class with highest order.
There exists another way to calculate the twisted twining genera. Let us consider the following
modular proprieties of twisted twining genus: [22]

• φg,h (τ, z + lτ + l′) = e−2πi(l2τ+2lz)φg,h(τ, z) l, l′ ∈ Z

• φg,h

(
aτ + b

cτ + d
,

z

cτ + d

)
= χg,h

(
a b
c d

)
e2πi cz2

cτ+dφhcga,hdgb(τ, z)
(5.25)

where
(
a b
c d

)
∈ SL (2,Z), and for a certain multiplier χg,h : SL (2,Z)→ U(1). Each φg,h(τ, z)

is a weak Jacobi form of weight 0 and index 1 with multiplier χg,h under a subgroup Γg,h ⊆
SL (2,Z).
Since all commuting pairs are different powers of the same element, the idea is to compute the
twining genera on the untwisted sector φ1,g for each element of group through the formula (5.22),
and to obtain all possible φg,h through modular by implementing the modular transformation
using the formulas (5.25). Let us compute the quantity (5.22) for each element of every class
considering the eigenvalues listed in Tab.5.1.

• Class −1A

φ1,−1(τ, z) = 16
θ1
(
τ, z + 1

2
)
θ1
(
τ, z − 1

2
)

θ1
(
τ,+ 1

2
)
θ1
(
τ,− 1

2
) .

Through the transformations proprieties of Jacobi Theta functions, the same quantity can
written in terms of function θ2(τ, z) in a more compact form:

φ1,−1(τ, z) = 16θ2(τ, z)2

θ2(τ, 0)2 .

• Class 2B

φ1,gk∈2B(τ, z) =
[
e

(
k

4

)
+ e

(
3k
4

)
− 2
]2 θ1

(
τ, z + k

4
)
θ1
(
τ, z − k

4
)

θ1
(
τ,+k

4
)
θ1
(
τ,−k4

) .

Where k = 1, 3, in particular in this class we have 15 elements written in form g and 15 in
form g3.

• Class 3A

φ1,gk∈3A(τ, z) =
[
e

(
k

3

)
+ e

(
2k
3

)
− 2
]2 θ1

(
τ, z + k

3
)
θ1
(
τ, z − k

3
)

θ1
(
τ,+k

3
)
θ1
(
τ,−k3

) .

With k = 1, 2, and 10 elements of type g and 10 of type g2.

• Class −3A

φ1,gk∈−3A(τ, z) =
[
e

(
k

6

)
+ e

(
5k
6

)
− 2
]2 θ1

(
τ, z + k

6
)
θ1
(
τ, z − k

6
)

θ1
(
τ,+k

6
)
θ1
(
τ,−k6

) .

Where k = 1, 5, in particular we have 10 elements written in form g and 10 in form g5.



• Class 5A

φ1,gk∈5A(τ, z) =
[
e

(
k

5

)
+ e

(
4k
5

)
− 2
] [
e

(
2k
5

)
+ e

(
3k
5

)
− 2
]
θ1
(
τ, z + k

5
)
θ1
(
τ, z − k

5
)

θ1
(
τ,+k

5
)
θ1
(
τ,−k5

) .

With k = 1, 2, 3, 4, and we have 3 elements in the class of each type gk.

• Class −5A

φ1,gk∈−5A(τ, z) =
[
e

(
k

10

)
+ e

(
9k
10

)
− 2
] [
e

(
3k
10

)
+ e

(
7k
10

)
− 2
]
θ1
(
τ, z + k

10
)
θ1
(
τ, z − k

10
)

θ1
(
τ,+ k

10
)
θ1
(
τ,− k

10
) .

Where k = 1, 3, 7, 9, and we have 3 elements for every form gk.

• Class 5A′

φ1,gk∈5A′(τ, z) =
[
e

(
2k
5

)
+ e

(
3k
5

)
− 2
] [
e

(
k

5

)
+ e

(
4k
5

)
− 2
]
θ1
(
τ, z + 2k

5
)
θ1
(
τ, z − 2k

5
)

θ1
(
τ,+ 2k

5
)
θ1
(
τ,− 2k

5
) .

Whit k = 1, 2, 3, 4, and we have 3 elements in the class of each type gk.

• Class −5A′

φ1,gk∈−5A′(τ, z) =
[
e

(
3k
10

)
+ e

(
7k
10

)
− 2
] [
e

(
k

10

)
+ e

(
9k
10

)
− 2
]
θ1
(
τ, z + 3k

10
)
θ1
(
τ, z − 3k

10
)

θ1
(
τ,+ 3k

10
)
θ1
(
τ,− 3k

10
) .

Where k = 1, 3, 7, 9, and we have 3 elements for every form gk.

Now we must find the modular transformations that link these twining genera to twisted twining
genus associated to each commuting pairs (g, h) in the group. As the (5.10) tells us, we can fix
the g-twisted sector choosing a representative g for each conjugation class and write the(5.11)
for all h elements commuting with g.

Class −1A:
The centralizer of this class contains 120 elements according to Tab.5.1, therefore the element
−1 commute with each element of the group and we have to consider all following pairs:

(−1,1) , (−1,−1) , (−1, g ∈ 2B) , (−1, g ∈ 3A) , (−1, g ∈ −3A) ,
(−1, g ∈ 5A) , (−1, g ∈ −5A) , (−1, g ∈ 5A′) , (−1, g ∈ −5A′) .

In order to compute the twisted twining genus corresponding to first pair, let’s start from twining
genus labelled by pair (1,−1). Keeping in mind the modular transformation of Theta function
described in the Appendix A, the modular propriety transformation of twisted twining genus
(5.25) relating to SL (2,Z) transformation:

(1,−1) −−−−−−−→(
0 −1
1 0

) (−1,1)

we obtain:
φ(−1,1) = 16θ4(τ, z)2

θ4(τ, 0)2 . (5.26)



Analogously we obtain the following results:

φ(−1,−1) = 16θ3(τ, z)2

θ3(τ, 0)2 with TSφ(1,−1)

φ(−1,g1∈2B) = 4
θ1(τ, z + τ

2 + 1
4 )θ1(τ, z − τ

2 −
1
4 )

θ1(τ,+ τ
2 + 1

4 )θ1(τ,− τ2 −
1
4 )

with ST−2Sφ(1,g∈2B)

φ(−1,g3∈2B) = 4
θ1(τ, z + τ

2 + 3
4 )θ1(τ, z − τ

2 −
3
4 )

θ1(τ,+ τ
2 + 3

4 )θ1(τ,− τ2 −
3
4 )

with T 2ST 2STφ(1,g∈2B)

φ(−1,g2∈3A) =
θ1(τ, z + τ

2 + 1
3 )θ1(τ, z − τ

2 −
1
3 )

θ1(τ,+ τ
2 + 1

3 )θ1(τ,− τ2 −
1
3 )

with TST 3STφ(1,g∈−3A)

φ(−1,g4∈3A) =
θ1(τ, z + τ

2 + 2
3 )θ1(τ, z − τ

2 −
2
3 )

θ1(τ,+ τ
2 + 2

3 )θ1(τ,− τ2 −
2
3 )

with T 2STST−2Sφ(1,g∈−3A)

φ(−1,g∈−3A) =
θ1(τ, z + τ

2 + 1
6 )θ1(τ, z − τ

2 −
1
6 )

θ1(τ,+ τ
2 + 1

6 )θ1(τ,− τ2 −
1
6 )

with
(

1 0
3 1

)
φ(1,g∈−3A)

φ(−1,g5∈−3A) =
θ1(τ, z + τ

2 + 5
6 )θ1(τ, z − τ

2 −
5
6 )

θ1(τ,+ τ
2 + 5

6 )θ1(τ,− τ2 −
5
6 )

with
(
−1 −2
3 5

)
φ(1,g∈−3A)

φ(−1,g2∈5A) =
θ1(τ, z + τ

2 + 1
5 )θ1(τ, z − τ

2 −
1
5 )

θ1(τ,+ τ
2 + 1

5 )θ1(τ,− τ2 −
1
5 )

with
(

3 1
5 2

)
φ(1,g∈−5A)

φ(−1,g4∈5A) =
θ1(τ, z + τ

2 + 2
5 )θ1(τ, z − τ

2 −
2
5 )

θ1(τ,+ τ
2 + 2

5 )θ1(τ,− τ2 −
2
5 )

with
(
−1 −1
5 4

)
φ(1,g∈−5A)

φ(−1,g6∈5A) =
θ1(τ, z + τ

2 + 3
5 )θ1(τ, z − τ

2 −
3
5 )

θ1(τ,+ τ
2 + 3

5 )θ1(τ,− τ2 −
3
5 )

with
(

1 1
5 6

)
φ(1,g∈−5A)

φ(−1,g8∈5A) =
θ1(τ, z + τ

2 + 4
5 )θ1(τ, z − τ

2 −
4
5 )

θ1(τ,+ τ
2 + 4

5 )θ1(τ,− τ2 −
4
5 )

with
(

2 3
5 8

)
φ(1,g∈−5A)

φ(−1,g∈−5A) =
θ1(τ, z + τ

2 + 1
10 )θ1(τ, z − τ

2 −
1
10 )

θ1(τ,+ τ
2 + 1

10 )θ1(τ,− τ2 −
1
10 )

with
(

1 0
5 1

)
φ(1,g∈−5A)

φ(−1,g3∈−5A) =
θ1(τ, z + τ

2 + 3
10 )θ1(τ, z − τ

2 −
3
10 )

θ1(τ,+ τ
2 + 3

10 )θ1(τ,− τ2 −
3
10 )

with
(

2 1
5 3

)
φ(1,g∈−5A)

φ(−1,g7∈−5A) =
θ1(τ, z + τ

2 + 7
10 )θ1(τ, z − τ

2 −
7
10 )

θ1(τ,+ τ
2 + 7

10 )θ1(τ,− τ2 −
7
10 )

with
(
−2 −3
5 7

)
φ(1,g∈−5A)

φ(−1,g9∈−5A) =
θ1(τ, z + τ

2 + 9
10 )θ1(τ, z − τ

2 −
9
10 )

θ1(τ,+ τ
2 + 9

10 )θ1(τ,− τ2 −
9
10 )

with
(

4 7
5 9

)
φ(1,g∈−5A)

φ(−1,g2∈5A′) =
θ1(τ, z + τ

2 + 3
5 )θ1(τ, z − τ

2 −
3
5 )

θ1(τ,+ τ
2 + 3

5 )θ1(τ,− τ2 −
3
5 )

with
(

3 1
5 2

)
φ(1,g∈−5A′)

φ(−1,g4∈5A′) =
θ1(τ, z + τ

2 + 6
5 )θ1(τ, z − τ

2 −
6
5 )

θ1(τ,+ τ
2 + 6

5 )θ1(τ,− τ2 −
6
5 )

with
(
−1 −1
5 4

)
φ(1,g∈−5A′)

φ(−1,g6∈5A′) =
θ1(τ, z + τ

2 + 9
5 )θ1(τ, z − τ

2 −
9
5 )

θ1(τ,+ τ
2 + 9

5 )θ1(τ,− τ2 −
9
5 )

with
(

1 1
5 6

)
φ(1,g∈−5A′)



φ(−1,g8∈5A′) =
θ1(τ, z + τ

2 + 12
5 )θ1(τ, z − τ

2 −
12
5 )

θ1(τ,+ τ
2 + 12

5 )θ1(τ,− τ2 −
12
5 )

with
(

2 3
5 8

)
φ(1,g∈−5A′)

φ(−1,g∈−5A′) =
θ1(τ, z + τ

2 + 3
10 )θ1(τ, z − τ

2 −
3
10 )

θ1(τ,+ τ
2 + 3

10 )θ1(τ,− τ2 −
3
10 )

with
(

1 0
5 1

)
φ(1,g∈−5A′)

φ(−1,g3∈−5A′) =
θ1(τ, z + τ

2 + 9
10 )θ1(τ, z − τ

2 −
9
10 )

θ1(τ,+ τ
2 + 9

10 )θ1(τ,− τ2 −
9
10 )

with
(

2 1
5 3

)
φ(1,g∈−5A′)

φ(−1,g7∈−5A′) =
θ1(τ, z + τ

2 + 21
10 )θ1(τ, z − τ

2 −
21
10 )

θ1(τ,+ τ
2 + 21

10 )θ1(τ,− τ2 −
21
10 )

with
(
−2 −3
5 7

)
φ(1,g∈−5A′)

φ(−1,g9∈−5A′) =
θ1(τ, z + τ

2 + 27
10 )θ1(τ, z − τ

2 −
27
10 )

θ1(τ,+ τ
2 + 27

10 )θ1(τ,− τ2 −
27
10 )

with
(

4 7
5 9

)
φ(1,g∈−5A′)



Let us repeat this procedure for any conjugation class of the group and summing the results,
we obtain the Elliptic Genus of the orbifold T 4/Z2.A5:

φ(τ ; z) =
∑

classes[g]

1
|C(g)|

∑
h|gh=hg

φg,h(τ ; z) =

1
120

∑
h∈G

φ1,g + 1
120

∑
g∈G

φ−1,g(τ, z) + 1
4

∑
h|hg=gh

φg,h(τ, z)
∣∣∣
g∈2B

+ 1
6

∑
h|hg=gh

φg,h(τ, z)
∣∣∣
g∈3A

+

1
6

∑
h|hg=gh

φg,h(τ, z)
∣∣∣
g∈−3A

+ 1
10

∑
h|hg=gh

φg,h(τ, z)
∣∣∣
g∈5A

+ 1
10

∑
h|hg=gh

φg,h(τ, z)
∣∣∣
g∈−5A

+

1
10

∑
h|hg=gh

φg,h(τ, z)
∣∣∣
g∈5A′

+ 1
10

∑
h|hg=gh

φg,h(τ, z)
∣∣∣
g∈−5A′

=

+ 1
120

{
16θ2(τ, z)2

θ2(τ, 0)2 + 15
[
e

(
1
4

)
+ e

(
3
4

)
− 2
]2 1∑

k=0

θ1(τ, z + 2k+1
4 )θ1(τ, z − 2k+1

4 )
θ1(τ,+ 2k+1

4 )θ1(τ,− 2k+1
4 )

+

10
[
e

(
1
3

)
+ e

(
2
3

)
− 2
]2 2∑

k=1

θ1(τ, z + k
3 )θ1(τ, z − k

3 )
θ1(τ,+k

3 )θ1(τ,−k3 )
+

10
[
e

(
1
6

)
+ e

(
5
6

)
− 2
]2 ∑

k=0,2

θ1(τ, z + 2k+1
6 )θ1(τ, z − 2k+1

6 )
θ1(τ,+ 2k+1

6 )θ1(τ,− 2k+1
6 )

+

3
[
e

(
1
5

)
+ e

(
4
5

)
− 2
] [
e

(
2
5

)
+ e

(
3
5

)
− 2
][ 4∑

k=1

θ1(τ, z + k
5 )θ1(τ, z − k

5 )
θ1(τ,+k

5 )θ1(τ,−k5 )
+

4∑
k=1

θ1(τ, z + 2k
5 )θ1(τ, z − 2k

5 )
θ1(τ,+ 2k

5 )θ1(τ,− 2k
5 )

]
+

3
[
e

(
1
10

)
+ e

(
9
10

)
− 2
] [
e

(
3
10

)
+ e

(
7
10

)
− 2
] 4∑

k=0/{2}

θ1(τ, z + 2k+1
10 )θ1(τ, z − 2k+1

10 )
θ1(τ,+ 2k+1

10 )θ1(τ,− 2k+1
10 )

+

4∑
k=0/{2}

θ1(τ, z + 3(2k+1)
10 )θ1(τ, z − 3(2k+1)

10 )
θ1(τ,+ 3(2k+1)

10 )θ1(τ,− 3(2k+1)
10 )


1A

+

+ 1
120

{
16θ3(τ, z)2

θ3(τ, 0)2 + 16θ4(τ, z)2

θ4(τ, 0)2 + 15
[
e

(
1
4

)
+ e

(
3
4

)
− 2
]2 1∑

k=0

θ1(τ, z + τ
2 + 2k+1

4 )θ1(τ, z − τ
2 −

2k+1
4 )

θ1(τ,+ τ
2 + 2k+1

4 )θ1(τ,− τ2 −
2k+1

4 )
+

10
[
e

(
1
6

)
+ e

(
5
6

)
− 2
]2 5∑

k=1/(3)

θ1(τ, z + 3τ
6 + k

6 )θ1(τ, z − 3τ
6 −

k
6 )

θ1(τ,+ 3τ
6 + k

6 )θ1(τ,− 3τ
6 −

k
6 )

+

3
[
e

(
1
10

)
+ e

(
9
10

)
− 2
] [
e

(
3
10

)
+ e

(
7
10

)
− 2
] 9∑

k=1/5

θ1(τ, z + 5τ
10 + k

10 )θ1(τ, z − 5τ
10 −

k
10 )

θ1(τ,+ 5τ
10 + k

10 )θ1(τ,− 5τ
10 −

k
10 )

9∑
k=1/5

θ1(τ, z + 5τ
10 + 3k

10 )θ1(τ, z − 5τ
10 −

3k
10 )

θ1(τ,+ 5τ
10 + 3k

10 )θ1(τ,− 5τ
10 −

3k
10 )


−1A

+

1
4

{[
e

(
1
4

)
+ e

(
3
4

)
− 2
]2
[ 4∑
k=1

θ1(τ, z + τ
4 + k

4 )θ1(τ, z − τ
4 −

k
4 )

θ1(τ,+ τ
4 + k

4 )θ1(τ,− τ4 −
k
4 )

]}
2B

+



1
6

{[
e

(
1
3

)
+ e

(
2
3

)
− 2
]2
[ 3∑
k=1

θ1(τ, z + τ
3 + k

3 )θ1(τ, z − τ
3 −

k
3 )

θ1(τ,+ τ
3 + k

3 )θ1(τ,− τ3 −
k
3 )

]
+

[
e

(
1
6

)
+ e

(
5
6

)
− 2
]2
[ 2∑
k=0

θ1(τ, z + 2τ
6 + 2k+1

6 )θ1(τ, z − 2τ
6 −

2k+1
6 )

θ1(τ,+ 2τ
6 + 2k+1

6 )θ1(τ,− 2τ
6 −

2k+1
6 )

]}
3A

+

1
6

{[
e

(
1
6

)
+ e

(
5
6

)
− 2
]2
[ 6∑
k=1

θ1(τ, z + τ
6 + k

6 )θ1(τ, z − τ
6 −

k
6 )

θ1(τ,+ τ
6 + k

6 )θ1(τ,− τ6 −
k
6 )

]}
−3A

+

1
10

{[
e

(
1
5

)
+ e

(
4
5

)
− 2
] [
e

(
2
5

)
+ e

(
3
5

)
− 2
][ 5∑

k=1

θ1(τ, z + τ
5 + k

5 )θ1(τ, z − τ
5 −

k
5 )

θ1(τ,+ τ
5 + k

5 )θ1(τ,− τ5 −
k
5 )

+
]

+

[
e

(
1
10

)
+ e

(
9
10

)
− 2
] [
e

(
3
10

)
+ e

(
7
10

)
− 2
][ 4∑

k=0

θ1(τ, z + 2τ
10 + 2k+1

10 )θ1(τ, z − 2τ
10 −

2k+1
10 )

θ1(τ,+ 2τ
10 + 2k+1

10 )θ1(τ,− 2τ
10 −

2k+1
10 )

]}
5A

+

1
10

{[
e

(
1
10

)
+ e

(
9
10

)
− 2
] [
e

(
3
10

)
+ e

(
7
10

)
− 2
] [ 10∑

k=1

θ1(τ, z + τ
10 + k

10 )θ1(τ, z − τ
10 −

k
10 )

θ1(τ,+ τ
10 + k

10 )θ1(τ,− τ
10 −

k
10 )

]}
−5A

+

1
10

{[
e

(
2
5

)
+ e

(
3
5

)
− 2
] [
e

(
1
5

)
+ e

(
4
5

)
− 2
][ 5∑

k=1

θ1(τ, z + τ
5 + 3k

5 )θ1(τ, z − τ
5 −

3k
5 )

θ1(τ,+ τ
5 + 3k

5 )θ1(τ,− τ5 −
3k
5 )

+
]

+

[
e

(
3
10

)
+ e

(
7
10

)
− 2
] [
e

(
1
10

)
+ e

(
9
10

)
− 2
][ 4∑

k=0

θ1(τ, z + 2τ
10 + 3(2k+1)

10 )θ1(τ, z − 2τ
10 −

3(2k+1)
10 )

θ1(τ,+ 2τ
10 + 3(2k+1)

10 )θ1(τ,− 2τ
10 −

3(2k+1)
10 )

]}
5A′

+

1
10

[
e

(
3
10

)
+ e

(
7
10

)
− 2
]{[

e

(
1
10

)
+ e

(
9
10

)
− 2
] [ 10∑

k=1

θ1(τ, z + τ
10 + 3k

10 )θ1(τ, z − τ
10 −

3k
10 )

θ1(τ,+ τ
10 + 3k

10 )θ1(τ,− τ
10 −

3k
10 )

]}
−5A′

In order to distinguish between a torus and a K3 model we compute the Witten index φ(τ, z = 0)
which is the Euler number of target space:

φ(τ, 0) =
[

480
120

]
1A

+
[

240
120

]
−1A

+ [4]2B +
[

30
6

]
3A

+ [1]−3A +[
30
10

]
5A

+ [1]−5A +
[

30
10

]
5A′

+ [1]−5A′ =

4 + 2 + 4 + 5 + 1 + 3 + 1 + 3 + 1 = 24

(5.27)

From the latter result, using non-trivial identities of the theta functions, we deduce that the
elliptic genus φ(τ, z) obtained can be simplify and it is exactly the elliptic genus of K3.

5.5 Holomorphic fields in the T 4/Z2.A5 model
We want to discuss the string compactification on the T 4/2.A5 orbifold through the representa-
tion theory of N = (4, 4) superconformal algebra.
Highest weight states are labelled by conformal dimension h and isospin l. When c = 6, as in
our case, unitary requires h ≥ l in the NS sector, and h ≥ 1

4 in the R sector. There exist two dif-
ferents representation classes of N = 4 algebra: massless and massive representations tabulated
on the section 3.2.



In order to find the holomorphic fields contained in the spectrum of SCFT with target space
T 4/G, we can study the partition function of the theory on the NS-NS sector and write the latter
in terms of unitary representations of N = 4 algebra.
The presence of holomorphic field of conformal weight h enlarge the N = (4, 4) superconformal
algebra with a certain W algebra generated by these fields.
The spectrum of SCFT on T 4 contains infinite holomorphic fields with conformal dimensions
labelled by positive integer values. We expect that the orbifold procedure eliminates some of
these holomorphic fields from the spectrum. The result will be a SCFT closer to the more generic
model of conformal theory on K3. We would expect that this generic model will contain only
the basic N = (4, 4) superconformal algebra, with no extra holomorphic fields.
Exactly as in the RR sector, in order for the partition function to be modular invariant, we must
to add up each twisted sector of Hilbert space and to insert the projector on the trace so to
project under invariant states. All information on the holomorphic component of the algebra of
the theory is contained on the Untwisted sector of Hilbert space. Indeed the conformal weights
(hL, hR) of the ground states on the Hg sector depend to eigenvalues ξL and ξR of the g action on
the bosonic and fermionic left- and right-moving. In particular hR = 0 if and only if ξR = 0. For
the group Z2.A5 this only occurs for the g = 1. Therefore states corresponding to holomorphic
fields (hR = 0) are only contained on the Untwisted sector.
Let us focus our attention to oscillator contribute to the function on the Untwisted sector:

ZoscNSNS = 1
|2.A5|

∑
g∈G

TrNS,Un
[
gqL0− c

24
]
.

The torus model with Z2.A5 symmetry does not have non-vanishing winding-momenta purely
left-moving (kL, kR = 0). Therefore all holomorphic fields, having necessary kR = 0, must have
kL = 0. For this reason the only non-trivial contribute to the function comes from the oscillators
contribute. Let us start to compute the bosonic contribute of the trace. Let to be |α〉 the highest
weight state of the NS sector with eigenvalue |α|2 = h respect to L0 Virasoro operator and we
consider only the holomorphic part. For a generic element gk ∈ G:

qL0gk|α〉 = qL0ξkL|α〉 = q|α|
2
gk|α〉.

We have supposed that the element gk acts on the highest weight state through their eigenvalues
and does not change its conformal weight. Now we act on these states with the creation operators
that transform in the adjoint representation of the group through the same eigenvalues of the
ground states:

qL0gk
(
∂Z

(i)
−n

)
|α〉 = qL0gk

(
∂Z

(i)
−n

)
g−kgk|α〉 = q|α|

2+nξkL

(
∂Z

(i)
−n

)
gk|α〉

qL0gk
(
∂Z

(i)
−n

)2
|α〉 = qL0gk

(
∂Z

(i)
−n

)
g−kgk

(
∂Z

(i)
−n

)
g−kgk|α〉 = q|α|

2+2nξ2k
L

(
∂Z

(i)
−n

)2
gk|α〉

... ...

We take the trace paying attention to the orthogonality condition between the states. We



obtain, factorizing also the complex conjugate part, the following results:

• α = 0

Zosc(1,gk),bos(τ) = q−
c

24

∞∏
n=1

1(
1− qnξkL

) (
1− qnξ−kL

)
• α 6= 0

Zosc(1,1),bos(τ) = q|α|
2− c

24

∞∏
n=1

1
(1− qn)2

we have considered a single complex boson.
With a similar calculation we can compute the fermionic oscillator contribute. Let us denote
with |0〉 the fermionic ground state and we act on this states with the creation operator labelled
by semi-integer numbers (r ∈ Z+

0 + 1
2 ):

qL0gk|0〉 = gk|0〉
qL0gkχ∗−r|0〉 = qrgkχ∗−rg

−kgk|0〉 = qrξkLχ
∗
−rg

k|0〉

Pauli Exclusion Principle assures us that each fermionic operator act only once and makes a
contribute to the trace of (1 + qr). In order to consider every possible contribute we multiply
this result for all r values and, factoring also the part corresponding to complex conjugation
field, we obtain:

Zosc(1,gk) = q−
c

24

∞∏
n=1

(
1 + ξkLq

n− 1
2

)(
1 + ξ−kL qn−

1
2

)
where c = 1 because we have to consider a single complex fermion.
In order to project onto invariant states, we must sum under all elements of the group after
putting bosonic and fermionic contribute together:

ZoscNSNS(τ)Un = q−
c

24
1

120
∑

gk∈2.A5

∞∏
n=1

(
1 + ξkLq

n− 1
2

)2 (
1 + ξ−kL qn−

1
2

)2

(
1− qnξkL

)2 (1− qnξ−kL )2 . (5.28)

In this latter expression c = 6 since we have to consider two complex bosons and two complex
fermions.
Exactly like the partition function on the RR sector, we have to consider also the contribute
come from the Twisted Sector, therefore we must calculate the trace (5.5) on the sectors Hg̃ of
the Hilbert space summing up the elements g ∈ 2.A5 such that gg̃ = g̃g.
The space Hg̃ is generated by bosonic and fermionic oscillators labelled through integer number
shifted by exponential argument of eigenvalues corresponding to g̃ element according with the
conjugation class of belonging, as summary in Table(5.1):

n → n+ rL.

Let |α〉 be the highest weight state of the NS g̃-Twisted sector with eigenvalues |α|2 = h with
respect to Virasoro operator L0 and gk ∈ 2.A5 an element such that

[
gk; g̃

]
= 0 :

• qL0gk|α〉 = qL0 |gkα〉 = q|α|
2
gk|α〉,



since the action of gk on |α〉 does not change the conformal weight of the state. Now we act on this
state with the bosonic creation operators

(
∂Z

(i)
−n

)
that transform on the adjoint representation

of the group through eigenvalue ξL as refered on Table(5.2):

• qL0gk
(
∂Z

(i)
−n−r̃L

)
|α〉 = qL0gk

(
∂Z

(i)
−n

)
g−kgk|α〉 = q|α|

2+(n+r̃L)ξkL

(
∂Z

(i)
−n

)
gk|α〉

• qL0gk
(
∂Z

(i)
−n−r̃L

)2
|α〉 = qL0gk

(
∂Z

(i)
−n

)
g−kgk

(
∂Z

(i)
−n

)
g−kgk|α〉 =

= q|α|
2+2(n+r̃L)ξ2k

L

(
∂Z

(i)
−n

)2
gk|α〉

... ... ...

• qL0gk
(
∂Z

(i)
−n−r̃L

)m
|α〉 = qL0gk

(
∂Z

(i)
−n

)
g−k...gk

(
∂Z

(i)
−n

)
g−kgk|α〉 =

= q|α|
2+m(n+r̃L)ξmkL

(
∂Z

(i)
−n

)m
gk|α〉

We take the trace employing the appropriate orthogonality conditions:

q|α|
2

+ q|α|
2+(n+r̃L)ξkL + q|α|

2+2(n+r̃L)ξ2k + ... =

= q|α|
2

+∞∑
m=0

qm(n+r̃L)ξmkL = q|α|
2 1(

1− q(n+r̃L)ξkL
) .

Now we write the fermionic contribute on the g̃-twisted sector, for which the oscillators χ(i)
r are

labelled by the shifted numbers r = 1
2 + n+ r̃L and act on the vacuum state |0〉:

• qL0gk|0〉 = gk|0〉
• qL0gkχ−r|0〉 = qL0gkχ−rg

−kgk|0〉 = qrξkLg
k|0〉

The Pauli principle assure us that there aren’t other contribute to the trace for this oscillators,
then we have: (

1 + qrξkL
)
.

In order to consider every contribute to the partition function we multiply the bosonic and
fermionic results for all n values and we factorize the other holomorphic components:

ZoscNSNS(g̃,gk)(τ) = q−
c

24

∞∏
n=1

(
1 + ξkLq

n+ 1
2 +r̃L)

)2 (
1 + ξkLq

n+ 1
2 +r̃L)

)2

(
1− ξ−kL qn+r̃L)

)2 (1 + ξ−kL qn+r̃L)
)2 (5.29)

According to the result for the Elliptic Genus on the previous section the total partition function
for the orbifold theory on the NS-NS sector is obtained summing up all sectors twisted of Hilbert
space projected under invariat states:

ZoscNSNS(τ) =
∑

[g̃]∈2.A5

1
|C(g̃)|

∑
h|g̃h=hg̃

ZoscNSNS(g̃,h)(τ).

Now we want to isolate on this function the characters associate to different massless and massive
representations of superalgebra N = 4. In order to perform that, we can calculate all contributes
of Untwisted sector, and expand their sum in series until a certain order.



The resulting series, up to order q3, for oscillator contribute on the Untwisted sector to holomor-
phic part of partition function on (NS −NS) sector of conformal theory on T 4/2.A5 is:

ZoscNS,Un(q) = 1 + 3q + 4q3/2 + 6q2 + 12q5/2 + 21q3 + o
(
q7/2

)
. (5.30)

Comparing this result with the character formulas of unitary representations of N = 4 algebra
summarized on the Appendix B of [11], we can see that there is only the massless character
with h = l = 0 containing the whole short representation on the superconformal algebra. Under
Spectral Flow, this representation is mapped into the h = 1

4 , l = 1
2 representation of R sector.

These operators correspond to 4 RR ground states on Untwisted sector of the sigma model with
T 4/2.A5 target space.
After subtracting from (5.30) the expansion of massless representation labelled by h = l = 0, we
can see that the first holomorphic field of extended algebra has conformal weight h = 2. The
holomorphic fields with conformal weight h = 1 and h = 3 do not belong to W algebra.
The orbifold procedure raised by one unity the weight of the lighest holomorphic field outside
of the N = 4 algebra, and eliminated the holomorphic field with conformal weight h = 3.
This suggest that we might have eliminated from the spectrum the holomorphic fields with odd
conformal dimension. We will not try to disprove this conjecture in this thesis. Certainly we
have reduced the whole symmetry algebra with respect to T 4.



Chapter 6

Boundary states

The D-branes in string theory can be described in two different ways. First, as an extended object
in space-time that can wrap around certain cycles in the target space geometry. Another way is
to think about them as boundary conditions imposed at the end-points of open strings. In this
case the D-branes correspond to the different open string sector that can be added consistently
to a given closed string theory. In terms of the ‘world-sheet’ approach, D-branes are therefore
described by (boundary) conformal field theory.
Boundary CFT provides an exact description in α′ of the D-branes and it is independent by the
geometric interpretation of CFT in terms of the NLSM. This method is useful only in some case,
where the CFT is known explicitly; for NLSM on Kalabi-Yau surfaces this happens only in some
point of moduli space, such as orbifold points.
We remember that Boundary states provide a branes’ description in term of closed strings.
Indeed, the idea is to start from a CFT that describes the closed strings, and owns a certain
chiral algebra A × Ā containing the Virasoro algebra, and to extend the description on world-
sheet with boundary and to study their boundary constraints. The Boundary conditions, with
the request that at least a diagonal pair of the initial algebra is conserved, are represented through
Boundary States. From a string point of view this construction corresponds to introduce in the
theory open strings, that are boundary operators that interpolate two boundary states.
The consistent request for the description, in term of open string, stresses conditions on the
possible D-branes to insert on the theory. For RCFT these requests are the Cardy’s conditions.
In the introductory sections of this chapter we follow the analysis of boundary states given in
[26], [27], [28], [29].

6.1 Cardy’s contruction
In this section we describe the Boundary States construction for rational theories.
Let H be the close string space and A the algebra preserved by Boundary States.
We decompose the space of states of closed string in terms of irreducible representations of A⊗A:

H = ⊕i;jHi ⊗HjNij , (6.1)

where Nij describes the multiplicity with which the irreducible representation Hi ⊗Hj appears
in H, if this are always finite the theory is said to be rational and the sum (6.1) is finite.
Conventionally H0 is the vacuum representation, and N00 = 1 for uniqueness of vacuum.
Boundary states that describe Boundary conditions preserving a certain symmetry provide a link
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between the left- and right-moving fields of the symmetry, called gluing condition.
We can write a gluing condition separately for each summand on (6.1). We can find a non-trivial
solution when Hi is the conjugate representation of Hj . In this case there is only one coherent
state that satisfies the gluing condition, this is called Ishibashi state:[

Wn − (−1)hsρ(Wn)
]
|i〉〉 = 0 ∀n ∈ Z, W ∈ A (6.2)

where W and W are the algebra’s generators preserved by boundary, h is their conformal weight
and ρ denotes an automorphism of the algebra of fields that leaves the stress-energy tensor
invariant. In this section we assume for simplicity that ρ is the trivial automorphism.
Let us consider the Virasoro characters:

χi(q) = TrHiq
L0− c

24 (6.3)

Let us consider that the partition function of the string theory on the torus is diagonal.
Consider the cylinder amplitude with boundary conditions labelled by α and β. In the loop
channel (open string):

Zαβ =
∑
i

niαβχi(q) q = e2πiτ (6.4)

where niαβ are the multiplicities of the i-th representation in the loop.
In the tree channel (closed string) the amplitude is:

Zαβ = 〈〈α|q̃ 1
2 (L0+L̃0− c

12 )|β〉〉 q̃ = e−2πi 1
τ (6.5)

where the boundary |α/β〉〉 respects the gluing conditions for the whole algebra.
We choose the Ishibashi states as a basis for the gluing conditions solutions, therefore every
consistent Boundary State will be a linear combination of these states:

|α〉〉 =
∑
j

Bjα|j〉〉. (6.6)

We can now rewrite the closed string amplitude as 1

Zαβ =
∑
j

(
Bjα
)∗ (

Bjβ

)
χj(q̃). (6.7)

We know also that is possible to transform the amplitude from the closed string channel to the
open string channel through the modular transformation S : τ → −1/τ :

Zαβ =
∑
ij

niαβS
i
jχj(q̃), (6.8)

where S is the matrix representation of the transformation S ∈ SL(2,Z) in the characters space.
Demanding equality of (6.7) and (6.8) yields to:∑

i

Sji n
i
αβ =

(
Bjα
)∗ (

Bjβ

)
, (6.9)

known as Cardy’s condition. The requirement that the multiplicities niαβ be non-negative integer
number is a strong condition on the coefficients Biαβ . Moreover, every set of consistent boundary

1We have used the orthogonal condition on the Ishibashi state: � j|q̃
1
2 (L0+L0− c

12 )|j′ �= δj,j′χj(q).



states gives rise to a matrix family Nα
βi (NIM), one for each representation i.

The set of solutions at Cardy’s condition form a lattice. Let us suppose that the following set:

M = {|α1〉〉, |α2〉〉, ...|αn〉〉} (6.10)

satisfies Cardy’s condition, i.e. the overlap between any two element of M leads to non negative
integer number, then so does the set:

M =
{
|α1 �, |α2〉〉, ...

n∑
l=1

ml|αl〉〉

}
, ml ∈ N0. (6.11)

What we therefore want to find are the fundamental boundary conditions that generate all
other boundary conditions upon taking positive integer linear combinations as above. These
fundamental boundary conditions are believed to be characterised by the condition that the Biα
actually form a unitary matrix.
We want to search solutions to (6.9). The first consistent boundary is the vacuum |0〉〉, for which
one requires ni00 = δi0 (this condition ensures uniqueness of the open string vacuum). Replacing:

Sj0 = |Bj0|2,

in the (6.9), we obtain:
|0〉〉 =

∑
j

√
Sj0|j〉〉 Sj0 > 0.

We can also define boundary |l〉 such that ni0j = δij , then 2

|l〉 =
∑
j

Sjl√
Sj0

|j〉〉. (6.12)

6.2 D-branes in flat space

6.2.1 Bosons
Let us consider a 26-dimensional bosonic string theory, where the target space is the non-compact
variety M1,25 endowed with the metric ηµν . From the point of view of the world-sheet theory,
the bosonic string consists of 26 free bosonic fields Xµ(τ, σ), µ = 0, 1, ..., 25 that describe the
embedding of the string world- sheet in the target space.
As we previously said the modes αµn and α̃µn associated with conformal fields ∂zXµ

L and ∂zX
µ
R

satisfy the algebra û(1)26 ⊕ û(1)26. The algebra representations are labelled by the momenta
k of the ground state. Since k can be any vector, there are infinitely many highest weight
representations, and the theory is therefore not rational. Therefore the Cardy construction
cannot be applied in this case, but it is still possible to construct the Boundary States.
If we want to build boundary states that preserve the full symmetry û(1)26 ⊕ û(1)26, the gluing
condition is: (

αµl + ρ(α̃µ−l)
)
|α�= 0 ∀l ∈ Z.

For each field µ we have two possibility:

(i) ρ(α̃µ−l) = α̃µ−l

(ii) ρ(α̃µ−l) = −α̃µ−l.
2This solves the Cardy’s condition thanks to the Verlinde formula



In the first case the gluing condition is the Neumann boundary condition:(
αµl + α̃µ−l

)
|N〉〉 = 0 ∀l ∈ Z, (6.13)

in terms of the fields:

1
2
∑
l

e−ilσ
(
αµl + α̃µ−l

)
|N〉〉 = ∂τX

µ(τ, σ)|τ=0|N〉〉 = 0,

from the closed string point of view the boundary is at τ = 0. The other choice for ρ leads to
Dirichlet condition: (

αµl − α̃
µ
−l

)
|D〉〉 = 0 ∀l ∈ Z, (6.14)

together with the zero-mode condition

xµ|D〉〉 = aµ|D〉〉,

where aµ is a constant, corresponds to boundary condition:

Xµ(τ, σ)|τ=0|D〉〉 = aµ|D〉〉.

In general we can choose Neumann or Dirichlet conditions in every direction, respectively cor-
respondents to longitudinal and transverse directions. Since the theory must respect SO(1, 25)
symmetry, we assume thet the first p+1 components are Neumann components, the other 25−p
are Dirichlet components. The resulting boundary condition is called Dp-brane: it is a p + 1-
dimensional hypersurface with 25− p fixed directions.
In the following we shall always work in light-cone gauge. To this end we introduce the light-cone
fields:

X±(τ, σ) = 1√
2
(
X0(τ, σ)±X25(τ, σ)

)
.

We also fix the world-sheet reparametrisation invariance through X+ = 2πα′p+τ , this leads to
Dirichlet condition on the X± directions: the D-branes are istantons.
Let |Bp, a〉〉 be the Boundary States corresponding to a Dp-brane localized in the position a.
Let us assume that the boundary state satisfies:(

αµl + α̃µ−l

)
|Bp, a�= 0 µ = 1, ..., p+ 1(

αµl − α̃
µ
−l

)
|Bp, a�= 0 µ = p+ 2, ..., 24

(6.15)

where the first condition with l = 0 implies that only the representations with kµ = 0 for
µ = 1, ...p+ 1 contribute. For these gluing conditions the Ishibashi state in the representation of
momentum k is:

|Bp, k〉〉 = exp

{∑
n>0

[
− 1
n

p+1∑
µ=1

αµ−nα̃
µ
−n + 1

n

24∑
ν=p+2

αν−nα̃
ν
−n

]}
|k〉〉. (6.16)

The whole boundary state is the Fourier transformation:

|Bp, a〉〉 = N
∫ ∏

ν=p+2,....,24
dkνeik

νaν |Bp, k〉〉, (6.17)



where the normalisation is determined by the analogous of Cardy’s condition.
Let us consider the closed string overlap between two boundary states (6.5):

A = 〈〈Bp, a1||e−tHc ||Bp, a2〉〉, (6.18)

where Hc is the closed string Hamiltonian in light-cone gauge and we have performed a Wick
rotation. Given the explicit form of boundary states and through the modular transformation
t = 1/t̃:

A = N 22
23−p

2 t̃−
p+1

2 e−(a1−a2)2 t̃
2π

1
f1(q̃)24 (6.19)

where q̃ = e2πt̃ = e−2π 1
t and f1 is the Jacobi Theta function θ1(τ, z = 0) defined in the Appendix

A.
This should now be interpreted as the open-string trace:

Z = TrHDp,Dpe
−2t̃H0 , (6.20)

where H0 is the open string Hamiltonian in light-cone gauge and the trace includes an integral
over momentum for Neumann directions:

Z = (2t̃)−
p+1

2 e−(a1−a2)2 t̃
2π

1
f1(q̃)24 . (6.21)

The equality between (6.19) and (6.21) holds the condition:

N = 2−6.

6.2.2 Fermions
Let us consider Boundary States in ten-dimensional superstring theory. Now the bosonic degrees
of freedom are described by ten fields Xµ, which give rise of eight transvers degrees of freedom in
light-cone gauge. In addition we have eight left and right-moving fermion fields with conformal
weight h = h = 1

2 .
Now we want to introduce D-branes that preserve the full symmetry: free fermion and free boson
symmetries separately, but also the superconformal symmetry of the world-sheet theory.
Since the fermion fields conformal weight is 1

2 , by (6.2) the gluing conditions on fermion fields
are labelled by η = ±1: (

ψµr + iηρ(ψ̃µ−r)
)
||D, η〉〉 = 0. (6.22)

We remember that the N = 1 supercharge is:

Gr =
∑
n∈Z

ηµνψ
µ
r−nα

ν
n

and similarly for G̃, therefore boundary states must satisfy:(
Gr + iηG̃−r

)
||D, η〉〉 = 0. (6.23)

In the fermionic condition (6.22) we choose:

ρ(ψ̃µ−r) = +ψ̃µ−r Neumann direction
ρ(ψ̃µ−r) = −ψ̃µ−r Dirichlet direction.



so to satisfy the (6.23). We note that the Ishibashi states exist only in the (NS − NS) and
(R−R) sectors, otherwise the condition (6.22) does not make any sense. Let us write the total
Boundary State in the following form:

|Bp, k, η〉〉 = exp

{∑
n>0

[
− 1
n

p+1∑
µ=1

αµ−nα̃
µ
−n + 1

n

8∑
ν=p+2

αν−nα̃
ν
−n

]
+

iη
∑
r>0

[
−
p+1∑
µ=1

ψµ−rψ̃
µ
−r +

8∑
µ=p+1

ψµ−rψ̃
µ
−r

]}
|kη〉(0),

(6.24)

where |kη〉(0) is the (NS −NS) ground state with momentum k, while in the (R−R) sector is
determined by the condition (6.22) for r = 0.
The boundary state should be an element of the closed string spectrum of the theory , but the
actual closed string spectrum is not just the sum over the different sectors NS-NS, NS-R, R-NS
and R-R. As it is well known, the actual spectrum of the closed string theory only consists of
the states that are GSO invariant: we want boundary states to be GSO invariant.
In order to write the GSO projector, we introduce left and right moving fermion number gen-
erators (−1)F (anticommutes with left modes and commutes with all other modes) and (−1)F̃
(anticommutes with right modes and commutes with all other modes). Furthermore, both have
eigenvalue (−1) on the (NS − NS) ground state, and we can choose some suitable convention
on the (R−R) ground states. In the (NS −NS) sector we impose the GSO projection:

PNS−NS = 1
4
(
1 + (−1)F

) (
1 + (−1)F̃

)
. (6.25)

While in the (R−R) sector we can make two choices:

PR−R = 1
4
(
1 + (−1)F

) (
1− (−1)F̃

)
IIA (6.26)

that defines type IIA string theory, and:

PR−R = 1
4
(
1 + (−1)F

) (
1 + (−1)F̃

)
IIB (6.27)

that defines type IIB string theory.
After applying GSO projectors on Ishibashi states in the NS −NS sector, it is easy to get the
following GSO invariant state:

|Bp, k〉〉NS−NS = 1√
2
[
|Bp, k,+〉〉NS−NS − |Bp, k,−〉〉NS−NS

]
. (6.28)

In the (R−R) sector the analysis is more complex because there are fermionic zero modes. Let
us define:

ψµ± = 1√
2
(
ψµ0 ± iψ̃

µ
0
)

(6.29)

which satisfy: {
ψµ±;ψν±

}
= 0

{
ψµ+;ψν−

}
= δµν .

For zero modes the (6.22) becomes:

ψµη |Bp, k, η �
(0)
RR= 0 µ = 1, ...., p+ 1

ψν−η|Bp.k, η �
(0)
RR= 0 ν = p+ 2, ..., 8.



Let us define the states:

|Bp, k,+〉〉(0)
RR =

p+1∏
µ=1

ψµ+

8∏
ν=p+2

ψν−|Bp, k,−〉〉
(0)
RR

|Bp, k,−〉〉(0)
RR =

p+1∏
µ=1

ψµ−

8∏
ν=p+2

ψν+|Bp, k,−〉〉
(0)
RR

(6.30)

and GSO operator on the ground states:

(−1)F =
8∏

µ=1

(
ψµ+ + ψµ−

)
(−1)F̃ =

8∏
µ=1

(
ψµ+ − ψ

µ
−
)
.

(6.31)

Finally we summarize the action of GSO operators on the whole Ishibashi states:

(−1)F |Bp, k, η〉〉RR = |Bp, k,−η〉〉RR

(−1)F̃ |Bp, k, η〉〉RR = (−1)p+1|Bp, k,−η〉〉RR
(6.32)

therefore the only GSO invariant Ishibashi state is:

|Bp, k〉〉RR = 1√
2
(
|Bp, k,+〉〉RR + |Bp, k,−〉〉RR

)
, (6.33)

and the second equation on (6.32) tells us that this is GSO invariant if:

p =
{

even type IIA
odd type IIB

(6.34)

In order for the D-branes to be stable objects, we need to apply the GSO projection on the open
string spectrum, so to exclude the tachionic open string state. Stable BPS branes (that preserve
1
2 of the whole space-time supersymmetry) are obtained by linear combinations of (NS −NS)
and (R−R) boundary states:

|Bp, k〉〉 = 1√
2

(|Bp〉〉NSNS ± i|Bp〉〉RR) . (6.35)

The BPS D-branes must be charged states respect to R − R fields. Indeed the corresponding
boundary states always have a non-vanishing component along the R−R states.
We can write the boundary states in the coordinates representation by Fourier transformation:

||Bp, a〉〉 = N
∫ 8∏

ν=p+2
dkνeik

νaν |Bp, k〉〉 (6.36)

where N is a suitable normalisation obtained by the analogous of Cardy’s conditions:

NNSNS = 1 NRR = 1.



6.3 The compactified case
Let’s consider a target space compactified on some torus. The simplest case is when different
directions are decoupled, therefore we start with a theory whose target space is a circle of radius
R. The main effect of this compactification is to restrict the possible values of momentum at
discrete values, thus we will replace the intergral over momenta by a infinite sum. The spectrum
is:

H = ⊕m,nHm,n, (6.37)
where Hm,n is the space of states generated from the ground state:

α0| (pL, pR)〉 = pL| (pL, pR)〉
α̃0| (pL, pR)〉 = pR| (pL, pR)〉

(6.38)

with (pL, pR) =
(
m
R + nR, mR − nR

)
.

As before, we want that boundary states to respect Neumann or Dirichlet conditions. In par-
ticular the Neumann condition (6.13) for l = 0 implies that Neumann Ishibashi state in Hmn
must satisfy at pL = −pR (left and right representations of preserved symmetry algebra are
conjugate). This condition for generic radius implies m = 0: we have Ishibashi states labelled
by integer n:

| (nR,−nR)〉〉N ∈ H(0,n). (6.39)
Similarly, Dirichlet Ishibashi states can be constructed in H(m,n) provided that pL = pR, that
for generic radius implies n = 0

|
(m
R
,
m

R

)
〉〉D ∈ H(m,0) m ∈ Z. (6.40)

Therefore the Ishibashi states are:

| (nR,−nR)〉〉N = exp

(
−
∞∑
l=1

1
l
α−lα−l

)
| (nR,−nR)〉

|
(m
R
,
m

R

)
〉〉D = exp

( ∞∑
l=1

1
l
α−lα−l

)
|
(m
R
,
m

R

)
〉.

(6.41)

The D-branes are linear combinations of these states:

||w〉〉 = R1/2

21/4

∑
n∈Z

eiwnR|nR,−nR〉〉N (6.42)

that describes a Neumann brane with Wilson line w, and:

||a〉〉 = R−1/2

21/4

∑
m∈Z

eima/R|m
R
,
m

R
〉〉D (6.43)

that describes a Dirichlet brane at the a position.
At low energy the massless states of open strings are Lorentz vectors in space-time that corre-
spond to fields defined in the corresponding D-branes. The transverse components to D-brane
(Dirichlet directions) are interpreted as quantum fluctuations of the D-brane position. The lon-
gitudinal components to D-brane (Neumann directions) are seen as a gauge field U(1) defined
on the D-brane. If the D-brane wraps a circle, we can introduce a non-trivial background for
this gauge field: this background is the Wilson line.
Let us consider now the conformal D-branes that satisfy gluing conditions for conformal symme-
try but not necessarily the other symmetries.



6.4 Symmetries of NLSM
NLSM on K3 are two dimensional N = (4, 4) superconformal fields theories with central charge
c = c = 6. They arise as the worldsheet description of perturbative type IIA string theory on a
K3 surface.
As we described in the Appendix C the 80-dimensional moduli-space of sigma-models on K3 has
the form:

MK3 = O
(
Γ4,20) \O (4, 20) / (O(4)×O(20))

where Γ4,20 is unique, up isomorphisms O
(
Γ4,20), even self-duale lattice with signature (4, 20),

we can think to it as the integral homology lattice of the K3 manifold (or orbifold ).
O (4, 20) / (O(4)×O(20)) parametrise the choice of a positive definite four-dimensional real sub-
space Π ⊂ R4,20.
The position of Π respect to Γ4,20 determines a point in moduli space to which it corresponds a
particular string theory specified by choice of a Ricci-flat metric and a B-field on K3 manifold
(orbifold). However, not every choice of Π corresponds to a suitable CFT, for examples when Π
is orthogonal to roots of Γ4,20 the corresponding non-linear σ-model is not well defined.
Let G = GΠ be the subgroup of O

(
Γ4,20) that leaves Π pointwise fixed. We denote by LG

the G-invariant sublattice of Γ4,20, and with LG his orthogonal complement. By construction
Π = LG ⊗ R, and since it has positive signature (4, 0), LG is a negative lattice of rank at most
20.
In [23] are classified the symmetries of NLSMs on K3 that commute with the N = (4, 4) alge-
bra and the Spectral Flow operators. This classification can be seen as an extention of Mukai
theorem (that classifies the geometric symmetries) [36] [37]. The groups G are subgroups of
Conway CO0 group of automorphisms of Leech lattice that fix pointwise a sublattice of at least
4 dimensions. [31]
The symmetries of the worldsheet theory should have an interpretation as lattice symmetries.
The lattice Γ4,20 can be identified with the D-brane charge lattice, and Π describes the four left
and right moving supercharges. Therefore the symmetries that preserve the automorphisms of
CFT should be in one-to-one correspondence with the symmetries of the D-brane charge lattice
that leave Π pointwise invariant. In this picture, the real space R4,20 is identified with the space
of 24 (anti-)chiral RR ground states with h = h = 1

4 . Under the action of SU(2)L×SU(2)R (part
of superconformal symmetry) this space splits into a four dimensional representation (2,2) with
space-basis Π, and 20 singlets. Therefore, since a K3 σ−model is characterized by Π ∈ R4,20, the
group GΠ that leave the superconformal algebra invariant and preserve the spectral flow (then is
a CFT symmetry ), is the subgroup of O(Γ4,20) that leaves Π pointwise fixed. This assumption
excludes some very interesting symmetries of the theory.
If we identify the boundary states of BPS D-branes of a sigma model on K3, and their corre-
sponding R−R charges, we obtain the exact point of moduli space corresponding to the theory
and its symmetry group GΠ.
In the next sections we are going to consider boundary states for some K3 models obtained as
torus orbifolds.

6.5 Boundary states in torus orbifolds
Let us consider a type IIA superstring theory compactified on M1,3 × T 2 × T 4/G. We will
restrict our attention to D-branes that extend along the orbifold directions. First of all we
would like to write BPS boundary states as superpositions of Ishibashi states satisfying either
Dirichlet or Neumann conditions and combined so that the closed string spectrum satisfies the



GSO invariance. As we previously said only boundary states in the (R-R) and (NS-NS) sectors
are admitted, moreover, since we are considering a type IIA theory solely Dp-branes with p even
are accepted. The boundary states on T 4 = R4/L are:

|D4, x〉〉 |D2(li, lj), x〉〉 |D0, x〉〉.

where x denote generically the four real moduli of brane.
The D0-brane satisfies zero Neumann conditions and four Dirichlet conditions which fix uniquely
the position of the brane in T 4: x represents the position in this four compactified dimensions.
The D4-brane satisfies four Neumann conditions and zero Dirichlet conditions, therefore the
brane does not have a fixed position in T 4, but wraps along the four compactified directions: x
denotes the value of Wilson lines along the four circle of torus.
The D2-brane satisfies two Neumann conditions and two Dirichlet conditions. x represents two
fixed positions along the Dirichlet directions and two Wilson lines along the Neumann directions
(li, lj) ∈ L.
Every boundary state is normalized so that in a open string loop in the NS-sector TrNSααqHopen
the vacuum character appears once. D-branes that satisfy this propriety are called fundamental
branes. Notice that for open strings related between two different Dp-brane, the vacuum char-
acter on the loop only appears if the moduli are the same, otherwise the lightest open string has
energy proportional to |x− x′|2.
Let’s defineWitten index or intersection number the 1-loop open string amplitude on the R(−1)F
sector:

〈〈α|β〉〉 =
∑
i,j

qi(α)qj(β)〈χi|(−1)F+F̃ |χj〉

where χ1, χ2... form an orthonormal basis of Ramond-Ramond ground states. This quantity
don’t depends on moduli but only on the Ramond-Ramond charges of boundary states:

qi(α) = 〈χi|α〉〉.

The non-zero intersection between D-branes on T 4 are:

〈〈D0, x|D4, x′〉〉 =1
〈〈D2(li, lj), x|D2(la, lb), x′〉〉 = −εijab.

Let us consider the torus orbifold T 4/G, where G is a finite subgroup of SU(2). Let us suppose
that G acts geometrically on the space.
G acts on moduli x of the branes, then every modulus’ orbit will generically count |G| distinct
point. Let us define bulk D-branes as the sum over this orbit points:

|Dp, x〉〉T 4/G,bulk = 1√
|G|

∑
g∈G
|Dp, g(x)〉〉,

the result is a G-invariant brane. The choice of normalization is such that the branes are
fundamental. Notice that for D2-branes the g element in the sum acts also in the Neumann
direction (li, lj). In this calculation, it is important that in the overlap between |D0, g(x)〉〉 and
|D0, g′(x)〉〉 the vacuum character appears only if g(x) = g′(x), which for generic x implies g = g′.
On the other hand, the intersection number is independent of the moduli and one has:

T 4/G,bulk〈〈D0, x|D4, x′〉〉T 4/G,bulk = 1
|G|

∑
g,h∈G

〈〈D0, g(x)|D4, h(x′)〉〉 = |G|. (6.44)

Bulk D-branes are only charged under Ramond-Ramond ground fields in the untwisted sector.



6.5.1 Fractional branes

A natural starting point are the D-branes on the covering space T 4 that are G-invariant and are
called regular branes. These regular branes (bulk D-branes) give rise to G Regular representation
R , of |G| dimension:

R =
∑
I

dIDI .

This representation is not irreducible, therefore we want to find a more fundamental set of branes
such that the open strings attached to the latter carry indices transforming in an irreducible
representation. This set exists and such D-branes are called fractional branes.
A fractional Dp-brane is a BPS object: it carries only a fractional charge respect to regular
Dp-brane under untwisted RR(p+1)-forms , but it is charged respect to some twisted RR(p+1)-
forms. This branes are positioned at orbifold fixed points.
Let x be a fixed point for the whole group G or under one of its subgroup H: g(x) = x for
∀g ∈ H. Let us consider the bulk D0-brane |D0, x〉〉T 4/G,bulk positioned at x fixed point: open
strings stretched between x and g(x) become massless and the vacuum characters appear more
that once: this branes are not fundamental branes.
For each H-fixed point x, there is one fundamental D-brane for each irreducible representation
I of H. When H = G is the full group of symmetries, the formula for a fractional D0-brane is
given by:

|D0, x, I,G〉〉T 4/G,f = dim(I)√
|G|
|D0, x〉〉+ 1√

|G|

∑
[g] 6=[e]

√
| [h] | (2sin(πνh))TrI(h)||T0, [h] , x〉〉

(6.45)
where, dimI is the dimension of representation I; the sum is on conjugation classes of G; TrI(h)
is the trace of one representative element h ∈ [h]; νh|0 < νh < 1 is such that the eigenvalues of
h when acting on the fields ∂Xi be e±2πiνh , and ||T0, [h] , x〉〉 is a symmetrisation on the whole
conjugation class:

||T0, [h] , x〉〉 = 1√
| [h] |

∑
h∈[h]

||T0, h− twisted, x〉〉

where ||T0, h− twisted, x〉〉 is a Ishibashi state in the h-twisted sector representation.
For every h ∈ G the number (not necessarily G-invariant) of h-twisted ground state is the number
of h-fixed points, and for every state there is a Ishibashi state |T0, h− tw, x〉〉.
If H < G then the x orbit counts |G/H| distinct points and each of these g(x) is fixed by a
subgroup gHg−1 ∼ H ∈ G. The fractional D0-brane localized at x fixed point is:

|D0, x,H, I〉〉T 4/G,f = 1√
|G/H|

∑
[g]∈G/H

|D0, g(x), I〉〉f =

dimI√
|G|

∑
[g]∈G/H

|D0, g(x)〉〉+ 1√
|G|

∑
[g]∈G/H

∑
[h] 6=[e]

(2sin(πνh))TrI(h)|T0, [h] , g(x)〉〉,
(6.46)

where I is a irreducible representation of H.
There are a fractional D0-brane for every irrep of H.
The intersection index between fractional D0-branes can be easily calculated through the nor-
malisation condition of Ishibashi states:

〈〈T0, [h′] , x′||T0, [h] , x〉〉 = δ[h],[h′]δx,x′ .



Since the twisted sector Ishibashi states are orthogonal to the ones in the untwisted sector, so
the only nonzero intersection is with bulk D4-branes:

T 4/G,b〈〈D4, x′|D0, x,H, I〉〉T 4/G,f = dimI

|G|
∑
g′∈G

∑
g∈G/H

〈〈D4, g′(x′)|D0, g(x)〉〉 = dimI|G/H|.

A completely similar formulation can be to do for fractional D2 and D4 branes when the moduli
x are fixed by a subgroup H ∈ G. For D4-branes the twisted ground states will be labelled by
fixed Wilson lines, therefore we will have different basis for this space respect the basis labelled
by fixed-position for D0-branes. In order to calculate intersection index between fractional D0
and D4 branes one needs to know precisely how these different bases are related. In this thesis
we will not try to solve this problem and only consider fractional D0-branes.

6.5.2 Fixed point
In order to construct the fractional D0-brane, let us calculate the fixed points on T 4 = R4/L
under the action of G.
Let {l1, l2, l3, l4} be a L basis, and Gij be the matrix representation of g ∈ G with respect to this
basis. Since the lattice points are given by vectors (x1, x2, x3, x4) ∈ Z4, the matrix G (lattice
authomorphism) has integer entries and detG = 1. The G action on the lattice is:

g(x) =
∑
i

liGijxj =


G11 G12 G13 G14
G21 G22 G23 G24
G31 G32 G33 G34
G41 G42 G43 G44



x1
x2
x3
x4

 ,

then the fixed point satisfies:

(1−G)


x1
x2
x3
x4

 ∈ Z4.

This last expression admits solution for det (1−G) 6= 0, then (1−G) is invertible. Generally
det (1−G) 6= 1 and the inverse is a rational.
The fixed points are identified by the subset:

(1−G)−1 Z4

Z4 . (6.47)

The number of fixed points is the number of elementary cells of (1−G)−1 Z4 inside one elemen-
tary cell of Z4, namely det (1−G).
Since (1−G) is invertible and G has finite order N, we can write:(

1−GN
)

= 0 → (1−G)
(
1 +G+G2 + ...+GN−1) = 0

→
(
1 +G+G2 + ...+GN−1) = 0

G+G2 + ....+GN−1 = −1,

so that

(1−G)
(
G+ 2G2 + .....+ (N − 1)GN−1) = G+G2 + ....+GN−1 − (N − 1)1 = −N,



then
(1−G)−1 = − 1

N

(
G+ 2G2 + ......+ (N − 1)GN−1) .

This shows that the denominators in the rational entries of (1−G)−1 are divisors of N . The
fixed points are always contained in 1

NL/L. Notice that the origin x = 0 is always fixed by every
g ∈ G.
After a similar reasoning, we find that the number of fixed Wilson lines x ∈ R4/L∗ is the same
as the number of fixed points. If the eigenvalues of G are e±2iπνg on the RR ground states, then
this number is:

det (1−G) =
[(

1− e2iπνg
) (

1− e−2iπνg
)]2 = (2sin(πνg))4

. (6.48)

6.6 T 4/2.A4

Let us consider a torus model with symmetry 2.A5. The group 2.A5 can be generated by
elements of order 3, 4 and 5 that we indicate respectively with g3, g4 and g5. Let {λ1, λ2, ...., λ8}
be a suitable basis for winding-moment lattice Λ4,4, such that:

(λi, λj) = δi,j+4 + δi,j−4. (6.49)

Let us define the action of the generators g3, g4, g5 on this basis by the following matrices:

g3 =



0 1 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0
0 0 −1 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 −1


g4 =



0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 −1 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 −1 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 1 0


(6.50)

g5 =



0 0 0 0 1 0 0 0
0 0 0 −1 −1 1 −1 0
0 0 1 1 1 0 1 −1
0 0 −1 0 −1 0 0 1
1 1 0 1 1 −1 0 0
0 1 0 0 1 0 0 0
0 1 1 0 1 0 0 0
0 1 1 1 1 0 0 0


(6.51)

We notice that the first two generators preserve the maximal isotropic sublattices
Γw = span (λ1, λ2, λ3, λ4) and Γm = span (λ5, λ6, λ7, λ8), while g5 mix the components of two
sublattices between them. The subgroup of 2.A5 generated by g3 and g4, isomorphic to 2.A4 of
order 24, acts geometrically on the model. The action of 2.A5 on the target space is not geometric.
Indeed the g5 element has different eigenvalues when act on the left- and right-moving bosonic
fields, therefore its action cannot be induced by isometries of target space: it is a non-geometric
symmetry.
Let us focus our attention on 2.A4 subgroup: it acts on target space T 4 = R4/L as well as on



the lattice Λw through:

g3 =


0 1 0 0
−1 −1 0 0
0 0 −1 −1
0 0 1 0

 g4 =


0 1 1 0
0 0 0 1
−1 0 0 −1
0 −1 0 0

 . (6.52)

Before starting with D-branes calculation, we compute how many RR ground states there are in
any twisted sector:

Φ(τ, 0) = [5 + 3 + 4 + 5 + 1 + 5 + 1] = 24. (6.53)

Notice that the total elliptic genus is 24, therefore the orbifold theory T 4/2.A4 is a K3 model.
We have respectively 5 RR-ground states in the untwisted sector, 3 in 2A-twisted sector, 4 in
4A-twisted sector, 5 in 3A-twisted sector, 1 in 6A-twisted sector, 5 in 3B-twisted sector and 1
in 6B-twisted sector.
In order to determinate the bulk D-branes, as previously described, let us symmetrise the D-
branes of torus theory:

|D0, x〉〉T 4/2.A4,bulk = 1√
24

∑
g∈2.A4

|D0, g(x)〉〉

|D4, x〉〉T 4/2.A4,bulk = 1√
24

∑
g∈2.A4

|D4, g(x)〉〉.
(6.54)

Since intersection number is moduli independent, we have the following results between D0 and
D4-branes:

T 4/2.A4,bulk〈〈D0, x|D4, x′〉〉T 4/2.A4,bulk = 1
24
∑
g,h

〈〈D0, g(x)|D4, h(x′)〉〉 = 24. (6.55)

Let us focus on D2-branes and let’s see haw 2.A4 acts on the two cycle wrapped by the brane:

|D2(li, lj), x〉〉T 4/2.A5,bulk = 1√
24

∑
g∈2.A4

| (g(li), g(lj)) , g(x)〉〉. (6.56)

By choosing a suitable basis we expect that only 3 D2-branes spanned a non trivially charge
vector space.
Since we know that the group acts on the pairs of basis (li, lj) through the previous matrix repre-
sentation, we can to compute the six D2-branes labelled by {(l1, l2), (l1, l3), (l1, l4), (l2, l3), (l2, l4), (l3, l4)}
and using the intersection rule:

T 4/2.A5,bulk〈〈D2(li, lj), x|D2(la, lb), x′〉〉 = −detBεijab (6.57)

where the intersection number is positive (respectively negative ) if {li, lj , la, fb} forms a nega-
tively (positively) oriented base of L, while B is the matrix having these vectors as rows . The
result is the following matrix:

ID2 = −6


3 2 1 1 −1 1
2 4 2 2 −2 −2
1 2 3 3 1 −1
1 2 3 3 1 −1
−1 −2 1 1 3 1
1 −2 −1 −1 1 3

 . (6.58)



As we expected the rank of ID2 is 3, in particular we can choose the D2-branes labelled by
{(l1, l2), (l1, l3), (l1, l4)} as basis for the three dimensional lattice of charges.
The other non-zero intersection number is:

〈〈D0, x|D4, x′〉〉 = 24

while all the rest vanish. Summing the result into the bulk Dp-branes intersection matrix:

Ibulk = 6


D0 D2(l1, l2) D2(l1, l3) D2(l1, l4) D4
0 0 0 0 4
0 −3 −2 −1 0
0 −2 −4 −2 0
0 −1 −2 −3 0
4 0 0 0 0

 (6.59)

We want to diagonalize this matrix since the signs of the eigenvalues should tell us which branes
span the sublattice of charges that transforms under (2,2) representation of SU(2)L × SU(2)R.
Through this sublattice, in particular its orientation respect to Γ4,20, one can identify, within the
moduli space of NLSM on K3, the family of models whose symmetry group contain 2.A4. The
ordered eigenvalues are:

12(−2−
√

2) − 24 24 − 12 12(−2 +
√

2),

and their corresponding eigenvectors are:

v1 = D2(l1, l2) +
√

2D2(l1, l3) +D2(l1, l4)
v2 = −D0 +D4
v3 = D0 +D4
v4 = −D2(l1, l2) +D2(l1, l4)
v5 = D2(l1, l2)−

√
2D2(l1, l3) +D2(l1, l4)

Now we want to compute the fractional D0-branes, we expect that there are 24 − 5 D0-branes
independent of each other. In order to reach our goal, we need to compute the fixed point on
T 4 = R4/L under action of 2.A4. The points fixed by both generators g3 and g4 will be fixed by
the whole group. By (6.47), the fixed points are given by:

(1− g3)−1 Z4

Z4 =




2
3

1
3 0 0

− 1
3

1
3 0 0

0 0 1
3 − 1

3
0 0 1

3
2
3

Z4

 /Z4

and

(1− g4)−1 Z4

Z4 =




1
2

1
2

1
2 0

0 1
2 0 1

2
− 1

2 0 1
2

1
2

0 − 1
2 0 1

2

Z4

 /Z4.

Only x = 0 is fixed by the whole group and we have seven fractional D0-branes for this point,
one for each irreducible representation of the group:



| [g] | 1 4 4 4 4 6 1
1A 3A 6A 3B 6B 4A 2A

I1 1 1 1 1 1 1 1
I2 1 ω ω ω ω 1 1
I3 1 ω ω ω ω 1 1
I4 2 -1 1 -1 1 0 -2
I5 2 −ω ω −ω ω 0 -2
I6 2 −ω ω −ω ω 0 -2
I7 3 0 0 0 0 -1 3

By (6.45) we obtain the D0-branes at x = 0:

|D0, 0, Ik, 2.A4〉〉T 4/2.A4,fractional = dimIk√
|G|
|D0, 0〉〉+ 1√

|G|

∑
[g]∈G

√
| [g] |2sin(πνg)TrIk(g)||T0, [g] , 0〉〉,

(6.60)
therefore:

• |D0, 0, I1, 2.A4〉〉T 4/2.A4,fractional = 1√
24
|D0, 0〉〉+ 1√

24

[
2
√

3||T0, 3A, 0〉〉+

2||T0, 6A, 0〉〉+ 2
√

3||T0, 3B, 0〉〉+ 2||T0, 6B, 0〉〉+ 2
√

3||T0, 4A, 0〉〉+ 2||T0, 2A, 0〉〉
]

• |D0, 0, I2, 2.A4〉〉T 4/2.A4,fractional = 1√
24
|D0, 0〉〉+ 1√

24

[
2
√

3ω||T0, 3A, 0〉〉+

2ω||T0, 6A, 0〉〉+ 2
√

3ω||T0, 3B, 0〉〉+ 2ω||T0, 6B, 0〉〉+ 2
√

3||T0, 4A, 0〉〉+ 2||T0, 2A, 0〉〉
]

• |D0, 0, I3, 2.A4〉〉T 4/2.A4,fractional = 1√
24
|D0, 0〉〉+ 1√

24

[
2
√

3ω||T0, 3A, 0〉〉+

2ω||T0, 6A, 0〉〉+ 2
√

3ω||T0, 3B, 0〉〉+ 2ω||T0, 6B, 0〉〉+ 2
√

3||T0, 4A, 0〉〉+ 2||T0, 2A, 0〉〉
]

• |D0, 0, I4, 2.A4〉〉T 4/2.A4,fractional = 1√
24
|D0, 0〉〉+ 2√

24

[
−2
√

3||T0, 3A, 0〉〉+

2||T0, 6A, 0〉〉 − 2
√

3||T0, 3B, 0〉〉+ 2||T0, 6B, 0〉〉 − 4||T0, 2A, 0〉〉
]

• |D0, 0, I5, 2.A4〉〉T 4/2.A4,fractional = 2√
24
|D0, 0〉〉+ 1√

24

[
−2
√

3ω||T0, 3A, 0〉〉+

2ω||T0, 6A, 0〉〉 − 2
√

3ω||T0, 3B, 0〉〉+ 2ω||T0, 6B, 0〉〉 − 4||T0, 2A, 0〉〉
]

• |D0, 0, I6, 2.A4〉〉T 4/2.A4,fractional = 2√
24
|D0, 0〉〉+ 1√

24

[
−2
√

3ω||T0, 3A, 0〉〉+

2ω||T0, 6A, 0〉〉 − 2
√

3ω||T0, 3B, 0〉〉+ 2ω||T0, 6B, 0〉〉 − 4||T0, 2A, 0〉〉
]

•|D0, 0, I7, 2.A4〉〉T 4/2.A4,fractional = 1√
24
|D0, 0〉〉+ 3√

24

[
−2
√

3||T0, 4A, 0〉〉+ 6||T0, 2A, 0〉〉
]

The sum of these seven fractional branes corresponds to a bulk D0-brane located at x = 0, so
these boundary states give six new linearly independent charge vectors: we can take the boundary
states related to I1, I2, I3, I4, I5, I6 independent representations.
In order to study the other fractional D0-branes, we need to consider fixed points under non-
trivial subgroups of 2.A4. The element of class 2A forms a subgroup isomorphic to Z2, that acts



on lattice by −1. The elements of class 6A and 6B generate subgroups Z6, those of class 3A and
3B generate subgroups Z3, while those of class 4A subgroups D8. Therefore we have subgroups
Z2, Z3, D8 and Z6 with respectively

(
2sin(π 1

2 )
)4 = 16,

(
2sin(π 1

3 )
)4 = 9,

(
2sin(π 1

4 )
)4 = 4 and(

2sin(π 1
6 )
)4 = 1 fixed points on T 4/2.A4.

Let us start with subgroup Z6: it fixes one point x = 0 that was considered above.
Let us now consider the points fixed by the H = D8 subgroup: there are 4 of these points, of
which one is the origin:

x1 =


0
0
0
0

 x2 =


1/2
0

1/2
0

 x3 =


1/2
1/2
0

1/2

 x4 =


0

1/2
1/2
1/2

 , (6.61)

all these points are fixed by everyone element of the group.
The fractional D0-branes at origin has been treated above, the remaining fixed points are or-
ganised in a single orbit Ox1 under the Z2.A4 action, since |Z2.A4/D8| = 3. Since there are five
inequivalent irreducible representations of D8 labelled by Ak with k = 0, 1, 2, 3, 4, we have five
fractional D0-branes for the single orbit Ox1 . The character table of D8 is:

| [g] | 1 1 2 2 2
1A 2A 4A 4B 4C

I1 1 1 1 1 1
I2 1 1 1 -1 -1
I3 1 1 -1 1 -1
I4 1 1 -1 -1 1
I5 2 -2 0 0 0

where we have the first four representations one dimensional and the last of two dimension.
Keeping in mind that 2.A4/D8 ' Z3, the fractional branes localized at Ox1 are:

•|D0,Ox1 ,D8, I1〉〉T 4/Z2.A4,f = 1√
24

∑
[g]∈2.A4/D8

|D0, g(x1)〉〉+ 1√
24

∑
[g]∈2.A4/D8

[2|T0, 2A− tw, g(x1)〉〉+

+
√

2|T0, 4A− tw, g(x1)〉〉+
√

2|T0, 4B − tw, g(x1)〉〉+
√

2|T0, 4C − tw, g(x1)〉〉
]

•|D0,Ox1 ,D8, I2〉〉T 4/Z2.A4,f = 1√
24

∑
[g]∈2.A4/D8

|D0, g(x1)〉〉+ 1√
24

∑
[g]∈2.A4/D8

[2|T0, 2A− tw, g(x1)〉〉+

+
√

2|T0, 4A− tw, g(x1)〉〉 −
√

2|T0, 4B − tw, g(x1)〉〉 −
√

2|T0, 4C − tw, g(x1)〉〉
]

•|D0,Ox1 ,D8, I3〉〉T 4/Z2.A4,f = 1√
24

∑
[g]∈2.A4/D8

|D0, g(x1)〉〉+ 1√
24

∑
[g]∈2.A4/D8

[2|T0, 2A− tw, g(x1)〉〉+

−
√

2|T0, 4A− tw, g(x1)〉〉+
√

2|T0, 4B − tw, g(x1)〉〉 −
√

2|T0, 4C − tw, g(x1)〉〉
]

•|D0,Ox1 ,D8, I4〉〉T 4/Z2.A4,f = 1√
24

∑
[g]∈2.A4/D8

|D0, g(x1)〉〉+ 1√
24

∑
[g]∈2.A4/D8

[2|T0, 2A− tw, g(x1)〉〉+

−
√

2|T0, 4A− tw, g(x1)〉〉 −
√

2|T0, 4B − tw, g(x1)〉〉+
√

2|T0, 4C − tw, g(x1)〉〉
]



•|D0,Ox1 ,D8, I5〉〉T 4/Z2.A4,f = 2√
24

∑
[g]∈2.A4/D8

|D0, g(x1)〉〉 − 2√
24

∑
[g]∈2.A4/D8

2|T0, 2A− tw, g(x1)〉〉

The sum of these four fractional branes is the bulk D0-brane localized at the points of Ox1 , there-
fore this orbit provides four linearly independent charge vectors: we choose the branes related
to representations k = 2, 3, 4, 5.
In order to write the fractional D0-branes related to Z3 subgroup, we list neatly the fixed sublat-
tice bases by set of element

{
g3, g

2
3
}
,
{
g3g4, (g3g4)2}, {g4g3, (g4g3)2} and

{
−g4g

2
3g4, (−g4g

2
3g4)2}:

x′1 =


2/3
−1/3

0
0

 x′′2 =


1/3
1/3
0
0

 x′′3 =


0
0

1/3
1/3

 x′′4 =


0
0

2/3
−1/3



x′′1 =


2/3
0

1/3
−1/3

 x′′2 =


0

1/3
1/3
0

 x′′3 =


0
−1/3
2/3
0

 x′′4 =


1/3
−1/3
1/3
1/3



x′′′1 =


1/3
0
0

1/3

 x′′′2 =


−1/3
2/3
−1/3
1/3

 x′′′3 =


−1/3
1/3
1/3
0

 x′′′4 =


−1/3

0
0

2/3



x′′′′1 =


2/3
−1/3
1/3
0

 x′′′′2 =


−1/3

0
1/3
1/3

 x′′′′3 =


0
−1/3

0
2/3

 x′′′′4 =


2/3
0

1/3
1/3

 .

For each subgroup of order 3, there are 9 fixed points, one of which is always the origin x = 0.
Since there are 4 different subgroups of order 3, we obtain 32 fixed points organized on 4
orbits Ox′1 ,Ox′′1 ,Ox′′′1

,Ox′′′′1
with 8 points, since |2.A4/Z3| = 8. For each of these 4 orbits

Ox′1 ,Ox′′1 ,Ox′′′1
,Ox′′′′1

we have three D0-branes, one for each inequivalent irreducible represen-
tations of Z3, of which only two lead to linearly independent charge vectors.

• |D0,Oi,Z3, A
′
k〉〉 = 1√

24

∑
[g̃]∈2.A4/Z3

|D0, g(xi)〉〉+ 1√
24

∑
[g̃]∈Z2A4/Z3

2∑
a=1

√
3e2πi ka3 ||T0, 3Aa − tw, g̃(xi)〉〉

In this latter equation A′k with k = 1, 2, 3 labelled the inequivalent irreducible representations
of Z3 and we choose k = 1, 2 for the D0-branes linearly independent. The vector xi represents
the fixed points x′i, x′′i , x′′′i , x′′′′i . Moreover, notice that 3Aa labelled the conjugation classes 3A
and 3B of 2.A4 respectively for a = 1, 2, and since 2.A4/Z3 ' D8 the sum under [g̃] ∈ 2.A4/Z3
counts four elements.
The last subgroup is Z2 that fixes 16 points of the torus of which one is the origin and three
have already been considered as fixed points of D8. The remaining 12 points are organized in a
single orbit because |Z2.A4/Z2| = 12. The basis vectors of the fixed sublattice are:

x′′′′′1 =


1/2
0
0
0

 x′′′′′2 =


0

1/2
0
0

 x′′′′′3 =


0
0

1/2
0

 x′′′′′4 =


0
0
0

1/2

 (6.62)



Therefore we have two D0 branes for this orbit Ox′′′′′1
, one for each irreducible representation of

Z2

•|D0,Ox′′′′′1
,Z2, Ik〉〉 = 1√

24

∑
g∈A4

|D0, g(xi)〉〉+ 2 1√
24

∑
g∈A4

εk||T0,−1− tw, g(xi)〉〉

where εk = ±1. The sum of D0-branes related to inequivalent irreducible representations leads
to a bulk D0-brane. Therefore we have only one new linear indipendet change vector for this
orbit.
To summarize, we have 5 linearly independent bulk D-branes charged only under the untwisted
RR ground fields, 6 fractional D0-branes at the origin charged under both untwisted and twisted
RR ground fields; 4 fractional D0-branes from the single orbit of D8-fixed points, carrying charge
of untwisted RR fields and of 2A and 4A-twisted sector fields; 8 fractional D0-branes from
the four inequivalent orbits Ox′1 ,Ox′′1 ,Ox′′′1

,Ox′′′′1
of Z3-fixed points each with two independent

branes, carrying charge of untwisted RR fields and of 3A and 3B-twisted sector fields; 1 fractional
D0-brane from the single orbit Ox′′′′′1

of Z2-fixed points charged under untwisted and 2A-twisted
sector fields.
The corresponding charge vectors span a lattice of maximal dimension 24 but the lattice is not
unimodular. Therefore the set of bulk and fractional D-branes that we have calculated in this
section does not constitute a basis for the boundary states of the model. We must still consider
fractional D2 and D4 branes.

6.7 T 4/2.A5

The geometric interpretation of the toroidal CFT as a NLSM on a certain torus T 4, allows
us to identify the winding and momentum lattices as the maximal isotropic sublattices of Λ4,4

generated by Γw = span (λ1, λ2, λ3, λ4) and Γm = span (λ5, λ6, λ7, λ8) respectively. From the
action (6.50) and (6.51) of the generators of 2.A5 on the lattice Λ4,4, it can be shown that the g3
and g4 transformations, induced by isometries of target space, preserve these maximal isotropic
sublattices. While the g5 action mixes the components of two sublattices among them: it is a
non-geometric symmetry of the theory. This fact makes the method described in the previous
sections to compute the bulk and the fractional branes on orbifolds unusable for the orbifold
T 4/2.A5. In this section we derive the bulk D-branes for this orbifold model to symmetrize the
bulk D-branes obtained for the T 4/2.A4 model respect to the action of g5 ∈ 2.A5. The result is
the bulk D-branes of the T 4/2.A5 model, written in terms of the bulk D-branes of the T 4/2.A4
model.
The RR ground states generate a 16-dimensional vector space V as a representation space of the
algebra of fermionic zero modes. We want to describe the D-branes in terms of their charges
with respect to these RR ground states. Let us define the RR-charge of the D-brane respect to
a certain RR field, as the overlap between the boundary state representing the D-brane and the
RR ground state corresponding to the field. With this definition, the D-branes charges can be
seen as vectors in the dual space of V , and they actually span a Γ8,8 lattice. [21] The RR charges
are completely determined by the condition (6.22) for r = 0.
The chirality operator splits the whole lattice in two sublattices with opposite chirality: Γ4,4

even⊕⊥
Γ4,4
odd. The GSO projection imposes even dimension for the branes of the type IIA string theory,

therefore they have non-trivial components only in the Γ4,4
even sublattice.

Let us write the Dirichlet conditions (6.22) that define the D0-brane in terms of operators c(λ),
written in terms of fermionic zero modes:

c (λ) = λL · ψ0 + iλR · ψ̃0 ∀λ ∈ Γ4,4
even, (6.63)



that respect the Clifford algebra:

{c(λ), c(µ)} = 2 (λ, µ) ,

with λ, µ ∈ Γ4,4 and internal product (λ, µ) defined by (6.49).
If λ ∈ Γ4,4 is a null vector, i.e. (λ, λ) = 0, then the corresponding operator c(λ) is nilpotent of
degree 2, and the kernel of this operator in not empty.
As in the previous section, let us choose the vector null basis {λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8} of the
lattice Γ4,4, and let us identify the pure momentum lattice as the maximal isotropic sublattice
Γm = {λ5, λ6, λ7, λ8}, and the pure winding lattice as the maximal isotropic sublattice Γw =
{λ1, λ2, λ3, λ4}. Now, we can write the Dirichlet conditions (6.22), for r = 0, of the D0-brane as:

c(λi)|D0〉 = 0 i = 5, 6, 7, 8. (6.64)

There is a unique unidimensional subspace of V that it satisfy at the same time the four conditions
(6.64). The RR charge of the D0-brane is directs along this direction: it is defined by the (6.64)
conditions up to an arbitrary normalization constant.
Similarly, the other D-branes can be constructed acting on the D0-brane by c(λ) operators on
the following order:

|D2(12)〉 = c(λ1)c(λ2)|D0〉
|D2(13)〉 = c(λ1)c(λ3)|D0〉
|D2(14)〉 = c(λ1)c(λ4)|D0〉
|D2(23)〉 = c(λ2)c(λ3)|D0〉
|D2(24)〉 = c(λ2)c(λ4)|D0〉
|D2(34)〉 = c(λ3)c(λ4)|D0〉
|D4〉 = c(λ1)c(λ2)c(λ3)c(λ4)|D0〉.

(6.65)

Let us use the same procedure to define the D-branes transformed by the g5 element. The new
D0-brane, transformed under g5, is labelled by the "new winding" vectors:

λ̃5 = g5λ5 =



−1
1
−1
1
−1
−1
−1
−1


λ̃6 = g5λ5 =



0
−1
0
0
1
0
0
0


λ̃7 = g5λ5 =



0
1
−1
0
0
0
0
0


λ̃8 = g5λ5 =



0
0
1
−1
0
0
0
0


,

that are again null vectors but they do not belong to Γw ∈ Γ4,4.
Let |D0′〉 be the new D0-brane that respects the Dirichlet conditions with respect to the new
winding directions:

c
(
λ̃5
)
|D0′〉 = c

(
λ̃6
)
|D0′〉 = c

(
λ̃7
)
|D0′〉 = c

(
λ̃8
)
|D0′〉 = 0. (6.66)

These conditions determine D0 up to normalization constant.
Since the element g5 act non-geometrically on the winding-momentum lattice, we expect that the
new D0-brane be a linear combination of the various D-branes of T 4 with different dimensions.
Let us consider the following ansatz:

|D0′〉 = a|D0〉+b|D2(12)〉+c|D2(13)〉+d|D2(14)〉+e|D2(23)〉+f |D2(24)〉+g|D2(34)〉+h|D4〉,
(6.67)



where a, b, c, d, e, f, g, h are integer constants. Imposing the (6.66) conditions on the ansatz, we
obtain:

|D0′〉 = N (D2(23)−D2(24) +D2(34) +D4) , (6.68)

where N ∈ C carries all the uncertainty on the normalization and on the phase.
Now, we build the other D-branes acting on with the operators c

(
λ̃1
)
, c
(
λ̃2
)
, c
(
λ̃3
)
, c
(
λ̃4
)
. By

(6.51), the action of g5 on the momentum vectors λ1, λ2, λ3, λ4 ∈ Γm is:

λ̃1 = g5λ1 =



0
0
0
0
−1
0
0
0


λ̃2 = g5λ2 =



0
0
0
0
−1
−1
−1
−1


λ̃3 = g5λ3 =



0
0
−1
1
0
0
−1
−1


λ̃4 = g5λ4 =



0
1
−1
0
−1
0
0
−1


.

Let us define the other branes as:

|D2′(12)〉 = c(λ̃1)c(λ̃2)|D0〉
|D2′(13)〉 = c(λ̃1)c(λ̃3)|D0〉
|D2′(14)〉 = c(λ̃1)c(λ̃4)|D0〉
|D2′(23)〉 = c(λ̃2)c(λ̃3)|D0〉
|D2′(24)〉 = c(λ̃2)c(λ̃4)|D0〉
|D2′(34)〉 = c(λ̃3)c(λ̃4)|D0〉
|D4′〉 = c(λ̃1)c(λ̃2)c(λ̃3)c(λ̃4)|D0〉.

Using the Clifford algebra relations and the conditions (6.64), we obtain the new D-branes,
transformed under g5, in terms of fundamental D-branes of the torus:

|D2′(12)〉 = N (−|D2(23)〉 − |D2(24)〉 − |D2(34)〉)
|D2′(13)〉 = N (−|D2(23)〉+ |D2(24)〉)
|D2′(14)〉 = N (−|D2(23)〉)
|D2′(23)〉 = N (|D2(13)〉 − |D2(14)〉 − |D2(23)〉+ |D2(24)〉)
|D2′(24)〉 = N (−|D2(12)〉+ |D2(13)〉 − |D2(24)〉+ |D2(34)〉)
|D2′(34)〉 = N (−|D2(12)〉 − |D2(34)〉 − |D4〉 − |D0〉)
|D4′〉 = N (+|D2(23)〉 − |D2(24)〉+ |D2(34)〉+ |D0〉) .

In order to fix the normalization constant N , we require that the g5 action be a rotation of 2π/5
around a fixed 4-dimensional sublattice of Γ4,4. We obtain N = −1. Let us write the matrix



action of g5 on the transformed branes:

g5|D−b =



D0 D2(12) D2(13) D2(14) D2(23) D2(24) D2(34) D4
D0′ 0 0 0 0 −1 1 −1 −1

D2′(12) 0 0 0 0 1 −1 1 0
D2′(13) 0 0 0 0 1 −1 0 0
D2′(14) 0 0 0 0 1 0 0 0
D2′(23) 0 0 −1 1 1 −1 0 0
D2′(24) 0 1 −1 0 0 1 −1 0
D2′(34) 1 1 0 0 0 0 1 1
D4′ −1 0 0 0 −1 +1 −1 0


,

and it is easy to verify that (g5|D−branes)5 = 1.
Now, we would like to write the bulk D-branes of the theory on T 4/2.A5 target space. It is
convenient to start from the bulk D-branes of the theory for the T 4/2.A4 orbifold, and symmetrize
them respect to the action of

(
1, g5, g

2
5 , g

3
5 , g

4
5
)
.

Let us compute explicitly the result for the D0-brane:

• |D0, x〉〉T 4/2.A5,Bulk = 1√
120

∑
g∈2.A4

[
1 + g5 + g2

5 + g3
5 + g4

5
]
|D0, g(x)〉〉 =

1√
120

∑
g∈2.A4

[(|D0, g(x)〉〉) +

(−|D2(g(λ2), g(λ3)), g(x)〉〉+ |D2(g(λ2), g(λ4)), g(x)〉〉 − |D2(g(λ3)g(λ4)), g(x)〉〉 − |D4, g(x)〉〉) +
(−|D2(g(λ1), g(λ4)), g(x)〉〉+ |D2(g(λ2), g(λ4)), g(x)〉〉 − |D2(g(λ3)g(λ4)), g(x)〉〉 − |D4, g(x)〉〉) +
(−|D2(g(λ1), g(λ3)), g(x)〉〉 − |D2(g(λ3), g(λ4)), g(x)〉〉 − |D4, g(x)〉〉)
(−|D2(g(λ1), g(λ3)), g(x)〉〉 − |D4, g(x)〉〉)] =

1√
120

∑
g∈2.A4

[|D0, g(x)〉〉 − |D2(g(λ1), g(λ2)), g(x)〉〉 − |D2(g(λ1), g(λ3)), g(x)〉〉+

−|D2(g(λ1)g(λ4)), g(x)〉〉 − |D2(g(λ2)g(λ3)), g(x)〉〉+ 2|D2(g(λ2)g(λ4)), g(x)〉〉+
−3|D2(g(λ3)g(λ4)), g(x)〉〉 − 4|D4, g(x)〉〉] .

Similarly, we obtain the following results for the other D-branes:

• |D2(12), x〉〉T 4/2.A5,Bulk = 1√
120

∑
g∈2.A4

[3|D0, g(x)〉〉+ 2|D2(g(λ1), g(λ2)), g(x)〉〉+

2|D2(g(λ1), g(λ3)), g(x)〉〉+ 2|D2(g(λ1)g(λ4)), g(x)〉〉+ 2|D2(g(λ2)g(λ3)), g(x)〉〉+
−4|D2(g(λ2)g(λ4)), g(x)〉〉+ 6|D2(g(λ3)g(λ4)), g(x)〉〉+ 3|D4, g(x)〉〉] ;

• |D2(13), x〉〉T 4/2.A5,Bulk = 1√
120

∑
g∈2.A4

[2|D0, g(x)〉〉 − 2|D2(g(λ1), g(λ2)), g(x)〉〉+

3|D2(g(λ1), g(λ3)), g(x)〉〉+ 3|D2(g(λ1)g(λ4)), g(x)〉〉+ 3|D2(g(λ2)g(λ3)), g(x)〉〉+
−6|D2(g(λ2)g(λ4)), g(x)〉〉+ 4|D2(g(λ3)g(λ4)), g(x)〉〉+ 2|D4, g(x)〉〉] ;

• |D2(14), x〉〉T 4/2.A5,Bulk = 1√
120

∑
g∈2.A4

[|D0, g(x)〉〉 − |D2(g(λ1), g(λ2)), g(x)〉〉+

−|D2(g(λ1), g(λ3)), g(x)〉〉+ 4|D2(g(λ1)g(λ4)), g(x)〉〉+ 4|D2(g(λ2)g(λ3)), g(x)〉〉+
−3|D2(g(λ2)g(λ4)), g(x)〉〉+ 2|D2(g(λ3)g(λ4)), g(x)〉〉+ |D4, g(x)〉〉] ;



• |D2(23), x〉〉T 4/2.A5,Bulk = 1√
120

∑
g∈2.A4

[|D0, g(x)〉〉 − |D2(g(λ1), g(λ2)), g(x)〉〉+

−|D2(g(λ1), g(λ3)), g(x)〉〉+ 4|D2(g(λ1)g(λ4)), g(x)〉〉+ 4|D2(g(λ2)g(λ3)), g(x)〉〉+
−3|D2(g(λ2)g(λ4)), g(x)〉〉+ 2|D2(g(λ3)g(λ4)), g(x)〉〉+ |D4, g(x)〉〉] ;

• |D2(24), x〉〉T 4/2.A5,Bulk = 1√
120

∑
g∈2.A4

[−|D0, g(x)〉〉+ |D2(g(λ1), g(λ2)), g(x)〉〉+

−4|D2(g(λ1), g(λ3)), g(x)〉〉+ |D2(g(λ1)g(λ4)), g(x)〉〉+ |D2(g(λ2)g(λ3)), g(x)〉〉+
+3|D2(g(λ2)g(λ4)), g(x)〉〉 − 2|D2(g(λ3)g(λ4)), g(x)〉〉 − |D4, g(x)〉〉] ;

• |D2(34), x〉〉T 4/2.A5,Bulk = 1√
120

∑
g∈2.A4

[|D0, g(x)〉〉+ 4|D2(g(λ1), g(λ2)), g(x)〉〉+

−|D2(g(λ1), g(λ3)), g(x)〉〉 − |D2(g(λ1)g(λ4)), g(x)〉〉 − |D2(g(λ2)g(λ3)), g(x)〉〉+
2|D2(g(λ2)g(λ4)), g(x)〉〉+ 2|D2(g(λ3)g(λ4)), g(x)〉〉+ |D4, g(x)〉〉] ;

• |D4, x〉〉T 4/2.A5,Bulk = 1√
120

∑
g∈2.A4

[−4|D0, g(x)〉〉 − |D2(g(λ1), g(λ2)), g(x)〉〉+

−|D2(g(λ1), g(λ3)), g(x)〉〉 − |D2(g(λ1)g(λ4)), g(x)〉〉 − |D2(g(λ2)g(λ3)), g(x)〉〉+
2|D2(g(λ2)g(λ4)), g(x)〉〉 − 3|D2(g(λ3)g(λ4)), g(x)〉〉+ |D4, g(x)〉〉] .

Using the intersection matrices (6.59) and (6.58) of the bulk D-branes of T 4/2.A4, we compute
the intersection matrix of the bulk D-branes of T 4/2.A5:

Ĩ2.A5 = 24



−4 3 2 1 1 −1 1 1
3 −6 −4 −2 −2 2 −2 3
2 −4 −6 −3 −3 3 2 2
1 −2 −3 −4 −4 −1 1 1
1 −2 −3 −4 −4 −1 1 1
−1 2 3 −1 −1 −4 −1 −1
1 −2 2 1 1 −1 −4 1
1 3 2 1 1 −1 1 −4


(6.69)

As we would have expected from the calculus of the Elliptic Genus of the orbifold T 4/2.A5,
which assure us that we have 4 RR ground states in the Untwisted sector, the rank of Ĩ2.A5 is 4.
Therefore, we can choose only 4 bulk D-branes of T 4/2.A5 that span a non-trivial charge vector
space.
Let

{
|D̃0〉〉, | ˜D2(12)〉〉, | ˜D2(13)〉〉, | ˜D2(14)〉〉

}
be the no-trivial basis of bulk D-branes of T 4/2.A5

that spans the charge vector space, with intersections defined by the following matrix:

I2.A5 = 24


−4 3 2 1
3 −6 −4 −2
2 −4 −6 −3
1 −2 −3 −4

 . (6.70)

This concludes the analysis of the bulk D-branes for the T 4/2.A5 orbifold.





Conclusions and outlooks

In this thesis we have presented the construction and the main features of two dimensional Con-
formal Field Theories (CFT). We reviewed the Bosonic String and the Superstring Theories,
mainly focusing on the world-sheet picture, where the string dynamics is entirely described by
a two dimensional CFT. We used the compactification idea, that aims to solve the discrepancy
between the critical dimension of String Theory and the four observed dimension of space-time,
to construct new space-time backgrounds to describe the development of strings. In particular
we have focused our attention on Type IIA Superstring compactification on orbifold surfaces,
specially on toroidal orbifolds T 4/G, where G is a finite group of discete symmetries. Torus orb-
ifolds T 4/G can be interpreted as singular limits of Calabi-Yau manifolds of complex dimension
two (K3). The corresponding String theory is a NLSM with N = (4, 4) superconformal algebra.
We studied the main proprieties of orbifolds T 4/G theories, as the spectrum, the current algebra
and boundary states, using CFT methods.
One of the original features of this thesis is contained on the choice of group G: while most of
the research has been done using cyclic groups, in this work we have generalised these conditions
and we considered non-abelian groups which do not admit a geometric description as isometries
of torus T 4.
We have performed explicitly the computation for the group 2.A5 and we have obtained a SCFT
with a symmetry algebra reduced with respect to T 4 algebra. In particular the orbifold proce-
dure has eliminated some of the holomorphic fields from the spectrum. The expectation is to
construct new torus orbifold models, choosing G more and more generic, that are getting closer
to the more generic model of conformal theory on K3. We would expect that this generic model
contains only the basic N = (4, 4) superconformal algebra with no extra holomorphic fields.
In the last chapter we have presented the description of the D-branes on the compact directions
of the orbifold T 4/G with the method of boundary states. The construction studied so far cannot
be applied if we choose G as a non-geometric symmetry group. Therefore, we have computed the
bulk and fractional D-branes for the orbifold model T 4/2.A4, where 2.A4 ⊂ 2.A5 contains only
elements of 2.A5 with geometric action on the torus. Next, we have derived the bulk D-branes
of T 4/2.A5 model symmetrizing the bulk D-branes of T 4/2.A4 with respect to the action of the
non-geometric elements of 2.A5.
Future perspectives of this analysis could be the computation of fractional D-branes of the
T 4/2.A5 orbifold model, and the formalization of a new general method for the study of the D-
branes on compact surfaces as T 4/G, or T 6/G, where G be the most general group as possible.
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Appendix A

Theta functions

Let us give the definition of Jacobi theta functions:

θ1(τ, z) = −iq1/8y−1/2 (y − 1)
∞∏
n=1

(1− qn) (1− yqn)
(
1− y−1qn

)
θ2(τ, z) = q1/8

(
y1/2 − y−1/2

) ∞∏
n=1

(1− qn) (1 + yqn)
(
1 + y−1qn

)
θ3(τ, z) =

(
y1/2 − y−1/2

) ∞∏
n=1

(1− qn)
(

1 + yqn−1/2
)(

1 + y−1qn−1/2
)

θ4(τ, z) = (1− qn)
(

1− yqn−1/2
)(

1− y−1qn−1/2
)
,

where y = e2πiz and q = e2πiτ .
Under Modular transformations they transform as:

θ1(τ + 1, z) = e
2πi

8 θ1(τ, z) θ1(−1
τ
,
z

τ
) = −(−iτ)1/2e

iπz2
τ θ1(τ, z)

θ2(τ + 1, z) = e
2πi

8 θ2(τ, z) θ1(−1
τ
,
z

τ
) = (−iτ)1/2e

iπz2
τ θ4(τ, z)

θ3(τ + 1, z) = θ4(τ, z) θ3(−1
τ
,
z

τ
) = (−iτ)1/2e

iπz2
τ θ3(τ, z)

θ4(τ + 1, z) = θ3(τ, z) θ4(−1
τ
,
z

τ
) = (−iτ)1/2e

iπz2
τ θ2(τ, z).

We prove now the equivalence between the expressions (5.21) and (5.22). Let us start from the
last equation:

φun,gk(τ, z) =
(
2− ξ−kL − ξkL

) (
2− ξ−kR − ξkR

) θ1(τ, z + krL)θ1(τ, z − krL)
θ1(τ, krL)θ1(τ,−krL) =

(
2− ξ−kL − ξkL

) (
2− ξ−kR − ξkR

)
y−1

(
ξkLy − 1

) (
ξ−kL y − 1

)(
ξkL − 1

) (
ξ−kL − 1

) ·
∞∏
n=1

(
1− y−1ξkLq

n
) (

1− y−1ξ−kL qn
) (

1− yξkLqn
) (

1− yξ−kL qn
)(

1− ξkLqn
)2 (1− ξ−1k

L qn
)2 =

(
1− yξkL

) (
1− yξ−kL

) (
1− ξkR

) (
1− ξ−kR

)
y−1

∞∏
n=1

(
1− y−1ξkLq

n
) (

1− y−1ξ−kL qn
) (

1− yξkLqn
) (

1− yξ−kL qn
)(

1− ξkLqn
)2 (1− ξ−1k

L qn
)2 .
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Appendix B

Lattices

A lattice is the set of points of the real space Rn such that:

L =
{

n∑
i=1

niλi|ni ∈ Z

}
. (B.1)

The set B = {λ1, λ2, ...λn} of linearly indipendent vectors that span the lattice L is a basis for
this space. We can define a inner product through the following bilinear form:

q : L =⇒ R, (B.2)

the matrix Q associated at this form respect a given basis is called Gram matrix.
The dual L∗ of a lattice L is the lattice of vectors having integral inner products with all vectors
in L. The determinant or discriminant of lattice is detL = |detQ|, and V ol(L) =

√
detL is

the volume of unitary cell of lattice. We can define the Gram matrix also for the dual lattice
Q∗ = Q−1 and the volume of unitary cell of L∗ is (V ol(L))−1.
The lattice L is called integral if v · w ∈ Z for ∀v, w ∈ L, this is true if and only if L ⊂ L∗, i.e.
the bilinear form takes value in Z. Through the (B.2), we can to define a quadratic form:

Q : L =⇒ R (B.3)

and extend it by linearity to dual:

Q∗ : L∗ =⇒ R. (B.4)

The lattice is even if the quadratic form Q takes values in 2Z for all v ∈ L, otherwise it is called
odd.
Let’s consider an even lattice L and its dual lattice L∗:

L∗ =
{
x ∈ L

⊗
Q|(x, y) ∈ Z,∀y ∈ L

}
.

The discriminant group of L is:
AL := L∗/L (B.5)

is a finite abelian group equipped with a quadratic form:

qL : L∗

L
=⇒ Q/2Z

x+ L =⇒ (x, x)(mod2Z),
(B.6)
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the group with its quadratic form define the discriminant space AL = (L∗/L, qL). We denote by
O(L) the group of automorphisms (or isometries) of L (notice that O(L) ' O(L∗)), and similarly
O(AL) as the group of automorphisms of the discriminant group.
A sublattice K ⊆ L is primitive in L if L/K is a free abelian group. We set:

K⊥ = {x ∈ L|(x, y) = 0,∀y ∈ K} .

Assume now that L is an even unimodular (L = L∗). If K is primitive in L then there is a
isomorphism:

i : AK =⇒ AK⊥

such that
qK⊥ (i(a)) = −qK(a) ∀a ∈ AK .

We can recover L from K
⊕
K⊥ by adjoining the cosets:

C = {(a, i(a)) |a ∈ AK} ⊆ AK
⊕

AK⊥ .

We take G ⊆ O(L), the invariant and co-invariant lattice for G are respectively:

LG = {x ∈ L|g(x) = x,∀g ∈ G}

LG =
(
LG
)⊥
,

(B.7)

and are primitive sublattices of L. The restriction of the G-action to LG induces an embedding
G ⊆ O(LG), and we denote by G̃ the pointwise stabilizer of LG in O(L), then we have G ⊆ G̃

and LG = LG̃.
A root of L is a primitive vector v ∈ L such that reflection in (Zv)⊥ is an isometry of L. The
root sublattice of L is the sublattice spanned by all roots. The root vectors respect the condition
(r, r) = 2.
The Λ Leech lattice is the unique positive-define even unimodular lattice of rank 24 without
roots.
The isometries’s group of Λ is the Conway group CO0 . For each subgroup H ∈ CO0 , we define a
fixed-points sublattice:

ΛH = {v ∈ Λ|hv = v,∀h ∈ H} .

The set of all fixed sublattices of Λ are called F . The Conway group acts by translation on F :

g ∈ CO0 → gΛG = ΛgHg
−1
.

Under the action of CO0 there are 290 orbits on the set of fixed-point’s sublattices of Λ, this
orbits are classified in [31].
For each even lattice S with signature (t+, t−), the theorem 1.12.4 of [32] assure us that there
exist a primitive embedding of S into an even unimodular lattice L of signature (l+, l−) such that
: 

l+ − l− = 0
l+ ≥ t+ l− ≥ t−

t+ + t− ≤ 1
2 (l+ + l−).

Alternatively, the theorem 1.12.2 assure us an embedding into a lattice K of signature (l+ −
t+, l− − t−) and associated discriminant form qK = −qS . In other words one can construct an
even unimodular lattice L such that K

⊕
S ⊆ L and their embedding are primitive.



In our case, since ΓG has signature (20, 4), it can be embedding into an even unimodular lattice
Γ20,8+20, and its orthogonal complement N of signature (0, 24) with associate discriminant form:
qS = −qΛG = qΛG . Finally the theorem 1 in [33] proves so that there exists an even unimodular
lattice N of signature (0, 24) in which the lattice ΓG can be primitively embedding. If N does
not contain roots then N is the Leech lattice Λ, otherwise is a Niemeier lattice.
There exists other 23 Niemeier lattices (beyond the Leech lattice) that classify the 24 equivalence
classes of 24-dimensional negative-definite even unimodular lattices.
Moreover the symmetry group G is isomorphic to a subgroup G̃ of automorphisms group O(N)
of the Niemeier lattice N that fixes a sublattice N G̃ of rank at least 4 and the converse is also
true. Through the theorem 2 in [33] we make sure that there exists a positive four-plane Π such
that Stab(Π) contains G̃ as a subgroup.
It was conjectured [34] that for each of the 24 Niemeier lattices N there exists a non-algeabric
K3-surface X whose the Picard lattice P (X) 1(related to the curves in X) can be primitively
embedded only in N. It is possible to find a particular choice of B-field such that the Picard
lattice be a sublattice of ΓG. Then we expect that the Niemeier lattice tell us informations
about the discret symmetries of string theory on K3.
Let be G ∈ O(Γ4,20) the group fixing the four-plane Π, but extending its action in the whole
lattice, the group G can preserve at larger subspace ΓG. We want to parametrize all possible
four-plane fixed by G:

FG =
{

Π ⊆ ΛG
⊗

R, sign(Π) = (4, 0)
}
/NO+(Γ4,20)(G) (B.8)

where NO+(Γ4,20)(G) is the normalizer of G in O+(Γ4,20) that fixes the lattice ΓG setwise.
Physically a positive four-plane defines a NLSM on K3, while FG defines a set of NLSMs on K3
with symmetry groups which contain G.
A lattice L ∈ Γ4,20 with quadratic form q associated with the matrix Q respect to base B,
under a change B → B′, the matrix transforms as Q′ = ATQA with A ∈ O+(Γ). The equiv-
alent lattices have matrices associated to correspondent quadratic forms related by similitude
transformations.Therefore in order to classify the inequivalent lattices we have to list all possi-
ble conjugacy classes in O+(Γ4,20) and their corresponding twining genera. Let us consider the
eigenvalues of group in the 24-dimensional representation ρ24 : O+(Γ4,20) → End(Γ4,20⊗

Z R)
(this is also 24-dimensional representation of RR ground states in the NLSM corresponding). We
can encode this information into the Frame shape, i.e.:

πg

N∏
l

lkl , (B.9)

where N is the order of g, while the kl are defined through the characteristic polynomial :

det (λ124 − ρ24(g)) =
N∏
l

(
tl − 1

)kl
. (B.10)

A Frame shape correspond to a four-plane on Γ4,20⊗
Z R that is preserved by a subgroup of

O+(Γ4,20) that contain the element g that defined the same Frame shape. It can be demostrated
that the four-plane preserving Frame shapes of O+(Γ4,20) are the 42 four-plane preserving con-
jugation classes of CO0 .
If g, g′ ∈ O+(Γ4,20) have the same Frame shape, then the co-invariant lattices Γg and Γg′ are

1The Picard group is the group of isomorphism classes of invertible sheaves.



isomorphic. Indeed the element ĝ, ĝ′ are conjugate in CO0 , but g and g′ can not be conjugate
in O+(Γ4,20). The problem is to classify the conjugation classes of O+(Γ4,20) for a given Frame
shape: this is equivalent to classify different primitive embedding of corresponding lattice Λ

ĝ

on Γ4,20. Only for one of 42 four-plane preserving Frame shapes of O+(Γ4,20) is determined
the number of its classes. The remaining 41 conjugation classes of CO0 give rise to 80 distinct
O+(Γ4,20) conjugation classes.



Appendix C

Calabi-Yau manifold

In the fourth chapter we have introduced the concept of Calabi-Yau manifolds CYn through their
holonomy group SU(n). In terms of differential geometry the technical definition tell us that a
Calabi-Yau manifold is a Kähler manifold with vanishing first Chern class c1 (M = CYn) = 0.1
What c1 (CYn) = 0 assures us of our requires of compactification? Given any Kähler metric
g, with Kähler form K|dK = 0, we can find a unique (Calabi) Ricci-flat metric g′ associated
to Kähler form K ′ belonging to the same Kähler class of K ([K] = [K ′]). If M is compact,
it is always possible (Yau). Since the first Chern class is represented by the Ricci form R (in
particular it is a (1, 1)-form for the complex structure of manifold), and the latter changes under
change of metric by an exact form:

g −→ g′ : R(g′) = R(g) + dα

then c1(M) = 0 is a necessary condition to Ricci-flatness, while the fact that be also sufficient it
is hard to prove. However, we always consider compact Kähler manifolds with c1(M) = 0 and
vanishing Ricci curvature, i.e. with holonomy group H ⊂ SU(n).
How is the holonomy group related to Ricci-flatness of manifold? Let’s start to give a formal
definition of holonomy group H. Let be M a manifold and π : E → M the projection that
define the fiber bundle E . Let’s consider a point P ∈ M and be e1 ∈ π−1(P ) a vector in the
fibre. We choose a closed path Γ in M passing by P , and we transport the vector e1 through
Γ in according to E ’s connection. The result is a new vector e2 = gΓ(e1) ∈ π−1(P ). The set of
transformations gΓ related to all paths starting and ending at P form the holonomy group of
M. For a generic manifold of real dimension m, the holonomy group is a subgroup of O(m),
if the manifold is oriented then H ⊂ SO(m). The complex structure of Kähler manifolds, with
dimCM=n, assures us that elements of holomorphic fiber T 1,0(M) do not mix with elements of
anti-olomorphic fiber T 0,1(M) under parallel transport, therefore the holonomy group will be
a subgroup of U(n). If we also require the Ricci-flatness the holonomy group boils down to a
subgroup of SU(n).
It can be proven that on a manifold, of n complex dimension, with H ⊂ SU(n) there exist a
unique nowhere vanishing holomorphic (n, 0)-form and covariantly constant. SinceM is a Kähler
Ricci-flat manifold, the form is harmonic, therefore we have:

hn,0 = h0,n = 1.

Starting from an holomorphic, and hence harmonic, (p, 0) form we can buid, by contraction,
an harmonic (0, n − p) form, in particular it can be shown the following relation among Hodge

1The mathematical preliminaries of this section are summarized in the Appendix.
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numbers:
hp,0 = h0,p = h0,n−p = hn−p,0.

The harmonic form transforms as a singlet under holonomy group if the manifold is compact
and Ricci-flat.
We assume that the holonomy group of our manifold be exactly H = SU(n). One (p, 0) form
on the manifold transforms in the ∧pn representation of SU(n). Decomposing this product, the
singlet representation only appears if p = 0 or p = n, therefore we obtain that for CYn:

hp,0 = h0,p = 0 0 < p < n. (C.1)

In particular h(1,0) = 0 implies that there are no continuous isometries on CYn.2

C.0.1 K3 surfaces
We would like to focus our attention on the K3 surfaces and to describe their Moduli Space. A
K3 surface is a compact complex Kähler manifold of complex dimension two, i.e. a surface S
such that:

h1,0(S) = dim
(
H1,0(S)

)
= 0

c1(S) = 0

where h1,0(S) is the dimension of the coohomology group H1,0(S). An interesting fact about K3
surfaces is the following theorem:

Theorem 1 Two K3 surfaces are always diffeomorphic.

Therefore if we take a particular K3 surface, its topological invariants are the same for each K3
surface. The latter allows us to take a simple K3 surface and to compute for it some topological
invariants, in particular the Euler characteristic: 3

χ(K3) =
n∑
p=0

(−1)pbp = 24.

Through this result, the definition relations of K3 surfaces and the Poincarè duality we can to
deduce the Hodge numbers:

h0,0 = 1 h1,0 = h0,1 = 0 h2,0 = h0,2 = 1 h1,1 = 20 h2,1 = h1,2 = 0 h2,2 = 1.

Let’s start to consider the K3 surface purely as an object in algebraic geometry and to compute
the moduli space of complex structures for K3 surfaces. In order to measure the complex structure
we need to find some simple quantities that depend on complex structure. They are the periods,
which are integral of the holomorphic 2-form Ω, over integral 2-cycles in K3. Since the dimension
of the space H2(K3,Z) of equivalence classes of 2-cycles modulo boundaries is b2(K3) = 22, then
is true the isomorphism H2(K3,Z) ' Z22 as group. It becomes necessary to implement the group
structure with an inner product:

α1 · α2 = ] (α1 ∩ α2) , ∀αi ∈ H2(K3,Z) (C.2)
2We remember that an isometry means a non-trivial solution of Killing equation ∇µξν +∇νξµ = 0.
3The Euler characteristic of M is the alternating sum of Betti numbers: χ(M) =

∑n

p=0(−1)pbp, where
n = dimM.



where ] counts the oriented intersections between cycles. This abelian group structure, with
inner product (C.2), gives to H2(K3,Z) the structure of lattice. The signature of this lattice
(determined from the index theorem of complex signature) is (3, 19). Moreover the Poincarè
duality assure us that H2(K3,Z) is a self-dual (unimodular) lattice, then the lattice of integral
cohomology H2(K3,Z) (forms) is isomorphic to lattice of integral homology H2(K3,Z) (cycles).
We require that the lattice H2(K3,Z) be even. The classification of even self-dual lattice is
known. In particular Γ3,19 is unique up to isometries, and we could choose a basis of elements
such that their inner products form the matrix:

−E8
−E8

U
U

U


where E8 is the Cartan matrix associate to lattice E8, while U represents the hyperbolic plane:

U =
(

0 1
1 0

)
.

In order to describe the periods ωi =
∫
ei

Ω of 2-forms over 2-cycles in terms of lattice Γ3,19 we
must embody the basis {ei} of 2-cycles on Γ3,19: the choice is called marking of K3 surface. A
natural embedding is:

Γ3,19 ' H2(K3,Z) ⊂ H2(K3,R) ' R3,19.

The two-forms admitted in R3,19 span a plane Ω with space-like vectors. The choice of a complex
structure on a K3 surfaces corresponds to determine a vector space R3,19, which contains an even
self-dual lattice Γ3,19 and an oriented 2-plane Ω. A change of complex structure on K3 determines
a rotation of Ω respect to Γ3,19. The moduli space of complex structures on a marked K3 surface
is the space of all possible oriented 2-planes in R3,19 respect to fixed lattice Γ3,19. This space is
called Grassmannian:

Gr+ (Ω,R3,19) ' O+(3, 19)
(O(2)×O(1, 19))+ , (C.3)

the sign + denotes that we are using the subgroup which preserves orientation on the space-like
directions.
K3 surfaces defined by 2-plane Ω, which contains a light-like direction, will be near the boundary
of our moduli space. As we approach the boundary, we expect that the K3 surfaces to degen-
erate in some way. However, there will be points of moduli space, away from this boundary,
corresponding to degenerate K3 surfaces. They are orbifolds. These points must necessarily be
included in our Moduli space.
Now we want to eliminate the marking effect, and we obtain that the Moduli space of complex
structures on K3 (including orbifold points) is the quotient:

Mc '
Gr+ (Ω,R3,19)
O+ (Γ3,19) . (C.4)

Mc is not actually a Hausdorff space, and this fact is seen in string theory in fairly pathological
circumstances. Then we try to modify the previous result, and we choice to consider the moduli
space of Einstein metrics on a K3 surface. We will assume that the metric is Kähler, and we
define Einstein metric a metric on a Riemann manifold whose Ricci curvature is proportional to
the metric. Then for a K3 surface this imply that the metric is Ricci-flat.



In a K3 surface, respect to the Hdge dual we may decompose the cohomology H2(M,R) into the
cohomology of the the self-dual and antiself-dual 2-forms H±:

H2(M,R) = H+ ⊕H−, (C.5)

where dimH+ = 3 and dimH− = 19.
We focus our attention on the space H+ viewed as a subspace of H2(M,R). It is possible to
show that H+ is spanned by the previous plane Ω and by the Kähler forms direction (space-like)
that we can represent through the form K. The Yau’s theorem assures us that once we have fixed
Ω and K, a unique Einstein metric exists on the K3 surface.
Moreover an important aspect of this theorem is that rotations within the space H+ may affects
what we consider to be a Kähler form, and consequently the complex structure of K3 surface,
but not affects the Riemannian metric. Therefore the whole family of complex structures on K3
is parametrized by the sphere S2 of ways in which H+ is divided into Ω and K.

Theorem 2 The moduli space of Einstein metrics ME for a K3 surface (including orbifold
points) is given by the Grassmannian of oriented 3-planes within the space R3,19 modulo the
effects of diffeomorphisms acting on the lattice H2(K3,Z):

ME ' O+(Γ3,19) \O+(3, 19)/(SO(3)×O(19))× R+ (C.6)

where R+ denote the volume of the K3 surface defined through:

V (K3) =
∫
M
K ∧K > 0.

This is isomorphic to the space:

ME ' O(Γ3,19) \O(3, 19)/(O(3)×O(19))× R+ (C.7)

which is a Hausdorff space.
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