
Università degli Studi di Padova
Dipartimento di Matematica "Tullio Levi-Civita"

Corso di Laurea Magistrale in Informatica

Math Department - Master Degree in Computer Science

Implementation and evaluation of a
container-based software architecture

Master’s thesis

Supervisor
Prof. Tullio Vardanega

Student
Alberto Simioni - 1106663

Academic Year 2016-2017

Alberto Simioni: Implementation and evaluation of a container-based software archi-
tecture, Master’s thesis, c© July 2017.

Abstract

Recent advances in fields such as Cloud Computing, Web Systems, Internet of Things
and Distributed NoSQL DBMS are enabling the development of innovative enterprise
information systems that significantly increase the productivity of end users and
developers.

The aim of this thesis is to explore the new opportunities that these new tech-
nologies are bringing to the enterprise world. The new opportunities are explored
by investigating the scenario of a medium-sized worldwide-trading company, Fiorital
S.p.A.

The thesis presents the design of a software architecture for the future information
system of the company. The architecture is based on the usage of the Container
technology and of the Microservice architectural style. Containers have empowered
the usage of Microservices architectures by being lightweight, providing fast start-up
times, and having low overhead.

Candidate technologies for the implementation of the proposed software architec-
ture are singled out, and the selection rationale is presented. This thesis provides
an evaluation of both the candidate architecture and the technologies through the
implementation of a prototype and the application of synthetic workloads that mimic
stressful use scenarios. The results show that, in spite of the relative immaturity of
some of the candidate technologies, the information system’s candidate architecture is
appropriate and that a company like Fiorital would considerably benefit from it.

iii

Acknowledgements

I would first like to thank my family for the continuous support received throughout my
years of studying. This accomplishment would not have been possible without them.

I would like to thank my thesis supervisor Prof. Tullio Vardanega for his feedbacks and
cooperation during the thesis work.

Finally, I would like to thank my friends for accepting nothing less than excellence
from me.

Padua, July 2017 Alberto Simioni

v

Contents

1 Problem statement 1
1.1 The company . 1

1.1.1 Company structure . 2
1.2 The Smart Enterprise Project . 3

1.2.1 Project Objectives . 4
1.3 My role in the project . 7

1.3.1 Thesis objectives . 8
1.4 Outline . 8

2 Candidate architecture and technologies selection 9
2.1 Architectural properties . 10
2.2 Candidate architecture . 19

2.2.1 Hardware Components . 20
2.2.2 Microservice architectural style 21
2.2.3 Smart Enterprise software architecture 27
2.2.4 Tracing architectural properties to candidate architecture . . . 32
2.2.5 Technological requirements . 32

2.3 Technologies overview and selection . 34
2.3.1 Cloud computing . 36
2.3.2 Web technologies . 41
2.3.3 API gateway . 45
2.3.4 Publish-subscribe mediator . 45
2.3.5 Containers . 45
2.3.6 Container orchestration . 50
2.3.7 NoSQL . 53
2.3.8 Tracing architectural requirements to technologies 55

3 Experimental evaluation 57
3.1 Evaluation criteria . 58
3.2 Candidate architecture critical evaluation 61

3.2.1 Responsiveness . 61
3.2.2 Reactiveness . 64
3.2.3 Agility . 64

3.3 Technologies critical evaluation . 65
3.4 Experimental setup . 68

3.4.1 Prototype . 68
3.4.2 Benchmarking script . 73

3.5 Experimental results . 75

vii

3.5.1 Responsiveness . 77
3.5.2 Reactiveness . 83
3.5.3 Agility . 84

4 Conclusions and outlook 89
4.1 Recalling the thesis objectives . 89
4.2 Reviewing the accomplishments . 90
4.3 Project outlook . 91

4.3.1 Thesis limitation . 91
4.3.2 Insights for future works . 93

Acronyms 95

Bibliography 97

viii

List of Figures

1.1 Fiorital logo . 2
1.2 Import and export routes of Fiorital 3
1.3 Factors that may cause requirements changes on the information system. 5
1.4 Catalogs generation flow . 6

2.1 Representation of a requests’ queue. 11
2.2 Responsiveness decomposition into sub-properties. 12
2.3 Execution flows comparison between synchronous and asynchronous

communication. 13
2.4 Reactiveness decomposition into sub-properties. 14
2.5 Provided and required interfaces explained. 17
2.6 Agility decomposition into sub-properties. 18
2.7 System’s hardware components. 21
2.8 Monolithic and microservices architectures 22
2.9 Data management comparison between monolithic and microservices

approaches. 23
2.10 Scalability comparison between monolithic and microservices architectures 24
2.11 Team organization comparison between monolithic and microservices

approaches. 25
2.12 Layered architecture pattern . 27
2.13 Smart Enterprise Tiered Architecture 28
2.14 The scale cube. 30
2.15 Publish-subscribe communication pattern. 31
2.16 Microservices scalability through load balancers. 32
2.17 Technologies dissertation order follows the architectural layers. 37
2.18 Typical architecture of a cloud-based application. 38
2.19 Elastic scalability vs manual scalability 39
2.20 Kong architecture. 46
2.21 Comparison of virtualization between virtual machines and containers 47
2.22 Monolith decomposition into functions 48
2.23 The virtualization techniques evolution 49
2.24 The general organization of a three-tiered server cluster 50
2.25 Docker ecosystem with dependencies 52
2.26 Developers NoSQL knowledge by LinkedIn skills 54

3.1 Illustrating mean and percentiles: response times for a sample of 100
requests to a service. 59

3.2 Illustration of the services’ queues. 59

ix

3.3 Source and destination for the liveness property. 60
3.4 The scale cube . 62
3.5 Nodes resources usage during the simulations. 63
3.6 Cloud resources of the prototype. 70
3.7 Kong gateway and the DNS service communication. 71
3.8 Master and slave Node.js processes of a microservice. 73
3.9 Architecture, components and technologies of the experimental setup. 75
3.10 Message flow of a single request through the component of the prototype. 76
3.11 Boxplots of E2E response times and MET. 78
3.12 Boxplots of the microservices execution times. 79
3.13 "Availabilities" microservice API endpoints execution times. 80
3.14 End to End response time and throughput - T= 2sec, 1sec, 500ms . . 81
3.15 E2E response time compared to services’ throughput - T= 2sec 82
3.16 Services execution times and queue lengths - T= 2sec 82
3.17 E2E response time, system throughput and microservices execution

times - T = 250ms. 83
3.18 Execution time, throughput and queue length of a subset of microservices

- T = 250ms. 83
3.19 E2E response time, system throughput and microservices execution

times - Exponential growth and T = 500ms. 84
3.20 Comparison between S2D and E2E response times in two simulations. 85
3.21 E2E response time and microservices execution times during a microser-

vice update. 86
3.22 Queue lengths of a subset of microservices during an update. 86

4.1 Draft of the layered database architecture. 93

x

List of Tables

1.1 Project’s objectives list . 7

2.1 Properties decomposition summary . 18
2.2 Properties to project’s objectives tracing 19
2.3 Properties to candidate architecture characteristics tracing. 33
2.4 Technological requirements. 34
2.5 Tracing architectural requirements to technologies 55

3.1 Tracing architectural properties to quantitative metrics. 61

4.1 Recalling of the project’s objectives list 90

xi

Chapter 1

Problem statement

The motivation behind my thesis work originates from a project that the University
of Padua, specifically the Computer Science course, is conducting together with the
company Fiorital S.p.A.

Fiorital is a company of approximately 300 people, that works on the import
and export of fish. They work with many partners that are distributed around the
globe. The company has been growing a lot during the last years and they want
to continue to grow. The core business of the company is not related to ICT. But
nowadays, almost all the companies need to be up to date with the opportunities that
Information Technology (IT) is bringing. Fiorital is aiming to improve its business
processes by leveraging the possibilities that the current-state IT technologies are
offering. The company wants to use IT to make the tasks of its employees more efficient
by supporting their operations, by managing the company-related information and by
providing insights into the decision-making processes.

To achieve these goals Fiorital has contacted the University of Padua. Fiorital and
the University decided to start a project together. In this project, the university helps
Fiorital in the designing of an innovative information system. The name of the project
is Smart Enterprise (SE) project.

To illustrate the project, the chapter starts by describing the company Fiorital
S.p.A. and their business activities. Having an idea of the company’s activities helps
understanding the motivations behind the SE project. The project requirements are
tailored to the specific needs of the company. Later, the chapter describes the SE
project and what is my role in the project.

1.1 The company
Fiorital S.p.A is a company founded in 1979 and based in Venice. They perform import
and export activities in the fish market. They operate mainly with wholesalers and
mass retail channels.

The company deals with different providers and transportation companies. They
import from providers scattered around the globe and they sell to customers in the
Italian and European market. According to different needs, the products are transported
directly to the clients or are processed and packaged at the company’s headquarters in
Venice, after which they are shipped to reach Italian and European consumers. Figure
1.2 shows a representation of the providers from which Fiorital imports and the means
of transport that are used to bring the goods to the headquarters. It’s essential to

Master’s Thesis - Alberto Simioni 1106663 Page: 1 / 101

CHAPTER 1. PROBLEM STATEMENT

Fiorital to utilize the JIT (Just-In-Time) methodology in the majority of the activities
performed. This methodology is necessary given the type of goods that are traded
by the company: fish usually has the necessity to arrive at destination in few days in
order to maintain its freshness.

Figure 1.1: Fiorital logo [1]

At the headquarters in Venice Fiorital has a production division for the processing
and production of ready-to-cook and ready-to-eat fish products for the retail sector.

Besides the import and export operations of the company, Fiorital has recently
started to perform Business to Consumer (B2C) activities. The company has opened a
restaurant where the customers can taste the fish that comes directly form the Venice
headquarters. Fiorital has also opened a corner store inside a supermarket chain, where
the customers can buy and eat the ready-to-eat food that the company packages at its
production department.

1.1.1 Company structure
The company is divided into different departments that are responsible for different
tasks. The following list describes the main departments and their functions:

• Purchasing department: deals with the management of the purchasing orders
of fish from the providers. The providers of Fiorital are very numerous. Therefore,
the department is subdivided into different divisions that manage different subsets
of the providers depending on the providers’ locations;

• Logistic department: deals with the planning and the control of the trans-
portations of the fish products. The transportations are related to the purchasing
orders and the sales orders. The department is divided into two divisions, one
that manages the inbound transportations, the other manages the outbound
transportations;

• Sales department: deals with the management of the sales orders of fish
from the customers. The customers of Fiorital are very numerous. As for the
purchasing department, the sales department is subdivided into different divisions
each managing a different subset of the products that come from different zones
of the world;

• Loading and unloading platform: deals with the warehousing of the products
at the Venice headquarters. The platform situated at the headquarters is not a
real warehouse, it’s a small warehouse where the products should remain for a
short time. To preserve the freshness of the products, it’s essential that the fish
doesn’t remain on the platform for a long time;

Master’s Thesis - Alberto Simioni 1106663 Page: 2 / 101

CHAPTER 1. PROBLEM STATEMENT

• Quality control: this department performs quality assurance checks on different
activities of the other departments. The operators control the compliance of the
products and activities against different quality standards;

• Administration: this department deals with the management of the payments
and invoices related to purchasing/sales orders and the transportation companies.

Figure 1.2: Import and export routes of Fiorital [2]

The company Fiorital S.p.A. has a structure that is typical for a company that
does import and export of goods and direct sales to clients.

1.2 The Smart Enterprise Project
This section provides an overview of what Fiorital together with the University wants
to obtain with the implementation of the SE project.

The project started in June 2016 and it’s still ongoing. Several master students
and three professors of the University of Padua have worked and are currently working
on the project.

The main motivation behind the SE project is the will of Fiorital to renovate its IT
system. The current IT system of the company is deployed in a data center within the
company. The data center has different software programs installed that compose the
information system of the company. Operators working in different departments have
the need to exchange information among each other. Many times, the information
coming from one department is the input for all the activities that another department
has to perform. The programs that the operators use aren’t designed to exchange data
among each other because each of them was developed for helping a specific business
process of the company. As the information system grew, the company realized the
necessity to make these programs cooperate and exchange information.

This fact causes different problems for the operators of the company. Operators in
different departments don’t use the information system to communicate, instead, they
communicate face-to-face or using phone calls. One consequence is that much informa-

Master’s Thesis - Alberto Simioni 1106663 Page: 3 / 101

CHAPTER 1. PROBLEM STATEMENT

tion is not registered inside the IT system and it’s hard to retrieve the motivations of
some past business decision.

Furthermore, the company is rapidly growing and changing its business processes,
whereas, the information system wasn’t updated while these changes were happening.
The extension of the system with new features is tricky. Integrating new features into
the system is a complex operation, the system is composed of proprietary programs
and it is not simple to integrate it with new features. Furthermore, updating the
production environment of the system is a long manual operation.

All these facts highlighted the need for a new IT system that should be more flexible
and provide better features to the company’s operators.

In addition to the problems just mentioned, there are other considerations that
are encouraging the renovation of the system. Numerous trends in the IT sector are
bringing recent technologies that are driving innovation inside the companies. Some
of these trends are Cloud Computing, Internet of Things (IoT), Machine Learning,
Robotics and so on. Fiorital, with this project, wants to explore and understand
which are the opportunities that these recent technologies could bring for them. It’s
fundamental for a company like Fiorital to explore these opportunities to continuously
improve its business processes by making them more efficient and effective.

1.2.1 Project Objectives
The previous section described which are the motivations that pushed the company in
the creation of the new information system. This section explains which are the main
goals of the project. Goals that can be achieved by implementing a new information
system. In particular, the section describes what features and what characteristics the
new information system should provide and have.

An information system is the Information and Communication Technology (ICT)
that an organization or a company utilizes, and also the way in which the human
operators interact with this technology in support of business processes. The main
components of a computer-based information system are: hardware, software, data,
networks and procedures.

The following list presents the objectives of the project by describing the features
and characteristics of the new information system:

• Versatile: the company has many departments that perform various business
processes and activities. The company has a complex structure that will likely
continue to change in the future. Therefore, the departments have many different
requirements, the information system should be able to satisfy the majority of
these requirements even the ones that may arise in the future. There are different
causes that may originate the showing up of new requirements. Figure 1.3 shows
which are these causes. Fiorital may change its organizational structure or its
business processes in the future. In these cases, the system should be updated in
order to represent the changes by adapting the features that the system provides.
Fiorital may also change its business strategies, in this case, new types of data
analyses may be required. Lastly, the data in which the company is interested in
are likely to change frequently;

• User interface accessible from different devices: the goal is to allow a large
number of devices types interacting with the system. A user may use his phone,
tablet, laptop and/or a desktop workstation to interact with the information
system. In this way, the operators of the company are not restricted only to their

Master’s Thesis - Alberto Simioni 1106663 Page: 4 / 101

CHAPTER 1. PROBLEM STATEMENT

Figure 1.3: Factors that may cause requirements changes on the information system.

workstations and they can interact with the system also when they are not in
their offices and even when they are outside of the company’s headquarters;

• Easily accessible information: Fiorital wants to reduce the number of opera-
tions that an operator should perform in order to access the information relevant
for him. An operator working in a certain department is interested only on a
subset of the whole information and of the features that system provides.
The user interface should be designed so that an operator sees only the data and
operations that may be useful for him. The system decides what to show to the
operator based on the role of the operator and on his previous actions.
Moreover, the system gives the operator the possibility to receive live updates
about events that happened inside the information system. These events may be
caused by the actions of other operators or by the interaction of the information
system with external information sources. This feature reduces the number of
operations that a user performs to retrieve some information.
Without having live updates a user has to continuously check for the presence of
recent updates, causing an important waste of time. Also, the user notices the
presence of the update later than with the live update feature.
The user may be provided with a dashboard where he can see the live updates
in real-time and where he can select which events and information should be
presented on the dashboard;

• Integration with new sources of information: the SE project aims at
obtaining a system where new data sources can be easily added. An example
of data source that can be added to the system is the information generated by
sensors connected to a newly-installed machinery inside the company production
department. Another example is the information about the flight schedules of a
particular airline company that Fiorital may use to transport the goods;

• Operators’ tasks automation: this objective concerns the automation of cer-
tain tasks that the operators perform at the platform and production departments

Master’s Thesis - Alberto Simioni 1106663 Page: 5 / 101

CHAPTER 1. PROBLEM STATEMENT

inside the Venice headquarters. There are situations where an operator has to
manually insert information into the system.
An example is the weighing of the pallets that are being loaded and unloaded
from or into a truck. Currently, the operator uses a balance to weigh the pallet
and then he manually inserts the information through the user interface of the
current system. A more reasonable approach would be that the balance has
computing and networking capabilities in order to send automatically into the
system the information;

• Real-time analyses: the type of data analyses that are usually performed by
an enterprise information system are Business Intelligence (BI) analyses. BI
technologies provide historical, current and predictive views of business operations.
The analyses are performed periodically, each week, month or year and they can
be used to support a wide range of business decisions ranging from operational
to strategic.
One objective of this project is to have the system performing real-time analyses
that can be directly useful for the business processes of the company.
One example is the automatic generation of products’ catalogs for the Fiorital’s
customers. The catalogs can be calculated using the information about the
customers’ past purchasing orders and the live information about the current
products’ availabilities. This type of analyses needs to be performed in real-time
because the information about the products’ availabilities is available during the
execution of the operators’ business activities. The operators may retrieve this
information by contacting the Fiorital’s providers. As soon as the availabilities
information is present in the system, the catalogs should be generated. Figure
1.4 shows the information flow for the scenario just described.

Information system
SellerBuyer

1 Providers’
 Availabilities
 Insertion

2 Real-time
 Catalogs
 Generation

3 Send
 Generated
 Catalogs

Figure 1.4: Catalogs generation flow

Another example is the automatic creation of an unloading plan. Unloading plans
concern the unloading of pallets from a truck. The unloading plan specifies where
the pallets should be positioned inside the platform. Automatically generating
an unloading plan has the benefit of optimizing the space usage of the platform,
increasing the total amount of pallets that can be stored. Another benefit is to
position each pallet in a good place based on which is the next operation that
should be performed on the pallet.

Master’s Thesis - Alberto Simioni 1106663 Page: 6 / 101

CHAPTER 1. PROBLEM STATEMENT

There are other scenarios where this type of real-time analyses could be use-
ful. One objective of the project is to identify these scenarios and implement
algorithms that compute the results in short time. These algorithms may be im-
plemented through the usage of Machine Learning techniques and Combinatorial
Optimization techniques.

Table 1.1 lists the set of objectives and places an identifier on each of them.

Project’s objectives

O1 - Versatile

O2 - User interface accessible from different devices

O3 - Easily accessible information

O4 - Integration with new sources of information

O5 - Operators’ tasks automation

O6 - Real-time analyses

Table 1.1: Project’s objectives list

Three professors of the University of Padua are working on the SE project. One
professor is responsible for the design of the system architecture. One professor is
working on the real-time analyses that require Machine Learning techniques for the
implementation. The last professor is working on the real-time analyses that require
Combinatorial Optimization techniques for the implementation. One employee of
Fiorital, a former student at the University of Padua, is responsible for the analysis of
the business processes of the company and the coordination of the project between
Fiorital and the University. The analysis he is conducting is useful for the people of
the university that need to understand the business context of Fiorital in order to
perform their activities.

1.3 My role in the project
This section explains which is my role within the project and what I want to achieve
with my thesis work.

My thesis work concerns the design of the system architecture. I’ve carried out the
work under the supervision of the Professor Tullio Vardanega. The goal is to design an
architecture that satisfies the objectives of the project that I described in section 1.2.1.
Even though these objectives may look simple at a first glance, there are many aspects
that require a careful design of the architecture. The system should be accessible from
any kind of devices, should allow the execution of complex real-time algorithms, the
architecture should be as much agile as possible in order to allow easy modifications
and integrations and the performance should never degrade. A more detailed list of
features that are fundamental to the system architecture is presented in section 2.1.

Master’s Thesis - Alberto Simioni 1106663 Page: 7 / 101

CHAPTER 1. PROBLEM STATEMENT

1.3.1 Thesis objectives
The thesis work aims at finding the best architecture for the specific use case of Fiorital.
The architecture, as shown in chapter 2, uses technologies that were published recently
and their usage for the development of new enterprise systems hasn’t been studied
much in the academic research.

One objective of the thesis is to study and evaluate the technologies that can be
useful for the Fiorital use case. This document presents a comparison of different
technologies showing in which contexts they are useful for the implementation of the
new information system.

Another goal of the thesis is to design the system architecture and to find a set of
architectural properties that are useful to evaluate the effectiveness of the architecture.
The design and the discussion of the software architecture are based on this set of
architectural properties.

The IoT architecture of the system is an important part of the system. The goal
O5 operators’ tasks automation would clearly benefit from the presence of IoT devices
inside the headquarters of Fiorital. The network architecture of the IoT devices and
which sensors and actuators to use, are aspects that should be carefully designed.
However, the system IoT infrastructure is not part of the thesis work, due to time-
constraints. The architecture designed within the thesis work has to allow the extension
and integration of the system with the IoT part.

The last goal of the thesis is to implement a prototype of the designed architecture
in order to create a set of results that shows the effectiveness of the architecture. The
prototype should be an implementation of the designed software architecture that
represents the specific scenario of Fiorital.

The results will be based on a set of metrics. The chosen metrics give quantitative
estimations of the architectural properties used to evaluate the system architecture.

1.4 Outline
The rest of the document is organized as follows. Chapter 2 discusses the architectural
properties that the designed system architecture should have. Then, it describes
the designed candidate architecture, explaining how it should be able to satisfy the
architectural properties. Eventually, the chapter discusses which are the technologies
that could be useful for the implementation of the system and presents the chosen
technologies.

Chapter 3 presents an experimental evaluation of the architecture and of the chosen
technologies. It describes the implementation of the prototype and presents a set of
results based on the set of metrics that evaluate the candidate architecture.

Chapter 4, the last chapter, summarizes the outcomes of the work and provides
insights for future improvements.

Master’s Thesis - Alberto Simioni 1106663 Page: 8 / 101

Chapter 2

Candidate architecture and
technologies selection

The main objective of the thesis is to design a proper architecture for the new informa-
tion system of the SE project.

This chapter starts by giving a brief explanation of what is a software architecture
and by introducing a bit of terminology that is useful in the following sections and
chapters.

In their book, K. Bittner and I. Spence [3] give a simple and precise definition of
what is a software architecture:

"Software architecture encompasses the set of significant decisions about the orga-
nization of a software system including the selection of the structural elements and
their interfaces by which the system is composed; behavior as specified in collaboration
among those elements; composition of these structural and behavioral elements into
larger subsystems; and an architectural style that guides this organization. Software
architecture also involves functionality, usability, resilience, performance, reuse, com-
prehensibility, economic and technology constraints, trade-offs and aesthetic concerns."

The definition describes a software system as composed of structural elements and of
their interfaces. In the rest of the document these structural elements are called as the
components of the architecture. Whereas, the term interface doesn’t change. Another
term that is used in the rest of the document is architectural style. An architectural
style is a family of architectures that share certain characteristics. There are different
type of styles. More than one style could be used to design a software architecture.
When starting to design a software architecture it’s crucial to decide which styles
should be used.

The next section presents a set of architectural properties that are central for
the design of the information system. The section explains why these properties are
fundamental to have for an architecture that wants to satisfy the project’s objectives
presented in section 1.2.1.

These properties are crucial also for the implementation and the evaluation of the
candidate architecture. The results presented in 3 measure the prototype’s compliance
to the architectural properties.

After presenting the architectural properties, the chapter presents the candidate
architecture of the system and a discussion about the technologies that have been
chosen for the implementation.

Master’s Thesis - Alberto Simioni 1106663 Page: 9 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

2.1 Architectural properties
The chosen set of properties are those that are extremely hard to achieve for an
information systems implemented with traditional technologies, rather than all the
properties that an information system should have. Therefore, the following list of
properties is not a complete list of architectural properties that an information system
should have, but rather, a set of properties commonly hard to achieve and that can
bring an important improvement to the system.

Each property may concern the service provider or the application user or both. The
properties are decomposed into various sub-properties. Each sub-property concerns
only a single actor:

• Responsiveness: refers to the specific ability of a system or functional unit to
complete assigned tasks within a given time [4]. This property aims at assuring
that the system continues to have the normal response times also when the load
increases. The users should not experience latencies due to the increased usage of
the system. The high load is caused by the requests performed by the company’s
operators, by third-party systems and by IoT devices. The workload experienced
by the system may vary during different time intervals. For example, Fiorital has
more operators that are working during some specific days of the week, because
the customers’ requests of fish are higher in those days. Moreover, each year, the
sales of fish increase a lot during the second half of December. The system has
to take into account the following aspects that create workload variability:

– The number of provided software services can increase and decrease. Fur-
thermore, a service generates and receives different amounts of requests over
time;

– The amount of analysis on the data varies over time;

– The number of users of the system;

– The number of IoT smart things that compose the system varies over time.
Consequently, the information they generate over time varies as well.

The system’s users shouldn’t experience any performance degrade, they should
be able to perform the usual operations with the usual execution times.

Generally, a system, that aims in handling a high number of requests without
experiencing any latency, needs to use more hardware resources to compute
the requests. It is possible to overprovision the system with a large amount
of hardware resources to maintain the responsiveness of the system. However,
hardware resources are expensive both to buy and to keep in execution (electricity
and cooling devices). To reduce the costs, the usage of the computing resources
should be optimized. A component of the system should utilize an increased
amount of hardware resources, only when the workload is too high for the
currently available hardware resources. A component of the system should always
try to optimize the usage of the computing resources.

It should now be clear how the system showld be responsive, but at the same time
it should be cost-efficient, maximizing the utilization of the hardware resources.

The responsiveness property can be subdivided into the following three sub-
properties:

Master’s Thesis - Alberto Simioni 1106663 Page: 10 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

– Service Level Agreement (SLA) Preservation: this property aims at
maintaining the service level for the application user of the service. Therefore,
this property concerns the application user. A user wants guarantees that
the system always provides the same desired performances, even when the
workload is high. The guarantees provided by the SLA concern the response
times of the user’s requests. The response time of a user request should
never cross a certain threshold.
This property is fundamental to an information system of a company. The
operators of Fiorital need to use the system for their business activities.
Having a system with bad response times leads to a waste of time for the
company’s operator and consequently to an economic loss for the company;

– Queue Length Minimization: the users of the system perform concur-
rently various requests that are received by the system. Each component of
the system can execute various requests in parallel. Anyway, the number of
requests that a component can execute in parallel is limited, for example
by the Central Processing Unit (CPU) power available to the component.
Consequently, the system should have a set of queues where to store the
requests that are waiting to be executed. A request that waits for a certain
amount of time inside a queue and then is executed returns its results later
than a request that is executed immediately without being stored in a queue.
Bigger is the size of the queue when the request arrives, more is the time
that a request spends being inside a queue and consequently increases the
response time of the request. Figure 2.1 gives an abstract representation
of a requests queue where four requests are waiting to be executed. The
component executing the requests is the CPU and it is occupied executing
other requests.

Requests Queue
Incoming
Requests 1 2

3 4

5678

Figure 2.1: Representation of a requests’ queue.

This property concerns mainly the service provider. An application user
is not interested in requests’ queues and shouldn’t even be aware of their
existence. While the service provider should minimize the length of the
queues to provide better response time for the users’ requests;

– Throughput Maximization: throughput is the number of events that
take place in a given amount of time. Each component that manages the
requests should be as efficient as possible to maximize the usage of the
hardware resources. A consequence of maximizing the throughput is that
the overall costs for the the hardware resources are reduced. Therefore,
the system is more cost-efficient. Also this property concerns the service
provider that wants to reduce the expenses for the IT infrastructure. The

Master’s Thesis - Alberto Simioni 1106663 Page: 11 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

application user of the service is totally not interested in the cost of running
the hardware infrastructure.

Figure 2.2 shows graphically the subdivision of the responsiveness property in
its sub-properties. Each one has a pertinence of concern relative to one between
the user and the service provider. The users of the system are the company’s
operators. The service providers of the system are the developers and the IT
staff of the company.

Responsiveness

SLA Preservation

Queues
Minimization

Throughput
Maximization

U

P

PPertinence of
concern

P : Service Provider
U : Application User

Figure 2.2: Responsiveness decomposition into sub-properties.

• Reactiveness: this property indicates how a system is implemented using an
event-driven flow of control, rather than a centralized one.
With centralized control, one component has the overall responsibility to control,
start and stop the other components. There is usually, a control component that
takes the responsibility for managing the execution of the other components.
With event-based control, each component can respond to externally-generated
events from other components or from the system’s environment. Event-based
systems are driven by externally generated events where their timings and the
arrival order is outside the control of the components that process the events.
The availability of new information drives the logic of the computations forward.
Each component propagates the information changes to the other components
that are interested in the information that is changed.
With a reactive approach, the problem that is being modelled is decomposed into
multiple discrete steps. Each step executes in an asynchronous and nonblocking
fashion, and at run-time, they bind together to produce a workflow execution.
The Reactiveness property is decomposed into the two following sub-properties:

– Asynchronous Communication: the system architecture is composed
of different components. At this stage the system architecture is not already
defined. However, we can assume that the components of the architecture are
executed on multiple computing nodes and on multiple software processes.
The components communicate with each other by sending messages and
requests forming a distributed system.

Master’s Thesis - Alberto Simioni 1106663 Page: 12 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

A system becomes more resource-efficient when the components’ communi-
cation is asynchronous. The communication between components can be
synchronous or asynchronous. With synchronous communication, the sender
of a message blocks its execution until it’s acknowledged of the arrival of the
message to the destination. With asynchronous communication, the sender
transmits a message to the destination, without blocking its execution.
Asynchronous communication improves the overall responsiveness of the
system because the components never stop their execution to wait for an
acknowledgement or an answer. Figure 2.3 gives a representation of this
aspect. A sample execution flow is represented at the left using synchronous
communication and at the right using asynchronous communication. Each
column indicates a different component or process. The total execution time
for both the approaches is equal but, synchronous, blocking communication
(left) is resource-inefficient and easily bottlenecked. The asynchronous ap-
proach (right) conserves valuable resources, indeed there is no computational
time wasted in waiting for a response.
This property concerns the service provider. Asynchronous communication
is a mechanism that the provider utilizes to provide a system that has a
better responsiveness;

Figure 2.3: Execution flows comparison between synchronous and asynchronous communi-
cation.

– Liveness: the sub-property indicates that the components of the system
are as much as possible up to date about the information that is relevant to
them.
The traditional enterprise information systems have relatively awful internal
search capabilities. As a result, operators take far too long to find things,
despite the enormous IT investments in capturing and storing corporate
data, which is then unable to be located.
One component of the system is the control dashboard that the operators
use to interact with the system. The operators use the control dashboard
to receive new information from the system, to insert data and to send
commands to the system. The goal of the liveness property is to have a
control dashboard always updated with the most recent information that is
relevant to the operators.

Master’s Thesis - Alberto Simioni 1106663 Page: 13 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

There are two project objectives that benefit from having a system with the
liveness property. These project objectives, presented in section 1.2.1, are
the Easily accessible information and the real-time analyses. The dashboard
is always continuously updated with the newest information. Consequently,
the operators don’t have to perform any action to find the information
they are interested in and they are notified almost immediately about the
presence of the new information. Moreover, the results of the real-time
analyses are available to the operators as soon as possible.
It should be already clear that this property is valuable from the perspective
of the application user. The user profits by having a dashboard that shows
the live information that is relevant to him.

Figure 2.4 shows graphically the subdivision of the reactiveness property in its
sub-properties;

Reactiveness

Asynchronous
Communication

Liveness
U

P

Pertinence of
concern

P : Service Provider
U : Application User

Figure 2.4: Reactiveness decomposition into sub-properties.

• Agility: the term indicates the ease in applying changes in the development
and production environment of the information system. As shown in 1.2.1 one
objective of the SE project is to have an information system that is versatile and
that can easily assimilate changes. The team that develops the system, generally,
cannot predict how a business will need to evolve over time and therefore they
cannot initially build the perfect system. There are many factors that cause
the necessity of applying changes to the system. These factors, that arise from
the specific needs of the company, were presented in figure 1.3 in chapter 1 and
they are: organizational structure, business strategies, business processes and
organizational data. Moreover, there are others, more technical, factors that
arise the need for applying changes. Examples of these changes are the necessity
to update the Operating System (OS)es of the system’s computing nodes, the
need to fix a set of software bugs, the need to improve the performance or the
security of a set of components or the integration of new features.
Applying updates and maintaining the system is part of the duty of a system
administrator. Medium-sized and big-sized companies have different system
administrators in their IT departments. The normal operational functions of a
system administrator include tasks such as periodic maintenance, updates, and
monitoring. These issues must be kept in mind in early stages of planning. When
you look at the complete life cycle of an information system, only a modest part
of that life cycle is spent building the features of the service. The vast majority
of the life cycle is spent operating the system. Yet traditionally, the operational

Master’s Thesis - Alberto Simioni 1106663 Page: 14 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

functions of software are considered lower priority than features, there is general
less awareness of their importance. Managing and operating the environment in
which the system runs is just as important as implementing the application itself.
Configuring the OS, the networks, the database, and web servers is extremely
important for an information system to function optimally.
Some of the normal operations conducted throughout an infrastructure life cycle
are the following [5] [6]:

– Account provisioning: the system administrator adds accounts for new
users, removes the accounts of users that are no longer active, and handles
all the account-related issues that come up in between (e.g., forgotten
passwords). When a user should no longer have access to the system, the
user’s account must be disabled. All the files owned by the account should
be backed up and then disposed of, so that the system does not accumulate
unwanted baggage over time;

– Adding and removing hardware: when new hardware is purchased or
when hardware is moved from one machine to another, the system must be
configured to recognize and use that hardware;

– Performing backups: it is the system administrator’s job to make sure
that backups are executed correctly and on schedule. It must be possible to
back up and restore the service’s data while the system is running;

– Startup and Shutdown: the service should restart automatically when
a machine boots up. If the machine is shut down properly, the system
should include the proper operating system hooks to shut the service down
properly. If the machine crashes suddenly, the next restart of the system
should automatically perform data validations or repairs before providing
service;

– Installing and upgrading software: when new software is acquired, it
must be installed and tested, often under several operating systems and
on several types of hardware. It must be possible for software upgrades to
be implemented without taking down the service. Some systems can be
upgraded while running, which is riskier and requires careful design and
extensive testing;

– Monitoring the system: large installations require vigilant supervision.
System administrators regularly ensure that email and web services are
working correctly, watch log files for early signs of trouble, make sure that
local networks are properly connected, and keep an eye on the availability
of system resources such as disk space;

– Monitoring security: the system administrator must implement a security
policy and periodically check to be sure that the security of the system has
not been violated. On low-security systems, this chore might involve only a
few basic checks for unauthorized access. On a high-security system, it can
include an elaborate network of traps and auditing programs.

The operations above mentioned are recurring operations. It’s very important
to automate as much as possible these operations. The desire for automation
is motivated by three main goals: more precision, more stability, and more
speed. Other factors, such as increased safety, increased capacity, and lower costs

Master’s Thesis - Alberto Simioni 1106663 Page: 15 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

are desired side effects of these three basic goals. For a system administrator,
automating the work that needs to be done should account for the majority of
his job. Manual work has a linear payoff. That is, it is performed once and has
benefits once. By comparison, time spent automating has a benefit every time
the code is used. The payoff multiplies the more you use the code.
For creating automation there are many products, languages, and systems. The
capabilities of these tools range from basic to quite high level. Professional
administrators spend much of their time writing scripts. Some examples of these
tools are [6]:

– Shell Scripting Languages: provide the commands one can type at the
operating system command-line prompt. It is easy to turn a sequence of
commands typed interactively at the Bash or PowerShell prompt into a
script that can be run as a single command;

– Interpreted Scripting Languages: interpreted languages designed for
rapid development, often focusing on systems programming. Some common
examples include Perl, Python, and Ruby. They all have large libraries
of modules that perform common system administration tasks such as file
manipulation, date and time handling, transactions using protocols such as
HTTP, and database access;

– Configuration Management Languages: domain-specific languages cre-
ated specifically for system administration tasks.

The information system of the SE project should require a small amount of
manual administrative operations for applying changes. Moreover, the system’s
updates should be applied with a minimal downtime.
The changes that are more problematic are those that involve the communication
and the interfaces between more than one component. The system should support
run-time reconfiguration of running groups of services and applications. Run-time
reconfiguration is essential for the Fiorital’s information system that needs to
cope with continuous changing requirements. The system shouldn’t be switched
off to apply the reconfigurations.
A component of the system may receive requests and perform other requests.
A set of requests that a component provides is a "provided interface" of the
component. While, a set of requests that a component needs to correctly function
is the "required interface". Provided interfaces represent the services offered to
the component’s environment. Required interfaces represents the services the
component needs from its environment. These two types of interfaces are building
blocks that ease the task of composing various components. Moreover, they make
it feasible to replace components in running configurations. A configuration
defines how each building block (components and interfaces) is combined to
form an architecture describing correct component connections, component
communications, interface compatibility and that the combined semantics of the
whole system result in correct system behavior [7].
Communication between the interfaces of different components can take place
only if the interfaces have been bound. Required interfaces can be bound only to
provided interfaces and vice versa. Figure 2.5 shows an example of provided and
required interfaces.
I have decided to decompose the agility property in two sub-properties:

Master’s Thesis - Alberto Simioni 1106663 Page: 16 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Figure 2.5: Provided and required interfaces explained.

– Components addition agility: indicates the ease in applying additions
of new components into the system at run-time. To dynamically start a
new component, different deployments operations are usually necessary.
The goal is to maximize the automation of these operations and therefore
reducing the number of manual operations that a system administrator has
to perform. Another goal is to minimize the downtime of the system during
the addition of the component.
An important aspect of inserting a new component is the binding between the
component’s required interfaces and the correspondent provided interfaces
that should already be present in the environment. It is necessary that
all the required interfaces of the component are already present inside the
production environment otherwise, the component will not work correctly.
The new component should describe which are the provided interfaces it
needs and a set of parameters that indicates the SLA requirements per
each interface. The providers of those interfaces should receive the SLA
requirements of the new component and adapt their deployments in order to
support the new requirements. Operations like dispatching, load balancing
and auto-scaling may be needed. The required interface usually has SLA
requirements concerning the response times. The new component has also a
set of provided interfaces. The component should describe which are these
interfaces, in order to make them available to the system’s environment;

– Components removal agility: indicates the ease in applying removals
of existent components at run-time. When a component is dynamically
removed from the system, it is necessary that all the components that
required the provided interfaces of that specific component have been already
updated so that they don’t need that interface to correctly work. These
operations aims at removing the component’s bindings. Also in this case
the goal is to maximize the automation of the removal operations and to
minimize the downtime of the system during the removal of the component.

Figure 2.6 shows graphically the subdivision of the agility property in its sub-
properties.
Both the sub-properties concern the service provider. The application user is not
interested in the system’s implementation details.

Master’s Thesis - Alberto Simioni 1106663 Page: 17 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

The agility architectural property is useful for achieving three of the project’s
objectives mentioned in section 1.2.1. These objectives are the integration with
new sources of information objective, the versatile objective and the operators’
tasks automation. It is simple to add new sources of information or to implement
new features to an agile system.

Agility

Components
Addition Agility

Components
Removal Agility

P

P
Pertinence of
concern

P : Service Provider
U : Application User

Figure 2.6: Agility decomposition into sub-properties.

Table 2.1 presents a summary of the properties and their decomposition into sub-
properties.

Property Sub-property Pertinence of concern
P1.1 - SLA Preservation Application user
P1.2 - Queue Length Minimization Service providerP1 - Responsiveness
P1.3 - Throughput Maximization Service provider
P2.1 - Asynchronous Communication Service providerP2 - Reactiveness
P2.2 - Liveness Application user
P3.1 - Components Addition Agility Service providerP3 - Agility
P3.2 - Components Removal Agility Service provider

Table 2.1: Properties decomposition summary

In the above list of architectural properties, five out of six project’s objectives were
mentioned. The project’s objectives are listed in chapter 1. A system’s architecture that
possesses the properties before described, helps in achieving the project’s objectives.

Table 2.2 shows a tracing list from properties to project’s objectives. The tables
shows per each property which are the objectives that the property helps in achieving.

One objective is not mentioned in the above list O2 - User interface accessible
from different devices. This objective, as shown later in this chapter, is enabled by the
candidate architecture of the new system and the technologies that implement it.

The objective "O5 - Operators’ tasks automation" is not completely achieved with
P3 - agility. This objective is enabled by having an agile system were new IoT
devices may be added as new information sources that need to communicate with the
information system. An example is the automatic weighing of the fish pallets. The
operators place the pallets over a smart scale that automatically inserts the weighing
information into the system. However, as already mentioned in section 1.3.1, the IoT
infrastructure is out of the scope of the thesis. The network architecture of the IoT
devices and which sensors and actuators to use, are aspects that should be carefully
designed.

Master’s Thesis - Alberto Simioni 1106663 Page: 18 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Properties Project’s objectives Description

O3 - Easily accessible information

A responsive system enables the users
to always find quickly the information
and to receive quickly the live updates
about events that happened inside the
information system.P1 - Responsiveness

O6 - Real-time analyses
A responsive system enables to
have quick real-time analyses even
when the system’s load is high.

O3 - Easily accessible information

The user dashboard is always continuously
updated with the newest information.
Consequently, the operators don’t
have to perform any action to find
the information they are interested
in and they are notified almost immediately
about the presence of the new information.

P2 - Reactiveness

O6 - Real-time analyses
The results of time real-time analyses
are available to the operators
as soon as possible.

O4 - Integration with new
sources of information

It is straightforward to add new
sources of information or to
implement new requirements with an
agile system.

O5 - Operators’ tasks automation

New features can be easily added
to an agile system. Some of these
new features may be oriented in
integrating new IoT devices into the system.

P3 - Agility

O1 - Versatile

Adding and removing new features
to an agile system, can be performed
frequently, with a low effort and
a minimal downtime. Moreover, many
administrative operations are automatic.

Table 2.2: Properties to project’s objectives tracing

The properties above mentioned are not easy to obtain using traditional technologies,
but they are important as they help to obtain a better system that fulfils the project’s
objectives. The technologies and the architectural style that I have decided to use to
implement the system are described in the next sections.

2.2 Candidate architecture
This section presents a description of the designed architecture for the Smart Enterprise
project. The goals listed in section 1.2.1 and the architectural properties presented in
section 2.1 are fundamental for the design of the system.

The first subsection describes which are the hardware components of the system.
The structure of the hardware resources is important for the design of the system’s
architecture. It allows understanding which are the principal information flows.

The second subsection presents the architectural style that is used to organize the

Master’s Thesis - Alberto Simioni 1106663 Page: 19 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

components of the candidate architecture. It explains why that specific architectural
style is appropriate for the SE project. Deciding the architectural style is the first
fundamental decision point. It is the decision of choosing what kind of architecture to
build. It might be a microservices architecture, a more traditional N-tier application,
or a big data solution. There are benefits and challenges to each.

Section 2.2.2 shows that the microservice architectural style is suitable for the SE
project, by considering the desired architectural properties discussed in section 2.1

2.2.1 Hardware Components
Figure 2.7 shows graphically which are the hardware components of the system. The
description of the components is described in the following list:

• Smart Things: are small computing devices inside the factory and the platform
of Fiorital’s main building. They continuously sense data about machinery and
the environment. They are also able to actuate commands to modify the state of
the machinery and of the environment;

• Data center: provides services to the users, acts as a mediator between the
other components and records all the information that is relevant to the company.
Figure 2.7 shows the data center divided into servers and database. The data
center is a unique logical component, but to better describe the information flows
it is important to be aware of the presence of these two different layers. The
server layer is responsible for the computations. While the database is responsible
for the persistent storage of the system data.

The servers are the computing nodes that perform computations and provide
services to the users of the system.

The database is the persistence level component of the system. It stores persis-
tently the information that is relevant to the company;

• Operators’ devices: the company’s operators can access the services provided
by the system, through any kind of device that has access to the internet and
that can show web documents. The operators may be people that are working in
the main building of the company, or even people that are working inside other
buildings (e.g. corner stores and restaurants). Moreover, the operators are able
to access the system even when they are outside the company’s buildings. The
system allows the users to work remotely when they are at home or other places.
To enable this feature, the system needs mechanisms of user authentication and
message encryption (e.g. Virtual Private Network (VPN));

• Third-party data source: the system allows the connection to itself of data
sources provided by other companies and organizations.

The diagram in figure 2.7 shows how operators’ devices, third-party information
sources and smart things have to use the data center to exchange information between
each other. The system doesn’t allow the smart things and the external information
sources, to communicate directly with the devices of the operators. By having all the
communications passing through the data center, it’s possible to record each action
and decision. Moreover, it’s easier to assure security when each source has only a single
link to the data center.

Master’s Thesis - Alberto Simioni 1106663 Page: 20 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

External information
sources

Things

Tablet

Laptop

PC

Smart
Phone

Internet access for
operators

Data center

Servers

Database

Figure 2.7: System’s hardware components.

2.2.2 Microservice architectural style
This style is described by Martin Fowler as “an approach to developing a single appli-
cation as a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API. These services are built
around business capabilities and independently deployable by fully automated de-
ployment machinery. There is a bare minimum of centralized management of these
services, which may be written in different programming languages and use different
data storage technologies” [8]

Microservice architectures involve the breaking up of an application into tiny services.
Each microservice performs a single task that represents a small part of the business
capability. The system is built up by using microservices as building blocks.

The beginning of the current chapter gave a definition of what is a software
architecture. The terms architectural style, components and interfaces are part of
the definition. In this section, there is a claim stating that microservices is an
appropriate architectural style for the SE project. There are others architectural styles.
However, this document focuses on showing why the microservices approach fits the
Fiorital’s use case rather than, making a complete comparison of which is the best
architectural style in this context. With a microservice approach, the components
of the software architecture are mostly services. A Microservice architecture breaks
down the architecture into services as the primary way of componentizing the system.
Services are out-of-process components who communicate with a mechanism such as a
web service request, or remote procedure call. Services are independent of each other
and are completely autonomous, and therefore, changes in the individual services won’t
affect the entire application. Each service collaborates with other services through an
Application Program Interface (API). Therefore, with microservices the interfaces are
remote procedure calls that form different APIs.

Master’s Thesis - Alberto Simioni 1106663 Page: 21 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

The microservice architectural style has been gaining popularity in the last few years,
around 2014. The phenomenon is explained by the availability of new technologies. In
particular the advent of the container technology. As stated in the given definition
at the beginning of the current section, the microservices should be independently
deployable. Consequently, there should be dozens of microservices that should run
isolated from the others. The traditional way for running isolated and independent
processes was to use Virtual Machine (VM)s. However, a VM adds an important
overhead to the execution of a single service. An entire guest OS is virtualized inside a
VM. Having dozens of microservices running inside dozens of VMs is not a feasible
approach. There are too many OSes running on the system. The waste of resources is
too big for having a system with good performance.

The container technology, that is deeply explained in section 2.3.5 helps in resolving
the issue. A dozen of containers can run a dozen of microservices that are all isolated and
independent from each other. The container technology doesn’t require any dedicated
guest OS running per each microservice. Instead, a container is very lightweight and
has a minimal overhead on the normal execution of a service. Without the container
technology, the microservice architectural style wouldn’t be a feasible architectural
design for an information system.

The microservice architectural style is a specialization of Service-Oriented Ar-
chitecture (SOA) used to build flexible, independently deployable software systems.
Microservices keep many of the principals of SOA, like separation of concerns, loose
coupling, statelessness and reusability. The main difference between microservices
and SOA is the granularity of the services. The word microservice highlights how the
services have to be fine-grained. Microservices should be independently deployable,
while SOA services are often implemented and deployed inside single monoliths.

To explain the microservice style it’s useful to compare it to the monolithic style: a
monolithic application built as a single unit[8]. One fundamental feature of the SE
system is exposing a user interface to the company’s operators. Enterprise applications
are usually composed of three components: client-side user interface (front end), the
database and the server-side application (back end). In the monolithic style, the back
end is a monolith, a unique application. Where any changes to the system involve
building and deploying the entire server-side application.

Figure 2.8 shows a graphical representation of monolithic and microservices archi-
tectures. The monolithic version is a single application composed of different libraries.
While on the other side there are different microservices, where each of them is a
different independent component that can be uploaded to a different computing node.
Hence, each microservice is an independently deployable application. This aspect is
very important and as discussed later has positive outcomes concerning responsiveness
and agility.

Figure 2.8: Monolithic and microservices architectures

Master’s Thesis - Alberto Simioni 1106663 Page: 22 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Another important characteristic of microservices is the decentralized data manage-
ment. Microservices decentralize data storage decisions. While monolithic applications
prefer a single logical database for persistent data. Microservices prefer letting each
service manage its own database, either different instances of the same database tech-
nology, or entirely different database systems. Figure 2.9 shows the data management
comparison between monolith and microservice style.

Figure 2.9: Data management comparison between monolithic and microservices
approaches.[8]

Decentralizing responsibility for data across microservices has implications for
managing data updates. The common approach to dealing with updates has been
to use transactions to guarantee consistency when updating multiple resources. This
approach is often used within monoliths.

Using transactions like this helps with consistency, but imposes significant temporal
coupling, which is problematic across multiple services. Distributed transactions are
notoriously difficult to implement and as a consequence microservice architectures
emphasize transactionless coordination between services. Without transactions, there
can’t be strong consistency and therefore microservices use eventual consistency and
problems are dealt with by compensating operations.

Choosing to manage inconsistencies in this way is a new challenge for many develop-
ment teams, but it is one that often matches business practice. Often businesses handle
a degree of inconsistency in order to respond quickly to demand, while having some
kind of reversal process to deal with mistakes. The trade-off is worth it as long as the
cost of fixing mistakes is less than the cost of lost business under greater consistency[8].

The main benefits of microservices architectures are:

• Ease of deployment: when one feature of the system is changed, using the
monolithic approach requires all the entire monolith application to be redeployed.
Whereas, in the microservice approach only the microservice that has been
changed needs to be redeployed. With microservices, we can make a change to a
single service and deploy it independently of the rest of the system. This allows
us to get our code deployed faster. If a problem does occur, it can be isolated
quickly to an individual service, making fast rollback easy to achieve. This aspect

Master’s Thesis - Alberto Simioni 1106663 Page: 23 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

makes the overall system more agile. Services can be easily dynamically added
and removed from the system at run-time. Therefore, microservices are a good
choice concerning the sub-properties 3.1 Components addition agility and 3.2
Components removal agility.

• Independent scalability: another benefit of the microservice approach is that
the scalability of the system is much more efficient. It’s possible to scale out
only the microservices that are under heavy load, while maintaining the same
number of replicas for the microservices that have a normal workload. Different
microservices can have different usage patterns, with some microservices needing
to perform more read requests, and others with mostly write requests. This
aspect highlights even more the benefit of the possibility to scale each of the
services independently.
In the monolithic approach, all the entire application needs to be replicated when
a single component is under heavy load. It’s important to note that the scalability
by replication is possible thanks to the characteristic of the services of being
stateless. Without the stateless characteristic of a microservice, it wouldn’t be
possible to scale it out by replicating it with new instances. Some synchronization
and consistency errors would arise. A stateless service doesn’t hold any data.
Stateless services let the database layer handle the maintenance of a client’s state.
Since they don’t have any data, all the service instances are identical.
Microservices improve the scalability of the system and therefore also the system’s
responsiveness (P1) is better. Scalability helps in preserving the SLA (P1.1). The
users’ requests maintain good response times also when the traffic burden is high.
Scalability prevents also the presence of long requests’ queues (P1.2). When there
are many requests. instead of queueing them, the system creates new instances,
increasing the execution parallelization. The number of instances shrinks when
the number of requests is lower. This scalability mechanism maximizes the
throughput (P1.3) without wasting any hardware resource. Figure 2.10 shows the
scalability difference between the two approaches;

Figure 2.10: Scalability comparison between monolithic and microservices architectures

• Resilience: the possibility to replicate independently each microservice improves
also the fault tolerance of the system. When a service is in an erroneous state,
it’s possible to replicate or restart only the service with the erroneous state.

Master’s Thesis - Alberto Simioni 1106663 Page: 24 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

With the monolithic approach, all the application has to be restarted. By having
microservices, if one component of a system fails, but that failure doesn’t cascade,
you can isolate the problem and the rest of the system can carry on working
[9]. Handling the fault tolerance of the microservices requires attention but
taking care of it appropriately makes the whole system much more stable and
fault-tolerant by design;

• Technology heterogeneity: with a system composed of multiple, collaborating
services, we can decide to use different technologies to develop each different
service. This allows the developers to pick the right technology for the context
of each specific service, rather than having to select a single generic technology
that in most cases, is the technology that the developers know better.
If one part of our system needs to improve its performance, we can decide to
change the technologies of just one microservice. In the monolithic approach
changing technologies requires the entire system to be reprogrammed;

• Organization around business capabilities: when looking to split a large
application into parts, often management focuses on the technology layer, leading
to UI teams, server-side logic teams, and database teams. When teams are
separated along these lines, even simple changes can lead to a cross-team project
taking time and budgetary approval. The microservice approach to division is
different, splitting up into services organized around business capability. Such
services take a broad-stack implementation of software for that business area,
including user-interface, persistent storage, and any external collaborations.
Figure 2.11 shows the concept: at the left, there is a team organized around a
monolithic approach, at the right, a team organized around microservices;

Figure 2.11: Team organization comparison between monolithic and microservices
approaches.[8]

The benefits’ list helps understanding why microservices are a good choice. However,
there are also some downsides that are very important to consider when deciding

Master’s Thesis - Alberto Simioni 1106663 Page: 25 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

whether to use microservices or not:

• Design complexity: the division of the system into many microservices is
a complex operation that needs particular attention and should be carefully
designed before starting the implementation of the system. If the division into
microservices is done wrong, it could result in a high network traffic and the
communication interfaces being too complex to use;

• Distribution: microservices use a distributed system to improve modularity.
But remote calls are slow. If a service calls six remote services, each calling other
six remote services, these response times add up to some very high latency. A
mitigation to this characteristic is to use asynchrony for remote calls. If a service
makes six asynchronous calls in parallel, it is now only as slow as the slowest call
instead of the sum of their latencies. This can be a big performance gain. Asyn-
chronous calls are also in line with the property Asynchronous Communication
(P2.1);

• Eventual consistency: microservices add eventual consistency issues because
of their usage of decentralized data management. Microservices require multiple
resources to update, and distributed transactions are banned (for good reason).
Developers need to be aware of consistency issues, and figure out how to detect
when things are out of sync. The monolithic style isn’t free from these problems.
As systems grow, there’s more of a need to use caching and replication to improve
performance, and cache invalidation is another important problem;

• Operational Complexity: the main downside with microservices, is the high
number of administrative operations that need to be carried out to deploy,
configure and update the system. The microservice architectural style has a
bigger number of components and infrastructure requirements compared to the
monolithic one. The number of releases increases, they are more frequent but
with minor effect. The beginning of the section, describes microservices as
“independently deployable by fully automated deployment machinery”. This
sentence highlights how the operations of deployment should be fully automated.
A lot of frequent manual operations to deploy the services of the system would
cause a high increase in the number of configuration mistakes.
It’s clear how there is the need for tools that help the developers and the system
administrators to automate operations. Automating operations is fundamental
task for having a system with the agility (P3) property. The most important
features that the tools should provide are:

– Rapid Provisioning: the system should be able to fire up new servers
in a matter of minutes or hours. The operations to start the new server
should be as much automated as possible. To obtain this feature the Cloud
Computing paradigm may be used;

– Monitoring: with many loosely-coupled services collaborating in produc-
tion, things are bound to go wrong in ways that are difficult to detect in
test environments. As a result, it’s essential that a monitoring regime is in
place to detect serious problems quickly;

– Continuous delivery: is the ability to get changes of all types, including
new features, configuration changes, bug fixes and experiments, into pro-
duction, or into the hands of users, safely and quickly in a sustainable way.

Master’s Thesis - Alberto Simioni 1106663 Page: 26 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

The goal is to make deployment, whether of a large-scale distributed system,
a complex production environment, an embedded system, or an app, pre-
dictable, routine affairs that can be performed on demand [10]. Continuous
delivery is essential for a serious microservices setup. There’s just no way
to handle dozens of services without the automation and collaboration that
continuous delivery fosters. Operational complexity is also increased due to
the increased demands on managing these services and monitoring[8].

2.2.3 Smart Enterprise software architecture
The previous section presented the microservice architecture as the architectural style
to use for the design of the Smart Enterprise system. The architecture is based on the
microservice architectural style jointly with the layered architecture pattern. The latter
is a client–server architectural pattern in which presentation, application processing,
and data management functions are physically separated. The set of clients in the SE
system are formed by the company’s operators using the control dashboard, the external
data sources and the smart things. Figure 2.12 shows an example of the pattern using
the most common implementation that consists of four layers: presentation, business,
persistence and database.

Each layer in the architecture forms an abstraction around the work that needs
to be done to satisfy a particular business request. For example, the presentation
layer doesn’t need to know or worry about how to get customer data. It only needs to
display that information on a screen in particular format [11].

The presentation layer in the SE system corresponds to the software executed by
the user interface of the company’s operators, by the external data sources and by the
smart things. The presentation layer interacts with the system business layer.

Figure 2.12: Layered architecture pattern.[11]

The business layer and the persistence layer are organized as microservices within
the system. The business layer exposes APIs to the presentation layer and is the part
of the system that encodes the real-world business rules that determine how data can
be created, stored, and changed.

The only layer that is executed on the clients’ devices is the presentation layer. The
other layers are all executed inside the Fiorital’s datacenter. This approach is called
thin-client. The client is used mainly for displaying the user interface and to receive
the user input. The microservices pattern requires this type of architecture. The

Master’s Thesis - Alberto Simioni 1106663 Page: 27 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

services are all executed inside servers and not on the clients’ devices. The presentation
layer sends the user input to the business layer. While the business layer sends the
requested data to the presentation layer. The thin-client approach has the benefit of
easier maintenance and cheaper upgrades [12]. It’s easier for system administrators
to update only the servers in the datacenter than updating both the servers and the
software on the clients’ devices. Moreover, the clients benefit from not having to submit
their devices to the software upgrades. A single operator may have 4 or 5 different
devices that he uses to interact with the system. Today modern web browser helps in
having thin clients that don’t need to be manually updated.

The persistence layer provides to the business layer simplified access to the data
stored in the persistent storage. Different services at the persistence layer may use
distinct logical databases to store the data. The database layer represents a typical
Database Management System (DBMS) and may be composed of different logical
databases. In a microservices architecture beyond having multiple logical databases,
there may be also different physical DBMS. This section shows an architecture having
only one DBMS.

Figure 2.13 shows part of the SE system software architecture. Each major com-
ponent is denoted with a number contained in a yellow circle. The diagram presents
both the multitier and the microservices design patterns.

Microservice 1 Microservice 2

Microservice N

Sensors

Sensors

Actuators

Sensor
Area

NetworkWeb

API Gateway - Pub/Sub Mediator

S
ense

C
ontrol

A
P

IA
P

I

A
P

I

Module Module

Module Module

1

2

4

5

Container

Dynamic
orchestration

Figure 2.13: Smart Enterprise Tiered Architecture

Master’s Thesis - Alberto Simioni 1106663 Page: 28 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Presentation layer (1) At the top level (1) there is the user interface of the
system, the external information sources and the smart things. This set of components
corresponds to the presentation layer. The user interface is executed inside the
operators’ devices.

Business and persistence layer (4) The business layer and the persistence layer
are organized into microservices (4) that expose APIs. The persistence layer services
expose their APIs to the services of the business layer. Moreover, services in the
persistence layer may perform calls to the other services in the persistence layer.
Similarly, the communication between microservices should be performed through
remote calls using the connectionless protocol. It would be inefficient to have a
connection between each pair of services that need to communicate. Remote calls are
slow compared to local function calls. As explained in the microservices section 2.2.2.
A mitigation to this characteristic is to use asynchrony for remote calls. Asynchronous
calls are also in line with the property Asynchronous Communication (P2.1).

Each microservice runs inside a dedicated container that isolates the microservices
between each other. The container technology is fundamental for the effectiveness of a
microservices architecture, as explained in section 2.2.2. The candidate architecture
includes also a component called dynamic orchestrator. The orchestrator is an essential
component for managing the execution of the microservices. The microservices run on
a set of servers. The role of the orchestrator is to schedule the services/containers on
the different computing nodes. The orchestrator is dynamic because it has a dynamic
autoscaling mechanism. The orchestrator continuously checks the run-time load of all
the microservices and adapts the number of replicas of each microservice to the load
they are experiencing. This characteristic of the architecture is helpful for making the
overall system more responsive.

Database layer (5) The database layer (5) is shown in the diagram as a DBMS
with different nodes forming a distributed database. The database layer exposes an
API to the persistence layer. This API is usually composed of a query language for
retrieving and inserting data in the database. The choice of whether to use one or
more DBMS doesn’t influence the general architecture shown in figure 2.13. Even with
only one DBMS, more logical databases can coexist in the system.

The persistence layer communicates with the database layer by performing remote
calls or queries to the databases. The communication should be asynchronous. As
described in 2.1, asynchronous communication improves the efficiency of the microser-
vices. Asynchronous calls are in line with the property Asynchronous Communication
(P2.1).

The diagram shows the DBMS as composed of multiple nodes. The microservices are
scalable by using replication because they are stateless. The database layer is stateful
and different techniques for scalability should be used. However, the database should
be scalable through techniques of data partitioning or through function partitioning
techniques (e.g. one instance for write operations, other instances for read operations).
Figure 2.14 shows the three different scalability approaches for obtaining horizontal
scalability.

API gateway - pub/sub mediator (2) The component called API gateway -
pub/sub mediator (2) is shown in the diagram as one component but it’s actually
formed by two different components: the API gateway and the pub/sub mediator. In

Master’s Thesis - Alberto Simioni 1106663 Page: 29 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Figure 2.14: The scale cube. [13]

a microservice architecture, there are different services running on different servers.
An important design goal for microservices is to hide the fact that there are multiple
servers and services. Partitioning into services can change over time and should be
hidden from clients. In other words, client applications running on remote machines
should have no need to know anything about the internal organization of the cluster.

This access transparency is offered by means of a single access point. The solution
is to implement an API gateway that is the single entry point for all clients. The API
gateway knows the location of all the microservices. The gateway helps to insulate the
clients from how the application is partitioned into microservices and to insulate the
clients from the problem of determining the locations of the service instances. Using an
API gateway is a common design pattern for the microservice architectural style[14].

The gateway forms the entry point for the microservices, offering a single network
address. The gateway, by inspecting a request’s payload, can take informed decisions
on where to forward the request to. The gateway operates at the level of the application
layer (of the networking protocol stack). For example, in the case of web services, the
switch can eventually expect an HTTP request, based on which it can then decide who
is to process it. This technique is often called content-aware request distribution [15].

The gateway provides also authentication and encryption features. For what
concerns the encryption, the gateway uses the Secure Socket Layer (SSL) protocol
between itself and the clients. The gateway is also responsible for the authentication
of the clients, the clients send their credentials to the gateway that authenticates the
requests, and forwards them to the other services. To do this it uses access tokens
(e.g. JSON Web Token) that securely identifies the requestor in each request to the
services[16].

As the name API gateway states. The gateway is helpful for the remote requests of
the clients. In a microservices, architecture it is typical to use a connectionless protocol
where clients make requests to servers and not vice versa. This approach is not good
for a system that wants to have an interactive control dashboard. One architectural

Master’s Thesis - Alberto Simioni 1106663 Page: 30 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

property presented in section 2.1 is P2.2 liveness. This property requires having a
control dashboard always updated with the most recent information. For a system to
obtain the liveness property through a connectionless protocol, it should make use of a
polling technique. Polling is bad because there are latency and efficiency issues. Many
clients’ devices continuously checking the presence of new information waste a lot of
resources. Furthermore, the new information arrives later because usually there is a
polling interval between two different calls. A system using a push connection-oriented
communication protocol doesn’t have the efficiency and latency issues. The services
send directly the information updates to the clients when they are available. The API
gateway is not designed for a connection-oriented communication protocol. For this
reason, the system needs another component that acts as a single entry point for all
clients for the connection-oriented protocol. This component is a publish/subscribe
mediator that allows clients and services to communicate through the publish-subscribe
pattern.

Subscriber
ClientPublisher

Microservice

4 2
1

Subscriber
Client

Subscriber
Client

Publisher
Microservice

Pub/Sub
Mediator

Topic
Topic

Figure 2.15: Publish-subscribe communication pattern.

Publish–subscribe is a messaging pattern where senders of messages, called pub-
lishers, do not send the messages directly to specific receivers, called subscribers, but
instead categorize each message with a topic. A publisher has no knowledge of which
subscribers will receive his messages. Figure 2.15 provides a graphical representation
of the publish-subscribe communication pattern.

Similarly, subscribers express interest in one or more topic and only receive messages
that are of interest, without knowledge of which publishers, if any, there are. The
mediator is an intermediary message broker that allows this type of communication.
The broker receives at run-time the subscriptions from the clients and when a message
with a certain topic arrives from a service, it performs the filtering operations and
sends the message only to the clients that are interested in that message.

Thanks to the the publish-subscribe protocol, the interactive dashboard is highly
customizable by each operator. An operator can change dynamically what to see on
his dashboard. The presentation layer reacts to the requested changes by adding and
removing subscriptions to different topics.

It is important to repeat that the publish-subscribe communication is used by the
microservices to send live updates to the presentation layer. The presentation layer
should perform remote calls to the microservices using the connectionless protocol.
Similarly, the communication between microservices should be performed through
remote calls using the connectionless protocol.

Master’s Thesis - Alberto Simioni 1106663 Page: 31 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Load balancers (3) and scalability The system is designed to be scalable in all
its components. Figure 2.16 shows how the scalability of the microservices works.
Each microservice can be scaled out or scaled in depending on the number of requests
that are being processed. Each microservice has a server-side load balancer (3) that
forwards each request to an instance of the microservice. A load balancer should check
the load of each instance, adapting the number of replicas of a microservice with the
current load.

WebGateway

Load balancer

Load balancer

Load balancer

Microservice 1

Microservice N

4 3

2
1

Figure 2.16: Microservices scalability through load balancers.

Figure 2.16 shows a configuration where the gateway is a single point of failure.
The gateway that performs the content-aware distribution needs to do a lot of work.
There should be a mechanism to scale also the gateway. One approach could be to put
a fast transport-layer load balancer in front of the gateway. Consequently, the gateway
can be scaled out with new instances when the load increases and the load balancer
distributes equally the load to the gateway instances. This approach has the advantage
of preserving the single network address as the access point for the presentation layer.

2.2.4 Tracing architectural properties to candidate architec-
ture

The architectural properties described in section 2.1 are mentioned several times
throughout the description of the candidate architecture. Different components or
characteristics of the candidate architecture help in obtaining the architectural prop-
erties. Table 2.3 shows a summary of the relations between architectural properties
and the candidate architecture characteristics. The table shows how each architectural
property is covered by some characteristics of the candidate architecture.

2.2.5 Technological requirements
Throughout the discussion of the architecture and of the microservice architectural
style, many requirements for technologies emerged. Some examples are the distributed
DBMS, the API gateway, rapid provisioning and so on. The candidate architecture is
complex and is composed of different layers, components, communication protocols
and interfaces. The next section presents the technologies used to implement the
candidate architecture. Before presenting the technologies choice, it’s useful to list all
the technological requirements imposed by the candidate architecture. Table 2.4 shows
the technological requirements.

Master’s Thesis - Alberto Simioni 1106663 Page: 32 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Properties Candidate architecture characteristics

P1 - Responsiveness

- Microservices independent scalability
- Dynamic orchestrator
- Load balancers
- Scalable database layer
- Scalable gateway

P2.1 Asynchornous communication - Asynchronous remote calls among microservices
- Asynchronous remote queries to the database

P2.2 Liveness - Publish-subscribe communication from
microservices to the presentation layer

P3 - Agility

- Microservices ease of deployment
- Rapid provisioning of computing and
storage resources
- Services Monitoring
- Continuous delivery of updates

Table 2.3: Properties to candidate architecture characteristics tracing.

Tech. Requirement Description

TR1 - Rapid Provisioning

The system should be able to fire up new servers in a
matter of minutes or hours. This feature is essential
for a system based on the microservice architectural
style.

TR2 - Monitoring

With many loosely-coupled microservices collaborat-
ing in production, things are bound to go wrong in
ways that are difficult to detect in test environments.
As a result, it’s essential that a monitoring regime
is in place to detect serious problems quickly.

TR3 - Continuous delivery

The goal is to make the deployment routine affairs
that can be performed on demand [10]. Continu-
ous delivery is essential for a serious microservices
setup. There’s just no way to handle dozens of ser-
vices without the automation and collaboration that
continuous delivery fosters.

TR4 - Microservices auto-
matic scalability and load bal-
ancing

Microservices can be scaled by replication. There
should be a technology that automatically checks
the hardware resources usage of each microservice.
It should scale the service out or in when needed
and load balance the requests among the different
service instances.

Master’s Thesis - Alberto Simioni 1106663 Page: 33 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Tech. Requirement Description

TR5 - Communication inter-
face and protocol

Each microservice exposes APIs to other microser-
vices or to the presentation layer. Therefore, there
is the requirement for a standard way to define these
APIs. The interfaces are accessed through a con-
nectionless application-layer networking protocol.
Both the interface and the protocol technologies
should be widely used and standardized in order to
allow easy integration with other technologies and
external systems.

TR6 - Asynchronous commu-
nication

As described in the candidate architecture, the com-
munication should be as much asynchronous as possi-
ble. The presentation layer and microservices should
be implemented using technologies that use asyn-
chronous communication.

TR7 - API Gateway

The component (2) of the candidate architecture is
the API gateway. The gateway should support the
connectionless communication protocol and provide
different security features. Developing a proprietary
gateway would be very time-consuming. It is more
convenient to find an open-source technology.

TR8 - Publish-subscribe pro-
tocol and mediator

Another component of the candidate architecture
is the pub/sub mediator. The protocol used to
communicate should be connection-oriented to al-
low the microservices sending push messages to the
presentation layer.

TR9 - Distributed database

Figure 2.13 shows a DBMS distributed into more
nodes. The DBMS technology should be scalable
through techniques of data partitioning or through
function partitioning techniques.

Table 2.4: Technological requirements.

2.3 Technologies overview and selection
This section presents the set of technologies that are used to implement the candidate
architecture of the SE project. The ending part of the previous section presented a
list of technological requirements. The technological choices are constrained by these
requirements. The set of technologies should fulfil all the requirements. This section
describes the selected technologies and motivates all the choices. However, this section
is not a complete analysis of the technological state of the art. The technological scope
is very wide, as shown in the rest of the section. The chosen technologies and tools
range from graphical libraries to DBMS to infrastructure provisioning and management.
Due to the limited amount of time available for the thesis work, a complete analysis of
the technological state of the art is not present in the document.

The first four technological requirements of the list in section 2.2.5 are related to IT
operations. The requirements present complex operations and therefore they should be
highly automated. To understand the benefits of automation it is useful to take a look
at a typical use case. The manual approach to setting up a typical server environment

Master’s Thesis - Alberto Simioni 1106663 Page: 34 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

includes steps like these:

• Wait for approval;

• Buy the hardware;

• Install the OS on the computer;

• Connect to and configure the network;

• Get an IP address;

• Allocate the storage;

• Configure the security;

• Install and deploy a database;

• Deploy the server application on the computer.

The above list is just a summary of the main operations carried out by system
administrators. During the last decade, cloud computing emerged and helped resolve
many of the problems related to IT operations. Almost all of the steps in the manual
approach became automated, making life much easier for system administrators.

Cloud computing is defined by National Institute of Standards and Technology
(NIST) as: "Cloud computing is a model for enabling convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction" [17].

Cloud computing is an important paradigm, that have reached a pervasive adoption
by companies for their IT services. The main motivations behind the adoption of
cloud computing use today is both technological and economic. Cloud technology
allows taking a very expensive asset, and delivering its capabilities to individual users
for a small amount of money per month. The biggest benefit of cloud infrastructure
comes from disposable virtual servers that can be easily provisioned and reprovisioned,
automatically. IT operations teams realized that it is far more expensive to debug and
fix a faulty virtual server than to replace it with a new server.

Cloud computing at the Infrastructure as a Service (IaaS) level provides a set of
services accessible through the web. These services allow creating hardware resources
like computing, networking and storage. The cloud services can be tuned (e.g. number
of cores, storage amounts, network bandwidth) and can be configured for security
(e.g. public IPs, firewalls, VPNs) and integration between the web services (e.g. load
balancers, auto-scaling, monitoring, deployment). The cloud did not remove the
necessity of IT operations. With cloud computing, the system administrators have
to configure, install, upgrade, monitor, perform backups, startup and shutdown the
system by using the interfaces provided by the different cloud services. The cloud
provides higher abstractions for hardware and networking resources. These higher
abstractions allow to creating complex configurations where the system becomes highly
available, scalable and upgradable. Cloud computing alleviates some of the problems
application administrators face in their existing hardware and locally managed software
environments. However, the rapid increase in scale, dynamicity, heterogeneity, and
diversity of cloud resources necessitates having expert knowledge about the cloud
landscape.

Master’s Thesis - Alberto Simioni 1106663 Page: 35 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Traditional IT administrators use sequential scripts to perform a series of tasks (e.g.
software installation or configuration). However, this is now considered an antiquated
technique in a modern cloud-based environment. The new way is to use orchestration
tools [18]. These tools define the policies and service levels through automated
workflows, provisioning, and change management. This creates an application-aligned
infrastructure that can be scaled up or down based on the needs of each application.
Orchestration also provides centralized management of the resource pool, including
billing, metering, and chargeback for consumption. For example, orchestration reduces
the time and effort for deploying multiple instances of a single application. The
process of orchestration typically involves tooling that can automate all aspects of
application management from initial placement, scheduling and deployment to steady-
state activities such as update, deployment and health monitoring functions that
support scaling and failover [19].

Orchestration differs from automation in that it does not rely entirely on static
sequential scripts but rather sophisticated workflows.

Cloud computing is the base for the entire technology stack of the SE project. The
cloud computing paradigm introduced the concept of orchestration. Cloud computing
benefits from the usage of a virtualization technology called software containers. Cloud,
orchestration and containers are the three infrastructure technologies used to obtain
the first four requirements (rapid provisioning, monitoring, continuous delivery, services
scalability). The next subsections provide a description of each technology. The four
layers of the SE system architecture (presentation, business, persistence, database) run
on top of the cloud infrastructure. The chosen technologies for the implementation of
the layers were selected considering that they should operate in a cloud environment.

The description of the technologies starts by providing more details about cloud
computing. The other technologies are presented by following the order of the architec-
ture layers. Web technologies are described first because they regard the presentation
layer (client-side) and the implementation of the services (server-side). After that, the
API gateway and the publish-subscribe mediator technologies are presented, because
they simplify the communication between the presentation layer and the services.
Next, containers and containers orchestration are shown because they help to manage
the operations of a set of microservices running over a cluster of computing nodes.
Eventually, the DBMS technology for the database layer is presented. The technologies
dissertation order is shown in figure 2.17. The figure shows how the order of the
dissertation follows the architectural layers.

2.3.1 Cloud computing
The fundamental technology that powers cloud computing is virtualization. Virtu-
alization software makes it possible to run multiple operating systems and multiple
applications on the same server at the same time [20].

Commonly with cloud computing the IaaS provider gives to their customers a set
of virtual machines, each of them running its own instance of an operating system,
where the customers can install their applications and the dependencies required
by the applications. One problem with this approach is that the installation and
configuration process on the virtual machines is usually hard to automate and error-
prone. Furthermore, each virtual machine installed on a physical computing node
adds a considerable overhead due to the presence of an entire OS on every single
virtual machine. The biggest benefit of cloud infrastructure comes from disposable
virtual servers that can be easily provisioned and reprovisioned. This feature fulfils

Master’s Thesis - Alberto Simioni 1106663 Page: 36 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Microservice 1

Microservice N

Web

API Gateway Pub/Sub Mediator

A
P

I
A

P
I

- Web technologies

Dissertation order:

- API gateway
- Publish/subscribe
 mediator

- Containers
- Containers
 orchestration

- DBMS

Figure 2.17: Technologies dissertation order follows the architectural layers.

the technological requirement TR1 - rapid provisioning. A more recent approach, that
solves the main problems of virtual machines, is using containers instead of virtual
machines for the deployment of the applications and of their dependencies. Section
2.3.5 explains in detail what a container is and how they compare to virtual machines.

One essential characteristic of cloud computing is to provide computing resources
in a manner which the running applications can scale rapidly outward and inward with
the proportional demand of users.

Scalability Scalability is defined as: "the ability to handle increased workloads by
repeatedly applying a cost-effective strategy for extending a system’s capacity." [21]

The property can be obtained in two different ways:

• Vertical scalability: the ability to increase the capacity of existing hardware
or software by adding resources. Vertical scaling is limited by the fact that an
application can only get resources as big as the size of the server;

• Horizontal scalability: the ability to connect multiple hardware or software
entities, such as servers, so that they work as a single logical unit [22].

Horizontal scalability is more effective than vertical scalability as it is not limited
by the size of a single server. However, a system that uses horizontal scalability needs
to be more carefully designed as it becomes a distributed system.

Horizontal scalability may be obtained through the replication of the application
mechanism. As the workload grows new instances of the applications are started in

Master’s Thesis - Alberto Simioni 1106663 Page: 37 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

order to have more resources that are executing the workload. The applications that
want to leverage scalability by replication have to be designed so that the application’s
instances are executed in a coordinated fashion, with each instance executing a portion
of the workload/requests.

The candidate architecture has stateless services that need to be scaled by replica-
tion. Therefore, the cloud computing paradigm helps to fulfil the requirement TR4 -
Microservices automatic scalability and load balancing. Each instance of the service
executes a portion of the incoming requests. Each request should be independent
from the previous requests so that it’s not important which instance of the service is
handling the current request.

A typical architecture for a system running in the cloud is shown in figure 2.18.
Most of the today’s cloud platforms are structured in two layers ("tiers"). The first tier
runs services that receive incoming client requests and are responsible for responding
as rapidly as possible. Directly behind this is a second tier of which include databases
and other applications used by the components of the first tier.

Services running in the first tier are expected to be stateless: they can communicate
with other stateful services, but any storage they maintain is expected to be purely
temporary and local. However, a typical system needs to store state information and
data. This is the role of the second-tier were DBMS are employed. The components
running in tier two are central to the responsiveness of tier-one services and they don’t
have to become a bottleneck for the responsiveness of the system. Usually caching,
replication and sharding techniques are utilized to keep the whole system responsive.

The typical architecture for cloud system is in line with the candidate architecture
shown in figure 2.13. Layer one corresponds to microservices of the business and
persistence layers. Layer two corresponds to the database layer.

Figure 2.18: Typical architecture of a cloud-based application. [23]

Scalabillity can be "elastic" when the provisioning and de-provisioning of the
resources are automated by dynamically measuring the workload that the application
is handling. Elasticity was defined as: "the degree to which a system is able to adapt
to workload changes by provisioning and deprovisioning resources in an autonomic
manner, such that at each point in time the available resources match the current
demand as closely as possible" [24]. The first-tier, that is composed of stateless services,

Master’s Thesis - Alberto Simioni 1106663 Page: 38 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

largely benefits from elastic scalability as this tier should respond as rapidly as possible,
even when there are intense workloads.

With automatic scalability, there is no need to make a long-term prediction of the
workload demand in advance. Long-term predictions are not easy to formulate and
are usually wrong or not accurate, leading to over-provisioning and under-provisioning
situations. Both the situations causes economic losses for the service provider. Over-
provisioning is a waste of hardware resources, while under-provisioning degrades the
quality of the provided service, that may cause customers to stop using the service.
Figure 2.19 shows graphically a comparison between manual horizontal, manual vertical
and elastic scalability.

Figure 2.19: Elastic scalability vs manual scalability. [25]

Traditional infrastructure generally necessitates predicting a number of computing
resources that the application will use over a period of several years. If the prediction
under-estimates, the applications will not have the horsepower to handle unexpected
traffic, potentially resulting in customer dissatisfaction. If the prediction over-estimates,
the system is wasting money with superfluous resources. The on-demand and elastic
nature of the cloud approach (Automated Elasticity), however, enables the infras-
tructure to be closely aligned (as it expands and contracts) with the actual demand,
thereby increasing overall utilization and reducing cost.

Elasticity is one of the fundamental properties of the cloud. Elasticity is the
power to scale computing resources up and down easily and with minimal friction
[25]. To implement elasticity there should be an auto-scaling system that uses a set of
performance metrics to dynamically measure the instances resources usage. Moreover,
the auto-scaling system has a set of algorithms that dynamically analyze the metrics.
The auto-scaler must be aware of the economic costs of its decisions, which depend on
the pricing scheme used by the provider, to reduce the total expenditure [26].

An extensive list of those metrics is provided in [27], for both transactional (e.g.

Master’s Thesis - Alberto Simioni 1106663 Page: 39 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

e-commerce websites) and batch workloads (e.g. video transcoding or text mining).
They could be easily adapted to other types of applications:

• Hardware: CPU utilization per VM, disk access, network interface access,
memory usage;

• General OS Process: CPU-time per process, page faults, real memory (resident
set);

• Load Balancer: size of request queue length, session rate, number of current
sessions, transmitted bytes, number of denied requests, number of errors;

• Application server: total thread count, active thread count, used memory,
session count, processed requests, pending requests, dropped requests, response
time;

• Database: number of active threads, number of transactions in a particular
state (write, commit, roll-back);

• Message queue: average number of jobs in the queue, job’s queuing time.

Note that, when working with applications deployed in the cloud, some metrics
are obtained from the cloud provider (those related to the acquired resources and the
hypervisor managing the VMs), others from the host operating system on which the
application is implemented, and yet others from the application itself.

The quality of the auto-scaling mechanism can be measured using two fundamental
aspects:

• Speed: the speed of scaling up is defined as the time it takes to switch from an
under-provisioned state to an optimal or over-provisioned state. The speed of
scaling down is defined as the time it takes to switch from an over-provisioned
state to an optimal or under-provisioned state;

• Precision: the precision of scaling is defined as the absolute deviation of the
current amount of allocated resources from the actual resource demand [24].

The provisioning speed can be drastically improved by using containers instead of
virtual machines. As shown in section 2.3.5 containers are up to 10 times faster to
bootstrap than VMs.

The precision of the auto-scaler can be improved by using better algorithms that
analyse the resources usage metrics. The analyses consist of processing the metrics
gathered directly from the monitoring system, obtaining from them data about current
system utilization, and optionally predictions of future needs. Some auto-scalers do
not perform any kind of prediction, they just respond to the current system status:
they are reactive. However, some others use sophisticated techniques to predict future
demands in order to arrange resource provisioning with enough anticipation: they
are proactive. Anticipation is important because there is always a delay from the
time when an auto-scaling action is executed (for example, adding a server) until it is
effective (for example, it takes several minutes to assign a physical server to deploy a
VM, move the VM image to it, boot the operating system and application, and have
the server fully operational). Reactive systems might not be able to scale in case of
sudden traffic bursts (e.g. special offers or the Slashdot effect). Therefore, proactivity
might be required in order to deal with fluctuating demands and being able to scale in
advance [26].

Master’s Thesis - Alberto Simioni 1106663 Page: 40 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Cloud computing technology selection - OpenStack Cloud computing is a
fundamental technology for the new information system. Having disposable computing
resources improves drastically the agility and the responsiveness of the system. However,
the company Fiorital prefers to have an in-house hardware infrastructure rather than
using the infrastructure of a cloud provider. One reason for this decision is the presence
of an already existing datacenter inside the main building of the company. Meaning
that the company could install the new information system inside the datacenter
without spending any additional cost for renting hardware infrastructure from a cloud
provider. Another reason is the strong dependency on a stable and powerful internet
connection that the headquarters of the company should possess in order to have a
system that is always available to the company operators. Currently, Fiorital doesn’t
have an internet connection stable enough that guarantees complete availability.

Therefore, the decision is to use an open-source cloud environment on top of the
datacenter of the company. This cloud technology is called OpenStack. OpenStack is
an open-source solution for creating and managing cloud infrastructures [28], originally
developed by NASA and Rackspace. The open-sourceness of this package, being free to
download, gives to small players the possibility of deploying small cloud infrastructures.
OpenStack exploits well-known open-source components and libraries, and manages
both computation and storage resources on the cloud to enable dynamic allocations of
VMs. OpenStack offers a large set of services. A customer can choose which service to
install inside its own datacenter. The foundational and most popular services are: Nova
to manage the computing resources, Neutron for managing the networking resources,
Swift and Cinder for managing the storage and Glance to provide and manage a
set of VM images. OpenStack is the most used open-source cloud platform and is
being used by thousands of companies [29]. The API Service is the frontend to the
OpenStack Cloud: it receives user requests and translates them into cloud actions.
The offered functions span from VM control to authentication and authorization. In
particular, this service exports such functionalities through web services: user requests
are delivered by HTTP messages with XML-based payload, converted into suitable
commands, and dispatched to the final internal component. To avoid vendor lock-in,
and ease service migration toward different cloud providers, OpenStack exports a set
of functions compliant with the ones offered by different vendors, such as Amazon [30].

2.3.2 Web technologies
The information system should be accessible from all kinds of user devices, mobile
phones, tablets, laptops and desktops. The choice of deciding what technologies and
protocols to use for developing the information system is crucial. The presentation
layer technologies should be implemented using technologies that run on as many
types of devices as possible. This is one of the project objectives mentioned in section
1.2.1. Furthermore, as stated by the technological requirement TR5 - Communication
interface and protocol, the choice of which protocols and interfaces technologies to
use, should be oriented on allowing a broad number of different devices to be able to
interact with the business layer.

Web enabled devices have become extremely commonplace, with mobile devices
leading the way, but this fact brings to developers a challenge. The challenge is the
fragmentation which includes both device fragmentation and operating system frag-
mentation across the mobile environment. Devices with different processing, memory,
communication and displaying capabilities are examples of device fragmentation [31].
There are different companies with their own platforms, running different operating

Master’s Thesis - Alberto Simioni 1106663 Page: 41 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

systems and requiring expertise in each development environment, making it hard and
costly to address multiple devices.

What all platforms have in common, is the increasing compliance to the web
standards brought to them through modern web browsers. Technological achievements,
such as the improvement of modern browsers and the standardization of HTML5, led
to the creation of advanced web applications, offering features only available to native
applications before.

Web Applications Web applications can be defined as “software systems based on
technologies and standards of the World Wide Web Consortium (W3C). They provide
web-specific resources such as content and services through a user interface, the Web
browser” [32]. HTML5 is a markup language, used for structuring and presenting
content for the World Wide Web and a core technology of the Internet, maintained
by W3C [33]. HTML5 is also used as a simplifying term, for addressing a family of
other related web standards and technologies, like CSS3 and JavaScript together, with
which it represents the complete package, or idea, that is HTML5 [34]. One advantage
of mobile applications is that they don’t need to be installed on the users’ devices.
They can be used on-demand through the usage of the web browser. Traditional native
applications require the device’s OS to periodically check for application’s updates
and perform their installation, replacing the previous version of the application. On
the other hand, web applications, that are accessed on-demand, are always up-to-date
when the user accesses them, without any update installation.

Mobile web applications are software that use web technologies, i.e., once again
JavaScript and HTML5, to provide interaction, navigation, or customization capabilities.
Mobile web applications run within a mobile device’s web browser. This means that
they are delivered on the fly via the internet and they are not separate programs that
need to be installed and stored on the mobile device. The main drawback of mobile
web applications is that lack on user experience and performance.

As Java applets and Flash aren’t supported on mobile devices, they can no longer be
considered as cross platform solutions. The only viable solution left for cross-platform
mobile application development is HTML5 and the other modern web technologies,
associated with it.

Structuring the graphical interface of the system as a web applications enable to
have a system that can be used from all type of devices. This is one of the project
objectives mentioned in section 1.2.1.

Single-page web applications In order to increase the performance and offer a user
experience similar to that of a native application, web applications can be developed
as single-page applications. Single-page applications load the required resources either
through a single page load, or load appropriate resources dynamically, in response to
user actions. Single-page applications are based on HTML5, on structured JavaScript in
both client and server side and on the responsive design technique. These technologies
allow to have an interface with no page reloads at any point and thus the user experience
is differentiated from the usual web page browsing experience [35].

Web services and REST APIs The presentation layer is implemented using web
technologies. The microservices on the business layer should support the HTTP
protocol, as it is the foundational communication protocol for the web. The services,
therefore, can be called web services. Web services promote the reusability of software

Master’s Thesis - Alberto Simioni 1106663 Page: 42 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

components in internet based applications. They communicate through technologies
such as XML, JSON and HTTP.

An advantage of web services is to allow organizations to work together since they
are platform and language independent. Web services communicate through HTTP.
However, HTTP was designed to transfer hypertexts and not to perform remote calls
to services. Web services need a standard way for designing their APIs.

Representational State Transfer (REST) provides an architectural style for imple-
menting web services and their interfaces. REST web services adhere to web standards
and use traditional HTTP request and response mechanisms such as the GET, POST,
PUT, DELETE request methods.

REST services are resource-centric web services. They revolve around the concept of
a resource, and only a limited set of the HTTP operations are allowed to be performed
on the resource objects. REST services use Uniform Resource Locator (URL)s to
identify resources. In a REST based web service, the GET method fetches information
about the resource and the POST method updates a resource or adds an entry, while
DELETE will remove an object. Typically, REST web services return the data in the
XML or JSON format, but they can also return it via HTML or plain text.

In addition to their inherent simplicity, REST web services are stateless and their
GET method operations can be cached by HTTP caches between the client and the
web services. This allows to offload heavy web traffic over to reverse proxy servers to
lighten the load on your web services as well as the databases.

REST web services can be used directly from a web server or embedded in programs.
When used in browser-based applications, the browser can locally cache the results of
REST operations when the web server in invoked via a GET request.

AJAX The presentation layer should communicate asynchronously with the microser-
vices, as described by the technological requirement TR6 - asynchronous communication.
Asynchronous JavaScript and XML (AJAX) is the technology that underlies a single-
page web application on the browser. AJAX is a non-blocking way for clients to
communicate with a web server without reloading the page. Web applications use
dynamic content, where the web pages are generated on the fly in response to search
requests or button clicks by the users. AJAX lets the web browser ask the server for
new data asynchronously.

Real-time web The microservices should have a way to send push messages to
the presentation layer. This need is described by the technological requirement TR8
- Publish-subscribe protocol and mediator. Furthermore, real-time web requires full-
duplex communication. However, HTTP was not designed to support real-time, the
server is not able to send push messages to the client. With the emergence of JavaScript
and AJAX, polling techniques enabled near real-time communication. Depending on
the polling interval there is a trade-off between latency and efficiency [36]. Another way
to achieve real-time communication is the Flash XMLSocket implemented in the Adobe
Flash platform [37]. While Flash tends to be installed in most desktop browsers, Adobe
has no support in mobile devices. Recent studies overcome the real-time communication
problem by using the WebSocket protocol of Internet Engineering Task Force (IETF)
and the Web Real-Time Communication (WebRTC) protocol[38].

Chaniotis et al. has examined the problems of modern web application development,
as well as client-server real-time communication possibilities, concluding that newer
tools such as Node.js, the WebSocket protocol and WebRTC aid in realizing the Real-
Time Web [36]. Kai Shuang and Feng Kai, have compared different methods of server

Master’s Thesis - Alberto Simioni 1106663 Page: 43 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

push technologies, and have evaluated their delays and unnecessary connection costs.
They have concluded that WebSocket is superior to all the other methods examined
[39].

The WebSocket protocol is the choice for the connection-oriented communication
protocol required by TR8. However, the protocol doesn’t support directly publish-
subscribe. To obtain the publish/subscribe technology there is the need for a publish/-
subscribe protocol that can run on top of the WebSocket Protocol. Web Application
Messaging Protocol (WAMP) is an open standard WebSocket subprotocol that provides
two application messaging patterns in one unified protocol: Remote Procedure Calls +
Publish/Subscribe. Its design goal is to provide an open standard for soft real-time
message exchange between application components and ease the creation of loosely
coupled architectures based on microservices [40].

WAMP was designed with first-class support for different languages in mind. Noth-
ing in WAMP is specific to a single programming language. As soon as a programming
language has a WAMP implementation, it can talk to application components written
in any other language with WAMP support. There are libraries for the protocol for all
the major programming languages.

WAMP is the chosen technology for the implementation of the publish/subscribe
connection-oriented communication protocol.

WAMP needs a broker (mediator) to work properly. The broker technology is
shown in section 2.3.4.

Server-side technologies The server-side technology concerns the implementation
of the web services in the business and persistence layers. An important technological
requirement for these layers is TR6 - asynchronous communication. The communication
between microservices and from microservices to the DBMS should be asynchronous.
Following the technology for the implementation of the services is described. The high
concurrency of web server architectures is of high importance for the responsiveness
of web applications. Application developers who deal with multiple I/O sources,
such as networked servers handling multiple client connections, have long employed
multithreaded programming techniques. Such techniques became popular because they
let developers divide their applications into concurrent cooperating activities. This
promised to not only make program logic easier to understand, implement, and maintain
but also enable faster, more efficient execution [41]. Actually, the most deployed web
server is Apache and the server side language of choice for web applications is PHP
[42]. They are both reported to have around 40% market share. However, PHP was
never meant to be used to write complex web-based applications. Apache, on the other
hand, is incapable of scaling linearly with the number of CPU cores.

Even though many developers have successfully used multithreading in production
applications, most agree that multithreaded programming is anything but easy. It’s
fraught with problems that can be difficult to isolate and correct, such as deadlock
and failure to protect resources shared among threads.

Developers also lose some degree of control when drawing on multithreading because
the OS typically decides which thread executes and for how long.

A newer approach is to use event-driven programming. This approach offers a
more efficient, scalable alternative that provides developers much more control over
switching between application activities. In this model, the application relies on event
notification facilities such as the select() and poll() Unix system calls and the Linux
epoll service. Applications register interest in certain events, such as data being ready
to read on a particular socket. When the event occurs, the notification system notifies

Master’s Thesis - Alberto Simioni 1106663 Page: 44 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

the application so that it can handle the event. Asynchronous I/O is important for
event-driven programming because it prevents the application from getting blocked
while waiting in an I/O operation [41].

A development platform that uses the event-driven programming approach and
that has gained a lot of usage is Node.js [43]. The detailed description of Node.js can
be found at the official website of the technology [43].

Node.js technologies is the chosen technology for implementing the web services of
the information system. The web services of the information system are I/O intensive
applications. In order to implement such an architecture, which is heavily I/O bound
and asynchronous by design, demanding in high concurrency support, efficient servers
are required. The event-driven approach of Node.js seems rather better than a threaded
one.

2.3.3 API gateway
The API gateway is a component of the candidate architecture shown in section 2.2.3.
The gateway acts as a single access point for the remote calls of the presentation layer.
It dispatches the requests to the microservices based on the type of request. The
presentation layer communicates with the microservices through HTTP calls. The
gateway is an application layer component, meaning that it can inspect the payload of
the HTTP requests. This technique is often called content-aware request distribution.

The chosen technology is Kong: a scalable, open source API Layer (also known as
an API Gateway, or API Middleware). Kong runs in front of any REST API and is
extended through plugins. It provides SSL encryption features, authenticates the users
and passes an Access Token containing information about the users to the services.

Kong was originally built at Mashape to secure, manage and extend over 15,000
Microservices for its API Marketplace, which generates billions of requests per month.
Backed by NGINX with a focus on high performance, Kong was made available
as an open-source platform in 2015. Under active development, Kong is now used
in production at hundreds of organizations from startups, to large enterprises and
government departments [44].

The candidate architecture requires that the gateway is scalable. Kong is distributed
by nature, Kong scales horizontally simply by adding nodes. Figure 2.20 shows the
overall architecture of Kong.

2.3.4 Publish-subscribe mediator
The publish-subscribe mediator is a component of the candidate architecture. The
mediator corresponds to the broker of the publish-subscribe protocol. The chosen
connection-oriented protocol for the publish-subscribe pattern is WAMP, as shown in
section 2.3.2. There are different implementations of brokers for WAMP. The most
used one is Crossbar [45]. Crossbar.io is an open- source networking platform for
distributed and microservice applications. It implements the open WAMP, is feature
rich, scalable, robust and secure. Crossbar.io maintained by Crossbar.io GmbH.

2.3.5 Containers
Containers are a recent technology that provides operating-system-level virtualization.
The main difference with the traditional virtualization techniques is that there is no
need for an hypervisor layer that provides the virtualization features. Instead, the

Master’s Thesis - Alberto Simioni 1106663 Page: 45 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Figure 2.20: Kong architecture. [44]

kernel and the OS provide the virtualization features. Containers in the context of a
microservices architecture, as the one of SE project, are useful to package, deploy and
run each single microservice. A container is easily mapped to a service.

Traditional virtualization allows a computing node to run multiple isolated operating
system images at the same time. This feature is useful in many use cases and in
particular for the enterprise sector. A typical use case is where a company has an email
server, a Web server, an FTP server and others. For reliability reasons, it’s better
to install each service on a different machine. By placing each service on a different
machine, if a service crashes, at least the other ones are not affected. This aspect is
good also for what concerns security, if a service has security flaws, these flaws have
no effect on the other services.

Instead of installing each service into a different computing node, virtualization can
be leveraged so that each service is installed inside a different VM. Virtualization helps
substantially by reducing the amount of computing machines needed and consequently
it lowers the costs of supporting a complex computing environment. As reported by A.
S. Tanenbaum [46]: "The reason virtualization works, however, is that most service
outages are due not to faulty hardware, but to ill-designed, unreliable, buggy and
poorly configured software, emphatically including operating systems."

Another important benefit brought by virtualization is the simplified software de-
pendencies management. The traditional way of deploying applications is to install the
applications on a host machine using the OS package manager. This approach had the
disadvantage of entangling the applications’ executables, configuration, libraries, and
lifecycles with each other and with the host OS. By using virtualization technologies it’s

Master’s Thesis - Alberto Simioni 1106663 Page: 46 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

possible to build immutable virtual-machine images to achieve predictable deployments
and updates rollouts and rollbacks. This technique is called Immutable Server [47].
These features help in achieving the technological requirement TR3 - Continuous
delivery.

The container technology helps to resolve the same issues tackled by the VM
technology. But, containers are more efficient in many aspects by resolving some of
the downsides related to VMs. Before showing the advantages of containers compared
to VMs, there is a description of what containers are and how they are implemented.

Application containment is a relatively new technique of operating-system-level
virtualization for running multiple services (containers) in isolation on a single computer.
Instead of virtualizing full virtual hardware computers like hypervisors do, container-
based isolation is done directly at the kernel level. Guest processes run directly on the
host kernel, and thus need to be compatible with it.

Containers have been implemented on top of Linux-based OSes. They mostly
depend on two features offered by the kernel: cgroups and namespaces. Control Groups
provide a hierarchical grouping of processes in order to limit and/or prioritize resource
utilization [48]. Namespaces can isolate processes by presenting them with an isolated
instance of global resources [49].

While the two features above are probably the most important to implement a
container system on Linux, other kernel features can be used to further harden the
isolation between processes. For example, the Linux Containers (LXC) system uses six
different features of the kernel to ensure that each guest is isolated from the rest of the
system and cannot damage the host or other guests [50].

In traditional hypervisor-based virtualization approaches, the guest is a full operating
system. With containers, the guest can be as limited as a simple program. A container
can also host a full operating system, with the limitation of sharing the same kernel
as the host. This is called a system container, while a container running a single
application is called an application container. Running a program directly inside the
container has the advantage of removing the overhead created by having a second OS
executing on top of the host OS [51].

Figure 2.21 shows the difference between container-based and hypervisor-based
virtualization. In the container architecture, there is only one OS that is running. A
detailed comparison between VMs and container is shown in shown in the paper [52].

Figure 2.21: Comparison of virtualization between virtual machines and containers.[51]

With most container systems, it is possible to ship an image of an application as a
single file. The image contains the application along with all its dependencies. It can
be used to create a new container, providing fast deployment. This feature is helpful
for obtaining the continuous delivery technological requirement.

Master’s Thesis - Alberto Simioni 1106663 Page: 47 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Container technology choice - Docker The most widely used container technol-
ogy is Docker. Docker is a cross-platform container system implementation. Docker
is the chosen technology for obtaining the containers. The description of the Docker
technology is shown in the official website of the Docker documentation [53].

Docker is the de facto standard among the container technologies. Many other
technologies for managing containers are based and support only Docker. Moreover,
Docker provides a set of very useful features for building and running containers on
single hosts. The Docker ecosystem simplifies certain tasks related to application
development. One of its key strength is predictable deployments. Thanks to it, we
know that an application that works on one computer A will work as expected on
another computer B. The Docker centralized registry provides ready-to-use images
that accelerate the start of a project.

Serverless computing A new recent paradigm is gaining traction in the cloud
environment. Containers enable developers to readily spin up new services without
the slow provisioning and runtime overheads of virtual machines. However, also with
container the notion of a server is central. Servers have long been used to back online
applications, but new cloud-computing platforms foreshadow the end of the traditional
backend server. Servers are notoriously difficult to configure and manage [54], and
server bootstrap time severely limits an application’s ability to quickly scale up and
down.

Many operations have to be carried out to deploy and configure the scalability of
the services running inside the containers. Furthermore, with containers an instance
of the service is always running even when there is no traffic. Serverless goes a step
further where you don’t even need to think about how much capacity you need in
advance.

As a result, a new model, called serverless computing, is ready to change the
construction of modern scalable applications. Instead of thinking of applications as
collections of servers, developers define applications with a set of functions (Function
as a Service (FaaS)) with access to a common data store. FaaS takes the microservice
approach of splitting a monolith a step further by breaking things down even smaller.
Figure 2.22 shows a representation of this concept.

Figure 2.22: Monolith decomposition into functions. [55]

Master’s Thesis - Alberto Simioni 1106663 Page: 48 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

With serverless computing there is no need for operations carried out by the
application owner. The scalability of the functions is managed completely by the cloud
provider. The functions are very fast to start-up (a few milliseconds). Therefore, only
a single API gateway needs to continuously run, while the services can be started only
when a request comes in.

From an application owner perspective, you only pay for the time that your
function(s) are running and since you don’t have to run an app 24/7 anymore, this
can be a good cost savings.

An excellent example of this model is the platform Amazon Lambda [56]. The
serverless model has many benefits compared to more traditional, server-based ap-
proaches. Lambda handlers (Amazon Web Services (AWS) notion) from different
customers share common pools of servers managed by the cloud provider, so developers
don’t have to worry about server management. Handlers are typically written in
languages such as JavaScript or Python; by sharing the runtime environment across
functions, the code specific to a particular application will typically be small, and
hence it is inexpensive to send the handler code to any worker in a cluster. Finally,
applications can scale up rapidly without needing to start new servers.

Handlers are inherently stateless, so they are integrated with a cloud-based database
service.

AWS Lambda, allows the deployment of microservices without the need of managing
servers. This service is designed to offer a per request cost structure, meaning that
developers only have to worry about writing individual functions to implement each
microservice and then deploying them on AWS Lambda.

Figure 2.23 shows the evolution of virtualization technologies and how they improve
the productivity of the development teams.

Figure 2.23: The virtualization techniques evolution. [57] [58]

The serverless technology is provided by different cloud providers (Amazon Web
Service’s Lambda [56], IBM Bluemix’s OpenWhisk [59], Google Cloud Platform’s
Cloud Functions [60], and Microsoft Azure’s Functions [61]). However, there are no
open-source platforms that enables the developers to use this paradigm in a private

Master’s Thesis - Alberto Simioni 1106663 Page: 49 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

cloud.
The serverless technology has some very good properties. However, there are some

drawbacks that make it not suitable for the SE project:

• No support for WebSocket: some things you just can’t do with functions.
Function can’t keep an open WebSocket connection with the presentation layer;

• Slower response time: a microservice will almost always be able to respond
faster, since it can keep connections to databases and other components open
and ready;

• Vendor lock-in: currently, there is a lack of open-source tools to implement the
serverless paradigm. The SE project should run on the Fiorital’s infrastructure
and not on the platform of a specific cloud provider.

2.3.6 Container orchestration
Cloud technology provides the customer with a set of resources that can be requested
on demand. Containers are the technology that enables to virtualize the hardware
resources and install different applications on them that are isolated from each other.
Hence, the customer is provided with a set of machines connected through a network,
where each machine may run one or more server/application. This configuration is
called by A.S.Tanenbaum and M.V. Steen as a server cluster [15]. In most cases,
a server cluster is logically organized into three tiers, as shown in figure 2.24. The
configuration shown the in the figure is similar to the architecture of the SE project.

Figure 2.24: The general organization of a three-tiered server cluster. [15]
.

A server cluster should appear to the outside world as a single computer. However,
when it comes to managing a cluster, the situation changes dramatically.

Orchestration tools provide lifecycle management capabilities to complex, multi-
container workloads deployed on a cluster of machines. By abstracting the host
infrastructure, orchestration tools allow users to treat the entire cluster as a single
deployment target [62]. The process of orchestration typically involves tooling that
can automate all aspects of application management from initial placement, scheduling
and deployment to steady-state activities such as update, deployment and health
monitoring functions that support scaling and failover. The most basic feature of an
orchestration tool is the provisioning, or scheduling, by negotiating the placement of

Master’s Thesis - Alberto Simioni 1106663 Page: 50 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

containers within the cluster and launching them. This process involves selecting an
appropriate host based on the configuration. A fundamental feature that orchestration
tools provide is declarative configuration. This feature allows teams to declare the
blueprint for an application workload and its configuration in a standard schema, using
languages such as YAML or JSON. These definitions also carry crucial information
about the repositories, networking (ports), storage (volumes) and logs that support the
workload. The configuration file allows specifying the order to adopt to lunch or stop
a set of containers. The declarative configuration approach allows orchestration tools
to apply the same configuration multiple times and always yield the same result on
the target system. Another important aspect is container discovery. In a distributed
deployment consisting of containers running on multiple hosts, container discovery
becomes critical. For example, web services need to dynamically discover the database
servers, and load balancers need to discover and register web services.

The Docker technology combined with an orchestration system allows to obtain a
production environment where the following operations can be fully automated:

• Building the images of a service inside a container image;

• Sending the image to the images repository;

• Downloading the images to the hosts that should run it;

• Running the images as a Docker container;

• Connecting the container to other containers (cluster of containers);

• Sending traffic to the containers;

• Monitoring the running containers in production.

CaaS The development of the orchestration tools based on containers have lead to
the birth of the Container as a Service (CaaS) paradigm. CaaS is an IT managed and
secured application environment of infrastructure and content provided as a service
(elastic and pay as you go, similar to the basic cloud principles), with no upfront
infrastructure design, implementation and investment per project, where developers
can (in a self-service way) build, test and deploy applications and IT operations can
run, manage and monitor those applications in production. From its original principles,
it is partially similar to Platform as a Service (PaaS) in the way that resources are
provided “as a service” from a pool of resources. What’s different in this case is that
the unit of software is now measurable and based on containers[63].

Orchestration technologies The ecosystem of applications around Docker has
exploded in the last years [64], with contributions in many areas such as Continuous
Integration/Continuous Delivery (CI/CD), application packaging and Container Or-
chestration Platforms (COPs). Figure 2.25 shows the large number of technologies
that have been developed for the Docker/container ecosystem.

Indeed, there are many applications for managing the execution of containers across
a cluster of hosts. There are three important open-source projects that provide a wide
set of container management features. All of them have been released recently and
are being intensely updated with new features. None of them has reached a stable
implementation stage:

Master’s Thesis - Alberto Simioni 1106663 Page: 51 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

Figure 2.25: Docker ecosystem with dependencies. [64].

• Docker Swarm: Docker also has additional tools for container deployments,
including Docker Machine, Docker Compose, and Docker Swarm. At the highest
level, Machine makes it easy to spin up Docker hosts, Compose makes it easier to
deploy complex distributed apps on Docker, and Swarm enables native clustering
for Docker;

• Kubernetes: originally developed by Google, now supported by the Cloud
Native Computing Foundation. Kubernetes is an open-source orchestration
system for Docker containers. It handles scheduling onto nodes in a compute
cluster and actively manages workloads to ensure that their state matches the
users’ declared intentions;

• Apache Mesos: can be used to deploy and manage application containers in
large-scale clustered environments. It allows developers to conceptualize their
applications as jobs and tasks. Mesos, in combination with a job system like
Marathon, takes care of scheduling and running jobs and tasks.

Container orchestration systems are very useful for improving the agility property
desired for the new information system. Orchestration systems automate many aspects
of the development lifecycle such as update, deployment and health monitoring functions
that support scaling and failover.

Technology choice - Kubernetes The idea is to install a container orchestration
platform on top of a set of OpenStack virtual machines. In this way, the system can
be designed and deployed as a set of containers, where each container is a different
component of the architecture. The resulting infrastructure configuration is a set
of containers that are running on top of a cluster of virtual machines. The set of
containers is managed by the Kubernetes container orchestration platform. Although
Docker is the de-facto standard for containerization, there are no clear winners in the
orchestration space. Docker Swarm has few simple features and it’s the native option
inside the Docker platform, resulting in the most flexible approach and the easier to
use, it is a good choice for simple web/stateless applications. The SE project is a
complex project with a lot of different requirements. Swarm is very bare bones at

Master’s Thesis - Alberto Simioni 1106663 Page: 52 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

the moment and for complicated, larger-scale applications to production it’s better
to choose one of Mesos/Marathon or Kubernetes. The decision is to use Kubernetes
because is more feature rich and mature of the two [64]. To decide which container
orchestration platform to choose among the three option, I carried out just a short
investigation for restricted time reasons. The explanation given before doesn’t want to
be a complete explanation of which technology is the best for the SE project.

2.3.7 NoSQL
The candidate architecture has a database layer. The database layer stores the
organizational data of the company and all the information managed by the information
system. This section describes why NoSQL databases could be a good fit for the new
information system. In recent years new types of DBMS, different from traditional
relational SQL databases have been introduced and have been extensively used. These
new set of DBMS fall under the category NoSQL. The need for NoSQL DBMS is driven
by some challenges presented in building modern applications:

• Development teams are abandoning the waterfall development cycle. Now small
teams work in agile sprints, iterating quickly and pushing code every week or
two, some even multiple times every day;

• Applications that once served a finite audience are now delivered as services that
must be always-on, accessible from many different devices on any channel, and
scaled globally to millions of users;

• Organizations are now turning to scale-out architectures using open-source
software, commodity servers and cloud computing instead of large monolithic
servers and storage infrastructure [65].

Figure 2.18 shows the typical two-tiered architecture for cloud systems. The second
tier is responsible for the storage of data. A DBMS is typically used to store data and
it should be scalable as it should not become a bottleneck for the first tier. The DBMS
in the second tier are intrinsically stateful applications. Therefore, in the second tier,
different scaling techniques have to be used than the ones used in the first tier.

Traditional SQL DBMS require complicated techniques to scale outside of a single
server and they usually scale with low performances. As a consequence, the NoSQL
DBMS that are easier to scale are being much more used in the cloud environment.
NoSQL databases give up a massive amount of functionality that a SQL database
always provides. Things like automatic enforcement of referential integrity, joins and
Atomicity, Consistency, Isolation, Durability (ACID) transactions are not present in
NoSQL databases.

In practice, relational databases always have been fully ACID-compliant. Though,
the database practice also shows that ACID transactions are required only in certain use
cases. For example, databases in banks and stock markets always must give correct data.
Databases that do not implement ACID fully can be eventually consistent. In principle,
by giving up some consistency, DBMS can gain more availability and greatly improve
scalability. This fact can be understood by mentioning the Consistency, Availability,
Partition tolerance (CAP) theorem defined by E. Brewer [66]. The CAP theorem
states, that for any system sharing data it is impossible to guarantee simultaneously:

• Consistency: means that whenever data is written, everyone who reads from
the database will always see the latest version of the data;

Master’s Thesis - Alberto Simioni 1106663 Page: 53 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

• Availability: each node can perform any operation and the operation terminates
in an intended response;

• Partition tolerance: means that the database still can be read from and written
to when parts of it are completely inaccessible [67].

In cloud-based applications using horizontal scaling strategy it is necessary to decide
between C and A. Usual NoSQL DBMS prefer to loose C over A and P. Priority of
availability has an economic justification. Unavailability of a service can imply financial
losses. A database without strong consistency means, when the data is written, not
everyone, who reads something from the database, will see correct data; this is usually
called eventual consistency.

A recent transactional model for databases having eventual consistency has been
formulated: Basically Available, Soft state, Eventual consistency (BASE) [68]. The
availability in BASE corresponds to availability in CAP theorem. An application works
basically all the time (basically available), does not have to be consistent all the time
(soft state) but the storage system guarantees that if no new updates are made to
the object eventually (after the inconsistency window closes) all accesses will return
the last updated value. Availability in BASE is achieved through supporting partial
failures without total system failure. Eventual consistency means that the system will
become consistent after some time.

Many NoSQL databases have been developed recently, more than 225 [69]. Figure
2.26 shows which are the NoSQL databases that are being mostly used by software
developers. The chart shows per each DBMS over time how many LinkedIn users have
inserted the database as a possessed skill in their personal profile.

Figure 2.26: Developers NoSQL knowledge by LinkedIn skills [70]

NoSQL databases are important for obtaining the two properties of responsiveness
and agility. As explained before, NoSQL databases scale better than SQL databases.
Better scalability means that it’s easier to provide the property SLA preservation.
Regarding agility, NoSQL databases usually don’t have mandatory schemas for the
data models. This characteristic enables the developers to easily change the data
format used by the information system without spending much time in modifying
existing schemas and data.

NoSQL technology choice - MongoDB Among the set of existing NoSQL
databases, the database that is being used the most is MongoDB. Organizations

Master’s Thesis - Alberto Simioni 1106663 Page: 54 / 101

CHAPTER 2. CANDIDATE ARCHITECTURE AND TECHNOLOGIES
SELECTION

of all sizes are adopting MongoDB because it enables them to build applications faster,
handle highly diverse data types, and manage applications more efficiently at scale.

Development is simplified as MongoDB documents map naturally to modern,
object-oriented programming languages. Using MongoDB removes the complex Object-
Relational Mapping (ORM) layer that translates objects in code to relational tables
[71]. A detailed description of the MongoDB technology can be found at the official
website of the technology [72].

2.3.8 Tracing architectural requirements to technologies
The set of chosen technologies satisfies the set of technological requirements that were
shown in section 2.2.5. Table 2.5 shows per each requirement which are the technologies
that fulfil the requirement.

Tech. Requirement Technologies

TR1 - Rapid Provisioning Cloud computing - OpenStack

TR2 - Monitoring Containers orchestration - Kubernetes

TR3 - Continuous delivery Docker containers
Containers orchestration - Kubernetes

TR4 - Microservices automatic
scalability and load balancing

Cloud computing - OpenStack
Docker containers
Containers orchestration - Kubernetes

TR5 - Communication interface
and protocol

REST APIs for the interface
HTTP communication protocol

TR6 - Asynchronous communica-
tion

AJAX
Node.js

TR7 - API Gateway Kong
TR8 - Publish-subscribe protocol
and mediator

WAMP
Crossbar broker

TR9 - Distributed database NoSQL MongoDB database

Table 2.5: Tracing architectural requirements to technologies

Master’s Thesis - Alberto Simioni 1106663 Page: 55 / 101

Chapter 3

Experimental evaluation

Chapter 2 presented the candidate architecture of the system and the chosen tech-
nologies for the implementation of the architecture. The architecture is quite complex.
There are many components partitioned into different layers and various employed
technologies. The thesis work wants to obtain a good architecture for the SE project.
To assess the effectiveness of the architecture, an evaluation is necessary. The user
experience that the system offers is an integral constituent of the system’s overall effec-
tiveness. If the application users of the interactive, Internet-based system experience
slowness or other difficulties with it, they will be less likely to use the system in the
future and they will work less efficiently, regardless of the amount of total processing
and storage resources that the system possesses. It is thus in the best interest of the
service provider to offer a consistent user experience at all times, even under adverse
conditions such as system updates or high demand.

It’s essential to implement a prototype of the candidate architecture to obtain a set
of results that evaluate the effectiveness of the architecture. A task of the thesis work is
the implementation of the prototype. The prototype should be an instantiation of the
candidate architecture, composed of services and data that are useful for the Fiorital
scenario. The set of services provided by the prototype should reflect the company’s
structure.

The design of the architecture aims at satisfying the architectural properties shown
in section 2.1. The assessment of the architecture has been obtained by using a set of
metrics that evaluate the foundational architectural properties. The chosen metrics
give quantitative estimations of the architectural properties that can be used to assess
the system architecture. To obtain a set of quantitative results, a series of executions
of the prototype have been carried out. During the executions, the prototype has been
stressed with some synthetic workloads.

The obtained results have highlighted that the candidate architecture has good
performance. It scored good responsiveness results mainly thanks to its scalability.
The scalability property is obtained through the usage of the three different scalability
techniques: horizontal duplication, functional decomposition and data partitioning.
These techniques were described in section 2.2.3 and are recalled in 3.2. The functional
decomposition technique is the one with the major positive impact on the system’s re-
sponsiveness. The reactiveness of the architecture is also excellent. All the components
communicate asynchronously and the applications users receive the push information
on their live dashboards very quickly. The re-configuration of the architecture can be
performed quite smoothly. The re-configuration can be carried out with a low number

Master’s Thesis - Alberto Simioni 1106663 Page: 57 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

operations and in most cases, they can be performed at run-time with zero downtime.
A more detailed evaluation of the candidate architecture is shown in section 3.2.

The majority of the chosen technologies are also appropriate. The Web technologies,
Node.js, Docker and MongoDB have been proven as valuable, mature and efficient
technologies that allow having a high-quality information system. Kubernetes, Kong
API gateway and the Crossbar publish-subscribe mediator have many good features that
are essential for the system implementation. However, they present some flaws, that
slightly hinder the quality of the system. Kubernetes requires a complex installation
process and lacks maturity. Kong presents an undesired behaviour that is not in line
with the candidate architecture. Crossbar lacks development support and scalability.
All these aspects are extensively covered in section 3.3.

The chapter starts by presenting the set of metrics and the criteria that are used
for assessing the effectiveness of the candidate architecture. Then, the second and the
third sections present a critical evaluation of the candidate architecture and of the used
technologies. Section four shows the construction of the prototype and its experimental
setup. Eventually, the last section shows the complete experimental results.

3.1 Evaluation criteria
The first step for establishing the evaluation criteria is to choose a set of metrics
that can be used to obtain quantitative estimations of the architectural properties
presented in section 2.1. The following lists presents the metrics by going through the
architectural sub-properties:

• SLA preservation: aims at maintaining the service level for the application
user even when there is a high workload. The service level can be measured by
analysing the response times of the application users’ requests. The response time
refers to the time that elapses between when a user presses a button till when the
full result data is received by the user’s device. This is also called End-to-End
response time [73]. End-to-End response time metric quantifies how long the user
must wait for a response to a request. The variance of response times ("jitter")
quantifies the degree to which the response time for a particular action, such
as a page request, varies during a test interval. It is possible to describe this
variance via metrics such as the standard deviation of the response time from the
mean, or by providing graphical representations such as box-and-whiskers plots
of the observed response time distributions. SLAs usually specify a response time
criteria that must be met. A predicted value Q can be used to form a response
time SLA of the form "the web API operation responds under Q milliseconds at
least p percent of the time"[74]. If Q is a correct prediction, the probability of the
request next measured response time being greater than Q is 1 − (0.01p). If the
time series consists of independent measurements, then the probability of seeing
n consecutive values greater than Q (due to random chance) is (1 − 0.01p)n. For
example, using the 95th percentile, the probability of seeing 3 values in a row
larger than the predicted percentile due to random chance is (0.05)3 = 0.00012.

Amazon describes response time requirements for internal services in terms of
the 99.9th percentile, even though it only affects 1 in 1,000 requests. This is
because the customers with the slowest requests are often those who have the
most data on their accounts because they have made many purchases, they’re
the most valuable customers [76]. Figure 3.1 shows a representation of mean,

Master’s Thesis - Alberto Simioni 1106663 Page: 58 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.1: Illustrating mean and percentiles: response times for a sample of 100 requests
to a service. [75]

median and percentile on the requests response times. It’s important to keep
those customers happy by ensuring the website is fast for them: Amazon has
also observed that a 100 ms increase in response time reduces sales by 1% [75].
The property SLA preservation clearly concerns the application users.

• Queue length minimization: each service of the system can execute various
requests in parallel. Anyway, the number of requests that a component can
execute in parallel is limited, for example by the CPU power available to the
component, by the available RAM and I/O. Consequently, the system has a set
of queues where to store the requests that are waiting to be executed. Each
service instance possesses a requests queue, figure 3.2 shows that each service
instance has a requests queue. A service provider wants to provide a system
that is responsive. One mechanism is to minimize the length of the queues. A
system with short queues is more responsive than a system with long requests’
queues. There are two useful metrics to measure the burden of the queues. One
is the queue length over time. The other is the waiting time of the requests. The
property and the metrics clearly concern the service provider. The application
user should not even be aware of the presence of the queues;

μ1

μN

GatewayWeb

Figure 3.2: Illustration of the services’ queues.

• Throughput maximization: the service provider to provide a better respon-
siveness should maximize the throughput of the system. Each service should

Master’s Thesis - Alberto Simioni 1106663 Page: 59 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

be as efficient as possible to maximize the usage of the hardware resources.
A consequence of maximizing the throughput is that the overall costs for the
hardware resources are reduced. Therefore, the system is more cost-efficient. The
throughout can be measured both at the system level and for each service. A
good metric is the number of served requests of requests inside a time interval.
An example is the number of served requests per second. The throughput metric
concerns the service provider, that wants to maximize the efficiency of the system;

• Reactiveness: this sub-property states that the different components of the
system should communicate through asynchronous requests and messages. This
property is not quantifiable into a metric. The property can be assured by using
architectural components and technologies that communicate asynchronously;
this aspect was illustrated in section 2.2.3 and 2.3. The reactiveness property
concerns how the system is implemented and therefore is important only from
the point of view of the service provider;

• Liveness: the property allows the application users to receive push information
coming from the system’s services. This property concerns the applications
users, who benefit from having always up-to-date information on the dashboard.
The source to destination time is a good metric for this property. The source
is the user or the smart thing that sends a request to the information system.
The destination is the receiver of the push message sent by the information
system. The message concerns the request made by the source. An example of
the scenario is shown in figure 3.3, where user A sends a requests and user B
receives the notification.

Information system

User B
Destination

User A
Source

1. Sends request 2. Push
notification

Figure 3.3: Source and destination for the liveness property.

• Agility: the term indicates the ease in applying changes in the development and
production environment of the information system. The two sub-properties of
agility are components addition agility and components removal agility. Both
additions and removals change the configuration of the system. A configuration
defines how each building block (components and interfaces) is combined to
form an architecture describing correct component connections, component
communications and interface compatibility. One helpful metric in this context
is the system downtime when there is a dynamic re-configuration of the system.
The re-configuration may be both an addition or a removal. The downtime
can be measured by the amount of time that the system or a portion of the
system are not working properly. The other metric is the number of operations
that a system administrator has to perform to apply a re-configuration. The
agility property concerns the service provider because an agile system helps in
simplifying the system administrators’ tasks.

Master’s Thesis - Alberto Simioni 1106663 Page: 60 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Table 3.1 summarizes the techniques to evaluate each property.

Architectural property Metrics Pertinence of
concern

P1.1 - SLA preservation End-to-End response time Application user

P1.2 - Queue length minimization Queues length
Requests waiting time Service provider

P1.3 - Throughput maximization Requests per time interval Service provider

P2.1 - Reactiveness Architectural and technological
observation Service provider

P2.2 - Liveness Source-to-Destination response
time Application user

P3 - Agility
Downtime
Number of re-configuration oper-
ations

Service provider

Table 3.1: Tracing architectural properties to quantitative metrics.

3.2 Candidate architecture critical evaluation
This section presents an evaluation of the candidate architecture shown in section 2.2.3.
The evaluation is based on the results obtained from the exposure of the prototype to
synthetic workloads and from the implementation process of the experimental setup.
The details about the experimental setup construction are given in section 3.4 and the
full experimental results are presented in section 3.5.

The system’s prototype has been implemented using the architecture and the
technologies shown in chapter 2, the construction of the experimental setup and the
simulations’ results helped in obtaining an evaluation of the candidate architecture.
The evaluation of the architecture is based on the properties and on the metrics shown
in section 3.1. The architecture is effective and with good results for what concerns
the three properties responsiveness, asynchronous communication and agility.

3.2.1 Responsiveness
The candidate architecture has the capability of being horizontally scalable in all
its components. Scalability helps in making the system responsive. The candidate
architecture achieves horizontal scalability by using three different techniques. The
three techniques are:

• Horizontal duplication: creates multiple replicas of a component/service that
are behind a load balancer. This mechanism is automated by the autoscaling
mechanism of the dynamic orchestrator;

• Functional decomposition: splits the application into multiple, different ser-
vices;

Master’s Thesis - Alberto Simioni 1106663 Page: 61 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

• Data partitioning: each server runs an identical copy of the code but it is
responsible for only a subset of the data.

Figure 3.4 shows the three techniques represented as three different dimensions. The

Figure 3.4: The scale cube. [13]

implemented prototype doesn’t test the effectiveness of the data partitioning techniques.
The database layer is not implemented in the prototype. The horizontal duplication
and the functional decomposition were tested during the simulations. The simulations
results show that functional decomposition makes the overall system responsive. The
prototype is composed of 18 microservices, each of them is potentially deployable on
a different computing node. The number of microservices in the real system would
be even higher, as not all the departments are represented by the prototype. The
high number of microservices allows the system to leverage the hardware resources
provided by a cluster of computing nodes. The orchestrator manages the scheduling of
the different containers/services on the cluster of computing nodes, trying to balance
the resource usages among the nodes. Figure 3.5 shows the CPUs and RAM usages
during the executions. The orchestrator tries to leverage the resources of all the nodes
in a balanced way. The nodes named s1 and s2 have fewer cores and RAM than the
other 3 nodes. This is why their resources usage is lower.

The simulations show also that the automatic horizontal duplication is effective.
The main problem with this technique is the design of the autoscaler. Obtaining an
efficient autoscaler for a given service is not an easy task; section 2.3.1 presented the
various metrics that may be used. Determining which metrics and logic to use for a
service depends much on the specific service’s characteristics. A bad autoscaler may
not detect the burden that a service is experiencing. Furthermore, the high number
of different microservices increases the complexity, as different services may require
different autoscaling logics. The majority of the IaaS-level autoscalers only use the CPU
and the RAM usage as metrics for deciding when to scale a service. The simulations
highlighted how other two metrics would be much more effective: the length of the

Master’s Thesis - Alberto Simioni 1106663 Page: 62 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.5: Nodes resources usage during the simulations.

requests queues and the mean response times.
The API gateway component is central for the system’s scalability. It is essential for

hiding to the presentation layer the functional decomposition into different microservices.
The gateway itself can be scaled by duplication, as it shouldn’t become the system’s
bottleneck

The simulations show that the candidate architecture is able to manage high requests
burden in an efficient way through autoscaling. The dynamic autoscaling helps in
maintaining low response times and low queue length, but, at the same time, it helps
in maximizing the throughput of the components. When the load is low, only one
instance of a service is running, otherwise, there would be a waste of resources causing
a non-optimal throughput.

The requests burden of the simulation is based on the number of operators of
Fiorital and on their typical operations.

One drawback of the microservice architecture is the high RAM consumption.
The system is composed of dozens of microservices. Each of them is an independent
container with a web server and its own memory address space, the same libraries
are loaded into different containers multiple times. This aspect increases the RAM
consumption compared to an application running a single web server. A single container
running a Node.js microservice requires around 100 MB of RAM when there is no
traffic. A single container running the Kong API gateway requires 300 MB of RAM. A
single container running the Crossbar mediator requires 100 MB of RAM. The nodes
are also running the Docker daemon, the Kubernetes orchestrator and the host OS.
The Kubernetes orchestrator needs a dedicated node to run the orchestrator master
node that coordinates the slave nodes. The master node doesn’t run any microservice
and therefore increases the overall system resources consumption. However, when the
system needs to be scaled, only the services under heavy load will be scaled, while in
the monolith approach all the application has to be scaled out. A single service needs
a small amount of RAM (100 MB), while the entire application would require much

Master’s Thesis - Alberto Simioni 1106663 Page: 63 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

more.

3.2.2 Reactiveness
This property is composed of the two sub-properties asynchronous communication
and liveness. The candidate architecture is effective for both the sub-properties. The
presentation layer communicates asynchronously with the business layer, in turn,
the business layer communicates asynchronously with the persistence layer. The
user requests go through many steps and they all execute in an asynchronous and
nonblocking fashion. The gateway and the mediator forward the messages between
the microservices and the presentation layer, they also perform their operations
asynchronously. Asynchronous communication improves the overall responsiveness
of the system because the components never stop their execution to wait for an
acknowledgement or an answer. The candidate architecture is composed of many
independent services. The fact that they are independent helps in obtaining an efficient
system that uses asynchronous communication among its components.

The drawback of distributed asynchronous services is that programming them
becomes harder. It’s harder mainly because the developers are used to the synchronous
programming model where the execution workflow follows the written source code
line by line. Another reason that adds complexity is that distributed systems are
harder to program, remote calls are slower than local calls and are always at risk of
failure. The queries to the database and the remote requests to other services are
asynchronous. The mechanism that allows receiving the responses to the asynchronous
requests/queries is the callback. It is a function that is executed when a certain event
is detected. In the case of a remote request, the event is the arrival of the response
to the remote request. A service that receives a certain user request may perform
asynchronously different remote requests, making the overall execution workflow more
complex.

Regarding the liveness property. The executed simulations highlight that the
publish-subscribe mediator allows the application user to receive quickly the live
information on the dashboard. The microservices send asynchronously the updates to
the application users through the publish-subscribe mediator, that is lightweight and
can easily handle the amount of open connections for the number of Fiorital operators.
To measure the liveness of the system the source-to-destination response time metric
was used. The source-to-destination response time in the simulations corresponds to
the same values of the end-to-end response times. This aspect highlights the adequate
liveness of the system. All the applications users interested in the topic receive the
update as fast as the user that caused the update.

3.2.3 Agility
The agility results show that the system can be updated dynamically without taking
down the system and consequently with zero downtime. Furthermore, the number
operations that are necessary to change the system components’ configuration is low.
It is helpful to recall what is a system’s configuration: defines how each building block
(components and interfaces) is combined to form an architecture describing correct
component connections, component communications, interface compatibility and that
the combined semantics of the whole system result in correct system behavior [7].

The system’s agility benefits a lot from its architecture. The subdivision into many
microservices, the dynamic orchestration and the presence of the API gateway make

Master’s Thesis - Alberto Simioni 1106663 Page: 64 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

the system very agile.
To add new features to the API of a microservice, the dynamic orchestrator, is able

to achieve zero downtime. The orchestrator performs the update by creating a new
instance of the updated container/service, it instructs the load balancer to route the
new requests only to the new instance, it waits a certain amount of time to allow the
old instance to respond to all the processing requests and finally turns down the old
instance. To add a new service to the system, it’s even easier, there is no old instance
to replace but only a new service that is dynamically instantiated. After creating the
new service, the gateway is informed about the presence of the new service and starts
dispatching requests to it.

To remove some API calls from a microservice interface, the operations of the
dynamic orchestrator are similar. The main difference is that the gateway or the
microservice itself, should respond to the new requests requiring the old interface with
a message that signals that the interface is not any more supported.

The agility of the system benefits from the microservices’ characteristic of being
independently deployable: simple services are easier to deploy, and since they are
autonomous, are less likely to cause system failures when they go wrong. The gateway
is an essential component for the system’s agility, as it decouples the interface required
by application layer from the microservices partitioning. The gateway is scalable
and its routing logic can be updated dynamically without requiring any restart and
downtime.

The orchestrator is essential for automating many re-configuration operations. A
full description of the operations required for performing some re-configurations is
described in section 3.5.

The main drawback to the system’s agility is the architecture complexity. The
architecture is made of many distributed components that require different technologies.
The operation teams needs to be fully prepared on the architecture and on the
technologies. There are lots of services to manage, which are being re-deployed
regularly.

3.3 Technologies critical evaluation
This section presents an evaluation of the technologies chosen for the implementation
of the architecture. The technologies were discussed in section 2.3. The evaluation is
based on the results obtained from the exposure of the prototype to synthetic workloads
and from the experimental setup’s implementation process. The technologies evaluation
order used in the next paragraphs is the same used in section 2.3.

Web - HTTP and WebSocket The web technologies used in the prototype im-
plementation are the protocols HTTP and WebSocket. The HTML and JavaScript
user interface is not part of the system’s prototype, therefore the technologies were
not properly tested. However, they are widely used and standardized technologies for
the implementation of web applications. The protocol HTTP together with the REST
interfaces is used for doing remote calls from the presentation layer to the microser-
vices and also for the communication from a microservice to another microservice.
The HTTP protocol is compliant with the candidate architecture features, it’s a rich
protocol, highly standardized with a broad usage among companies. The API gateway
that works at the application layer, inspects the HTTP requests. The HTTP protocol
is the most supported protocol by the technologies that provide an API gateway.

Master’s Thesis - Alberto Simioni 1106663 Page: 65 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

The WebSocket protocol is a constrained choice for obtaining push messages in
web applications. The WebSocket is highly standardized and has a great support
by web browsers and web servers. However, the WebSocket protocol doesn’t provide
publish-subscribe features. For this reason, the WAMP protocol is used on top of the
WebSocket protocol. The former is an open standard WebSocket subprotocol. The
protocol provides the required publish-subscribe features. However, it’s a protocol
that is not much used by developers and companies. As a result, there are libraries
for many programming languages but they are not fully tested and with a low-quality
documentation. At the moment, there is no valid alternative to WAMP as a publish-
subscribe protocol built on top of the WebSocket protocol.

Kong API Gateway The Kong gateway is the technology used for the implemen-
tation of the API gateway. It is a feature-rich technology that can be dynamically
configured by adding and removing publicly exposed APIs. It is possible to write scripts
that can be executed dynamically for managing the gateway parameters configuration.
The gateway supports a high number of requests and can be scaled by duplication.

The simulations highlighted a problem with the technology. When there is a high
number of requests, some microservices may degrade their performance and reply with
higher response times. The Kong gateway notices these delays and acts consequently
by queueing the requests. This approach is in contrast with the system’s candidate
architecture. The gateway limits the requests, but this approach hides to the dynamic
orchestrator the high burden that the microservices are experiencing. Therefore, the
orchestrator doesn’t scale dynamically the microservices. The consequence is that the
requests’ queues of the gateway may continue to grow, making the overall system much
less responsive when there are high requests loads.

A better approach would be to have the gateway directly integrated with the
dynamic orchestrator. In this way, the orchestrator would have precise knowledge
about the live response time of the microservices. This metric would be useful for the
autoscaling mechanism of the system.

Crossbar Mediator The Crossbar technology acts as a publish-subscribe broker
for the WAMP protocol. Crossbar handles very good the the push messages sent by
the microservices. It doesn’t add any delay to the communications. There are two
problems with the technology. The first is that it’s supported by a single small company
that could possibly stop supporting it in the future. The other problem is that the
technology can’t be easily scaled by replication. At the moment, the possibility to
scale it is given only in the enterprise version of the technology.

Node.js The Node.js technology is used to implement each web microservice. The
event-driven asynchronous approach of Node.js is really good for the system’s architec-
ture. The web server of Node.js is light and is very responsive. One Docker container
running a Node.js microservice requires 100 MB of RAM, that is a low amount of
memory. A dozen of microservices instances may run on a computing node without
any problem. Furthermore, Node.js uses only one thread for executing the event-loop.
This Node.js characteristic enables one instance of a microservice to consume resources
up to one core. This aspect facilitates controlling the CPU usage of the microservices.

Node.js has good support for the HTTP protocol and the WAMP protocol.

Master’s Thesis - Alberto Simioni 1106663 Page: 66 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Docker The Docker technology is really good for providing containers. The Docker
images are quite small and the containerization overhead in running the services is
limited. The Docker technology is also very fast in packing the microservices images.
The microservices are similar to each other, they all use the same Node.js libraries.
When packaging a microservice, the layered filesystem of Node.js reuses the majority
of the layers from another microservice image, reducing considerably the time spent in
packaging the image. The same consideration is valid also when uploading the image
to the Docker registry, only the changed layers are uploaded to the Docker registry.
Usually, only one layer is changed, and a few KBs are uploaded to the Docker Registry.

The installation of the Docker registry is not very simple. It requires a valid SSL
certificate, otherwise, it won’t work properly. Furthermore, Kubernetes has to be
instructed about the presence of the Docker registry. It would be more straightforward
to have the orchestration system providing directly the container registry as a unique
platform.

Kubernetes Kubernetes manages efficiently the orchestration of the containers on
the set of available virtual machines. It provides straightforward abstractions for the
management of stateless services. It is very simple to create a microservice with a load
balancer on top, an autoscaler that scales in and out the number of instances and an
entry on the internal Domain Name System (DNS) service provided by Kubernetes.
The operations for adding and removing microservices are highly automated and with
zero downtime. The same considerations apply for updating the interfaces of existing
microservices. Kubernetes allows to monitor the health of the containers and to see
their logs.

There are some flaws in the current Kubernetes technology (v1.5). The provided
autoscaler mechanism uses only the CPU usage metric. The decision about when to
scale in/out is only based on the current CPU usage. The autoscaler should use other
important metrics such as the RAM usage, the requests queue length and the response
times. Another flaw, that was already mentioned above, is the lack of automatic
integration with the API gateway and with the Docker Registry. The orchestrator
should provide these two components as a whole platform.

One more flaw is the complicated installation process of the Kubernetes technology
on a cluster of computers. Kubernetes claims to be a technology that improves the
portability across different IaaS cloud and bare-metal environments. The YAML
declarative configuration files of Kubernetes, the Docker images are claimed to be
portable on any infrastructure that has Kubernetes installed. This claim is correct.
However, the portability is harmed by the complexity of the technology installation.
In addition to being complex, the required installation operations vary a lot according
to the infrastructure environment that is being used. These flaws should be resolved
in the next versions of Kubernetes. The technology is being rapidly developed and
some solutions to the aforementioned flaws are being developed. However, the fast
development that Kubernetes is undergoing isn’t a good characteristic for a company’s
information system.

MongoDB The MongoDB database was installed in the experimental setup as a
replica set of three instances. Each instance is a Docker container with an attached
persistent volume. However, the simulations didn’t test the performances and the
operational agility of the database. An evaluation of the technology is not possible
within the current status of the project.

Master’s Thesis - Alberto Simioni 1106663 Page: 67 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

3.4 Experimental setup
To obtain quantitative results for the metrics shown in section 3.1 a prototype of the
system is necessary. Furthermore, a group of synthetic workloads should be run on
the prototype. The executions are more meaningful if they represent the Fiorital’s
scenario. The prototype should be based on the functional needs of the company, the
data of the prototype should have the size of the expected company’s data and the
number of simulated users should be close to the Fiorital’s number of operators.

The goal of the setup is to create an environment where different tunable executions
can be performed. The executions generate a set of results regarding the metrics shown
before. The setup is composed of two different parts. One part is the prototype of
the system that implements the candidate architecture shown in section 2.2.3. The
second part is a script that generates a workload by sending requests to the prototype.
The implemented prototype doesn’t have the user web dashboard. The prototype
receives requests generated by the script that doesn’t run inside a web browser. This
technique is common for an experimental setup and it’s called benchmarking [73]. That
means to create a script or otherwise controlled execution of selected functions in an
application. The script is run automatically and periodically at an interval that will
provide a reasonable sample of the application response time. The main advantage
of this technique is that script response time can be more accurately measured than
the actual production environment of the application. An issue with the approach is
that it only provides an approximation of the application response times. A further
problem with this approach is that it often measures the application over a limited
subset of the network. This can cause the response time measurement to be skewed
(either too low or too high) [73]. The next two sections show the two parts of the
setup: the prototype and the benchmarking script.

3.4.1 Prototype
This section describes the implemented system prototype. The architecture and the
technologies used in the prototype implementation are the same described in chapter
2. One objective of the prototype is to record the quantitative results of the workload
experienced during the simulations. Therefore, the architecture shown in 2.2.3 is
enriched with new features for recording the metrics’ results. The illustration of the
prototype starts by describing the OpenStack environment utilized and the above
construction of the Kubernetes cluster. Later, the illustration follows the order of the
architectural layers: the API gateway and the publish-subscribe mediator technologies,
the microservices and the persistence layer.

OpenStack environment All the computations and installation are performed on
the CloudVeneto OpenStack cluster [77]. The OpenStack cluster is provided by the
University of Padua and by the Padua-located branch of the INFN (National Institute
of Nuclear Physics). The cluster is composed of 12 computing nodes PowerEdge M620
(each equipped with: double processor Intel Xeon E5-2670v2 2.5GHz, 25M Cache,
8.0GT/s QPI, Turbo, HT, 10 Core and 160GB di RAM 1866MT/s), 4 management
nodes PowerEdge M620 (each equipped with: double processor Intel Xeon E5-2609
2,40GHz, 4 Core, cache 10MB, 6,4GT/s QPI and 32GB di RAM 1600MHz). The total
available storage space is 90 TB, the majority of the space is provided by 41 Hard Disk
Drive (HDD)s and 7 Solid-State Disk (SSD)s.

The OpenStack services that are provided by the cluster are:

Master’s Thesis - Alberto Simioni 1106663 Page: 68 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

• Keystone: Authentication, authorization and service discovery;

• Glance: VM images management;

• Nova: Virtual machines management;

• Neutron: Networking;

• Cinder: Block volume storage;

• Heat: Orchestration;

• Ceilometer: Customer billing, resource tracking, and alarming capabilities.

Different research projects are run on the cluster. Each project has assigned
resources’ quotas. The SE project has assigned 20 VCPU, 40 GB RAM, 200 GB for
Volume (e.g. non-ephemeral) storage and 1 public IP. The two most useful OpenStack
services for the prototype implementation are Nova for the creation of disposable VM
and Cinder for the creation of network-attached persistent volumes.

Kubernetes cluster The prototype runs on top of a group of virtual machines
provided by the CloudVeneto OpenStack:

• 1 Kubernetes Master node with 2 VCPU and 4 GB of RAM;

• 3 Kubernetes Slave nodes with 4 VCPU and 8 GB of RAM;

• 2 Kubernetes Slave nodes with 2 VCPU and 4 GB of RAM;

The cluster is running the version 1.5 of the Kubernetes orchestrator. All the
services and components of the system are run on the Kubernetes cluster. Each of
them runs as a separate Docker container. The orchestrator is responsible for the
scheduling of the different containers on the slave nodes. The master node doesn’t run
any application container. It runs software that is essential for ensuring the proper
operation of the cluster. To modify and deploy containers on the cluster it is necessary
to interact with the master. Each instance has private IP that is internal to the SE
project inside OpenStack. The Master node has been attached also to the single public
IP provided by the OpenStack environment. The Kubernetes installation is aware of
the presence of the public IP and it is possible to install and run containers that are
open to the Internet.

Kubernetes provides three fundamental components for the candidate architecture:

• DNS service: there is a system container that runs an internal DNS server.
The microservices and the other components can lookup the cluster internal IP
address of the other containers. Every container defined in the cluster is assigned
a DNS name. Multiple instances of the same service/container have the same
DNS entry, and there is a load balancing mechanism in front of the instances;

• Load balancers: Kubernetes allows to create multiple instances of the same
container and having a load balancer that manages the inbound requests. The
load balancer works at the TCP/IP level, different TCP connections may be
routed to different container instances;

Master’s Thesis - Alberto Simioni 1106663 Page: 69 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

• Autoscaler: this component allows to create automatically new container in-
stances when the current instances are under heavy load. The load is measured
by tracking the current CPU usage. The provided autoscaler mechanism works
only by checking the CPU usage, but, there are many different situations where
other metrics should be used, as illustrated in section 2.3.1.

Another component that is fundamental for the Kubernetes cluster is the Docker
registry. The registry is not provided by the Kubernetes framework. It is part of the
Docker platform. The public registry of Docker is the Docker Hub Registry. It provides
ready-to-use images of common operating systems and applications. While by default
Kubernetes searches the public registry, it is fundamental for the Fiorital information
system to maintain a private registry, otherwise, the container images of the system
would be public. The images may contain proprietary code or components internally
to Fiorital.

Instance

Slave

Instance

Master

Instance

Slave

Instance

Slave

Instance

Slave

Instance

Slave

Instance

Docker
Registry

Volume

Docker
Images

Kubernetes cluster

Public IP

Figure 3.6: Cloud resources of the prototype.

Kong API Gateway and Crossbar mediator The Docker private registry is
installed on a separate OpenStack VM instance. The images are stored inside a
persistent network-attached volume provided by the OpenStack Cinder service. The
volume is attached to the VM running the private Docker registry. The volume is
necessary because, otherwise, any error that leads to a failure of the Docker Registry
VM would cause the lost of all the Docker images.

Figure 3.6 shows the set cloud resources utilized by the prototype for the Kubernetes
cluster and for the Docker Registry.

The API gateway and the publish-subscribe mediator are components that allow
the presentation layer to communicate with the microservices (business and persistence
layers). The two technologies that provide an implementation of these two components
are Kong and Crossbar, as described in section 2.3.3 and 2.3.4. Both the technolo-
gies provide predefined public Docker images that allow a rapid installation on the
Kubernetes cluster.

Both components should be accessible from the public Internet to allow the users
to use the SE system wherever they are. Consequently, both the components are
accessible through the public IP address.

Kong routes the HTTP requests from the presentation layer to the microservices.
Kong routes the requests to the different services based on the URL of the requests.

Master’s Thesis - Alberto Simioni 1106663 Page: 70 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Kong, to dispatch a request, uses the internal DNS service of Kubernetes to find the
address of the load balancer of the service that should manage that request. Figure
3.7 illustrates the interaction between Kong and the DNS service.

Kong has to be instructed about what URL paths are managed by each service.

Web
Kong

Load balancer

Load balancer

Load balancer

Microservice 1

Microservice N

K8 DNS
service

Lo
ok

up

IP
 a

dd
re

ss

Figure 3.7: Kong gateway and the DNS service communication.

The Crossbar mediator sends push messages from the microservices to the clients
connected to the system through the WebSocket and WAMP protocols. Crossbar
maintains an open WebSocket connection with the presentation layer clients. The clients
can subscribe to different topics they are intrested in. Furthermore, the microservices
that need to send push messages to the clients keep the WebSocket and WAMP
connection open with Crossbar. The mediator doesn’t need to interact with the DNS
service, because the services search and send messages to the mediator and not vice
versa.

Microservices mesh The prototype should be based on the needs of Fiorital’s and
represent closely the company’s scenario. Therefore, the prototype is composed of a
mesh of microservices that represents the Fiorital’s department structure. Furthermore,
the APIs provided by the microservices represent the typical needs of the Fiorital’s
operators.

The prototype represents the needs of 4 core Fiorital’s departments. the following
list gives a description of the 4 departments and of their tasks:

• Purchasing department: deals with the management of the purchasing orders
of fish from the providers. At the start of the day, the purchasing department
usually asks to the suppliers the fish supplies availabilities and prices. The real
purchasing orders are performed in a second moment, usually when there is certain
number of Fiorital’s customers interested on some fish products. Therefore, the
main operations of a buyer are the insertion of new availabilities inside the system,
checking the trend of the selling orders and inserting new sales orders;

• Selling department: deals with the management of the fish sales orders com-
ing from the customers. The selling departments prepares and send a set of
personalized catalogs for their customers, based on the past sales and on the
current supplies availabilities. Later, they insert the sales orders into the system;

Master’s Thesis - Alberto Simioni 1106663 Page: 71 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

• Logistical department: deals with the planning and the control of the trans-
portations of the fish products. The transportations are related to the purchasing
orders and the sales orders. Fiorital doesn’t own the trucks or boats used for
the transportation, they usually rely on a set of transportation partners that
provides transportation services for different routes. The transportations can be
inbound when the product arrives at the Fiorital’s platform from a supplier, or
outbound when the products arrive at a customer site. Fiorital manages directly
the platform, while they rely on the partner’s warehouses for intermediate goods
storing. The logistical operators manage in the system the information about
the inbound and outbound transportations. The operators are also interested in
receiving the information about the confirmed purchasing and sales orders;

• Platform department: deals deals with the warehousing of the products at
the Venice headquarters. The platform situated at the headquarters is not a
real warehouse, it’s a small warehouse where the products should remain for a
short time. The main interaction with the system for the platform operators
is preparation of the schedules. It can be an unloading schedule for unloading
the wares into the platform or loading schedules for loading the wares into an
outbound truck.

As explained in section 2.2.3 the microservices are subdivided into two layers.
The business layer and the persistence layer. The two layers subdivision is a typical
technique in SOA, where there are entity and task services. A task service (business
layer) is a form of business service with a functional context based on a specific business
process. As a result, task services are not generally considered agnostic and therefore
have less reuse potential than other service models. Task services are generally named
after the business process they represent [78]. An entity service (persistence layer) is a
form of business service with a functional context that is derived from one or more
related business entities. Examples of business entities include order, client, timesheet,
and invoice. Because their functional boundary is based on business entities, entity
services are naturally agnostic to business processes. This allows them to be repeatedly
reutilized in support of multiple tasks and business process, positioning them as highly
reusable services [79].

The implemented microservices mesh is composed of both entity and task microser-
vices. In total 18 microservices have been implemented. Eight of them are entity
microservices, such as "Availabilities", "Catalogs", "SalesOrders". Ten of them are task
microservices. Each task microservice is assigned to a specific department and part of
its name is its department name.

Each service has an own execution time, that may differ from the execution times
of the other services. In section 3.5 the execution times of all the microservices during
the simulations is shown. The execution time of an API call is an estimation of the
size of the data in the Fiorital’s scenario. To each API endpoint a synthetic workload
has been assigned.

Microservices implementation All the prototype’s microservices are implemented
with Node.js. The technology possesses a web server called Express. Each microservice
exposes a REST interface to the upper layer. The handler of an API endpoint simulates
an estimated execution time for that REST endpoint. The simulation of the execution
times is performed through two mechanisms. The first is an empty for cycle that
performs a certain amount of iteration (1000, 10000, ...). This methodology is used to
simulate computational workload of the API endpoint. The second methodology is

Master’s Thesis - Alberto Simioni 1106663 Page: 72 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

used to simulate the interaction of the handler of the API endpoint with the database.
The interaction is asynchronous, as the standard approach for Node.js. The simulation
of this interaction takes place through a timeout mechanism. The timeout is an
asynchronous mechanism that sets the arrival of an event inside the Node.js loop with
a minimum delay.

One metric that should be recorded by a Node.js microservice is the requests queue
length and the waiting time. The Express web server of Node.js doesn’t provide access
to its requests queue. For this reason, a microservice has been implemented using two
Node.js processes instead of only one. The first process, the master, acts as a front-end
that receives the remote requests and his duty is to only forward the requests to the
second Node.js process, the slave. The slave process executes the handler of the remote
requests and sends back the results to the master process. The master process sends
back the results to the request’s sender. With this technique, the master node can keep
track of the queue length and of the waiting time. Figure 3.8 illustrates the master
and slave processes.

Master
Node.js

Slave
Node.js

Incoming
Requests

Forwards

Results

Figure 3.8: Master and slave Node.js processes of a microservice.

Every microservice records its response time, the queue length, the queue waiting
time and its throughput. The data recorded by each microservices are gathered into
one single ad-hoc process that acts as a logger. The microservices send their results to
the logger.

MongoDB setup MongoDB is running inside the Kubernetes cluster with one
replica-set of 3 replicas. Each replica is a different container with a network-attached
volume for persistent storage. To properly configure the MongoDB replica set on
Kubernetes a guide provided by the MongoDB website has been followed [80].

3.4.2 Benchmarking script
The script is executed on a dedicated virtual machine. It is implemented in Node.js.
The script simulates the action of the Fiorital’s operators. The operators can be of
four different types, each type belongs to a different department. The total number of
simulated application users is 80. This number is the sum of the maximum number of
operators for each department that are working simultaneously during a typical working
week at the Fiorital headquarters. The number of operators for each department and
the performed actions of each operators are following described:

• Buyers - 15: they belong to the purchasing department. A buyer in the
benchmarking script performs repeatedly the following actions:

– Opens an availability for a supplier;

Master’s Thesis - Alberto Simioni 1106663 Page: 73 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

– Adds 8 times, 8 different products to the supplier’s availabilities;
– Reads the supplier status;
– Opens a purchasing order;
– Adds 7 different products to the order;
– Confirms the order;
– Reads the order status.

• Sellers - 30: they belong to the selling department. A seller in the benchmarking
script performs repeatedly the following actions:

– Opens a new catalog for a customer;
– Adds 8 times, 8 different products to the catalog;
– Reads the catalog status;
– Opens a sales order;
– Adds 7 different products to the sales order;
– Confirms the order;
– Reads the order status.

• Logistical operators - 20: they belong to the logistical department. A logistical
operator in the benchmarking script performs repeatedly the following actions:

– Receives a push notification of a new confirmed order;
– Creates a new trip;
– Fills the trips with wares 8 different wares;
– Confirms the trips;
– Reads the status of a warehouse.

• Platform operators - 15: they belong to the platform department. A platform
operator in the benchmarking script performs repeatedly the following actions:

– Receives a push notification of a new confirmed trip to the Fiorital head-
quarters or leaving from the Fiorital headquarters;

– Creates a new loading/unloading plan;
– Fills the plan with loading/unloading steps;
– Confirms the plan.

The operators’ actions are simulated by the benchmarking script by calling the
APIs provided by the prototype’s microservices. Each simulated operator performs
its set of actions periodically. There is a tunable interval time between one API call
and the next one. The execution of the benchmarking script determines the start of a
simulation. The execution time of the script can be configured.

The simulated operators aren’t all created immediately, but, their number is
gradually increased during the executions until the maximum number of 80 operators is
reached. Therefore, the number of operators grows from 0 to 80. The increase may be,
logarithmic, linear and exponential. This is another parameter that can be configured
at the start of the simulation.

Master’s Thesis - Alberto Simioni 1106663 Page: 74 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

The script, while executing, measures the End-to-End response time of each request.
The script measures also the source-to-destination response time of the actions that
produce push messages received by other operators. Figure 3.9 shows the architecture
configuration of the complete experimental setup with the name of the technologies
used.

Kong API Gateway Crossbar Pub/Sub mediator

Benchmarking Script

Entity microservice 8Entity microservice 1

Task microservice 1 Task microservice 10

Figure 3.9: Architecture, components and technologies of the experimental setup.

3.5 Experimental results
The previous section described the experimental setup used to perform the simulations
and to collect the results. This section presents the results of the executions of the
synthetic workloads. The results are based on the metrics shown in section 3.1 and
they measure the responsiveness, reactiveness and agility of the system. The results
show that the architecture and the technology are effective and they score good
results concerning the three architectural properties. The results are shown partitioned
by architectural property. Indeed, this section has three subsections responsiveness,
reactiveness and agility. The results highlight a problem with the Kong API gateway
technology. This problem is shown and discussed in the responsiveness subsection.

The setup is composed of the prototype and of the benchmarking script. During
the simulations, different sets of results have been obtained. The benchmarking script

Master’s Thesis - Alberto Simioni 1106663 Page: 75 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

allows configuring different parameters, as explained in section 3.4.2. All the execution
have been executed for 10 minutes. The parameters that change between different
executions are two. One is the operators’ requests period (T), that has been set
between the interval [6 seconds, 250 milliseconds]. This parameter allows increasing or
decreasing the overall workload experienced by the prototype. The second parameter
is the type of function used for spawning the simulated operators during a simulation.
At the start of a simulation the number of operators is 0, then, it gradually grows
to 80 over time. The increase from 0 to 80 is regulated by a function that can be
logarithmic, linear or exponential. One feature of the system’s architecture is the
autoscaling mechanism, with this mechanism the system should adapt its resources
usage based on the current workload. With the exponential function, the workload
generated by the script grows exponentially. This aspect poses the system and its
autoscaling mechanism under a heavier stress.

Before showing the results it’s helpful to understand the flow of a single request
through the components of the prototype. Figure 3.10 shows the typical flow of a
single request sent by the benchmarking script. The request has a final answer (6.a)
but generates also a push message sent back through the Crossbar publish-subscribe
mediator (6.b). Each request arrives first to a task microservice (2), that performs
some computations. Then the task microservice asks for data to an entity microservice
(3). The entity microservice replies with the data (4). The task microservice performs
other computation with the data and sends back the results (5).

Kong API Gateway Crossbar Pub/Sub mediator

Benchmarking Script

 Entity microservice

 Task microservice

1

2

3 4

5.b5.a

6.a 6.b

Message sent

Message reply

Notation

Figure 3.10: Message flow of a single request through the component of the prototype.

The measured End-to-End response time is measured by the benchmarking script.

Master’s Thesis - Alberto Simioni 1106663 Page: 76 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

The script measures the time elapsed between the dispatching of message (1) and the
arrival of message (6.a). The source-to-destination response time is also measured by the
benchmarking script. The script measures the time elapsed between the dispatching of
message (1) and the arrival of the push message by Crossbar (6.b). Each microservice
records their execution times per each request and step of the request. The task
microservice records its execution times in the two steps (2,3) and (4,5). The entity
microservice records its execution times in (3,4).

3.5.1 Responsiveness
One metric to evaluate the system’s responsiveness is the End-to-End response time.
It is helpful to understand which are the different timing steps that compose the final
End-to-End response time. Figure 3.10 shows the steps. The execution times among
the microservices is different. For this reason, their response time have been recorded
as well throughout the simulations. The messages sent through the gateway and the
mediator should have a fixed response time. Likewise, the delays imposed by the
network, the networking protocols, and network virtualization protocols of OpenStack
and Docker should have a certain size with values in a short interval. It is important
to give a correct estimation of the delay time for evaluating the End-to-End response
time.

Delay time estimation The estimation of the delay time has been carried out
through a system’s simulation where the synthetic workload is low. The End-to-End
response time shouldn’t be affected by any intense workload delay and therefore they
should be more stable. To calculate the mean delay time the following formula has
been used:

µ(DT) = µ(E2E) − 3 ∗ µ(MET)

Where DT = Delay Time, E2E = End-to-End response time, MET = Microservice
Execution Time. The MET is multiplied by three because a single request goes through
3 steps where there are microservices calculations, as illustrated in figure 3.10. The
synthetic workload used for calculating the DT has a single operator request period
(T) of 6 seconds. The users’ increment is linear. The period is quite big, the other
simulations have been carried out with a lower period. The expected results should
show a quite stable response time, however, different API calls have different execution
times, so the response times for different requests types should be different. The
difference shouldn’t be too large and the maximum E2E response time shouldn’t
overcome 500ms. The 3 ∗ µ(MET) value should be lower than the value µ(E2E).

Figure 3.11 shows the boxplots for the E2E response time and the MET (Microservice
execution time). The mean values are 93ms for the E2E response time and 16ms for
the MET execution time.

Therefore, the mean delay time is:

µ(DT) = µ(E2E) − 3 ∗ µ(MET) = 93ms− 48ms = 45ms

The delay time accounts for almost half the total E2E response time. This is reasonable
considering that a request flows through different steps with many remote components
and services. The request spends much time inside the network links, being processed
by the networking protocols and through the gateway. Figure 3.11 shows that the E2E
response times vary inside a certain range of timings. This is a normal behaviour as
different API calls have different execution times. There are also no very big values in

Master’s Thesis - Alberto Simioni 1106663 Page: 77 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.11: Boxplots of E2E response times and MET.

the E2E response times, also this aspect is normal given that the load of the executed
simulation is pretty low.

Services execution times The prototype is composed of 18 microservices. It’s
helpful to see their mean execution times when the load is low. That execution time can
be used as a reference for checking the degraded performance when the load becomes
higher. The same synthetic workload of the previous results can be used, since the
load of the execution is low. Each microservice has different API endpoints that can
have different execution times. Therefore, it’s expected to see microservices that have
different execution times values for different requests. A single API call instead should
have execution times that are all close to the same value. Figure 3.12 shows a boxplot
of the execution times per each microservice.

There are some boxplots that have a wide range of values, others have values that
are in a short interval. The services that have a short interval of values are composed of
API endpoints that have a similar execution time. The services that have a wider range
of values are composed of API endpoints with different execution times. For example,
the first microservice "Availabilities" in figure 3.12 is composed of three endpoints that
have different execution times. Figure 3.13 shows the three different execution times of
the three endpoints. At the left, a boxplot with the execution times of each endpoint
is shown. As expected, the three endpoints have response times that are all close to
the same value. That value is different between them, that explains why in figure 3.12
the service "Availabilities" has a quite wide range of values. The three endpoints have
different numbers of requests over time. The benchmarking script performs periodically
a set of requests to different API endpoints over time. The diagram on the right shows
that the response time per each API endpoint remains almost constant over the whole
execution.

Synthetic workload - Linear - T = 2sec, 1sec, 500ms This paragraph shows
the responsiveness results for three executions. The executions use a linear load
increasing function. They differ from each other by the request’s period used by the 80
simulated users. The benchmarking script sends requests for 10 minutes (600 seconds).
The simulated users send requests with a specific period. For example in the execution
with T = 2sec each user sends a request every 2 seconds. Therefore 80 users sending
requests each 2 seconds, meaning that the overall rate of requests sent by the script

Master’s Thesis - Alberto Simioni 1106663 Page: 78 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.12: Boxplots of the microservices execution times.

is 40 requests/second. However, as shown in section 3.4.2, some users start sending
request after a certain push event arrives. The logistical and the platform operators
do their action in response to the events that notifies the confirmation of an order and
the confirmation of a trip. For this reason, the requests rate should be lower, as there
may be many logistical and platform operators that don’t have any task to perform.
It is expected from the simulations that the system’s throughput doubles between
one simulation and the next one. The response times should remain similar between
different executions. The response times of a single execution should remain close to
the same value over the execution time span.

Figure 3.14 shows the E2E response times of the executions and the overall system
throughput of the executions. The throughput for the execution with period T = 2sec
is lower than 40 requests/second. The execution ends with a throughput around 33
requests/second. As expected, the throughput doubles between one execution and
the next one. It is possible to see that for all the executions the throughput grows
linearly until half of the time span (5 minutes). This behaviour is correct because
the maximum number of system’s users is reached around that moment. After that
moment, the number of users remains constant at 80. The charts shown a spline of the
single points. In all the charts there is a point per second. The E2E response times of
a single second is the mean of the response times that took place in the time interval
of that specific second. The throughput of the execution with T=2sec has points that
follow two diverging lines. This aspect is caused by the fact that each user sends a
request each two seconds, while the requests are aggregated per single second. Indeed,
the other two executions with T= 1sec, 500ms don’t present the characteristic. The
mean response times remain quite similar throughout the simulations. However, the
lines are wavy. The waving is caused by the changing periodical actions performed by
the simulated users. In certain time spans a simulated operator performs requests to a
certain API endpoint, while later, it makes requests to another endpoint. This aspect

Master’s Thesis - Alberto Simioni 1106663 Page: 79 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.13: "Availabilities" microservice API endpoints execution times.

is clearly visible in figure 3.15.
The chart on the right shows the throughput of a subset of the system’s microservices

in the execution with T = 2sec. The chart shows that the throughput of some services
follows the wavy pattern of the E2E response time. Specifically, it is caused by the
seller operators. That makes different API calls in different time intervals. However,
this aspect causes also short delays in the execution of the microservices. The services
that are experiencing more load have longer response times and longer queue lengths.
This is visible in figure 3.16. The queue lengths shown are sampled by the maximum
queue length of a service in the interval of a second. Both the queue lengths and the
execution times have the same waving of the services throughput. Meaning that many
requests are causing some services to slow down. The slow downs aren’t particularly
severe, and the maximum queue lengths remain shorts.

The responsiveness results of the three executions show that the system remained
responsive throughout all the three executions.

Synthetic workload - Linear - T = 250ms This execution has the same pa-
rameters of the three previous executions apart from the period T = 250ms. Each
simulated user makes 4 requests per second. It’s expected that the system throughput
doubles compared to the execution with T = 500ms, while the E2E response time
should remain similar to the previous executions. Figure 3.17 shows the E2E response
time, the system throughput and the microservices execution times. By looking at the
E2E response times, it’s clear that the system is performing badly. The response time
continues to grow linearly until the benchmarking script stops sending requests (600
seconds). However, after the 600 seconds of executions, other delayed replies continue
to arrive at the benchmarking script. The delays grow to almost 4 minutes at the
end of the execution. The delayed replies start to show up around the 200th second.
Around the same moment, the system throughput stops to grow and actually it slowly
decreases with a much bigger variance. The third chart shows the mean execution
times of the microservices. Even tough the microservices start having delays around
the same instant, the delays are not comparable to the E2E execution times. What is
causing the delays is the Kong API gateway. The gateway notices the delays in the
execution times of the microservices and the high number of requests coming from the

Master’s Thesis - Alberto Simioni 1106663 Page: 80 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.14: End to End response time and throughput - T= 2sec, 1sec, 500ms

same IP. Therefore, it starts queuing and rate-limiting the requests coming from that
IP to avoid overloading the services of too many requests. It looks like that Kong is
rate-limiting the system to a value around 160 requests/second. This behaviour is not
in line with the candidate architecture of the system. It’s a characteristic of the Kong
technology. The behaviour isn’t in line with the architecture because it hides from the
orchestrator the high load that the microservices are experiencing. Consequently, the
autoscaling mechanism doesn’t work properly.

It is helpful to investigate deeper which microservices are introducing delays in the
system. Figure 3.18 shows the execution time, throughput and queue length of a set
of microservices. There is only one service that is experiencing delays. It is named
"SeD-Catalogs", meaning that it’s a task service of the Selling Department that deals
with the customers’ catalogs operations. The shape of the line of its execution times
is very similar to the mean execution times of the microservices in figure 3.17. This
aspect highlights that the "SeD-Catalogs" microservice is the main microservice that
is slowing down the system. It is the microservice that receives the higher number
of requests during the execution. The simulated seller operators are 30. The other
types have less simulated operators. The "SeD-Catalogs" service is also the only one
with long requests queues. At the end of the execution, after the 600 seconds, the
services that are not involved with the selling department consume faster the queued
requests by the Kong gateway. The third chart shows that four services involved with
the selling department have more throughput at the end of the of the simulation. This
is because there are more requests queued for that department than for the others.
This also explains the peak in the response times in the first chart of figure 3.17. The
response times are suddenly higher because the requests that have been queued longer

Master’s Thesis - Alberto Simioni 1106663 Page: 81 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.15: E2E response time compared to services’ throughput - T= 2sec

Figure 3.16: Services execution times and queue lengths - T= 2sec

by the Kong gateway are being drained off from its queue.

Synthetic workload - Exponential - T = 500ms The execution discussed in
the previous paragraph showed that the prototype doesn’t work adequately when
the requests period is 250ms. The execution shown in this paragraph stresses the
system by using an exponential users generation function. The number of users grows
exponentially from 0 to 80 (the maximum). The requests period used is T = 500ms,
that is the lowest described period with which the system works adequately.

The load generated by the benchmarking script should increase to the maximum in
less than a minute. It’s expected to see delays in the response times in the first part of
the simulation. Later, the autoscaling mechanism should stabilize the response times
to the normal values. The execution times of the microservices should be higher in the
first part of the execution time, for the same reason.

Figure 3.19 shows the End-to-End response time, the system throughput and the
microservices execution times throughout the simulation time span. The E2E response
time and the microservices’ execution times, as expected, present a significant increase

Master’s Thesis - Alberto Simioni 1106663 Page: 82 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.17: E2E response time, system throughput and microservices execution times - T
= 250ms.

Figure 3.18: Execution time, throughput and queue length of a subset of microservices - T
= 250ms.

during the first part of the simulation. The autoscaling mechanism is able to handle
rapidly the quickly increased workload. The chart of the throughput shows how
the workload increases exponentially during the first 60 seconds of the simulation.
The overall system behaviour throughout the simulation is in line with the expected
behaviour.

3.5.2 Reactiveness
Only one of the two sub-properties of the reactiveness property has a quantitative
metric that measures its quality. The sub-property is liveness the corresponding metric
is the S2D (Source-to-Destination) response time metrics, as discussed in section 3.1.
The source-to-destination response time metric measures the elapsed time between
the performed request of the operator A and the receipt of the corresponding push
notification at the operator B. A good source-to-destination response time for a certain
request should be very close in value to the E2E response time of that same request.

To check the liveness property of the system the E2E response time of two execution
is compared to the S2D response time of the same two executions. One simulation is
the one with exponential workload increase and period T = 500ms. The other one
with linear workload increase and period T = 1sec. It is expected that the two types of
response times have the same pattern of values in both the simulations. However, the
two types of response time may be a bit different because not all the API endpoints
generate a push message to another operator.

Master’s Thesis - Alberto Simioni 1106663 Page: 83 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.19: E2E response time, system throughput and microservices execution times -
Exponential growth and T = 500ms.

Figure 3.20 shows the comparison of the S2D and the E2E response times in the
two simulations. The response times are similar in both the executions, showing a good
S2D response time. The S2D response time has a mean value that is slightly lower
than the E2E response time. The motivations are two. The first motivation is that in
the source code, the push message is sent by a microservice to the Crossbar mediator
before the actual reply that goes through the Kong gateway. The second motivation
is that not all the API endpoints generate a push message. For example, the service
"Wares" that has the longest execution time, as shown in figure 3.12, doesn’t generate
any push message. Therefore, the overall S2D response time results a bit lower than
E2E response time.

3.5.3 Agility
The two metrics for measuring the agility of the system are the downtime and the
number of required re-configuration operations, as described in section 3.1. To measure
both of them it’s helpful to think about a scenario where the configuration of the
system should be updated. The first paragraph shows the scenario and results of
the downtime metric. The second paragraph shows the scenarios and the required
re-configuration operation.

Downtime Evaluating the system’s downtime can be performed by updating dy-
namically one service of a running simulation. The goal is to show that the update of
a service causes no system’s downtime. The orchestrator technology helps in achieving
this goal. One running service is updated dynamically by creating the new instance,
routing the new requests to the new instance, wait for the old instance to reply to all
the requests and finally tearing down the old instance. These operations are performed
autonomously by the dynamic orchestrator Kubernetes. The chosen execution is the
one with a linear increase of the workload and a request period T = 1sec . The
chosen service for the update is the "SeD-Catalogs" service. It is the service that
throughout the execution has been experiencing the stronger workload among the set
of microservices. The update is performed after 4 minutes of execution when the load
generated by the benchmarking script has reached the maximum.

It’s expected to see no request that has a very big E2E response time. No request
should be lost by the system during the update. At the moment of the update, two
instances of the service should be running, as the autoscaler should have already
created another instance for the "SeD-Catalogs" service. The two new instances, that

Master’s Thesis - Alberto Simioni 1106663 Page: 84 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.20: Comparison between S2D and E2E response times in two simulations.

replace the two old ones, should be created with a short time interval of separation.
The dynamic orchestrator replaces gradually the running instances.

Figure 3.21 shows the E2E response time and the microservices execution time
throughout the described execution. The two vertical red lines indicate when a new
updated instance of the "SeD-Catalogs" service is created. The fact that there are two
red lines, confirms that at the moment of the update two instances of the service were
running. Both the charts show that there is a slight peak on the timings. It means
that the replies to the requests made to the "SeD-Catalogs" service are presenting
some short delays during the execution. However, no request gets lost and there
are no errors during the execution. This fact highlights that the service has been
updated without any downtime. Figure 3.22 shows that during the update, the queue
of the "SeD-Catalogs" service gets slightly longer during the update. It means that
Kubernetes, the dynamic orchestrator, makes some queuing of the incoming request
for the service. It allows a smooth transition between the two versions of the service.

Number of re-configuration operations Two scenarios have been selected for
showing the required re-configuration operations. One where a new component is in-
serted inside the system. The other scenario involves the removals of two microservices.

The addition scenario concerns the insertion into the system of a new entity
microservice. For example, in the Fiorital’s context, the system could be extended for
supporting the planning of new production orders at the Fiorital’s headquarters. Some

Master’s Thesis - Alberto Simioni 1106663 Page: 85 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

Figure 3.21: E2E response time and microservices execution times during a microservice
update.

Figure 3.22: Queue lengths of a subset of microservices during an update.

of the wares arrived at the company’s platform may be subject to production activities.
Some goods are packaged into different boxes, to make them ready to be directly sold
by the mass market retailers. The implemented prototype doesn’t currently support
the feature. For adding this new feature a new entity service called "ProductionOrders"
should be inserted in the system. The task service platform department should be
enriched with new API endpoints to make the features available to the platform
operators. In order to perform the described changes the following manual operations
are needed:

1. Creation of the Docker image for the new service "ProductionOrders" and update
of the Docker image of a task microservice regarding the platform department;

2. Push the two images to the Docker Registry;

3. Creation of a Kubernetes declarative configuration file, describing the new con-
tainer to be inserted;

4. Give a start command to the Kubernetes console for starting the new service

Master’s Thesis - Alberto Simioni 1106663 Page: 86 / 101

CHAPTER 3. EXPERIMENTAL EVALUATION

"ProductionOrders";

5. Give an update command to the Kubernetes console for updating the task
microservice.

All the operations can be performed dynamically while the system is running having
zero downtime. The operations are few in number, only five manual operations for
inserting and updating two containers. The number of operations can be even lowered
by having more automatic continuous deployment tools.

The second scenario is the one regarding the removal of the components. The
scenario presumes that some features should be no more provided by the system.
Therefore, one task service should be removed. The scenario presumes that also an
entity service should be removed because it was used only by that particular task
service.

The operations required for applying the re-configurations are:

1. Instruct the Kong API gateway not to forward anymore requests to the task
microservice that is being removed. All the requested can be redirected to an
endpoint that replies saying that those APIs aren’t supported anymore;

2. Removal of the task microservice using the Kubernetes console;

3. Removal of the entity microservice using the Kubernetes console.

The operations can be performed dynamically while the system is running. The API
gateway is a fundamental component for the removal operations, as it decouples the
API interfaces from the microservices that are providing it. The number of required
operations is low and they can be performed quickly by a system administrator.

Both the addition and the removal of components can be performed quickly and
dynamically, improving the overall agility of the system.

Master’s Thesis - Alberto Simioni 1106663 Page: 87 / 101

Chapter 4

Conclusions and outlook

4.1 Recalling the thesis objectives
This thesis addressed the design of the software architecture for the new information
system of the company Fiorital S.p.A. The company and the university are collaborating
through the Smart Enterprise project that has the goal of designing an innovative
information system. The project started in June 2016 and it’s still ongoing. The main
motivation behind the SE project is the will of Fiorital to renovate its IT system.

Traditional information systems present different flaws that cause several troubles
to the system administrators and to the application users. Traditional systems require
the system administrators to perform repetitive manual operations, some of them may
require the production environment to be stopped, causing periods of downtime. Enter-
prise information system needs to be constantly updated for supporting the changing
business activities performed by the company. Therefore, the system administrators
have to perform frequently the maintenance operations. Another problem with the
traditional systems is the lack of efficient scalability, that may cause the application
users to experience degraded performance. Lastly, the traditional information systems
have two flaws that the make the overall user experience worst. The first is that
they are typically developed with technologies that don’t provide its users with live
dashboards that get updated autonomously by using push messages. The second flaw is
that the information system is accessible only from company’s devices that are placed
in the company’s offices. The SE project wants to obtain a system that overcomes
these flaws. The list of the project’s objectives is recalled in table 4.1

Several master students and three professors of the University of Padua have worked
and are currently working on the project. The role of my thesis in the SE project is to
design a good system architecture and to choose the technologies for implementing
the Fiorital’s new information system. The company wants to explore and understand
which are the opportunities that the recent technologies could bring to them. The
thesis objective can be summarised in the following three objectives:

1. Architecture design: What is an effective software architecture for an infor-
mation system that should satisfy the project’s objectives?
The architecture of the software system is its backbone. It should be designed
before starting to develop the system. Software architecture is about making
fundamental structural choices which are costly to change once implemented.

2. Technologies selection: Which are the best technologies for the implementation

Master’s Thesis - Alberto Simioni 1106663 Page: 89 / 101

CHAPTER 4. CONCLUSIONS AND OUTLOOK

Project’s objectives

O1 - Versatile

O2 - User interface accessible from different devices

O3 - Easily accessible information

O4 - Integration with new sources of information

O5 - Operators’ tasks automation

O6 - Real-time analyses

Table 4.1: Recalling of the project’s objectives list

of the system’s architecture?
Given the designed software architecture, a set of technologies should be chosen
for the implementation of the system and of its architecture. The technologies
should be open-source and effective for the system that is going to be implemented.
As shown throughout the document, the majority of the chosen technologies have
been published recently and their usage for the development of new enterprise
systems hasn’t been studied much in the academic research. This fact highlights
the need to study the technologies within the Fiorital scenario.

3. Architecture and technology evaluation: Are the architecture and the tech-
nologies choices satisfactory?
The last goal of the thesis is to implement a prototype of the designed architecture.
The prototype is helpful for creating a set of results that shows the effectiveness
of the architecture and of the chosen technologies. The prototype should be an
implementation of the designed software architecture that represents the specific
scenario of Fiorital.

4.2 Reviewing the accomplishments
This section discusses how the three goals presented in the previous section have been
satisfied through the thesis work

1. Architecture design: the thesis work accomplished in finding a good architec-
ture design for the new information system of Fiorital. Various activities have
been carried out for obtaining the architecture. Firstly, the Fiorital scenario
has been analyzed and studied. The structure of the departments, the needs
of the departments and the current IT system have been studied. Then, a set
of architectural properties, that the architecture should possess, have been de-
fined. The architectural properties have been chosen by considering the project’s
objectives. The chosen architecture is based on the microservices architectural
style and the container technology. The architecture has been designed by trying
to achieve the best results in respecting the predefined architectural properties.
The candidate architecture is profoundly different from the architecture of the
traditional information system. The new architecture presents concepts such as

Master’s Thesis - Alberto Simioni 1106663 Page: 90 / 101

CHAPTER 4. CONCLUSIONS AND OUTLOOK

dynamic orchestration, containerization, distributed database and push messages
to the end user. All these characteristics are helpful for accomplishing the SE
project objectives;

2. Technologies selection: a complete list of technologies for the candidate ar-
chitecture has been chosen. The architecture and its composing architectural
layers require the usage of disparate technologies. The thesis describes a set of
chosen technologies that are appropriate for the implementation of the candidate
architecture. The selection has been carried out without making a complete
analysis of the technological state of the art. Due to the fact that the technologi-
cal scope is very wide. The chosen technologies and tools range from graphical
libraries to DBMS to infrastructure provisioning and management. Cloud com-
puting (OpenStack), Orchestration (Kubernetes), Docker containers and NoSQL
database (MongoDB) are indispensable technologies for the implementation of
the candidate architecture. Especially for improving the responsiveness and the
operational agility of the system. All the technologies are open-source and can
be hosted inside the existing datacenter of Fiorital.

3. Architecture and technology evaluation: the architecture and the technolo-
gies have been exhaustively evaluated. A set of quantitative results has been
obtained. The results show that the candidate architecture is effective for the
Fiorital’s scenario. The majority of the chosen technologies are also appropriate.
However, the Kubernetes, the Kong and the Crossbar technologies present some
flaws, that slightly hinder the quality of the system. However, the technologies
research activities didn’t find any alternative technology that should perform
better than the three aforementioned technologies. The evaluation has been
carried out by utilizing the implementation of a prototype and the execution
of a set of synthetic workloads on it. The executions produced a set of results
using some quantitative metrics that are based on the predefined architectural
properties. The results helped in achieving the final evaluations.

The thesis work individuated a valid candidate architecture for the new information
system of Fiorital. The architecture can be a compelling architecture for many other
enterprise scenarios where an information system is needed. The architecture is a good
starting point for the future implementation of the new information system. Some of
the technologies individuated are still not stable enough for being used in an enterprise
environment. One example technology is Kubernetes. However, it is reasonable to
think that the technologies will soon be stable enough.

4.3 Project outlook
This last section of the thesis presents briefly which are the limitations of the current
thesis work and how they can be used as motivations for future improvements. These
additional tasks could have been helpful to evaluate further the candidate architecture
or for extending the architecture with new useful features. Secondly, this section
presents some insights for future works that have been enabled by the thesis work.

4.3.1 Thesis limitation
IoT architecture One of the goals of the SE project is to have a system that
automates as much as possible the operations of the company’s operators. As discussed

Master’s Thesis - Alberto Simioni 1106663 Page: 91 / 101

CHAPTER 4. CONCLUSIONS AND OUTLOOK

throughout the thesis, the IoT devices would be helpful for making automatic some of
the operations that are currently performed manually by the operators. The IoT part
of the system has been only partially considered. The designed architecture within the
thesis work allows the extension and integration of the system with the IoT devices.
The network architecture of the IoT devices and which sensors and actuators to use
are aspects that should be carefully designed. However, the system IoT infrastructure
is not part of the thesis work, due to time constraints. A collection of IoT devices
should be installed into the Fiorital headquarters and possibly also in some of the
other warehouses that are controlled by Fiorital. The devices should all be connected
to the Internet or the local network of the company, in order to communicate with the
company’s datacenter. The IoT field is continuously growing and gaining attention by
companies. They are widely adopted in the management of the companies warehouses.

Layered database The distributed NoSQL DBMS used in the candidate architecture
is a valid option for storing the data of all the departments of Fiorital. However, there
is one exception. The accounting department of Fiorital should not be exposed to the
eventual consistency characteristic of the NoSQL databases. For this reason, there
could be an improvement to the current design by using an architecture where the
database layer is divided into two sub-layers. The first, called adaptive layer, that
runs the NoSQL database. The other one, called stabilized layer, running an ACID
SQL database. The adaptive layer allows the system to have all the features described
throughout the thesis, like scalability and agility. The second layer should be used
only by the accounting department and should be populated with consolidated data,
that are not going to change in the future. The accounting department should not be
dealing with data that are eventually consistent. Some example data are the completed
sales/purchasing orders.

The idea is to have a component that listens to the data that are being inserted
into the adaptive database layer. The role of this component is to select which is the
consolidated data that can be stored in the stabilized database layer. Figure 4.1 shows
a draft of the layered database architecture. The figure shows the two databases and
two additional components. One component, called "Stream generator", listens to the
data that are being inserted/updated into the adaptive database layer. By listening to
these data it generates a stream of data that can be listened and analyzed by other
system components. The "Stream generator" allows selecting which data should be
part of the generated stream. The second component, called "Stream analyser" reads
the generated stream and selects which data are the consolidated data that should be
stored into the stabilized database.

The layered database would allow the accounting department to use the same
information system used by the other company’s departments. Figure 4.1 shows just
an idea of how to structure the layered database. However, a broader analysis and the
design of the structure should be carried out.

Distributed testbed The benchmarking script used to generate the synthetic work-
load runs on a single node and in a single process. However, the application users are
normally using the information system from disparate computing devices. Running
the workload by using a testbed composed of various computing nodes would be a
more precise simulation of the workload.

Master’s Thesis - Alberto Simioni 1106663 Page: 92 / 101

CHAPTER 4. CONCLUSIONS AND OUTLOOK

Adaptive DB Stream generator

Topic 1
Topic 2

Topic n

New data

Stream analyser

Stabilized DB
S

tream

S
tream

Store data

Figure 4.1: Draft of the layered database architecture.

4.3.2 Insights for future works

Data analysis One project’s objective is to provide real-time analyses. The informa-
tion system has a lot of data about the business activities that have been carried out in
the past or that are currently ongoing. There are many situations where the Fiorital’s
operators would benefit from having the system performing autonomously and rapidly
some data analyses. These analyses may suggest to an operator which suppliers to
contact on a certain day or which customer should be willing to buy many products.
There are other scenarios where this type of real-time analyses could be useful. One
objective of the project is to identify these scenarios and implement algorithms that
compute the results in short time. This type of analysis can be performed through
machine learning techniques. There is a team of the university that is currently working
on the data analysis part of the SE project.

The implemented prototype allows testing the data analysis directly on it. In this
way, the data analysis team can create and test algorithms that are integrated with
the rest of the system. Different containers performing different data computations
may be easily installed inside the existing prototype.

Autoscaling metrics As shown throughout the thesis, the implemented system
would highly benefit from the presence of a dedicated autoscaling mechanism. The
current implementation uses only the CPU usage metric for determining when the
microservices should be scaled in or out. This single metric is not sufficient for having
an effective autoscaler. The current prototype implementation can be used as a starting
point for designing and implementing a dedicated autoscaler. The new autoscaler may
use different metrics such as the requests queue length, the execution times and the
number of requests received.

Master’s Thesis - Alberto Simioni 1106663 Page: 93 / 101

CHAPTER 4. CONCLUSIONS AND OUTLOOK

Monolith migration The proposed candidate architecture is based on the microser-
vice architectural style. The features that the system provides have to be divided
into a mesh of microservices. Where each microservice has a defined and coherent
duty. Performing this subdivision into microservices from the start may cause to create
unbalanced and non-coherent microservices. It’s problematic to have a clear overview
of all the features the system should provide at the beginning of its design. It’s more
likely that new features will be added to the system while its development is ongoing.

For this reason, it a common strategy to design and implement first a monolith
system. In this way, the domain can be fully studied before performing the subdivision
into microservices. Fiorital is currently implementing its new information system
without using the microservice architectural style. However, the subdivision into
microservices of the current system under development could be an interesting future
work to carry out. The monolith information system under development should present
the majority of the features that the Fiorital’s information system needs. Therefore, a
complete design of the needed microservices can be performed by analysing the features
provided by the monolith.

Master’s Thesis - Alberto Simioni 1106663 Page: 94 / 101

Acronyms

ACID Atomicity, Consistency, Isolation, Durability. 53, 92

AJAX Asynchronous JavaScript and XML. 43

API Application Program Interface. 21, 27, 29–32, 34, 36, 41–43, 45, 49, 55, 58,
63–66, 68, 71, 72, 74, 75, 77–80, 83, 86

AWS Amazon Web Services. 49

B2C Business to Consumer. 2

BASE Basically Available, Soft state, Eventual consistency. 54

BI Business Intelligence. 6

CaaS Container as a Service. 51

CAP Consistency, Availability, Partition tolerance. 53, 54

CPU Central Processing Unit. 11, 59

DBMS Database Management System. 28, 29, 32, 34, 36, 38, 44, 53, 54, 92

DNS Domain Name System. 67, 69, 71

FaaS Function as a Service. 48

HDD Hard Disk Drive. 68

IaaS Infrastructure as a Service. 35, 36, 62, 67

ICT Information and Communication Technology. 4

IETF Internet Engineering Task Force. 43

IoT Internet of Things. 4, 8, 10, 18, 92

IT Information Technology. 1, 3, 4, 11–13, 34–36, 51, 89, 90

LXC Linux Containers. 47

NIST National Institute of Standards and Technology. 35

Master’s Thesis - Alberto Simioni 1106663 Page: 95 / 101

Acronyms

ORM Object-Relational Mapping. 55

OS Operating System. 14, 15, 22, 35, 36, 42, 44, 46, 47, 63

PaaS Platform as a Service. 51

REST Representational State Transfer. 43

SE Smart Enterprise. 1, 3, 5, 7, 9, 14, 16, 20–22, 27, 28, 34, 36, 46, 50, 52, 53, 57, 69,
70, 89, 91, 93

SLA Service Level Agreement. 11, 17, 24, 54, 58, 59, 61

SOA Service-Oriented Architecture. 22, 72

SSD Solid-State Disk. 68

SSL Secure Socket Layer. 30, 67

URL Uniform Resource Locator. 43, 70, 71

VM Virtual Machine. 22, 40, 41, 46, 47, 69, 70

VPN Virtual Private Network. 20, 35

W3C World Wide Web Consortium. 42

WAMP Web Application Messaging Protocol. 44, 45, 55, 66, 71

WebRTC Web Real-Time Communication. 43

Master’s Thesis - Alberto Simioni 1106663 Page: 96 / 101

Bibliography

[1] “Image - logo fiorital.” http://www.fiorital.com/. Accessed: 2017-04-18.

[2] “Image - fiorital trading routes.” http://www.fiorital.com/it/index/
animaecuore#logistica. Accessed: 2017-04-18.

[3] K. Bittner and I. Spence, Managing Iterative Software Development Projects.
Addison-Wesley Professional, 2006.

[4] M. Weik, Computer Science and Communications Dictionary. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2006.

[5] E. Nemeth, G. Snyder, T. R. Hein, and B. Whaley, Unix R©and Linux R©System
Administration Handbook. Upper Saddle River, NJ, USA: Prentice Hall PTR,
4th ed., 2010.

[6] T. A. Limoncelli, S. R. Chalup, and C. J. Hogan, The Practice of Cloud System
Administration: Designing and Operating Large Distributed Systems, Volume 2.
Addison-Wesley Professional, 1st ed., 2014.

[7] A. Johnsen and K. Lundqvist, Developing Dependable Software-Intensive Sys-
tems: AADL vs. EAST-ADL, pp. 103–117. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011.

[8] “Martin fowler - microservices.” http://martinfowler.com/articles/
microservices.html. Accessed: 2017-05-27.

[9] S. Newman, Building Microservices. O’Reilly Media, Inc., 1st ed., 2015.

[10] “Continuos delivery website.” https://continuousdelivery.com/. Accessed:
2017-06-07.

[11] M. Richards, Software Architecture Patterns. O’Reilly Media, Inc., 2015.

[12] J. Nieh, S. J. Yang, N. Novik, et al., “A comparison of thin-client computing ar-
chitectures,” tech. rep., Technical Report CUCS-022-00, Department of Computer
Science, Columbia University, 2000.

[13] M. L. Abbott and M. T. Fisher, The Art of Scalability: Scalable Web Architec-
ture, Processes, and Organizations for the Modern Enterprise. Addison-Wesley
Professional, 1st ed., 2009.

[14] “Microservices gateway pattern.” http://microservices.io/patterns/
apigateway.html. Accessed: 2017-06-07.

Master’s Thesis - Alberto Simioni 1106663 Page: 97 / 101

http://www.fiorital.com/
http://www.fiorital.com/it/index/animaecuore#logistica
http://www.fiorital.com/it/index/animaecuore#logistica
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://continuousdelivery.com/
http://microservices.io/patterns/apigateway.html
http://microservices.io/patterns/apigateway.html

BIBLIOGRAPHY

[15] A. S. Tanenbaum and M. v. Steen, Distributed Systems: Principles and Paradigms
(2Nd Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

[16] “Microservices access token pattern.” http://microservices.io/patterns/
security/access-token.html. Accessed: 2017-06-07.

[17] P. Mell, “The nist definition of cloud computing,”

[18] R. Ranjan, B. Benatallah, S. Dustdar, and M. P. Papazoglou, “Cloud resource
orchestration programming: Overview, issues, and directions,” IEEE Internet
Computing, vol. 19, pp. 46–56, Sept 2015.

[19] “Private cloud automation, orchestration, and measured ser-
vice.” http://www.networkcomputing.com/cloud-infrastructure/
private-cloud-automation-orchestration-and-measured-service/
912817173. Accessed: 2017-06-07.

[20] R. Sampathkumar, Disruptive Cloud Computing and It: Cloud Computing Simpli-
fied for Every IT Professional. Xlibris Corporation, 2015.

[21] C. B. Weinstock and J. B. Goodenough, “On system scalability,” tech. rep., DTIC
Document, 2006.

[22] D. Beaumont, “How to explain vertical and horizontal scaling in
the cloud.” https://www.ibm.com/blogs/cloud-computing/2014/04/
explain-vertical-horizontal-scaling-cloud/, 2014. Accessed: 2017-
04-08.

[23] “Cloud computing slides at cornell university.” http://www.cs.cornell.edu/
courses/cs5412/2016sp/slides/. Accessed: 2017-04-18.

[24] N. R. Herbst, S. Kounev, and R. H. Reussner, “Elasticity in cloud computing:
What it is, and what it is not.,”

[25] J. Varia, “Architecting for the cloud: Best practices,” Jan. 2011.

[26] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of auto-scaling
techniques for elastic applications in cloud environments,” J. Grid Comput., vol. 12,
pp. 559–592, Dec. 2014.

[27] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai, “Exploring alternative ap-
proaches to implement an elasticity policy,” in 2011 IEEE 4th International
Conference on Cloud Computing, pp. 716–723, July 2011.

[28] “Openstack cloud.” https://www.openstack.org/. Accessed: 2017-04-29.

[29] “Openstack usage by companies.” https://www.openstack.org/user-stories/.
Accessed: 2017-04-29.

[30] A. Corradi, M. Fanelli, and L. Foschini, “Vm consolidation: A real case based on
openstack cloud,” Future Gener. Comput. Syst., vol. 32, pp. 118–127, Mar. 2014.

[31] S. Amatya and A. Kurti, Cross-Platform Mobile Development: Challenges and
Opportunities, pp. 219–229. Heidelberg: Springer International Publishing, 2014.

Master’s Thesis - Alberto Simioni 1106663 Page: 98 / 101

http://microservices.io/patterns/security/access-token.html
http://microservices.io/patterns/security/access-token.html
http://www.networkcomputing.com/cloud-infrastructure/private-cloud-automation-orchestration-and-measured-service/912817173
http://www.networkcomputing.com/cloud-infrastructure/private-cloud-automation-orchestration-and-measured-service/912817173
http://www.networkcomputing.com/cloud-infrastructure/private-cloud-automation-orchestration-and-measured-service/912817173
https://www.ibm.com/blogs/cloud-computing/2014/04/explain-vertical-horizontal-scaling-cloud/
https://www.ibm.com/blogs/cloud-computing/2014/04/explain-vertical-horizontal-scaling-cloud/
http://www.cs.cornell.edu/courses/cs5412/2016sp/slides/
http://www.cs.cornell.edu/courses/cs5412/2016sp/slides/
https://www.openstack.org/
https://www.openstack.org/user-stories/

BIBLIOGRAPHY

[32] G. Kappel, E. Michlmayr, B. Pröll, S. Reich, and W. Retschitzegger, Web En-
gineering – Old Wine in New Bottles?, pp. 6–12. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004.

[33] “W3c - html5.” https://www.w3.org/TR/html5/. Accessed: 2017-04-18.

[34] A. Juntunen, E. Jalonen, and S. Luukkainen, “Html 5 in mobile devices – drivers
and restraints,” in Proceedings of the 2013 46th Hawaii International Conference
on System Sciences, HICSS ’13, (Washington, DC, USA), pp. 1053–1062, IEEE
Computer Society, 2013.

[35] M. Mikowski and J. Powell, Single Page Web Applications: JavaScript End-to-end.
Greenwich, CT, USA: Manning Publications Co., 1st ed., 2013.

[36] I. K. Chaniotis, K.-I. D. Kyriakou, and N. D. Tselikas, “Is node.js a viable
option for building modern web applications? a performance evaluation study,”
Computing, vol. 97, pp. 1023–1044, Oct. 2015.

[37] “Xmlsocket, as3.” http://help.adobe.com/en_US/FlashPlatform/reference/
actionscript/3/flash/net/XMLSocket.html. Accessed: 2017-04-18.

[38] J. Lundar, T.-M. Grønli, and G. Ghinea, “Performance evaluation of a modern
web architecture,” Int. J. Inf. Technol. Web Eng., vol. 8, pp. 36–50, Jan. 2013.

[39] K. Shuang and K. Feng, “Research on server push methods in web browser based
instant messaging applications,” JOURNAL OF SOFTWARE, vol. 8, no. 10,
p. 2645, 2013.

[40] “Why wamp?.” http://wamp-proto.org/why/. Accessed: 2017-06-10.

[41] S. Tilkov and S. Vinoski, “Node.js: Using javascript to build high-performance
network programs,” IEEE Internet Computing, vol. 14, pp. 80–83, Nov 2010.

[42] “Web server survey.” http://news.netcraft.com/archives/2013/08/09/
august-2013-web-server-survey.html, 2013. Accessed: 2017-04-28.

[43] “Node.js.” https://nodejs.org/en/. Accessed: 2017-04-28.

[44] “Kong api gateway github.” https://github.com/Mashape/kong. Accessed: 2017-
06-10.

[45] “Crossbar.io.” http://crossbar.io/. Accessed: 2017-06-10.

[46] A. S. Tanenbaum, Modern Operating Systems. Upper Saddle River, NJ, USA:
Prentice Hall Press, 3rd ed., 2007.

[47] K. Morris, “Martin fowler - immutableserver.” https://martinfowler.com/
bliki/ImmutableServer.html, 2013. Accessed: 2017-04-07.

[48] P. J. P. Menage and C. Lameter, “cgroups.” https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt, 2015. Accessed: 2017-04-07.

[49] “namespaces(7), linux programmer’s manual.” http://man7.org/linux/
man-pages/man7/namespaces.7.html. Accessed: 2017-04-07.

[50] S. Graber, “Lxc 1.0: Security features.” https://stgraber.org/2014/01/01/
lxc-1-0-security-features/, 2014. Accessed: 2017-04-07.

Master’s Thesis - Alberto Simioni 1106663 Page: 99 / 101

https://www.w3.org/TR/html5/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/ XMLSocket.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/ XMLSocket.html
http://wamp-proto.org/why/
http://news.netcraft.com/archives/2013/08/09/august-2013-web-server-survey.html
http://news.netcraft.com/archives/2013/08/09/august-2013-web-server-survey.html
https://nodejs.org/en/
https://github.com/Mashape/kong
http://crossbar.io/
https://martinfowler.com/bliki/ImmutableServer.html
https://martinfowler.com/bliki/ImmutableServer.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://stgraber.org/2014/01/01/lxc-1-0-security-features/
https://stgraber.org/2014/01/01/lxc-1-0-security-features/

BIBLIOGRAPHY

[51] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance
comparison of virtual machines and linux containers,” 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), vol. 00,
pp. 171–172, 2015.

[52] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim, “Performance
comparison analysis of linux container and virtual machine for building cloud,”
2014.

[53] “Docker documentation.” https://docs.docker.com/. Accessed: 2017-06-28.

[54] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation with openlambda,”
in Proceedings of the 8th USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’16, (Berkeley, CA, USA), pp. 33–39, USENIX Association, 2016.

[55] “What is serverless computing and why is it important.” https://www.iron.io/
what-is-serverless-computing/. Accessed: 2017-06-10.

[56] “Aws lambda.” https://aws.amazon.com/lambda/. Accessed: 2017-04-08.

[57] “From vm to container to serverless.” https://www.slideshare.net/welkaim/
from-vm-to-container-to-serverless. Accessed: 2017-06-10.

[58] “Evolution of microservices - craft conference.” https://www.slideshare.
net/adriancockcroft/evolution-of-microservices-craft-conference. Ac-
cessed: 2017-06-10.

[59] “Welcome to bluemix openwhisk.” https://new-console.ng.bluemix.net/
openwhisk/. Accessed: 2017-04-08.

[60] “Google cloud platform, cloud functions.” https://cloud.google.com/
functions/. Accessed: 2017-04-08.

[61] “Microsoft azure functions.” https://azure.microsoft.com/en-us/services/
functions/. Accessed: 2017-04-08.

[62] “From containers to container orchestration.” https://thenewstack.io/
containers-container-orchestration/, 2016. Accessed: 2017-04-10.

[63] C. de la Torre, “Containerized docker application lifecycle with microsoft,” dec
2016.

[64] R. Peinl, F. Holzschuher, and F. Pfitzer, “Docker cluster management for the
cloud - survey results and own solution,” Journal of Grid Computing, vol. 14,
no. 2, pp. 265–282, 2016.

[65] “Nosql databases explained.” https://www.mongodb.com/nosql-explained. Ac-
cessed: 2017-04-13.

[66] E. A. Brewer, “Towards robust distributed systems (abstract),” in Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’00, (New York, NY, USA), pp. 7–, ACM, 2000.

[67] J. Pokorny, “Nosql databases: a step to database scalability in web environment,”
International Journal of Web Information Systems, vol. 9, no. 1, pp. 69–82, 2013.

Master’s Thesis - Alberto Simioni 1106663 Page: 100 / 101

https://docs.docker.com/
https://www.iron.io/what-is-serverless-computing/
https://www.iron.io/what-is-serverless-computing/
https://aws.amazon.com/lambda/
https://www.slideshare.net/welkaim/from-vm-to-container-to-serverless
https://www.slideshare.net/welkaim/from-vm-to-container-to-serverless
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://new-console.ng.bluemix.net/openwhisk/
https://new-console.ng.bluemix.net/openwhisk/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://thenewstack.io/containers-container-orchestration/
https://thenewstack.io/containers-container-orchestration/
https://www.mongodb.com/nosql-explained

BIBLIOGRAPHY

[68] D. Pritchett, “Base: An acid alternative,” Queue, vol. 6, pp. 48–55, May 2008.

[69] “Nosql databases.” http://nosql-database.org/. Accessed: 2017-06-10.

[70] “Developers’ nosql skills.” https://blogs.the451group.com/information_
management/tag/nosql/. Accessed: 2017-04-18.

[71] “Why use mongodb instead of mysql?.” https://www.mongodb.com/compare/
mongodb-mysql. Accessed: 2017-04-30.

[72] “Mongodb documentation.” https://docs.mongodb.com/manual/. Accessed:
2017-06-28.

[73] T. R. Norton, “End-to-end response-time: Where to measure?,”

[74] H. Jayathilaka, C. Krintz, and R. Wolski, “Service-level agreement durability for
web service response time,” in 2015 IEEE 7th International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 331–338, Nov 2015.

[75] M. K., Designing Data-Intensive Applications. O’Reilly Media, 1st ed., 2017.

[76] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly
available key-value store,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 205–220, Oct.
2007.

[77] “Cloudveneto openstack cluster.” http://cloudveneto.pd.infn.it/ and https:
//cloud.cedc.csia.unipd.it/User_Guide/index.html. Accessed: 2017-06-10.

[78] “Task service.” http://serviceorientation.com/soaglossary/task_service.
Accessed: 2017-06-25.

[79] “Entity service.” http://serviceorientation.com/soaglossary/entity_
service. Accessed: 2017-06-25.

[80] “Mongodb installation on kubernetes.” https://www.mongodb.com/blog/post/
running-mongodb-as-a-microservice-with-docker-and-kubernetes. Ac-
cessed: 2017-06-25.

Master’s Thesis - Alberto Simioni 1106663 Page: 101 / 101

http://nosql-database.org/
https://blogs.the451group.com/information_management/tag/nosql/
https://blogs.the451group.com/information_management/tag/nosql/
https://www.mongodb.com/compare/mongodb-mysql
https://www.mongodb.com/compare/mongodb-mysql
https://docs.mongodb.com/manual/
http://cloudveneto.pd.infn.it/
https://cloud.cedc.csia.unipd.it/User_Guide/index.html
https://cloud.cedc.csia.unipd.it/User_Guide/index.html
http://serviceorientation.com/soaglossary/task_service
http://serviceorientation.com/soaglossary/entity_service
http://serviceorientation.com/soaglossary/entity_service
https://www.mongodb.com/blog/post/running-mongodb-as-a-microservice-with-docker-and-kubernetes
https://www.mongodb.com/blog/post/running-mongodb-as-a-microservice-with-docker-and-kubernetes

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Problem statement
	1.1 The company
	1.1.1 Company structure

	1.2 The Smart Enterprise Project
	1.2.1 Project Objectives

	1.3 My role in the project
	1.3.1 Thesis objectives

	1.4 Outline

	2 Candidate architecture and technologies selection
	2.1 Architectural properties
	2.2 Candidate architecture
	2.2.1 Hardware Components
	2.2.2 Microservice architectural style
	2.2.3 Smart Enterprise software architecture
	2.2.4 Tracing architectural properties to candidate architecture
	2.2.5 Technological requirements

	2.3 Technologies overview and selection
	2.3.1 Cloud computing
	2.3.2 Web technologies
	2.3.3 API gateway
	2.3.4 Publish-subscribe mediator
	2.3.5 Containers
	2.3.6 Container orchestration
	2.3.7 NoSQL
	2.3.8 Tracing architectural requirements to technologies

	3 Experimental evaluation
	3.1 Evaluation criteria
	3.2 Candidate architecture critical evaluation
	3.2.1 Responsiveness
	3.2.2 Reactiveness
	3.2.3 Agility

	3.3 Technologies critical evaluation
	3.4 Experimental setup
	3.4.1 Prototype
	3.4.2 Benchmarking script

	3.5 Experimental results
	3.5.1 Responsiveness
	3.5.2 Reactiveness
	3.5.3 Agility

	4 Conclusions and outlook
	4.1 Recalling the thesis objectives
	4.2 Reviewing the accomplishments
	4.3 Project outlook
	4.3.1 Thesis limitation
	4.3.2 Insights for future works

	Acronyms
	Bibliography

