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Introduction

Mean field games is a theory that has been concurrently developed around 2006

by the French mathematicians J.M. Lasry and P.L. Lions and by a research

group in Canada led by M. Huang, P.E. Caines and R.P. Malhamé with the aim

of analyzing differential games with a very large number N of players (see for

example [26, 24]). The main assumption is that the agents are very similar to

each other that is, the influence of any player on the overall system is very little.

This is in strong analogy with the mean field models in mathematical physics

which analyses the behavior of many identical particles. In the applications we

can find for instance this situation in the financial markets.

If we followed the differential games theory we should consider a system

of N Hamilton-Jacobi-Bellman coupled differential equations. The resolution

of that is very hard also from the numerical point of view, due to the high

number of equations. So the idea is to find a simplified system of PDEs which

describes the overall trend and which is the limit for N → ∞ of the previous

one in the following sense: Nash equilibria of the game with N players converge

for N → ∞ to the mean field equilibrium. This fact has been proved under

suitable hypotheses in the stochastic case or in the deterministic one for open

loop controls (see for example [19]), but remains an open problem for feedback

controls.

In order to have a complete point of view and better understand the dif-

ferential case, in the first chapter we investigate classical static games with

many symmetric players. More precisely we suppose that all players have the

same compact set of strategy Q, and that the cost FN
i of the player i satisfies

∀(x1, . . . , xN) ∈ QN :

FN
σ(i)(xσ(1), . . . , xσ(N)) = FN

i (x1, . . . , xN) ∀σ permutation on {1, . . . , N}.
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INTRODUCTION

First of all we study limits of symmetric functions, then under suitable assump-

tions we analyze the behavior of Nash equilibria in pure and mixed strate-

gies when N goes to ∞. In particular the main result is that if there ex-

ists a continuous mapping F : Q × P(Q) → Rd such that FN
i (x1, . . . , xN) =

F (xi,
1

N−1

∑
j 6=i δxj), ∀i = 1, . . . , N and ∀(x1, . . . , xN) ∈ QN , then the sym-

metric equilibrium π̄N in the mixed strategies up to a subsequence weakly-*

converges to m̄ ∈ P(Q) that satisfies the mean field equation:∫
Q

F (y, m̄) dm̄(y) = inf
m∈P(Q)

∫
Q

F (y, m̄) dm(y).

This fact is equivalent to saying that the support of m̄ in contained in the set

of minima of F (·, m̄). Furthermore we give sufficient conditions for uniqueness

of the aftermentioned m̄.

In the second chapter we study the first order mean field game equations :
−∂tu(x, t) + 1

2
|Dxu(x, t)|2 = F (x,m(t)) in Rd × (0, T )

u(x, T ) = G(x,m(T ))

∂tm(x, t)− divx(Dxu(x, t)m(x, t)) = 0 in Rd × (0, T )

m(x, 0) = m0(x)

(1)

We suppose that every player lies in Rd with the dynamics x(s) = x +∫ s
t
α(τ)dτ and that he can control his velocity α(s) to minimize his cost

J(x, t;α) :=

∫ T

t

(
1

2
L(α(s)) + F (x(s),m(s))

)
ds+G(x(T ),m(T )),

where we suppose that L is strictly convex, so that without loss of generality we

can assume L(α) = |α|2
2

. According to the dynamic programming theory we can

associate to this control problem a Hamilton-Jacobi-Bellman equation, which

is the first one in (1); there u(x, t) has to be intended as the value function,

that is the minimizer of the cost functional over the controls α ∈ L2([t, T ],Rd).

On the other hand the second equation in (1) is a continuity equation

which involves m(x, t), the density of the Borel probability measure m(t) on

Rd which describes the distribution of the other players at the time t: it is the

only knowledge of a typical agent of the overall system at each time. In fact,
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INTRODUCTION

if all agents apply an optimal strategy, which is given in the feedback form by

α(x, t) = −Dxu(x, t), the density of their distribution over the space will evolve

in time with the Fokker-Plank equation in (1).

The main result of the second chapter is that under suitable hypotheses

on F,G and m0 there is at least one solution to (1), that is a pair (u,m) ∈
W 1,∞
loc (Rd × (0, T )) × L1(Rd × (0, T )) such that the Hamilton-Jacobi-Bellman

equation is satisfied in the viscosity sense while the Fokker-Plank equation is

satisfied in the sense of distribution. In particular we suppose:

• F,G are continuous functions over Rd × P1, where P1 is the set of Borel

probability measures on Rd with finite first order moment, endowed with

the Kantorovitch-Rubinstein distance;

• There exists a constant C > 0 such that ‖F (·,m)‖C2 ≤ C and ‖G(·,m)‖C2 ≤
C for any m ∈ P1, where C2 is the space of function with continuous sec-

ond order derivatives endowed with the norm

‖f‖C2 = sup
x∈Rd

[
|f(x)|+ |Dxf(x)|+ |D2

xxf(x)|
]

;

• m0 is absolutely continuous with respect to the Lebesgue measure, with

a density still denoted m0 which is bounded and has a compact support.

In this situation the semi-concavity of the value function play a key role,

for this reason the first section is devoted to the analysis of the properties

of this class of functions following the monograph [7]. Other fundamental

preliminaries concern the existence and the properties of a minimizer in the

problem of Calculus of variations

inf
α(·)∈Lp([t,T ];Rd)

J(t, x;α(·))

subjet at: x(s) = x+

∫ s

t

α(τ) dτ.

For this reason in the second section of the chapter we study these argu-

ments. Then in the next two sections we analyze separately the Hamilton-

Jacobi-Bellman equation and the continuity equation. Finally we apply the

Schauder-Tychonoff fixed point Theorem to prove the existence of solutions

of (1). In conclusion of the chapter, we prove uniqueness of solutions under

7



INTRODUCTION

monotony assumptions on the costs F and G.

Finally the third chapter is devoted to some examples in the linear quadratic

setting. In particular we want to discuss the following cases:

1. We set G(x,m(T )) = ã
2
|x − h|2 + b̃

2
|x − E[m(T )]|2, F (x,m(t)) = 0. In

this situation ã, b̃ ∈ R and h ∈ Rd are given and we consider the classic

dynamics y(s) = x+
∫ s
t
α(r) dr.

2. In the second case we change the dynamics which becomes ẏ = Ay+Bα,

where A,B are given matrices.

3. Finally we generalize the previous point by adding a linear quadratic cur-

rent cost such as F (x,m(t)) = x′Mx+ E[m(t)]′NE[m(t)], where M,N ∈
Rd×d are symmetric given matrices.

In these simplified models the meaning of the parameters is the following:

if ã > 0 (respectively b̃ > 0) the population tends to aggregate around h

(respectively E[m(T )]) at the final time; whereas as the opposite occurs if

ã < 0 (respectively b̃ < 0).

We explicitly solve the first model and the second one when d = 1. In

the other cases we give sufficient conditions on the parameters to ensure the

existence, at least locally, of a mean field solution.
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Chapter 1

Static games with a large

number of players

The goal of this chapter is to study one-shot game with a large number N of

symmetric players.

Definition 1 (Symmetric games). A game is symmetric if the set of strategy

Q is the same for each player and the following holds:

FN
σ(i)(xσ(1), . . . , xσ(N)) = FN

i (x1, . . . , xN) ∀σ permutation on {1, . . . , N},

where FN
i = FN

i (x1, . . . , xN) is the cost of the player i when every player j

chooses the strategy xj ∈ Q.

The interpretation of this definition is that the costs are invariant under

permutations of 1, . . . , N . In particular, if we consider the point of view of

a typical agent i, its cost does not change if the same choices are made by

different other players.

In the rest of the chapter first of all we will study limits of symmetric

functions, then Nash equilibria for symmetric games, before in pure and finally

in mixed strategies.
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CHAPTER 1. STATIC GAMES WITH A LARGE NUMBER OF PLAYERS

1.1 Limits of symmetric functions

Definition 2 (Symmetric function). Let Q a compact metric space. A function

uN : QN → R is symmetric if

uN(x1, . . . , xN) = uN(xσ(1), . . . , xσ(N)) ∀σ permutation on {1, . . . . , N}.

Now we consider a sequence (uN)N∈N of symmetric functions and we want

to define a limit for it when N →∞.

Notations. To reach our goal we have to introduce some notations.

• We recall that a modulus of continuity is a non decreasing function ω :

[0,+∞[→ [0,+∞[ such that limr→0+ ω(r) = 0.

• We set

‖uN‖L∞(Q) := sup
q∈QN

uN(q).

• Given X = (x1, . . . , xN) ∈ QN we define

mN
X :=

1

N

N∑
i=1

δxi .

• Let P(Q) = {m : m Borel probability measure on Q} endowed with the

topology of weak-* convergence: (mN)N∈N ⊂ P(Q) weakly-* converges to

m ∈ P(Q) (in symbols mN ⇀∗ m) if

lim
N

∫
Q

ϕ(x) dmN(x) =

∫
Q

ϕ(x) dm(x) ∀ϕ ∈ C0(Q),

where C0(Q) = {ϕ : Q→ R | ϕ continuous}. In other words we say that

(mN)N∈N ⊂ P(Q) weakly-* converges to m ∈ P(Q) if and only if

lim
N

EmN [ϕ(X)] = Em[ϕ(X)] ∀ϕ ∈ C0(Q).

Remark 1.1. By the compactness of Q descends that also P(Q) is a compact

metric space for the weak-* topology. In particular it can be metrized with the
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1.1. LIMITS OF SYMMETRIC FUNCTIONS

Kantorowich-Rubinstein distance:

d1(µ, ν) := sup

{∫
Q

f d(µ− ν) | f : Q→ R Lipschitz function with Lip(f) ≤ 1.

}
This distance is very important for the optimal transport theory, in fact it is

studied in detail in [30]. Furthermore we will find it again in the second chapter

in an equivalent different formulation.

We are now ready to state and prove the main theorem of this section,

which is a sort of Ascoli-Arzelá Theorem for symmetric functions.

Theorem 1.2. If (uN)N∈N is a sequence of symmetric uniformly bounded and

uniformly continuous functions, that is:

• There exists some C > 0 such that

‖uN‖L∞(Q) ≤ C ∀N ∈ N. (1.1)

• There exists a modulus of continuity ω independent on N such that

|uN(X)− uN(Y )| ≤ ω(d1(mN
X ,m

N
Y )), ∀X, Y ∈ QN , ∀N ∈ N. (1.2)

Then there exists a subsequence (uNk)k∈N of (uN)N∈N and a continuous map

U : P(Q)→ R such that

lim
k→∞

sup
X∈QNk

∣∣∣uNk(X)− U
(
mNk
X

)∣∣∣ = 0.

Proof. Without loss of generality we can assume that the modulus of continuity

is concave; in fact if ω is not concave we can consider its concave envelope, which

stays above ω by construction. By the concavity of ω we can deduce:

ω(x+ y)− ω(x) ≤ ω(y) ∀x, y ∈ [0,+∞[. (1.3)

Then we define the sequence UN : P(Q)→ R as follows:

UN(m) := inf
X∈QN

{uN(X) + ω(d1(mN
X ,m))}.
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CHAPTER 1. STATIC GAMES WITH A LARGE NUMBER OF PLAYERS

By (1.2) we have that uN(X) ≤ uN(Y )+ω(d1(mN
X ,m

N
Y )), ∀Y ∈ QN . Therefore

the inequality holds also taking the infimum of the second term, so that we

obtain

UN(mN
X) = inf

Y ∈QN
{uN(Y ) + ω(d1(mN

X ,m
N
Y ))} = uN(X). (1.4)

We want to apply the Ascoli-Arzelá Theorem on the sequence (UN)N∈N, so we

have to show that it is uniformly bounded and equicontinuous.

• (UN)N∈N uniformly bounded.

Since P(Q) is a compact metric space there exists a constant D > 0 such

that

d1(m, m̃) ≤ D ∀m, m̃ ∈ P(Q). (1.5)

Let q ∈ Q and XN
q := (q, . . . , q)︸ ︷︷ ︸

N times

, then mN
XN
q

= δq. Therefore:

|UN(m)| ≤ uN(XN
q ) + ω(d1(δq,m))

(1.1)+(1.5)

≤ C + ω(D).

• (UN)N∈N equicontinuous, that is they have the same modulus of continu-

ity on P(Q).

Let m1,m2 ∈ P(Q) and X ∈ QN ε- optimal in the definition of UN(m2),

that is:

uN(X) + ω(d1(mN
X ,m2)) ≤ UN(m2) + ε. (1.6)

Moreover by the axioms of distance, we have that

d1(mN
X ,m1) ≤ d1(mN

X ,m2) + d1(m1,m2),

and the monotony of ω implies:

ω(d1(mN
X ,m1)) ≤ ω

(
d1(mN

X ,m2) + d1(m1,m2)
)
. (1.7)

12



1.2. NASH EQUILIBRIA IN PURE STRATEGIES

So we can compute:

UN(m1) ≤ uN(X) + ω
(
d1(mN

X ,m1)
) (1.6)+(1.7)

≤
≤ UN(m2) + ε+ ω

(
d1(mN

X ,m2) + d1(m1,m2)
)
− ω(d1(mN

X ,m2))

(1.3)

≤ UN(m2) + ω(d1(m1,m2)) + ε.

By letting ε→ 0 we obtain the claim.

So, by Ascoli-Arzelá Theorem, there exists a subsequence (UNk)k∈N of (UN)N∈N
and a map U : P(Q)→ R such that UNk ⇒ U when k →∞, that is:

lim
k

sup
m∈P(Q)

∣∣UNk(m)− U(m)
∣∣ = 0.

In particular, being mN
X ∈ P(Q) for each N ∈ N and for each X ∈ QN we have:

0 = lim
k

sup
X∈QNk

∣∣∣UNk
(
mNk
X

)
− U

(
mNk
X

)∣∣∣ (1.4)
= lim

k
sup

X∈QNk

∣∣∣uNk(X)− U
(
mNk
X

)∣∣∣ .

Example. If Q is a compact subset of Rd and the (uN)N∈N are differentiable

functions, (1.2) is verified if the following Lipschitz condition holds ∀N ∈ N:

sup
i=1,...,N

‖Dxiu‖∞ ≤ C, ∃C > 0.

In fact it is sufficient to apply the Lagrange Mean Value Theorem and to take

ω(r) = Cr.

Remark 1.3. Let us observe that the limit function maintains a dependence

on X ∈ QN only through the measure of the empirical average measure of the

vector X.

1.2 Nash equilibria in pure strategies

Let us come back to the analysis of classical static games with a large number

N of symmetric player as in Definition 1. In addition we suppose that the set

of strategies Q is a compact metric space with P(Q) as in the previous section.

13



CHAPTER 1. STATIC GAMES WITH A LARGE NUMBER OF PLAYERS

Let us fix the point of view of a typical player i and consider the sequence

(FN
i )N∈N of his costs as the number of players N changes: by our assumptions

this is a sequence of symmetric functions. So if conditions (1.1) and (1.2) hold

by Theorem 1.2 we know that the (FN
i )N∈N have a limit for N → ∞, which

depends both on i and on the empirical average measure of the choices of the

other players.

For this reason, since N is very large, we assume from now on that there

exists a continuous map F : Q× P(Q)→ R such that, ∀i ∈ {1, . . . , N}:

FN
i (x1, . . . , xN) = F

(
xi,

1

N − 1

∑
j 6=i

δxj

)
∀(x1, . . . , xN) ∈ QN . (1.8)

Definition 3 (Nash equilibria in pure strategies). We say that (x̄N1 , . . . , x̄
N
N) ∈

QN is a Nash equilibrium for the game (FN
1 , . . . , F

N
N ) if:

FN
i (x̄N1 , . . . , x̄

N
N) ≤ FN

i (x̄N1 , . . . , x̄
N
i−1, yi, x̄

N
i+1, . . . , x̄

N
N) ∀yi ∈ Q.

Note that the symmetry assumption states that if the above definition hold

for a typical i, then it holds for any i ∈ {1, . . . , N}.

Notations. Let us set XN := (x̄N1 , . . . , x̄
N
N) the Nash equilibrium for the game

with N symmetric players, and m̄N := 1
N

∑N
i=1 δx̄Ni the empirical average mea-

sure linked to it. Moreover we indicate with Sptm̄ the support of the measure

m̄.

We are now ready to explore the Mean field Theorem for classical pure

symmetric games.

Theorem 1.4. Let XN be a Nash equilibrium for the game (FN
1 , . . . , F

N
N ) for

each N ∈ N. Then, up to a subsequence, the sequence of measures (m̄N)N∈N
weakly-* converges to a measure m̄ ∈ P(Q) such that∫

Q

F (y, m̄) dm̄(y) = inf
m∈P(Q)

∫
Q

F (y, m̄) dm(y), (1.9)

where F is such in (1.8).

Proof. (m̄N)N∈N is a sequence in P(Q) endowed with the weak-* topology. So,

by construction, we can extract from (m̄N)N∈N a convergent subsequence, still

14



1.2. NASH EQUILIBRIA IN PURE STRATEGIES

denoted by (m̄N)N∈N to simplify the notation. Let us call m̄ its limit, we want

to show that m̄ satisfies (1.9).

We claim that the measure δx̄Ni realizes a minimum of the problem:

inf
m∈P(Q)

∫
Q

F

(
y,

1

N − 1

∑
j 6=i

δx̄Nj

)
dm(y). (1.10)

In fact when m = δx̄Ni the integral is reduced to F
(
x̄Ni ,

1
N−1

∑
j 6=i δx̄Nj

)
and, by

Definition 3 of Nash equilibrium we have that

F

(
y,

1

N − 1

∑
j 6=i

δx̄Nj

)
≥ F

(
x̄Ni ,

1

N − 1

∑
j 6=i

δx̄Nj

)
∀y ∈ Q.

And this implies the claim. Indeed, ∀m ∈ P(Q):

∫
Q

F

(
y,

1

N − 1

∑
j 6=i

δx̄Nj

)
dm(y) ≥

∫
Q

F

(
x̄Ni ,

1

N − 1

∑
j 6=i

δx̄Nj

)
dm(y)

= F

(
x̄Ni ,

1

N − 1

∑
j 6=i

δx̄Nj

)∫
Q

dm(y)

= F

(
x̄Ni ,

1

N − 1

∑
j 6=i

δx̄Nj

)

=

∫
Q

F

(
y,

1

N − 1

∑
j 6=i

δx̄Nj

)
dδx̄Ni (y).

Then we note that:

sup
x∈Q

∣∣∣∣∣m̄N(x)− 1

N − 1

∑
j 6=i

δx̄Nj (x)

∣∣∣∣∣ = sup
x∈Q

∣∣∣∣∣ 1

N − 1

∑
j 6=i

δx̄Nj (x)− 1

N

∑
j

δx̄Nj (x)

∣∣∣∣∣
≤ sup

x∈Q

1

N

∣∣∣δx̄Ni ∣∣∣+ sup
x∈Q

∣∣∣∣∣ 1

N − 1

∑
j 6=i

δx̄Nj (x)− 1

N

∑
j 6=i

δx̄Nj (x)

∣∣∣∣∣
=

1

N
+
∑
j 6=i

(
1

N − 1
− 1

N

)
=

1

N
+ (N − 1)

1

N(N − 1)
=

2

N
−→
N→∞

0.
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CHAPTER 1. STATIC GAMES WITH A LARGE NUMBER OF PLAYERS

For this reason and by the continuity of F , we have that δx̄Ni is ε-optimal for

the probem (1.10). That is, for N large enough:

F
(
x̄Ni , m̄

N
)

=

∫
Q

F (y, m̄) dδx̄Ni (y)

≤ inf
m∈P(Q)

∫
Q

F
(
y, m̄N

)
dm(y) + ε.

(1.11)

Since it holds ∀i ∈ {1, . . . , N}, remembering the definition of m̄, by linearity

we have:∫
Q

F
(
y, m̄N

)
dm̄N(y) =

1

N

(
F
(
x̄N1 , m̄

)
+ · · ·+ F

(
x̄NN , m̄

))
(1.11)

≤ 1

N

[
N

(
inf

m∈P(Q)

∫
Q

F
(
y, m̄N

)
dm(y) + ε

)]
= inf

m∈P(Q)

∫
Q

F
(
y, m̄N

)
dm(y) + ε.

By letting N →∞ we obtain the thesis.

Remark 1.5. In the hypotheses of the Theorem 1.4 the existence of a Nash

equilibrium is required for each N ∈ N. This is a very strong assumption, since

in general it is not true. Conversely, we will see in the next section that this

thing always happens in mixed strategies.

Proposition 1.6. The static mean field equation (1.9) holds if and only if the

support of m̄ is contained in the set of minima of F (y, m̄), that is:

Spt(m̄) ⊆ argmin
y∈Q

F (y, m̄)

Proof. =⇒) If (1.9) holds, for each x ∈ Q, choosing m = δx we obtain:∫
Q

F (y, m̄) dm̄ ≤ F (x, m̄) ∀x ∈ Q.

In particular ∫
Q

F (y, m̄) dm̄ ≤ min
x∈Q

F (x, m̄).

And this trivially implies that Spt(m̄) ⊆ argmin
y∈Q

F (y, m̄).
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1.3. NASH EQUILIBRIA IN MIXED STRATEGIES

⇐=) Conversely, if Spt(m̄) ⊆ argmin
y∈Q

F (y, m̄), then

∫
Q

F (y, m̄) dm̄(y) ≤
∫
Q

F (y, m̄) dm(y) ∀m ∈ P(Q),

and this provides the thesis.

This proposition states how the Nash equilibria of the game tend to be

arranged when N → ∞. In fact take place in Q so that the support of the

limit measure m̄ is contained in the set of minima of F (y, m̄) over Q.

1.3 Nash equilibria in mixed strategies

In this section we analyze what happens when the players are allowed to ran-

domize their behavior by playing strategies in P(Q) instead of Q. That is we

want to study the trend of Nash equilibria for the same game FN
1 , . . . , F

N
N in

the so called mixed strategies.

So, if the agents play the strategy π1, . . . , πN ∈ P(Q)N , the cost of the

player i will be the sum of the costs of every single choice multiplied with the

probability of playing it under the strategy π1, . . . , πN ∈ P(Q)N . That is:

F̄ i
N(π1, . . . , πN) =

∫
QN

F i
N(x1, . . . , xN) dπ1(x1) . . . dπN(xN)

(1.8)
=

∫
QN

F

(
xi,

1

N − 1

∑
j 6=i

δxj

)
dπ1(x1) . . . dπN(xN).

Definition 4 (Nash equilibria in mixed strategies). We say that π̄1, . . . , π̄N ∈
P(Q)N is a Nash equilibrium in the mixed strategies if, for any i ∈ {1, . . . , N},

F̄ i
N(π̄1, . . . , π̄N) ≤ F̄ i

N

(
(π̄j)j 6=i , πi

)
∀πi ∈ P(Q).

Now we want to extend Theorem 1.4 to the mixed strategies case. To do

this we need two important results. The first of these is about the existence of

symmetric Nash equilibria for symmetric games in mixed strategies.

Definition 5 (Upper hemicontinuous correspondence). Given two sets X, Y ,

a correspondence (or set valued map) Φ : X ⇒ Y associates to every element

17
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x ∈ X a subset of Y .

A correspondence Φ : X ⇒ Y is said to be upper hemicontinuous at the

point x if for any open neighborhood V of Φ(x), there exists a neighborhood

U of x such that Φ(x) ⊆ V for any x ∈ U .

Remark 1.7. It can be proved (see for example [2]) that if Y is compact,

then Φ is hemicontinuous if and only if for any sequence (xn)n∈N ⊂ X which

converges to x ∈ X and for any sequence (yn)n∈N which converges to y ∈ Y

and such that yn ∈ Φ(xn) ∀n ∈ N, then y ∈ Φ(x).

We omit the proof of this fact because it goes beyond the intent of these

pages.

Theorem 1.8 (Nash equilibria in mixed strategies for symmetric games). If

the game is symmetric then there is a Nash equilibrium in the mixed strategies

of the form (π̄, . . . , π̄), where π̄ ∈ P(Q).

Proof. It is a straightforward application of the Fan’s fixed point Theorem (see

[18]).

Theorem (Fan’s Theorem). Let X be a non empty, compact and convex subset

of a locally convex topological vector space. Let Φ : X ⇒ X any upper hemi-

continuous set valued map such that Φ(x) 6= ∅, compact and convex ∀x ∈ X.

Then ∃x̄ ∈ X such that x̄ ∈ Φ(x̄).

We define the best response correspondence R : P(Q) ⇒ P(Q) as follows:

R(π) =

{
σ ∈ P(Q) : F̄1(σ, π, . . . , π) = min

σ̃∈X
F̄1(σ̃, π, . . . , π)

}
.

Let us verificate the hypotheses of the Fan’s Theorem.

• First of all we check that F̄1 is a continuous map. Since F : P(Q)→ R is

a continuous function on P(Q) compact then by Weierstrass Theorem it

18
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is bounded, that is there exists D > 0 such that ‖F‖∞ ≤ D <∞. Then:

∣∣F̄1 ((πi)i=1,...,N)− F̄1 ((σj)j=1,...,N)
∣∣ ≤ ∫

QN
|F |

(
N∏
i=1

dπi −
N∏
i=1

dσi

)

≤ D

∫
QN

(
N∏
i=1

dπi −
N∏
i=1

dσi

)

≤ D d1

(
N∏
i=1

πi,

N∏
i=1

σi

)
.

• P(Q) is clearly non empty, compact because Q it is, and convex because

every set of probability measure it is.

• Since P(Q) is compact we can use te characterization of upper hemicon-

tinuity of Remark 1.7. So let (πn) ⊂ P(Q) convergent to π ∈ P(Q) and

(σn) ⊂ P(Q) such that σn ∈ R(xn) for any n ∈ N. This means that

F̄1(σn, πn, . . . , πn) ≤ F̄1(ν, πn, . . . , πn) ∀ν ∈ P(Q), ∀n ∈ N. (1.12)

If σ ∈ P(Q) is the limit of (σn), then using the continuity of F̄1 we can

pass to the limit in (1.12). So we obtain:

F̄1(σ, π, . . . , π) ≤ F̄1(ν, π, . . . , π) ∀ν ∈ P(Q).

And this implies that σ ∈ R(π).

• R(π) is non empty for any π ∈ P(Q) because by Weierstrass Theorem

there exist at least a minimum of the continuous map F̄1(·, π, . . . , π) on

the compact set P(Q).

• R(π) is compact for any π ∈ P(Q). In fact R(π) ⊂ P(Q) is a closed set be-

cause it is the anti-image of the closed singleton {minσ∈P(Q) F (σ, π, . . . , π)}
through the continuous map F̄1(·, π, . . . , π). And a closed subset of a com-

pact set is compact.

• Finally R(π) is convex. In fact given σ, σ̃ ∈ R(π) and λ ∈ (0, 1), by the

19



CHAPTER 1. STATIC GAMES WITH A LARGE NUMBER OF PLAYERS

linearity of F̄1 we have

F̄1(λσ + (1− λ)σ̃; π, . . . , π) = λF̄1(σ; π, . . . , π) + (1− λ)F̄1(σ̃; π, . . . , π)

σ,σ̃∈R(π)
= λ min

µ∈P(Q)
F̄1(µ; π, . . . , π) + (1− λ) min

µ∈P(Q)
F̄1(µ; π, . . . , π)

= min
µ∈P(Q)

F̄1(µ; π, . . . , π).

This means that λσ + (1− λ)σ̃ ∈ R(π).

So by Fan’s Theorem there exists π̄ fixed point for R. By construction π̄ satisfies

F̄1(π̄, . . . , π̄) ≤ F̄1(σ, π̄, . . . , π̄) ∀σ ∈ P(Q).

We can conclude by the symmetry assumption.

The second result we need is about the properties of sequences of symmetric

probability measures.

Definition 6. Given a compact set Q, a measure µ on Qk is said to be sym-

metric if

πσ#µ = µ ∀σ permutation of {1, . . . , k},

where πσ(x1, . . . , xk) = (xσ(1), . . . , xσ(k)) and πσ#µ = µ(π−1
σ ).

Therefore µ is symmetric if

µ(A) = µ
(
π−1
σ (A)

)
∀A ∈ Qk.

Remark 1.9. Let us observe that Definition 6, if m is a symmetric measure

on Qk then, for any permutation σ of 1, . . . , k:

m(dy1, . . . , dyk) = m(dyσ(1), . . . , dyσ(k)).

Theorem 1.10 (Hewitt-Savage Theorem). Let (mn)n∈N be a sequence of sym-

metric probability measure on Qn such that mn is the marginal of mn+1 with

respect the last variable xn+1, that is:∫
Q

dmn+1(xn+1) = mn ∀n ∈ N. (1.13)
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Then there is a probability measure µ on P(Q) such that for any continuous

map f ∈ C0(P(Q)):

lim
n

∫
Qn
f

(
1

n

n∑
i=1

δxi

)
dmn(x1, . . . , xn) =

∫
P(Q)

f(m) dµ(m). (1.14)

Furthermore ∀n ∈ N and for any n-uple A1, . . . , An of Borel sets of Q it holds

mn(A1 × · · · × An) =

∫
P(Q)

m(A1) . . .m(An) dµ(m). (1.15)

Proof. First of all we note that iterating the (1.13) we obtain:∫
Qn−j

dmn(xj+1, . . . , xn) = mj. (1.16)

Let us consider the following sequence of linear and continuous functionals

(Ln)n≥1 of C0(P(Q)):

Ln(P ) :=

∫
Qn
P

(
1

n

n∑
i=1

δyi

)
mn(dy1, . . . , dyn), ∀P ∈ C0(P(Q)).

We want to show that it has limit for n→∞, so we prove that it has limit for

any P ∈ C0(P(Q)). Indeed we establish this fact only for P of the form

P (m) =

∫
Qj
ϕ(x1, . . . , xj) dm(x1) . . . dm(xj), (1.17)

where ϕ : Qj → R is a continuous mapping. In fact this class of functions

contains the monomials

P (m) =
k∏
i=1

∫
Q

ψi(x) dm(x),

and the polynomials generated by them are dense in C0(P(Q)) for the Stone-

Weierstrass Theorem (see [9, p. 39]).
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By (1.17) we have that for any n ≥ j

P

(
1

n

n∑
i=1

δyi

)
=

1

nj

∑
(i1,...,ij)

ϕ(yi1 , . . . , yij),

where (i1, . . . , ij) ∈ {1, . . . , n}j. Therefore:

Ln(P ) =
1

nj

∑
i1,...,ij

∫
Qn
ϕ(yi1 , . . . , yij) mn(dy1, . . . , dyn).

If i1, . . . , ij are all different, we can fix the variables (yi1 , . . . , yij) and integrate

on the remaining. Let us denote Qj with the space of the variables yi1 , . . . , yij
and let σ = σi1,...,ij the permutation of {1, . . . , j} that puts in ascending order

i1, . . . , ij, then∫
Qn
ϕ(yi1 , . . . , yij) mn(dy1, . . . , dyn) =

∫
Qj
ϕ(yi1 , . . . , yij)

∫
Qn−j

mn(dyi, . . . , dyn)

(1.16)
=

∫
Qj
ϕ(yi1 , . . . , yij) mj(dyσ(i1), . . . , dyσ(ij))

=

∫
Qj
ϕ(yσ(i1), . . . , yσ(ij)) mj(dyσ2(i1), . . . , dyσ2(ij))

=

∫
Qj(y1,...,yj)

ϕ(y1, . . . , yj) dmj(x1, . . . , xj),
(1.18)

where xk = yσ2
i1,...,ij

(k). In the third step we have ordered the arguments of ϕ

through the change of variables given by σi1,...,ij , while the last equality holds

because Qj(y1, . . . , yj) ∼= Qj(yi1 , . . . , yij). Finally we have to observe that the

last integral does not depend on the particular permutation σi1,...,ij because of

the Remark 1.9.

Now, using the Stirling approximation,

|{(i1, . . . , ij) : i1, . . . , ij distinct}| = n!

(n− j)!
−→
n→∞

nj, (1.19)

and combining (1.18) and (1.19) we obtain:

lim
n→∞

Ln(P ) =

∫
Qj
ϕ(y1, . . . , yj) dmj(x1, . . . , xj).
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So Ln has a limit L ∈ (C0(P(Q)))∗. Since P(Q) is compact we can apply the

Riesz representation Theorem (see [29, Theorem 2.14]), so there exists a unique

µ ∈ P(Q) such that:

L(P ) =

∫
P(Q)

P (m) dµ(m).

It remains to show that µ satisfies (1.15). Let P such as in (1.17), then:

L(P ) =

∫
P(Q)

P (m) dµ(m)

=

∫
P(Q)

(∫
Qj
ϕ(y1, . . . , yj) dm(x1) . . . dm(xj)

)
dµ(m).

(1.20)

Let now A1, . . . , Aj ⊂ Q closed. We can find a non-increasing subsequence

(ϕk)k∈N of continuous functions on Qj which converges to 1A1(y1) · · · · ·1Aj(xj).
By this fact and (1.20) we have obtained (1.15) for any A1, . . . , Aj ⊂ Q, and

therefore for any Borel measurable subset A1, . . . , Aj of Q.

Example. Let us retrace the salient steps of the previous proof through an

explicit example. Let us suppose that n = 4, j = 3, (i1, i2, i3) = (4, 1, 3), and

σ = σ4,1,3 the permutation that changes (4, 1, 3) in (1, 3, 4). Then:∫
Q4

ϕ(y4, y1, y3) dm4(y1, . . . , y4) =

∫
Q3(y4,y1,y3)

ϕ(y4, y1, y3)

∫
Q(y2)

dm4(y1, . . . , y4)

=

∫
Q3

ϕ(y4, y1, y3) dm4(y1, y3, y4)︸ ︷︷ ︸
= dm4(yσ(4),yσ(1),yσ(3))

=

∫
Q3

ϕ(y1, y3, y4) dm4(y3, y4, y1)︸ ︷︷ ︸
= dm4(yσ2(4),yσ2(1),yσ2(3))

=

∫
Q3(y1,y2,y3)

ϕ(y1, y2, y3) dm4(y2, y3, y1)︸ ︷︷ ︸
= dm4(yσ2(3),yσ2(2),yσ2(1))

.

The last integral does not depend on the particular σ for the symmetry of m4.

Corollary 1.11. If m0 ∈ P(Q) and mn =
∏n

i=1 m0 then

lim
n→∞

∫
Qj
f

(
1

n

n∑
i1

δxi

)
dmn(x1, . . . , xn) = f(m0). (1.21)
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Proof. (mn)n∈N satisfies the hypotheses of Hewitt-Savage Theorem, so we have:

m0(A1) · · · · ·m0(An) = mn(A1 × · · · × An)

(1.15)
=

∫
P(Q)

m(A1) · · · · ·m(An) dµ(m)

So we immediately deduce that µ = δm0 and therefore:

lim
n→∞

∫
Qj
f

(
1

n

n∑
i1

δxi

)
dmn(x1, . . . , xn)

(1.10)
=

∫
P(Q)

f(m) dδm0(m) = f(m0)

We are now ready to enunciate the main Theorem of this section, on the

limit of Nash equilibria in the mixed strategies for symmetric games.

Theorem 1.12. Let (π̄N , . . . , π̄N) the Nash equilibrium in the mixed strategies

of the symmetric game (F̄N
1 , . . . , F̄

N
N ), for any N ≥ 2. Then, up to a subse-

quence, (π̄N) weakly-* converges to a measure m̄ ∈ P(Q) which satisfies the

static mean field equation (1.9). In particular there is always a solution to the

static mean field equation.

Proof. To simplify the notation we will write Λ instead of 1
N−1

∑
j 6=i δxj .

(π̄N)N∈N is a sequence on P(Q), so by construction it has a convergent

subsequence to some m̄ ∈ P(Q), still denoted by (π̄N)N∈N.

Since F : P(Q) → R is a continuous function on P(Q) compact then by

Weierstrass Theorem it is bounded, that is there exists D > 0 such that

‖F‖∞ ≤ D <∞. Therefore, for any y ∈ Q:∣∣∣∣∣
∫
QN−1

F (y; Λ)
∏
j 6=i

dπ̄N(xj)−
∫
QN−1

F (y; Λ)
∏
j 6=i

dm̄(xj)

∣∣∣∣∣
≤
∫
QN−1

∣∣∣F (y; Λ)
∣∣∣(∏

j 6=i

dπ̄N(xj)−
∏
j 6=i

dm̄(xj)

)

≤ D d1

(∏
j 6=i

dπ̄N(xj),
∏
j 6=i

dm̄(xj)

)
−→
N→∞

0.

(1.22)

In fact the distance is a continuous mapping and
∏

j 6=i dπ̄
N(xj) ⇀

∗ ∏
j 6=i dm̄(xj).
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Now, by definition of Nash equilibrium we have ∀m ∈ P(Q):

∫
Q

(∫
QN−1

F (xi,Λ)
∏
j 6=i

dπ̄N(xj)

)
dπ̄N(xi) ≤

∫
Q

(∫
QN−1

F (xi,Λ)
∏
j 6=i

dπ̄N(xj)

)
dm(xi)

On the left we add and remove
∫
Q

(∫
QN−1 F (xi,Λ)

∏
j 6=i dm̄(xj)

)
dπ̄N(xi), while

on the right
∫
Q

(∫
QN−1 F (xi,Λ)

∏
j 6=i dm̄(xj)

)
dm(xi). So we obtain:

∫
Q

[∫
QN−1

F (xi,Λ)

(∏
j 6=i

dπ̄N(xj)−
∏
j 6=i

dm̄(xj)

)]
dπ̄N(xi)+

+

∫
Q

(∫
QN−1

F (xi,Λ)
∏
j 6=i

dm̄(xj)

)
dπ̄N(xi) ≤

≤
∫
Q

[∫
QN−1

F (xi,Λ)

(∏
j 6=i

dπ̄N(xj)−
∏
j 6=i

dm̄(xj)

)]
dm(xi)+

+

∫
Q

(∫
QN−1

F (xi,Λ)
∏
j 6=i

dm̄(xj)

)
dm(xi)

Now we pass to the limit for N → ∞, and we can do this because we are

combining strong and weak-* convergence. In fact, by (1.22) and π̄N ⇀∗ m̄,

both the first term on the left and the first term on the right of the ≤ go to 0.

Moreover, by (1.21):

lim
N→∞

∫
QN−1

F (xi,Λ)
∏
j 6=i

dm̄(xj) = F (xi, m̄)

where this convergence is uniform with respect to xi because of the continuity

of F . Therefore: ∫
Q

F (xi, m̄) dm̄(xi) ≤
∫
Q

F (xi, m̄) dm(xi).

Now we want to give a sufficient condition for the uniqueness of this m̄.
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Theorem 1.13. Assume that F satisfies ∀m1 6= m2 ∈ P(Q):∫
Q

(F (y,m1)− F (y,m2)) d(m1 −m2)(y) > 0. (1.23)

Then there is a unique measure satisfying (1.9).

Proof. Let m̄1, m̄2 satisfying the static mean field equation (1.9). Since both

of them achieve the infimum we have:
∫
Q
F (y, m̄1) dm̄1(y) ≤

∫
Q
F (y, m̄1) dm̄2(y)∫

Q
F (y, m̄2) dm̄2(y) ≤

∫
Q
F (y, m̄2) dm̄1(y)

By adding these two inequalities we get∫
Q

F (y, m̄1) dm̄1(y)+

∫
Q

F (y, m̄2) dm̄2(y) ≤
∫
Q

F (y, m̄1) dm̄2(y)+

∫
Q

F (y, m̄2) dm̄1(y)

m∫
Q

[F (y, m̄1)− F (y, m̄2)] dm̄1(y)−
∫
Q

[F (y, m̄1)− F (y, m̄2)] dm̄2(y) ≤ 0

m∫
Q

[F (y, m̄1)− F (y, m̄2)] d(m̄1 − m̄2)(y) ≤ 0.

By (1.23) it must be m̄1 = m̄2.

We will discuss in detail in the next chapter the monotony condition (1.23)

of the cost function F . Now we conclude this chapter with an example.

Example (Potential games). Let us suppose that there exists Φ : Q×P(Q)→
R such that

∂

∂m
Φ(x,m)∣∣

m=m̄

= F (x, m̄). (1.24)

Moreover we assume that ∃m̄ ∈ P(Q) such that m̄ = argmin
m∈P(Q)

∫
Q

Φ(x,m) dx.

Then, ∀m ∈ P(Q):∫
Q

∂

∂m
Φ(x,m)∣∣

m=m̄

(m− m̄) dx ≥ 0
(1.24)⇐⇒

∫
Q

F (x, m̄) dm ≥
∫
Q

F (x, m̄) dm̄.

(1.25)
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This shows that m̄ satisfies (1.9).

Let Pac(Q) = {m ∈ P(Q) : m absolutely continuous with respect to Lebesgue

measure}, V : Q→ R continuous, G : (0,+∞)→ R strictly increasing, contin-

uous and such that G(0) = 0 and G(s) ≥ 2cs for some c > 0. For instance let

us assume that

F (x,m) =

V (x) +G(m(x)) if m ∈ Pac(Q)

+∞ otherwise.

So if H is the primitive of G with H(0) = 0, then if m ∈ Pac(Q):

Φ(x,m) = V (x)m+H(m(x)).

By G(s) ≥ 2cs we deduce H(s) ≥ cs2, with Ḧ = Ġ > 0. Then:

∂2

∂m∂m

∫
Q

(V m+H) dx =

∫
Q

∂2H

∂m∂m
dx > 0.

This implies that the problem infm∈P(Q)

∫
Q

Φ(x,m) dx has a unique solution

m̄ ∈ L2(Q). Then, for any m ∈ Pac(Q), by (1.25) we obtain:∫
Q

[V (x) +G(m̄(x))] dm(x) ≥
∫
Q

[V (x) +G(m̄(x))] dm̄(x).

Therefore m̄ satisfies the static mean field equation (1.9). In particular, by

Proposition 1.6, for any x ∈ Spt(m̄):

V (x) +G(m̄(x)) = min
y∈Q

V (y) +G(m̄(y)).
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Chapter 2

The mean field first order

equations

In this chapter our aim is to study the existence of solutions to the Mean field

first order equations, which we abbreviate with MFE’s :
−∂tu(x, t) + 1

2
|Dxu(x, t)|2 = F (x,m(t)) in Rd × (0, T )

u(x, T ) = G(x,m(T ))

∂tm(x, t)− divx(Dxu(x, t)m(x, t)) = 0 in Rd × (0, T )

m(x, 0) = m0(x).

(2.1)

Let us deduce heuristically this system of partial differential equations with

boundary conditions.

We assume that a typical agent can control his velocity α and moves in Rd

with the dynamics ẋ(s) = α(s) =: f(x, α) s ∈]t, T ]

x(t) = x,

where t ∈ [0, T ] and x ∈ Rd are given. Moreover we suppose that he wants to

minimize his cost functional

J(t, x;α) :=

∫ T

t

(
1

2
|α(s)|2 + F (x(s),m(s))

)
︸ ︷︷ ︸

l(x,α,m)

ds+G(x(T ),m(T )),

29



CHAPTER 2. THE MEAN FIELD FIRST ORDER EQUATIONS

where m(s) is the distribution at the time s of the other agents over Rd; it is

his only knowledge of the overall world, and we denote with m(x, s) its density.

By the optimal control theory we know that under suitable hypotheses the

value function

u(t, x) := inf
α∈L2([t,T ])

J(t, x;α)

solves in viscosity sense the following backward Hamilton-Jacobi-Belman equa-

tion: −∂tu(x, t)− infaH(Dxu, x, a) = 0 in Rd × (0, T )

u(x, T ) = G(x,m(T )),

where H(p, x, a) := p · f(x, a) + l(x, a). Substituting the expressions of f and l

and minimizing H with respect to the variable a, we obtain the first equation

of (2.1).

Furthermore by the verification theorems we guess that α = −Dxu(t, x) is

the optimal control in the feedback form. Now, if all the agents argue in this

way and apply the optimal strategy, the density m(x, s) evolves over time with

the Kolmogorov law in Rd × (0, T ):

∂tm(x, t) + div(f(x, α)m(x, t)) = 0.

Substituting the expression of f and α = −Dxu(t, x) we obtain the continuity

equation in (2.1).

A pair (u,m) ∈ W 1,∞
loc (Rd × (0, T )) × L1(Rd × (0, T )) is a solution of the

MFE’s if the Hamilton-Jacobi-Bellman equation is satisfied in the viscosity

sense while the Fokker-Plank equation is satisfied in the sense of distribution

that is, m is a weak solution. To show that (2.1) has solutions we need some

notations and assumptions.

Notations. m ∈ P1 := {Borel probability measure on Rd with finite first order

moment}. We endow P1 with the Kantorovich-Rubinstein distance

d1(µ, ν) := inf
γ∈

∏
(µ,ν)

[∫
R2d

|x− y| dγ(x, y)

]
,

where
∏

(µ, ν) is the set of Borel probability measures on R2d such that for any
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Borel subset A of Rd the following hold:

γ(A× Rd) = µ(A) and γ(Rd × A) = ν(A).

Finally we denote with C2 the space of functions with continuous second

order derivatives endowed with the norm ‖ · ‖C2 :

‖f‖C2 = sup
x∈Rd

[
|f(x)|+ |Dxf(x)|+ |D2

xxf(x)|
]
.

Remark 2.1. In the first chapter we defined the Kantorovich-Rubinstein dis-

tance in a different way. However it is possible to prove that the two formula-

tions are equivalent (see for instance [30, Chapter 5]). It is called Kantorovich

duality.

Our main hypotheses are:

1. F and G continuous over Rd × P1.

2. ∀m ∈ P1, F (·,m), G(·,m) ∈ C2; morover ∃C > 0 such that ∀m ∈ P1:

‖F (·,m)‖C2 ≤ C and ‖G(·,m)‖C2 ≤ C. (2.2)

3. m0 is absolutely continuous with respect to the Lebesgue measure, with a

density still denoted by m0 which is bounded and has a compact support.

In order to reach our goal we need some preliminaries about properties of

semiconcave functions and the existence of a minimizer of the problem:

min
α∈Lp([t,T ])

J(t, x;α) :=

∫ T

t

L(s, x(s), α(s)) ds+ g(x(T )),

where x(s) = x+
∫ s
t
α(r) dr.

In the following sections we will investigate in detail all these topics, then

we will analyze separately the HJB and the continuity equation, then we will

conclude thanks to Schauder fixed point Theorem.
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CHAPTER 2. THE MEAN FIELD FIRST ORDER EQUATIONS

2.1 Semiconcave functions

In this section we analyze the property of the class of semiconcave functions.

Most of statements and proofs are taken by the monograph [7].

Definition 7 (Semiconcave function with linear modulus). Let A ⊂ Rd. We

say that u : A → R is a semiconcave function with linear modulus if ∃C > 0

such that

λu(y1) + (1− λ)u(y2)− u(λy1 + (1− λ)y2) ≤ λ(1− λ)
C

2
|y1 − y2|2 (2.3)

for any y1, y2 ∈ S such that [y1, y2] ⊂ A and for any λ ∈ (0, 1).

Let us see other equivalent formulations of this definition.

Proposition 2.2. Given A ⊂ Rd open, u : A → R and C > 0, the following

are equivalent:

i. (2.3) is satisfied.

ii. The function y 7→ u(y)− C
2
|y|2 is concave in every convex subset of A.

iii. u ∈ C(A) and satisfies

u(y + h) + u(y − h)− 2u(y) ≤ C|h|2 (2.4)

for any y, h ∈ Rd such that [y − h, y + h] ⊂ A.

iv. ∀ν ∈ Rd such that |ν| = 1 we have ∂2
ννu ≤ C in A in the sense of

distributions, that is∫
A

u(x)∂2
ννϕ(x) dx ≤ C

∫
A

ϕ(x) dx ∀ϕ ∈ C∞c (A), ϕ ≥ 0,

where by ∂ν we intend the directional derivative.

Proof. • i. ⇒ iii.) Let y1 = y + h, y2 = y − h and λ = 1
2
. Substituting in

(2.3) we obtain the thesis.
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• i. ⇐⇒ ii.) Let y1, y2 and λ such in (2.3). Then

λ|y1|2 + (1− λ)|y2|2 − |λy1 + (1− λ)y2|2

= (λ− λ2)|y1|2 + |y2|2[(1− λ)− (1− λ)2]− 2λ(1− λ)〈y1, y2〉
= λ(1− λ)[|y1|2 + |y2|2 − 2〈y1, y2〉] = λ(1− λ)|y1 − y2|2.

Therefore:

u(λy1 + (1− λ)y2)− C

2
|λy1 + (1− λ)y2|2

≥ λu(y1) + (1− λ)u(y2)− Cλ

2
|y1|2 −

C(1− λ)

2
|y2|2

m

u(λy1 + (1− λy2))− λu(y1)− (1− λ)u(y2)

≥ −C
2

[λ|y1|2 + (1− λ)|y2|2 − |λy1 + (1− λ)y2|2]︸ ︷︷ ︸
λ(1−λ)|y1−y2|2

.

• iii. ⇒ ii.) Let us consider the function v(y) = u(y)C
2
|y|2, which is con-

tinuous. Let y ∈ A and h as in the hypothesis, then:

v(y + h) + v(y − h)− 2v(y)

= u(y + h)− C

2
|y + h|2 + u(y − h)− C

2
|y − h|2 − 2u(y) + C|y|2

(2.4)

≤ C|h|2 − C

2
|y + h|2 − C

2
|y − h|2 + C|y|2 = 0.

So v is concave.

• ii. ⇐⇒ iv.) Let us observe that ∂2
νν |y|2 ≡ 2 for any ν ∈ Rd such that

|ν| = 1. Then u satisfies iv. if and only if v(y) = u(y) − C
2
|y|2 satisfies

∂2
ννv ≤ 0 in the sense of distributions. But this last inequality is satisfied

if and only if v is concave.

Our main assumption on F and G is that they belong to C2 and that their

norm ‖ · ‖C2 is finite. Let us show that this class of function is semiconcave.
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CHAPTER 2. THE MEAN FIELD FIRST ORDER EQUATIONS

Proposition 2.3. If u ∈ C2 and there exists C > 0 such that ‖u‖C2 ≤ C, then

u is semiconcave with linear modulus of constant C.

Proof. We use the characterization (2.4.iii). Using twice the mean value theo-

rem we have that for some xh ∈ (x, x+ h), xh ∈ (x− h, x) and x̄ ∈ (xh, x
h):

|u(x+ h) + u(x− h)− 2u(x)|
|h|2

= |u(x+ h)− u(x)

|h|2
− u(x)− u(x− h)

|h|2
|

=
|〈Dxu(xh), h〉 − 〈Dxu(xh), h〉|

|h|2

≤ |Dxu(xh)−Dxu(xh)| |h|
|h|2

=
|D2

xx(x̄)| |xh − xh|
|h|

|xh−xh|≤|h|
≤ C.

Now we extend the previous definition of semiconcavity and we introduce

the concept of generalized gradients in order to deduce more general properties

of this class of functions.

Definition 8 (Semiconcave function). u : S ⊂ Rd → R is semiconcave if there

exists a non-decreasing upper semicontinuous function ω : R+ → R+ such that

limr→0+ ω(r) = 0 and such that:

λu(x) + (1− λ)u(y)− u(λx+ (1− λ)y) ≤ λ(1− λ)|x− y|ω(|x− y|), (2.5)

for any x, y ∈ S such that [x, y] ⊂ S, λ ∈ (0, 1).

Remark 2.4. Semiconcave functions with linear modulus are semiconcave

functions with ω(r) = C
2
r.

Definition 9 (Sub/Super-differential). For any x ∈ A ⊂ Rd open we define

D+u(x) :=

{
p ∈ Rd : limsup

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≤ 0

}

D−u(x) :=

{
p ∈ Rd : liminf

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x|

≥ 0

}
.

They are called respectively the Frechet superdifferential and subdifferential of

u at x.
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Definition 10 (Dini derivatives). Let x ∈ A and θ ∈ Rd \ {0}, we define

∂+u(x, θ) := limsup
h→0 θ̄→θ

u(x+ hθ̄)− u(x)

h

∂−u(x, θ) := liminf
h→0 θ̄→θ

u(x+ hθ̄)− u(x)

h
.

They are called respectively the upper and lower Dini derivatives of u at x in

the direction θ.

Theorem 2.5. If u : A→ R is semiconcave, than it is locally Lipschitz in the

Interior of A.

Proof. Without loss of generality we can suppose that A is open.

• Step 1. We show that u is locally bounded from below.

Given x0 ∈ A, we take a closed cube centered in x0, all contained in A,

with diameter L, vertices x1, . . . , x2d and m0 := mini u(xi). If xi and xj
are consecutive vertices, using that λ(1−λ) ≤ 1

4
if λ ∈ (0, 1), we have by

(2.5):

u(λxi + (1− λ)xj) ≥ λu(xi) + (1− λ)u(xj)− λ(1− λ)|xi − xj|ω(|xi − xj|)

≥ m0 −
1

4
Lω(L).

So u is bounded from below on the 1-dimensional face of the cube. Let

us show that it is on the 2-dimensional face too. Let xk, xl and xh, xr
pair of consecutive vertices on opposite 1-dimensional faces. Then if we

define yi := µxk + (1− µ)xl and yj := νxh + (1− ν)xr, with µ, ν ∈ (0, 1),

we have (remember u(yi), u(yj) ≥ m0 − 1
4
Lω(L)):

u(λyi + (1− λ)yj) ≥ λu(yi) + (1− λ)u(yj)− λ(1− λ)|yi − yj|ω(|yi − yj|)

≥ m0 −
1

2
Lω(L).

Iterating this procedure one can show that u is bounded from below in

all the k-dimensional faces of the cube for k = 1, . . . , d. So it is in the

whole cube.

• Step 2. We show that u is locally bounded from above.
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Let x0 ∈ A and R > 0 such that B(x0, R) ⊂ A. By Step 1 we know that

∃m such that u ≥ m on B(x0, R). Let z ∈ B(x0, R), now we write (2.5)

with x = x0 −R z−x0

|z−x0| , y = z and λ = |z−x0|
R+|z−x0| we get:

|z − x0|
R + |z − x0|

u

(
x0 −R

z − x0

|z − x0|

)
+

R

R + |z − x0|
u(z)− u(x0)

≤ R
|z − x0|

R + |z − x0|
ω(R + |z − x0|).

Therefore:

u(z) ≤ −|z − x0|
R

m+
R + |z − x0|

R
u(x0) +Rω(R + |z − x0|)

|z−x0|≤R
≤ |m|+ 2|u(x0)|+Rω(2R).

• Step 3. Finally we show that u is locally Lipschitz.

We note that if z ∈ [x, y] ⊂ S, then ∃λ ∈ (0, 1) such that z = λx + (1−
λ)y; writing u(z) = λu(z) + (1 − λ)u(z) in (2.5) and then dividing by

λ(1− λ)|x− y| we obtain:

u(x)− u(z)

|x− z|
− u(z)− u(y)

|z − y|
≤ ω(|x− y|). (2.6)

Let x0 ∈ A and R > 0 such that B(x0, R) ⊂ A; by Step 1 and Step

2 there exist m,M > 0 such that m ≤ u ≤ M in B(x0, R). Given

x, y ∈ B
(
x0,

R
2

)
, let x′ and y′ the points at distance R from x0 in the

straight line joining x and y, such that x ∈ [x′, y] and y ∈ [y′, x]. Then

(2.6) implies

u(x′)− u(x)

|x′ − x|
− ω(|x′ − y|) ≤ u(x)− u(y)

|x− y|
≤ u(y)− u(y′)

|y − y′|
− ω(|y′ − x|).

If we analyze the right part we note that |y − y′| ≥ R
2

by construction,

u(y) ≤M , −u(y′) ≤ −m and

|y′ − x| ≤ |y′ − x0|+ |x0 − x| ≤ R +
R

2
≤ 2R.
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Repeating the same estimates at the left we get:

|u(y)− u(x)|
|y − x|

≤ 2(M −m)

R
+ ω(2R).

Proposition 2.6. Let A ⊂ Rd open, u : A ⊂ Rd → R, x ∈ A. Then:

i. D+u(x) = {p ∈ Rd : ∂+u(x, θ) ≤ 〈p, θ〉∀θ ∈ Rd \ {0}}
D−u(x) = {p ∈ Rd : ∂−u(x, θ) ≥ 〈p, θ〉∀θ ∈ Rd \ {0}}

ii. D+u(x) and D−u(x) are closed and convex sets.

iii. D+u(x) and D−u(x) are both non-empty if and only if u is differentiable

at x and it holds

D+u(x) = D−u(x) = {Du(x)}

Proof. i. We prove the claim only for D+u(x). The inclusion ⊆ descends

immediately by the definitions of superdifferential and Dini derivative.

We show the inverse inclusion by contradiction. Let p ∈ Rd such that

∂+u(x, θ) ≤ 〈p, θ〉∀θ ∈ Rd \ {0}, but we assume that p /∈ D+u(x). Then

there exist a sequence (xk)k∈N ⊂ A and ε > 0 such that xk → x and

u(xk)− u(x) ≥ 〈p, xk − x〉+ ε|xk − x|.

Moreover, up to a subsequence, we can assume that θk := xk−x
|xk−x|

→ θ unit

vector. Then:

ε+ 〈p, θk〉 ≤
u(xk)− u(x)

|xk − x|
,

and therefore:

limsup
k

ε+〈p, θk〉 ≤ limsup
k

u(xk)− u(x)

|xk − x|
= limsup

k

u(x+ |xk − x|θk)− u(x)

|xk − x|
.

But the first term is equal to ε + 〈p, θ〉, while the last is ≤ of ∂+u(x, θ).

So we have obtained:

ε+ 〈p, θ〉 ≤ ∂+u(x, θ)
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And this is in contradiction with the definition of Dini derivative.

ii. It is a direct consequence of i..

iii. If u is differentiable at x then Du(x) ∈ D+u(x) ∩D−u(x).

Conversely if p1 ∈ D+u(x) and p2 ∈ D−u(x) then by the point i. we have

〈p2, θ〉 ≤ ∂−u(x, θ) ≤ ∂+u(x, θ) ≤ 〈p1, θ〉 ∀θ ∈ Rd \ {0}.

This implies 〈p1−p2, θ〉 ≥ 0 for any θ ∈ Rd\{0}. And this implies p1−p2 =

0 because we can take θ = −(p1 − p2). So D+u(x) and D−u(x) coincide

and reduce to a singleton. Furthermore, combining the definitions of

super and subdifferential we get that u is differentiable at x.

Proposition 2.7. Let A ⊂ Rd open, u : A → R a semiconcave function with

modulus ω, and let x ∈ A. Then p ∈ Rd belongs to D+u(x) if and only if

u(y)− u(x)− 〈p, y − x〉 ≤ |y − x|ω(|y − x|), (2.7)

for any y ∈ A such that [x, y] ⊂ A.

Proof. If p ∈ Rd satisfies (2.7) then it trivially satisfies the definition of D+u(x).

Conversely, if p ∈ D+u(x), then dividing (2.3) by λ|y − x| we get

u(y)− u(x)

|y − x|
≤ u(x+ λ(y − x))− u(x)

λ|y − x|
+ (1− λ)ω(|y − x|) ∀λ ∈ (0, 1).

By letting λ→ 0 we obtain:

u(y)− u(x)

|y − x|
≤ 〈p, y − x〉
|y − x|

+ (1− λ)ω(|y − x|).

Proposition 2.8. Let u : A→ R a semiconcave function with modulus ω and

let x, y ∈ A with [x, y] ⊂ A. Then, ∀p ∈ D+u(x) and ∀q ∈ D+u(y), we have:

〈q − p, y − x〉 ≤ 2|y − x|ω(|y − x|)
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In particular if u has linear modulus:

〈q − p, y − x〉 ≤ C|y − x|2. (2.8)

Proof. By applying the previous proposition for x and y we get:u(y)− u(x) ≤ 〈p, y − x〉+ |y − x|ω(|y − x|)
u(x)− u(y) ≤ 〈q, x− y〉+ |y − x|ω(|y − x|)

By adding this two inequalities we get:

0 ≤ 〈q, x− y〉 − 〈p, x− y〉+ 2|y − x|ω(|y − x|)

m

〈q − p, y − x〉 ≤ 2|y − x|ω(|y − x|).

Theorem 2.9. Let un : A → R a family of semiconcave functions with the

same modulus ω. If B ⊂ A is open and such that the (un)n∈N are uniformly

bounded in B, then there exists a subsequence (unk)k∈N which converges uni-

formly to a semiconcave function u : B → R still with modulus ω. Moreover

Dunk → Du almost everywhere in B.

Proof. By the Step 3 of Theorem 2.5 we know that the Lipschitz constant of u

in B depends only on B, supB |u| and the modulus of semiconcavity ω. Since

the (un) are uniformly bounded in B and uniformly semiconcave by hypothesis,

we deduce that they are uniformly Lipschitz in B. So they are equicontinuous

too, and by Ascoli-Arzelá Theorem there exists a subsequence, denoted with

(uk)k∈N, such that uk ⇒ u. Since the inequality (2.3) is preserved by pointwise

convergence, u is semiconcave with the same modulus of the (uk).

By Theorem 2.5 and Rademacher Theorem, u and the (uk) are differentiable

at x for almost all x ∈ B; let x0 ∈ B be such a point. Let us suppose by

contradiction that Duk(x0) 9 Du(x0). But by (2.7) we have that for any

k ∈ N it holds:

uk(y)− uk(x0)− 〈Dun(x0), y − x0〉 ≤ |y − x|ω(|y − x|), (2.9)
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For any y ∈ A such that [x0, y] ⊂ A. However (Dun(x0))k∈N is bounded

because the (uk) are Lipschitz, so it has a convergent subsequence to p0 6=
Du(x0), and if we pass to the limit in (2.9), by Proposition 2.7 we find out

that p0 ∈ D+u(x0). And this is a contradiction because by Proposition 2.6.iii

we have that D+u(x0) = Du(x0) = {p0} since u is differentiable at x0. So we

have the thesis.

Definition 11 (Reachable gradients). Let A ⊂ Rd open, u : A→ R be locally

Lipschitz. A vector p ∈ Rd is called reachable gradient of u at x ∈ A if there

exists a sequence (xk)k∈N ⊂ A such that:

i. u is differentiable at xk for any k ∈ N.

ii. limk xk = x.

iii. limkDu(xk) = p.

We denote with D∗u(x) the set of the reachable gradients of u at x.

Proposition 2.10. Let u : A→ R be a semiconcave function with modulus ω,

and let x ∈ A. Then:

i. If (xk) ⊂ A converges to x and (pk) ∈ D+u(xk) converges to p, then

p ∈ D+u(x).

ii. D∗u(x) ⊂ ∂D+u(x).

iii. D+u(x) 6= ∅.

iv. If D+u(x) is a singleton, then u is differentiable at x.

v. If D+u(y) is a singleton ∀y ∈ A, then u ∈ C1(A).

Proof. i. It follows by Proposition 2.7, passing to the limit.

ii. By i. it follows that D∗u(x) ⊂ D+u(x). We have to prove that all the

reachable gradients are boundary points of D+u(x). Let p ∈ D∗u(x)

and (xk)k∈N ⊂ A such in Definition 11. Without loss of generality we

can assume that limk
x−xk
|x−xk|

= θ ∈ Rd unit vector; we want to show

that p − tθ /∈ D+u(x) for any t > 0, because this would mean that

p ∈ ∂D+u(x). In fact by (2.7) we have:

u(xk)− u(x)− 〈Du(xk), xk − x〉 ≥ −|xk − x|ω(|xk − x|),
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and so

u(xk)− u(x)− 〈p− tθ, xk − x〉
= u(xk)− u(x)− 〈Du(xk), xk − x〉+ 〈Du(xk)− p, xk − x〉+ t〈θ, xk − x〉
≥ −|xk − x|ω(|xk − x|)− |Du(xk)− p||xk − x|+ t〈θ, xk − x〉.

Therefore p− tθ /∈ D+u(x) because

limsup
k

u(xk)− u(x)− 〈p− tθ, xk − x〉
|x− xk|

≥ t.

iii. It is a straightforward consequence of ii. In fact u is locally Lipschitz by

Theorem 2.5, and so D∗u(x) 6= ∅.

iv. Let us suppose D+u(x) = {p} for some p ∈ Rd and let (xk) ⊂ A

be a sequence which converges to x. By iii. we can take a sequence

pk ∈ D+u(xk) that admits only p as cluster point by i. Then pk → p.

Furthermore by Proposition 2.7 we have that:

u(xk)− u(x)− 〈p, xk − x〉
= u(xk)− u(x) + 〈pk, x− xk〉+ 〈pk − p, xk − x〉
≥ −|xk − x|ω(|xk − x|)− |pk − p||xk − x|.

Therefore:

liminf
k

u(xk)− u(x)− 〈p, xk − x〉
|xk − x|

≥ 0.

Then p ∈ D−u(x), but by Proposition 2.6.iii u is differentiable at x.

v. Direct consequence of iv.

Notations. Let u : A → R semiconcave. We denote the directional derivate

of u at x in the direction θ with the symbol ∂u(x, θ).

Finally we denote with Co(A) the closed convex hull of A.

Theorem 2.11. Let u : A → R be a semiconcave function and let x ∈ A.

Then D+u(x) =Co(D∗u(x)). Moreover for any θ ∈ Rd it holds

∂u(x, θ) = min
p∈D+u(x)

〈p, θ〉 = min
p∈D∗u(x)

〈p, θ〉. (2.10)
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Proof. First we prove (2.10). By Proposition 2.6.i and Proposition 2.10.ii we

deduce that for any θ ∈ Rd

∂u(x, θ) ≤ min
p∈D+u(x)

〈p, θ〉 ≤ min
p∈D∗u(x)

〈p, θ〉.

So it is sufficient to show that minp∈D∗u(x)〈p, θ〉 ≤ ∂u(x, θ) for any θ ∈ Rd.

Let θ ∈ Rd unit vector. Since u is differentiable almost everywhere by

Theorem 2.5 and Rademacher Theorem, we can find a sequence (xk)k∈N such

that u is differentiable at xk for any k, θk = x−xk
|x−xk|

→ θ, and Du(xk) converges

to some p0 ∈ D∗u(x). Let ω be the modulus of semiconcavity of u, then by

Proposition 2.7 we have that

〈Du(xk), θk〉 ≤
u(x+ |xk − x|θk)− u(x)

|xk − x|
+ ω(|xk − x|).

By letting k →∞ we get 〈p0, θ〉 ≤ ∂u(x, θ), from which it follows our claim.

Now, since minp∈D∗u(x)〈p, θ〉 = minp∈Co(D∗u(x))〈p, θ〉, the (2.10) implies that

the two convex sets D+u(x) and Co(D∗u(x)) must have the same support

function, and consequently they must be the same set.

2.2 Minimizer of cost functional in Lp

The aim of this section is to study the problem

inf
α∈Lp([t,T ];Rd)

J(t, x;α) :=

∫ T

t

L(s, x(s), α(s)) ds+ g(x(T ))

where x(s) = x+
∫ s
t
α(r)dr, for a fixed T ∈]0,+∞[. The main results are taken

by [21].
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We set QT :=]0, T [×Rd, so L : QT × Rd → R. Our assumptions are:

(a) L, g ≥ 0.

(b) L, g ∈ CR+1 for some integer R ≥ 1.

(c) Lvv(t, x, v) > 0.

(d) L(t, x, v) ≥ A|v|p +B for some p ≥ 1, A > 0 and B ∈ R.
(e) |Lx(t, x, v)|+ |Lv(t, x, v)| ≤ K(1 + |v|p) for some K > 0.

(2.11)

Now we prove that under these hypotheses a minimizer always exists.

Theorem 2.12. Under hypotheses (2.11) for any (t, x) ∈ QT , ∃α∗ ∈ Lp([t, T ];Rd)

such that:

J(t, x;α∗) = min
α∈Lp([t,T ];Rd)

J(t, x, ;α).

Proof. To simplify the notations let A = 1 and B = 0, and let q the conjugate

exponent of p (that is 1
q

+ 1
p

= 1).

Let (αn)n∈N a minimizing sequence in Lp([t, T ];Rd), that is:

lim
n
J(t, x;αn) = inf

α∈Lp
J(t, x;α) := V (t, x).

By (2.11.a) we have that V (t, x) ≥ 0; moreover from the definition of limit for

any ε > 0 there exists n̄ ∈ N such that ∀n ≥ n̄:

J(t, x;αn) ≥ V (t, x) + ε. (2.12)

Now we prove that this sequence is bounded in norm Lp, so that by Banach-

Alaoglu Theorem we can extract a subsequence which weakly converges to some

α∗, that is:

lim
n

∫ T

t

αn(s)φ(s) ds =

∫ T

t

α∗(s)φ(s) ds ∀φ ∈ Lq([t, T ])

In fact if xn(s) = x+
∫ s
t
αn(r) dr, ∀n ≥ n̄:

‖αn‖pLp([t,T ])

(2.11.d)

≤
∫ T

t

L(s, xn(s), αn(s)) ds

g≥0

≤ J(t, x;αn)
(2.12)

≤ V (t, x) + ε ≤ D,
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for some D large. Since (αn)n∈N is definitely bounded in the Lp norm, it is

bounded too.

Now we want to apply Ascoli-Arzelá Theorem to (xn)n∈N. In fact the (xn)

are equicontinuous:

|xn(r)− xn(s)| ≤
∫ r

s

|αn(τ)| dτ
Holder

≤ ‖αn‖p(r − s)
1
q ≤ D(r − s)

1
q ,

and also uniformly bounded:

|xn| ≤ |x|+
∫ T

t

|αn| ds
Holder

≤ |x|+ ‖αn‖p(T − t)
1
q ≤ |x|+D(T − t)

1
q .

Consequently we can find a common subsequence (still denoted by (αn)n∈N
and (xn)n∈N) such that:

αn ⇀ α∗ and xn ⇒ x∗,

for some α∗ and x∗ such that ẋ∗ = α∗ almost everywhere. Now it remains to

prove that:

J(t, x;α∗) ≤ liminf
n

J(t, x;αn) = V (t, x).

Let us set Λ(s, v) := L(s, x∗(s), v). Λ and Λv are clearly continuous in

[t, T ]× Rd and moreover Λ(s, ·) is convex in the variable v because of (2.11.b)

and (2.11.c). Therefore, for any v ∈ Rd we have:

Λ(s, v) ≥ Λ(s, α∗(s)) + (v − α∗(s)) · Λv(s, α
∗(s)).

In particular it is true for v = αn(s). So, if we set χR(s) the indicator function

of {s : |α∗(s)| ≤ R}, we obtain:∫ T

t

Λ(s, αn(s))χR(s) ds

≥
∫ T

t

Λ(s, α∗(s))χR(s) ds+

∫ T

t

(αn(s)− α∗(s)) · Λv(s, α
∗(s))χR(s) ds.

Now we note that:

|Λv(s, α
∗(s))χR(s)|

(2.11.e)

≤ K(1 + |α∗(s)|p)χR(s) ≤ K(1 +Rp).
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So Λv(s, α
∗(s))χR(s) ∈ L∞([t, T ]), and consequently Λv(s, α

∗(s))χR(s) ∈ Lq([t, T ]).

This implies, since αn ⇀ α∗, that the rightmost term goes to 0 when n→∞.

Therefore, for any R > 0:

liminf
n

∫ T

t

Λ(s, αn(s))χR(s) ds ≥
∫ T

t

Λ(s, α∗(s))χR(s) ds. (2.13)

Since Λ ≥ 0, χR(s) ≤ 1 and χR −→
R→∞

1, applying Fatou’s Lemma twice we get:

liminf
n

∫ T

t

Λ(s, αn(s)) ds ≥ liminf
n

limsup
R

∫ T

t

Λ(s, αn(s))χR(s) ds

≥ liminf
n

liminf
R

∫ T

t

Λ(s, αn(s))χR(s) ds

(2.13)

≥ liminf
R

∫ T

t

Λ(s, α∗(s))χR(s) ds

≥
∫ T

t

Λ(s, α∗(s)) ds.

(2.14)

Now, if we set xλn(s) = x∗(s) + λ(xn(s)− x∗(s)), by the Mean value Theorem

we have: ∣∣∣∣∫ T

t

[L(s, xn(s), αn(s))− L(s, x∗(s), αn(s))] ds

∣∣∣∣
≤
∫ T

t

∫ 1

0

|Lx(s, xλn(s), αn(s))||xn(s)− x∗(s)| dλds

(2.11.e)

≤ K‖xn − x∗‖∞
∫ T

t

(|αn(s)|p + 1) ds

≤K‖xn − x∗‖∞(D + T ).

Since xn ⇒ x∗, we deduce that:

liminf
n

∣∣∣∣∫ T

t

[L(s, xn(s), αn(s))− L(s, x∗(s), αn(s))] ds

∣∣∣∣ = 0. (2.15)

Finally we observe that

g(xn(T ))→ g(x∗(T )) (2.16)

because xn(T )→ x∗(T ) and g is continuous.
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In conclusion we have:

liminf
n

J(t, x;αn) =

= liminf
n

[∫ T

t

Λ(s, αn) ds+

∫ T

t

[L(s, xn, αn)− L(s, x∗, αn)] ds+ g(xn(T ))

]
(2.15)
= liminf

n

[∫ T

t

Λ(s, αn(s)) ds+ g(xn(T ))

]
(2.14)+(2.16)

≥
∫ T

t

Λ(s, α∗(s)) ds+ g(x∗(T )) = J(t, x;α∗).

Now we show that the minimizer solves the Euler-Lagrange equations in

integrated form. Note that it is not trivial because we do not know yet if

α∗ ∈ C2([t, T ]).

Lemma 2.13. Let P̄ (s) :=
∫ s
t
Lx(r, x

∗(r), α∗(r)) dr for any t ≤ s ≤ T . Then

for almost all s ∈ [t, T ] and some constant C > 0:

P̄ (s) = Lv(s, x
∗(s), α∗(s)) + C. (2.17)

Proof. Let t < t̄ < T and ϕ ∈ C1
c([t, t̄];Rd). For δ sufficiently small, λ ∈ [0, 1]

and s ∈ [t, t̄] we set xλ(s) = x∗(s) + δλϕ(s), which is an admissible control.

Since x∗ and α∗ are the minimizer, applying the Fundamental Theorem of

calculus we have:

0 ≤
∫ t̄

t

[L(s, x1(s), ẋ1(s))− L(s, x∗(s), α∗(s))] ds

=

∫ t̄

t

[L(s, x1(s), ẋ1(s))− L(s, x0(s), ẋ0(s))] ds

=δ

∫ t̄

t

∫ 1

0

[Lx(s, xλ(s), ẋλ(s)) · ϕ(s) + Lv(s, xλ(s), ẋλ(s)) · ϕ̇(s)] dλds.

Now we divide by δ and let δ → 0. Thanks to (2.11.d) and (2.11.e) we can

apply the dominated convergence theorem to obtain:

0 ≤
∫ t̄

t

[Lx(s, x
∗(s), α∗(s)) · ϕ(s) + Lv(, x

∗(s), α∗(s)) · ϕ̇(s)] ds.
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Taking −ϕ instead of ϕ, we get the converse inequality. Therefore:

0 =

∫ t̄

t

[Lx(s, x
∗(s), α∗(s)) · ϕ(s) + Lv(, x

∗(s), α∗(s)) · ϕ̇(s)] ds.

Integrating by part Lx(s, x
∗(s), α∗(s)) · ϕ(s), we can conclude by the arbitrari-

ness of t̄ and ϕ and applying the fundamental lemma of the calculus of varia-

tions (in fact ϕ̇ ∈ C0).

Now we want to prove that the minimizer α∗ ∈ C2([t, T ]). To do this we

need some notions about duality relationships.

Given a Lagrangian function L ∈ C2(QT × Rd) convex in v and superlinear

(that is lim|v|→∞
L(t,x,v)
|v| = ∞ for any (x, t) ∈ QT ), we can define the Hamilto-

nian function:

H(t, x, p) := max
v∈Rd

[−v · p− L(t, x, v)].

Proposition 2.14. H ∈ C2(Q̄T × Rd).

Proof. We set ξ = (t, x). By definition of H:

H(ξ, p) ≥ −v · p− L(ξ, p) ∀v ∈ Rd, (2.18)

and equality holds in (2.18) if and only if v maximizes the right side. Since L

is convex and superlinear, for any (ξ, p) ∈ Q̄T × Rd it happens in the unique

v ∈ Rd such that p = −Lv(ξ, v).

Now we rewrite (2.18) as

L(ξ, v) ≥ −v · p−H(ξ, p) ∀p ∈ Rd.

Given (ξ, v) ∈ Q̄T ×Rd if we choose p = −Lv(ξ, v), we note that it realizes the

equality in (2.18). This gives the dual formula

L(t, x, v) = max
p

[−v · p−H(t, x, p)].

These arguments show that the map v 7→ −Lv(t, x, v) is injective and sur-

jective on Rd for any ξ ∈ Q̄T . Using the convexity of L in v and the implicit
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function theorem, there exists Γ ∈ C2(Q̄T × Rd) such that:p = −Lv(ξ,Γ(ξ, p))

H(ξ, p) = −Γ(ξ, p) · p− L(ξ,Γ(ξ, p)).
(2.19)

This clearly gives that H ∈ C2(Q̄T × Rd).

By differentiating H in (2.19) with respect to p we get:

Hp(t, x, p) = −Γ− Γp · p− Lv · Γp
p=−Lv in (2.19)

= −Γ(t, x, p) = −v

So we got the Legendre transformationp = −Lv(t, x, v)

v = −Hp(t, x, p).
(2.20)

We are now ready to return to the discussion of the properties of the mini-

mizer.

Lemma 2.15. x∗ ∈ C2([t, T ]).

Proof. By the Pontryagin’s maximum principle (see [20, Chapter II]) we know

that ẋ∗ must minimizes

−P (s) · v − L(s, x∗(s), v),

where P (s)C1 is the solution of the adjoint equation

Ṗ (s) = −Lx(s, x∗(s), P (s)).

This means that

P (s) = −Lv(s, x∗(s), ẋ∗(s)).

By the Legendre transformation (2.20) we get:

ẋ∗ = −Hp(s, x
∗(s), P (s)). (2.21)

Since the right term is a continuous function of the variable s, we deduce that

ẋ∗ is continuous. By differentiating (2.21) with respect to s, we obtain the
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thesis.

Corollary 2.16 (Euler-Lagrange equation). x∗ solves the Euler-Lagrange equa-

tion  d
ds
Lv(s, x

∗(s), ẋ∗(s)) = Lx(s, x
∗(s), ẋ∗(s))

Lv(T, x
∗(T ), α∗(T )) = −Dxg(x∗(T ))

(2.22)

Proof. The transversality condition Lv(T, x
∗(T ), α∗(T )) = −Dxg(x∗(T )) comes

from one of the necessary conditions given by Pontryagin’s maximum principle.

Moreover since x∗ ∈ C2 we can differentiate (2.17) with respect to s, ob-

taining the thesis.

2.3 Analysis of the HJB equation

This section is devoted to the study of the Hamilton-Jacobi-Bellman equation−∂tu(x, t) + 1
2
|Dxu(x, t)|2 = f(x, t) in Rd × (0, T )

u(x, T ) = g(x) in Rd.
(2.23)

Here the hypotheses on f and g are the same on F and G at the beginning of

the chapter. As we have already discussed, this partial differential equation is

linked to the optimal control problem

inf
α∈L2([t,T ];Rd)

J(t, x;α) = inf
α∈L2([t,T ];Rd)

∫ T

t

[
1

2
|α(s)|2 + f(x(s), s)

]
ds+ g(x(T )),

(2.24)

where x(s) = x +
∫ s
t
α(r) dr. So our first task is to see what the results of

Section 2.2 become in this particular case.

Remark 2.17. Let us start noting that the Lagrangian of the problem (2.24)

is L(t, x, v) := f(x, t) + 1
2
|v|2, and that hypotheses (2.11) are satisfied:

a) L, g ≥ 0 because they represent costs.

b) L, g ∈ C2 by our assumptions (hence R = 1).

c) Lvv ≡ 1 > 0.

d) It is sufficient to take p = 2, A = 1
2

and B = −‖f‖C2 .
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e) Since Lv = v and Lx = Dxf , then |Lx|+ |Lv| ≤ K(1 + |v|2) if

|v|+ ‖f‖C2 ≤ K(|v|2 + 1),

that is a second degree equation in |v|2 which is always satisfied as soon

as K ≥ ‖f‖
C2+
√

1+‖f‖2
C2

2
.

Hence for any (t, x) ∈ QT there exists a minimizer α∗ of the problem (2.24).

Furthermore α∗ ∈ C1([t, T ]) and solves the Euler-Lagrange equation:α̇∗(s) = Dxf(x∗(s), s)

α∗(T ) = −Dxg(x∗(T ))
(2.25)

Corollary 2.18. The minimizer α∗ of (2.24) is bounded by a constant M which

depends only on C and T and not on the initial condition. Therefore it holds:∣∣∣∣12α(s)2 + f(x(s), s)

∣∣∣∣ ≤ M2

2
+ C ∀s ∈ [0, T ]. (2.26)

Proof. The boundedness of α descends from (2.25) because of our assumption

(2.2). It follows (2.26).

We are now ready to enunciate and demonstrate the main result of this

section, about the solution of (2.23).

Theorem 2.19. If f : QT → R and gRd → R are continuous and such that

‖f(·, t)‖C2 ≤ C ∀t ∈ [0, T ], ‖g‖C2 ≤ C (2.27)

then the value function u(x, t) := infα∈L2([t,T ]) J(t, x;α) is the unique bounded

and uniformly continuous viscosity solution of (2.23). Moreover ∃C1 = C1(C, T )

such that:

‖Dt,xu‖∞ ≤ C1 and D2
xxu ≤ C1, (2.28)

where the last inequality holds in the sense of distributions.

Proof. By Corollary 2.18 we deduce that the image of a minimizer of (2.24) is

contained in [−M,M ]. Thererefore:

inf
α∈L2([t,T ];Rd)

J(t, x;α) = inf
α∈L2([t,T ];[−M,M ])

J(t, x;α).
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Moreover, from Corollary 2.18 and our assumptions on f and g descends that

both L and g are bounded and Lipschitz. It is a well known fact (see [17,

Chapter 10]) that under these hypotheses the value function u is the unique

bounded and uniformly continuous viscosity solution of (2.23).

Hence we have only to prove (2.28), so we start looking for the Lipschitz

constant of u. First we do it for the x variable. Let (x1, x2, t) ∈ Rd×Rd× [0, T ]

and let α ∈ L2([t, T ]) ε-optimal for u(x1, t), that is∫ T

t

[
1

2
|α(s)|2 + f(x(s), s)

]
ds+ g(x(T )) ≤ u(t, x1) + ε, (2.29)

where x(s) = x1 +
∫ s
t
α(r) dr. Clearly x(t) = x1, if we wanted an admissible

state with initial position x2 we should consider x̃(s) := x(s) + x2 − x1. Using

the minimality of u(x2, t) for J(t, x; ·) we have:

u(x2, t) ≤
∫ T

t

[
1

2
|α(s)|2 + f(x̃(s), s)

]
ds+ g(x̃(T ))

=

∫ T

t

[
1

2
|α|2 + f(x(s) + x2 − x1, s)− f(x(s), s) + f(x(s), s)

]
ds+

+ g(x(T ) + x2 − x1)− g(x(T )) + g(x(T ))

(2.27)

≤
∫ T

t

[
1

2
|α|2 + f(x(s), s) + C|x2 − x1|

]
ds+ g(x(T )) + C|x2 − x1|

(2.29)

≤ u(x1, t) + ε+ C(T + 1)|x2 − x1|.

By letting ε→ 0 we conclude that:

‖Dxu‖∞ ≤ C(T + 1) (2.30)

Now we do the same for the time variable, but with a different strategy. By

the dynamic programming principle we know that for any t ≤ s ≤ T it holds:

u(x, t) =

∫ s

t

[
1

2
|α(r)|2 + f(x(r), r)

]
dr + u(x(s), s), (2.31)
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where α is optimal for u(x, t) and x(·) is the state associated to it. Therefore:

|u(x, s)− u(x, t)| ≤ |u(x, t)− u(x(s), s)|+ |u(x(s), s)− u(x, s)|
(2.31)+(2.30)

≤
∣∣∣∣∫ s

t

[
1

2
|α(r)|2 + f(x(r), r)

]
dr

∣∣∣∣+ C(T + 1)|x(s)− x|

≤
∫ s

t

[
1

2
|α|2 + |f |

]
dr + C(T + 1)

∫ s

t

|α(r)| dr

(2.26)+(2.18)

≤ (s− t)
[

1

2
M2 + C + C(T + 1)M

]
.

If we set C1 := max
{
C(T + 1), 1

2
M2 + C + C(T + 1)M

}
, we get Dt,xu ≤ C1

as we wanted. Note that C1 depends only on C and T , so that M .

It remains to show the second one in (2.28), that by Proposition 2.2 is

equivalent to saying that u is semiconcave with linear modulus of constant C1

in the variable x for any t ∈ [0, T ]. Furthermore by Proposition 2.3 we have

that f and g are semiconcave with linear modulus of constant C.

Let (x, y, t) ∈ Rd×Rd× [0, T ], λ ∈ (0, 1) and xλ := λx+(1−λ)y. Moreover

let α ∈ L2([t, T ]) ε-optimal for u(xλ, t), with xλ(s) = xλ +
∫ s
t
α(r) dr. By

definition of semiconcavity we have that:

λf(xλ(s) + x− xλ︸ ︷︷ ︸
a

, s) + (1− λ)f(xλ(s) + y − xλ︸ ︷︷ ︸
b

, s)

≤ f(λa+ (1− λ)b, s) + λ(1− λ)
C

2
|x− y|2

= f(xλ(s), s) + λ(1− λ)
C

2
|x− y|2.

(2.32)

And the same for g. Therefore:

λu(x, t) + (1− λ)u(y, t) ≤

≤ λ

(∫ T

t

[
1

2
|α|2 + f(xλ(s) + x− xλ, s)

]
ds+ g(xλ(T ) + x− xλ)

)
+

+ (1− λ)

(∫ T

t

[
1

2
|α|2 + f(xλ(s) + y − xλ, s)

]
ds+ g(xλ(T ) + y − xλ)

)
=

∫ T

t

1

2
|α|2 ds+

∫ T

t

[λf(a, s) + (1− λ)f(b, s)] ds+ λg(a) + (1− λ)g(b)
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(2.32)

≤
∫ T

t

[
1

2
|α|2 + f(xλ(s), s)

]
ds+ g(x(T )) +

1

2
C(T + 1)λ(1− λ)|x− y|2

≤ u(xλ, t) + ε+
1

2
C1λ(1− λ)|x− y|2.

By letting ε→ 0 we get that the constant of semiconcavity of u is C1.

Remark 2.20. It is possible to weaken our assumptions on f and g, but we

would get only the local semiconcavity of u, while in the following discussion

we will need its global semiconcavity.

Otherwise, stressing the hypotheses on f and g, we should be content with

local results. See for instance [27, Th. 3.2, Cor. 9.2, Th. 2.2] and overall [7,

Chapter 6].

Now we can demonstrate a last property of the minimizers of (2.24).

Notations. For any (t, x) ∈ QT we denote with A(t, x) the set of all optimal

controls which realizes the minimum in (2.24).

Lemma 2.21 (Stability of optimal solutions). If (tn, xn) → (t, x) then, up to

a subsequence, αn ∈ A(t, x) weakly converges in L2([t, T ]) to some α ∈ A(t, x)

Proof. Clearly A(t, x) and A(tn, xn) are non-empty for any n ∈ N by Theorem

2.12. Hence we set:

α̃n(s) =

αn(s) s ∈ [tn, T ]

0 s ∈ [0, tn[.

Since αn ∈ L2([tn, T ]) for any n ∈ N, then α̃n ∈ L2([0, T ]) for any n ∈ N.

Moreover it is bounded in the L2 norm, in fact:

‖α̃n‖2
2 =

∫ T

tn

|αn(s)|2 ds
Cor. 2.18

≤ TM2.

Therefore by Banach-Alaoglu’s Theorem there exists a subsequence of (α̃n)n∈N,

still denoted with (α̃n)n∈N, which weakly converges to some α ∈ L2([t, T ]); we

have to show that α ∈ A(t, x). Using the dominated convergence theorem
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thanks to (2.26) and the continuity of the value function u we have:

u(x, t) = lim
n
u(xn, tn)

= lim
n

∫ T

tn

[
1

2
|αn(s)|2 + f(xn(s), s)

]
ds

=

∫ T

t

[
1

2
|α(s)|2 + f(x(s), s)

]
ds,

where xn(s) = xn +
∫ s
t
αn(r) dr. Hence α ∈ A(t, x).

Remark 2.22. By the previous Lemma we have that if we endow L2([t, T ];Rd)

with the weak topology, then the correspondence Λ(x, t) := A(x, t) has a closed

graph. Hence Λ is measurable with nonempty closed values, so that it has a

Borel selection ᾱ ∈ A(x, t) for any (x, t) ∈ QT (see [2]).

We would conclude that α∗ = −Dxu, but this is not trivial because we can

not use the verification theorem since first Dxu is not said to be continuous.

Hence we have to demonstrate the regularity of the value function along optimal

solutions, which gives a sufficient and necessary condition for being an optimal

trajectory.

Lemma 2.23 (Uniqueness of optimal control along optimal trajectories). Let

(x, t) ∈ QT , α ∈ A(x, t) and x(s) = x+
∫ s
t
α(s) dr. Then for any s ∈ (t, T ) we

have A(x(s), s) = {α|[s,T ]
}.

Proof. Let α1 ∈ A(x(s), s) and x1(·) its trajectory, we want to show that

α1 = α|[s,T ]
.

Now, for any h > 0 small, we build the admissible control:

αh(r) :=


α(r) r ∈ [t, s− h[

x1(s+ h)− x(s− h)

2h
r ∈ [s− h, s+ h[

α1(r) r ∈ [s+ h, T ].

By easy calculations we get that its linked state xh(r) = x+
∫ r
t
αh(τ) dτ is

xh(r) =


x(r) r ∈ [t, s− h[

x(s− h) + (r − (s− h))
x1(s+ h)− x(s− h)

2h
r ∈ [s− h, s+ h[

x1(r) r ∈ [s+ h, T ].
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Now, if we concatenate α|[t,s] and α1 ∈ A(x(s), s) we obtain a control α0 ∈
A(x, t), to which we associate the state

x0(r) = x+

∫ r

t

α0(τ) dτ =

{
x(r) r ∈ [t, s]

x1(r) r ∈ [s, T ].

Then, comparing the payoff of α0 and αh we have:

J(t, s;α0) =

=

∫ s

t

[
1

2
|α(r)|2 + f(x(r), r))

]
dr +

∫ T

s

[
1

2
|α1(r)|2 + f(x1(r), r))

]
dr + g(x1(T ))

α0∈A(x,t)

≤
∫ T

t

[
1

2
|αh(r)|2 + f(xh(r), r))

]
dr + g(xh(T )) =

=

∫ s−h

t

[
1

2
|α(r)|2 + f(x(r), r))

]
dr +

∫ T

s+h

[
1

2
|α1(r)|2 + f(x1(r), r))

]
dr+

+

∫ s+h

s−h

[
1

2

∣∣∣∣x1(s+ h)− x(s− h)

2h

∣∣∣∣2 + f(xh(r), r))

]
dr + g(x1(T )).

Therefore:

0 ≥
∫ s

s−h

[
1

2
|α(r)|2 + f(x(r), r))

]
dr +

∫ s+h

s

[
1

2
|α1(r)|2 + f(x1(r), r))

]
dr−

−
∫ s+h

s−h

[
1

2

∣∣∣∣x1(s+ h)− x(s− h)

2h

∣∣∣∣2 + f(xh(r), r))

]
dr.

(2.33)

We divide this inequality by h and then we let h → 0. Using the mean value

theorem for integrals we get:

1

2
|α(s)|2 + f(x(s), s) +

1

2
|α1(s)|2 + f(x1(s), s)−

− 1

2
lim
h→0

1

h

∫ s+h

s−h

1

4

[∣∣∣∣x1(s+ h)− x(s− h)

h

∣∣∣∣2 + 2f(xh(r), r))

]
dr ≤ 0.

Now x1(s) = x(s), so:

lim
h

x1(s+ h)− x(s− h)

h
= lim

h

x1(s+ h)− x1(s)

h
+ lim

h

x(s)− x(s− h)

h
=
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= ẋ1(s) + ẋ(s) = α1(s) + α(s).

Hence:

1

2
lim
h→0

1

h

∫ s+h

s−h

1

4

[∣∣∣∣x1(s+ h)− x(s− h)

h

∣∣∣∣2 + 2f(xh(r), r))

]
dr =

=
1

4
(|α1(s) + α(s)|2) + lim

h

1

h

∫ s+h

s−h
f(xh(r), r) dr.

Since xh(s) = x1(s+h)+x(s−h)
2

−→
h→0

x(s) the last term tends to f(x(s), s). Com-

bining this facts with (2.33) we deduce:

0 ≥ 1

2
|α(s)|2 +

1

2
|α1(s)|2 − 1

4
|α(s) + α1(s)|2

=
1

2
|α(s)|2 +

1

2
|α1(s)|2 − 1

4
|α(s)|2 − 1

4
|α1(s)|2 − 1

2
〈α(s), α1(s)〉

=
1

4
|α(s)|2 +

1

4
|α1(s)|2 − 1

2
〈α(s), α1(s)〉 =

1

4
|α(s)− α1(s)|2.

So this implies α(s) = α1(s). But by (2.25) this means that both x(·) and x1(·)
solve the ODE

ÿ(r) = Dxf(y(r), r) r ∈ [s, T ],

with the same initial conditions x(s) = x1(s) and ẋ(s) = α(s) = α1(s) = ẋ1(s).

Therefore x(·) = x1(·) on [s, T ], and this implies α1 = α|[s,T ]
, that is the optimal

solution for u(x(s), s) is unique.

Lemma 2.24 (Uniqueness of the optimal trajectories). Under the same nota-

tions of the previous Lemma, Dxu(x, t) exists if and only if A(x, t) is reduced

to a singleton. In this case Dxu(x, t) = −α(t), where A(x, t) = {α}.

Proof. • =⇒) Let α ∈ A(x, t) and x(·) its trajectory. By minimality, for

any v ∈ Rd we have:

u(x+ v, t) ≤
∫ T

t

[
1

2
|α(s)|2 + f(x(s) + v, s)

]
ds+ g(x(T ) + v),

and equality holds when v = 0. Since we suppose that Dxu(x, t) exists,
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if we differentiate with respect to v at v = 0 we get:

Dxu(x, t) =

∫ T

t

Dxf(x(s), s) ds+Dxg(x(T ))

(2.25)
=

∫ T

t

α̇(s) ds− α(T ) = −α(t).

In particular x(·) must be the unique solution of the Cauchy problem
ẍ(s) = Dxf(x(s), s) s ∈]t, T ]

ẋ(t) = −Dxu(x, t)

x(t) = x.

(2.34)

So α = ẋ is unique.

• ⇐=) If p ∈ D∗xu(x, t) then the solution x(·) of
ẍ(s) = Dxf(x(s), s) s ∈]t, T ]

ẋ(t) = −p
x(t) = x

is optimal. In fact by definition of D∗xu(x, t) there exists (xn)n∈N such

that xn → x, u(·, t) is differentiable at xn and Dxu(xn, t) → p. By the

inverse implication of this Lemma, the unique solution xn(·) ofÿ(s) = Dxf(y(s), s) s ∈]t, T ]

ẏ(t) = −Dxu(xn, t), y(t) = xn

is optimal. Since Dxf is Lipschitz in x uniformly in t by (2.27), x(·) is the

uniform limit of the (xn(·))n∈N and by Lemma 2.21 also x(·) is optimal.

Now, since A(x, t) is a singleton, this implies that D∗xu(x, t) = {p}.
Therefore:

D+
x u(x, t)

Th. 2.11
= Co(D∗xu(x, t)) = {p}.

That is D+
x u(x, t) is a singleton, and by Proposition 2.6.iii we have that

u(·, t) is differentiable at x.
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Corollary 2.25. u(·, s) is always differentiable in x(s) for any s ∈ (t, T ), with

Dxu(x(s), s) = −α(s). In particular x(·) is solution of the differential equation

ẋ(s) = −Dxu(x(s), s).

Proof. By Lemma 2.23 we have A(x(s), s) = {α|[s,T ]
} for any s ∈]t, T ], that is a

singleton; so by Lemma 2.24 u(·, s) is differentiable at x(s) and α(s) = ẋ(s) =

−Dxu(x(s), s).

So we have proved that the optimal trajectory solves the previous differen-

tial equation with the initial condition x(t) = x. Now we want to prove that

the reverse is also true.

Lemma 2.26 (Optimal synthesis). Let (x, t) ∈ QT and let x(·) be a solution

of ẋ(s) = −Dxu(x(s), s) a.e. in [t, T ]

x(t) = x.
(2.35)

Then α(·) = ẋ(·) ∈ A(x, t). In particular, if u(·, t) is differentiable at x, (2.35)

has unique solution corresponding to the optimal trajectory.

Proof. Let s ∈]t, T [ such that (2.35) is satisfied and the map r 7→ u(x(r), r)

is differentiable at s. Since u is Lipschitz continuous by Lebourg’s mean value

Theorem (see [13, Th. 2.3.7]) for any h > 0 small there exists (yh, sh) ∈
[(x(s), s), (x(s+h), s+h)] and (ξhx , ξ

h
t ) ∈ Co(D∗t,xu(yh, sh))

Th. 2.11
= D+

t,xu(yh, sh)

such that:

u(x(s+ h), s+ h)− u(x(s), s) = 〈ξhx , x(s+ h)− x(s)〉+ ξht h. (2.36)

From Caratheodory Theorem there are some (λh,i, ξh,ix , ξh,it )i=1,...,d+2 with

λh,i ≥ 0,
∑

i λ
h,i = 1 and (ξh,it , ξh,ix ) ∈ D∗t,xu(yh, sh) such that

(ξht , ξ
h
x) =

d+2∑
i=1

λh,i(ξh,it , ξx,ix ).

By Proposition 2.10.i any cluster point of (ξh,ix )h belongs toD∗xu(x(s), s)
Th. 2.6.iii

=

Dxu(x(s), s). Hence

ξh,ix −→
h→0

Dx(x(s), s). (2.37)
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Since u is viscosity solution of (2.23) and (ξh,it , ξh,ix ) ∈ D∗t,xu(yh, sh), from

the consistency properties and passing to the limit we have that:

−ξh,it +
1

2
|ξh,ix |2 = f(yh, sh).

Therefore, using (2.37):

ξht =
∑
i

λh,iξh,it =
1

2

∑
i

λh,i|ξh,ix |2− f(yh, sh) −→
h→0

1

2
|Dxu(x(s), s)|2− f(x(s), s).

Now, dividing (2.36) by h and letting h→ 0 we get

d

ds
u(x(s), s) = 〈Dxu(x(s), s), ẋ(s)〉+

1

2
|Dxu(x(s), s)|2 − f(x(s), s).

Using ẋ(s) = Dxu(x(s), s) a.e. in [t, T ] we obtain

d

ds
u(x(s), s) = −1

2
|Dxu(x(s), s)|2 − f(x(s), s) a.e. in ]t, T [.

Integrating this last equality over [t, T ] we have

u(x(T ), T )︸ ︷︷ ︸
g(x(T ))

−u(x(t)︸︷︷︸
x

, t) =

∫ T

t

−1

2
|Dxu(x(s), s)︸ ︷︷ ︸

ẋ(s)

|2 − f(x(s), s)

 ds

m

u(x, t) =

∫ T

t

[
1

2
|ẋ(s)|2 + f(x(s), s)

]
ds+ g(x(T )).

Therefore α(·) = ẋ(·) is optimal.

The last part of the statement descends from Lemma 2.24.

Definition 12 (Flow). For any (x, t) ∈ QT let ᾱ(x, t) ∈ A(x, t) as in Remark

2.22. Then we define the flow

Φ(x, t, s) = x+

∫ s

t

ᾱ(x, t)(r) dr ∀s ∈ [t, T ].

Now we study some properties of the flow that will be useful in the next

section.
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Proposition 2.27. The following hold:

i. The flow has the semigroup property, that is

Φ(x, t, s′) = Φ(Φ(x, t, s), s, s′) for any t ≤ s ≤ s′ ≤ T. (2.38)

ii. ∂sΦ(x, t, s) = −Dxu(Φ(x, t, s), s) for any x ∈ Rd and s ∈ (t, T ).

iii. |Φ(x, t, s′)−Φ(x, t, s)| ≤ ‖Dxu‖∞|s′− s| for any x ∈ Rd, t ≤ s ≤ s′ ≤ T .

Proof. i. It is a direct consequence of Lemma 2.23, from which we know

that A(Φ(x, t, s), s) = {ᾱ(x, t)|[s,T ]
}.

ii. From Corollary 2.25 we know that u(·, s) is differentiable at Φ(x, t, s)

with Dxu(Φ(x, t, s), s) = −ᾱ(x, t)(s). We get the thesis noting that by

definition ∂sΦ(x, t, s) = ᾱ(x, t)(s).

iii. Since the optimal trajectory solves (2.35) and u is Lipschitz continuous,

it descends that Φ is Lipschitz with respect to the variable s. We reach

the thesis by the previous point since ‖∂sΦ‖∞ = ‖Dxu‖∞.

Lemma 2.28 (Contraction property). Let C be as in (2.27), then there exists

some constant C2 = C2(C, T ) such that if u is solution of (2.23), then:

|x−y| ≤ C2|Φ(x, t, s)−Φ(y, t, s)| ∀x, y ∈ Rd and ∀ 0 ≤ t < s ≤ T. (2.39)

In particular the map x 7→ Φ(x, t, s) has a Lipschitz continuous inverse on the

set Φ(Rd, t, s).

Proof. Clearly Φ(·, t, s) is injective and then it is invertible on the image. Let

us define x(r) := Φ(x, t, s − r) and y(r) := Φ(y, t, s − r) for any r ∈ [0, s − t].
From the previous proposition we haveẋ(r) = −∂sΦ(x, t, s− r) = Dxu(Φ(x, t, s− r), s− r) = Dxu(x(r), s− r)

x(0) = Φ(x, t, s)
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Similarly ẏ(r) = Dxu(y(r), s− r) with initial condition y(0) = Φ(y, t, s). Using

the semiconcavity of u and (2.8) we get

d

dr

(
1

2
|(x− y)(r)|2

)
= 〈(ẋ− ẏ)(r), (x− y)(r)〉 ≤ C1|(x− y)(r)|2.

Hence we derive:∫ r

0

[
d
dτ
|(x− y)(τ)|2

|(x− y)(τ)|2

]
dτ ≤

∫ r

0

2C1 dr ∀r ∈ [0, s− t]

Then

log

(
|(x− y)(r)|2

|(x− y)(0)|2

)
≤ 2C1r ≤ 2C1T ∀r ∈ [0, s− t],

from which we deduce, taking r = s− t:

|x(0)−y(0)|eC1T ≥ |x(s−t)−y(s−t)| ⇐⇒ |Φ(x, t, s)−Φ(y, t, s)|eC1T ≥ |x−y|.

If we set C2 = eC1T we have the thesis.

2.4 Analysis of the continuity equation

In this section we study the Kolmogorov equation:∂sµ(x, s)− divx(Dxu(x, s)µ(x, s)) = 0 in Rd×]0, T ]

µ(x, 0) = m0(x).
(2.40)

We want to show that it has unique solution under our assumptions on f and

g and once given u solution of (2.23). Being (2.40) a continuity equation one

can guess that the solution is the density of the push-forward measure of m0

through the flow Φ.

Definition 13. For any s ∈ [0, T ], we set the push forward measure µs :=

Φ(·, 0, s)#m0, which satisfies for any borel set A ∈ Rd:

µs(A) = m0(Φ−1(A, 0, s))

The interpretation is that the measure of A at the time s is equal to the
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measure at time 0 of that set which after a time s evolves in A through the

dynamics of the system.

In the next we first demonstrate that the density µ(s, x) of µs is a weak

solution of (2.40), then we prove that uniqueness holds with suitable regularity

conditions on Dxu and finally, through regularizations, we show that we can

extend uniqueness to the general case. In the following we will assume without

loss of generality t = 0 in (2.24).

First of all we need a result which will often be used later about change of

variables in integrals with push forward measure.

Lemma 2.29. Let X and Y measurable spaces, µ a nonnegative measure on

X and f : X → Y a measurable function. Then a measurable function g on Y

is integrable with respect to the measure f#µ precisely when the function g ◦ f
is integrable with respect to µ. In addition one has∫

Y

g(y) f#µ(dy) =

∫
X

g(f(x))µ(dx) (2.41)

Proof. Let B the σ-algebra on Y . For the indicators of sets in B formula

(2.41) is just the definition of push forward measure and by linearity it holds

also for simple simple functions. Next we can extend this formula to bounded

B-measurable functions because they are uniform limits of simple ones. If g is

a nonnegative B-measurable function which is integrable with respect to f#µ,

then for the functions gn := min(g, n) (2.41) already holds. By the monotone

convergence theorem it remains true for g, since the integrals of the functions

gn ◦ f against the measure µ are uniformly bounded.

These arguments show the necessity of the µ-integrability of g ◦ f for the

integrability of g ≥ 0 with respect f#µ. By the linearity of (2.41) in g we

obtain the general case.

Now we prove that µs = Φ(·, 0, s)#m0 is absolutely continuous with respect

the Lebesgue measure and Lipschitz.

Lemma 2.30. Let C as in (2.27) and such that m0 is absolutely continuous

with respect to Lebesgue measure with a density m0(x) which satisfies ‖m0‖∞ ≤
C and with support contained in B(0, C). Let us set µs = Φ(·, 0, s)#m0 for

any s ∈ [0, T ]. Then there exists a constant C3 = C3(C, T ) such that for any
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s ∈ [0, T ] the measure µs is absolutely continuous with respect to the Lebesgue

measure with a density which satisfies ‖µ‖∞ ≤ C3 and with support contained

in B(0, C3). Moreover µs is Lipschitz with constant C1, that is:

d1(µs′ , µs) ≤ C1|s′ − s| ∀t ≤ s ≤ s′ ≤ T. (2.42)

Proof. First we prove the lipschitzianity of µs. Let t ≤ s ≤ s′ ≤ T and consider

consider the measure π on R2d defined as follows:

π = (x 7→ Φ(x, 0, s′), x 7→ Φ(x, 0, s))#m0.

Since π ∈
∏

(µs′ , µs) by construction, from the dual definition of Kantorovich-

Rubinstein distance we have:

d1(µs′ , µs) ≤
∫
R2d

|x− y| π(dx, dy)

(2.41)
=

∫
Rd
|Φ(x, 0, s′)− Φ(x, 0, s)| dm0(x)

Prop. 2.27.iii

≤ ‖Dxu‖∞|s′ − s|
Th. 2.19

≤ C1|s′ − s|.

Now, since Spt(m0) ⊆ B(0, C) and d1(µs,m0) ≤ C1s ≤ C1T , we have that

Spt(µs) ⊆ B(0, C + C1T ) for any s ∈ [0, T ].

Now we fix s ∈ [0, T ]. By Lemma 2.28 we know that the map x 7→ Φ(x, 0, s)

has an inverse Ψ. Therefore, for any borel set E ⊆ Rd it holds µs(E) =

m0(Φ−1(E, 0, s)) = m0(Ψ(E)). Since m0 is absolutely continuous with respect

to the Lebesgue measure L on Rd and using that Ψ is C2-Lipschitz continuous

we have:

µs(E) = m0(Ψ(E)) ≤ ‖m0‖∞L (Ψ(E)) ≤ CL (C2E) = CC2L (E). (2.43)

Hence µs(E) is absolutely continuous with respect to the Lebesgue measure for

any s ∈ [0, T ] with a density µs(x) which satisfies:

‖µs‖∞ ≤ CC2.

In fact if it existed some x̄ such that µs(x̄) > CC2 we could find a borel set

Ex̄ such that µs(x) > CC2 for any x ∈ Ex̄. And this would be in contradiction

with (2.43).
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By taking C3 := max{C + C1T,CC2} we get the thesis.

Definition 14 (Weak solution). m ∈ L1([0, T ],P1) is a weak solution of (2.40)

if for any ϕ ∈ C∞c (Rd × [0, T [) test function we have:∫
Rd
ϕ(x, 0) dm0(x)+

∫ T

0

∫
Rd

[∂sϕ(x, s)− 〈Dxϕ(x, s), Dxu(x, s)〉] dms(x) ds = 0.

(2.44)

Lemma 2.31. The map s 7→ µ(s) := Φ(·, 0, s)#m0 is a weak solution of (2.40).

Proof. Let ϕ ∈ C∞c (Rd × [0, T [), in particular

ϕ(x, T ) = 0 ∀x ∈ Rd. (2.45)

Since s 7→ µs is Lipschitz continuous then it is differentiable almost everywhere;

so by the fundamental theorem of calculus the map s 7→
∫
Rd φ(x, s)µ(x, s) ds

is absolutely continuous. Writing Φ instead of Φ(x, 0, s) we have:

d

ds

∫
Rd
ϕ(x, s)µ(x, s) ds

(2.41)
=

d

ds

∫
Rd
ϕ(Φ, s)m0(x) dx

=

∫
Rd

[∂sϕ(Φ, s) + 〈Dxϕ(Φ, s), ∂sΦ〉]m0(x) dx

Prop. 2.27.ii
=

∫
Rd

[∂sϕ(Φ, s)− 〈Dxϕ(Φ, s), Dxu(Φ, s)〉]m0(x) dx

(2.41)
=

∫
Rd

[∂sϕ(y, s)− 〈Dxϕ(y, s), Dxu(y, s)〉] dµs(y).

By integrating the above equality between 0 and T and using (2.45) we get

(2.44).

Now we want to show the uniqueness of the weak solution, where the prob-

lem is in the discontinuity of Dxu. Hence, we first prove this fact when Dxu is

locally Lipschitz continuous.

Lemma 2.32. Let b ∈ L∞(Rd × (0, T );Rd) such that for any R > 0 and for

almost all t ∈ [0, T ] there exists L = L(R) with b(·, t) is L-Lipschitz continuous

on B(0, R). Then the continuity equation∂tµ(x, s) + divx(b(x, s)µ(x, s)) = 0 in Rd × (0, T )

µ(x, 0) = m0(x)
(2.46)
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has a unique weak solution µ(t) = Φ(·, t)#m0, where Φ is the flow of the

differential equation ẏ(s) = b(y(s), s) in R
y(0) = x

(2.47)

Proof. Note that the boundedness and the local lipschitzianity in space of b

are the standard requirements to guarantee global existence and uniqueness of

the solution of (2.47) in R. Thanks to the the semigroup property (2.38) this

implies that the function Φ(·, t) is surjective on Rd for any t ∈ R, in particular

for any t ∈ [0, T ]. In particular, if Ψ(t, x) = Φ(−t, x) is the locally Lipschitz

continuous inverse of the map x 7→ Φ(t, x) as in Lemma 2.28, for any x ∈ Rd

it holds

x = Ψ(Φ(x, s), s) ∀s ∈ R. (2.48)

The proof of the fact that µ(t) = Φ(·, t)#m0 is weak solution of (2.46) is

the same as the previous lemma. So it remains to prove the uniqueness.

Let µ be a solution of (2.46) and ϕ ∈ C∞c (Rd), then w(x, t) := ϕ(Ψ(t, x)) ∈
C0
c(Rd+1) by construction. Now, for almost all (x, t) ∈ Rd+1:

0 =
d

dt
ϕ(x)

2.48
=

d

dt
w(Φ(x, t), t)

(2.47)
= ∂tw(Φ(x, t), t) + 〈Dxw(Φ(x, t), t), b(Φ(x, t), t)〉.

Since x 7→ Φ(x, t) is surjective this implies that

∂tw(y, t) + 〈Dxw(y, t), b(y, t)〉 = 0 for almost all (t, y) ∈ Rd+1. (2.49)

Moreover divx(bµw) = divx(bµ)w + 〈Dxw, bµ〉. Therefore:

− wdivx(bµ) = 〈Dxw, b〉µ− divx(bµw). (2.50)

Furthermore, since w has compact support contained in some K ⊂ Rd+1, by

the divergence theorem we have:∫
Rd

divx(bµw) dy =

∫
K⊃Sptw

divx(bµw) dy =

∫
∂K⊃∂Sptw

bµw · ν dσ(y) = 0.

(2.51)
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Hence we have:

d

dt

∫
Rd
w(y, t)µ(y, t) dy =

∫
Rd

[µ∂tw + w∂tµ] dy

(2.46)
=

∫
Rd

[µ∂tw − w divy(bµ)] dy
(2.50)+(2.51)

=

∫
Rd

[∂tw + 〈Dyw, b〉]µ(y) dy
(2.49)
= 0.

So the function t 7→
∫
Rd w(y, t)µ(y, t)dy is constant. Therefore:∫

Rd
w(y, t) dµt(y) =

∫
Rd
w(y, 0) dµ0(y)

=

∫
Rd
ϕ(y) dm0(y)

(2.48)
=

∫
Rd
w(Φ(y, t), t) dm0(y).

Since ϕ is arbitrary, changing it and consequently w, we deduce that ∀ψ ∈
C0
c(Rd+1):∫
Rd
ψ(y, t) dµt(y) =

∫
Rd
ψ(Φ(y, t), t) dm0(y)

(2.41)
=

∫
Rd
ψ(y, t) d(Φ(·, t)#m0)(y)

(2.52)

Now, for any borel set B ∈ Rd we can build a sequence of functions (ψn) ⊂
C0
c(K) with B ⊆ K ⊆ Rd+1 which converges to indicator function of B. By the

dominated convergence theorem:

µt(B) =

∫
B

dµt(y) = lim
n

∫
K

ψn(y, t) dµt(y)

(2.52)
= lim

n

∫
K

ψn(y, t) d(Φ(·, t)#m0)(y) =

∫
B

d(Φ(·, t)#m0)(y) = Φ(·, t)#m0(B)

We can conclude µt = Φ(·, t)#m0 by the arbitrariness of B.

Now we come back to the continuity equation (2.40) and let µ a weak

solution. If we regularize through a nonnegative smooth kernel ρε of Rd (for

instance the Gaussian kernel) we can define the following

µε(x, t) := µ(x, t) ∗ ρε(x) and bε(x, t) := −(Dxu(x, t)µ(x, t)) ∗ ρε(x)

µε(x, t)
.

Note that bε satisfies the hypotheses of Lemma 2.32 for any ε > 0: it is
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locally Lipschitz continuous because it is C∞ and it is also bounded by C1:

|bε| =
∣∣∫

Rd Dxu(v, t)µ(v, t)ρε(x− v, t) dv
∣∣

|µε|
≤
∫
Rd |Dxu(v, t)|µ(v, t)ρε(x− v, t) dv

µε

(2.28)

≤ C1

∫
Rd µ(v, t)ρε(x− v, t) dv

µε
= C1

µε

µε
= C1.

By the differentiation properties of the convolution we have:

∂tµ
ε = ∂t(µ ∗ ρε) = ∂tµ ∗ ρε

div(bεµε) = div(−Dxu µ ∗ ρε) = −div(Dxu µ) ∗ ρε.

Then it immediately follows that µε(x, t) solves for any ε > 0∂tµε + div(bεµε) = 0

µε(x, 0) = mε(x) := m0 ∗ ρε
(2.53)

Hence, by Lemma 2.32, µεt = Φε(·, t)#mε is the unique weak solution of (2.53),

where Φε is the flow of the differential equation∂sΦε(x, s) = bε(Φε(x, s), s)

Φε(x, 0) = x.
(2.54)

Now we would let ε → 0 and conclude that consequently µt = Φ(·, t)#m0 is

the unique solution of (2.40), but this transition to the limit is very touchy and

we will adopt the following strategy.

Idea. Let ΓT := C0([0, T ];Rd). We will define a family ηε of measures on

Rd × ΓT such that:

• If (et)t∈[0,T ] is the family of the evaluation map defined by et(γ) = γ(t)

for any γ ∈ ΓT and for any t ∈ [0, T ], then it holds:∫
Rd×ΓT

f(et(γ)) dηε(x, γ) =

∫
Rd
f(x) dµεt(x) ∀f ∈ Cb0(Rd). (2.55)

• (ηε)ε>0 is tight so that it has a subsequence which narrowly converges to

some measure η on Rd×ΓT which we can be disintegrated in the following

way: dη(x, γ) = dηx(γ)dm0(x).
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Then we will show the superposition principle:∫
Rd×ΓT

∣∣∣∣γ(t)− x+

∫ t

0

Dxu(γ(s), s) ds

∣∣∣∣ dη(x, γ) = 0,

from which we will deduce that m0-a.e. ηx-a.e. γ is given by Φ(x, 0, ·).
Finally, letting ε→ 0 in (2.55) and using Lemma 2.29 we will conclude that

µt = Φ(·, 0, t)#m0, that is the solution of (2.40) is unique.

Definition 15. Let ηε the measure on Rd × ΓT defined by:∫
Rd×ΓT

ϕ(x, γ) dηε(x, γ) =

∫
Rd
ϕ(x,Φε(x, ·)) dmε(x) ∀ϕ ∈ C0

b(Rd × ΓT ).

(2.56)

Applying the previous definition with the family of the evaluation maps

(et)t∈[0,T ] : ΓT → R defined by et(γ) = γ(t), we obtain (2.55). In fact, for any

f ∈ Cb0(Rd;R) it holds:∫
Rd×ΓT

f(et(γ)) dηε(x, γ)
(2.56)
=

∫
Rd
f(Φε(x, t)) dmε(x)

(2.41)
=

∫
Rd
f(x) dµεt(x).

Proposition 2.33. The sequence (ηε)ε>0 is tight in Rd× ΓT . That is, for any

δ > 0 there exists some compact Kδ ⊂ Rd × ΓT such that ηε(Kδ) ≥ 1 − δ for

any ε > 0.

Proof. (mε)ε converges to m0 when ε→ 0, so it is tight and for any δ > 0 there

exists some compact K̃δ ⊂ Rd such that mε(K̃δ) ≥ 1 − δ for any ε > 0. Now

we consider

Kδ := {(x, γ) ∈ K̃δ × ΓT : γ(0) = x, γ Lipschitz with ‖γ̇‖∞ ≤ C1}.

If KΓ := {γ ∈ ΓT : ∃x ∈ K̃δ such that γ(0) = x, γ Lipschitz with ‖γ̇‖∞ ≤
C1}, then Kδ = K̃δ × KΓ. We want to prove that Kδ is compact, so it is

sufficient to show that both K̃δ and KΓ are: K̃δ it is by construction, while KΓ

is precompact by Ascoli-Arzelá Theorem and clearly closed, so it is compact.

In fact KΓ is equicontinuous because uniformly Lipschitz and for any t ∈ [0, T ]:

|γ(t)| ≤ |x|+ t sup
t
|γ̇(t)| ≤ diam(K̄δ) + C1T.
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Therefore, by definition of ηε, it holds:

ηε(Kδ) = mε(K̃δ) ≥ 1− δ ∀ε > 0.

Given a set X, we recall that a sequence (µ)n ∈ P(X) narrowly converges

to some measure µ ∈ P(X) if and only if

lim
n

∫
X

f dµn =

∫
X

f dµ for any f ∈ C0
b(X).

Proposition 2.34. (ηε)ε converges up to a subsequence to some measure η on

Rd × ΓT which has m0 as its first marginal.

Proof. By Prokhorov Theorem (see [5, Section 8.6]) we have that there exists a

subsequence still denoted by (ηε)ε which narrowly converges to some η measure

over Rd × ΓT . Therefore, if we pass to the limit for ε→ 0 in (2.55) we get, for

any t ∈ [0, T ] and for any ϕ ∈ C0
b(Rd;R):∫

Rd×ΓT

ϕ(et(γ)) dη(x, γ) =

∫
Rd
ϕ(x) dµt(x). (2.57)

And letting ε→ 0 in (2.56) we have, for any f ∈ C0
b(Rd;R):∫

Rd×ΓT

f(x) dη(x, γ) =

∫
Rd
f(x) dm0(x). (2.58)

We can conclude such in Lemma 2.32.

Proposition 2.35. Let c ∈ C0
c(QT ;Rd). Then∫

Rd×ΓT

∣∣∣∣γ(t)− x−
∫ t

0

c(γ(s), s) ds

∣∣∣∣ dη(x, γ) ≤
∫
QT

|c(x, t)+Dxu(x, t)|µ(x, t) dxdt.

(2.59)

Proof. For any ε > 0 small:∫
Rd×ΓT

∣∣∣∣γ(t)− x−
∫ t

0

c(γ(s), s) ds

∣∣∣∣ dηε(x, γ)

(2.56)
=

∫
Rd

∣∣∣∣Φε(x, t)− x−
∫ t

0

c(Φε(x, s), s)ds

∣∣∣∣ dmε(x)
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(2.54)
=

∫
Rd

∣∣∣∣∫ t

0

[bε(Φε(x, s), s)− c(Φε(x, s), s)] ds

∣∣∣∣ dmε(x)

≤
∫ t

0

∫
Rd
|bε(Φε(x, s), s)− c(Φε(x, s), s)|mε(x) dxds

(2.41)
=

∫ t

0

∫
Rd
|bε(y, s)− c(y, s)|µε(x, s) dxds.

Now we set cε := (cµ)∗ρε
µε

. Then, by adding and removing cε in the last step we

get:∫
Rd×ΓT

∣∣∣∣γ(t)− x−
∫ t

0

c(γ(s), s) ds

∣∣∣∣ dηε(x, γ) ≤

≤
∫ t

0

∫
Rd
|bε − cε|µε(x, s) dxds+

∫ t

0

∫
Rd
|cε − c|µε(x, s) dxds.

(2.60)

The left term in (2.60) converges to the left term in (2.59), while the rightmost

term in (2.60) goes to 0 because c is continuous, so that cε ⇒ c. So we miss to

analyze
∫ t

0

∫
Rd |b

ε − cε|µε(x, s)dxds; to do this we need the fact that

‖f ∗ ρε‖Lp ≤ ‖f‖Lp ∀f ∈ Lp(Rd) and ∀p ≥ 1. (2.61)

Hence∫ t

0

∫
Rd
|bε − cε|µε(x, s) dxds =

∫ t

0

∫
Rd
|−(Dxu µ) ∗ ρε − (cµ) ∗ ρε| dxds∫ t

0

∫
Rd
|(µDxu+ µc) ∗ ρε| dxds

(2.61)

≤
∫ t

0

∫
Rd
|Dxu µ+ cµ| dxds

≤
∫ T

0

∫
Rd
|c(x, t) +Dxu(x, t)|µ(x, t) dxdt.

Lemma 2.36 (Superposition principle). For any t ∈ [0, T ] it holds∫
Rd×ΓT

∣∣∣∣γ(t)− x+

∫ t

0

Dxu(γ(s), s) ds

∣∣∣∣ dη(x, γ) = 0. (2.62)

Proof. Let (cn)n∈N s sequence of uniformly bounded and continuous vector

fields which converges almost everywhere to −Dxu. Replacing c by cn in (2.59)

and letting n→∞ we obtain the thesis thanks to the dominated convergence
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theorem.

Lemma 2.36 states that density of η is concentrated on solutions of the

differential equation ẏ(s) = −Dxu(y(s), s)

y(0) = x.

Let us state a fundamental disintegration Theorem for measures. For the

proof see [14, Ch. III].

Theorem (Disintegration). Let X, Y be Radon separable metric spaces, µ ∈
P(X), π : X → Y a Borel map and let ν = π#µ ∈ P(Y ). Then there exists

a ν − a.e. uniquely determined Borel family of probability measures (µy)y∈Y ⊂
P(X) such that

µy(X \ π−1(y)) = 0 for ν-a.e. y ∈ Y.

and ∫
X

f(x) dµ(x) =

∫
Y

(∫
π−1(y)

f(x) dµy(x)

)
dν(y) (2.63)

for every Borel map f : X → [0,+∞].

In particular we can disintegrate η with respect to its first marginal m0; in

fact m0 = π#η, where π : Rd × ΓT → Rd is the canonical projection. So we

get dη(x, γ) = dηx(γ)dm0. Then, from (2.62), we have for any t ∈ [0, T ]:

0 =

∫
Rd×ΓT

∣∣∣∣γ(t)− x+

∫ t

0

Dxu(γ(s), s) ds

∣∣∣∣ dη(x, γ)

(2.63)
=

∫
Rd

[∫
ΓT

∣∣∣∣γ(t)− x+

∫ t

0

Dxu(γ(s), s) ds

∣∣∣∣ dηx(γ)

]
dm0(x).

This implies that for m0-a.e. x ∈ Rd, ηx-a.e. γ is a solution ofγ̇(s) = −Dxu(γ(s), s) s ∈ [0, T ]

y(0) = x.

But u is Lipschitz, so u(·, 0) is differentiable for almost all x ∈ Rd, and we

know by Lemma 2.26 that the equation above has a unique solution given by
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Φ(x, 0, ·). Hence for m0-a.e. x ∈ Rd, ηx-a.e. γ is given by Φ(x, 0, ·), and using

it in (2.57) we get that for any ϕ ∈ C0
b(Rd;R) and for any t ∈ [0, T ]:∫

Rd
ϕ(x)µ(x, t) dx =

∫
ΓT×Rd

ϕ(et(γ)) dη(x, γ) =

∫
Rd

∫
ΓT

ϕ(et(γ)) dηx(γ)dm0(x)

=

∫
Rd
ϕ(Φ(x, 0, t)) dm0(x)

(2.41)
=

∫
Rd
ϕ(x) d(Φ(·, 0, t)#m0)(x).

Similarly to what we have done in the end of Lemma 2.32 we can conclude that

µt = Φ(·, 0, t)#m0. Hence we have proved the following theorem.

Theorem 2.37. Given a solution u of (2.23) and under hypotheses (2.27) the

map s 7→ µs := Φ(·, 0, s)#m0 is the unique weak solution of (2.40).

2.5 Existence and uniqueness for MFEs

Let us come back to the study of the system (2.1). We note that F and G

depend on t through m, so that (2.2) directly implies (2.27). Though, just

because of this dependence on m, what we have done so far is not sufficient to

prove the existence of a solution of (2.1). In fact, given a map m ∈ C([0, T ];P1)

such that m(0) = m0 and considered the solution u of−∂tu+ 1
2
|Dxu|2 = F (x,m(t))

u(x, T ) = G(x,m(T )),

then the solution µ of ∂tµ− divx(Dxu µ) = 0

µ(0, x) = m0(x)

could not coincide with the initial m, so that (2.1) would not have solutions.

So it is clear that we need a sort of fixed point theorem which connects (2.23)

with (2.40), but before we need a stability lemma for the system.

Lemma 2.38 (Stability). Let (mn)n∈N a sequence in C([0, T ];P1) which uni-

formly converges to m ∈ C([0, T ];P1). Let (un)n∈N the sequence of solutions
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of −∂tun + 1
2
|Dxun|2 = F (x,mn)

un(x, T ) = G(x,mn(T ))

and u the solution of −∂tu+ 1
2
|Dxu|2 = F (x,m)

u(x, T ) = G(x,m(T )).

Furthermore let Φn (respectively Φ) the flow associated to un (respectively to

u) and let us set µn(s) = Φn(·, 0, s)#m0 and µ(s) = Φ(·, 0, s)#m0.

Then the sequence (un)n locally uniformly converges to u in QT while (µn)n
converges to µ in C([0, T ];P1).

Proof. From our assumptions of continuity on F andG we have that (F (x,mn))n
and (G(x,mn))n locally uniformly converges to F (x,m) and G(x,m) respec-

tively. Hence the locally uniformly convergence of (un)n to u is a directly

consequence of the stability of viscosity solutions. Furthermore the (un)n∈N are

uniformly bounded:

|un(x, t)| ≤
∫ T

t

[
1

2
|α∗n|2 + |F (x,m(s))|

]
ds+ |G(x,m(T ))|

Cor. 2.18+(2.2)

≤ T (M + C) + C

and also uniformly semiconcave since in (2.28) the semiconcave constant C1

depends only on C and T . Consequently we can apply Theorem 2.9 and deduce

Dxun converges to Dxu almost everywhere.

Moreover ‖Dxun‖∞ ≤ C1 for any n ∈ N because this estimate depends

only on C and T and consequently by Lemma 2.30 we know that the (µn)n∈N
have support in K := B(0, C3), are uniformly Lipschitz of constant C1 (hence

equicontinuous) and with densities uniformly bounded by C3. Therefore by

Ascoli-Arzelá Theorem and Banach-Alaoglu Theorem (µn)n∈N has a subse-

quence which locally uniformly and L∞-weakly* converges to some m̄ with

support in K × [0, T ] and which belongs to L∞(QT ) and to C([0, T ];P1(K)).

But µn solves the continuity equation for un for any n ∈ N and passing to

the limit in (2.44) thanks to dominated convergence Theorem we deduce that

m̄ solves it for u. By the uniqueness of solution of (2.40) stated in Theorem
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2.37 we have that µ = m̄.

Remark 2.39. In this proof we have used the so called Ascoli-Arzelá Theorem

and a classical formulation of it is for an equicontinuous and uniformly bounded

family of functions in C0(X;R), where X is a compact metric space. Though,

if you see the proof in [29], you can see that the only properties of R which are

used are the completeness and the Bolzano’s Theorem for bounded sequences.

Hence, if we consider an equicontinuous and uniformly bounded family of func-

tions in C0(X;Y ) with Y compact (and therefore complete), everything still

works.

So we can apply it to (µn) ⊂ C([0, T ];P1(K)) since we have just seen that

(P1(K),d1) is a compact metric space because K := B(0, C3) is compact for

the weak-* topology.

Theorem 2.40 (Existence of solutions of the First order mean field system).

Under the three hypotheses on m0, F and G of page 31 , there exists at least

one solution of (2.1).

Proof. Let M := {m ∈ C([0, T ];P1): m(0) = m0}, which is clearly convex. For

any m ∈M we can consider the unique solution um of−∂tum + 1
2
|Dxum|2 = F (x,m(t))

um(x, T ) = G(x,m(T )),

and then the unique solution µn of∂tµm − divx(Dxum µm) = 0

µm(0) = m0

So we can consider the operator T : M → M defined as T(m) = µm, which is

continuous from what we have seen in Lemma (2.38). So to apply the Schauder-

Tychonoff fixed point Theorem (see [15]) it remains to show that T(M) is

contained into a compact subset of M. In fact (µm)m∈M is relatively compact

in M for the Ascoli-Arzelá Theorem because by Lemma 2.30 they are uniformly

Lipschitz (and hence equicontinuous) of constant C1 and are uniformly bounded

by C3.
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Now we prove a uniqueness result for the system of the first order mean

field games (2.1).

Theorem 2.41 (Sufficient condition for uniqueness). Under the same hypothe-

ses of Theorem 2.40 and assuming also that∫
Rd

[F (x,m1)− F (x,m2)] d(m1 −m2)(x) > 0 ∀m1 6= m2 ∈ P1 (2.64)

∫
Rd

[G(x,m1)−G(x,m2)] d(m1 −m2)(x) ≥ 0 ∀m1,m2 ∈ P1, (2.65)

then (2.1) has a unique solution.

Proof. Let (u1,m1) and (u2,m2) two solutions of (2.1) and let us set ū := u1−u2

and m̄ := m1 −m2. Then:

− ∂tū+
1

2
(|Dxu1|2 − |Dxu2|2)− (F (x,m1)− F (x,m2)) = 0, (2.66)

∂tm̄− divx(m1Dxu1 −m2Dxu2) = 0. (2.67)

Setting Θ := m1Dxu1 −m2Dxu2 we note that
(∂tm̄)ū = ∂t(m̄ū)− (∂tū)m̄

ū divxΘ = div(ūΘ)− 〈Dxū,Θ〉∫
QT

divx(ūΘ)dxdt = 0

(2.68)

where in the last equality we have used the divergence theorem and the fact

that m1 and m2 have compact support by Lemma 2.30.

Furthermore, multiplying (2.66) by m̄ and remembering the initial condition

satisfied by m1, m2, u1 and u2 we have:
(∂tū)m̄ = m̄

2
(|Dxu1|2 − |Dxu2|2)− m̄(F (x,m1)− F (x,m2))

m̄(0) = 0

ū(x, T ) = G(x,m1(T ))−G(x,m2(T )).

(2.69)

A convex function L(p) satisfies

L(p1)− L(p2) ≥ ∇L(p2) · (p1 − p2) for any p1, p2.
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In particular for L(α) = |α|2
2

we have
|Dxu1|2

2
− |Dxu2|2

2
≥ Dxu2 · (Dxu1 −Dxu2)

|Dxu1|2
2
− |Dxu2|2

2
≤ Dxu1 · (Dxu1 −Dxu2)

(2.70)

If we multiply the first equation in (2.70) by −m2 and the second one by m1

and then we add them up we obtain:

− m̄

2
(|Dxu1|2 − |Dxu2|2) +Dxū ·Θ ≥ 0. (2.71)

By the density of C∞c in C0, we can use ū as test function in (2.67). In

fact ū is Lipschitz continuous (so they are u1 and u2) and we can apply the

dominated convergence theorem because the density of m̄ is bounded by Lemma

2.30. Therefore we have

0 =

∫
QT

[ū∂tm̄− ū divxΘ] dxdt

(2.68)
=

∫
Rd

(m̄ū)(T ) dx−
∫
Rd

(m̄ū)(0) dx−
∫
QT

[(∂tū)m̄− 〈Dxū,Θ〉] dxdt

(2.69)
=

∫
Rd

[G(x,m1(T ))−G(x,m2(T ))] dm̄T (x)+

+

∫
QT

[
−m̄

2
(|Dxu1|2 − |Dxu2|2) + m̄(F (x,m1)− F (x,m2)) + 〈Dxū,Θ〉

]
dxdt

(2.65)+(2.71)

≥
∫
QT

[F (x,m1)− F (x,m2)]m̄ dxdt.

Hence, by assumption (2.64) we deduce m̄ = 0, so that m1 = m2. But now u1

and u2 solve the same differential equation, therefore u1 = u2.

Remark 2.42. Uniqueness still holds with convex lagrangians, substituting

(2.64) with∫
Rd

[F (x,m1)− F (x,m2)] d(m1 −m2)(x) ≥ 0 ∀m1 6= m2 ∈ P1.

In this case we assume by contradiction that there exists (x̄, t̄) ∈ {m1 >

0} ∪ {m2 > 0} such that Dxu1(x̄, t̄) 6= Dx(x̄, t̄). Repeating the same proof

as before, we have that (2.70) and (2.71) hold with strict inequalities because
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L(α) is strictly convex, and consequently
∫
QT

[F (x,m1)−F (x,m2)]m̄ dxdt < 0.

A contradiction. Therefore for any (x, t) ∈ {m1 > 0}∪{m2 > 0}, then Dxu1 =

Dxu2; hence m1 = m2 because they solve the same Kolmogorov equation which

has unique solution by Theorem 2.37, consequently u1 = u2.

Remark 2.43. You can note that condition (2.64) is very similar to condition

(1.23) which ensures uniqueness of solution of (1.9) in the static case. It is a

monotony condition that occurs if the cost function F increases as soon as the

population aggregates. Clearly it does not include every real situation, in fact

uniqueness in more general case is still an open problem.

For instance it is easy to check that (2.64) holds in the following cases:

• F (x,m) = f(x,m(x)), where ∂
∂m
f ≥ 0.

• F (x,m) = f(·,m ∗ ρ) ∗ ρ, with ρ ∈ C1
c(Rd) even and ∂

∂m
f ≥ 0.
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Chapter 3

Linear quadratic mean field

games

In this chapter we analyze three models of linear quadratic mean field games.

Sometimes we will find explicit solutions, in other occasions we will provide

existence results.

3.1 First model

We suppose:

i. J(t, x;α) =

∫ T

t

[
|α(s)|2

2

]
ds+

ã

2
|y(T )− h|2 +

b̃

2
|y(T )− E[m(T )]|2︸ ︷︷ ︸

G(y(T ),m(T ))

ii.

ẏ(s) = α(s) = l0(x, α)

y(t) = x

iii. m0(·) absolutely continuous, bounded and with compact support,

(3.1)

where ã ∈ R, b̃ ∈ R, t, T and x are given and y(·) ∈ Rd. Since a typical agent

wants to minimize the cost functional, if ã > 0 then the population tends to

aggregate around h; vice versa, if ã < 0, then it tends to move away from h.

The same applies to b̃ and E[m(T )].
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By easy calculations, one can rewrite (3.1.i) as

G(y(T ),m(·, T )) =
a

2
|y(T )|2 − b · y(T ) + c,

where 
a = ã+ b̃

b = ãh+ b̃E[m(T )]

c = ã
2
|h|2 + b̃

2
|E[m(T )]|2.

(3.2)

Remark 3.1. We note that the parameter b is not known, because it depends

on E[m(T )] and the density m(x, t) is an unknown of the problem. Hence, after

finding m, we will be able to determine b through a fixed point equation.

The Hamilton-Jacobi-Bellman equation linked to this control problem is−ut + |Dxu|2
2

= 0 in [0, T )× Rd

u(x, T ) = a
2
|x|2 − b · x+ c.

(3.3)

Since the feedback control that minimizes the pre-hamiltonian function

H(p, x, α) = p · l0(x, α) + l(x, α) is α∗ = −Dxu, the optimal dynamics is

ẏ(s) = −Dxu(y(s), s), so that the continuity equation for the density m(x, t)

becomes mt − divx(mDxu) = 0 in (0, T ]× Rd

m(x, 0) = m0(x).
(3.4)

Remembering divx(fX) = f divx(X) + Dxf · X, we find out that the mean

field system of this linear quadratic model is
−ut + |Dxu|2

2
= 0 in [0, T )× Rd

mt −Dxm ·Dxu−m divx(Dxu) = 0 in (0, T ]× Rd

u(x, T ) = a
2
|x|2 − b · x+ c

m(x, 0) = m0(x).

(3.5)

We first consider separately (3.3) and (3.4), then we give a solution for (3.5)

after solving a fixed point equation for b.
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We try to solve (3.3) with the Hopf-Lax formula

u(x, t) = min
y∈Rd

{
(T − t) |x− y|

2

2(T − t)2
+
a

2
|x|2 − b · x+ c

}
.

The quadratic function Q(y) = |x−y|2
2(T−t) + a

2
|x|2 − b · x+ c has a minimum if and

only if the coefficient of |y|2 is positive, that is a
2

+ 1
2(T−t) > 0. Hence we assume

that a > 0

t < T
or

a < 0

T + 1
a
< t < T.

(3.6)

This condition states that if a < 0, then system (3.5) has a meaning only for

T < − 1
a
. Under (3.6), we get

u(x, t) =
a|x|2 − 2x · b− (T − t)|b|2

2[1 + a(T − t)]
∀x, ∀t s.t. (3.6) holds. (3.7)

One can directly check that (3.7) solves (3.3).

Now we calculate Dxu = ax−b
1+a(T−t) =: f(x, t) and div(Dxu) = ad

1+a(T−t) , so

that we can write explicitly (3.4) and solve it with the method of characteristics:

hence we have to suppose at least m0(·) ∈ C1(Rd). The system of ODEs that

we obtain is: 
Ẋ = − a

1+a(T−t)X + b
1+a(T−t)

X(0) = y

ż = z div(f)

z(0) = m0(y).

The solutions of this system are:

X(t, y) =
b

a
+

1 + a(T − t)
1 + aT

(
y − b

a

)
, z(t, y) = m0(y)

(
1 + aT

1 + a(T − t)

)d
and we immediately note that X(t, ·) is invertible, so that the characteristics

never cross. Since

Y (t, x) =
x(1 + aT )− bt
1 + a(T − t)

(3.8)
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is the inverse of X(t, y), we know that the solution of (3.4) is

m(x, t) = z(t, Y (t, x)) = m0

(
x(1 + aT )− bt
1 + a(T − t)

)(
1 + aT

1 + a(T − t)

)d
, (3.9)

for any x ∈ Rd and for any t such that (3.6) is satisfied.

Now we want to determine b. Formula (3.9) gives an expression for m(x, T )

and that allows to calculate E[m(T )] = 1
1+aT

(E[m0] + bT ). Substituting it in

(3.2) we get b = ã(1+aT )h+b̃E[m0]
1+ãT

c = ã
2
|h|2 + b̃

2(1+aT )2 |E[m0] + bT |2.
(3.10)

By the verification theorem of the dynamic programming, u(x, t) = (3.7) is the

value function of the optimal control (3.1), while m(x, t) = (3.9) is the density

of the optimizing agents. In conclusion, we have proved the following result.

Proposition 3.2. Under assumption (3.6), if b and c are given by (3.10),

then u(x, t) = (3.7) and m(x, t) = (3.9) solve the mean filed games system

(3.5) linked to the mean field game model (3.1).

3.2 Second model

In this second model we assume:

i. J(t, x;α) =

∫ T

t

[
|α(s)|2

2

]
ds+

ã

2
|y(T )− h|2 +

b̃

2
|y(T )− E[m(T )]|2

ii.

ẏ(s) = Ay(s) +Bα(s)

y(t) = x

iii. m0 absolutely continuous, bounded and with compact support,

(3.11)

where y(·) ∈ Rd, α(·) ∈ Rk and A ∈ Rd×d, B ∈ Rd×k, t, T , x, ã and b̃ are given.

In particular, model (3.11) is equal to model (3.1) except for the dynamics. We

will study first the case d = 1 and k = 1, where the solutions are explicit, then

we will provide an existence Theorem for the general case.
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Let us start with the dimensions d = 1 and k = 1. Then the Hamilton-

Jacobi-Bellman equation of the control problem is−ut − Ax ux + B2

2
u2
x = 0 (x, t) ∈ R× [0, T )

u(x, T ) = a
2
x2 − bx+ c,

(3.12)

where a, b and c are given by (3.2). Since the feedback control which mini-

mizes the pre-hamiltonian function is α∗(s) = −Bux, then we can deduce the

continuity equation for the density m(x, t) of the agents:mt + divx(mf) = 0 (x, t) ∈ R× (0, T ]

m(x, 0) = m0(x),
(3.13)

where f(x, t) = Ax−B2ux.

So the mean field system of model (3.11) is

− ut − Ax ux +
B2

2
u2
x = 0 (x, t) ∈ R× [0, T )

u(x, T ) =
a

2
x2 − bx+ c

mt + divx
(
m(Ax−B2ux)

)
= 0 (x, t) ∈ R× (0, T ]

m(x, 0) = m0(x).

(3.14)

As in the previous section, we will analyze separately (3.12) and (3.13), and

then we will give a solution of (3.14) after solving a fixed point equation for b.

Let us make the ansatz that the solution of (3.12) is of the form

u(x, t) = h(t)x2 + l(t)x+ s(t),

where h(·), l(·) and s(·) are unknown function that by construction satisfy the

terminal condition 
h(T ) = a

2

l(T ) = −b
s(T ) = c.

Substituting ux = 2hx + l and ut = ḣx2 + l̇x + ṡ in (3.12), we find out that
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such a u(x, t) solves (3.12) if and only if the functions h, l, s satisfy
ḣ = 2B2h2 − 2Ah; h(T ) =

a

2
l̇ = (2B2h− A)l; l(T ) = −b

ṡ =
B2

2
l2; s(T ) = c.

(3.15)

Through the substitution w(t) = 1
h(t)

we can transform the first Riccati

equation in (3.15) in a linear ODE in the variable w, so that we obtain

h(t) =
aA

aB2 + (2A− aB2)e2A(t−T )
, (3.16)

for any t such that aB2 + [2A− aB2]e2A(t−T ) 6= 0. So we have to assumeδ := 1
2A

log
(

aB2

aB2−2A

)
> 0

t < T
or

δ < 0

T + δ < t < T.

(3.17)

This is the analogue of condition (3.6) for model (3.1).

Now we note that we can rewrite the first one in (3.15) as follows

ḣ

h
= (2B2h− A)− A,

so that the second one becomes

l̇

l
=
ḣ

h
+ A ⇐⇒ ˙(log l) = ˙(log h) + A.

By integration we get

l(t) =
−2AbeA(t−T )

aB2 + (2A− aB2)e2A(t−T )
. (3.18)

Finally we find by integration

s(t) =
AB2b2

aB2 − 2A

1

aB2 + (2A− aB2)e2A(t−T )
+

b2B2

2(2A− aB2)
+ c. (3.19)

Now we use again the method of characteristics to solve (3.13), so that we

84



3.2. SECOND MODEL

get

m(x, t) = m0(Y (t, x))[aB2 + (2A− aB2)e−2AT ]
eAt

aB2 + (2A− aB2)e2A(t−T )
,

(3.20)

where

Y (t, x) =

(
x+

bB2

(2A− aB2)eA(t−T )

2A− aB2

e2AT
(1− e2At)

)
eAt

aB2 + (2A− aB2)e−2AT

aB2 + (2A− aB2)e2A(t−T )
.

Hence we calculate

E[m(T )] =
E[m0]

C
− Db

C

where

C = eAT
aB2 + (2A− aB2)e−2AT

2A
, D =

B2eAT

2A
(e−2AT − 1). (3.21)

Substituting it in (3.2) and solving the fixed point equation for b, we findb = Cã
C+Db̃

h+ b̃
C+Db̃

E[m0]

c = ã
2
h2 + b̃

2C2 (E[m0]−Db)2.
(3.22)

Thanks to the verification theorem of the dynamic programming we have

proved the following result:

Proposition 3.3. Let us assume that d = 1 and k = 1. Furthermore we

suppose that b and c are given by (3.22), C and D by (3.21) and that the

functions h(·), l(·) and s(·) are given respectively by (3.16), (3.18) and (3.19).

Then, under condition (3.17), u(x, t) = h(t)x2+l(t)x+s(t) and m(x, t) = (3.20)

solve the mean filed system (3.14) linked to the mean field game model (3.11).

Moreover, u(x, t) is the unique solution quadratic in x because h, l and s are

the unique solutions of (3.15).

Now we analyze the general case d ≥ 1, k ≥ 1.

Notations. In the following we denote with A′ the transpose of the matrix A,

with eA the matrix exponential of A and with tr(A) the trace of the matrix A.

Finally we suppose a 6= 0.
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In this case (3.14) becomes

− ut − (Ax)′Dxu+
1

2
(Dxu)′SDxu = 0 (x, t) ∈ Rd × [0, T )

u(x, T ) =
a

2
|x|2 − b · x+ c

mt + divx (m(Ax− SDxu)) = 0 (x, t) ∈ Rd × (0, T ]

m(x, 0) = m0(x).

(3.23)

where S := BB′ ∈ Sym(d) and the parameters a, b and c are given by (3.2).

As in the case d = 1, u(x, t) = x′H(t)x+L(t) ·x+ s(t) with H(·) ∈ Sym(d)

is a solution of the Hamilton-Jacobi-Bellman equation in (3.23) if and only if

H(·), L(·) and s(·) satisfy
Ḣ = 2HSH − A′H −HA =: r(H); H(T ) =

a

2
I

L̇ = 2HSL− A′L; L(T ) = −b

ṡ =
1

2
L′SL; s(T ) = c.

(3.24)

Remark 3.4. We note that r(·) ∈ C∞(Rd×d), then it is locally Lipschitz; hence,

by the theory on ODEs, we know that the equation for H has local solution.

That is, there exists some T̃ > 0 such that for any T ∈]0, T̃ [ there exists a

unique H ∈ C1(]0, T [;Sym(d)) which solves the first one in (3.24). In fact if

we transpose the first equation in (3.24) we find out that H ′ solves the same

equation of H, so that H = H ′.

FurthermoreH(·) is invertible in ]0, T [ for any T ∈]0, T̃ ] because det(H(T )) =

(a
2
)d 6= 0. Hence, from now on we will suppose T ≤ T̃ .

Given that H(·) which solves the first equation in (3.24), one can directly

check that L(t) = − 2
a
H(t)eA(t−T )b

s(t) = c+
∫ t

0
1
2
L′(r)SL(r) dr

(3.25)

solve the second and the third equation of (3.24) in ]0, T [. In fact:

L̇ = −2

a
[ḢeA(t−T ) +HAeA(t−T )]b

= −2

a
[2HSH − A′H]eA(t−T )b =

86



3.2. SECOND MODEL

= (2HS − A′)
[
−2

a
HeA(t−T )b

]
= (2HS − A′)L

Through the method of characteristics we find out that a solution in ]0, T [

of the continuity equation in (3.23) is

m(x, t) = m0(Y (t, x))eM(t), (3.26)

whereY (t, x) = H−1(0)eA
′tH(t)x− 2

a
H−1(0)

(∫ t
0
eA
′sH(s)SH(s)eA(s−T ) ds

)
b

M(t) =
∫ t

0
tr(2SH(s)− A) ds.

(3.27)

Note that Remark 3.4 states that Y (t, x) is well defined for T ≤ T̃ . By

(3.26), we can calculate

E[m(T )] = C−1(E[m(0)]−Db),

where C = a
2
H−1(0)eA

′T

D = − 2
a
H−1(0)

(∫ T
0
eA
′sH(s)SH(s)eA(s−T ) ds

)
.

(3.28)

In fact from 1 =
∫
RdmT (x) dx we deduce det(C) = eM(T ). Note that C−1 is

well defined if T ≤ T̃ by Remark 3.4.

So if we write the fixed point equation for b obtained by (3.2), we have

b = ãh+ b̃C−1(E[m0]−Db),

which has unique solution if and only if the matrix

Q := I + b̃C−1D (3.29)

is invertible; and this is true for small times since D(T ) −→
T→0

O and C(T ) −→
T→0

I.

So we have: b = Q−1
(
ãh+ b̃C−1E[m0]

)
c = ã

2
|h|2 + b̃

2
|C−1E[m(0)]− C−1Db|2 .

(3.30)
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Therefore, only applying the verification theorem of the dynamic program-

ming, we have proved the following Theorem.

Theorem 3.5. There exists τ > 0 sufficiently small such that for any T < τ

the matrix Q = (3.29) is invertible; furthermore, for any T < τ , there exists

a unique H ∈ C1(]0, T [;Sym(d)) continuous in 0 and T which solves the first

equation in (3.24) in [0, T ] and that it is invertible for any t ∈ [0, T ]. Moreover,

if C and D are given by (3.28), b and c are given by (3.30) and L(t) and s(t)

are given by (3.25), then u(x, t) = x′H(t)x+L(t) ·x+s(t) and m(x, t) = (3.26)

are solutions in Rd× (0, T ) of the mean field games system (3.23) linked to the

mean field model (3.11).

Remark 3.6 (Consistency of the two models). Model (3.1) differs from model

(3.11) for the dynamics of a typical agent: in the first case we have ẏ = α, while

in the second one we have ẏ = Ay + Bα. If we consider a solution
(
u(1),m(1)

)
of (3.5) in the sense of Proposition 3.2 and a solution

(
u(2),m(2)

)
of (3.23) in

the sense of Theorem 3.5, we would like to state:

u(2)(x, t) →
A→O, B→I

u(1)(x, t) and m(2)(x, t) →
A→O, B→I

m(1)(x, t),

for any (x, t) ∈ Rd × (0, T ), with uniform convergence in the compact sets

contained in Rd × (0, T ). In order to reach our goal we have to enunciate

Kamke’s Theorem.

Theorem (Kamke’s Theorem). Let f, fk : Ω ⊆ R×Rd continuous, k = 1, 2, . . .

and (tk, yk) ∈ Ω for any k ∈ N. Let us suppose that the Cauchy problemẏ = f(t, y)

y(t0) = y0

has a unique solution y(t) in the compact set I. If (tk, yk)→ (t0, y0) and fk ⇒ f

on the compact sets contained in Ω, then yk(t) ⇒ y(t) uniformly on I, where

yk(·) is a solution of the Cauchy problemẏ = fk(t, y)

y(tk) = yk.
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Now, if we apply to model (3.1) the same resolution strategy of model

(3.11), we find that u(x, t) = x′H(t)x + L(t) · x + s(t) is a solution of the

Hamilton-Jacobi-Bellman equation of system (3.5) if and only if the functions

H, L and s satisfy 
Ḣ = 2H2; H(T ) =

a

2
I

L̇ = 2HL; L(T ) = −b

ṡ =
1

2
|L|2; s(T ) = c.

(3.31)

Given a solution
(
H(2), L(2), s(2)

)
of the system (3.24) and the solution

H(1) =
a

2[1 + a(T − t)]
I, L(1) = − b

1 + a(T − t)
I, s(1) = − (T − t)|b|2

2[1 + a(T − t)]

of (3.31), by Kamke’s Theorem we have that H(2) ⇒ H(1) on [0, T ] when A→ O
and B → I. In particular H(2)(0)→ H(1)(0) = a

2(1+aT )
I.

Hence we can calculate the limit for A → O and B → I in (3.28), so that

we get

C →
A→O, B→I

(1 + aT )I and D →
A→O, B→I

−T I.

Using that in (3.29) we have

lim
A→O, B→I

Q =

(
1− b̃T

1 + aT

)
I a=ã+b̃

=

(
1 + ãT

1 + aT

)
I.

Finally, if we use that to calculate the same limit in (3.30), we immediately get

that the expressions for b and c in (3.30) tends to formula (3.10) when A→ O
and B → I:

lim
A→O, B→I

Q−1
(
ãh+ b̃C−1E[m0]

)
=
ã(1 + aT )h+ b̃E[m0]

1 + ãT

lim
A→O, B→I

ã

2
|h|2 +

b̃

2

∣∣C−1E[m(0)]− C−1Db
∣∣2 =

ã

2
|h|2 +

b̃

2(1 + aT )2
|E[m0] + bT |2.

(3.32)

Therefore, by the Kamke’s Theorem we deduce that L(2) ⇒ L(1) and s(2) ⇒ s(1)
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on [0, T ] when A → O and B → I. Consequently u(2) ⇒ u(1) on the compact

sets contained in Rd×(0, T ), so that there is pointwise convergence in Rd×(0, T )

too.

It follows from the facts above that also eM(t) ⇒
(

1+aT
1+a(T−t)

)d
and Y (2)(t, x) ⇒

Y (1)(t, x), where Y (2) and Y (1) are respectively given by (3.27) and (3.8). By

the method of characteristics we have supposed that m0(·) ∈ C1(Rd), so that

we deduce m(2)(x, t) ⇒ m(1)(x, t) on the compact sets contained in Rd× (0, T ),

and consequently there is pointwise convergence in Rd × (0, T ) when A → O
and B → I.

3.3 Third model

The hypotheses of this third model are:

i. J(t, x, α) =

∫ T

t

[
|α(s)|2

2
+ y(s)′My(s) + E[m(s)]′NE[m(s)]

]
ds+

+
ã

2
|y(T )− h|2 +

b̃

2
|y(T )− E[m(T )]|2

ii.

ẏ(s) = Ay(s) +Bα(s)

y(t) = x

iii. m0(·) absolutely continuous, bounded and with compact support,

(3.33)

where M ∈ Sym(d), N ∈ Sym(d) and the rest of parameters and matrices are

as in the previous section. The discussion is very similar to that done in the

general case of the previous section. The new mean field game system is

− ut − (Ax)′Dxu− E[m(t)]′NE[m(t)]+

+
1

2
(Dxu)′SDxu− x′Mx = 0 (x, t) ∈ Rd × [0, T )

u(x, T ) =
a

2
|x|2 − b · x+ c

mt + divx (m(Ax− SDxu)) = 0 (x, t) ∈ Rd × (0, T ]

m(x, 0) = m0(x).

(3.34)

where the parameters a, b and c are given by (3.2). A function u(x, t) =

x′H(t)x+L(t) ·x+ s(t) solves the Hamilton-Jacobi-Bellman equation in (3.34)
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if and only if H,L, s satisfy
Ḣ(t) = 2H(t)SH(t)− A′H(t)−H(t)A−M ; H(T ) =

a

2
I

L̇(t) = 2H(t)SL(t)− A′L(t); L(T ) = −b

ṡ(t) =
1

2
L′(t)SL(t)− E[m(t)]′NE[m(t)]; s(T ) = c.

(3.35)

Here again there exists some T̃ > 0 such that for any T ≤ T̃ the Riccati

equation has local unique solution H̃ ∈ C1(]0, T [;Sym(d)) and such that H̃(t)

is invertible for any t ∈ [0, T ]. Then it is easy to check that

L̃(t) = −2

a
H̃(t)eA(t−T )b (3.36)

solve the second equation of (3.35) in ]0, T [.

Momentarily we can not solve the equation for s(·) because E[m(·)] is un-

known. So we first solve the continuity equation, which depends only on H̃

and L̃, then we analyze the fixed point equation for b and finally we determine

s(·).

Through the method of characteristics we find out that a solution in ]0, T [

of the continuity equation in (3.34) is

m(x, t) = m0(Ỹ (t, x))eM̃(t), (3.37)

whereỸ (t, x) = H̃−1(0)eA
′tH̃(t)x− 2

a
H̃−1(0)

(∫ t
0
eA
′sH̃(s)SH̃(s)eA(s−T ) ds

)
b

M̃(t) =
∫ t

0
tr(2SH̃(s)− A) ds.

If we define C̃ = a
2
H̃−1(0)eA

′T

D̃ = − 2
a
H̃−1(0)

(∫ T
0
eA
′sH̃(s)SH̃(s)eA(s−T ) ds

)
,

(3.38)

we have that for T small the matrix

Q̃ := I + b̃C̃−1D̃ (3.39)

91



CHAPTER 3. LINEAR QUADRATIC MEAN FIELD GAMES

is invertible. After determining E[m(T )], by (3.2) we deduceb = Q̃−1
(
ãh+ b̃C̃−1E[m0]

)
c = ã

2
|h|2 + b̃

2

∣∣∣C̃−1E[m(0)]− C̃−1D̃b
∣∣∣2 . (3.40)

Finally

s̃(t) = c+

∫ t

0

[
1

2
L′(s)SL(s)− E[m(s)]′NE[m(s)]

]
ds (3.41)

solves the third equation of (3.35) in ]0, T [.

In conclusion we have proved the following theorem.

Theorem 3.7. There exists τ > 0 sufficiently small such that for any T < τ

the matrix Q̃ = (3.39) is invertible; furthermore, for any T < τ , there exists

a unique H ∈ C1(]0, T [;Sym(d)) continuous in 0 and T which solves the first

equation in (3.35) in [0, T ] and that is invertible for any t ∈ [0, T ]. Moreover,

if C̃ and D̃ are given by (3.38), b and c are given by (3.40) and L̃(t) = (3.36)

and s̃(t) = (3.41), then u(x, t) = x′H̃(t)x+ L̃(t) · x+ s̃(t) and m(x, t) = (3.37)

are solutions in Rd× (0, T ) of the mean field games system (3.34) linked to the

mean field model (3.33).

Remark 3.8. For the same reasons of Remark 3.6, there is consistency be-

tween model (3.33) and models (3.11) and (3.1). In particular, with the same

notations of the aforementioned remark, if
(
u(3),m(3)

)
is a solutions of system

(3.34) in the sense of Theorem 3.7, then:

u(3)(x, t) →
M,N→O

u(2)(x, t) m(3)(x, t) →
M,N→O

m(2)(x, t)

and

u(3)(x, t) →
A,M,N→O; B→I

u(1)(x, t) m(3)(x, t) →
A,M,N→O; B→I

m(1)(x, t),

for any (x, t) ∈ Rd × (0, T ).

Furthermore, there is uniform convergence on the compact sets contained

in Rd × (0, T ).
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dell’Unione Matematica Italiana, Serie 8, Vol. 8-b (2005), n.3, p. 549-567.

[7] Cannarsa P. and Sinestrari C. Semiconcave functions, Hamilton-Jacobi

equations, and optimal control. Progress in Nonlinear Differential Equa-

tions and their Applications, 58. Birkhauser Boston Inc., Boston, MA,

2004.

[8] Cannarsa P., Soner H.M., Generalized one-sided estimates for solutions of

Hamilton-Jacobi equations and applications, Nonlinear Analysis, Theory,

Methods and Applications, Vol. 13, No. 3, pp. 305-323, (1989)

[9] Cardaliaguet P, Notes on Mean Field Games, www.science.unitn.it/

~bagagiol/NotesByCardaliaguet.pdf, (2009).

[10] Cardaliaguet P., Introduction to differential games, www.ceremade.

dauphine.fr/~cardaliaguet/CoursJeuxDiff.pdf, (2010).

93

www.science.unitn.it/~bagagiol/NotesByCardaliaguet.pdf
www.science.unitn.it/~bagagiol/NotesByCardaliaguet.pdf
www.ceremade.dauphine.fr/~cardaliaguet/CoursJeuxDiff.pdf
www.ceremade.dauphine.fr/~cardaliaguet/CoursJeuxDiff.pdf


BIBLIOGRAPHY

[11] Cardaliaguet P. and Hadikhanloo S., Learning in mean field games: the

fictitious play, COCV Volume 23, Number 2, April-June 2017, 569-591.

[12] Cheng S.F., Reeves D.M., Wellman M.P., Notes on Equilibria in Symmet-

ric Games, Proceedings of the 6th International Workshop On Game The-

oretic And Decision Theoretic Agents GTDT 2004. 71-78. Research Col-

lection School Of Information Systems. ink.library.smu.edu.sg/sis_

research/1213/.

[13] Clarke F.H., Optimization and nonsmooth analysis, Second edition, Clas-

sics in Applied Mathematics, 5. Society for Industrial and Applied Math-

ematics (SIAM), Philadelphia, PA, (1990).

[14] Dellacherie C., Meyer P.A., Probabilities and potential, vol. 29 of North-

Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam,

(1978).

[15] Diaz L., Naulin R., A Proof of the Schauder-Tychonov Theorem, Divulga-

ciones Matematicas Vol. 14 No. 1(2006), pp. 47-57.

[16] Engwerda J.C., LQ Dynamic optimization and Differential Games, Chich-

ester: Wiley, (2005).

[17] Evans L.C., Partial differential equations, American Mathematical Society,

(1998).

[18] Fan K., Fixed-point and Minimax Theorems in Locally Convex Topology

Linear Spaces. Pro. Nat. Acad. Sci. U.S.A. 38(2) (1952), 121-126.

[19] Fisher M. and Silva F.J, On the asymptotic nature of first order mean field

game, arXiv:1903.03602v1 [math.OC], March 8, 2019.

[20] Fleming W.H. and Rishel R.W., Deterministic and Stochastic Optimal

Control, Springer-Verlag, New York, (1975).

[21] Fleming W.H. and Rishel R.W., Controlled Markov processes and viscosity

solutions, Springer Verlag Berlin, 1993.

[22] Green J.W. and Valentine F.A., On the Arzelá-Ascoli Theorem, Mathe-
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