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you can only think what everyone else is thinking.”

Haruki Murakami, Norwegian Wood



iv



Contents

1 Background and motivations 1
1.1 Local sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Sensitivity analysis methods 5
2.1 Indirect or brute force method . . . . . . . . . . . . . . . . . . 6
2.2 Direct method . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Green’s function method . . . . . . . . . . . . . . . . . . . . . 8
2.4 Impulse Parametric Sensitivity Analysis (iPSA) . . . . . . . . 9

2.4.1 iPSA: Implementation . . . . . . . . . . . . . . . . . . 12
2.5 Sensitivity metrics . . . . . . . . . . . . . . . . . . . . . . . . 13

3 The model of HPV early promoter regulation 15
3.1 The HPV-16 genome and life cycle . . . . . . . . . . . . . . . 16
3.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Model equations . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Model predictions . . . . . . . . . . . . . . . . . . . . . 23

4 Sensitivity analysis: MATLAB implementation 25
4.1 Indirect method . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Direct method . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 iPSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Numerical approach . . . . . . . . . . . . . . . . . . . 27
4.3.2 Analytical approach . . . . . . . . . . . . . . . . . . . 28

5 Results 31
5.1 Comparison between DQM and DM . . . . . . . . . . . . . . . 31
5.2 PSA results with DM . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Main viral DNA replication regulator E1 . . . . . . . . 37
5.2.2 Main transcriptional regulator E2 . . . . . . . . . . . . 41
5.2.3 The primary polycistronic transcript X . . . . . . . . . 46



vi CONTENTS

5.2.4 mRNA mE1 encoding for protein E1 . . . . . . . . . . 51
5.2.5 mRNA mE2 encoding for protein E2 . . . . . . . . . . 55

5.3 Impulse parametric sensitivity analysis . . . . . . . . . . . . . 59
5.4 iPSA results with numerical approach . . . . . . . . . . . . . . 65
5.5 iPSA results with analytical approach . . . . . . . . . . . . . . 71

6 Conclusions 75

Acronyms 77

Appendices 79

A Green’s function method derivation 81

B MATLAB code implementations 85
B.1 Difference quotient method . . . . . . . . . . . . . . . . . . . . 87
B.2 Direct method . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.3 iPSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.3.1 Numerical approach . . . . . . . . . . . . . . . . . . . 89
B.3.2 Analytical approach . . . . . . . . . . . . . . . . . . . 91

Bibliography 97



Abstract

Sensitivity analysis methods are widely applied in many fields of engi-
neering to study biological systems, including metabolic networks, signalling
pathways and genetic circuits. Sensitivity analysis investigates the effect of
parameter change on the solution of mathematical models in order to de-
duce which parameters constitute the controlling factor of the system and
which are, on the contrary, insignificant for the model behavior. The appli-
cations of such analysis are many, including model reduction and parame-
ter estimation. In this work, conventional Parametric Sensitivity Analysis
(PSA) main methods (Direct, Indirect and Green’s Function methods) were
reviewed along with the novel analysis called Impulse Parametric Sensitivity
Analysis (iPSA) presented by Perumal et al. The differences between the
two analysis were investigated by their application on the HPV early pro-
moter regulation model presented by Giaretta et al. Results were compared
and each method was analyzed from the reliability of the results and com-
putational complexity points of view. The comparison between Direct and
Indirect method suggested to select the first method for the model under
study, reaching the most correct results while maintaining a low computa-
tional complexity. Moreover conventional PSA produced results that were in
accordance with biological knowledge, confirming the importance of the pa-
rameters belonging to the transactivation/repression feedback of protein E2

in the transcription of the primary transcript. iPSA, besides showing again
the importance of parameters linked to transcriptional regulation of E2, re-
vealed important behaviors of the model, like its oscillatory nature under
impulsive stimulus and the presence of a highly parametric sensitive region
located in a specific time range.
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Chapter 1

Background and motivations

The increasing number of applications of biological and chemical models in
all areas of science and engineering has made Parametric Sensitivity Analysis
(PSA) a powerful tool to provide valuable insights about the robustness and
reliability of the system.
PSA is widely applied in many systems biology applications including metabolic
networks, signalling pathways and genetic circuits to investigate the effect of
parameter changes on the model variables of interest.
Infact the behavior of a system depends on the values of the parameters
that characterize it and the importance of a parameter as controlling factor
can be assessed by analyzing how the system responds to changes in that
specific parameter. The more the systems outputs change after parameter
perturbation, the more the system is sensitive to that particular parameter.
In other words the parameter has an high sensitivity. Sensitivity analysis
is, therefore, used to find the key factors that affect the model outputs of
a system but has additional widely used applications such as uncertainty
analysis, parametric scaling, parameter estimation, experimental design, sta-
bility analysis, repro-modeling, and investigation and reduction of complex
reaction mechanisms. In many biochemical systems, if one or more param-
eters are varied slightly, while holding the remaining parameters fixed, the
response also changes slightly but it can happen that, under another set
of parameter combinations, the system reacts with a strong change after a
slight variation. In this case, the system is said to behave in a parametrically
sensitive manner. This kind of systems are very difficult to control, therefore
is important to identify the parametrically sensitive region of operation in
order to define the boundary between runaway (explosive) and nonrunaway
(nonexplosive) behavior [1].
There are many reasons why modelers may conduct sensitivity analysis such
as the necessity to determine: (1) which parameters are insignificant and can
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be eliminated from the final model (model reduction); (2) which parame-
ters require additional research; (3) which inputs contribute most to output
variability; (4) which parameters are most highly correlated with the output;
and (5) while simulating, what is the consequence of a given input parameter
change [2].
Sensitivity analysis can be performed in different ways and it is important
to notice that the various analysis may produce different results [3]. In most
applications, sensitivity coefficients or metrics are computed and generally
reflect the ratios between the change in a biological model output and the
perturbation on system parameters that cause the change.
Sensitivity analyses can be classified as local or global depending on the
magnitude of the perturbations: the former refers to an infinitesimal pertur-
bation, the latter to a finite perturbation . In both cases, the interpretation
of the sensitivity metrics is intuitive; parameters with large sensitivity mag-
nitude are considered to be important in the system functioning and to be
the controlling factors in the system regulation.

1.1 Local sensitivities

As explained above, parametric sensitivity constitutes the analysis of how a
system responds to changes in the parameters.
Sensitivity analysis is performed on the mathematical description of the sys-
tem which is provided by a model, that describes the system through explicit
or implicit relationships between the state or output values and the input
parameters. Output values are in general indicated as time and/or space de-
pendent variables and, in the case of biochemical model, often refer to model
state concentrations. The input parameters include the biochemical param-
eters of the model (related to reaction kinetics, thermodynamic equilibria,
and transport properties) but also operating conditions, and geometric pa-
rameters of the system. Parameter values are measured experimentally or
estimated theoretically from the available literature and therefore they are
always subject to uncertainties.
Let’s consider the kinetics of a spatially homogeneous system modeled as

dx

dt
= f(x,p), x(0) = x0,

(1.1)

where x is the n-vector of concentrations and p is the m-vector of system
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parameters (initial concentrations are not considered in vector p). The so-
lutions of the system of equations (1.1) are concentration-time curves and in
this case the sensitivity analysis gives concentration sensitivity as result. Lo-
cal sensitivity are computed considering small changes of parameter values.
Their effect on the solution can be expressed by a Taylor series expansion:

xi(t,p+∆p) = xi(t,p)+
m∑
j=1

∂xi
∂pj

∆pj +
1

2

m∑
l=1

m∑
j=1

∂2xi
∂pl · ∂pj

∆pl∆pj + ... (1.2)

where ∂xi
∂pj

are called first-order local concentration sensitivity coefficients,

while ∂2xi
∂pl·∂pj

are called second-order local concentration sensitivity coefficients.
Normally only first order coefficients are studied and they constitute the
sensitivity matrix S.
Sensitivity matrices have a double time dependence Si,j(t, τ) = ∂xi(t)

∂pj(τ)
with

t > τ where τ is the perturbation time and t the observation time. Usually
τ = t(0) = 0 and the term τ is commonly dropped out of the equation but,
depending on the case, the particular application might need to compute
sensitivity with perturbation time different from zero.
The implementation of first-order local concentration sensitivity coefficients
can be obtained through different methods, among which:

• The brute force or indirect method : the simplest way of calculating
local concentration sensitivities through the finite different approxima-
tion (Difference Quotient).

• The direct method : the sensitivity coefficient are calculated by di-
rectly differentiating the ODE model.

• The Green’s function method : a more sophisticated method to
solve the differential equations of the direct method.

• Polynomial approximation method.

• etc...

All methods have different computation complexity and the method of choice
is selected depending on the application and the model under consideration.

Conventional local sensitivity methods are all characterized by the introduc-
tion of permanent perturbation of parameter values but it was demonstrated
by Perumal et. al [4] that this kind of analysis only partially reflects the
dynamical behavior of the system and this may lead to incorrect results that
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don’t match with experimental evidences.
In order to overcome this issue, Perumal et al. introduced a novel type of
sensitivity analysis based on impulsive perturbation rather than persistent
perturbation, called Impulse Parametric Sensitivity Analysis (iPSA). Sensi-
tivity coefficients calculated with this analysis are not directly comparable to
the ones calculated with regular PSA but provide independent information
about the dynamical importance of each parameter.

1.2 Aim of the thesis

In this work three of the most famous Local Sensitivity Analysis (LSA) meth-
ods are reviewed in Chapter 2: Indirect method with difference quotient
approximation (Different Quotient Method (DQM)), Direct Method (DM)
and Green’s Function Method (GFM) which is presented in detail in Ap-
pendix A. They are also compared to the novel type of local PSA, the iPSA
introduced by Perumal et. al. The different sensitivity methods are mathe-
matically analyzed and their derivation is explained, in relation to a general
ODE model. The previously mentioned methods are then applied to a novel
model of HPV early promoter regulation developed by Giaretta et al. [5]. In
Chapter 3, the biological model presented in the article “Modeling HPV early
promoter regulation” is introduced, together with a review of Human Papil-
lomavirus (HPV) gene expression and regulation. In Chapter 4 the PSA
methods are considered from their computational implementation point of
view in the software MATLAB (code implementation details in Appendix
B), in Chapter 5 the results of PSA analysis are presented and compared
in order to evidentiate the differences of the various methods. Finally in
Chapter 6 the conclusions and the study future perspectives are discussed.



Chapter 2

Sensitivity analysis methods

Parametric Sensitivity Analysis (PSA) is one of the most powerful tool for
the study of ODE models and it is well established in the field of engineering.
In particular, sensitivity analysis investigates the effect of parameter change
on the solution of mathematical models.
Sensitivity analysis is divided into two types according to the magnitude of
the perturbation: local (LSA) and global analysis. The first one assesses
an infinitesimal perturbation, the second one a finite perturbation. In both
cases, the interpretation of the PSA results is simple: the parameters that
have large sensitivity magnitude are considered to be driving and controlling
factors in the functioning of the system.
As previously mentioned in Chapter 1, in this study four methods of LSA
are reviewed: indirect, direct, Green’s function method and the novel local
analysis iPSA.

The generic nonlinear ODE model is described by the following equations{
dx(t,p̂)
dt

= f(x, p̂)

x(t0, p̂) = x0
(2.1)

where x is the n-vector of concentrations (x ∈ Rn) and p is the m-vector of
system parameters (p̂ ∈ Rm) with initial conditions x(t0, p̂) = x0. The effect
of parameter perturbations is described by the first order partial derivatives
of the state variables that represent the first-order coefficients:

Si,j(t, τ) =
∂xi(t)

∂pj(τ)
(2.2)

where τ is the time in which the perturbation is applied and t is the conse-
quent observation time (t > τ). In conventional PSA the perturbation can
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be introduced at any time but it’s usually set at the initial time τ = t0 = 0
(with initial conditions x(t0) = x0 = 0) and for that reason the term τ is
often dropped out of the equations, but in the following it will be maintained.
In order to compare the sensitivity coefficients they are usually normalized
as follows:

S̄i,j(t, τ) =
∂xi(t)

∂pj(τ)

pj(τ)

xi(t)
=
∂ log xi(t)

∂ log pj(τ)
(2.3)

2.1 Indirect or brute force method

The most simple method to solve (2.2) is with the use of the finite difference
approximation:

Si,j(t, τ) =
∂xi(t)

∂pj(τ)
=

change in i-th state at time t
perturbation on j-th parameter at time τ

(2.4)

where j = 1, ..,m and the perturbation amplitude is the same for each τ .
In this technique, called the brute force method or the indirect method, sen-
sitivity coefficients are calculated changing the j-th parameter at time t by
a variation depending on the parameter nominal value, while all other pa-
rameters are held fixed. This method requires the solution of n differential
equations of the ODE model using the nominal value of parameters and m ·n
solutions of the equations using perturbed parameter sets, hence it needs to
solve (m+ 1)n differential equations.
The indirect method is widely used because the code implementation is the
simplest, however, this method is not recommended because there are meth-
ods that calculate sensitivity coefficients consuming much less computer time,
like Direct method or Green’s function method.

2.2 Direct method

An alternative way to compute the sensitivity coefficients is by differentiat-
ing the ODE model equations in what is called the Direct method (DM).
The sensitivities of the solutions with respect to the system parameters are
calculated by solving the following ODE system:

d

dt

dx(t)

dp(τ)
=
∂f(t)

∂x(t)

dx(t)

dp(τ)
+
∂f(t)

∂p(τ)
(2.5)
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where ∂f(t)
∂x(t)

is the Jacobian. Equation (2.5) can be written in matricial form
as follows:

d

dt
S(t, τ) =

∂f(t)

∂x(t)
S(t, τ) +

∂f(t)

∂p(τ)
(2.6)

where S(t, τ) is the sensitivity nxm matrix

S(t, τ) =


∂x1(t)
∂p1(τ)

∂x1(t)
∂p2(τ)

... ∂x1(t)
∂pm(τ)

∂x2(t)
∂p1(τ)

∂x2(t)
∂p2(τ)

... ∂x2(t)
∂pm(τ)

...
...

...
...

∂xn(t)
∂p1(τ)

∂xn(t)
∂p2(τ)

... ∂xn(t)
∂pm(τ)

 , (2.7)

∂f(t)
∂x(t)

is the nxn Jacobian matrix

∂f(t)

∂x(t)
= J(t) =


∂f1(t)
∂x1(t)

∂f1(t)
∂x2(t)

... ∂f1(t)
∂xn(t)

∂f2(t)
∂x1(t)

∂f2(t)
∂x2(t)

... ∂f2(t)
∂xn(t)

...
...

...
...

∂fn(t)
∂x1(t)

∂fn(t)
∂x2(t)

... ∂fn(t)
∂xn(t)

 (2.8)

and ∂f(t)
∂p(τ)

is nxm non homogeneous term matrix

∂f(t)

∂p(τ)
=


∂f1(t)
∂p1(τ)

∂f1(t)
∂p2(τ)

... ∂f1(t)
∂pm(τ)

∂f2(t)
∂p1(τ)

∂f2(t)
∂p2(τ)

... ∂f2(t)
∂pm(τ)

...
...

...
...

∂fn(t)
∂p1(τ)

∂fn(t)
∂p2(τ)

... ∂fn(t)
∂pm(τ)

 . (2.9)

Like in the Indirect method, the sensitivity coefficients are then usually nor-
malized according to Equation 2.3.

Direct method can be approached in many ways, depending on the num-
ber of equations that are solved simultaneously. Here it is a list of possible
approaches:
(1) Equations (2.1) and eq. (2.5) are solved simultaneously for all j = 1, ..,m
and this requires (m + 1)n differential equations. This approach requires
an algorithm in which the ode solver is able to perform the decomposition
of the (m + 1)n · (m + 1)n Jacobian in each step, hence the direct solution
of this large system of differential equations is inefficient. However it was
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demonstrated that a fast algorithm can be built exploiting the fact that this
large Jacobian has an almost block-diagonal structure [6] [7].
(2) It can result convenient to subdivide the problem into m sub-problems,
one for each parameter. This approach consists in integrating the m systems
of 2n equations containing the couple of eq. (2.1) and eq. (2.5) together
for each specific parameter. The approach requires the solution of 2n · m
differential equations, this version is very simple but is the least economical
and in some cases can cause numerical difficulties.
(3) Equations (2.1) are solved firstly and the concentration-time curves are
stored, then eq. (2.5) is applied and in case a solution at a time that is not
stored is needed, it will be obtained through interpolation.

In the DM the faster approach needs to solve a (m + 1) · n differential
equations system and since the equations of interest are usually stiff and m
(> n) is in general very large, the method can be very expensive to compute.
In this situation the Green’s Function Method can provide a better way to
reach the solutions.

2.3 Green’s function method

Looking at Equation 2.5 and Equation 2.6, one can see that the m linear
sensitivity equations differ only in the nonhomogeneous terms, ∂f(t)

∂pj(τ)
. For

this reason in the Green Function method (GFM) the sensitivity equations
solutions are constructed by first computing the solution of the homogeneous
part and then by determining the particular solution corresponding to each
input parameter. The homogeneous part is obtained by differentiating Equa-
tion 2.1 with respect to the state vector x(τ) and correspond to the following
Green’s function problem [7]:

d

dt
Sx(t, τ) =

∂f

∂x
Sx(t, τ) , t > τ

(2.10)

where Sx(t, τ) is a nxn matrix called Green’s function matrix (GFm) defined
as

Sx
i,j(t, τ) =

∂xi(t)

∂xj(τ)
, Sx(τ, τ) = I. (2.11)

Then, the local sensitivities, that are obtained fixing the j-th column of the
Green’s Function Matrix (GFm) S[1..n],j(t, τ) = ∂x(t)

∂pj(τ)
, can be written in terms

of a linear integral transform of the nonhomogeneous terms [1],using the Gfm
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(details in Appendix A):

S[1..n],j(t, τ) =
∂x(t)

∂pj(τ)
=

∫ t

τ

Sx(t, s)
∂f(s)

∂pj
ds (2.12)

. When the perturbation is set at the initial time, that is τ = t0, Equa-
tion 2.12 becomes:

S[1..n],j(t, t0) =
∂x(t)

∂pj
= Sx(t, t0) · dx(t0)

dpj
+

∫ t

t0

Sx(t, s)
∂f(s)

∂pj
ds (2.13)

where

dx(t0)

dpj
=

{
δi pj is an initial condition for one of the components xi
0 otherwise

(2.14)
where δi is the vector δi = [0, 0, ..1, 0, ..0] with 1 at the i-th position [8]. In
the integral of eqn.(2.12), the first argument of Sx(t, s), t, is fixed, whereas
the second one varies.
Let’s now compare the numerical complexity of GFM and DM in the case of
n dependent variables and m input parameters. The GFM requires solving
n · n differential equations plus n, thus (n + 1) · n, integrals, while the DM
involves solving (m+1) ·n differential equations. Since for most applications,
the number of parameters exceeds the number of dependent variables, the
GFM requires less numerical effort relative to the DM. Obviously, if the
sensitivities of the n dependent variables with respect to only a few of the m
input parameters are needed, the DM may be preferred over the GFM. The
derivation of the equations of the Green’s Function Method is presented in
Appendix A.

2.4 Impulse Parametric Sensitivity Analysis (iPSA)

In a dynamic system, parameters are expected to vary with time. Local
parametric sensitivities reflect changes in the system states when the param-
eters are persistently perturbed. Hence, there could be some discrepancies
between the interpretation of the influence of system parameters suggested
by the PSA and the experimental findings. The reason can be understood
taking a look at the formula of Equation 2.6 expressing parametric sensitivity
coefficients of PSA with the direct method, here re-written

d

dt
S(t, τ) =

∂f(t)

∂x(t)
S(t, τ) +

∂f(t)

∂p(τ)
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Two terms contribute to the sensitivity coefficient: the first is related to an
indirect effect, propagated through the changes in the states x , while the
second accounts for the direct effect of parametric perturbation on the func-
tion f(t,x(t,p)).
Consequently in this kind of analysis normally what happens is that, per-
turbing parameters at the initial time t0, the parameters with high sensitivity
at early times are favored and usually have high sensitivity throughout the
simulation period. This can lead to misleading revelations on the dynamical
importance of system parameters.
To overcome these issues Perumal et all. presented a novel type of sensitivity
analysis that should be able to reflect dynamical aspects of the system be-
havior. This analysis is based on impulse rather than persistent perturbation
and is called Impulse Parametric Sensitivity Analysis (iPSA) [4]. The corre-
sponding sensitivity coefficient iSi,j(t, τ) reflects the change in the i-th state
xi at time t due to an impulse perturbation on the j-th parameter pj at time
τ , thus iPSA coefficient iSi,j(t, τ) depends on both the time of perturbation
τ and the observation time t (t > τ). Since impulse perturbations cause
an immediate state changes at τ , the dynamical importance of the system
parameters can be assessed from iPSA coefficients simply varying the time
of perturbation, maintaining t fixed.
iPSA coefficients are defined as follows:

iSi,j(t, τ) = Sxi,[1..n](t, τ)
∂f

∂pj
(τ) (2.15)

where Sx(t, τ) is the Green’s Function matrix defined in Equation 2.11 and
Sxi,[1..n](t, τ) accounts for the i-th row of this matrix while ∂f

∂pj
(τ) accounts for

the nonhomogeneous term of DM equation (Equation 2.6) calculated in τ .
The new sensitivity coefficient presents two properties:

• If the sensitivity is evaluated in t = τ , then Sxi,j(τ, τ) = I and Equa-
tion 2.15 becomes

t = τ : iSi,j(τ, τ) =
∂f

∂pj
(τ) (2.16)

•
t > τ : iSi,j(t, τ) = Sx[1..n],j(t, τ)iSi,j(τ, τ) (2.17)

From eqn (2.17) one can see that the consequence on the state trajectory
is equivalent to perturbing the states themselves, like in the GFM analysis
because the impulse parameter perturbation takes effect only at time τ . In
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order to compare sensitivity results and for parameter ranking purpose the
iPSA coefficient need to be normalized as follows:

iS̄i,j(t, τ) = iSi,j(t, τ)
pj
xi(t)

(2.18)

Figure 2.1: Parametric perturbation in sensitivity analysis and its effect on system
dynamics in (a-b) PSA, (c-d) iPSA and (e-f) pulse approximation of iPSA. Solid
lines represent the nominal and the dashed lines represent the perturbed trajectory.
The figure is taken from [4].

In Figure 2.1 a graphical representation of the conventional local PSA
(Figure 2.1(a-b)) is depicted in comparison with local iPSA (Figure 2.1(c-d))
and its pulse approximation (Figure 2.1(e-f)).
A persistent parametric perturbation leads to a different effect on the system
behavior compared to an impulsive perturbations hence sensitivity analysis
results can differ and produce different interpretations. It is important to
notice that iPSA coefficients are not directly comparable to the once obtained
from the conventional PSA methods. Their interpretation, in respect to the
other methods, is explained in Chapter 5: Results.
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2.4.1 iPSA: Implementation

Each iPSA coefficient is constructed by approximating an impulsive pertur-
bation and quantifying the ratio between the change in i-th state xi at time
t and the causative pulse perturbation applied on the j-th parameter pj at
time τ of size ∆pj

∆τ
for a duration of ∆t in the limit ∆pj and ∆τ tending to

zero. The first step of the construction of iPSA coefficient is to define the
change in the system states x at the end of the parameter perturbation at
time τ + ∆τ using the Taylor series expansion:

∆x(τ + ∆τ) = S[1..n],j(τ + ∆τ, τ)
∆pj
∆τ

+O(∆p2
j) (2.19)

where S[1..n],j represents the j-th column of the sensitivity matrix introduced
in Equation 2.6. The change ∆x(τ + ∆τ) is then traslated in the change
in the state xi at time t using the GFm Sx(t, τ + ∆τ) which contains the
sensitivities of the state xi to a perturbation in the state xj at time τ as
presented in Equation 2.11 :

Sxi,j(t, τ) =
∂xi(t)

∂xj(τ)
(2.20)

where t ≥ τ . The (i,j)-th element of the GFm quantify the relative change in
the state xi at time t due to an impulsive alteration in the state xj at time
τ given by

xj + δ(t− τ)∆xj (2.21)

where the magnitude ∆xj tends to zero and δ(t) is the dirac delta function.
Using the GFm the change ∆xi(t) due to the pulse perturbation is given by

∆xi(t) = Sxi,[1..n](t, τ + ∆τ)∆x(τ + ∆τ) (2.22)

Substituing eqn. (2.19) in eqn. (2.22) it becomes

∆xi(t) = Sxi,[1..n](t, τ + ∆τ)S[1..n],j(τ + ∆τ)
∆pj
∆τ

+O(∆p2
j) (2.23)

The next step consists in taking the Taylor series expansion of the sensitivities
at time τ and dividing both members of the equation for ∆pj:

∆xi(t) = Sxi,[1..n](t, τ+∆τ)
[
S[1..n],j(τ, τ) + Ṡ[1..n],j(τ, τ) +O(∆τ 2)

] ∆pj
∆τ

+O(∆p2
j)

∆xi(t)

∆pj
= Sxi,[1..n](t, τ + ∆τ)

[
Ṡ[1..n],j(τ, τ) +O(∆τ 2)

]
+O(∆pj) (2.24)
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∆xi(t)

∆pj
= Sxi,[1..n](t, τ + ∆τ)

[
∂f

∂pj
+O(∆τ 2)

]
+O(∆pj)

iPSA coefficient are finally obtained by taking the limit as ∆pj,∆τ → 0 so
the pulse perturbation becomes an impulse leading to

iSi,j(t, τ) = Sxi,[1..n](t, τ)
∂f

∂pj
(τ) (2.25)

2.5 Sensitivity metrics

Once first-order sensitivity coefficients are calculated, parameter ranking is
commonly generated. In this work three sensitivity metrics were implemented
for parameter ranking:

[Sint]i,j =

∫ t

t0

S̄i,j(t̂)dt̂,

[Sinf ]i,j = maxk(|Si,j(tk)|)
[Stk ]i,j = Si,j(t = tk)

(2.26)

where the indices i and j denote the i-th state and j-th parameter. Sint, Sinf
and Stk are the sensitivity metrics based on time integral [9], infinite norm
[10] and sensitivity magnitude at a particular time, respectively.
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Chapter 3

The model of HPV early promoter
regulation

Human papillomaviruses (HPVs) are a type of DNA virus from Papillomaviri-
dae family. Most HPV infections will cause no physical symptoms; however,
a persistent infection is considered to be the main causative agent of cervical
cancer and other anogenital cancer [11]. Over 120 HPV types have been char-
acterized by full genome sequencing to date [12] but only some of them are
high risk types, like HPV 16 and 18 that are estimated to cause 70 percent
of the cervical cancers. More specifically, HPVs are classified according to
the malignancy of infections that they cause: low-risk virus (LR-HPV) that
produce benign lesions (like HPV-6 and HPV-11 that lead to genital and
laryngeal warts) and high risk viruses (HR-HPV) that cause precancerous
lesions and cancer (HPV types 16, 18, 31). Despite their differences, they all
show a high degree of cellular tropism, infact all types of HPVs only infect
epitelial tissue, although the nature of epitelia can differs from dried or cuta-
neous squamous epithelium (skin) and mucous membranes (oral and genital)
[13] [14]. Each year, about 33,000 new cases of cancer are found in parts
of the body where HPV is often found and it is estimated to be the cause
of about 26,900 of these cancers [15]; it is clearly of paramount importance
to improve our knowledge about the mechanisms that regulate the infection
stages. All human papillomaviruses have a similar genome organization, life
cycle and regulation, but since HPV-16 is the most widely studied because
it is by far the most common cancer-associated HPV type [16], from now on
the word HPV will be used to refer to HPV-16.
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Figure 3.1: Schematic representation of the HPV-16 genome

3.1 The HPV-16 genome and life cycle

The DNA of HPV is circular, double stranded, and contains approximately
8 kilo base pairs (Kbp). Its genome can be divided into three main areas:
the long control region (LCR), the early genes (E1, E2,E4 ,E5 ,E6 ,E7), and
the late genes (L1 and L2).
The LCR region corresponds to 15 percent of viral genome and does not
contain genes but is the location of important regulatory elements such as
the early promoter P97, which is very active during replication. The virus
genome contains also a late differentiation-regulated promoter P670 located
within the E7 open reading frame [17].
Both promoters are polycistronic, hence produce polycistronic pre-mRNAs
that are subjected to alternative splicing through the use of various early
splice sites.
The early region represents 45 percent of the genome and contains the 7
early genes, which encode for non-structural homonym proteins, each with
different functions. E6 and E7 are the main oncogenes and their expression
is fundamental to induce cervical cancer. E1 is the main responsible for
DNA replication, in cooperation with E2, bringing together the episomal vi-
ral genome and the cellular DNA polymerase. E2 is the main transcriptional
regulator: it becomes active by binding with the early promoter and has both
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the functions of transcription promoter and suppressor when present in low
and high concentrations respectively [5].
E4 produces proteins involved in the maturation of the viral particles, it is
thought to facilitate virion release into the environment by disrupting inter-
mediate filaments of the keratinocyte cytoskeleton. Moreover it is believed
that E4 facilitates genome amplification. E5 is believed to have role in cellu-
lar proliferation and genome amplification.
The late region corresponds to 40 per cent of the genome and contains two
genes that encode for structural proteins from the capsid: L1 and L2.

HPV life cycle (Figure 3.2) is strictly linked to the differentiation stage of
the infected cells (keratinocytes) and requires a continuity of tissues in order
to be able to penetrate and initiate an infectious process. For that reason
infection starts in the basal layer of the epithelium.
In the early stages of the viral life cycle the promoter starts the replication
with the help of E1 and E2 , as the infected cell divides and migrates to the
upper layers E6 and E7 stimulate cell growth in order to continue replication
and increase the viral early genes expression. After, thanks to high level of
E2, the early promoter is inhibited and the cell downregulates the expression
of E6 and E7 allowing the infected cell to differentiate. This is the beginning
of the differentiation-dependent stage of HPV life cycle that is turned on by
high levels of E4, which is believed to promote the release of progeny virions.
At the end the capsid proteins L1 and L2 are produced and assemble the
progeny virions at the upper layer of epithelium: the superficial zone consti-
tuted of squamous epithelium [5] [14] [16].

Different antiviral strategies against HPV high risk types have been pro-
posed through the years targeting different stages of the virus life cycle. One
therapy can target the actors of the late stages, namely the oncogenes or
directly the late genes L1 and L2.
Another strategy can target replication and transcription using compounds
against E1 and E2. Moreover it was discovered recently that E1 has both
the action of positive regulation of E2 transcripts and of protein stabiliza-
tion up to an half-life of 6 hours. This means that E1 could be able to
allow E2 to reach the high levels that characterize its differentiation levels
that turn down the early promoter. Since these new discoveries about E1

and E2 co-regulation result very interesting in the optic of creating new and
efficient therapy, a novel model of HPV regulatory mechanisms from a quali-
tative/quantitative point of view was presented in the article “Modeling HPV
early promoter regulation” by Giaretta et al. [5].
The next Section has the aim of introducing the model.
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Figure 3.2: The Human Papillomavirus 16 life cycle.HPV-16 life cycle
stars in the basal layer of the epithelium where it enters thanks to small wounds
or abrasions and attaches via heparan sulphate proteoglycans. With the activa-
tion of the early promoter, replication is initiated with the mediation of E1 and
E2 early proteins. Cellular splicing factors (serine-arginine-rich (SR) proteins),
heteroungeneous nuclear ribonucleouproteins (hnRNPs), cleavage stimulator fac-
tors (CSTF) and others are highly expressed in the early and middle phases but
shutted down at late stages. As the infected cell differentiates, cell growth is stim-
ulated by E6 and E7. Their expression is then shutted down by high levels of E2.
High levels of E4 facilitates the release of progeny virions and the cell reaches the
upper layer of the epithelium where late proteins L1 and L2 assemble the capsid
constituiting the ultimate progeny virions.

3.2 The model

The model presented in [5] is focused on E1 and E2 regulation on the HPV
(in episomal form) early viral stage and collects and structures the available
knowledge on the early promoter regulation .
The mechanisms of HPV early gene circuit is depicted in Figure 3.3.
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Figure 3.3: Diagram of the HPV-16 gene circuit. Solid arrows represent fluxes
while dashed arrows the controls. In blue are represented the primary transcripts
and in green the transcripts with their respective non-oncogenic proteins while in
red the early oncogenes.

The primary polycistronic transcript x is controlled by the early promoter.
When x is transcripted, it generates , by alternative splicing , mRNAs en-
coding all the early genes: in particular the model focuses on the spliced
mRNA E2 (mE2) that encodes for E2 protein and the spliced mRNA E1

(mE1) that encodes for E1 protein. E2 is the main regulator of the early
promoter x act as an activator (positive feedback effect), when present in
low concentrations, or a suppressor, when present in high concentration. E1

act both with a positive feedback enhancing the mE2 transcript and with a
negative regulation on E2 degradation, increasing E2 stability.
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3.2.1 Model equations

Model equations are the following:

ẋ = Sx(E2)− ksx (3.1)
˙mE1 = k1s(t)ksx− δ1mmE1 (3.2)

˙mE2 = k2s(E1)ksx− δ2mmE2 (3.3)

Ė1 = β1mE1 − δ1pE1 (3.4)

Ė2 = β2mE2 − δ2p(E1)E2 (3.5)

˙mEi = kisx− δimmEi i = 4, 5, 6, 7 (3.6)

where the state variables are the primary transcript x, mRNAs mEi, i =
1, 2, 4, 5, 6, 7, proteins E1 and E2. Protein translation is assumed to be lin-
early related to mRNAa concentrations and its rate constants for E1 and
E2 are β1 and β2. δim and δip are degradations of transcripts and proteins
respectively and are first order processes with exception of δ2p (see (3.12)).
Sx is a function that represent the transcription of x and depends on E2

concentration. Low concentrations of E2 enhances the transcription while
high concentrations have the effect of inhibiting transcription, according to
the formula:

Sx(E2) =


Sb +

a1E
q1
2

λ
q1
1 +E

q1
2
, E2 < Eth

2

a2λ
q2
2

λ
q2
2 +(E2−Eth2 )

q2 , E2 > Eth
2

(3.7)

For the continuity of the function, a2 is parameter dependent, following the
expression:

a2 = Sb +
a1(Eth

2 )q1

λq11 + (Eth
2 )q1

(3.8)

k1s is modeled as a time variant forcing function and represents the splicing
flux for the mE1 transcript. As the life cycle of HPV is strictly linked to the
host cell differentiation, also k1s function is bounded to this differentiation
and the variable t is the time evolution associated to it.

k1s(t) =


kmin1s + a3tq3

λ
q3
3 +tq3

, t < th

a4λ
q4
4

λ
q4
4 +(t−th)q4

, t > th

(3.9)
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Like a2, also a4 is parameter dependent for the continuity of the function,
following the expression:

a4 = kmin1s +
a3t

q3
h

λq33 + tq3h
(3.10)

On the other hand k2s accounts for the splicing flux for the mE2 transcript
and depends on E1 concentration.

k2s(E1) =
(f1 − 1)kmin2s

1 + exp
(
λ5−E1

σ1

) + kmin2s (3.11)

δ2p refers to the degradation of E2 , negatively regulated by E1 according to

δ2p(E1) = (f2 − 1)δmin2

1− 1

1 + exp
(
λ6−E1

σ2

)
+ δmin2 (3.12)

The meaning and nominal values of model parameters inferred from the
available literature are summarized in Table 3.1, taken from [5].
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Par Description Value u.m.

Sb Basal transcription synthesis of the primary transcript x 10 [nM/min]

ks Nucleo cytoplasmatic transport 0.0693 [-]

a1 Transactivation constant of x 1.6 [nM/min]

E2
th

E2 concentration threshold of transactivation/repression 5 [nM]

λ1 x concentration for half-maximal x transactivation 2.83 [nM]

q1 Hill coefficient of E2 positive feedback 2 [-]

a2 Repression constant of x 11.21 [nM/min]

λ2 x concentration for half-maximal x repression 2 [nM]

q2 Hill coefficient of E2 negative feedback 2 [-]

a3 Saturating value of mE1 transcription rate during early phase 12.34 [1/min]

λ3 Half-maximal of mE1 transcription rate during early phase 3.76*1e4 [min]

q3 Hill coefficient of mE1 transcription rate during early phase 4 [-]

a4 Initial value of mE1 transcription rate during late phase 0.38 [1/min]

λ4 Half-maximal of mE1 transcription rate during late phase 5*1e3 [min]

q4 Hill coefficient of mE1 transcription rate during late phase 2 [-]

th Time threshold of mE1 transcription rate 12 [days]

f1 Fold increase of mE2 transcription rate 10 [-]

kmin1s Basal mE1 transcription rate 9*1e-3 [1/min]

kmin2s Basal mE2 transcription rate without E1 positive regulation 9*1e-3 [1/min]

λ5 Half-maximal of mE2 transcription rate 9 [nM]

σ1 Slope parameter of mE2 transcription rate 0.7 [nM]

λ6 Half-maximal of E2 degradation rate fixed to obtain mE2 enhancement 13 [nM]

σ2 Slope parameter of E2 degradation rate 0.7 [nM]

δmin2 Basal E2 degradation rate without E1 negative regulation 0.0019 [1/min]

f2 Fold decrease of E2 degradation rate 4 [-]

δ1m mE1 degradation rate 2.9*1e-2 [1/min]

δ2m mE2 degradation rate 2.9*1e-2 [1/min]

δ1p E1 degradation rate 5.7*1e-3 [1/min]

β1 E1 translation rate 1.5*1e-2 [1/min]

β2 E2 translation rate 2*1e-2 [1/min]

Table 3.1: Table of the model parameters. First column contains the names of
the parameters; second column shows their meanings; third column contains their
nominal values;the last one presents the units of measure.
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3.2.2 Model predictions

Model equations were implemented in MATLAB in order to assess the trends
of the model state variables (Figure 3.4), the simulation time is set from 0
to 14 days (early stages).
The initial phase appears very fast and, more or less 6 hours after infection,
every variables reach a steady state. This behavior agrees with experimental
results that state the presence of the early transcripts between 4-10 hours
after infection. The primary transcript x shows a slow switching off around
8-12 days post infection and this is consistent with literature, it is also im-
portant to note that the only effect of E2 transactivation/repression is not
sufficient to turn off the early promoter, but also E1 effect is needed.

Figure 3.4: Curve trends of the model state variables.

Synthesis of the primary transcript , rate constant for mE1 splicing, E2

degradation mediated by E1, rate constant for mE2 splicing mediated by E1
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trends are depicted in Figure 3.5.

Figure 3.5: (A) Synthesis of the primary transcript depending on E2 concentra-
tion. (B) Rate constant for mE1 splicing. (C) E2 degradation mediated by E1.
(D) Rate constant for mE2 splicing mediated by E1.



Chapter 4

Sensitivity analysis: MATLAB im-
plementation

In the present work, local sensitivity analysis is performed on the model
of Chapter 3 with the use of the software MATLAB. The methods that
were implemented are: the Indirect method or Difference Quotient method
(DQM), the Direct method (DM) and Impulse Parametric Sensitivity Anal-
ysis (iPSA). For the case of conventional PSA, sensitivity coefficients were
calculated assuming the time of perturbation corresponding to t0 = 0, hence
the sensitivity coefficient have only one time dependence on the observation
time t. On the other hand, for iPSA the definition presented in the previous
chapter is maintained. Since the matlab code implementation requires some
degrees of approximation and discretization that have to be considered for
the reliability of the results, in this Chapter the approximations introduced
in the code implementation of each method are described, along with the
issues that were faced during implementation and running of the code.
PSA analysis is first restricted to the state variables E1 and E2, the two
proteins, in order to select the best approach between DM and DQM.
These two methods are compared based on computational complexity and
results reliability. iPSA was first implemented at the beginning for protein
E2 with both numerical and analytical approach. The sensitivities of sys-
tem parameters were calculated for all the state variables and the metrics
of eq. (2.26) were performed for conventional PSA, in order to select the
most conditioning parameters for every variable. On the other hand iPSA
was applied only to state variables x, mE2 and E2 and for the parameters
that were considered the most interesting in PSA analysis results and from
the biological point of view. Results and comparison of conventional PSA
and iPSA are presented in Chapter 5. Moreover code implementations are
reported in Appendix B for the specific example of the parameter q2 and
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state variable E2.

4.1 Indirect method

Considering a generic prediction of the state variables depending on model
parameters and initial conditions y(t) = f(p1, p2, . . . , pm, t) , the first-order
coefficients can be written for Matlab implementation as difference quo-
tient :

S̄i,j(t) =
f(p1.., pj + ∆pj, ..pm, t)− f(p1..pj..pm, t)

∆pj

pj
y(t)

(4.1)

For this reason the Indirect method is named from now on Difference Quo-
tient method (DQM).
DQM was implemented with the following magnitude of parameter pertur-
bation ∆pj = 1%, 5%, 10% of pj nominal values (for nominal values see Table
3.1).
This choice was made with the aim of discriminating what degree of approx-
imation can be accepted: in order to complete this task the results need to
be compared with the ones of the direct method that directly calculates the
sensitivity coefficients with, in theory, the smallest approximations.
In the calculation of sensitivity coefficients with DQM is necessary to know
the concentration-time curves of the state variables with the non perturbed
parameters and to calculate concentration-time curves of the state variables
with the perturbed value of the specific parameter under consideration. Both
cases involve the use of a ordinary differential equations solver and ODE45
MATLAB function was used. The non-perturbed and perturbed trajecto-
ries are then subtracted and divided for the magnitude of perturbation (see
Appendix section B.1).

4.2 Direct method

The Direct method was applied on the state variables using approach (2)
described in section 2.2. This approach consists in the subdivision of the
sensitivity problem in m sub-problems, one for each parameter obtaining m
systems of 2n equations, n for eq. (2.1) and n for eq. (2.5). This approach
requires the solution of 2n·m differential equations, this version is very simple
but is the least economical and in some cases can cause numerical difficulties.
Even if approach (2) is the least efficient and economical, in the case of the



4.3. IPSA 27

model of Chapter 3 this is not relevant because the model does not present
a large number of equations and the software manages to run the code with-
out any problems of computation time. Only an ODE function,containing
2n = 2 · 5 = 10 differential equations, is needed for each parameter both
for the calculation of state variables concentration-time curves and for the
calculation of equation (2.5).
Again the ODE solver that was used for the simulation is ODE45, the ob-
tained values were then interpolated using the function "interp1".
It is important to notice that the Jacobian matrix, implemented within the
ODE functions, remains the same for each parameter.
Matlab code is presented in Appendix B.2 for the example of state variable
E2 with respect to q2, even if each parameter requires its own function to
implement the calculus of equation (2.5) since ∂f/∂pj is specific for each
parameter.

4.3 iPSA

As mentioned above, iPSA was implemented with both numerical and ana-
lytical approaches. In particular, numerical approach consists in applying the
iPSA coefficient definition which states that the iPSA coefficients quantify
the ratio between the change in the state xi at time t and the perturbation of
size ∆pj

∆τ
for a duration of ∆t applied to the parameter pj at time τ with ∆pj

and ∆τ tending to zero. Analytical approach consists in applying the formula
of equation (2.15) which can be done with different implementations, two of
them are presented in the following. Both matlab implementations result to
be computationally heavy giving the need to produce huge size matrices of
data with different ode solver applications.

4.3.1 Numerical approach

Numerical approach needs to produce an impulsive perturbation at each τ
(0 ≤ τ ≤ t) to the nominal value of each parameter in order to quantify
the ratio between the perturbed and non-perturbed state trajectories. The
perturbation was introduced through a gaussian approximation of an impulse
using the matlab function gaussmf(x, [σ c]). gaussmf creates a gaussian
function in the form

f(x;σ, c) = e
−(x−c)2

2∗σ2 ; (4.2)

and returns a matrix which is the Gaussian membership function evaluated
at x. [σ c] is a 2-element vector, containing the mean (c) and the standard de-
viation (σ), that determines the position and the shape of the function. The
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gaussian perturbation is added to the nominal value of the parameter and
needs to be produced inside the ODE solver that calculates the perturbed
trajectories; for this reason a different ODE function was created for each
parameter in order to perturb one parameter at a time. The level of pertur-
bation that was set for this analysis is ∆pj = 0.01 ∗ pj (1 % of pj nominal
value). Once perturbed trajectories are calculated, the (normalized) iPSA
coefficients are obtained as follows:

iSi,j(t, τ) =
x∆
i (t)− xi(t)

∆pj
· pj
xi(t)

(4.3)

where x∆
i (t) is the i-th perturbed state trajectory consequent to a perturba-

tion of the j-th parameter pj at time τ and ∆pj is the perturbation magnitude.

4.3.2 Analytical approach

The implementation of iPSA coefficients through the analytical approach re-
quires the calculation of the elements of the Green’s Function matrix (GFm).
For Matlab implementation the (i,j)-th of the GFm element was calculated
as:

Sxi,j(t, τ) =
∂xi(t)

∂xj(τ)
∼=

∆xi(t)

∆xj(τ)
=
x∆
i (t)− xi(t)

∆xj(τ)
(4.4)

Where x∆
i (t) is the i-th perturbed state trajectory consequent to a perturba-

tion of the j-th state xj at time τ .
In this work the perturbation of the system states was set as ∆xj = 0.01max(xj)
(1% of xj maximum value) and the same perturbation magnitude was used
at different perturbation times τ . The perturbation was introduced at every
τ through the initial conditions; in other words the initial conditions were
changed at every cycle of computation adding ∆xj to the nominal value of
xj(τ), for example the vector of initial conditions for introducing the pertur-
bation in E2 is [x(τ);mE1(τ);mE2(τ);E1(τ);E2(τ) + ∆E2]. The perturbed
trajectories were obtained attaching the non-perturbed part of the signal to
the perturbed part, going from τ to the end of simulation time. An alter-
native way to introduce the perturbation can be the use of the previously
mentioned function gaussmf, added to the state variable nominal values in-
side the model equation of the ODE solver. However this alternative makes
use of an impulse approximation thus the previous method is to be considered
the most correct, for this reason the alternative using gaussian perturbation
will no longer be investigated. In order to generate the GFm it is necessary
to generate the trajectories of every single state variable consequent to the
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perturbation on only one state variable, one at a time. Once GFm is gen-
erated, (normalized) iPSA coefficients are obtained applying the formula of
equation (2.15):

iSi,j(t, τ) = Sxi,[1..n](t, τ)
∂f

∂pj
(τ) · pj

xi(t)

It is important to notice that iPSA coefficients calculated with this approach
cannot be directly compared to the ones calculated with numerical approach
since the perturbation is applied on the state variables and on the parameters
respectively. A normalization between values [1;-1] needs to be applied in
order to compare the final results.
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Chapter 5

Results

As previously mentioned, in the case of conventional PSA, each method was
first implemented on E1 and E2 state variables only in order to select the
most efficient PSA method to use for the other state variables. Similarly,
iPSA was firstly implemented on E2 in order to reach the best MATLAB
implementation and in this Chapter the final results are presented, also for
the other state variables.

5.1 Comparison between DQM and DM

DQM and DM represent two ways to calculate the sensitivity coefficients, but
their results depend on approximations, for DM of the ODE matlab function
integration step and options and for DQM for the ∆pj set in the calculation.
Theoretically the DM results should be considered the most accurate but, on
the other hand, the DM is computationally more heavy than the DQM since
the DM (with approach (2)) involves 2n ·m differential equations while the
DQM involves only (m+ 1)n differential equations (usually m > n).
The two methods were applied on E1 and E2 and in particular the DQM was
implemented with three different magnitude of perturbations related to the
nominal value of the parameter pj: 1%, 5%, 10% .
The results were compared in order to decide if for this model the use of
DM is necessary or if the computationally simpler DQM can be applied. The
results of local PSA applied to E1 and E2 for all model parameters are shown
with ∆ =: 1%, 5%, 10% in Table 5.1 and Table 5.2 while a graphical compar-
ison between DM results and DQM results with ∆pj = 0.01pj is depicted in
Figure 5.1 and in Figure 5.2. Data corresponds to the integrated sensitivities
[Sint]i,j (eq. (2.26)) calculated through the DM and through the DQM with
∆ =: 1%, 5%, 10%.
As evident from Table 5.1 and 5.2, the values calculated with DQM with
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∆ = 5%, 10% are sometimes significally different from the ones calculated
with the DM. While from Figure 5.1 and 5.2 DQM results with ∆ = 1%
appear to be similar to DM results for most but not all parameters. From
the complexity of computation point of view DM involves an acceptable nu-
merical efforts since the model has not a high complexity and the number of
differential equations to solve is "only" 2n ·m = (2 · 5) · 28 = 280.
These considerations suggest to choose the DM instead of DQM for comput-
ing sensitivity coefficients and their metrics. From now on the results are
obtained with DM, except if differently specificated.



5.1. COMPARISON BETWEEN DQM AND DM 33

Table 5.1: Comparison between integrated sensitivity results of model parameters
for E1. Values of the integrated sensitivities for direct method and for the difference
quotient method with ∆ = 1%,5%,10%, and percentage difference between the
direct method and the others.
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Table 5.2: Comparison between integrated sensitivity results of model parameters
for E2. Values of the integrated sensitivities for direct method and for the difference
quotient method with ∆ = 1%,5%,10%, and percentage difference between the
direct method and the others.
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Figure 5.1: Comparison between integrated sensitivity results of model parame-
ters for E1 with Direct Method (blue) and with Difference Quotient Method with
∆pj = 1% (red).
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Figure 5.2: Comparison between integrated sensitivity results of model parame-
ters for E2 with Direct Method (blue) and with Difference Quotient Method with
∆pj = 1% (red).
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5.2 PSA results with DM

5.2.1 Main viral DNA replication regulator E1

It is evident from Figure 5.1 that, for the protein E1, the parameters with
higher integrated sensitivity magnitude are λ3, q3 and th. These parameters
belong to the time variant forcing function of equation (3.9) that represents
the splicing flux for the mE1 transcript and their meanings is summarized in
Table 5.3.

Parameter Description

λ3 Half-maximal of mE1 transcription rate during early phase

q3 Hill coefficient of mE1 transcription rate during early phase

th Time threshold of mE1 transcription rate

Table 5.3: Model parameters with higher sensitivity for E1. First column contains
the names of the parameters; second column shows their meanings.

In the next figures the curve trends of sensitivity coefficients are shown
for model parameters λ3, q3 and th.

Figure 5.3: Time course of E1 sensitivity to λ3, q3 and th calculated with DM.
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Figure 5.4: Time course of E1 sensitivity to (A) λ3, (B) q3 and (C) th calculated
with DM and DQM.

As evidentiated by Figure 5.3 and Figure 5.4, the parameter th seems to
have a higher influence in the last part of the time scale, from t = 12 day
to t = 14 day, on the other hand λ3 and q3 have a higher influence in the
previous times especially around t = 7− 8 days.
The sensitivity time curve of th is in agreement with its meaning: th is a
threshold and it plays a role after 12 days. More specifically, th represents
the time (nominal value equal to 12 days) when E1 transcripts shows the
stronger peak in the expression [18]. Hence, it is reasonable that parameter
th presents a high sensitivity for E1 since it represents the time in which mE1

expresses the highest level of Viral DNA (vDNA) amplification.
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Conversely the importance of λ3 and q3 and their sensitivity trends are in ac-
cordance with the literature. It was evidentiated in the study of Ozbun et all.
[18] that a tissue culture system infected by HPV faithfully mimics the dif-
ferentiation and maturation processes of keratinocytes that form epithelium.
The tissue culture undergo a program of stratification and differentiation by
day 12, exactly like the healthy tissue. At day 12, the infected tissue is "fully
able to support the complete HPV life cycle as assayed by the ability to detect
amplification, late gene transcripts, capsid proteins, and viral particles" [18].
More specifically, the study showed an increase in the levels around 8-10
days, followed by a peak around day 12 and then a drop.
These aspects, mirrored by the systems and the sensitivity study, confirms
the importance of the time dependent splicing function. Parameters λ3 and
q3 represents negative sensitivity values since increasing values of these pa-
rameters leads to a decreasing in the values of k1s(t); moreover the sensitivity
curve trends show for both λ3 and q3 a small peak around day 8 and a higher
peak at day 12. These are the two times at in which the study in [18] showed
the rising in E1 RNA levels. From a biological point of view, these two
parameters are connected to the way the viral cycle system controls DNA
replication speed. The control is represented by a sigmoid where q3 regulates
the promptness of the system and the sigmoid slope while λ3 regulates the
velocity to reach the maximum. A small λ3 causes higher E1 concentrations
and DNA replication is faster but normally the system tries to keep high
lambda3 to counteract cellular differentiation.
Another observation concerns the importance of δmin2 , that even if appears
with a smaller sensitivity than the other three parameters, deserves a consid-
eration. It is an important parameter involved in the co-regulation of E1 and
E2 and it is expected to appear as a driving factor as confirmed by sensitivity
results.
Besides the integrated sensitivities, the other two metrics of equation (2.26)
were implemented : sensitivity based on infinite norm and sensitivity at a
particular time both from the results of the direct method . In this analysis
was chosen t = 12.3 day in order to highlight possible unexpected behaviors
of the parameters after the threshold th.
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Figure 5.5: Sensitivity based on infinite norm of model parameters for E1.
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Figure 5.6: Sensitivity at t = 12.3 days for model parameters for E1.

As evident from Figure 5.5 and Figure 5.6 the results obtained with the
integral metrics are confirmed and no other unexpected results are revealed.

5.2.2 Main transcriptional regulator E2

Concerning protein E2, Figure 5.2 suggests that the parameters with higher
integrated sensitivity magnitude are λ2, q2 and Eth

2 followed by Sb and δmin2 ,
even if the magnitudes are much smaller than in E1 case. The lower magni-
tude can be explained through the fact that E1 RNA levels are much higher
then E2 levels during more or less all the differentiation period [18]. These
parameters, with the exception of δmin2 , belong to the equation (3.7) of Sx
that refers to the transcription of x enhanced by low values of E2 concentra-
tion and repressed by elevated E2 concentration, confirming the role of E2
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as main transcriptional regulator.
The meaning of the previously mentioned parameters is summarized in the
following Table.

Parameter Description

λ2 x concentration for half-maximal x repression

q2 Hill coefficient of E2 negative feedback

Eth
2 E2 concentration threshold of transactivation/repression

Sb Basal transcription synthesis of the primary transcript x

δmin2 Basal E2 degradation rate without E1 negative regulation

Table 5.4: Table of the model parameters with higher sensitivity for E2. First
column contains the names of the parameters; second column shows their meanings.

In the next figures the curve trends of sensitivity coefficients are shown
for the most sensitive parameters for E2.

Figure 5.7: Time course of E2 sensitivity to λ2, q2 and Eth2 , Sb, δmin2 calculated
with DM.



5.2. PSA RESULTS WITH DM 43

Figure 5.8: Time course of E2 sensitivity to (A) λ2, (B) q2 and (C) Eth2 calculated
with DM and DQM.

As highlighted by Figure 5.7 and Figure 5.8, the parameter Eth
2 seems to

have a bigger influence in the first part of the time scale and has the same
sensitivity of λ2 around t = 7 − 8 day, on the other hand q2 has a bigger
influence in the second half part of the time scale. Moreover all sensitivity
curves show a peak at the beginning of the time sequence that can be re-
conducted to the trend of the system state variables that present a very fast
initial phase before reaching the steady state. Eth

2 dominance until 7-8 days
can be explained pointing out that, enhancing Eth

2 threshold means to pro-
long the phase of x transcription hence increasing E2 concentration. On the
other hand, λ2 and q2 importance highlights the predominance of negative
feedback of E2 over the positive one (statement that is confirmed by the low



44 CHAPTER 5. RESULTS

sensitivity of parameter q1 belonging to the positive feedback). Parameter
q2 has a negative sensitivity since high values of this parameter enhance the
negative feedback of E2 suppressing x transcription, hence E2 production.
Concerning Sb and δmin2 , the first has not a very informative curve trend,
reaching a steady state after the first peak, the second has a curve trends
that after the first peak is more or less symmetrical to the one of Eth

2 .
Figure 5.10 shows the sensitivity magnitude after time threshold th, the re-
sults confirm the ones of integrated sensitivities. On the other hand Fig-
ure 5.9 shows the results for sensitivity based on infinite norm from where
it is highlighted the importance of other two parameters. In particular this
analysis underlines the importance of E1 feedback, both negatively, repre-
sented by the high sensitivity of parameter q3, and positively, represented by
parameter kmin2s . Also β2 presents an high sensitivity for E2, representing its
translation rate. Looking at integrated sensitivity, one can see that q3 and
kmin2s and β2 are also present as highly sensitive parameters, hence showing
that infinite norm constitutes a confirmation of the previous results and not
a contradiction.
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Figure 5.9: Sensitivity based on infinite norm of model parameters for E2.
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Figure 5.10: Sensitivity at t = 12.3 days for model parameters for E2.

5.2.3 The primary polycistronic transcript X

Sensitivity metrics of Equation 2.26 were implemented for the state variable
x, representing the primary transcript.
In the order Figure 5.11 shows the time integrated sensitivity coefficients,
Figure 5.12 shows sensitivity at the particular time t = 12.3 day and Fig-
ure 5.14 shows sensitivity based on infinite norm.
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Figure 5.11: Time integrated sensitivity for x.
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Figure 5.12: Sensitivity at t = 12.3 days for model parameters for x.

Time integrated sensitivity coefficients show that the three parameters
with higher sensitivity for x are ks, δmin2 and q2 and the same result is con-
firmed by sensitivity at time t = 12.3 day (Figure 5.12). Other noticeable
parameters are kmin2s , β2 and f1. Their meanings are summarized in Table
5.5.
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Parameter Description

ks nucleo cytoplasmatic transport

δmin2 Basal E2 degradation rate without E1 negative regulation

q2 Hill coefficient of E2 negative feedback

f1 Fold increase of mE2 transcription rate

kmin2s Basal mE2 transcription rate without E1 positive regulation

β2 E2 translation rate

Table 5.5: Model parameters with higher sensitivity for x. First column contains
the names of the parameters; second column shows their meanings.

As evident from the Table, ks is the parameter that refers to x degra-
dation through nucleo cytoplasmatic transport however δmin2 refers to the
degradation rate of E2 (Equation 3.12) and q2 is involved in the transcrip-
tion of x regulated by E2 concentration.
Parameters kmin2s and f1 belong to Equation 3.11 that accounts for the mE2

transcript splicing flux, while β2 accounts for E2 translational rate. Concern-
ing these results the importance of E2 activity for the regulation of primary
transcript x is evident. Sensitivity time curves of these parameters were plot-
ted together for comparison in Figure 5.13.
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Figure 5.13: Time course of x sensitivity to ks, δmin2 and q2, β2, f1 and kmin2s

calculated with DM.

All parameters show a fast peak at the beginning of the time scale, mir-
roring the trend of the system state variables. Besides the first peak of δmin2 ,
the parameter with higher sensitivity is ks that presents a steady sensitivity
curve at -1 after the first peak. Even if this curve trend is not informative, it
is mandatory to underline the importance of parameter ks since it is bonded
to the velocity of the splicing and conversion into transcripts, which is very
high in eukaryotes; this is important considering that HPV is a DNA virus.
The sensitivity curves of q2 and δmin2 are more are more or less symmetrical
after day 6 and present a small peak around day 8 and highest sensitivity
after day 12.
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Figure 5.14: Sensitivity based on infinite norm of model parameters for x.

Sensitivity based on infinite norm depicts the importance of parameters
belonging to the gene regulatory network that leads to E2 expression, demon-
strating again the importance of E2 feedback for the state variable x.

5.2.4 mRNA mE1 encoding for protein E1

Sensitivity metrics of Equation 2.26 were implemented for the state variable
mE1, representing the spliced mRNA that encodes for E1 protein.
In this case the results of sensitivity analysis for E1 are perfectly reproduced.
As evident from Figure 5.15 showing the time integrated sensitivity coeffi-
cients, Figure 5.16 showing sensitivity at the particular time t = 12.3 day and
Figure 5.17 showing sensitivity based on infinite norm, the three parameters
with higher sensitivity are λ3, q3 and th. These are the same parameters that
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present the highest sensitivities for E1 and it is not surprising. mE1 concen-
tration is regulated by the effects of keratinocytes differentiation (k1s(t)) and
for this reason the controlling factor for this state variable belong reasonably
to this specific process.

Figure 5.15: Time integrated sensitivity for mE1.
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Figure 5.16: Sensitivity at t = 12.3 days for model parameters for mE1.
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Figure 5.17: Sensitivity based on infinite norm of model parameters for mE1.

Sensitivity time curves for mE1 most sensitive parameters are shown in
Figure 5.18.
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Figure 5.18: Time course of mE1 sensitivity to λ3, q3 and th calculated with DM.

The sensitivity time curves are almost coincident to the ones of E1 anal-
ysis, confirming the strong correlation between the two variables.

5.2.5 mRNA mE2 encoding for protein E2

Sensitivity metrics of Equation 2.26 were implemented for the state variable
mE2, representing the spliced mRNA that encodes for E2 protein.
As evident from Figure 5.19 and Figure 5.20 both time integral sensitivity and
sensitivity at t = 12.3 day reveal that the parameters with higher sensitivity
for mE2 are q2, β2 and δmin2 . It is important also to point out, the high
sensitivities of λ2 and of f1 and kmin2s belonging to Equation 3.11.
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Figure 5.19: Time integral sensitivity for mE2.
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Figure 5.20: Sensitivity at t = 12.3 days for model parameters for mE2.

In Table 5.6 the meanings of the most sensitive parameters for mE2 are
depicted .

Parameter Description

q2 Hill coefficient of E2 negative feedback

δmin2 Basal E2 degradation rate without E1 negative regulation

β2 E2 translation rate

Table 5.6: Model parameters with higher sensitivity for mE2. First column
contains the names of the parameters; second column shows their meanings.
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The three parameters of Table 5.6 are all involved in the regulation of E2

and their sensitivity time curves are presented in Figure 5.21.

Figure 5.21: Time course of mE2 sensitivity to q2, β2 and δmin2 calculated with
DM.

As evident from Figure 5.21 the three parameters present initial peaks,
similar to the ones of the other analysis and attributable to the fast phases
that characterize the trends of the state variables. At the beginning of the
simulation time, β2 has the highest sensitivity, then the parameters reach
the steady state where β2 and δmin2 present more or less symmetrical values.
Around days 8-10 all parameters show a variation (positive for q2 and β2

and negative for δmin2 ) and another steady state until day 12 followed by
another opposite variation and a steady state after day 12. Again there is a
confirmation of the importance of days 8 and 12 in the life cycle of the virus,
periods where E1 and E2 mRNA synthesis increase. Moreover the importance
of β2 is explained by the fact that it regulates the expression of E2 that turns
down x concentrations and consequently mE2 concentration. For parameter
q2 (and also for λ2) the considerations made for E2 are still valid while the
importance of δmin2 points out that no reduction can be applied to model
equation (3.12). Concerning the parameters mentioned in the beginning, f1

and kmin2s , their results are interesting because, even if their correct nominal
values are still under investigation, their role is connected to the steady state
value that E2 assumes which is regulated by E1 feedback (Equation 3.12).
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Figure 5.22: Sensitivity based on infinite norm of model parameters for mE2.

On the other hand, sensitivity based on infinite norm (Figure 5.22) shows
the importance of parameters like q3 and λ3 belonging to the splicing flux
for mE1 transcript. These results can be explained as a confirmation of
the importance of E1 regulation path for mE2 since the splicing flux for
mE2 transcript is positively regulated by E1. Again, looking at integrated
sensitivity results, one can see that no contradictory results are highlighted
in Figure 5.22 with respect to Figure 5.19.

5.3 Impulse parametric sensitivity analysis

The sensitivity coefficients produced by iPSA have a double time dependence,
from the time of perturbation τ and from the observation time t (with t ≥ τ).
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Hence, the coefficients iSj,i produced by the code implementation consist in
matrices where the rows represent the observation times t and the columns
the perturbation time τ and an intuitive possible graphical representation is
constituted by the heatmap with rainbow colormap. Since iPSA coefficient
matrices calculated for this analysis have huge dimension (1401x1401) and
the computational effort for the plot is very heavy, heatmaps were generated
only for some selected parameters and state variables, considered interesting
regarding PSA analysis results and biological meanings. The chosen param-
eters are q2, λ2, f1, Sb, Eth

2 , δmin2 , kmin2s and the state variables that were
considered for this analysis are x, mE2 and E2. This choice is justified by
the importance of E2 gene regulatory network, from primary transcript x
to transcript mE2 to E2 protein. The chosen parameters are of paramount
importance for this network, in particular q2 and λ2 address the negative
feedback of E2 for the regulation of x transcription, Sb accounts for the basal
transcription of x, Eth

2 corresponds to the value of E2 that turns the feedback
from positive to negative and vice versa, f1 and kmin2s are interesting in the
optics of investigating E1 positive regulation of mE2 splicing flux while δmin2

is interesting for the negative regulation operated by E1 in the degradation
of E2.
When heatmaps were produced with both numerical and analytical approach,
smooth colored images were expected, but it was evident that some oscilla-
tion were present as depicted in Figure 5.23 and 5.24.

Figure 5.23: Heatmap illustrating iPSA coefficients (∂E2(t)
∂q2(τ) ) of state variable E2

with respect to parameter q2 (numerical approach).The x-axis gives the time at
which impulse perturbation (τ ∈ [0 − 14]days) is applied to the parameter, while
the y-axis indicates the observation time t (t ∈ [0− 14]days). The plot is scaled to
have values between -1 and +1.
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Figure 5.24: Particular of Heatmap presented in Figure 5.23 illustrating iPSA
coefficients of state variable E2 for the parameter q2 (numerical approach).

Since similar oscillations are present in all heatmaps, the origin of this
behavior was investigated. To better describe the characteristics of these
oscillations, let’s fix the time of observation at t = 6.41 day (see Figure 5.25)
and plot the time course curve of iPSA coefficient as a function of τ . The
curve is depicted in Figure 5.26.

Figure 5.25: Selection of t = 6.41 day in Figure 5.23 illustrating iPSA coefficients
of state variable E2 for the parameter q2 (numerical approach).
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Figure 5.26: iPSA analysis for E2 with respect to parameter q2 (numerical ap-
proach). The curve illustrates the iPSA coefficients at different perturbation times
τ for time of observation t = 6.41 day.

It seems that for early times of perturbation, no effect is visible and
iPSA coefficients have zero value while from τ ≈ 3 − 4 to τ ≈ 6.5 day the
systems reacts with obscillating behavior. This means that, when perturbing
parameter q2 before day 3, E2 perturbed curve should show no differences
with the nominal one, however when perturbing parameter q2 between 3 and
6.5 days some variations should be observed. Moreover oscillations appear
to have a period of ≈ 0.2 days. In order to investigate this behavior three
times of perturbation were selected from Figure 5.26: τ1 = 2.14, τ2 = 4.52,
τ3 = 4.61 day. The three τ correspond to three cases:

• case (A) τ1 = 2.14 day: iPSA coefficient is zero (steady region)

• case (B) τ2 = 4.52 day: iPSA coefficient = 0.6716, it belongs to a
positive peak (oscillating region)

• case (C) τ3 = 4.61 day: iPSA coefficient = −0.6877, it belongs to a
negative peak (oscillating region)

E2 nominal and perturbed curves (in the three times of perturbation)
were plotted together for comparison as depicted in Figure 5.27.
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Figure 5.27: Comparison between E2 nominal (blue) and perturbed curve (red)
for three perturbation times (A) τ1 = 2.14, (B) τ2 = 4.52, (C) τ3 = 4.61 day.

As expected a perturbation at time previous to day 3 as in case (A)
produces no effect on E2 trajectory while perturbations after day 3 produce
a perturbed E2 trajectory that presents oscillatory behavior (cases (B) and
(C)). Let’s zoom around the perturbation times and the perturbed part for
cases (B) and (C) obtaining the following figures.

Figure 5.28: Particular of Figure 5.27 (B) illustrating the comparison between
nominal E2 trajectory and perturbed trajectory.
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Figure 5.29: Particular of Figure 5.27 (C) illustrating the comparison between
nominal E2 trajectory and perturbed trajectory.

It is evident that the state trajectories have an oscillating behavior con-
sequent to the impulse perturbation even if these oscillation do not appear
immediately at the time of perturbation. In fact the higher variations are
concentrated in the region going from τ ≈ 5.5 − 6 to τ ≈ 7.5. This region
correspond to the τ values of the coloured region present in the heatmaps.
These considerations suggest that the oscillation are originated by the system
reaction to the stimulus that is consequently re-conducted to the iPSA coef-
ficients. In order to effectively prove this hypothesis one needs to compare
the variation between perturbed E2 and nominal E2 for case (B) and (C) at
the time corresponding to the observation time t = 6.41 day. In particular,
selecting t = 6.41 in the curves of Figure 5.28 and 5.29 one obtains:

• (B) τ2 = 4.52 day and t = 6.41 day:

E∆
2 − E2 = 9.48− 9.417 = 0.063nM.

• (C) τ3 = 4.61 day and t = 6.41 day:

E∆
2 − E2 = 9.352− 9.417 = −0.065nM.

where E∆
2 refers to E2 perturbed values. A correlation between these two

values and the values of iPSA coefficients in case (B) and (C) respectively
(Figure 5.26) should be found. Looking at the way in which iPSA coefficients
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were calculated one can see that they correspond to the values of E∆
2 (t) −

E2(t) up to a multiplying costant ( 1
∆pj

) and to the normalization factor:

iSi,j(t, τ) =
E∆

2 (t)− E2(t)

∆pj
· pj
E2(t)

Hence dividing the values of iPSA coefficients for 1
∆pj
· pj
E2(t)

one should obtain
the variation between E2 perturbed and nominal values. Dividing iPSA
coefficients of cases (B) and (C) for this factor, calculated at the time of
observation t = 6.41 day, one obtains:

• case (A):
iPSA(6.41; 4.52)

pj
∆pj ·E2(6.41)

=
0.6716

10.6192
= 0.063nM

• case (B):

iPSA(6.41; 4.61)
pj

∆pj ·E2(6.41)

=
−0.6877

10.6192
= −0.065nM

that are exactly the two variations between E2 perturbed and nominal value
in t = 6.41 day. Hence the study demonstrated that the oscillations of the
heatmaps and iPSA coefficients are derived from the behavior of the state
variables after the perturbation and the magnitude of iPSA coefficients is
dependent from the variation of the state variable and from the applied
normalization. From this point of view iPSA revealed at first an important
property of the model: it has an oscillatory behavior under the application
of an impulsive stimulus.
In the following iPSA results with the two approaches are shown for state
variables x, mE2 and E2 with respect to parameters q2, λ2, f1, Sb, Eth

2 , δmin2 ,
kmin2s .

5.4 iPSA results with numerical approach

In the following, heatmaps representations with values normalized between
[−1, 1] are depicted for the parameters of interest for the state variables x,
mE2 and E2. From Figure 5.31, 5.32 and 5.33 it appears that in all heatmaps
non zero values are concentrated in a more or less rounded region (with
different shapes depending on the state variable and parameter) centered in
(t, τ) ≈ (6day, 4.5day). In the case of parameter q2 , there is the presence
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of a region different from zero also around (t, τ)≈(9day, 9day) as depicted in
Figure 5.30.

Figure 5.30: Heatmap illustrating iPSA coefficients of state variable E2 with
respect to parameter q2 (numerical approach). The two regions with values different
from zero are defined in their time ranges.

In particular the first regions are all characterized by higher values of
iPSA coefficients inside the rounded part that become smaller in the bor-
ders.
The results suggest that, for every parameter, if the perturbation is applied
from τ ≈ 3.5 day to τ ≈ 5.5 (and also from τ ≈ 7.8 to τ ≈ 10.3 for q2) the
model reacts to the perturbation, however no reactions are visible. The rea-
son why the regions are located exactly between that values of τ is enigmatic
and it results difficult to give an interpretation. Looking at state variable
predictions (Figure 3.4) of the model it seems that around t = 2 − 3 days
the state variables leave their steady state however it is not possible to di-
rectly re-conduct this behavior to iPSA results after time 3 days. From the
biological point of view, there is a possible interpretation related to the time
positions of the rounded regions centered more or less at τ = 4.5 day. From
the study of article [18], day 4 is demonstrated to be the first day in which
raft tissue culture systems show the starting of viral DNA amplification, that
begins to increase until reaching a peak around day 10-12. Regarding the
other colored region that appears in the heatmaps of q2, it is located around
days 8 − 10, days that are assumed to be the peak of vDNA amplification.
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Hence, a possible interpretation is that the corresponding parameter play a
considerable role also in the process of increasing amplification to reach the
peak value. However these aspects need to be deeply analyzed and further
study are needed for better elucidate the real behavior of the model and for
give a better interpretation of the results. Despite the previous considera-
tions, it is important to notice that, for all state variables, the parameters
with higher iPSA coefficients values are in the order Eth

2 , λ2, Sb, q2, con-
firming the importance, among all, of the parameters that play a role in E2

regulation for transcription and partially for viral replication processes.
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Figure 5.31: iPSA analysis (numerical approach) for state variable x. Each
heatmap illustrates the iPSA coefficient of x with respect to perturbations on one
parameter in the network, indicated in the title. The x-axis gives the time at
which impulse perturbation is applied to the parameter, while the y-axis indicates
the observation time x. For comparison purpose, each plot is scaled to have values
between -1 and +1 by the scaling factor reported in the abscissa.
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Figure 5.32: iPSA analysis (numerical approach) for state variable mE2. Each
heatmap illustrates the iPSA coefficient of x with respect to perturbations on one
parameter in the network, indicated in the title. The x-axis gives the time at
which impulse perturbation is applied to the parameter, while the y-axis indicates
the observation time mE2. For comparison purpose, each plot is scaled to have
values between -1 and +1 by the scaling factor reported in the abscissa.
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Figure 5.33: iPSA analysis (numerical approach) for state variable E2. Each
heatmap illustrates the iPSA coefficient of x with respect to perturbations on one
parameter in the network, indicated in the title. The x-axis gives the time at
which impulse perturbation is applied to the parameter, while the y-axis indicates
the observation time E2. For comparison purpose, each plot is scaled to have values
between -1 and +1 by the scaling factor reported in the abscissa.
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5.5 iPSA results with analytical approach

In the following, heatmaps representations with values normalized between
[−1, 1] are depicted for the parameters of interest for the state variables x,
mE2 and E2. From Figure 5.34, 5.35 and 5.36 it appears that the heatmaps
representations are similar to the ones obtained with numerical approach but
present some important differences. Oscillations are still present confirming
the oscillatory nature of the model under impulsive stimulus. In this case not
only parameter q2 shows two coloured regions in the heatmaps but also kmin2s ,
f1 and δmin2 and only for state variable x. Moreover the bigger difference
regards the normalization coefficients, that are much higher than the ones of
the previous approach in the case of mE2 and E2 state variables. In other
words, analytical approach produced very high iPSA coefficients that are not
close to the ones of numerical approach. It is necessary to underline that the
two approaches should not lead to identical results since in numerical ap-
proach the perturbation is set as 1% of the parameter nominal value while
in analytical approach as 1% of the maximum value of each state variable
but however no such differences were expected between the two analysis. For
sure further study for determining which perturbation magnitudes should be
set to obtain similar results must be conducted.
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Figure 5.34: iPSA analysis (analytical approach) for state variable x. Each
heatmap illustrates the iPSA coefficient of x with respect to perturbations on one
parameter in the network, indicated in the title. The x-axis gives the time at
which impulse perturbation is applied to the parameter, while the y-axis indicates
the observation time x. For comparison purpose, each plot is scaled to have values
between -1 and +1 by the scaling factor reported in the abscissa.
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Figure 5.35: iPSA analysis (analytical approach) for state variable mE2. Each
heatmap illustrates the iPSA coefficient of x with respect to perturbations on one
parameter in the network, indicated in the title. The x-axis gives the time at
which impulse perturbation is applied to the parameter, while the y-axis indicates
the observation time mE2. For comparison purpose, each plot is scaled to have
values between -1 and +1 by the scaling factor reported in the abscissa.
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Figure 5.36: iPSA analysis (analytical approach) for state variable E2. Each
heatmap illustrates the iPSA coefficient of x with respect to perturbations on one
parameter in the network, indicated in the title. The x-axis gives the time at
which impulse perturbation is applied to the parameter, while the y-axis indicates
the observation time E2. For comparison purpose, each plot is scaled to have values
between -1 and +1 by the scaling factor reported in the abscissa.



Chapter 6

Conclusions

In this work different sensitivity methods of conventional PSA where in-
vestigated along with the novel sensitivity analysis iPSA. Each method was
presented along with advantages and disadvantages which were then explored
in a real application of the HPV early promoter regulation model.
As regards conventional PSA, Direct Method and Indirect Method were com-
pared considering results reliability, complexity of implementation and time
of computation. In the case under examination DM appeared to be more ad-
equate concerning results accuracy and complexity of implementation even
if it is important to underline that the model under consideration has not a
high complexity. DM sensitivity results were in accordance with literature
from the biological point of view and no contradictory revelations appeared.
In particular conventional PSA showed the importance of the parameters be-
longing to the transactivation/repression feedback operated by protein E2 on
the transcription of the primary transcript x. the results revealed the dom-
inance of the parameters belonging to the negative feedback, accordingly to
biological knowledge that assesses that repression feedback is stronger than
transactivation one.
iPSA application to the HPV model was performed only for the most inter-
esting model parameters and the analysis was applied using two approaches,
numerical and analytical. Both matlab implementations resulted to be com-
putationally heavy giving the need to produce huge size matrices of data
with different ode solver applications. Hence further study will have the aim
of finding a better computation method for iPSA. Moreover heatmaps (with
values scaled between [-1,1]) were produced to represent two dimension iPSA
data which presented oscillations thus revealing the oscillatory nature of the
model under impulsive stimulus. This behavior was confirmed by investi-
gating the time course of the state variables after the impulse perturbation
and verifying that the perturbed trajectories were actually characterized by
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oscillations after the applied perturbation. All heatmaps presented non zero
values around a specific located area, suggesting that all state variables are
sensitive to parameter changes only during that time range. This aspect
didn’t appear with conventional PSA and needs to be deeply investigate
since it could give important information about the behavior of the model
during this time range. Moreover, both approaches produced similar normal-
ized heatmap representations with the exception of their scaling factor that
were much higher for analytical approach. A likely reason is that the levels
of perturbation that were introduced were not suitable for obtaining similar
results giving the fact that in numerical approach the perturbation is applied
directly to the parameter while in analytical approach to the state variable.
From the biological point of view the results were partially in accordance with
conventional PSA: again there was a confirm of the importance of the pa-
rameters belonging to E2 transcriptional feedback but high sensitivities were
shown also for the parameters acting inside the positive feedback. Further
analysis and studies are mandatory in order to elucidate the problems faced
during iPSA matlab implementation and iPSA result interpretation both for
the model under study and for other general applications.
Besides the need of further investigations, the sensitivity analysis operated
in this study underlined that iPSA can be considered an interesting comple-
mentary analysis for conventional PSA.
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Chapter A

Green’s function method derivation

Green’s Function general definition

A Green’s function, G(t, τ), of a linear differential operator L = L(t) acting
on distributions over a subset of the Euclidean space Rn, at a point τ , is any
solution of

LG(t, τ) = δ(t− τ) (A.1)

where δ is the Dirac delta function. If the Kernel of L is non-trivial the
Green’s function is not unique, however in practice, some combination of
symmetry and boundary conditions will give an unique Green’s function.
This property of a Green’s function can be exploited to solve differential
equations of the form

Lu(t) = f(t) (A.2)

If such a function G can be found for the operator L, then first multiplying
the equation (A.1) by f(t), and then performing an integration in the τ
variable, the following equation is obtained [19]:∫

LG(t, τ)f(τ)dτ =

∫
δ(t− τ)f(τ)dτ = f(t) (A.3)

Using equation (A.3) into equation (A.2) it follows that

Lu(t) =

∫
LG(t, τ)f(τ)dτ. (A.4)

Green’s function applied to sensitivity analysis

Let’s consider the generic ODE model described by Equation 2.1{
dx(t,p̂)
dt

= f(x, p̂)

x(t0, p̂) = x0
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where x is the n-vector of concentrations (x ∈ Rn) and p is the m-vector of
system parameters (p̂ ∈ Rm) with initial conditions x(t0, p̂) = x0. The first-
order sensitivity coefficients can be obtained differentiating the ODE model
equations in Equation 2.1 with respect to the state vector x(τ), obtaining
the following equation:

d

dt

∂xi(t)

∂xj(τ)
= J(t) · ∂xi(t)

∂xj(τ)
i, j = 1, .., n, (A.5)

where J(t) = ∂f
∂x(t)

is the Jacobian, τ is the time of perturbation and t the
observation time (t ≥ τ). Equation (A.5) can be re-written in matricial form
as follows

d

dt
Sx(t, τ) = J(t)Sx(t, τ) (A.6)

where Sx(t, τ) is known as Green’s function matrix (GFm) or Kernel and
contains the elements Sx

i,j(t, τ) = ∂xi(t)
∂xj(τ)

and J is the Jacobian matrix. Solving
Equation A.6 is equivalent to solve the homogenoeus part of Equation 2.6
of the DM. Since eq. (2.6) is a linear inhomogeneous equation, its solution
can be obtained by firstly solving the homogeneous part (Equation A.6) and
then determining the particular solutions for each parameter through a linear
integral transform of the nonhomogeneous term ∂f

∂p(τ)
[1] [19]:

∂x(t)

∂pj(τ)
=

∫ t

τ

Sx(t, s)
∂f(s)

∂pj
ds. (A.7)

When conducing PSA with time of perturbation equal to the initial time t0
Equation A.7 becomes:

∂x(t)

∂pj
= S[1..n],j(t, t0) = Sx(t, t0) · dx(t0)

dpj
+

∫ t

t0

Sx(t, s)
∂f(s)

∂pj
ds (A.8)

where

dx(t0)

dpj
=

{
δi pj is an initial condition for one of the components xi
0 otherwise

(A.9)
where δi is the vector δi = [0, 0, ..1, 0, ..0] with 1 at the i-th position [8].
There are several variants of the Green function method and they differ from
each other in the calculation of the matrix Sx(t, τ). Hwang et al. (1978)
[8] proposed to express the Green’s function in terms of an adjoint Green’s
function, Ŝx(τ, t), that solves the following equation:

d

dt
Ŝx(τ, t) = −Ŝx(τ, t) · J(τ) 0 ≤ τ ≤ t

(A.10)
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with
Ŝx(t, t) = I (A.11)

It is possible to demonstrate that Sx(t, τ) = Ŝx(τ, t) and instead of solving
equation (A.7) or (A.8), one can solve (A.10) and obtain Ŝx(τ, t). However
(A.10) only gives Ŝx(τ, t) for a certain fixed t. In order to obtain results
for different times t the group property can be applied thus Ŝx(t3, t1) =
Ŝx(t3, t2)Ŝx(t2, t1) where t1 < t2 < t3.
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Chapter B

MATLAB code implementations

In this chapter MATLAB codes used for the implementation of the three
methods of sensitivity analysis are presented. To produce state variables tra-
jectories, a solver for differential equations is needed and in this case ODE45
MATLAB function was used. It consists in a medium order method able to
solve nonstiff differential equations. This method solves differential equations
with a variable time step for efficient computation and it needs as arguments
an ODE function, the vector of initial condition and if desired, the options.
The options set for this analysis were:

• AbsTol: absolute error tolerances that apply to the individual compo-
nents of the solution vector. It was set with value= 1e-3.

• MaxStep: upper bound on solver step size. It was always set equal to
the time span used for the simulation time.

Trajectories vectors need then to be re-conducted to the time sequence
corresponding to the simulation time through the use of the method "in-
terp1", a linear interpolation calculator that returns interpolated values of a
1-D function at specific query points.

It is evident that each method requires at the beginning the creation
of the vector of the system parameters and the creation of the model, in
particular DQM and iPSA need a common initial code while DM solves
system equations and sensitivity calculation simultaneously. DQM and iPSA
common initial code for the creation of model equations and calculation of
concentration-time curves of the state variables is summarized below.

1

%%structure containing model parameters nominal values
3 struct.Sb=10; %[nm/min]...

85
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...
5 struct.beta2 =2e-2; %[1/min]

7 %%creation of time vector [0-14 days]
Tspan =0.01*24*60;

9 tfine =14*24*60; %end simulation time (min)
t=[0: Tspan:tfine ]; %minutes

11 n=length(t);
tplot =[0:0.01:14]; %days

13

%%initial conditions
15 y0=[0 0 0 0 0];

17 %%options for ODE45
options=odeset(’AbsTol ’, 1e-3, ’MaxStep ’, Tspan);

19

%%calculation of model state variable concentration -time curve
21 [T Y]=ode45(’mod_HPV ’,[t(1) t(end)],y0 ,options ,struct);

x=interp1(T,Y(:,1),t);
23 mE1=interp1(T,Y(:,2),t);

mE2=interp1(T,Y(:,3),t);
25 E1=interp1(T,Y(:,4),t);

E2=interp1(T,Y(:,5),t);

Listing B.1: MATLAB main section for the creation of the model.

The model equations are implemented in the function "mod_HPV " that
needs to be set as a argument for the ODE solver. The code of "mod_HPV "
is shown below.

1

function dy=mod_HPV(T,y,FLAG ,struct)
3 %% parameters depending on state variables concentrations

%% k_{2s}(E_1)
5 k2s_E1 =(( struct.f1 -1)*struct.k2s_min)/(1+ exp(( struct.lambda5 -y(4))/struct.

sigma1))+struct.k2s_min;
%% \delta_ {2p}(E_1)

7 delta2p_E1 =(( struct.f2 -1)*struct.delta2_min)*(1 -1/(1+ exp(( struct.lambda6 -y
(4))/struct.sigma2)))+struct.delta2_min;

%% S_x(E_2)
9 if y(5) <=struct.E2th

SxE2=struct.Sb +( struct.a1*(y(5))^struct.q1)/( struct.lambda1^struct.q1+(
y(5))^struct.q1);

11 else
struct.a2 = struct.Sb +( struct.a1*(struct.E2th)^struct.q1)/( struct.
lambda1^struct.q1+( struct.E2th)^struct.q1);%for the continuity of the
function!

13 SxE2 =(( struct.a2*struct.lambda2^struct.q2)/( struct.lambda2^struct.q2+(y
(5)-struct.E2th)^struct.q2));

end
15 %% k_{1s}(t)

if T<= struct.th
17 k1s=struct.k1s_min +( struct.a3*T^struct.q3)/( struct.lambda3^struct.q3

+T^struct.q3);
else

19 struct.a4 = struct.k1s_min +( struct.a3*struct.th^struct.q3)/( struct.
lambda3^struct.q3+struct.th^struct.q3); %for the continuity of the
function!
k1s=( struct.a4*struct.lambda4^struct.q4)/( struct.lambda4^struct.q4+(T-
struct.th)^struct.q4);
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21 end
%% model equations

23 dy(1)=SxE2 -struct.ks*y(1); %x
dy(2)=k1s*struct.ks*y(1)-struct.delta1m*y(2); %mE1

25 dy(3)=k2s_E1*struct.ks*y(1)-struct.delta2m*y(3); %mE2
dy(4)=struct.beta1*y(2)-struct.delta1p*y(4); %E1

27 dy(5)=struct.beta2*y(3)-delta2p_E1*y(5); %E2
dy=dy ’;

Listing B.2: MATLAB mod_HPV function for the implementation of model
equations.

B.1 Difference quotient method

The code that was used for the DQM is depicted below with an example:
the parameter q2 for the state variable E2.

2 %% sensitivity coefficients -ks DIFFERENCE QUOTIENT METHOD
% creation of the 3 magnitudes of perturbation 1%,5% ,10%

4 dpvect =[ struct.q2*0.01, struct.q2*0.05, struct.q2*0.1];
m=length(dpvect);

6 E2_corr=E2(2:end);
q2=struct.q2;

8

%%calculation of the perturbed trajectories
10 for i = 1:m

struct.q2=q2+dpvect(i);
12 [T Y]=ode45(’mod_HPV ’,[t(1) t(end)],y0 ,options ,struct);

E2_q2(i,:)=interp1(T,Y(:,5),t); %Y(:,5) because is for E2
14 E2_q2_corr(i,:)=E2_q2(i,2: end);

s_q2(i,:)=(( E2_q2_corr(i,:)-E2_corr)/dpvect(i)).*(q2./ E2_corr); %
normalized sensitivity curves

16 end

18 %integrated sensitivities (all perturbations)
[k,l]=size(s_q2);

20 for i=1:k
for j=1:l

22 S_q2_all_delta(i,1)=sum(s_q2(i,j));
end

24 end

Listing B.3: MATLAB main section for the implementation of the DQM for
parameter q2 and for state variable E2.

B.2 Direct method

The necessary main code and ODE function are reported below for parameter
q” and for state variable E2.
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2 %% sensitivity coefficients q2 - DIRECT METHOD
%calculation of state variables and sensitivity simultaneously

4 [T Y]=ode45(’mod_direct_q2 ’,[t(1) t(end)],y0,options ,struct);
x=interp1(T,Y(:,1),t);

6 mE1=interp1(T,Y(:,2),t);
mE2=interp1(T,Y(:,3),t);

8 E1=interp1(T,Y(:,4),t);
E2=interp1(T,Y(:,5),t);

10

% sensitivity curves
12 S_q2=interp1(T,Y(: ,10),t); %Y(:,10) because is for E2

S_q2=S_q2.*(struct.q2./E2); %normalized
14 %integrated sensitivity

for i=1: length(S_q2)
16 S_q2_dir=sum(S_q2(i));

end

Listing B.4: MATLAB main section for the implementation of DM for parameter
q2 and for state variable E2.

As it is evident from Listing B.4, each parameter needs a specific ODE
function, in this case "mod_direct_q2" where the 2n differential equations
are implemented. The code of the ODE function for q2 for E2 is presented
below.

1

function dy=mod_direct_q2(T,y,FLAG ,struct)
3 %parameters depending on state variables

k2s_E1 =..
5 delta2p_E1 =..

SxE2 =..
7 k1s =..

%model equations
9 dy(1)=SxE2 -struct.ks*y(1);

dy(2)=k1s*struct.ks*y(1)-struct.delta1m*y(2);
11 dy(3)=k2s_E1*struct.ks*y(1)-struct.delta2m*y(3);

dy(4)=struct.beta1*y(2)-struct.delta1p*y(4);
13 dy(5)=struct.beta2*y(3)-delta2p_E1*y(5);

15 %derivatives of E1 dependent parameters in E1
delta2p_der =-(( struct.f2 -1)*struct.delta2_min*((1/ struct.sigma2*exp(( struct.

lambda6 -y(4))/struct.sigma2))))/((1+ exp(( struct.lambda6 -y(4))/struct.
sigma2))^2);

17 k2s_der =(( struct.f1 -1)*struct.k2s_min*((1/ struct.sigma1*exp(( struct.lambda5 -
y(4))/struct.sigma1))))/((1+ exp(( struct.lambda5 -y(4))/struct.sigma1))^2)
;

19 %derivatives of E2 dependent parameters in E2
if y(5) <=struct.E2th

21 SxE2_der =(( struct.a1*struct.q1*(y(5))^( struct.q1 -1)*(struct.lambda1^
struct.q1+y(5)^struct.q1))-struct.q1*struct.a1*y(5)^( struct.q1 -1)*y(5)^
struct.q1)/( struct.lambda1^struct.q1+(y(5))^struct.q1)^2;

else
23 struct.a2 = struct.Sb +( struct.a1*(struct.E2th)^struct.q1)/( struct.

lambda1^struct.q1+( struct.E2th)^struct.q1);%for the continuity of the
function!
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SxE2_der=-(struct.a2*struct.lambda2^struct.q2*(struct.q2*(y(5)-struct.
E2th)^( struct.q2 -1)))/( struct.lambda2^struct.q2+(y(5)-struct.E2th)^
struct.q2)^2;

25 end

27 %derivatives in q2
if y(5) <=struct.E2th

29 SxE2_q2 =0;
else

31 SxE2_q2 =( struct.a2*struct.lambda2^struct.q2*log(struct.lambda2)*(struct.
lambda2^struct.q2+(y(5)-struct.E2th)^struct.q2)-struct.a2*struct.lambda2
^struct.q2*(struct.lambda2^struct.q2*log(struct.lambda2)+(y(5)-struct.
E2th)^struct.q2*log(y(5)-struct.E2th)))/( struct.lambda2^struct.q2+(y(5)-
struct.E2th)^struct.q2)^2;

end
33

%Jacobian matrix
35 J= [-struct.ks ,0,0,0, SxE2_der

k1s*struct.ks ,-struct.delta1m ,0,0,0
37 k2s_E1*struct.ks ,0,-struct.delta2m ,k2s_der*struct.ks*y(1) ,0

0,struct.beta1 ,0,-struct.delta1p ,0
39 0,0,struct.beta2 ,-delta2p_der*y(5) ,-delta2p_E1 ];

% second addend of DM equation - specific for each parameter (df/dp)
41 dfdp=[ SxE2_q2 ;0;0;0;0];

%DM equations --> d/dt S(t)=J*S(t)+df/dp
43 dy(6)=J(1,:)*y(6:10)+dfdp (1);

dy(7)=J(2,:)*y(6:10)+dfdp (2);
45 dy(8)=J(3,:)*y(6:10)+dfdp (3);

dy(9)=J(4,:)*y(6:10)+dfdp (4);
47 dy(10)=J(5,:)*y(6:10)+dfdp (5);

49

dy=dy ’;

Listing B.5: MATLAB ODE function for DM calculation for parameter q2.

B.3 iPSA

B.3.1 Numerical approach

Numerical approach applies the perturbation directly on the parameter using
the gaussian approximation of an impulse. The perturbation is introduced
inside the ODE solver through the ODE function that needs to be different
for each parameter, this function generates the perturbed state trajectories
which are then subtracted to the non-perturbed state trajectories. The level
of perturbation was set as 1% of parameter nominal value. The following
code presents the main code for the calculation of iPSA coefficients for pa-
rameter q2 and for every state variable, at the end iPSA coefficients for E2 are
selected and a heatmap graphical representation is generated with normal-
ized values between [-1;1] using the function HeatMap(Data, ...’Colormap’,
ColormapValue, ...).
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1 %perturbation amplitude 1% of nominal value
struct.Aimpulse =0.01;

3 %% iPSA coefficients for q2
for i=1:n %cycle for tau

5 disp([’i=’, num2str(i)])
struct.tau=tau(i);

7 [M Y_pert ]=ode45(’mod_iPSA_q2 ’,[t(1):Tspan:t(end)],y0,options ,struct);

9 struct.q2=2; %overwriting the parameter to the nominal value

11 iPSA.x_q2(:,i)=Y_pert (:,1)-Y(:,1)/( struct.Aimpulse*struct.q2);
iPSA.mE1_q2(:,i)=Y_pert (:,2)-Y(:,2)/( struct.Aimpulse*struct.q2);

13 iPSA.mE2_q2(:,i)=Y_pert (:,3)-Y(:,3)/( struct.Aimpulse*struct.q2);
iPSA.E1_q2(:,i)=Y_pert (:,4)-Y(:,4)/( struct.Aimpulse*struct.q2);

15 iPSA.E2_q2(:,i)=Y_pert (:,5)-Y(:,5)/( struct.Aimpulse*struct.q2);

17 end

19 for i=1:n %tau
for j=1:n % t

21 if j>i
iPSA.x_q2(i,j)=NaN;

23 iPSA.mE1_q2(i,j)=NaN;
iPSA.mE2_q2(i,j)=NaN;

25 iPSA.E1_q2(i,j)=NaN;
iPSA.E2_q2(i,j)=NaN;

27 end
end

29 end

31 %% normalization of iPSA coefficients
for i=1:n

33 iPSA.E2_q2(i,:)=iPSA.E2_q2(i,:)*(struct.q2/E2(i));
end

35 HeatMap(iPSA.E2_q2 ,’ColorMap ’,colormap(hsv (512)))

Listing B.6: MATLAB code for iPSA numerical calculation.

The function "mod_iPSA_q2" used inside the ODE solver is necessary
to calculate the perturbed state trajectories after a variation of the value
of parameter q2. The perturbation is generated adding a gaussian impulse
to the nominal value of the parameter using matlab function gaussmf(x, [σ
c]) that generates a gaussian impulse centered in τ and with SD = 5,thus
having a total width of 0.02 days. After the model equation are implemented
to produce the state variable trajectories.

36

function dy=mod_iPSA_q2(T,y,FLAG ,struct)
38 % gaussian approximation of impulsive perturbation

struct.q2=struct.q2+gaussmf(T,[5, struct.tau])*struct.Aimpulse*struct.q2;
40 %derivatives of E1 dependent parameters in E1

k2s_E1 =(( struct.f1 -1)*struct.k2s_min)/(1+ exp(( struct.lambda5 -y(4))/struct.
sigma1))+struct.k2s_min;

42 delta2p_E1 =(( struct.f2 -1)*struct.delta2_min)*(1 -1/(1+ exp(( struct.lambda6 -y
(4))/struct.sigma2)))+struct.delta2_min;

%derivatives of E2 dependent parameters in E2
44 if y(5) <=struct.E2th
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SxE2=struct.Sb +( struct.a1*(y(5))^struct.q1)/( struct.lambda1^struct.q1+(
y(5))^struct.q1);

46 else
struct.a2 = struct.Sb +( struct.a1*(struct.E2th)^struct.q1)/( struct.
lambda1^struct.q1+( struct.E2th)^struct.q1);%for the continuity of the
function!

48 SxE2 =(( struct.a2*struct.lambda2^struct.q2)/( struct.lambda2^struct.q2+(y
(5)-struct.E2th)^struct.q2));

end
50

52 if T<= struct.th
k1s=struct.k1s_min +( struct.a3*T^struct.q3)/( struct.lambda3^struct.q3

+T^struct.q3);
54 else

struct.a4 = struct.k1s_min +( struct.a3*struct.th^struct.q3)/( struct.
lambda3^struct.q3+struct.th^struct.q3); %for the continuity of the
function!

56 k1s=( struct.a4*struct.lambda4^struct.q4)/( struct.lambda4^struct.q4+(T-
struct.th)^struct.q4);

end
58 %model equations

dy(1)=SxE2 -struct.ks*y(1);
60 dy(2)=k1s*struct.ks*y(1)-struct.delta1m*y(2);

dy(3)=k2s_E1*struct.ks*y(1)-struct.delta2m*y(3);
62 dy(4)=struct.beta1*y(2)-struct.delta1p*y(4);

dy(5)=struct.beta2*y(3)-delta2p_E1*y(5);
64

dy=dy ’;

Listing B.7: MATLAB code for "mod_iPSA_q2" of iPSA numerical calculation.

B.3.2 Analytical approach

In order to calculate iPSA coefficient with analytical approach is necessary
to produce the nxn = 5x5 GFm matrix for each τ/t combinations,with t ≥ τ .
For this reason the computation needs to cycle for each τ when perturbing
the state trajectories and for each t when calculating the difference between
the perturbed states and the non-perturbed ones. The level of perturbation
is set as 1% of the maximum value of each state variable and the perturbation
is added at each τ to the nominal value of the state variable at that specific
time.

%parameters and time scale definition
68 %calculation of state variables trajectories

...
70 n=length(t);

%tau definition
72 tau=t;

...
74 %state variables perturbation (1% of the maximum of each curve)

struct.delta_x=max(abs(x))*0.01;
76 struct.delta_mE1=max(abs(mE1))*0.01;

struct.delta_mE2=max(abs(mE2))*0.01;
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78 struct.delta_E1=max(abs(E1))*0.01;
struct.delta_E2=max(abs(E2))*0.01;

80

% calculation of the perturbed trajectories obtained
82 % by changing the initial conditions (y0_mod) at every cycle

for i=1:n %cycle for tau
84 struct.tau=tau(i);

y0_mod =[x(i)+struct.delta_x mE1(i) mE2(i) E1(i) E2(i)];
86 [M Y_pert_x ]= ode45(’mod_HPV ’,[t(i):Tspan:t(end)],y0_mod ,options ,struct);

y0_mod =[x(i) mE1(i)+struct.delta_mE1 mE2(i) E1(i) E2(i)];
88 [M Y_pert_mE1 ]=ode45(’mod_HPV ’,[t(i):Tspan:t(end)],y0_mod ,options ,struct

);
y0_mod =[x(i) mE1(i) mE2(i)+struct.delta_mE2 E1(i) E2(i)];

90 [M Y_pert_mE2 ]=ode45(’mod_HPV ’,[t(i):Tspan:t(end)],y0_mod ,options ,struct
);
y0_mod =[x(i) mE1(i) mE2(i) E1(i)+struct.delta_E1 E2(i)];

92 [M Y_pert_E1 ]=ode45(’mod_HPV ’,[t(i):Tspan:t(end)],y0_mod ,options ,struct)
;
y0_mod =[x(i) mE1(i) mE2(i) E1(i) E2(i)+struct.delta_E2 ];

94 [M Y_pert_E2 ]=ode45(’mod_HPV ’,[t(i):Tspan:t(end)],y0_mod ,options ,struct)
;
% creation of the perturbed trajectories attaching the perturbed

96 %part of the curve to the non -perturbed part
if i>1

98 Y_pert_x =[Y([1:i-1],:);Y_pert_x ];
Y_pert_mE1 =[Y([1:i-1],:);Y_pert_mE1 ];

100 Y_pert_mE2 =[Y([1:i-1],:);Y_pert_mE2 ];
Y_pert_E1 =[Y([1:i-1],:);Y_pert_E1 ];

102 Y_pert_E2 =[Y([1:i-1],:);Y_pert_E2 ];
end

104

for j=1:n %cycle for t
106 %creation of the structure data containing GFm (S_GFM)

data{i,j}.S_GFM (1,:)=( Y_pert_x(j,:)-Y(j,:))/struct.delta_x;
108 data{i,j}.S_GFM (2,:)=( Y_pert_mE1(j,:)-Y(j,:))/struct.delta_mE1;

data{i,j}.S_GFM (3,:)=( Y_pert_mE2(j,:)-Y(j,:))/struct.delta_mE;
110 data{i,j}.S_GFM (4,:)=( Y_pert_E1(j,:)-Y(j,:))/struct.delta_E1;

data{i,j}.S_GFM (5,:)=( Y_pert_E2(j,:)-Y(j,:))/struct.delta_E2;
112 end

114 end
%saving the structure data for next implementation

116 save(’data.mat’,’data’)

Listing B.8: MATLAB code for GFm calculation.

Consequently iPSA coefficients iSi,j(t, τ) are calculated applying the for-
mula (2.15) and a heatmap graphical representation is generated with nor-
malized values between [-1;1] using the functionHeatMap(Data, ...’Colormap’,
ColormapValue, ...). In the following the example for parameter q2 and state
variable E2 is presented. iSi,j(t, τ) elements were set as "Not a Number"
(NaN) for t < τ .

118 %% iPSA coefficient of q2 for E2
%derivative in q2

120 for i=1:n
if E2(i) <=struct.E2th

122 SxE2_q2(i)=0;
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else
124 SxE2_q2(i)=( struct.a2*struct.lambda2^struct.q2*log(struct.lambda2)*(

struct.lambda2^struct.q2+(E2(i)-struct.E2th)^struct.q2)-struct.a2*struct
.lambda2^struct.q2*(struct.lambda2^struct.q2*log(struct.lambda2)+(E2(i)-
struct.E2th)^struct.q2*log(E2(i)-struct.E2th)))/( struct.lambda2^struct.
q2+(E2(i)-struct.E2th)^struct.q2)^2;
end

126 end
% iPSA coefficients calculation

128 for i=1:n
for j=1:n

130 if j>=i
data{i,j}. dfdp_q2 =[ SxE2_q2(i);0;0;0;0];

132 data{i,j}. iPSA_q2=data{i,j}. S_GFM_Stati_x*data{i,j}. dfdp_q2;
iPSA_q2_E2(j,i)=data{i,j}. iPSA_q2 (5)*(struct.q2/E2(j));

134 else
iPSA_q2_E2(j,i)=NaN;

136 end
end

138 end

140 %creation of the normalized heatmap
HeatMap(iPSA.q2_E2/max(max(abs(iPSA.q2_E2))),’ColorMap ’,colormap(hsv (512)))

Listing B.9: MATLAB code for iPSA coefficient calculation for q2 parameter and
E2 state variable.
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