

Università degli Studi di Padova

DIPARTIMENTO DI FISICA E ASTRONOMIA "G. GALILEI"

Tesi di Laurea Magistrale

Divisione di gocce di ferrofluido tramite l'applicazione di un campo magnetico

Laureando: Stefano Bertoldo Relatore: Prof. Giampaolo Mistura Controrelatore: Prof. Alberto Carnera

Anno Accademico 2016/2017

Sommario

In questa tesi viene studiato il comportamento e la morfologia di gocce di ferrofluido, una sospensione colloidale di nanoparticelle di materiale magnetico, sottoposte a campi magnetici generati da magneti permanenti. Sono esaminate gocce a varie concentrazioni, vari volumi e deposte su superfici caratterizzate da angoli di contatto che vanno da alcune decine a 120°. Tale diversità è determinata dall'angolo di contatto tra superficie e ferrofluido. Sono stati individuati ed analizzati i due punti notevoli che si osservano avvicinando il magnete alla goccia: il punto in cui la goccia raggiunge l'altezza massima e quello in cui si ha la formazione di due punte, che può portare alla divisione della goccia in due gocce figlie.

La tesi si compone di un'introduzione in cui vengono spiegati i concetti fondamentali, un capitolo sullo stato dell'arte, un capitolo sulla metodologia sperimentale, un capitolo sull'analisi dati e le conclusioni.

Indice

1	Introduzione	7
	1.1 Ferrofluidi	$\overline{7}$
	1.2 Microfluidica	8
2	Stato dell'arte	9
	2.1 Magnetizzazione e dipoli magnetici	9
	2.2 Stabilità dei ferrofluidi	11
	2.3 Angolo di contatto e isteresi	13
	2.4 Instabilità	14
3	Metodologia sperimentale	21
	3.1 Sintesi di ferrofluidi e caratteristiche	21
	3.2 Apparato di misura	23
	3.3 Capillarità e superfici	25
	3.4 Simulazioni	28
4	Risultati sperimentali	35
	4.1 Misure	35
	4.2 Analisi dei punti notevoli	38
	4.3 Lunghezza alla rottura	44
5	Conclusioni	47
A	Controllo volume	48
в	Evaporazione	51
\mathbf{C}	Propagazione errori	53
D	Codice	56

1. Introduzione

In questa tesi sarà studiata la morfologia di gocce di ferrofluido, una particolare classe di soluzioni magneticamente attive, sotto l'applicazione di un campo magnetico. Tali fluidi trovano utilizzo in svariati ambiti: sfruttando le loro proprietà magnetocaloriche essi possono convertire calore in lavoro in motori senza l'utilizzo di parti meccaniche oppure estraggono calore da componenti elettroniche sfruttando il controllo sulla magnetizzazione. Il loro facile e rapido confinamento dovuto ad un alta suscettività magnetica ha permesso alle camere stagne attraversate da alberi rotanti di essere sigillate con un piccolo strato di ferrofluido al posto dei cuscinetti a sfere: con queste prerogative i ferrofluidi sono ormai di uso comune negli hard disk, nelle valvole per impianti da vuoto e nella fabbricazione di semiconduttori. Per quanto riguarda la loro reologia, la viscosità può essere finemente controllata in maniera attiva mediante l'applicazione di un campo magnetico: assorbitori di vibrazioni in impianti audio e shock dampers posti dietro la canna di cannoni a grosso calibro sono già stati progettati sfruttando tale proprietà. Per lo stesso effetto, molte industrie automobilistiche tra cui Audi, Ferrari, Lamborghini, Chevrolet e Cadillac, utilizzano sospensioni magnetoreologiche in veicoli di nuova generazione: il fatto di poter variare rapidamente l'ammortizzazione del veicolo con un campo magnetico ha consentito inoltre la progettazione di mezzi militari adatti a molti terreni. Tutte queste applicazioni utilizzano quantità macroscopiche di ferrofluido, ma piccoli volumi, oltre ad essere utilizzati per esempio per migliorare l'accoppiamento magnetico all'interno di auricolari, sono soprattutto impiegati in ambito biomedicale e biochimico: una terapia già in uso contro il cancro è l'ipertermia, dove un ferrofluido biocompatibile è confinato, grazie al campo magnetico, vicino alle cellule malate e queste vengono successivamente uccise mediante un'onda elettromagnetica che le surriscalda. In biochimica è possibile circondare le sostanze utilizzate con un layer di ferrofluido per ottenere singoli reattori grandi come gocce, controllandone esattamente volume, moto e reazioni; per alcune reazioni, come per esempio la sintesi di ammoniaca, i ferrofluidi sono anche utilizzati come catalizzatori, facilmente estraibili grazie alla loro risposta magnetica Si nota subito come nelle ultime applicazioni citate sia necessario conoscere bene la risposta morfologica di una goccia di tale fluido sotto l'applicazione di un campo magnetico, così da prevederne dettagliatamente il comportamento.

1.1 Ferrofluidi

Le proprietà magnetiche dei solidi sono diventate oggetto di studio da quando nel 1907 Pierre Weiss scoprì l'esistenza degli omonimi domini: i materiali si differenziano infatti per il loro comportamento magnetico a causa dell'energia richiesta per creare le discontinuità tra queste zone. Con la teoria quantistica sviluppata da Werner Heisemberg nel 1928 si è potuta spiegare tale suddivisione grazie al calcolo dell'energia di accoppiamento degli spin. Il paramagnetismo, per esempio, consiste in un allineamento dei momenti magnetici atomici con un campo magnetico e in una distribuzione casuale in assenza di questo: il superparamagnetismo ha le stesse caratteristiche del paramagnetismo, ma, a parità di campo, la magnetizzazione indotta è molto maggiore nel primo. I ferrofluidi sono una sospensione colloidale di nanoparticelle magnetiche in soluzione solitamente acquosa, ma a volte anche oleosa, che esibiscono un comportamento superparamagnetico. In particolare, trascurando la forza gravitazionale, le due forze agenti su una goccia di ferrofluido sono dovute al modulo del campo magnetico e al gradiente di questo lungo la sua direzione: esse sono opposte e il loro bilancio determina la rottura o meno di una goccia in più parti.

1.2 Microfluidica

Lo studio di gocce di fluidi non eccessivamente voluminose rientra nell'ambito della microfluidica, ossia la scienza che manipola e controlla quantità di liquidi per cui le forze interfacciali sono dominanti rispetto alle altre. Un particolare parametro oggetto della microfluidica è la bagnabilità, cioè come si dispone una goccia deposta sulla superficie. Essa è determinata dalle forze di tensione superficiale agenti sul sistema: per quantificarla si utilizza l'angolo di contatto θ , cioè l'angolo, nel punto di contatto, che l'interfaccia tra goccia ed aria forma con l'interfaccia tra il supporto e l'aria, a partire dall'interfaccia tra supporto e goccia. L'angolo in questione può variare da qualche grado, con un vetrino trattato con raggi ultravioletti in atmosfera di ozono (i raggi UV rompono i legami sulla superficie del vetrino, creando radicali liberi che vengono rimossi mediante l'ozono), fino a quasi 180°, raggiunti con plastiche opportunamente trattate oppure con nanopillars. Una superficie è inoltre identificata dall'isteresi dell'angolo di contatto, cioè il fenomeno per cui, in presenza di difetti chimici e morfologici della superficie, θ non è univocamente determinato da fluido e superficie, ma varia in un intervallo i cui estremi superiore ed inferiore sono detti rispettivamente angolo di contatto di avanzamento e ritiro.

In questa tesi si caratterizzerà il fenomeno della rottura di una goccia madre di ferrofluido in due gocce figlie, al variare di diversi parametri, sotto l'influsso di un campo magnetico prodotto da magneti permanenti di geometrie diverse.

2. Stato dell'arte

Nelle seguenti sezioni verranno descritte le principali leggi fisiche utilizzate in questo esperimento. La notazione usata prevede la scrittura di una lettera in grassetto per indicare una quantità vettoriale.

2.1 Magnetizzazione e dipoli magnetici

Nel 1785 Charles Coulomb scoprì sperimentalmente che, in modo analogo all'elettrostatica, tra due dipoli magnetici di carica (magnetica) $m \in m'$ si esercitava una forza, attrattiva o repulsiva a seconda dei segni delle cariche, tale che potesse essere definito un *campo magnetico B* generato da m' pari a

$$\boldsymbol{B} = \frac{m\boldsymbol{r}}{4\pi\mu_0 r^3} \tag{2.1}$$

dove \mathbf{r} è il vettore distanza tra i due poli e μ_0 è la costante di permeabilità magnetica nel vuoto. Se \mathbf{B} attraversa un materiale paramagnetico, gli atomi del mezzo si orientano lungo $\hat{\mathbf{B}}$ generando un campo magnetico \mathbf{M} proprio dell'oggetto, detto magnetizzazione. Si definisce dunque campo magnetico H il vettore \mathbf{H} per cui $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$, il quale ha il significato di campo esterno al materiale. Con questa convenzione, si deve fare attenzione ad esprimere \mathbf{B} in unità Tesla [T], mentre \mathbf{H} ed \mathbf{M} in Ampere su metro [A/m]: la conversione tra le due è definita tramite il fattore μ_0 . È inoltre necessario introdurre μ , la costante di permeabilità magnetica del mezzo, tale per cui $\mathbf{B} = \mu \mathbf{H}$.

Sarà quindi utile definire la costante di permeabilità relativa come $\mu_r = \mu/\mu_0$. Tra i vari andamenti che può avere la magnetizzazione in funzione del campo, per descrivere le gocce di ferrofluido (paramagnetico) verrà utilizzata quella relativa ai cosiddetti materiali *soft*, i quali non presentano isteresi magnetica: per tali materiali vale la legge di Langevin, ricavata con calcoli di meccanica statistica [4],

$$M = \rho \mu \left(\coth \left(\frac{\mu_r B}{k_B T} \right) - \frac{k_B T}{\mu_r B} \right)$$
(2.2)

dove ρ è la densità atomica del materiale e $k_B T$ è il noto fattore termico $1/\beta$, oppure la legge di Brillouin, equivalente quantistica della precedente ed utilizzata per campi molto elevati o temperature molto basse,

$$M = \rho g \mu_B \left(\frac{2J+1}{2} \coth\left(\frac{2J+1}{2} \frac{g \mu_B B}{k_B T}\right) - \frac{1}{2J} \coth\left(\frac{g \mu_B B}{2k_B T}\right) \right)$$
(2.3)

dove g è il fattore giromagnetico, μ_B è il magnetone di Bohr e J è il numero quantico del momento angolare totale dell'atomo del mezzo. Per semplicità computazionale, si è preferito utilizzare una versione approssimata della 2.2, la legge di Fröhlich-Kennelly [5]

$$M = \frac{BM_s}{B + M_s/\chi} \tag{2.4}$$

dove M_s è la magnetizzazione per $B \to \infty$, detta magnetizzazione di saturazione, e χ è la derivata per $B \to 0$: entrambe queste quantità, nel caso specifico in cui il mezzo magnetizzato sia un ferrofluido, sono espresse per unità di concentrazione molare. Nella figura 2.1 sono confrontate la 2.2, la 2.3 e la 2.4 per un generale materiale paramagnetico.

Figura 2.1: Legge di Langevin, legge di Fröhlich-Kennelly e legge di Brillouin

Nota la magnetizzazione, con semplici calcoli si può quindi ricavare la forma del campo magnetico generata da un volume uniformemente magnetizzato

$$\boldsymbol{B}(\boldsymbol{r}) \approx \frac{MV}{4\pi r^3} \left[3(\boldsymbol{\hat{m}} \cdot \boldsymbol{\hat{r}}) \boldsymbol{\hat{r}} - \boldsymbol{\hat{m}} \right]$$
(2.5)

con V il volume del materiale e $\hat{\boldsymbol{m}}$ il versore del dipolo. La forza per unità di volume agente su un mezzo magnetizzato attraversato da \boldsymbol{B} vale $\boldsymbol{F} = (\boldsymbol{M} \cdot \nabla) \boldsymbol{B}$, che in assenza di correnti elettriche diventa $\boldsymbol{F} = \nabla(\boldsymbol{M} \cdot \boldsymbol{B})$ [2]. Se poi si assume che in tutto il volume interessato \boldsymbol{M} sia uniforme, assunzione non ovvia per alte suscettività, allora si può approssimare $\boldsymbol{F} = M \nabla B$, la quale implica che l'energia di tale sistema sia $\boldsymbol{E} = -(\boldsymbol{M} \cdot \boldsymbol{B})$. Se \boldsymbol{B} è generato a sua volta da un altro dipolo, l'energia calcolata è quella di interazione dipolo-dipolo e utilizzando la 2.5 si ottiene

$$E_{dd} = \frac{1}{4\pi \ \mu_0} \left[\frac{\boldsymbol{m_1} \cdot \boldsymbol{m_2}}{r^3} - \frac{3}{r^5} (\boldsymbol{m_1} \cdot \boldsymbol{r}) (\boldsymbol{m_2} \cdot \boldsymbol{r}) \right]$$
(2.6)

dove per ognuno dei due dipoli vale $\boldsymbol{m}_{i} = \mu_{0} M_{i} V_{i} \boldsymbol{\hat{m}}$.

2.2 Stabilità dei ferrofluidi

Poiché il ferrofluido utilizzato è una soluzione di nanostrutture magnetiche cariche elettricamente sospese in un liquido, è necessario rapportare le energie in gioco nel sistema per stimarne i limiti fisico-chimici. La prima, semplice, ma sensata approssimazione è quella di considerare tutti i cluster del soluto come sferici ($V = 3d^3/2$) e con diametro d accettabilmente simile. I fattori fisici che interessano la soluzione sono la presenza della gravità, il moto termico, l'interazione campo-dipolo, l'attrazione dipolo-dipolo e la repulsione elettrostatica tra due nanoparticelle cariche.

$$\begin{cases} E_g = \Delta \rho V g h & \text{Energia gravitazionale} \\ E_t = k_B T & \text{Energia termica} \\ E_B = M B V & \text{Energia campo-dipolo} \\ E_{dd} = \mu_0 M^2 V / 12 & \text{Energia dipolo-dipolo} \\ E_{re} = d\pi \epsilon \phi_0^2 exp(-(r-d)/l_D) & \text{Energia elettrostatica} \end{cases}$$
(2.7)

dove $\Delta \rho$ è la differenza di densità tra soluto e solvente (principio di Archimede), r è la distanza tra le nanoparticelle, ϵ è la costante dielettrica del mezzo, ϕ_0 il potenziale elettrostatico della particella e l_D la lunghezza di Debye [12]. Il penultimo termine si ottiene dalla 2.6 considerando i due dipoli a contatto. Per raggiungere la stabilità in un ferrofluido è necessario che l'agitazione termica abbia un contributo maggiore dell'energia del campo magnetico, poiché quest'ultimo tende a concentrare le particelle in regioni con *B* maggiore: da $E_t/E_B > 1$ si ricava quindi la condizione essenziale $d < (6k_BT/\pi MB)^{1/3}$, la quale impone un limite superiore sul diametro dell'ordine della decina di nanometri. Non occorre invece valutare il rapporto tra l'energia gravitazionale, che tende a depositare le nanostrutture, e l'energia termica, poiché, per i materiali più comunemente usati, $E_g/E_B \approx 5\%$ che porta a $E_g/E_t << 1$. Anche l'attrazione dipolo-dipolo tende a far agglomerare i cluster, quindi è necessario che valga $E_t/E_{dd} > 1$, cioè $d < (72k_BT/\pi\mu_0M^2)^{1/3}$, che si traduce nella stessa precedente stima di diametro massimo.

Un'altra forza attrattiva sempre presente è quella di van der Waals-London, la quale provoca attrazione tra due particelle a causa di fluttuazioni quantistiche della densità elettronica.

Una volta creato il campione di ferrofluido con nanostrutture aventi diametri minori di quello critico, resta solo da contrastare l'attrazione di van der Waals: molte sono le tecniche per raggiungere tale scopo, ma nel caso della maghemite in acido nitrico si sfrutta il fatto che, essendo $\gamma - Fe_2O_3$ carica elettricamente (positiva o negativa a seconda del pH), gli ioni di carica opposta liberati dall' HNO_3 vengono attratti dalle nanostrutture creando così un guscio che le rende elettricamente neutre. In questo modo a grandi distanze le particelle di maghemite non interagiscono, mentre su distanze paragonabili allo spessore dello schermo di Debye appena descritto queste sentono una forza elettrica repulsiva E_{re} mostrata nella 2.7.

Un fenomeno che verrà trascurato nello studio della stabilità del ferrofluido è l'aumento della viscosità all'aumentare del campo magnetico, fenomeno che prende il nome di magnetoviscosità: ne verrà proposta di seguito una rapida e sommaria trattazione. La maghemite solida è un materiale ferromagnetico, cioè presenta una magnetizzazione non nulla a campo magnetico nullo detta coercitività (fenomeno di isteresi magnetica): il ferromagnetismo è brevemente spiegato dal fatto che i domini di Weiss, che si allineano al campo magnetico, a campo nullo non riescono a risistemarsi casualmente a causa di attriti. Nel caso invece di nanoparticelle di maghemite in soluzione, queste si comportano come un paramagnete poiché hanno dimensioni minori di un dominio di Weiss. Esistono quindi due fenomeni per cui un dominio riesce a ruotare [2]: la rotazione del dipolo magnetico all'interno della molecola (rotazione di Neel) e la rotazione dell'intera molecola per moto Browniano (rotazione di Debye) con tempi caratteristici τ_N , detto tempo di Neel, e τ_B rispettivamente. Questi valgono

$$\tau_N = \frac{e^{\frac{KV}{k_B T}}}{f_0} \qquad , \qquad \tau_B = \frac{3V\eta_0}{k_B T}$$

dove f_0 è una frequenza di circa $10^9 Hz$, K è la costante di anisotropia, V il volume della particella ed η_0 la viscosità del solvente. Un andamento teorico della viscosità $\eta(B)$, ricavato da Shliomis, che bene approssima i dati sperimentali ottenuti da McTague mediante misure sul flusso di Poiseuille in un capillare cilindrico è

$$\frac{\Delta\eta}{\Delta\eta_{\infty}} = \frac{3}{2}\phi \frac{\frac{1}{2}\alpha L(\alpha)}{1 + \frac{1}{2}\alpha L(\alpha)} sin^{2}(\beta)$$
(2.8)

con $\Delta \eta_{\infty}$ (viscosità rotazionale) la viscosità per $T \to 0$, $\Delta \eta$ la viscosità calcolata, ϕ la frazione di volume solido, $L(\alpha)$ la funzione di Langevin 2.2 e β l'angolo tra i vettori campo magnetico e direzione del flusso. In figura 2.2 sono mostrate le viscosità calcolate per **B** parallelo e perpendicolare alla direzione del flusso e relativi andamenti teorici in funzione del parametro di Langevin..

Figura 2.2: Magnetoviscosità calcolata per B parallelo (||) e perpendicolare (\perp) alla direzione del flusso e relativi andamenti teorici in funzione del parametro di Langevin.

2.3 Angolo di contatto e isteresi

Ogniqualvolta si crea un'interfaccia tra due fluidi o tra un fluido e un solido, questo comporterà un costo energetico E_s per unità d'area A il quale è descritto dalla tensione superficiale $\gamma = E_s/A$. Questa forza per unità di lunghezza è la responsabile della minimizzazione dell'area dell'interfaccia tra i fluidi: per una goccia di liquido vale infatti la relazione di Laplace

$$\Delta p = \gamma \left(\frac{1}{r_1} + \frac{1}{r_2}\right) \tag{2.9}$$

dove Δp è il salto di pressione tra interno ed esterno, r_1 ed r_2 sono i raggi di curvatura locali della goccia.

Considerando una goccia di ferrofluido appoggiata su una superficie solida, questa creerà due interfacce: una tra ferrofluido e superficie ed una tra ferrofluido ed aria. Assumendo la superficie perfettamente omogenea, l'intersezione tra queste due superfici sarà una linea di contatto circolare sulla quale si può definire l'angolo di contatto, ossia l'angolo tra la superficie d'appoggio e l'interfaccia aria-liquido. A seconda dei materiali in questione, questo angolo può variare da valori prossimi a 0 a valori di circa π : più l'angolo è prossimo a 0 è più la superficie è liofila (idrofila nel caso dell'acqua) e tende ad essere bagnata dalla goccia, più l'angolo è prossimo a π più la superficie è liofoba (idrofoba nel caso dell'acqua) e la goccia tende a non bagnare la parete. La relazione di Young che descrive l'angolo di contatto θ_C si ricava dal fatto che all'equilibrio le tre tensioni tra le tre interfacce presenti (solido, liquido, gas) devono avere risultante nulla , come illustrato nella figura 2.3, per cui

$$\gamma_{sg} - \gamma_{sl} - \gamma_{lg} \cos(\theta_C) = 0 \qquad . \tag{2.10}$$

Figura 2.3: Tensioni superficiali agenti su una goccia.

Essendo θ_C identificato univocamente dai materiali utilizzati, l'aumento o la diminuzione del volume della goccia o un suo eventuale spostamento dovrebbero comportare rispettivamente un allargamento, un restringimento ed uno spostamento della linea di contatto. Le superfici reali però introducono un pinning

che la linea di contatto deve vincere per potersi modificare: questo pinning può essere generato da rugosità, spigoli e/o inomogeneità chimiche. L'angolo di contatto non è quindi univocamente determinato, ma varia in un intervallo il cui estremo inferiore è chiamato angolo di recessione θ_R ed il cui estremo superiore è chiamato angolo di avanzamento θ_A (figura 2.4).

Figura 2.4: Effetto di isteresi dell'angolo di contatto a causa di un cambio di volume (sinistra) o a causa di uno spostamento (destra): l'angolo di contatto θ_C è in blu, quello di avanzamento θ_A è in verde e quello di recessione θ_R in rosso.

2.4 Instabilità

Si assuma per semplicità che una goccia di ferrofluido sia soggetta ad un campo assiale a gradiente negativo.

Figura 2.5: Forza di volume.

La forza per unità di volume dovuta al campo magnetico che interessa la goccia è, come già accennato, $\mathbf{F} = M\nabla B$: poiché ∇B è concorde a \mathbf{g} questa si traduce in una gravità effettiva pari a $\mathbf{g}^* = \mathbf{g} + M\nabla B/\rho$ dove ρ è la densità del ferrofluido. Definendo come lunghezza caratteristica del sistema $l = V^{1/3}$, il numero di Bond è il rapporto tra la densità di energia gravitazionale ρgl e la densità di energia superficiale γ/l : il numero di Bond magnetico Bo^{*} si ottiene sostituendo g^* a g e vale

$$Bo^* = \frac{\rho g^* V^{2/3}}{\gamma} \tag{2.11}$$

La forza agente invece sulla superficie della goccia, dove la magnetizzazione passa da un valore finito a zero molto rapidamente, si può scrivere come $\mathbf{F} = -\mu_0 \mathbf{H}(\nabla \cdot \mathbf{M})$: dall'equazione di Maxwell $\nabla \cdot \mathbf{B} = \mu_0 \nabla \cdot (\mathbf{M} + \mathbf{H}) = 0$ si ha che $-\nabla \cdot \mathbf{M} = \nabla \cdot \mathbf{H}$ e quindi, grazie a identità vettoriali e tensoriali e all'assenza di correnti elettriche,

$$\boldsymbol{F} = \boldsymbol{B}(\nabla \cdot \boldsymbol{H}) \implies F_i = \frac{1}{\mu_0} \frac{\partial (B_i B_j)}{\partial x_j} - \frac{B_i}{\mu_0} \frac{\partial B_j}{\partial x_j} = \frac{1}{\mu_0} \frac{\partial}{\partial x_j} (B_i B_j - \frac{1}{2} B^2 \delta_{ij}).$$

Si può allora definire il tensore degli stress di Maxwell T di componenti

$$T_{ij} = \frac{B_i B_j}{\mu_0} - \frac{B^2}{2\mu_0} \delta_{ij}$$
(2.12)

la cui divergenza restituisce una forza: utilizzando quindi il teorema di Gauss-Green ed integrando su una superficie, si ottiene la forza agente. Per caratterizzare meglio quest'ultima, è utile trattare il caso in cui il campo magnetico sia diretto lungo \hat{x} del sistema di riferimento: detta n la normale di una superficie infinitesima su cui agisce B_x , la trazione su tale area è data da $t = n \cdot T$. Siano inoltre θ l'angolo tra $n \in \hat{x}$, ϕ l'angolo tra $t \in \hat{x}$: sostituendo $n = \cos(\theta)\hat{x} + \sin(\theta)\hat{y}$ nella 2.12 si ottiene $-\tan(\theta) = t_x/t_y$, ma per definizione $t_x/t_y = \tan(\phi)$, quindi $|\theta| = |\phi|$.

Questo implica un effetto molto importante: B è sempre la bisettrice dell'angolo tra t ed n .

Come risulta chiaramente nella figura 2.6, in ogni punto della superficie della goccia la trazione si scompone in una pressione che tende a stringere la goccia e in una tensione che tende ad allungarla.

Dalla forma del tensore degli stress si osserva chiaramente una dipendenza quadratica dal campo magnetico, per cui, similmente al numero di Bond magnetico, si definisce il rapporto tra la pressione magnetica e quella superficiale come

$$S = \frac{\mu_0 M^2 V^{1/3}}{\gamma}$$
(2.13)

In realtà, nonostante l'assunzione di un magnete che possa generare un campo sentito dalla goccia perfettamente uniforme, la goccia stessa tende a deformare le linee di campo a causa della sua permeabilità magnetica. L'assenza di

Figura 2.6: Rappresentazione del tensore dello stress di Maxwell: n in verde, B in blu e la forza di trazione t agente su un'area infinitesima in rosso.

correnti infatti consente l'introduzione di un potenziale scalare ψ tale per cui $H = -\nabla \psi$: con una magnetizzazione uniforme vale poi $\nabla \cdot H = -\nabla \cdot (\nabla \psi) =$ $-\nabla^2 \psi = 0$, ossia l'equazione di Laplace: risolvendola per B in coordinate sferiche per un sistema a simmetria assiale formato da una sfera magneticamente permeabile di raggio R attraversata da un campo uniforme nel vuoto, l'equazione restituisce

$$\begin{cases} \boldsymbol{B} = -A(\cos(\theta)\hat{\boldsymbol{r}} - \sin(\theta)\hat{\boldsymbol{\theta}}) + \mu_0 \boldsymbol{M} & , r < R\\ \boldsymbol{B} = \left(\frac{2D}{r^3} + B_0\right)\cos(\theta)\hat{\boldsymbol{r}} + \left(\frac{D}{r^3} - B_0\right)\sin(\theta)\hat{\boldsymbol{\theta}} + \mu_0 \boldsymbol{M} & , r < R \end{cases}$$
(2.14)

 con

$$A = -\frac{3\mu_0 B_0}{2\mu_0 + \mu_m} \qquad , \qquad D = R^3 B_0 \frac{\mu_m - \mu_0}{\mu_m - 2\mu_0}$$

dove r è la coordinata radiale, θ quella polare, B_0 il campo imperturbato ad $r \to \infty$ e μ_m è la permeabilità magnetica del mezzo. Come si vede dalla figura 2.7, le linee di campo vengono tanto più attratte dall'oggetto quanto maggiore è la permeabilità magnetica della sfera: mentre infatti, osservando la 2.14, all'interfaccia col mezzo H presenta discontinuità, B è continuo grazie alla presenza del termine di magnetizzazione.

Anche in questo caso comunque viene mantenuta una simmetria assiale e, poiché a campi grandi corrispondono magnetizzazioni circa costanti (saturazione), all'interno del ferrofluido M è assunto essere uniforme, trascurando il

Figura 2.7: Effetto di una sfera paramagnetica sulle linee di campo B.

cosiddetto *fattore di demagnetizzazione*, il quale dipende fortemente dalla forma della goccia.

Riepilogando, le principali forze generate sul ferrofluido dal campo magnetico sono due: la prima, descritta da Bo^* , è proporzionale ad $M\nabla B$ ed è concorde alla gravità, la seconda, descritta da S, è proporzionale ad M^2 ed è opposta alla gravità. Il bilancio tra queste due forze sarà determinato dalla forma locale di $B \in \nabla B$, cioè dal profilo del campo magnetico: questo significa che a seconda del rapporto d'aspetto dei magneti si osserveranno gocce che tendono ad alzarsi senza rompersi, gocce che tendono a schiacciarsi creando *puddles* o gocce che si rompono.

Un aspetto di queste due forze molto importante è che entrambe dipendono dalla tensione superficiale aria-ferrofluido: è evidente quindi che né in S, né in Bo^* si considera il tipo di superficie utilizzata. Con l'utilizzo della teoria della risposta lineare, si vuole ora analizzare la stabilità o meno di un sistema con un fluido magnetico inviscido interfacciato al vuoto ed attraversato da un B uniforme ed opposto alla gravità: in questo esempio si descrive il comportamento di una superficie infinita in risposta ad una piccola perturbazione. Si può dimostrare che, partendo dall'equazione di Bernoulli generalizzata, dall'equazione di incomprimibilità del fluido, dalla legge di Gauss e quella di Ampere in assenza di correnti, vale la seguente legge di dispersione:

$$\omega^2 = gk - \frac{\mu_0 M_0^2}{\rho(1+\mu_0/\mu)} k^2 + \frac{\gamma}{\rho} k^3$$
(2.15)

dove M_0 è la magnetizzazione imperturbata e μ è la permeabilità magnetica del mezzo. Si nota subito che per lunghezze d'onda λ molto grandi rispetto alla profondità del fluido, si hanno le cosiddette *onde di gravità* per cui vale $\omega^2 = gk$. Viceversa per piccole λ si generano le *onde capillari* per cui $\omega^2 = (\gamma/\rho)k^3$. Onde di gravità ed onde capillari consentono un ω reale, per cui esse si propagano senza modificare la loro ampiezza. L'introduzione del termine quadratico con segno negativo nella 2.15 introduce la possibilità di instabilità, le quali avvengono per $\omega^2 < 0$. Osservando la figura 2.8 che mostra le curve di dispersione al variare della magnetizzazione, si vede che aumentando la magnetizzazione si raggiunge una curva critica nella quale è presente una sola k, detta k_c , tale per cui $\omega^2 = 0$: in questo sistema con magnetizzazione critica M_c tutte le perturbazioni mantengono la loro ampiezza per poi essere smorzate da fenomeni non lineari, a parte quella a k_c , la quale produce l'*instabilità di Rosensweig* mostrata in figura 2.9 dove si osserva la creazione di punte con un periodo spaziale di circa $2\pi/k_c$. Superando la magnetizzazione critica le lunghezze d'onda per cui ω è immaginario aumentano e il sistema diventa sempre più instabile.

Figura 2.8: Relazione di dispersione per un mezzo con $\gamma = 0.072 \ N/m$, $\rho = 1 \ kg/l$ e $\mu = 6.5\mu_0$.

Figura 2.9: Instabilità di Rosensweig.

Queste grandezze critiche valgono:

$$\begin{cases} k_c = \sqrt{\rho g/\gamma} \\ M_c = \left[\frac{2}{\mu_0} \left(1 + \frac{\mu_0}{\mu}\right) \sqrt{\rho g/\gamma}\right]^{1/2} \end{cases}$$
(2.16)

A questa k_c è quindi associata una $\lambda_c^{Rosensweig} = 2\pi \sqrt{\gamma/(\rho g)}$. Verrà trascurata la trattazione di tale problema mediante analisi non lineare, la quale consentirebbe il riconoscimento di instabilità provenienti dalla sovrapposizione di più perturbazioni. Per semplicità non verrà nemmeno trattata l'analisi della stabilità per **B** paralleli alla superficie.

Nell'articolo [1] pubblicato su *Science* nel 2013 si osservava per la prima volta che con una certa configurazione del campo magnetico una goccia di ferrofluido si poteva rompere generando gocce figlie a cascata, le quali si disponevano in maniera geometricamente ordinata, come mostrato nella figura 2.10.

Figura 2.10: Immagine della rottura a cascata di una goccia di 10 μl : le gocce evidenziate sono quelle con diametro maggiore ([1]).

Muovendo poi il magnete sotto di esse queste si ricongiungevano e si rompevano ancora mantenendo una certa geometria: è necessario allora correggere la $\lambda_c^{Rosensweig}$ sostituendo g con g^* . Così facendo, trascurando il contributo di g in g^* , si ottiene una nuova lunghezza caratteristica con cui confrontare le dimensioni del sistema, la quale diventa:

$$\lambda_c = 2\pi \sqrt{\frac{\gamma}{M\nabla B}} \tag{2.17}$$

Poiché, al contrario del sistema trattato da Rosensweig, la transizione per la goccia avviene in maniera continua, cioè non presenta un valore critico che distingue qualitativamente due fasi del sistema, si è scelto di analizzare due transizioni: la prima è quella in cui, avvicinando il magnete alla goccia, questa inizia a diminuire la sua altezza, mentre la seconda è la formazione di due punte prima della divisione.

La caratterizzazione sistematica dei parametri che causano la rottura della goccia, non considerata in [1], viene quindi studiata in questo lavoro di tesi.

3. Metodologia sperimentale

Una volta scelta la modalità di lavoro ed individuati gli intervalli ottimali per i parametri del sistema, si è potuta iniziare l'acquisizione dati. Nelle prossime sezioni saranno descritti il ferrofluido utilizzato, dalla sua preparazione al suo comportamento, l'apparato di misura, montato ed utilizzato all'interno del LaFSI (Laboratorio di Fisica delle Superfici e Interfacce), ed i programmi di acquisizione ed analisi delle immagini.

3.1 Sintesi di ferrofluidi e caratteristiche

Il ferrofluido usato in questo studio è una soluzione colloidale formata da nanoparticelle di maghemite $\gamma - Fe_2O_3$ disperse in un solvente di acido nitrico $HNO_3 \ (10^{-2} \ mol/l)$.

Figura 3.1: Struttura cristallina a spinello della maghemite.

La sintesi [13] di tale soluzione fu sviluppata da René Massart e consiste nell'aggiungere idrossido di ammonio concentrato in una soluzione acquosa acida di cloruro ferroso e ferrico contenente citrato trisodico: in questo passaggio sono presenti circa il doppio di molecole di Fe III rispetto a quelle di Fe II ed il rapporto molare tra citrato e metalli non supera il 10%. La quantità di citrato è il parametro responsabile della dimensione finale delle nanoparticelle. La magnetite Fe_3O_4 così formata precipita e viene separata per centrifugazione, lavata in acqua distillata, e aggiunta all'acido nitrico: dopo un'altra centrifugazione la magnetite viene ossidata con nitrato ferrico, isolando la magnetite che è proprio la forma ossidata della magnetite.

Al crescere del pH della maghemite in acido nitrico, la carica elettrica superficiale della stessa aumenta e vale 0 nel cosiddetto *point of zero charge* PZC, che per la maghemite vale 7.3: l'ordine di grandezza del modulo della densità superficiale di carica è della decina di $\mu C/cm^2$ [14].

I ferrofluidi che sfruttano la repulsione elettrostatica per non clusterizzare sono detti *ferrofluidi ionici* e per questa famiglia di ferrofluidi il PZC è molto importante, in quanto determina il pH per cui le nanoparticelle agglomerano.

La struttura cristallina della maghemite (fig 3.1) è quella del gruppo degli spinelli, dove la cella primitiva contiene 32 atomi di ossigeno, i quali formano 64 interstizi tetraedrici e 32 ottaedrici: gli ioni metallici occupano un ottavo dei primi e metà dei secondi. Poiché i dipoli magnetici delle particelle nei siti tetraedrici si dispongono in direzione opposta degli analoghi nei siti ottaedrici, si viene a creare un dipolo totale non nullo ed è proprio questa disposizione che conferisce alla maghemite il suo ferromagnetismo. Come già accennato nel capitolo 2.2, poiché le nanoparticelle di maghemite presenti nel ferrofluido utilizzato sono dell'ordine dei 10 nm, esse sono più piccole dei domini di Weiss che sono dell'ordine dei μm , per cui la soluzione in questione esibisce un comportamento paramagnetico, o meglio superparamagnetico, a causa dell'elevata suscettività magnetica della maghemite. Il ferrofluido utilizzato per questo esperimento è stato prodotto, caratterizzato e fornito dal Prof. Alì Abou-Hassan dell'Università Pierre & Marie Curie di Parigi e la taglia media delle sue particelle, pari a circa 10 nm è stata ricavata mediante microscopia TEM. Per quanto riguarda la caratterizzazione magnetica, è stata misurata una magnetizzazione di saturazione a 6.02 $kA \cdot l/mol$ mediante un magnetometro a campione vibrante: in questo apparato il campione viene inserito tra i due poli di un elettromagnete, viene poi magnetizzato e fatto vibrare sinusoidalmente lungo una direzione nel piano di simmetria del sistema; delle bobine poste sul magnete sentono quindi un flusso magnetico variabile ed inducono un voltaggio che dipende dalla magnetizzazione del campione, ma non dal campo magnetico uniforme del magnete. Una volta misurata la magnetizzazione del ferrofluido è possibile ricavare la magnetizzazione per unità di concentrazione ricordando che, come descritto dalla formula di Fröhlich-Kennelly, $M \propto c$: questo è evidente se si pensa che raddoppiare la concentrazione del ferrofluido equivale a raddoppiare i dipoli magnetici disponibili al paramagnetismo.

I diametrid delle nanostrutture prodotte con questo procedimento seguono in realtà una distribuzione log-normale

$$P(d) = \frac{d\sigma\sqrt{2\pi}}{e^{-\frac{\ln^2(d/d_0)}{2\sigma^2}}}$$
(3.1)

dove d_0 e σ sono rispettivamente il diametro medio e la deviazione standard did.

D'altra parte nella formula di Langevin 2.2, la quale fornisce M, la permeabi-

lità magnetica del mezzo dipende dal diametro delle nanoparticelle dalle quali è costituito nella forma $\mu(d) = M_s \phi \pi d^3/6$, dove M_s è la magnetizzazione di saturazione e ϕ la frazione di volume solido, per cui la magnetizzazione effettiva del ferrofluido andrebbe corretta [15] calcolando

$$M = \int_0^\infty M(d) P(d) dd \tag{3.2}$$

Assumendo la distribuzione dei diametri abbastanza piccata sul suo valore rappresentativo \overline{x} , la log-normale si può sostituire con una distribuzione delta di Dirac per cui $M = M(\overline{x})$: questa è anche l'approssimazione scelta per questo esperimento. Dalle misure di magnetizzazione svolte, si è osservato che la formula di Fröhlich-Kennelly fittava meglio i dati rispetto a quella di Langevin: questo è dovuto appunto a tale correzione sulla magnetizzazione.

Le varie concentrazioni di ferrofluido sono state prodotte in laboratorio aggiungendo acido nitrico: tale diluizione e la deposizione della gocce sul vetrino sono state tutte effettuate tramite micropipette ad alta precisione, per cui l'errore sulla concentrazione e sul volume è da considerarsi trascurabile, anche se ad alte concentrazioni il fluido risultava molto viscoso e difficile da manipolare. Maggiori dettagli sono dati nell'appendice A.

3.2 Apparato di misura

Figura 3.2: Apparato sperimentale: vista dall'alto a sinistra, vista di profilo (senza illuminazione e fotocamere) a destra.

L'apparato utilizzato per l'acquisizione immagini mostrato nella figura 3.2 consiste nelle seguenti componenti:

A Un motore controllato da computer mediante un programma sviluppato in ambiente Labview dal dottor Daniele Filippi: questo motore passo-passo (passo da 0.5 $\mu m)$ muove una vite senza fine la quale alza o abbassa un supporto metallico.

- B Il magnete scelto per l'esperimento.
- C La goccia di ferrofluido.
- D Un'asta posta su un movimentatore manuale la quale sostiene un portavetrini: il movimentatore consente di spostare il vetrino con sopra la goccia lungo il piano parallelo al banco ottico.
- E Luce LED collimata lungo una direzione parallela al banco ottico.
- F Luce LED collimata lungo la direzione parallela al banco ottico e perpendicolare alla direzione di (E).
- G Fotocamera Manta con obiettivo 4X montata lungo la direzione di (E).
- H Fotocamera Manta con obiettivo 4X montata lungo la direzione di (F).

Una volta fissato il motore in modo che il supporto per il magnete fosse in una posizione conveniente, è stato fissato il movimentatore con il portavetrini in modo che una sufficiente porzione del vetrino fosse in corrispondenza del supporto. Per entrambe le luci LED si sono cercate la miglior condizione di illuminazione e di reciproca perpendicolarità facendo inoltre in modo che la regione di effettiva collimazione della luce fosse in corrispondenza del sensore della rispettiva fotocamera: è stata poi utilizzata una goccia di prova per controllare che la posizione focale di entrambi gli obiettivi fosse sul vetrino, spostandolo con il movimentatore. Le due telecamere sono state poi spostate lateralmente per centrare le immagini: con questa impostazione, muovendo la goccia con il movimentatore, la corretta messa a fuoco di una visuale è regolata da una corretta centratura dell'altra. Per posizionare il magnete, si è deposta sul fuoco delle fotocamere una goccia molto piccola di ferrofluido, maggiormente sensibile al gradiente del campo magnetico a causa del suo volume: dopo aver posto il magnete sul supporto ed averlo avvicinato al vetrino, si è spostato il magnete in modo che la goccia non risentisse di effetti asimmetrici.

Con tale impostazione, una volta fissato il magnete sul supporto, ogni goccia deposta è posizionata in posizione assiale al magnete semplicemente focalizzandola sulle camere.

Per la calibrazione delle fotocamere, sono state prese alcune immagini di un oggetto mostrato in figura 3.3 con dimensioni note, e sono stati convertiti i pixel (px) in μm misurandone le dimensioni in pixel: per una fotocamera il fattore di conversione vale $8.5 \pm 0.2 \ \mu m/px$ e per l'altra vale $7.40 \pm 0.09 \ \mu m/px$.

Per la calibrazione della distanza tra magnete e goccia, è stato necessario portare il magnete il più vicino possibile al vetrino e tale posizione è stata impostata come z = 0 mm: come si intuisce facilmente, in questo modo si introduce un errore di offset dovuto allo spessore di 1 mm del vetrino, ma essendo questo sempre costante, la sua correzione è immediata.

Il programma che controlla il motore agisce operando con questa sequenza:

• Legge la distanza massima, la minima e l'incremento, impostate dall'operatore, per muovere il magnete.

Figura 3.3: Esempi di immagini per la calibrazione delle fotocamere.

- Costruisce un array contenente tutte le posizioni ottenute incrementando la distanza minima fino alla massima.
- A partire dalla distanza massima fino a quella minima, per ognuno degli elementi dell'array, il motore porta il magnete a quella posizione, attende un numero di secondi impostato precedentemente dall'operatore e salva contemporaneamente le immagini per entrambe le visuali, trascrivendo il nome della fotocamera e la posizione in *mm*.

È inoltre possibile spostare il magnete di una quantità a piacere senza acquisire immagini. Poiché il motore si porta alle distanze impostate leggendole in valore assoluto e non incrementando la posizione ad ogni passaggio, l'errore sulla distanza goccia-magnete non si propaga ad ogni misura, ma rimane quello del passo del motore di $0.5 \ \mu m$.

3.3 Capillarità e superfici

Le superfici su cui deporre le gocce modificano le proprietà interfacciali del liquido: in particolare i due parametri più importanti sono l'angolo di contatto e la sua isteresi. L'angolo di contatto è un indicatore di idrofilicità, mentre l'isteresi è un indicatore di idealità della superficie: in questo esperimento verranno utilizzate quattro tipi di superfici variabili in questi due parametri. La superficie idrofila utilizzata è un vetrino opportunamente pulito con acqua distillata, acetone, etanolo ed asciugato con azoto: in generale l'idrofilia del vetro dipende molto dal suo grado di pulizia. Utilizzando una soluzione piranha o un trattamento UV si sarebbero potuti raggiungere angoli di contatto molto bassi, ma il programma di analisi non sarebbe stato in grado di riconoscere la goccia. La prima delle due superfici idrofobe utilizzate è un vetrino ricoperto di nastro in politetrafluoroetilene, o teflon: per come sono fabbricati i nastri industriali, il teflon si distribuisce in fibre allineate, infatti una goccia di liquido che debba espandere la sua linea di contatto incontra meno resistenza parallelamente alla fibra che perpendicolarmente. Questa rottura di simmetria, osservabile misurando l'elongazione della goccia nelle due direzioni perpendicolari tra loro e parallele alla superficie d'appoggio, non ostacola l'esperimento.

La seconda superficie idrofila è una LIS, *liquid impregnated surface*, ossia una superficie di olio siliconico con viscosità 5 cSt. Per fabbricarla [11] è stato essiccato dell'olio siliconico su un vetrino, creando così delle increspature sulla superficie: è stato successivamente ricoperto il tutto con lo stesso olio, così che tra le due fasi dello stesso materiale ci fosse un'ottima adesione e che l'attrito con una goccia di soluzione acquosa fosse minimo, essendoci due liquidi a contatto. L'isteresi è quindi ridotta di molto a causa dell'assenza di difetti morfologici. Per ripetere una misura è sufficiente lavare con acqua distillata il substrato e ricoprirlo di altro olio siliconico. A causa della natura dell'interazione liquido-liquido, l'olio tende a risalire le pareti esterne della goccia creando nell'immagine una falsa idea di idrofilicità, dove in realtà l'effetto, detto *cloaking*, è dato dall'olio.

La superficie superidrofoba utilizzata è semplicemente una foglia di loto posta su un vetrino. La struttura della foglia di loto si compone di un groviglio di asperità su scala micrometrica sovrapposto da rugosità su scala nanometrica che culminano in punte delle dimensioni dei nanometri. Questo consente alle gocce d'acqua di scivolare facilmente sulla foglia pulendola: nel caso di una foglia perfettamente orizzontale, la gravità induce un angolo di contatto di 140°. Con un fluido magnetico però, la forza magnetica che tende a schiacciare la goccia la fa penetrare all'interno delle asperità rendendola poi impossibile da estrarre, cambiando drasticamente la bagnabilità del sistema: così l'isteresi prima assente dell'angolo di contatto aumenta di molto rendendo molto difficile lo spostamento della goccia. Nella figura 3.4 sono mostrate delle gocce di ferrofluido a 5 mol/l poste a 50 mm dal magnete per le quattro superfici usate.

D'ora in avanti le quattro superfici utilizzate saranno identificate dall'angolo di contatto e dalla sua isteresi, ossia $(\theta_A - \theta_R)$, come mostrato nella tabella 3.1.

Superficie	$oldsymbol{ heta}_C$	Isteresi
Vetro	20°	5°
Teflon	120°	20°
Foglia di Loto	140°	5°
Olio siliconico	100°	2°

Tabella 3.1: Angolo di contatto e isteresi delle quattro superfici utilizzate nell'esperimento.

Per misurare la tensione superficiale è stato utilizzato un apparato detto pendant drop dove una siringa di precisione crea una goccia sospesa: è possibile fittare il profilo di tale goccia con una legge ricavata da quella di Laplace ottenendo, con l'ausilio di un programma di analisi di immagini, un parametro legato alla tensione superficiale. Poiché per calcolare la tensione superficiale dai parametri del fit è necessaria la densità del fluido sono stati pesati su una bilancia di precisione 5 μl di soluzioni a varie concentrazioni. Nella figura 3.5

Figura 3.4: Gocce di ferrofluido a 5 mol/l su superfici ti vetro, teflon, foglia di Loto e LIS, in presenza di strizione magnetica.

sono riportate densità (in verde) e tensioni superficiali (in giallo) in funzione delle concentrazioni: la retta rappresenta il fit lineare dei dati sulle densità. Il valore della pendenza pari a 50 $kg/mol \pm 1$ è compatibile con il valore previsto dalla teoria pari a 49 kg/mol: con semplici calcoli si ottiene infatti la formula

$$\rho_{sz} = \rho_{sv} + c \cdot M M_{st} \cdot 10^{-3} \cdot (1 - \rho_{sv}/\rho_{st})$$

dove gli indici st, sv e sz indicano quantità relative al soluto, solvente e soluzione rispettivamente, mentre MM è la massa molare, c è la concentrazione molare e ρ è la densità in g/cm^3 o equivalenti. Sostituendo infatti $\rho_{sv} = 1.02 \ g/cm^3$ dell'acido nitrico, $\rho_{st} = 7.96 \ g/cm^3$ e $MM_{st} = 55.84 \ g/mol$ del ferro la legge precedente diventa $\rho_{sz} = 1.02 + 0.50c$.

Per osservare l'andamento della tensione superficiale all'aumentare della concentrazione si è utilizzato la pendant drop per varie concentrazioni e dalla figura 3.5 si nota che per concentrazioni quasi nulle γ tende a calare, ma per concentrazioni più alte l'errore sui dati non permette di affermare nessun andamento: per questo motivo il valore viene assunto essere costante e pari alla media di quello delle concentrazioni utilizzate, cioè $53 \pm 3 \ mN/m$. Per quanto riguarda l'isteresi, è stata posizionata una goccia di ferrofluido su ciascuna superficie e con una siringa di precisione se ne è aumentato e diminuito il volume fino a trovare gli estremi θ_A e θ_R calcolando gli angoli di contatto un attimo prima dello spostamento della linea di contatto.

Figura 3.5: In giallo i dati relativi alla tensione superficiale, mentre in verde i dati relativi alla densità del ferrofluido con il relativo fit.

3.4 Simulazioni

Come descritto nel capitolo 2.2, il comportamento di una goccia di ferrofluido in risposta ad un campo magnetico è definito principalmente dal campo magnetico e dal suo gradiente, i quali determinano il bilancio tra le due forze opposte descritte da Bo^* ed S i quali valgono:

$$\begin{cases} Bo^* = \frac{\rho g^* V^{2/3}}{\gamma} \\ S = \frac{\mu_0 M^2 V^{1/3}}{\gamma} \end{cases}$$
(3.3)

Per campi assiali prodotti da magneti cilindrici, gli unici utilizzati in laboratorio, valgono le seguenti formule analitiche [9]:

$$\begin{cases} B = \frac{B_r}{2} \left[\frac{t+z}{\sqrt{(d/2)^2 + (t+z)^2}} - \frac{z}{\sqrt{(d/2)^2 + z^2}} \right] \\ \frac{\partial B}{\partial z} = \frac{B_r}{2} \left[\frac{(d/2)^2}{((d/2)^2 + (t+z)^2)^{\frac{3}{2}}} - \frac{(d/2)^2}{((d/2)^2 + z^2)^{\frac{3}{2}}} \right] \end{cases}$$
(3.4)

dove z è la distanza tra la superficie del magnete e la goccia, B_r è il campo residuo del magnete, t il suo spessore e d il suo diametro.

Figura 3.6: Rappresentazione dell'influenza dei tre parametri definenti i magneti.

Per magneti con un fattore d'aspetto d/t >> 1, ossia discoidali, il campo magnetico al centro del magnete è circa uniforme, quindi con poco gradiente, mentre per magneti con $d/t \ll 1$, ossia cilindrici, il campo tende a piegarsi subito fuori la superficie per ricongiungersi con l'altro polo del magnete, generando un forte gradiente assiale: questo indica che magneti del primo tipo agiscono sulla zona del piano (Bo^*, S) adiacente all'asse S, mentre quelli del secondo tipo agiscono sulla zona adiacente all'asse Bo^* . Per d/t alti infatti vince la strizione magnetica e le gocce che si avvicinano al magnete tendono ad alzarsi senza mai rompersi, mentre per d/t bassi all'avvicinarsi del magnete vince da subito la forza magnetica che tende a creare dei *puddles* di ferrofluido. Per $d/t \approx 1$ il magnete agisce in una zona intermedia del piano (Bo^*, S) dove la forza e la strizione magnetica sono dello stesso ordine di grandezza causando così la divisione della goccia: sono appunto questi i magneti necessari per questo esperimento, in particolare il magnete utilizzato ha un rapporto d'aspetto pari a 3/2. Come si vede dalla 3.4, $B \propto B_r \in \nabla B \propto B_r$, per cui il campo residuo del magnete determina la distanza dall'origine della zona del piano (Bo^*, S) esplorata col magnete: il campo residuo di magneti permanenti non solo è dato dalla dimensione del magnete, ma anche dai materiali di costruzione, solitamente neodimio. Riassumendo, identificando ogni punto del piano (Bo^*, S) con le sue coordinate polari, lo spessore e il diametro dei magneti influenzano la coordinata angolare, mentre il campo residuo quella radiale, come mostrato in figura 3.6.

È stata quindi effettuata un'analisi preliminare grazie ad un programma sviluppato in linguaggio C++ mostrato nell'appendice D. Brevemente, il programma calcola per i magneti descritti in tabella 3.2 le grandezze rilevanti in

funzione della distanza magnete-goccia z, della concentrazione del ferrofluido c e del volume della goccia V, in particolare variabili come campo magnetico, magnetizzazione, Bo^* ed S per varie concentrazioni e vari volumi, all'aumentare della distanza.

Magnete	t [mm]	d [mm]	B[T]
M_1	30.0 ± 0.1	45.0 ± 0.1	1.25 ± 0.01
M_2	20.0 ± 0.1	12.0 ± 0.1	1.17 ± 0.01
M_3	10.0 ± 0.1	10.0 ± 0.1	1.32 ± 0.01
M_4	3.0 ± 0.1	9.0 ± 0.1	1.17 ± 0.01
M_5	5.0 ± 0.1	60.0 ± 0.1	1.29 ± 0.01

Tabella 3.2: Caratteristiche dei magneti presenti in laboratorio.

Sono così determinati l'andamento del campo magnetico in figura 3.7, della magnetizzazione in funzione del campo e di c in figura 3.8, e l'andamento di Bo^* e di S in funzione di z e c in figura 3.9 e 3.10. Sono state poi simulate le curve in funzione della distanza z nel piano (Bo^*, S) per i vari magneti presenti nel laboratorio, elencati nella tabella 3.2: con qualche misura preliminare si è individuata la zona del piano interessata dalla transizione e si è visto che era sufficiente utilizzare il magnete M_1 , come mostrato in figura 3.11. Poiché la magnetizzazione M(c) dipende dalla concentrazione e $Bo^*(M(c), V)$ ed S(M(c), V)dipendono da magnetizzazione e volume, è stata osservata la dipendenza delle curve $(Bo^*(z), S(z))$ da tali parametri per il magnete utilizzato mostrata in figura 3.12: in questo grafico sono riportate le curve nel piano (Bo^*, S) a varie concentrazioni, rappresentate dalla scala di colori a destra, e a vari volumi, rappresentati dalle rette nella scala di colori posta in alto (le rette sono disegnate in modo da essere circa tangenti agli estremi delle curve a Bo^* maggiori). Si osserva che a parità di volume tali curve si alzano con la concentrazione ad un rate di circa $10-20 \ l/mol$, mentre a parità di concentrazione si alzano leggermente, ma si spingono a numeri di Bond magnetici sempre maggiori. Questo accade poiché a parità di volume $S \propto M^2 \propto c^2$ mentre $Bo \propto M \propto c$ e a parità di concentrazione $S \propto V^{1/3}$ mentre $Bo \propto V^{2/3}$. Oltre alle simulazioni sopra descritte, il programma chiede la conferma per l'avvio di tre protocolli:

- data-mode: il programma riceve in ingresso il nome di un file in cui sono inseriti, per un set di dati sperimentali, identificativo del magnete, concentrazione, volume, distanza della transizione, il suo errore statistico ed errore strumentale. Per ogni dato viene quindi identificato il punto di transizione nel piano (Bo^*, S) .
- search-mode: in questo protocollo, indipendente dal precedente, il programma riceve in input una coppia di coordinate (Bo^*, S) con i relativi errori, e salva i set di parametri su cui impostare l'apparato per portarsi a quelle coordinate (figura 3.13).
- *advanced-search-mode*: nel caso in cui il passo dello scan dei parametri per il search mode sia troppo ampio, in questa modalità, dipendente dalla

precedente, il programma riceve in input il fattore con cui dividere i tre parametri e ricerca nuovamente la coppia di coordinate inserita.

Figura 3.7: Campo magnetico assiale in funzione della distanza dalla superficie del magnete M_1 .

Figura 3.8: Magnetizzazione in funzione del campo magnetico al variare di c per il magnete M_1 .

Figura 3.9: Forza magnetica Bo^* in funzione della distanza dal magnete al variare di c per il magnete M_1 .

Figura 3.10: Strizione magnetica S in funzione della distanza dal magnete al variare di c per il magnete M_1 .

Figura 3.11: Curve parametriche al variare di c (stesso colore) per vari magneti. L'ellisse azzurra indica la zona interessata dalle transizioni, mentre i numeri sopra alla curva azzurra rappresentano il parametro distanza goccia-magnete z.

Figura 3.12: Curve nel piano (Bo^*, S) del magnete M_1 al variare di concentrazione e volume della goccia; i punti neri identificati con la lettera *c* indicano i punti che corrispondono alla transizione critica di Rosensweig per le superfici infinite.

Figura 3.13: Esempio di search-mode per il magnete M_1 : in ascissa è riportata la concentrazione, in ordinata il volume della goccia e il colore rappresenta la distanza magnete-goccia massima in cui si entra nella regione del piano (Bo^*, S) desiderata.

Il programma inoltre calcola il valore di Bo^* ed S critici per la transizione di Rosensweig e, qualvolta tali valori risultino presenti nella curva parametrica avente la stessa concentrazione e lo stesso volume, trascrive i parametri in un file a parte e segna tali punti sui grafici.

Tutte queste simulazioni sono servite a trarre le seguenti conclusioni:

- Come già detto, è sufficiente utilizzare il magnete M_1 per osservare la transizione.
- Per esplorare ampiamente la zona interessata dalle transizioni è utile variare la concentrazione della soluzione.
- Per infittire lo scan in una regione, è utile variare il volume della soluzione.
- Le transizioni avvengono quasi esclusivamente a z < 40mm, distanza per la quale B > 50kA/m per cui vale approssimativamente l'ipotesi di saturazione della magnetizzazione.
- Per osservare la transizione è necessario superare la soglia minima di circa $V = 3\mu l$.
- I punti della transizione di Rosensweig non corrispondono minimamente alla zona di transizione del sistema, quindi il passaggio da una superficie infinita di ferrofluido ad una goccia finita induce variazioni troppo pesanti alle condizioni al contorno.

4. Risultati sperimentali

In questo capitolo si riportano i risultati sperimentali riguardanti la rottura di gocce di ferrofluido in presenza di un campo magnetico. Per chiarezza nei grafici, non si riportano gli errori per Bo^* ed S, i quali sono però analizzati nell'appendice C.

4.1 Misure

La figura 4.1 mostra la tipica sequenza di immagini osservate avvicinando un magnete ad una goccia di ferrofluido. Inizialmente, l'avvicinamento del magnete produce un innalzamento della goccia (figure 4.1a e 4.1b). Si raggiunge un'altezza massima (figura 4.1c) dopo la quale la goccia comincia a schiacciarsi (figura 4.1d). Avvicinando ulteriormente il magnete il picco della goccia si divide in due picchi (figura 4.1e) che si separano progressivamente fino a produrre due gocce figlie separate (figura 4.1f).

Figura 4.1: Gocce di ferrofluido a 7,5 mol/l deposte su una LIS distanti dal magnete 80,0 mm (a), 72.4 mm (b), 42,5 mm (c), 27,2 mm (d), 21,2 mm (e), 20,9 mm (f). Per questa misura l'altezza massima è rappresentata in (c) e la formazione delle due punte in (e).

All'avvicinarsi del magnete la goccia cambia forma a causa dei diversi valori di B e di ∇B . Per meglio caratterizzare la fenomenologia della rottura della goccia di ferrofluido si è in particolare studiata la formazione di due punti notevoli: il punto in cui la goccia raggiunge l'altezza massima e il punto di inizio dell'avvallamento.

Per una maggiore statistica, si è ripetuta dalle sei alle otto volte l'acquisizione

Figura 4.2: Programma per l'analisi dati.

per ogni configurazione bilanciando tempo di lavoro e quantità di dati. L'analisi delle misure ottenute è stata effettuata mediante un programma sviluppato per questa tesi in ambiente Labview (fig 4.2) il quale mostra un'immagine della sequenza acquisita: in questa immagine è necessario evidenziare una regione sufficientemente estesa che contiene il profilo della goccia e la linea di contatto nei vari istanti.

Viene dunque tracciato il contorno della goccia basato sul gradiente di contrasto: per questo motivo è possibile regolare i valori BCG (luminosità, contrasto e gamma) dell'immagine. Si possono inoltre modificare i parametri con cui l'algoritmo riconosce il contorno come una curva, nel caso di immagini non ideali. Di questa curva si calcolano poi l'altezza massima h_m a partire dalla base della regione di analisi, la larghezza massima l_m e la larghezza della linea di contatto l_c alla base. Nel caso di angoli di contatto acuti, le ultime due quantità corrispondono. l_c è calcolata considerando tutti i punti sotto a quelli relativi a l_m e calcolando i due punti più vicini all'asse della goccia. Viene poi estratta l'altezza h_{l_m} corrispondente ai punti utilizzati per la larghezza massima, e successivamente l'altezza media tra tali punti e l'altezza massima $h_f = (h_m + h_{l_m})/2$. Vengono allora fittati i punti tra h_f ed h_m con una polinomiale di dodicesimo grado: il grado è stato scelto bilanciando peso computazionale ed affidabilità del fit.

Viene poi attivata l'analisi di ogni immagine in sequenza. I passi successivi, i quali operano sulla polinomiale di fit, servono per evidenziare la transizione da una a due punte della goccia: come criterio di transizione è stato utilizzato il fatto che per creare una valle si generano due punti di cambio di segno della curvatura sul profilo della goccia. Un problema che sorge è che il fit può generare dei cambi di concavità fittizi dovuti all'alto grado del polinomio. Si trovano quindi le radici reali della derivata seconda f''(x) della polinomiale comprese nell'intervallo definito da l_m e si calcola la derivata prima f'(x). Denominando ora gli zeri consecutivi di $f''(x) x_A e x_B$, con $x_A < x_B$, e le loro derivate prime

Figura 4.3: Metodo di riconoscimento della transizione: i segmenti blu rappresentano le derivate in x_A e quelli rossi le derivate in x_B .

 $f'(x_A)$ e $f'(x_B)$, e chiaro che per ogni coppia (x_A, x_B) si possono presentare quattro casi (figura 4.3):

$$\begin{cases} f'(x_A) > 0 \land f'(x_B) < 0 & A \\ f'(x_A) < 0 \land f'(x_B) > 0 & B \\ f'(x_A) > 0 \land f'(x_B) > 0 & C \\ f'(x_A) < 0 \land f'(x_B) < 0 & D \end{cases}$$

Nel caso A si è chiaramente in presenza di una sola punta, mentre nel caso B si è chiaramente in presenza di una valle e quindi di due punte. Nel caso C si presentano due sottocasi: quando $f(x_A) > f(x_B)$ la situazione è la stessa del caso A, quando invece $f(x_A) < f(x_B)$ è necessario introdurre una soglia di $f(x_B) - f(x_A)$ sotto la quale i cambi di concavità siano riconosciuti come derivanti dal fit, e non dall'effettiva transizione. Vale il viceversa per il caso D, avendo cura di utilizzare i valori assoluti delle derivate. Si può concludere dunque che generalmente si riconosce la transizione a due punte se $f(x_B) - f(x_A) \ge s$, dove s è un valore di threshold scelto dall'operatore: in questo esperimento vale sempre s = 0.05. Ovviamente si introduce un errore di offset nel riconoscere anche la vera transizione, ma questo si stima essere molto minore rispetto al passo scelto per le acquisizioni.

Per ogni immagine il programma salva in un foglio di testo, l'altezza h_m in px, la larghezza l_m in px, la lunghezza della linea di contatto l_c in px, una variabile booleana indicante il superamento o meno di s e la distanza z del magnete in mm.

4.2 Analisi dei punti notevoli

I seguenti risultati evidenziano andamenti e dipendenze ricavati in modo empirico e non sono ancora stati spiegati da un modello teorico. Durante questa tesi è stata avviata una collaborazione con il Prof. Afkhami del New Jersey Institute of Technology con il quale si cercherà di spiegare i risultati sperimentali con modelli teorici.

Con l'ausilio di semplici codici in C++, si è mediata l'altezza della goccia vista dalle due visuali, riducendo così un eventuale errore di offset nel posizionamento della base del rettangolo di interesse per l'analisi. Dopo aver graficato l'altezza della goccia in funzione della distanza, è stato effettuato un fit parabolico sul massimo di tale funzione per ricavarne l'ascissa. Le figure 4.4 e 4.5 mostrano i risultati di questa procedura applicata ad una superficie idrofila ed una idrofoba, rispettivamente.

Figura 4.4: Altezza della goccia su una superficie idrofila in funzione della distanza magnete-goccia.

Si è fatta la media pesata delle posizioni ottenute in ogni acquisizione e si sono trovati i punti delle curve nel piano (Bo^*, S) con quella distanza. Tutti questi passaggi sono stati ripetuti variando cinque o sei volte il volume della goccia dell'ordine delle decine di μl , concentrazioni a $4 \ mol/l$, $5 \ mol/l$, $6 \ mol/l$ e 7.5 mol/l, e considerando quattro distinte superfici d'appoggio. Nel grafico risultante mostrato in figura 4.6 sono riportati i dati sul punto di massima altezza della goccia dove il colore rappresenta la concentrazione della goccia e la figura geometrica rappresenta la superficie d'appoggio: si nota che cambiando i parametri del sistema i punti si dispongono su delle rette separate che dipendono solo dalla concentrazione della soluzione, ma non dalla superficie.

Figura 4.5: Altezza della goccia su una superficie idrofoba in funzione della distanza magnete-goccia.

Figura 4.6: Diagramma di fase che mostra i punti, graficati in termini di $S \in Bo^*$, corrispondenti all'altezza massima raggiunta da gocce di volume e concentrazioni diverse deposte su superfici diverse.

Il grafico 4.7 mostra come variano le pendenze e le intercette delle rette nel grafico 4.6 con la concentrazione: si nota che entrambe aumentano con un andamento circa lineare. È evidente dal dato a 5 mol/l che una sovrastima della pendenza induce una sottostima dell'intecetta e viceversa, quindi i due dati sono correlati.

Figura 4.7: Pendenze e intercette delle rette nel grafico 4.6.

Figura 4.8: Diagramma di fase che mostra i punti, graficati in termini di $S \in Bo^*$, corrispondenti all'altezza massima raggiunta da gocce di volume e concentrazioni diverse deposte su superfici diverse, riscalato per le concentrazioni.

Poiché le uniche dipendenze dalla concentrazione nel grafico 4.6 sono quella quadratica in S e quella lineare in Bo^* , sono stati graficati in figura 4.8 gli stessi

dati riscalando però le ascisse per c e le ordinate per c^2 : si nota che i vari dati collassano discretamente bene su una curva che suggerisce l'esistenza di una legge di scala.

Il grafico 4.9 mostra invece nel piano (Bo^*, S) il punto di formazione della valle nelle gocce per concentrazioni diverse depositate sulle varie superfici. Come nel caso dei punti dell'altezza massima, i dati si dispongono su rette che dipendono principalmente dalla concentrazione della goccia: inoltre, è presente un ulteriore piccolo contributo dovuto alla superficie, evidenziato nel grafico 4.10 che mostra i punti di valle al variare del volume e della superficie per una fissata concentrazione pari a 5 mol/l.

Figura 4.9: Diagramma di fase che mostra i punti, graficati in termini di $S \in Bo^*$, corrispondenti alla creazione della valle di gocce di volume e concentrazioni diverse deposte su superfici diverse.

Figura 4.10: Diagramma di fase che mostra i punti, graficati in termini di $S \in Bo^*$, corrispondenti alla creazione della valle di gocce deposte su superfici diverse alla concentrazione di 5 mol/l.

Figura 4.11: Diagramma di fase che mostra i punti, graficati in termini di $S \in Bo^*$, corrispondenti alla creazione della valle di gocce di volume e concentrazioni diverse deposte su superfici diverse, riscalato per le concentrazioni.

Poiché la dipendenza dalla concentrazione dovrebbe essere la stessa del punto di massimo si è provato a riscalare anche questo grafico alla stessa maniera ottenendo quello in figura 4.11. La maggiore dipendenza della seconda transizione dal tipo di superficie è spiegabile dal fatto che più la superficie è idrofoba, cioè più aumenta l'angolo di contatto, più il sistema deve spendere energia per spostare e modificare la linea di contatto. Mentre però la prima transizione non comporta un grande spostamento di tale linea, la divisione di una goccia modifica drasticamente la morfologia del sistema.

Infine la figura 4.12 mostra per ogni superficie la differenza delle distanze magnete-goccia a cui avvenivano le due transizioni e si è osservato che questa aumenta all'aumentare dell'idrofobicità della superficie: la superficie in questo grafico è rappresentata dal suo angolo di contatto, riportato nella tabella 3.1 nel capitolo 3.3.

Riassumendo, il punto di massimo, com'era da aspettarsi, non dipende molto dalla superficie perché la linea di contatto essenzialmente non si muove durante l'innalzamento della goccia. Invece la formazione della valle avviene a distanze magnete-goccia sempre minori all'aumentare dell'idrofobicità della superficie, perché la linea di contatto deve vincere sempre più attrito per spostarsi: la distanza percorsa dal magnete tra il raggiungimento dell'altezza massima e la creazione della valle nella goccia aumenta quindi con l'idrofobicità della superficie.

Infine, per completezza si riportano in figura 4.13 i dati relativi ad entrambe

Figura 4.12: Distanza percorsa dal magnete tra le due transizioni in funzione della superficie.

le transizioni e in figura 4.14 gli stessi dati riscalati per le concentrazioni: la linea verde delimita le zone interessate da una e l'altra transizione. Si vede molto chiaramente dal grafico 4.13 come i dati relativi al vetro non distino molto tra le due transizioni: infatti si osserva dal grafico 4.12 che per il vetro ($\theta_C = 20^\circ$) la distanza tra le due transizioni è in media di circa 12 mm.

Figura 4.13: Diagramma di fase che mostra i punti, graficati in termini di $S \in Bo^*$, corrispondenti al punto di massimo (a sinistra della linea verde) e alla creazione della valle (a destra della linea verde) di gocce di volume e concentrazioni diverse deposte su superfici diverse.

Figura 4.14: Diagramma di fase che mostra i punti, graficati in termini di $S \in Bo^*$, corrispondenti al punto di massimo (a sinistra della linea verde) e alla creazione della valle (a destra della linea verde) di gocce di volume e concentrazioni diverse deposte su superfici diverse, riscalato per le concentrazioni.

4.3 Lunghezza alla rottura

Per ogni singola misura, dopo aver individuato la posizione del punto di valle, si è scelta una lunghezza che caratterizzasse la goccia: è stato scelto il diametro massimo della goccia [1], poiché questa è la grandezza coinvolta nella divisione, ma non sempre la goccia si è divisa perpendicolarmente ad una delle due visuali. Nonostante questo, il fatto di avere a disposizioni due visuali perpendicolari tra loro ha aumentato la possibilità di questa eventualità, riducendo comunque l'errore sul diametro in caso di non perpendicolarità. Dopo aver fatto la media per ogni campione di tale dimensione convertita in mm, la si è graficata in funzione della lunghezza capillare magnetica

$$\lambda_c = 2\pi \sqrt{\frac{\gamma}{\mu_0 H \nabla M}}$$

derivata nel capitolo 2.4. Il risultato in figura 4.15 mostra, per le concentrazioni a 5 mol/l e 7.5 mol/l, il diametro massimo della goccia al momento della formazione della valle in funzione di λ_c ; i dati rappresentati da un simbolo della stessa forma e colore si riferiscono a volumi diversi. Si osserva che i dati relativi alla concentrazione di 5 mol/l giacciono su una retta la cui pendenza vale 2.1 ± 0.1 e quelli relativi alla concentrazione di 7.5 mol/l giacciono su una retta di pendenza 1.9 ± 0.2 , ossia nella goccia si creano due punte quando si è allargata di circa il doppio della sua lunghezza caratteristica λ_c . Si nota inoltre che questa fenomenologia dipende dalla concentrazione, ma non dal volume della goccia o dalla superficie d'appoggio.

Figura 4.15: Relazione tra lunghezza della goccia all'istante della formazione della valle e lunghezza capillare magnetica.

Un aspetto che è stato analizzato solo qualitativamente è il rompersi o meno della goccia una volta che si siano create le due punte. I due parametri che determinano le modalità di questa transizione sono la concentrazione e la superficie: si è osservato che ad alte concentrazioni, dove la forza magnetica è più elevata, la goccia si divideva sempre, incontrando però sempre più resistenza all'aumentare dell'idrofobicità della superficie. A basse concentrazioni ($c < 6 \ mol/l$) si ha la formazione della valle, ma l'ulteriore avvicinamento del magnete non porta alla rottura della goccia: è probabilmente necessario l'utilizzo di un magnete più potente. Al diminuire invece dell'idrofobicità delle superfici si osserva che per qualsiasi concentrazione i movimenti della goccia sono sempre più facilitati dalla superficie e che il sistema impiega meno tempo a trovare equilibrio dopo un movimento del magnete.

Avvicinando ulteriormente il magnete alla goccia dopo la formazione della valle si è osservato che, in caso di effettiva divisione della goccia madre in due gocce figlie, queste ultime si comportano a loro volta come due gocce madri andando a dividersi alla distanza prevista dalla teoria: il sistema infatti è semplicemente riscalato ad un volume minore, circa la metà di quello iniziale, e, in prima approssimazione, non risente della piccola asimmetria dovuta al decentramento della goccia o all'interazione tra le due gocce. Nell'articolo pubblicato su *Science* nel 2013 [1] infatti, avendo a disposizione un magnete molto esteso, annullando quindi ogni effetto di bordo, la goccia madre si è rotta a cascata ed in modo geometricamente ordinato in molte goccioline. Nel caso di basse

concentrazioni avvicinando il magnete si vengono a formare molte valli, più o meno profonde a seconda della concentrazione, senza però arrivare alla rottura. Questa è infatti la fenomenologia che descrive la formazione dei *puddles*, ossia di gocce così schiacciate da sembrare delle pozzanghere millimetriche, anche per i magneti ad alto gradiente [3]. Andando ad osservare da vicino un puddle si osserva proprio che esso è formato da molte punte e valli maggiormente visibili all'aumentare della concentrazione.

Una volta formata la valle, nel caso in cui non avvenga la divisione questo succede poiché la configurazione ad una punta è quella energeticamente favorita. La formazione della valle è quindi reversibile, mentre la divisione della goccia è solitamente irreversibile. Se la superficie è idrofoba è molto difficile che le due gocce figlie entrino in cantatto di nuovo perchè esse subiscono una repulsione reciproca dovuta al fatto che essendo formate da materiale superparamegnetico modificano fortemente la geometria del campo magnetico. Su una superficie idrofila però, nonostante tale repulsione le linee di contatto delle gocce figlie possono entrare in contatto a causa della loro morfologia, formando quindi un'unica goccia che tornerà ad avere una sola punta.

5. Conclusioni

Questa tesi è stata svolta partendo dalla fenomenologia di self-assembly causata da un campo magnetico su una goccia di ferrofluido riportata in un articolo pubblicato su *Science* nel 2013 [1]. In particolare, si è scelto di studiare la rottura di gocce di ferrofluido sottoposte ad un campo magnetico generato da un magnete permanente di forma cilindrica. La soluzione di ferrofluido è stata fornita dal Prof. Abou-Hassan dell'università Pierre & Marie Curie di Parigi. E stato quindi progettato un apparato che consentisse di avvicinare il magnete alla goccia e di acquisire immagini, in modo da analizzare successivamente il profilo e ricavare informazioni sulle transizioni morfologiche del sistema. Durante l'avvicinamento del magnete alla goccia, si sono notati due distanze critiche: la prima è quella in cui la goccia raggiunge un'altezza massima, la seconda è quella in cui da una punta se ne formano due. Si sono dunque studiate le dipendenze di questi due punti critici da volume e concentrazione della goccia e dal tipo di superficie su cui il ferrofluido viene deposto, riportando i dati in un piano definito dalla forza magnetica, che schiaccia la goccia, e dalla strizione magnetica, che allunga la goccia. Si è osservato che per il punto di massima altezza si ha una chiara dipendenza dalla concentrazione, ma non dalla superficie, mentre per la creazione di due punte si ha una forte dipendenza sia dalla concentrazione, sia dalla superficie.

Si è inoltre ricavata una legge empirica che lega il diametro massimo della goccia al momento della formazione della valle con la lunghezza capillare magnetica, una lunghezza caratteristica del sistema. Il passo successivo è quello di corroborare i dati e le osservazioni sperimentali con modelli teorici: a tale riguardo è stata attivata una collaborazione col Prof. Afkhami del New Jersey Institute of Technology, uno dei massimi esperti di magnetofluidodinamica.

A. Controllo volume

Le micropipette ad alta precisione utilizzate in laboratorio utilizzano un sistema a molla per prelevare una quantità di liquido: questo dispositivo funziona molto precisamente per fluidi poco viscosi, ma non è esattamente tarato per viscosità elevate. Poiché la viscosità della sospensione colloidale di maghemite aumenta con la concentrazione, l'utilizzo di concentrazioni sempre maggiori rendeva sempre più difficoltoso il prelievo del fluido, il volume del quale ha quindi errore crescente con c. Un primo semplice metodo per ridurre di molto tale errore consiste nel prelevare molto lentamente il ferrofluido, avendo anche cura di fermare frequentemente il processo per impedire la formazioni di depressioni troppo elevate nella pipetta le quali potrebbero dar luogo a infiltrazioni d'aria nel sistema. La difficoltà di prelevare volumi influenza in due circostanze diverse le misure di Bo^* ed S: nel momento della diluizione della soluzione madre a 7.5 mol/l e nel momento della deposizione delle gocce oggetto di misura.

La prima problematica è stata evidentemente riscontrata alla conclusione del processo di diluizione: avendo infatti preparato le diluizioni in modo che risultassero 0.5 ml di soluzione per ogni concentrazione, si è osservato che, pur utilizzando contenitori uguali, l'altezza dei fluidi all'interno di essi era vistosamente diversa. Poiché quindi l'errore non poteva essere imputato all'acido nitrico a $10^{-2} mol/l$, si è scelto di aggiungere ferrofluido fino a raggiungere l'altezza di riferimento osservata in uno stesso contenitore con 0.5 ml di acqua distillata. Per quando riguarda l'errore del volume nella deposizione delle gocce sulle superfici idrofobe, si è scelto di effettuare un check a posteriori ricavando un volume indicativo della goccia dai due profili della goccia: assumendo infatti, per piccole deformazioni dovute al campo magnetico, che la forma della goccia sessile sia una calotta ellissoidale, sono state utilizzate alcune relazioni geometriche per ricavare il volume della goccia.

$$\begin{cases} V = \frac{\pi abh^2(3c-h)}{3c^2} \\ B = \frac{\pi abh(2c-h)}{c^2} \end{cases}$$

dove V è il volume della calotta ed S è l'area di base: gli altri parametri sono mostrati in figura A.1.

Per le superfici idrofile questo profilo non è quello corretto. Il programma di acquisizione restituisce, per ognuna delle due visuali, altezza della goccia, larghezza massima e larghezza della linea di contatto: le due semilarghezze massime rappresentano i due semiassi dell'ellissoide paralleli alla superficie. Poiché poi le due semilarghezze della linea di contatto sono i due semiassi dell'ellisse dell'area di contatto, è possibile ricavare il terzo semiasse dell'ellissoide da queste: $c = hs(1 - \sqrt{1 - 1/s})$ dove $s = (ab)/(r_a r_b)$ (parametri mostrati in figura A.1) è il rapporto tra l'area equatoriale dell'ellissoide e l'area di base dalla calotta. Il volume risulta quindi essere

Figura A.1: Calotta ellissoidale: a, b, c sono i tre semiassi dell'ellissoide, h l'altezza della calotta, $r_a \in r_b$ i due semiassi della base della calotta.

$$V = \pi abh \frac{3s(1 - \sqrt{1 - 1/s}) - 1}{3s^2(1 - \sqrt{1 - 1/s})^2}$$

Il grafico A.2 mostra il volume così calcolato di una goccia di 10 μl in funzione della distanza magnete-goccia, insieme ad altezza e larghezza massima della goccia.

Figura A.2: Volume, altezza e larghezza massima in funzione della distanza magnetegoccia di una goccia di volume nominale pari a 10 μl .

Come si nota da tale grafico, per distanze magnete-goccia molto elevate il volume calcolato tende a quello nominale e questo è stato controllato per ogni misura su superfici idrofobe.

B. Evaporazione

Durante la durata dell'esperimento è stato necessario valutare l'entità dell'errore su vari parametri introdotta dall'evaporazione della componente acquosa della soluzione: i due effetti principali dell'evaporazione sono il cambiamento del volume della goccia deposta e l'aumento della sua concentrazione. Per diminuire tale effetto è stato posizionato un lembo di stoffa imbevuto d'acqua per rendere l'atmosfera vicina alla goccia più umida possibile: poiché inoltre il vapore tende a salire, sotto il magnete è stata posizionata una vaschetta di acqua molto larga. Con questa configurazione, si sono prese delle foto di gocce di 8 μl a varie concentrazioni ogni trenta secondi per venticinque minuti per ricavare l'entità dell'evaporazione misurando, utilizzando il procedimento descritto in appendice A, il volume. Come si osserva dal grafico B.1, che mostra la diminuzione del volume in funzione del tempo per varie concentrazioni, nel caso peggiore il tasso di evaporazione è di circa 0.2 $\mu l/min$ e poiché le misure si svolgono entro i due o tre minuti, questo problema è trascurabile.

Figura B.1: Volume della goccia in funzione del tempo.

Per concentrazioni molto alte, in particolare a 7.5 mol/l, il fatto che per piccole distanze magnete-goccia questa tenda ad appuntirsi molto provoca una rapida evaporazione locale nei pressi della punta, la quale tende ad indurirsi più rapidamente del resto introducendo una tensione aggiuntiva che altera il sistema: in questo caso si è optato per velocizzare l'acquisizione nei pressi della transizione. L'effetto dell'aumento della concentrazione a causa dell'evaporazione è mostrato per completezza nelle figure B.2: in queste figure il tempo aumenta da sinistra a destra e la presenza del magnete fermo al di sotto della goccia continua ad alzare la goccia all'aumentare della concentrazione. Per i tempi di acquisizione dell'esperimento questo non introduce un problema.

Figura B.2: Effetto dell'evaporazione sulla concentrazioni.

C. Propagazione errori

In questa appendice si vogliono stimare gli errori nelle varie misure effettuate. Innanzitutto, come già accennato nell'appendice A, sebbene l'errore delle micropipette sia trascurabile (inferiore al 2%) l'elevata viscosità ad alte concentrazioni, soprattutto a 7.5 mol/l della soluzione madre, introduce un errore strumentale stimato essere $\sigma_V = 0.03 cV$. D'altra parte, se l'errore sulla concentrazione madre e nullo, quello sulle concentrazioni riprodotte in laboratorio vale $\sigma_c = c\sigma_\Omega/\Omega$ dove Ω è il volume di 500 μl da ottenere per ogni diluizione: poichè, come detto nell'appendice A, alla fine ogni diluizione è stata corretta aggiungento ferrofluido fino ad arrivare al livello di 500 μl di acqua l'errore visivo sul livello di liquido è stimato essere 20 μl : l'errore relativo sulle concentrazioni risulta quindi essere circa pari al 4%. Per quando riguarda B e ∇B , il loro errore va propagato per il campo residuo B_r , lo spessore t, il diametro d e la distanza dalla superficie del magnete z. Gli errori sui primi tre parametri sono riportati nella tabella 3.2 nel capitolo 3.4, l'errore su z è una combinazione tra l'errore strumentale dovuto al passo del motore che muove il magnete e l'errore di sensibilità nello scan impostato per le distanze: il primo, pari a 0.5 μm , risulta trascurabile rispetto al secondo, pari a 0.2 mm. Questa incertezza però risulta a sua volta trascuarbile quando si calcola l'errore statistico di z su più misure: tale errore infatti è dell'ordine del millimetro ed aumenta all'aumentare dell'idrofobicità della superficie. Di seguito varrà $\sigma_z \approx 1 \ mm$. Gli errori propagati per il campo magnetico si ricavano allora da

$$\sigma_{B} = \frac{B_{r}}{2} \Biggl\{ \Biggl[\frac{\frac{d}{4}(t+z)}{\left(\left(\frac{d}{2}\right)^{2} + (t+x)^{2}\right)^{3/2}} \Biggr]^{2} \sigma_{d}^{2} + \frac{\left(\frac{d}{2}\right)^{4}}{\left(\left(\frac{d}{2}\right)^{2} + (t+x)^{2}\right)^{3}} \sigma_{t}^{2} + \left(\frac{2B}{B_{r}^{2}}\right)^{2} \sigma_{B_{r}}^{2} + \left(\frac{1}{\sqrt{\left(\frac{d}{2}\right)^{2} + (t+x)^{2}}} - \frac{1}{\sqrt{\left(\frac{d}{2}\right)^{2} + x^{2}}} - \frac{(t+x)^{2}}{\left(\left(\frac{d}{2}\right)^{2} + (t+x)^{2}\right)^{3/2}} + \frac{x^{2}}{\left(\left(\frac{d}{2}\right)^{2} + x^{2}\right)^{3/2}} \Biggr]^{2} \sigma_{z}^{2} \Biggr\}^{1/2}$$
(C.1)

e da

$$\begin{split} \sigma_{\frac{\partial B}{\partial z}} &= \frac{B_r}{2} \Biggl\{ \Biggl[\frac{\frac{3}{16} d^3}{\left(\left(\frac{d}{2} \right)^2 + z^2 \right)^{5/2}} - \frac{\frac{3}{16} d^3}{\left(\left(\frac{d}{2} \right)^2 + (t+z)^2 \right)^{5/2}} + \\ &+ \frac{\left(\frac{d}{2} \right)^2}{\left(\left(\frac{d}{2} \right)^2 + (t+z)^2 \right)^{3/2}} - \frac{\left(\frac{d}{2} \right)^2}{\left(\left(\frac{d}{2} \right)^2 + z^2 \right)^{3/2}} \Biggr]^2 \sigma_d^2 + \Biggl[\frac{3(t+z) \left(\frac{d}{2} \right)^2}{\left(\left(\frac{d}{2} \right)^2 + (t+z)^2 \right)^{5/2}} \Biggr]^2 \sigma_t^2 + \\ &+ \left(\frac{d}{2} \right)^4 \Biggl[\frac{3z}{\left(\left(\frac{d}{2} \right)^2 + z^2 \right)^{5/2}} - \frac{3(t+z)}{\left(\left(\frac{d}{2} \right)^2 + (t+z)^2 \right)^{5/2}} \Biggr]^2 \sigma_z^2 + \left(\frac{2}{B_r^2} \frac{\partial B}{\partial z} \right)^2 \sigma_{B_r}^2 \Biggr\}^{1/2} \end{split}$$
(C.2)

Gli andamenti degli errori relativi del campo magnetico assiale e del suo gradiente in funzione della distanza dalla superficie del magnete sono mostrati in figura C.1: si nota come l'errore sul campo vale circa l'5%, mentre quello sul gradiente vale in media il 9%.

Figura C.1: Errore relativo del campo magnetico assiale e del suo gradiente.

Si può quindi ricavare l'errore sulla magnetizzazione mediante la formula di Fröhlich-Kennelly 2.4 considerando che sia M_{sat} , sia χ , misurati con un magnetometro a campione vibrante, siano privi di errore: propagando allora la 2.4 si ottiene

$$\sigma_M = M \sqrt{\left(\frac{\sigma_c}{c}\right)^2 + \left(\frac{M}{\chi B}\right)^2 \left(\frac{\sigma_B}{B}\right)^2} \tag{C.3}$$

Poiché aumentando il campo magnetico la magnetizzazione satura, il valore massimo di M/B si ha per $B \to 0$: allora $M/B \approx \chi$ e il fattore $M/(\chi B)$ nella C.3 si semplifica: aumentando B invece $M/(\chi B)$ diminuisce. Si ha quindi che $\sigma_M/M \approx 6\%$. L'errore sulla tensione superficiale è discusso nel capitolo 3.3 ed è pari a 3 mN/m ($\sigma_{\gamma}/\gamma \approx 6\%$) mentre quello sulla densità viene considerato trascurabile a causa dell'ottima compatibilità col valore teorico. Calcolati tutti questi errori, è possibile ricavare l'errore su Bo^* e su S ricordando che essi si compongono solo di prodotti di potenze, per cui, detto \boldsymbol{x} un insieme di variabili x_i vale

$$f(\boldsymbol{x}) = k \prod_{i} x_{i}^{n_{i}} \implies \sigma_{f(\boldsymbol{x})} = f(\boldsymbol{x}) \cdot \sqrt{\sum_{i} \left(n_{i} \frac{\sigma_{x_{i}}}{x_{i}}\right)^{2}}$$
(C.4)

Si può dunque calcolare dalla 3.3

$$\begin{cases} \sigma_{Bo^*} = Bo^* \sqrt{\left(\frac{\sigma_M}{M}\right)^2 + \left(\frac{\sigma_{\partial B/\partial z}}{\partial B/\partial z}\right)^2 + \frac{4}{9}\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_\gamma}{\gamma}\right)^2} \\ \sigma_S = S \sqrt{4\left(\frac{\sigma_M}{M}\right)^2 + \frac{1}{9}\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_\gamma}{\gamma}\right)^2} \end{cases}$$
(C.5)

Gli errori relativi di Bo^* ed S per le concentrazioni utilizzate sono riportati nella tabella C.1: è da considerare il fatto che per superfici idrofile è leggermente minore mentre per quelle più idrofobe è leggermente maggiore.

	4mol/l	5 mol/l	6mol/l	7.5 mol/l
Bo^*	15%	16%	17%	19%
$oldsymbol{S}$	14%	14%	15%	15%

Tabella C.1: Errori relativi di Bo^* ed S per le concentrazioni usate.

D. Codice

Di seguito viene riportato il codice in linguaggio C++ utilizzato per le simulazioni e l'analisi dati: questo programma è ancora in fase di sviluppo e necessita di essere implementato ed ottimizzato.

```
2
 3
       This file is part of S-Bo.
 4
             S-Bo is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
 \frac{5}{6}
 8
 9
             S-Bo is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
10
11
12
13
14
              You should have received a copy of the GNU General Public License along with S-Bo. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>>.
15
16
17
18
      */
19
20
      // Compile it with:
// g++ S-Bo.crr -
21
22
               g++ S-Bo.cxx - o S-Bo.out -lboost_iostreams -lboost_system -lboost_filesystem
23
^{24}
      #include <iostream>
      #include <cmath>
#include <iomanip>
25
26
      #include <cstdlib>
#include <fstream>
27
28
      #include <sstream>
29
      #include <string>
#include <cstring>
30
31
      #include <gnuplot-iostream.h>
#include <climits>
#include <time.h>
32
33
34
      \#include <sys/stat.h>
35
36
      using namespace std;
37
38
      int main()
39
\begin{array}{c} 40 \\ 41 \end{array}
       {
                    system ("reset \nrm_-r_/path/to/the/executable/Graphs \nmkdir_/path/to/the/executable/
Graphs \nrm_-r_/path/to/the/executable/Data \nmkdir_/path/to/the/executable/Data"
                             );
42
                    43
44
                                                                                                                      //magnet distance
                    parameters
double c_min=5.0, c_max=7.5, delta_c=0.5; //[M]
double CHI=0.45/2.0, M_SAT=12.04/2.0*1.0E+03;
parameters for 2 M concentration
double gamma=0.053, rho;
double L_max=3, L_min=1.0, delta_L=0.5,w_r; //[mm]
lenght parameters
int nmag=14;
double fix_V;
aranhs
                                                                                                                       //concentration parameters
//Frolich-Kennelly curve
45
46
                                                                                                                       //fluid parameters
//droplet characteristic
47
48
                                                                                                                       //# magnets
//Vol used for isocore
49
50
                    graphs
51
52
                    const long double mu_0=1.256637E-06;
53
                                                                                                                       //vacuum magnetic
                    54
                                                                                                                       //Rosensweig critical S
55
                             number
                     double mu_r;
                                                                                                                       //relative magnetic
56
                    double mu_r;
    permeability
char s_mod='a', as_mod='a', s_zone='a', s_mod_scan='a';
double dtf, ctf, Ltf, dt, ct, Lt;
    thikening factors
                                                                                                                      //choice parameters
//Advanced Search Mode
57
58
                    int ad_i_max;
int ad_j_max;
int ad_w_max;
59
60
61
                    int s_mod_count=0;
long int dim_file_crit;
double M_sat, chi;
62
63
64
                                                                                                                       //Frolich-Kennelly curve
                    parameters
struct stat sstr;
struct magnet
65
66
67
                     {
68
                                   double t,d,B_r,d_in;
                                                                                                                                    //magnet thickness,
                                             outer diameter, residual field, inner diameter
```

69	};	
70	magnet magdisp[nmag];	
71	/////	
72	/// Magnets aata////	
74	magdisp $[0]$, $t = 0.005$,	
75	magdisp $[0]$, B r=1.25:	
76	magdisp $[0]$.d in=0;	
77	magdisp[1].t=0.02;	
78	magdisp[1].d=0.012;	
79	magdisp [1].B_r=1.17;	
80	magdisp [1].d_in=0;	
81	magdisp $\begin{bmatrix} 2 \end{bmatrix}$. t = 0.01;	
82	magdisp $\begin{bmatrix} 2 \end{bmatrix}$. d=0.01;	
83	magdisp $[2]$. B_r=1.32;	
85	magdisp $[2]$. d_m=0, magdisp $[3]$. t=0.003.	
86	magdisp $[3]$ d=0.009;	
87	magdisp $[3]$, B $r=1.17$;	
88	$magdisp[3].d_{in}=0;$	
89	magdisp[4].t=0.005;	
90	magdisp[4].d=0.06;	
91	magdisp [4].B_r=1.29;	
92	$magdisp [4]. d_{in=0};$	
93	magdisp $[5]$, t = 0.03;	
94 95	magdisp $[5]$. $d=0.16$; magdisp $[5]$ B $r=1.17$;	
96	magdisp $[5]$. D_i=1.17, magdisp $[5]$. d_in=0:	
97	magdisp $[6]$, t = 0.035;	
98	magdisp[6].d=0.07;	
99	magdisp [6].B_r=1.32;	
100	$magdisp [6].d_in=0;$	
101	magdisp $[7]$. t=0.02;	
102	magdisp $[7]$. d=0.02;	
103	magdisp $[7]$. B_r=1.28;	
104	magdisp $[7]$. d_m=0;	
106	magdisp $[8]$, $t = 0.010$, magdisp $[8]$, $d = 0.07$.	
107	magdisp $[8]$, B r=1.28:	
108	magdisp $[8]$. d_in=0.03;	
109	magdisp[9].t=0.01;	
110	magdisp[9].d=0.063;	
111	$magdisp[9].B_r=1.22;$	
112	$magdisp[9].d_{in}=0.012;$	
113	magdisp $[10]$. t = 0.03;	
114	magdisp $[10]$ B $r=1.32$:	
116	magdisp $[10]$, $D_1 = 1.02$, magdisp $[10]$, $d_1 = 0.006$:	
117	magdisp $[11]$. t = 0.05;	
118	magdisp[11].d=0.030;	
119	$magdisp[11].B_r=1.4;$	
120	$magdisp[11].d_{in}=0.0;$	
121	magdisp[12].t=0.05;	
122	magdisp[12].d=0.07;	
123	magdisp $[12]$. B_r=1.32;	
124	magdisp $\begin{bmatrix} 12 \end{bmatrix}$, $d = 11 = 0$, magdisp $\begin{bmatrix} 13 \end{bmatrix}$, $t = 0$, 1:	
126	magdisp $[13], d=0.015;$	
127	$magdisp[13].B_r=1.25;$	
128	magdisp [13].d_in=0;	
129	///////////////////////////////////////	
130		
131	////////Pipelines and files initialization////	
132	string BoS[nmag]={ '/path/to/the/executable/Data	/BoS1.txt", "/path/to/the/executable
	executable/Data/BoS4_txt" "/path/to/the/ex	vecutable/Data/BoS5_tyt" "/path/to/
	the/executable/Data/BoS4.txt", "/path/to/th	ne/executable/Data/BoS7.txt", "/path/
	to/the/executable/Data/BoS8.txt", "/path/tc	o/the/executable/Data/BoS9.txt", "/
	path/to/the/executable/Data/BoS10.txt", "/I	path/to/the/executable/Data/BoS11.txt
	", "/path/to/the/executable/Data/BoS12.txt"	", "/path/to/the/executable/Data/
	BoS13.txt", "/path/to/the/executable/Data/H	BoS14.txt"};
133	string crit [nmag]={ "/path/to/the/executable/Dat	a/BoS1crit.txt", "/path/to/the/
	executable/Data/BoS2crit.txt", "/path/to/th	ne/executable/Data/BoS3crit.txt", "/
	Bosscrit txt " "/path/to/the/executable/Data	/path/to/the/executable/Data/
	executable/Data/BoS7crit.txt". "/path/to/th	ne/executable/Data/BoS8crit.txt". "/
	path/to/the/executable/Data/BoS9crit.txt",	"/path/to/the/executable/Data/
	BoS10crit.txt", "/path/to/the/executable/D	ata/BoS11crit.txt", "/path/to/the/
	executable/Data/BoS12crit.txt", "/path/to/t	the/executable/Data/BoS13crit.txt", "
	/path/to/the/executable/Data/BoS14crit.txt"	"};
134	otstream Bo_S, crit_points, s_mod_res, as_mod_res	;
130	Gnupiot gp;	
130		/////
138	cout << "How many magnets, to compute?("	(max)\t"·
139	int mag us=nmag+1:	, ``,
140	while (mag us>nmag) cin >>mag us:	//# of magnet used
141	$cout \ll " \ n \ hich_{\cup} ones? \ t \ t ";$	
142	<pre>int * magnet_used= new int [mag_us];</pre>	
143	for(int i=0;i <mag_us;i++)< td=""><td></td></mag_us;i++)<>	
144	{	
145	cin>>magnet_used[i];	
140	$it (i!=mag_us-1) cout << "_{\sqcup}, _, ";$	//magnet used
148	char mapfill='a':	//araph option
149	while (mapfill!= 'n '&&mapfill!= 'y ')	//J
	_ • •	

150 151 152	{ cout << " \n \ n Filling \S(Bo) \map with \current \magnets? \[y/n] \t"; cin >> map fill:
153 154	$\begin{cases} \text{if } (\text{mapfill}='v') \end{cases}$
155 156	$\begin{cases} cout \ll " \ n \ Fixed volume [u] : v \ t " \\ \end{cases}$
157	$cin \gg fix_V;$
158	}
160 161 162	//////////////////////////////////////
163 164 165	<pre>cout << '\n\nsearch_mode?_[y/n]\t"; cin>>s_mod;</pre>
166	double Bo_w, S_w, delta_Bo_w, delta_S_w; //wanted (Bond, S) coordinate with its_error
167	11 (s_mod== y) { {
169 170	while(as_mod!= 'n '&&as_mod!= 'y ') {
171 172 173	<pre>cout<<'\n\nadvanced_search_mode?_[y/n]\t'; cin>>as_mod;</pre>
174 175	if (as_mod=='y')
176 177	as_mod_res.open("/path/to/the/executable/Data/advanced_s_mod.txt"); cout<<"\n\t\tDistance_thickening_factor:\t";
178 179	cin>>dtf; cout<<" \n\t\tConcentration _ thickening _ factor : \ t ";
180 181	cin>>ctf; cout<<"\n\t\tLenght_thickening_factor:\t";
182 183	cin>>Ltf; dt=delta_z/dtf: //advanced_scan_parameter
194	for the distance
105	for the concentration
185	Lt=delta_L/Ltt; //advanced scan parameter for the droplet lenght
186 187	$ad_i_max = (z_max - z_min) / dt + 1;$ $ad_j_max = (c_max - c_min) / ct + 1;$
188 189	$ad_w_max=(L_max-L_min)/Lt+1;$
190	cout <<" \n\nBond⊔ coordinate : ⊔" ;
191 192	cin>>bo_w; cout<<" \n\nBond_ coordinate_error: " ;
193 194	$cin >> delta_Bo_w;$ $cout << " \n \nS_{::} coordinate :";$
195 196	cin>>S_w;
197	$cin >> delta_S_w;$
198 199	while (s_mod_scan!= 'n '&&scan!= 'y ') {
200	$cout \ll (\ln \ln can graph : [y/n] \ t ;$ graph option
201 202	cin>>s_mod_scan;
203	while (s_zone!= 'n '&&s_zone!= 'y ')
204 205	t $cout \ll (n nSearch_zone_on_graphs: [y/n] t';$ //
206	graph option cin>>s_zone;
207 208	} s mod res.open("/path/to/the/executable/Data/s mod.txt"):
209	s_mod_res<'\n" <'\t '<< Bo''<'' \t '<< S ''<' \t '<< C ''<' \t ''<'' l [mm] ''<' \t ''<'' z [
210 211	}
212 213	///////////////Data_mode////////////////////////////////////
214 215	char d_mod='a'; while (d_mod!=')' % kid_mod!='y')
216	{
217 218	cout<< \n\ndata_mode: [y/n] \t ; cin>>d_mod;
219 220	} if(d_mod=='y')
221 222	{ ifstream exp data; //input data file [magnet.]
	concentration, transition distance, stattistic error, sensibility,
223	ofstream phase_diagram;
225	$cout << '\n\nsert _complete _data _filename: \t ";$
226 227	<pre>cin >> exp_data_tilename; cin .get();</pre>
228 229	exp_data.open(exp_data_filename.c_str()); string_diagram_filename="/path/to/the/executable/Data/phase_diagram_"+
230	exp_data_filename;
231	int data_ma, data_surf; //magnet used for the measure, surface type => 1=
232	glass, 2=teflon, 3=loto, 4=LIS double data_c, data_L, data_zc, z_offset=1, sigma, sigma_exp, sigma_stat;
	$//concentration\ ,\ droplet\ volume\ [ul]\ ,\ transition\ distance\ ,$ distance offset , errors

233	double interc_data $[4] = \{4.74, 8.17, 9.71, 14.78\};$ double int_off=0.0;
234	double pend_data [4] = { $0.81, 0.94, 1.38, 1.66$ }; double pend_off = 0.0 ;
235	//lines while (exp_data>>data_ma)
$236 \\ 237$	{
238	/////////////////////////////////////
239	calculations////////////////////////////////////
240	data_zc=(data_zc+z_offset)/1000.0;//[m] //distance
$241 \\ 242$	sigma=sqrt(sigma_stat*sigma_stat+sigma_exp*sigma_exp);
$243 \\ 244$	double A=(magdisp[data_ma-1].d/2.0)*(magdisp[data_ma-1].d/2.0); double A in=(magdisp[data_ma-1].d in/2.0)*(magdisp[data_ma-1].d in
211	(2.0); (1.1) (2.0) (2.1)
245	H=magdisp [data_ma-1].B_r/mu_0/2.0*((magdisp [data_ma-1].t+data_zc)/ sqrt (A+(magdisp [data_ma-1].t+data_zc)*(magdisp [data_ma-1].t+ data_zc))-data_zc/sqrt (A+data_zc*data_zc))-magdisp [data_ma-1]. B_r/mu_0/2.0*((magdisp [data_ma-1].t+data_zc)/sqrt (A_in+(magdisp [data_ma-1].t+data_zc)*(magdisp [data_ma-1].t+data_zc))-data_zc/ sqrt (A_in+data_zc*data_zc)); //[A/m] //axial magnetic
246	$gradH=magdisp [data_ma-1].B_r/2.0*(A/pow(A+(magdisp [data_ma-1].t+))]$
	data_zc) * (magdisp [data_ma - 1].t+data_zc) ,1.5)-A/pow(A+data_zc* data_zc,1.5))-magdisp [data_ma - 1].B_r/2.0*(A_in/pow(A_in+(magdisp [data_ma - 1].t+data_zc)*(magdisp [data_ma - 1].t+data_zc) ,1.5)-A_in/pow(A_in+data_zc*data_zc,1.5));//[T] // axial
247	gradiend of H chi=CHI*data c:
248	$M_{sat} = M_{sat} = M_{ata_c};$
249	Frolich-Kennelly magnetization
250	mu_r=1.0+M/H; // relative magnetic permeability
251	rho = (1.01+0.49*data_c)/1000.0; //
252	$Bog = (9.81*rho*data_L*data_L/gamma-data_L*data_L*mu_r/gamma*gradH*M)$
253	; //Boata_number S=mu_0/gamma*data_L*M*M;
254	if (data_c==4) pend_off=interc_data [0];
$255 \\ 256$	<pre>if(data_c==5) pend_off=interc_data[1]; if(data_c==6) pend_off=interc_data[2];</pre>
257	if (data_c==7.5) pend_off=interc_data [3];
$258 \\ 259$	if (data_c==4) pend_off=pend_data[0];
$260 \\ 261$	<pre>if(data_c==5) pend_off=pend_data[1]; if(data_c==6) pend_off=pend_data[2];</pre>
262	if (data_c==7.5) pend_off=pend_data[3];
$263 \\ 264$	phase_diagram< <bog<< "<<<="" "<<data_surf<<="" "<<s<<="" "<<sigma<<="" \t="" td=""></bog<<>
265	data_c<<" \ t "< <pend<<" "<<data_l<<endl;<br="" "<<interc="" <<"="" \="" t="">//</pend<<">
$\frac{266}{267}$	} exp_data.close ();
$268 \\ 269$	phase_diagram.close ();
270	·/////////////////////////////////////
$271 \\ 272$	<pre>int i_max=(z_max-z_min)/delta_z+1; //distance scan counter</pre>
273	int j_max=(c_max-c_min)/delta_c+1; //concentration scan
274	int w_max=(L_max-L_min)/delta_L+1; //droplet lenght scan
275	double diffl[j_max][w_max], diffr[j_max][w_max];
$276 \\ 277$	<pre>long int loading_tot=mag_us*i_max*j_max*w_max; // int gp count tot=mag_us*7, gp counter=0; // Graphs progress</pre>
279	counter
278	if (s_mod_scan='y')
$\frac{280}{281}$	$gp_count_tot=gp_count_tot+mag_us;$
$\frac{282}{283}$	<pre>if(as_mod=='y') gp_count_tot=gp_count_tot+mag_us; }</pre>
284 285	$\cot t < (n \ln t) = 0$
286	{
$\frac{287}{288}$	char column_sel='n'; double A=(magdisp[magnet_used[k] -1].d/2.0) *(magdisp[magnet_used[k] -1].d/2.0);
289	//magnet area double A in=(magdisp[magnet used[k]-1].d in/2.0)*(magdisp[magnet used[k]-1].d in
200	/2.0; Bo S open (BeS[magnet used[k]=1] c str());
290 291 292	<pre>crit_points.open (crit[magnet_used[k]-1].c_str()); for(int i=0;i<i_max;i++) cicle="" distance<="" pre="" through=""></i_max;i++)></pre>
$293 \\ 294$	$z=z_min+i*delta_z;$
295	H=magdisp [magnet_used [k] -1].B_r/mu_0/2.0*((magdisp [magnet_used [k] -1].t+z)/ sqrt (A+(magdisp [magnet_used [k] -1].t+z)*(magdisp [magnet_used [k] -1].t+z)) -z/sqrt (A+z*z))-magdisp [magnet_used [k] -1].B_r/mu_0/2.0*((magdisp [magnet_used [k] -1].t+z)/sqrt (A_in+(magdisp [magnet_used [k] -1].t+z)*(

296	<pre>magdisp[magnet_used[k] -1].t+z))-z/sqrt(A_in+z*z));//[A/m] gradH=magdisp[magnet_used[k] -1].B_r/2.0*(A/pow(A+(magdisp[magnet_used[k] -1].t+z)*(magdisp[magnet_used[k] -1].t+z),1.5)-A/pow(A+z*z,1.5))- magdisp[magnet_used[k] -1].B_r/2.0*(A_in+(magdisp[magnet_used[k] -1],t+z)*(magdisp[magnet_used[k] -1].t+z),1.5)-A_in/pow(A_in+z*z,1.5));</pre>
297 298 299	$ \begin{array}{c} //[T] \\ Bo_S << z*1000.0 << " \ t" << H; \\ for (int j=0; j <]_{max}; j++) \\ concentration \\ \end{array} //cicle through $
300 301 302 303 304 305	{
306	magnetization mu_r=1.0+M/H; //relative magnetic
307	permeability Bo_S<<" \t " <m;< td=""></m;<>
308	for (int $r=0; r < w_{max}; r++$) // cicle through droplet lenght
309 310 311	{ w_r=(L_min+r*delta_L)/1000.0; //[m] Bog=(9.81*rho*w_r*w_r/gamma-w_r*w_r/gamma*gradH*M);
312	S=mu_0/gamma*w_r*M*M;
313	//S number
314	//////////////////////////////////////
216	$S = S_w + delta_S_w \&\&S = S_w - delta_S_w)$
310 317	<pre> s_mod_res<<magnet_used[k]<<* "="" "<<bog<<"="" "<<s<<"="" <="" <<c<\="" \t="" c=""> <<cc<* "<<pow(w_r*1000.0,3)<<*="" "<<z*1000.0<<="" \t="" td=""></cc<*></magnet_used[k]<<*></pre>
$318 \\ 319$	endl; s_mod_count++; //points counter column sel='y': //selecting magnets with at least 1
320	point found
321	
$322 \\ 323$	S_c=2*(1+mu_r)*sqrt(Bog); //Rosensweig critical S
$324 \\ 325$	//////////////////////////////////////
326	region ////////////////////////////////////
321	$ \begin{array}{c} \text{If } (1 > 0 \text{ dec} \text{ diff} [j][r] < = 0.0 \text{ dec} \text{ diff} [j][r] > = 0.0 1 > 0 \text{ dec} \text{ diff} [j][r] \\] > = 0.0 \text{ dec} \text{ diff} [j][r] < = 0.0 \\ \text{ crit_points} < c < r' \ t" << w_r * 1000.0 < r' \ t" << z \\ \end{array} $
328	*1000.0<<" \ t "< <bog<<" "<<"="" "<<endi;<br="" \="" c="" t="">diffl[j][r]=diffr[j][r];</bog<<">
329	
330 331	Bo_S<<"\t "< <bog<<"\t "<<s<<"\t="" "<<w_r="" *="" 1000.0;<="" td=""></bog<<"\t>
332	int loading = $([k*(_max*]_max*w_max)+1*(]_max*w_max)+j*w_max$ +r)*1.0)/loading_tot*100.0; //computing progress cout < " \b \b \b \b'.
334 335	} }
336 337	Bo_S< <endl;< td=""></endl;<>
338	/* File output:
340 241	z H {M [Bo S l]}
341 342	${} = -> for each concentration$
$343 \\ 344$	->for each droplet lenght */
$345 \\ 346$	}
$347 \\ 348$	///////////////////////////////Advanced Search Mode
240	:f(a_ mad;z_i)
349 350 351	$\begin{cases} \text{for (int i=0); (ad i max:i++)} \end{cases}$
352	$\begin{cases} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
354	//////////////////////////////////////
355 356	<pre>z=z_min+i*dt; H=magdisp[magnet_used[k]-1].B_r/mu_0/2.0*((magdisp[magnet_used[k]-1].t+z)/sqrt(A+(magdisp[magnet_used[k]-1].t+z)*(magdisp[magnet_used[k]-1].t+z))-z/sqrt(A+zz))-magdisp[magnet_used[k]-1].B_r/mu_0/2.0*((magdisp[magnet_used[k]-1].t+z)/sqrt(A_in+(magdisp[magnet_used[k]-1].t+z)*(magdisp[magnet_used[k]-1].t+z)) -z/sqrt(A_in+z*z));//[A/m]</pre>

357	gradH=magdisp [magnet_used [k] -1].B_r/2.0*(A/pow (A+(magdisp [magnet_used [k]-1].t+z)*(magdisp [magnet_used [k] -1].t+z), 1.5)-A/pow (A+z*, 1.5))- magdisp [magnet_used [k] -1].B_r/2.0*(A_in+(magdisp [magnet_used [k]-1].t+z)*(magdisp [magnet_used [k] -1].t+z), 1.5)-A_in/pow (A_in+z*z, 1.5));
358	$\frac{//[T]}{\text{for}(\text{int } j=0; j < ad_j_max; j++)}$
359 360 361 362 363 364	{
366	$\frac{\operatorname{for}(int r=0; r < ad_w_max; r++)}{\operatorname{for}(int r=0; r < ad_w_max; r++)}$
$367 \\ 368$	$w_r = (L_min + r * Lt) / 1000.0; //[m]$
369	$Bog = (9.81*rho*w_r*w_r/gamma-w_r*w_r/gamma* gradH*M);$
370 371 372	S=mu_0/gamma*w_r*M*M; if (Bog<=Bo_w+delta_Bo_w&&Bog>=Bo_w-delta_Bo_w&&S<= S_w+delta_S_w&&S=S_w-delta_S_w)
373	as_mod_res< <magnet_used[k]<<"\t"<<bog<<"\t" <<s<\"\t"<<c<<"\t"<<pow(w_r*1000.0,3)<< "\t"<<z*1000.0<<endl;< th=""></z*1000.0<<endl;<></s<\"\t"<<c<<"\t"<<pow(w_r*1000.0,3)<< </magnet_used[k]<<"\t"<<bog<<"\t"
$374 \\ 375$	}
$376 \\ 377$	}
378 379	} crit points close ():
380	Bo_S.close ();
382	as_mod_res.close (); //
383 384 385 386	<pre>dim_file_crit=stat(crit[magnet_used[k]-1].c_str(), &sstr); dim_file_crit=sstr.st_size; //File byte dimension</pre>
387	
388	//////////////////////////////////////
389	
300	
391 202	//still in magnets cicle
393	if(s_mod_scan='y'&&column_sel='y')
$394 \\ 395$	{ //Search_mode_graph //Search_mode_graph
396	gp<<" set _term _ pdfcairo \ nset _ font _ \" , 5\" \ nset _ term _ pdfcairo \ nset _ tics _ scale _ default _ autofreq \ nset _ ytics _ scale _ default _ autofreq \ nset _ autoscale \ nset _ output _ \" / path/to/the/executable/Graphs/s_mod"< <magnet [k]<<"<br="" _="" used="">. pdf \" \ nset _ key \n" ;</magnet>
397	if (s_zone=='y') gp<<" set _obj _ ellipse _ center _ "< <bo_w<<" "="" "<="" "<<s_w<<="" ,="" _="" size="" td=""></bo_w<<">
398	<pre>gp<<"set_palette_rgb_33,13,10\nset_cblabel_\"z_(mm)\"_rotate_by90\nset_ grid\nset_title\"Search_Mode_M"<(magnet_used[k]<<"\"\nset_pointsize_1\ nset_xrange_["<<c_min-delta_c<<":"<<c_max+delta_c<<"]\nset_yrange_["<< L_min*L_min*L_min-delta_L<<":"<<l_max*l_max+l_max+delta_l<<" \nset_ xlabel_\"c_(mol/1)\"\nset_cblabel_\"z_(mm)\"\nset_ylabel_\"V_({/Symbol_ m}))"_rotate_by_90\nplot_\"path/to/the/executable/Data/s_mod.txt\"_us <!--<[si="<<masnet_used[k]<""-->*<!--</pre--></l_max*l_max+l_max+delta_l<<" \nset_ </c_min-delta_c<<":"<<c_max+delta_c<<"]\nset_yrange_["<< </pre>
399	n"; gp counter++:
$400 \\ 401$	gp<<"!echou\"\t\t\t"< <gp_counter<<" "<gp_count_tot<<"ugraphsudone.\"\n";<br="">if (as mod="v')</gp_counter<<">
402	{
403	$gp \ll set _term_pdfcairo \set_output_ \/"/path/to/the/executable/Graphs$
405	$as_mod <$
406	<2*delta_Bo_w<<',_u"<2*delta_S_w<<'_angle_0_front_fs_empty_bo_10\n"; gp<<"set_palette_rgb_33,13,10\nst_cblabel_\"z_(mm)\"_rotate_by_90\nset_ grid\nset_title\"Advanced_Search_Mode_M"< <magnet_used[k]<<'\"\nset_ pointsize_1.5\nset_vrange_["<c_min=delta_c<'':'<<c_mx+delta_c<''\\< th=""></c_min=delta_c<'':'<<c_mx+delta_c<''\\<></magnet_used[k]<<'\"\nset_
	nset_yrange_["< <l_min*l_min*l_min_delta_l<<": "<<l_max*l_max*l_max+<br="">delta_L<<"]\nset_xlabel_\"c_(mol/l)\"\nset_ylabel_\"V_({/Symbol_m}l)\" rotate_by_90\nplot_\"/path/to/the/executable/Data/advanced_s_mod.txt\" us_4:(\$1=="<<magnet_used[k]<<"?\$5:1 0):6_notitle_w_points_pt_7_lt_<br="">palette\n";</magnet_used[k]<<"?\$5:1></l_min*l_min*l_min_delta_l<<":>
$407 \\ 408$	gp_counter++; gp<<"!echou\"\t\t\t"< <gp_counter<<" "<<gp_count_tot<<"ugraphsudone.\"\n";<="" td=""></gp_counter<<">
$409 \\ 410$	}
$411 \\ 412$	//S(Bo)_graph gp<<" set_term_pdfcairo\nset_output\"/path/to/the/executable/Graphs/S(Bo) "<<
	<pre>magnet_used [k]<<".pdf\"\nset_autoscale\nset_palette_rgb_21,22,23\nset_cbrange_ [2:10]\nset_cblabel_\"c_(mol/1)\"\nset_key_bottom_right\nset_title\"S-Bo*_M"<< magnet_used [k]<<"_" *<(static_cast costringstream *>(&(ostringstream ()<<(L_min+(w_max-1)*delta_L))) >> str())<<"_{ [}{Symbol_m}1 \"\nset_pointsize_0.1\nset_xlabel_ \"SA\"\", nset_valuebel_\"S\", rotate, by 90\nunset_colorbox nolot";</pre>

413	for (int j=0; j <j_max; j++)<="" th=""></j_max;>
414	
415	$gp < (w_max + 1) + (w_max + $
	$*3+1$) $*$ $1+5<<$: (< (c_min+1) * deita_c) <<) uti_1 < <(static_cast<
	w lines it polotic in 2":
416	if (dim_file_crit!=0) arc: "" <corit[magnet_used[k]=1]<c"\" "<cw_may<="" every="" td=""></corit[magnet_used[k]=1]<c"\">
410	$\Pi(\operatorname{dim}_{\operatorname{inte}} \operatorname{crit}_{\operatorname{iot}}) \operatorname{gp}_{\operatorname{c}} \cup \langle \operatorname{crit}_{\operatorname{imagnet}_{\operatorname{casel}}} \operatorname{disc}_{\operatorname{iasel}} \operatorname{disc}_{\operatorname{iasel}} \cup \langle \operatorname{disc}_$
	(, 5) ' " :
417	$if(j \le mx - 1) gp \le ", ";$
418	
419	gp< <endl;< td=""></endl;<>
420	gp_counter++;
421	$gp << "!echo_u \ \ t \ t \ t \ \ counter << "_u graphs_u done. \ \ \ n \ ;$
422	//Bo(z) graph
423	gp<<" set loutput \'/ path/to/the/executable/Graphs/Bo(z) "< <magnet_used[k]<<" .="" \'<="" pdf="" td=""></magnet_used[k]<<">
	$\operatorname{nset}_{\mathbb{R}} \operatorname{rest}_{\mathbb{R}} re$
	Symbol multi's solution is a solution of the
	*200.0< * \\ \nst.v \label\ Box\"rotatebv.90\ nst.v naletterrb.21.22.23\ nst.
	$cbrange_{[1]}[2:10] \setminus nset_{[1]}cblabel_{[1]} (c_{[1]}(mol/1)) (nplot";$
424	for (int j=0; j <j_max; j++)<="" td=""></j_max;>
425	{
426	$gp << " \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$+j*delta_c)<<"$) $_ti_{_}$ ' <<(static_cast <ostringstream *="">(&(ostringstream ())))))))))))))))))))))))))))))))))))</ostringstream>
497	<<(c_min+j*delta_c)))->str())<< M\W_lines_lt_palette_lW_2';
428	11 (J gp<\ , ,
429	, gp< <endl:< td=""></endl:<>
430	gp_counter++;
431	gp<<" ! echou \ " \ t \ t \ t "< <gp_counter<<" "="" ";<="" "<<gp_count_tot<<"="" \="" done.="" graphs="" n="" td="" u=""></gp_counter<<">
432	//S(z) graph
433	gp<<"set_autoscale\nset_output_\"/path/to/the/executable/Graphs/S(d)"< <magnet_used[< td=""></magnet_used[<>
	$k \leq 1 \le 1 \le k \le 1 \le 1$
	$static_cast < ostringstream *>(& (ostringstream () < (L_min+(W_max-1)*(deita_L))) >>$
	str(f) = (f) symbol m f(f) strate (f) stra
	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
434	for (int i=0; i <i <math="" max;="">i++)</i>
435	
436	$gp << " \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$+j*delta_c)<<"$) $_{ti}<<(static_cast(&(ostringstream()))$
497	$<<(c_min+j*delta_c)))>>str())<<*M\^uulines_lt_palette_lw_2^;$
437	$II(J \leq \underline{-}max - 1) gp < <^{-}, ^{-};$
430	greendl.
440	gp_counter++:
441	gp<<"!echou\"\t\t\t"< <gp_counter<<" "<<gp_count_tot<<"="" graphs_done.\"\n";<="" td=""></gp_counter<<">
442	//z(Bo,S) graph
443	$ m gp <<" set {\scriptstyle \ autoscale \ nset {\scriptstyle \ output {\scriptstyle \ u} \ \ \ }} / path/to/the/executable/Graphs/z (Bo*,S) "<< $
	magnet_used [k]<<" . pdf \" \ nset _ key _ top _ right \ nset _ title \" z (Bo*,S) _M"< <magnet_used< td=""></magnet_used<>
	[k]<< "_" <<(static_cast <ostringstream *="">(&(ostringstream ()<<(L_min+(w_max-1)*</ostringstream>
	delta_L)) -> str() << `l{/Symbol_m}! \`nset_xlabel_\'Bo\`\nset_ylabel_\'S\\`nset_slabel_\'Bo\`\nset_ylabel_\'S\
	\Box zlabel $\Box \Box$ (nm) \Box (nset palette \Box rgb \Box 21,22,23 (nset \Box cbrange \Box [2:10] (nset \Box cblabel \Box) \Box (model) (1) (1) nset \Box (1) (1)
444	for (int i=0; i<) max: $i + +$)
445	
446	$gp << " \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$*3+1)*j+5<<":1:("<<(c_min+j*delta_c)<<") utiu \""<<(static_cast<) utiu \""<<(static_cast<) utiu \""<<(static_cast<) utiu utiu \""<<(static_cast<) utiu utiu \""<<(static_cast<) utiu utiu \""<<(static_cast<) utiu utiu utiu \""<<(static_cast<) utiu utiu utiu utiu utiu utiu utiu uti$
	ostringstream *>(&(ostringstream ()<<(c_min+j*delta_c)))->str())<<"M\"
447	w_lines_lt_palette_lw_2-;
447	11 (J< gp<< , ,
449	, gp< <endl;< td=""></endl;<>
450	gp_counter++;
451	$gp << "! echo_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
452	//Magnetization graph
453	gp<<`set_autoscale \nset_output_\'/path/to/the/executable/Graphs/M(H) "< <magnet_used[< td=""></magnet_used[<>
	$k_{1} \leq 0$, part \ nset _ key_ Dottom _ right \ nset _ itile \ M(B)_M' < magnet_ used k < ' \ nset _ rate ball \ '' \ nset _ rate ball \ ''' \ nset _ rate ball \ ''' \ ''' \ ''' \ ''' \ '''' \ '''' \ ''''''
	$21.22.23$ hset. chrange. [2:10] hset. chlabel. ' $\pi_{\rm e}({\rm Ka}/{\rm m}) < c({\rm me}(1))$ ' $\pi_{\rm e}({\rm Ka}/{\rm m}) < c({\rm me}(1))$ '.
454	$21, 22, 25$ (inset collarge [2.10] (inset collaber (C_{1} (inset)) ((inset), for (int i = 0, i < i max : i ++))
455	
456	gp<<" \\ " < <bos[magnet_used[k]-1]<<" "<<(w_max*3+1)*j+3<<<="" (\$="" (\$2="" 1000.0):="" \"="" td="" us=""></bos[magnet_used[k]-1]<<">
	"/1000.0):("<<(c_min+j*delta_c)<<") u ti u/\""<<(static_cast <ostringstream< td=""></ostringstream<>
	$*>(&(ostringstream()<<(c_min+j*delta_c))) >> tr())<<"M\"_uw_lines_lt_u$
457	$palette_l w_l2";$
457	$II(J \leq \underline{-}max - 1) gp < <^{-}, ^{-};$
459	∫ gn≪end]·
460	gp counter++:
461	gp<<"!echo_\"\t\t\t\t"< <gp_counter<<" "<<gp_count_tot<<"="" graphs_done.\"\n":<="" td="" =""></gp_counter<<">
462	//B(z) graph ((1))
463	$gp << "set _output _ \ "/path/to/the/executable/Graphs/B(z)" << magnet_used[k] << ".pdf \ " \ output _ \ bar{set} = 0$
	$nset_xlabel_ \ z_(mm) \ (\land) \ nset_title \ B(z)_M'$
	$ (kA/m) \setminus " \text{ trotate} by 90 \setminus \text{nset} \exists \text{ range} ["<= \min *1000.0 <<" !: "<= \max *200.0 <<"] \setminus \text{ nplot} \\ \downarrow " = < D $
464	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
465	gp_councert, gncc'lecho'\t\t\t\'< <gn_counter< '="" '<="" \'\n''<="" gn_count_tot<="" graphs_done="" td=""></gn_counter<>
466	//S(Bo) V graph
467	gp<* set_autoscale\nset_colorbox\nset_output_\"/path/to/the/executable/Graphs/V(Bo
	$*,S)"<\!\!<\!\!magnet_used[k]<\!<".pdf/"\nset_key_bottom_right\nset_notitle\nset_xrange_$
	$[0:140] \setminus \texttt{nset} \sqcup \texttt{yrange} \sqcup [0:100] \setminus \texttt{nset} \sqcup \texttt{xlabel} \sqcup \setminus \texttt{"Bo*} \setminus \texttt{'} \land \texttt{nset} \sqcup \texttt{ylabel} \sqcup \setminus \texttt{"S} \setminus \texttt{"} \sqcup \texttt{rotate} \sqcup \texttt{by} \sqcup 90 \setminus \texttt{vlabel} \sqcup vlabel \sqcup \mathsf$
	nset_multiplot\nset_palette_rgb_21,22,23\nset_cbrange_[2:10]\nset_cblabel_\"c_(
169	$mol/1$ \\`\nset_size_1,0.8\nplot_";
400	$10r(11t i=0, r\leq w_{max}; r++)$

469	
470 471	for (int $j=0; j$
472	gp<<" \\ " < <bos[magnet_used[k]-1]<<" <<((w_max*3+1)*j+3*r)+4<<<br="" \"="" usu"="">": " <<((w_max*3+1)*j+3*r)+5<<": ("<<(c_min+j*delta_c)<<") unotitle</bos[magnet_used[k]-1]<<">
473	
474	
$475 \\ 476$	} if (dim_file_crit!=0) gp<<*)**< <crit[magnet_used[k]-1]<<**usu4:5:6notitle.wu< td=""></crit[magnet_used[k]-1]<<**usu4:5:6notitle.wu<>
	$labels_point_pt_7_offset_char_0.2, -0.2_font_\langle `,5 \rangle ``;$
477	gp<< \nst_termoption_dashed\nst_transet_transet_[0:140]\nst_transet_[0:100]\nst_notitle\ nst_transet_vlabel_\"Bos\"\nst_transet_vlabel_\"S\".rotate_by_00\nst_transet_palete_rgb23,-10,-3\
	$nset_u colorbox_u horizontal_u user_u origin_0.12, 0.8 usize_u 0.71, 0.05 \ nset_u cbrange_u [*< L = 1.5, 0.5]$
	$({Symbol_m}l) \" offset \ 27.7, 3.3 \ set \ cbtics \ offset \ -0.2, 3 \ set \ size \$
179	$0.8705, 0.8 \ nplot_{"};$
478	$gp << "-25 + 4 \ast x_{\sqcup} t i_{\sqcup} \setminus "1.0_{\sqcup} \{/Symbol_{\sqcup}m \} l \setminus "_w_{\sqcup} l i n e s_{\sqcup} l s_{\sqcup} 1_{\sqcup} l t_{\sqcup} p a l e t t e_{\sqcup} c b_{\sqcup} 1_{\sqcup} l w_{\sqcup} 2_{\sqcup} d t_{\sqcup} 2_{, \sqcup} - 24 + 2 \ast x_{\sqcup} t i_{\sqcup} b_{\sqcup} b_{U} b_{$
	$(3.4 \ (Symbol_m) l = 1) \ uwlines \ lt_palette_cb_3.4 \ uw_2 \ dt_2, \ -40+1.7 \ uwlines \ lt_s \ 0 \ (Symbol_m) \ uwlines \ lt_s \ -45+1.3 \ uwlines \ lt_s \ -45+1.3 \ uwlines \ lt_s \ uwlines \ uwlines$
	$ \begin{array}{c} r \in [r_1, r_2] \\ r \in [r_1, r_2] $
490	$27.0 _ lw_2 2 _ dt_2$;
480	gp_counter++; gp<" \\nunset_multiplot\n!echo_\"\t\t\t'< <gp_counter<<" "<<gp_count_tot<<"="" _="" graphs_<="" td=""></gp_counter<<">
490	done.\"\n";
482	r //ena of magnets cicle //ena of magnets cicle //ena of magnets cicle
484	
460	
196	"/
480	
197	
407	
188	
488	if(mapfill=='y')
490	{ $(double fin L = row(fin V + 0.02 0))$ $((double t long)t)$
491	int fix_r=(fix_L-L_min)/delta_L; //lenght-counter conversion
493 494	double tit=pow((L_min+fix_r*delta_L), 3.0);
495	$gp \ll set_structure_pdfcairo \nset_autoscale \nset_key_bottom_right \nset_pointsize_set_key_bottom_right \nset_pointsize_bottom_right \nset_pointsize_set_key_bottom_right \nset_pointsize_set_key_$
	0.2\nset_title_\"V="<(static_cast <ostringstream *="">(&(ostringstream () <<<(tit)) =>st()) =<".f(symbol: m_l\", nset_output_\", d(symbol: m_l) = (nset_output_) + (nset_output_) +</ostringstream>
	$executable/Graphs/BoSmap.pdf \ \ nest \ xlabel \ \ bel \ \ \ bel \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
496	ylabelu\"S\"urotateubyu90\n"; if(s_zone=='v')_gp<<"setuobiuellipseucenteru"< <bo_w<<""<<s_w<<"usizeu"< td=""></bo_w<<""<<s_w<<"usizeu"<>
	<2*delta_Bo_w<<', "<2*delta_S_w<<' angle_0_front_fs_empty_bo_10\n';
$497 \\ 498$	gp << plot"; for (int k=0:k <mag td="" us:k++)<=""></mag>
499	
$500 \\ 501$	dim_file_crit=stat(crit[magnet_used[k]-1].c_str(), &sstr); dim_file_crit=sstr.st_size;
502	$\frac{1}{\mathbf{for}} (\mathbf{int} \ \mathbf{j} = 0; \mathbf{j} < \mathbf{j}_{-} \mathbf{max}; \mathbf{j} + \mathbf{j})$
$503 \\ 504$	i.
505	$gp < " _ / " < Gos [magnet_used [k] - 1] < " / " _ using _ " < (m_max+3+1)*$
	$ \int +4+3*i1x = r < (v = max*3+1)*J+3+3+3*i1x = r < uv = 11mes = 1t $
506 507	$if(j!=j_max-1) gp << " utiu \ " \ ";$
508	
$509 \\ 510$	gp<<" _ ti _ \ "M"< <magnet_used "="" ;<br="" [k]<<"="" \="">if (magnet_used [k]==1) gp<<" \ " "<< BoS[magnet_used [k]</magnet_used>
	$]-1]{<````````````````````````````````````$
	$j+4+3*fix_r<<":"<<(w_max+3+1)*j+5+3*fix_r<<":1_i$ $ti \"." with labels font \:5. \ of fset char$
	-0.2,0.2";
$511 \\ 512$	$\begin{cases} \\ if (k \le mag us - 1 \mid i \le i max - 1) gp \le ", ": \end{cases}$
513	
$514 \\ 515$	$\begin{cases} \\ gp \ll endl \end{cases}$
516	gp_counter++;
517 518	<pre>gp<< '!ecnou\'\t\t\t'<<gp_counter<< "ugraphsudone.\'\n";="" '="" '<<gp_count_tot<<="" pre="" }<=""></gp_counter<<></pre>
519	cout << endl ; not unp 0;
520 521	<pre>return 0, }</pre>

Bibliografia

- J.V.I. Timonen, M. Latikka, L. Leibler, R.H.A. Ras, and O. Ikkala. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. *Science*, 341:253–257, Jul 2013.
- [2] R. E. Rosensweig. *Ferrohydrodinamics*. Dover, 2014.
- [3] C. Rigoni, M. Pierno, G. Mistura, D. Talbot, R. Massart, J.C. Bacri, and A. Abou-Hassan. Static magnetowetting of ferrofluid drops. *Langmuir*, 32:7639–7646, Jul 2016.
- [4] I. S. Suzuki M. Suzuki. Lecture note on solid state physics: mean-field theory. 2006.
- [5] R. M. Bozorth. Ferromagnetism. Wiley, 1978.
- [6] C.Y. Chen and Z.Y. Cheng. An experimental study on rosensweig instability of a ferrofluid droplet. *Physics of Fluids*, 20:054105, 2008.
- [7] O.E. Sero-Guillaume, D. Zouaoui, D. Bernardin, and J.P. Brancher. The shape of a magnetic liquid drop. *Physics of Fluids*, 241:215–232, 1992.
- [8] R. Massart. Preparation of aqueous magnetic liquids in alkaline and acidic media. *IEEE transactions on magnetics*, 17:1247–1248, 1981.
- [9] J.M. Camacho and V. Sosa. Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. *Revista Mexicana* de Fisica, 59:8–17, 2013.
- [10] J.P. McTague. Magnetoviscosity of magnetic colloids. The Journal of Chemical Physics, 51:133–136, 1969.
- [11] A. Eifert, D. Paulssen, S.N. Varanakkottu, T. Baier, and S. Hardt. Simple fabrication of robust water-repellent surfaces with low contact-angle hysteresis based on impregnation. *Advanced Material Interfaces*, 1:1–5, Mar 2014.
- [12] C. Scherer and A.M. Figueiredo Neto. Ferrofluids: Properties and applications. *Brazilian Journal of Physics*, 35:718–727, Sep 2005.
- [13] A. Bee, R. Massart, and S. Neveu. Synthesis of very fine maghemite particles. *Journal of Magnetism and Magnetic Material*, 149:6–9, 1995.

- [14] E. Hasmonay, A. Bee, J.C. Bacri, and R. Perzynski. ph effect on an ionic ferrofluid: Evidence of a thixotropic magnetic phase. J. Phys. Chem., 103:6421–6428, Jul 1999.
- [15] J.C. Bacri, R. Perzynski, D. Salin, V. Cabuil, and R. Massart. Magnetic colloidal properties of ionic ferrofluids. *Journal of Magnetism and Magnetic Material*, 62:36–46, 1986.

Ringraziamenti

Ringrazio il mio relatore, Prof. Giampaolo Mistura, per il frequente aiuto nell'analisi dei dati e il costante lavoro di controllo e correzione sulla stesura di questa tesi.

Ringrazio il mio supervisore, Dott. Carlo Rigoni, per avermi guidato nella preparazione teorica di questo lavoro ed avermi aiutato nella svolgimento dell'esperimento e dell'analisi dei dati.

Ringrazio il Dott. Daniele Filippi, il Dott. Davide Ferraro, il Dott. Enrico Chiarello, il Dott. Paolo Sartori, il Prof. Matteo Pierno, Giorgio Delfitto e tutto il LaFSI per il sostegno fornitomi durante tutto il periodo di tesi.

Ringrazio il mio controrelatore, Prof. Alberto Carnera, per la disponibilità e l'attenzione dimostratami.

Ringrazio i miei genitori per ogni forma di sostegno che hanno dimostrato durante questi mesi, e di più.

Infine ringrazio la mia ragazza Desirèe e mia figlia Ginevra per essermi state vicine continuamente dal primo all'ultimo giorno.