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Abstract

The aim of this thesis is to introduce and study basic general properties and certain math-
ematical and physical aspects of Chern-Simons field theories, as well as their application to
the description of particles with fractional statistics and spin on the plane called anyons.
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Introduction

In the last half-century gauge field theories have been one of the most powerful and suc-
cessful frameworks used to describe a wide variety of physical phenomena and also to build
new theoretical models, one of the most important of them being the Standard Model of
fundamental interactions of elementary particles. Basically these are field theories whose
dynamics is descibed by a lagrangian density that is invariant under the local action of a
Lie group on the field thus possessing some redundant degrees of freedom.
Among these gauge theories stands the 3-dimensional Chern-Simons theory, that has been
an object of study since the 80’s, called after the mathematicians Shiing-Shen Chern and
James Harris Simons because its action is basically the integral of the namesake differ-
ential 3-form. It is a topological field theory (i.e. it does not depend on the spacetime
metric) which does not carry any independent degree of freedom, which means that the
solutions of its equations of motion are pure gauge. Despite the first sight appeareance of
a rather trivial theory, it carries lots of interesting aspects that emerge when one considers
Chern-Simons theory as a part of a more general theory. Indeed it has many applications
both in mathematics (in particular in topology where it can be used to compute some
topological manifold invariants) and in physics in many different branches, as for example
condensed matter, low dimensional gravity and string theory.
The focus of our work will be mainly on the introduction of the classical Chern-Simons the-
ory, both in the abelian and the non-abelian case (the distinction is based on whether the
gauge group is commutative or not), and then on the study of two of its main applications:
the possibility of existence of gauge invariant massive vector fields in (2 + 1)-dimensional
spacetime, and one possible realization of the anyons, a type of quasi-particles that occurs
only in 2-dimensional systems and that play an important role in some condensed matter
phenomena, e.g. in the description of the fractional quantum Hall effect.
In chapter 1 we will give some preliminary definitions that are needed in the study of
a relativistic theory on the plane: after setting up some conventions, we will define the
(2 + 1)-dimensional Poincaré group and introduce its representations (spinors, scalars,
vectors and tensors) which are the bases of any field theory. Then we will briefly analyze
the 3-dimensional version of Maxwell’s electrodynamics, which is the simplest example
of an abelian vector theory with gauge freedom that lives on the plane, and we will also
explain how its peculiarities lead to a dual formulation in terms of a simple scalar field
carrying a single independent degree of freedom.
Chapter 2 is dedicated to the introduction of the free abelian Chern-Simons theory, to
the derivation of some of its properties, such as gauge invariance and independence of the
spacetime metric, and then to the study of the first interesting application: the combina-
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viii INTRODUCTION

tion of the Chern-Simons term with the Maxwell’s lagrangian. The equations of motion
will show us that this theory describes a massive vector field governed by Klein-Gordon
equation. The stress-energy tensor of the theory is the same as that of the 3-dimensional
electrodynamics and the field carries one independent physical degree of freedom. Part
of this chapter is devoted to a detailed study of the spin of the field, whose derivation is
rather original since we did not find it in the literature on this topic. We will follow two
different approaches, one passing through the action of the conserved angular momentum
as generator of rotations, the other making use of group theory and the representations
of the Poincaré group introduced in chapter 1. In the end, following the article by Deser
and Jackiw [3], we will show that also this theory admits a dual formulation which has
exactly the same properties, and that both these theories descend from a more general
“master” lagrangian.
Non-abelian Chern-Simons theory is discussed in chapter 3. Firstly we will give a gen-
eral introduction into the construction of gauge theories. Then we will introduce the
lagrangian of the non-abelian Chern-Simons theory and focus ourselves on understanding
how it changes under a gauge transformation. We will find that if spacetime manifold is
topologically non-trivial, the gauge invariance is not present unless we consider the quan-
tized theory.
Finally in chapter 4 we will consider one of the main applications of Chern-Simons theory:
the description of anyons. These are quasi-particles that behave very differently from
bosons and fermions from the statistical point of view. Experimentally they are a kind
of emergent phenomenon that can occur in many physical situations typical of condensed
matter. Formally they can be realized in different ways; coupling Chern-Simons vector
field to a system of non-relativistic quantum hard-core particles is the one we will analyze.
To this end we will follow [9], firstly using the path integral concept and exploiting the
topological properties of the configuration space in order to find a general description of
anyons, and then showing how the Chern-Simons theory provides a very elegant way to
realize a system that fits perfectly into the above introduced framework.
Throughout this work we will use natural units (i.e. c = ~ = 1) and the Einstein notation
with greek indeces taking values 0, 1, and 2 and labelling spacetime directions, while latin
letters labelling either spatial directions or other kind of quantities (as spinor components)
depending on the context.



CHAPTER 1

The (2+1)-dimensional Poincaré group

All of the theories and phenomena that we are going to describe take place in a spacetime
with only two spatial dimensions whose symmetries are slighty different from these of the
ordinary (3 + 1)-dimensional spacetime. So we start our work by describing the (2 + 1)-
dimensional Poincaré group and briefly introducing its representations.

1.1 Definition

We consider R3 as spacetime with coordinates (x0, x1, x2), where x0 = t, and the flat
metric ηµν = diag(−1,+1,+1). The infinitesimal spacetime-invariant interval is defined
as:

− ds2 = ηµν dx
µdxν = −

(
dx0
)2

+

2∑
i=1

(
dxi
)2
. (1.1)

The Poincaré group is the group of coordinate transformations that leaves (1.1) unchanged
and, as in 4 dimensions, it is given by the semi-direct product of the spacetime translations
group and the Lorentz group, which in our case is SO(1,2). The elements of the latter are
the 3 × 3 matrices Λ satisfing the equation η = ΛT ηΛ where η is the spacetime metric
matrix. So a generic Poincaré transformation is given by:

x −→ x′ = Λx+ a Λ ∈ SO(1,2) , a ∈ R3 .

We will mainly deal with the connected component of this group that is made up by the
restricted Lorentz group i.e. the group of matrices Λ that have the determinant equal
to 1 and a non-negative first entry, because this is the actual group of invariance of the
physical laws. The restricted Lorentz group will be denoted by SO+(1,2). The other
connected components, which are not subgroups of SO(1,2), are those that include parity
transformations and time inversion. In general these kind of symmetries are not respected
by physical phenomena, though there are some of fundamental theories that are invariant
under them too, as Maxwell’s electrodynamics for instance.

1



2 CHAPTER 1. THE (2+1)-DIMENSIONAL POINCARÉ GROUP

1.2 SO+(1,2) and its representations

1.2.1 Generators and Lie algebra

It is easy to see that the restricted Lorentz group SO+(1,2) is a 3 parameter Lie group
and consequently it has 3 independent generators. They can be found by considering
an infinitesimal Lorentz transformation, characterized by the infinitesimal antisymmetric
tensor parameter δωµν ; by definition they are given by the antisymmetric tensor generators
{Jµν} such that:

Λ(δω) = I− i

2
δωµν Jµν .

A finite Lorentz transformation can be written in terms of the exponential map:

Λ(ω) = exp

(
− i

2
ωµν Jµν

)
where now ωµν is still antisymmetric but not infinitesimal. Only three of the Jµν gener-
ators are independent due to the antisymmetry with respect to the covariant indices. In
particular defining the following operators makes this statement explicit:

K1 ≡ J10 = −J01 K2 ≡ J20 = −J02 J ≡ J12 = −J21 .

It is easy to see that K1 and K2 are boost generators and J is the generator of rotations
in the spatial plane by considering separately each of these transformations and splitting
the matrix δωµν in the proper way. In the matrix form of the vector representation they
are:

K1 =

0 i 0
i 0 0
0 0 0

 K2 =

0 0 i
0 0 0
i 0 0

 J =

0 0 0
0 0 −i
0 i 0


and they satisfy the Lie algebra:

[K1, K2] = −i J [K1, J ] = −iK2 [K2, J ] = iK1 .

Following straightforward computations one can find a covariant expression for the Lie
algebra of SO+(1,2):

[Jµν , Jρσ] = i (ηµσ Jρν − ηνσ Jρµ + ηµρ Jνσ − ηνρ Jµσ) . (1.2)

1.2.2 Fundamental representation

The fundamental representation of a group is defined as its smallest faithful represen-
tation (i.e. the homomorphism defining the representation is injective and so it is an
isomorphism), which means that all other representations can be build by taking tensor
products of this one. In the case of SO+(1,2) the fundamental representation is that of
two-component spinors. The generators of this representation are the so-called gamma
matrices γµ which satisfy the anticommutation relations forming the Clifford algebra:

{γµ, γν} = −2 ηµν I .

A possible set of γµ is given by:

γ0 =

(
1 0
0 −1

)
γ1 =

(
0 i
i 0

)
γ2 =

(
0 1
−1 0

)
.



1.2. SO+(1,2) AND ITS REPRESENTATIONS 3

They are clearly unitary 2 × 2 complex matrices and their spacetime vector indeces can
be lowered with the metric: γµ = ηµν γ

ν . Their commutation relations are:[
γ0, γ1

]
= 2i γ2

[
γ0, γ2

]
= −2i γ1

[
γ1, γ2

]
= −2i γ0

which can be brought to the covariant expression [γµ, γν ] = 2i εµνρ ηρσ γ
σ. We claim that

these gamma matrices provide a representation of the Lie algebra of the (2+1)-dimensional
Lorentz group; indeed we can build matrices associated to the covariant generators Jµν as
follows:

Jµν =
1

4
i [γµ, γν ] = −1

2
εµνρ η

ρσ γσ .

Let us now show that the commutation relations between these matrices are the same as
(1.2):

[Jµν , Jρσ] =
1

4
εµνα η

αλ ερσβ η
βδ [γλ, γδ] = −i Jλδ ηαλ ηβδ εµνα ερσβ .

We can now use the identity:

εµνα ερσβ = ηµρ (−ηνσ ηαβ + ηνβ ηασ)− ηµσ (−ηνρ ηαβ + ηνβ ηαρ) +

+ ηµβ (−ηνρ ηασ + ηνσ ηαρ)

in order to get exactly (1.2), which proves that our guess was right. Now we can build
a representation of the Lorentz group through the exponential map. Given an arbitrary
Lorentz transformation Λ(ω), its matrix form in our representation will be:

S(ω) = exp

(
− i

2
ωµν Jµν

)
= exp

(
i

4
εµνρ ωρ εµνα η

αβ γβ

)
= exp

(
− i

2
δρα ωρ η

αβ γβ

)
= exp

(
− i

2
ωβ γ

β

)
where ωµ is the vector dual of the antisymmetric tensor ωµν i.e. ωµν = εµνρ ωρ. So the
action of S(ω) on complex two-component spinors gives us a representation of SO+(1,2).
Using a, b, ... as spinorial indices, the spinor ψa transforms under a Lorentz transformation
as:

ψa −→ ψ′a = [S(ω)] ba ψb . (1.3)

From now on we will omit the ω dependence of the transformations for simplicity, so that
a generic Lorentz transformation is simply Λ and the corresponding matrix in a given
representation is S. Also we will suppress spinorial indeces, so that the (1.3) becomes
simply ψ′ = S ψ.

1.2.3 Other representations

Now that we have the elements of the fundamental representation of SO+(1,2) and their
transformation laws, we can build other representations by combining spinors together in
different ways.
First of all, given a spinor ψ it is useful to introduce the Dirac adjoint ψ̄, since it is
transformed under the inverse Lorentz transformation S−1. It is defined as:

ψ̄ ≡ ψ† γ0 i.e. ψ̄a ≡ (ψ†)b (γ0)ba .
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In order to prove the ansatz on its transformation law, let us consider the following identity
(it is easy to get from direct calculations):

γ0 (γµ)† γ0 = γµ .

By multiplying both members by the factor i
2 ωµ, using the fact that the parameters ω

are real, it follows that:

γ0

(
− i

2
ωµ γ

µ

)†
γ0 =

i

2
ωµ γ

µ =⇒ γ0 S†γ0 = S−1

where we have used the facts that exp(BAB−1) = B exp(A)B−1, exp(A†) = exp(A)† and
exp(−A) = exp(A)−1. Thanks to this identity and the fact that γ0 γ0 = I we can figure
out how ψ̄ transforms:

ψ̄ −→ ψ̄′ = (Sψ)†γ0 = ψ† S† γ0 = ψ† γ0 γ0 S† γ0 = ψ̄ S−1 .

We are now ready to introduce other representations:

• Scalar representations. They are objects of the form ϕ = ψ̄ ψ (the contraction of the
spinorial indeces is implied) such that they are invariant under SO+(1,2) action:

ϕ −→ ϕ′ = ψ̄′ ψ′ = ψ̄ S−1 S ψ = ψ̄ ψ = ϕ .

• Vector representations. Let us consider objects of the form vµ = ψ̄ γµ ψ. Under
Lorentz transformations they transform in the following way:

vµ −→ v′µ = ψ̄′ γµ ψ′ = ψ̄ S−1 γµ S ψ .

We can say that vµ is a 3-vector if the equality S−1 γµ S = Λµν γν holds, so that the
transformation law of vµ is exactly that of a contravariant 3-vector: v′µ = Λµν vν .
Let us prove that this is true at least for infinitesimal transformations. Consider
separately the LHS and the RHS at the first order in δωµ:

LHS→ S−1 γµ S =

(
I +

i

2
δωα γ

α

)
γµ
(
I− i

2
δωα γ

α

)
= γµ +

i

2
δωα [γα, γµ]

= γµ − δωα εαµν ηνρ γρ = γµ − δωµρ γρ

RHS→ Λµν γ
ν =

[
I− i

2
δωαβJαβ

]µ
ν

γν= γµ− i
[
δω10K1 + δω20K2 + δω12J

]µ
ν
γν

= γµ +

 0 δω10 δω20

δω10 0 −δω12

δω20 δω12 0

µ
ν

γν

= γµ −

 0 δω01 δω02

δω01 0 δω12

δω02 −δω12 0

µ
ν

γν

= γµ − δωµρ ηρν γν = γµ − δωµν γν .
So we have LHS = RHS and thus the equality is true at the first order. With some
more effort it can be proved also for finite Lorentz transformations but we will not
do it.
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• Tensor representations. Similarly to the vector representation one can also consider
objects with more than one gamma matrix in their definition:

Tµ1...µp = ψ̄ γµ1 ...γµp ψ .

Using the previously introduced equality S−1 γµ S = Λµν γν we find that the trans-
formation law of Tµ1...µp is:

Tµ1... µp −→ T ′µ1... µp = ψ̄ S−1 γµ1 ... γµp S ψ = ψ̄
(
S−1γµ1S

)
...
(
S−1γµpS

)
ψ

= Λµ1
ν1
...Λ

µp
νp T

ν1... νp

that is exactly that of a tensor of rank (p, 0). Obiviously from this representations
one can also obtain tensors of rank (p, q) by lowering the indeces with the metric,
and symmetric (antisymmetric) tensors by taking sums (differences) of the same
tensor with exchanged indeces.

The vector representation is the one we will consider for the majority of the following
topics.

1.3 Representation of the Poincaré group

In order to study the representations of the full Poincaré group, we have to introduce
also the generators of the spacetime translation group. This is a 3 parameter Lie group
and thus has 3 independent generators that we denote by Pµ. In particular in the vector
representation they are known to be Pµ = −i ∂µ. The Lie algebra associated to the
Poincaré group is given by the following commutators:

[Pµ, Pν ] = 0 [Jµν , Pρ] = i (ηµρ Pν − ηνρ Pµ)

together with the commutation relation between Lorentz generators (1.2). It can be proved
that the representations of the 2+1 Poincaré group are labelled by the eigenvalues of the
two Casimir operators of the group: the generator of translations squared Pµ P

µ and the
Pauli-Lubanski pseudoscalar W = 1

2 εµνρ P
µ Jνρ. In particular the first has a continuous

spectrum and its eigenvalue is identified with −m2, while the second has eigenvalues of
the form ms, where m is the mass and s the spin of the representation.

1.4 Vector field example: classical electrodynamics

1.4.1 Main features

The most common and at the same time instructive example of a vector theory is given
by Maxwell’s electromagnetism. In a spacetime with only 2 spatial dimensions this theory
is formulated similarly to the ordinary 4-dimensional one, though its physical properties
are different, as we will see.
Firstly we give the definition of the electromagnetic potential Aµ and consequently of the
field strength tensor Fµν :

Aµ ≡ (−φ, Ai) , Fµν ≡ ∂µAν − ∂νAµ .
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where φ is the electric potential and ~A ≡ (A1, A2) is the magnetic vector potential. As
well known, the potential is defined up to a gauge transformation. In the classical theory
the physical entity is Fµν that is invariant under such transformations1. In particular,
given an arbitrary scalar function of spacetime coordinates Λ, one has:

Aµ → A′µ = Aµ + ∂µΛ =⇒ F ′µν = Fµν +���
�∂µ∂νΛ−����∂ν∂µΛ = Fµν .

Through all the analysis we will assume that Aµ(x) are differentiable functions of spacetime
coordinates that vanish at spacial infinity at any time t, that is physically reasonable.
These definitions lead to the expression of field strength tensor written in terms of electric
and magnetic fields:{

F i0 = −Ei

F ij = εij B
=⇒ Fµν =

 0 E1 E2

−E1 0 B
−E2 −B 0

 . (1.4)

Note that, unlike in 4 dimensions, here only the electric field is a vector while the magnetic
field is a scalar. If we define Fµν directly in terms of derivatives of the potential, we
immediately obtain the first set of Maxwell’s equations as the Bianchi identity2:

0 = εµνρ ∂
µ∂νAρ − εµνρ ∂µ∂ρAν = εµνρ ∂

µF νρ .

Upon having introduced these objects, we are now ready to write down the lagrangian
density that describes free electrodynamics, that is the same for all spacetime dimensions:

LM = −1

4
Fµν Fµν . (1.5)

The dynamic variables in (1.5) are clearly the components of the potential Aµ. However
the fact that only Fµν appears ensures that the gauge invariance is automatically achieved.
The corresponding action takes the form:

SM = −1

4

∫ Σ2

Σ1

d3xFµν(x)Fµν(x) ,

where Σ1 and Σ2 are surfaces in R3 at fixed times. From now on we will not indicate the
explicit dependence of the fields on xµ, except when necessary. By taking the infinitesimal
variation δS to be zero, one finds the equations of motion for Aµ, which are nothing but
the second set of Maxwell’s equations:

∂µF
µν = 0 . (1.6)

These are a set of three equations for the potential, but there are some constraints that
reduce the number of degrees of freedom of the theory. In particular, gauge invariance
identifies solutions that differ by a gauge transformation and thus reduces the number of
independent solutions. In order to take this into account, we should fix the gauge freedom

1This is not true in the quantum theory as showed by Aharonov-Bohm effect: the wavefunction of an
electron is affected by the electromagnetic potential even in regions of space where Fµν is zero.

2This statement is true because of the assumption of R3 as spacetime; infact Bianchi identity is satisfied
globally by just one potential if and only if the spacetime is simply connected mathematically speaking.
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in such a way that we can count the true physically independent solutions. There are
many ways to do it, imposing some constraints to be satisfied by Aµ, for instance:

∂µA
µ = 0 ∇ · ~A = 0 A0 = 0

Lorenz-gauge Coulomb-gauge Weyl-gauge

Let us pick the Lorenz-gauge: given any arbitrary potential Ãµ and being Λ the scalar
field that defines a gauge transformation, in order to arrive at the Lorenz-gauge, Λ has to
satisfy:

0 = ∂µA
µ = ∂µÃ

µ + ∂µ∂
µΛ ⇐⇒ �Λ = −∂µÃµ .

This equation determines Λ up to a residual gauge transformation (that preserves the
Lorenz-gauge condition), which can be parametrized by another scalar field Λ′ satisfying
�Λ′ = 0. In the Lorenz-gauge, the equations of motion for Aµ reduce to �Aµ = 0 and
hence one can use the residual gauge freedom to fix one component of the potential,
for instance A0 = 0, that imposes the Weyl-gauge. In this way the gauge invariance is
completely fixed. Therefore we have two constraints on Aµ given by gauge fixing conditions
and so the theory has only one degree of freedom.
An intuitive interpretation of this can be achieved by comparing this theory with the
4-dimensional version. In the latter, the solutions for Aµ are (superposition of) massless
plane waves and the two degrees of freedom are expressed through the polarization of the
fields in the plane orthogonal to the propagation direction. Instead in the 3-dimensional
theory the solutions are still plane waves but the space orthogonal to the propagation
direction is just a line, so the fields do not have any polarization freedom.

1.4.2 Dual description

A noteworthy feature of 3-dimensional electrodynamics is that the field strength tensor
has three independent components (due to its antisymmetry) so through it we can define
a vector that contains the same amount of components:

Fµ ≡ 1

2
εµνρ Fνρ = εµνρ ∂νAρ .

Contracting both sides with εµαβ and using the identity εµαβ ε
µνρ = −δ ν

α δ ρ
β + δ ρ

α δ ν
β ,

one finds immediately the inverse relation between Fµν and Fµ:

Fαβ = −εµαβ Fµ .

So we can rewrite the lagrangian density (1.5) in the following way:

LM = −1

4
Fµν Fµν = −1

4
ερµν ε

σµν Fσ F
ρ =

1

2
δ σ
ρ Fσ F

ρ =
1

2
Fρ F

ρ . (1.7)

Thinking of the (1.7) as a lagrangian density for the potential Aµ as the dynamic variable
obviously leads to the same equations of motion (1.6).
Nevertheless there exist a dual theory of free electrodynamics that relies exactly on the
peculiar possibility of defining this Fµ in 3 dimensions. Indeed one can directly use Fµ

as the dynamic variable of the theory and impose a constraint that takes into account its
dependency on Aµ. Noting that ∂µF

µ ≡ 0 as a consequence of its expression in term of
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the potential, we define the master Maxwell’s lagrangian density by adding this constraint
through a Lagrange multiplier:

LMD =
1

2
Fµ Fµ + ϕ∂µF

µ (1.8)

where ϕ is an auxiliary scalar field that has the role of the Lagrange multiplier. Not
surprisingly, by varying the action with respect to ϕ we obtain the constraint ∂µF

µ = 0
as one of the equations of motion and we are back in the original theory. Whereas if we
take the variation with respect to Fµ we have:

δSMD =

∫ Σ2

Σ1

d3x (Fµ δF
µ + ϕ∂µδF

µ) =

∫ Σ2

Σ1

d3x δFµ (Fµ − ∂µϕ) +
���

���
���

�∫ Σ2

Σ1

d3x ∂µ(ϕ δFµ)

where the last term vanishes thanks to Gauss’s theorem, assuming that δFµ
∣∣
Σ1,2

= 0. It

follows that the equation of motion for ϕ is:

Fµ = ∂µϕ . (1.9)

By substituting this expression for Fµ into (1.8), using Leibniz’s rule and skipping the
total derivative, we obtain the dual lagrangian for the field ϕ:

LMD = −1

2
∂µϕ∂µϕ . (1.10)

In this way we have reached a very interesting result: the dual of the 3-dimensional
Maxwell’s theory is a scalar theory, whose equation of motion is:

�ϕ = 0 . (1.11)

However, the claimed duality of the two theoris has still to be proved. We do this by
showing that the equations of motion (1.6) for Aµ and the (1.11) for ϕ are interrelated:

Fαβ = −εµαβ Fµ = −εµαβ ∂µϕ ⇐⇒ ∂α F
αβ = −εµαβ ∂α∂µϕ = 0

∂µϕ = Fµ = εµνρ ∂νAρ ⇐⇒ ∂µ∂
µϕ = εµνρ ∂µ∂νAρ = 0 .

Solving �ϕ = 0 we have completely determined the problem, which means that the theory
has one degree of freedom; thus with much less arguing we have just achieved the same
result of 1.4.1. Note that the roles of the equations of motion and the Bianchi identity in
the dual formulation are interchanged.
Furthermore, discussing about the conserved quantities (see Appendix A for an explaina-
tion of how they are derived), it turns out that the elecromagnetic field is spinless. For-
mally it can be proved computing the Noether’s current associated to the field ϕ under a
Lorentz transformation and the corresponding conserved charge. Firstly let us compute
the canonical stress-energy tensor:

Tµν = −ηµν L+
∂L
∂∂µϕ

∂νϕ =
1

2
ηµν ∂ρϕ∂ρϕ− ∂µϕ∂νϕ . (1.12)

Now the total variation of the field δϕ under Lorentz transformations is 0 since ϕ is a
scalar field, while δxµ = ωµν xν (with ωµν = −ωνµ and ‖ω‖ � 1) is the infinitesimal
variation of the coordinates. Thus we have:

Jµ = −Tµν δxν = −Tµν ωνρ xρ =
1

2
ωνρ (xν Tµρ − xρ Tµν)
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=⇒ Jµ =
1

2
ωνρ J µνρ defining J µνρ ≡ xν Tµρ − xρ Tµν .

So it follows that the angular momentum tensor is given by:

Jµν ≡
∫
d2xJ 0µν =

∫
d2x

(
xµ T 0ν − xν T 0µ

)
which has only the orbital contribution, so ϕ has spin 0 as one might expect.
The analyzed dual description of electrodynamics has many interesting aspects that sim-
plify the treatment and emerge just from mathematical properties that are unique for the
3-dimensional theory.





CHAPTER 2

Classical Chern-Simons theory

In a (2 + 1)-dimensional spacetime we can construct a classical theory even simpler than
electrodynamics, that is still gauge invariant but has no propagating degrees of freedom.
This is the Chern-Simons theory, the object of the study. In this chapter we will firstly
analyze the free theory and then look at what happens when it is combined with Maxwell’s
theory, finding that also in this case it admits a dual description.

2.1 Free theory

Given a generic vector field Aµ, the abelian Chern-Simons theory in a (2 + 1)-dimensional
spacetime3 is represented by the lagrangian density:

LCS = κ εµνρAµ ∂νAρ (2.1)

where κ is a real parameter of an appropriate dimension, depending on that of Aµ, such
that the associated action is dimentionless. For instance, if Aµ is Maxwell’s potential, we
must have4 [κ] = L−1. The first important thing to notice is that (2.1) is gauge-invariant
up to a divergence:

LCS → L′CS = κ εµνρ (Aµ + ∂µΛ) ∂ν(Aρ + ∂ρΛ) = κ εµνρAµ ∂νAρ + κ εµνρ ∂µΛ ∂νAρ

= LCS + ∂µ(κ εµνρ Λ ∂νAρ) .

This is a key feature since gauge-symmetry is fundamental in most of nowadays field
theories. Moreover this is a topological field theory because the action does not depend
on the spacetime metric; indeed, even though we have assumed a flat spacetime, the theory
can obviously be coupled to an exterior non-trivial metric gµν(x) but in that case we will
have:

Volume form:
√
|g| d3x Levi-Civita tensor:

1√
|g|

εµνρ

3A generalization to odd higher dimensions can be constructed.
4We recall that [d3x] = L3, [∂µ] = L−1, and [Aµ] = L−

1
2 (in (2 + 1)-dimensional spacetime).

11
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where g is defined to be the determinant of the metric matrix. From these definitions it
follows that the general expression for the action is:

SCS =

∫ Σ2

Σ1

d3x κ εµνρAµ ∂νAρ (2.2)

whether the spacetime metric is flat or not.
Let us now derive the equations of motion:

δSCS = κ

∫ Σ2

Σ1

d3x εµνρ (δAµ ∂νAρ +Aµ ∂νδAρ)

= κ

∫ Σ2

Σ1

d3x δAµ (εµνρ ∂νAρ − ερνµ ∂νAρ) +
���

���
���

���
�

κ

∫ Σ2

Σ1

d3x ∂ν(εµνρAµ δAρ)

where the last term vanishes thanks to Gauss’s theorem, assuming that δAµ
∣∣
Σ1,2

= 0. It

follows that equations of motion are given by:

2κ εµνρ ∂νAρ = 0 . (2.3)

In flat space, as the one we are considering, Poincaré lemma states that all the solutions
of (2.3) take the form Aµ = ∂µϕ for any arbitrary scalar funcion ϕ and hence Aµ is a pure
gauge. This means that the solution is completely trivial once we fix the gauge freedom,
which proves that the Chern-Simons free theory has no local physical degrees of freedom.
It means that this lagrangian has a little physical interest on its own but it provides us
a way by which we can introduce interactions or other extra features in a theory without
breaking gauge invariance, such as the mass of Aµ that we will consider in the next section.
Lastly it is important to notice that, unlike Maxwell’s theory, Chern-Simons theory is not
parity invariant due to the fact that εµνρ is a pseudotensor and thus acquires a minus
sign under Lorentz transformations with negative determinant, as parity for instance5.
It means that the invariance group of the theory is only the restricted Lorentz group
SO+(1,2). This is a crucial point in the discussion of the sign of the spin carried by the
fields as we will see later.

2.2 Massive vector fields in D = 3

2.2.1 A conventional way to introduce massive fields

It’s a legitimate question to ask ourselves what would happen if Aµ were massive fields,
and indeed it suggests an interesting theoretical analysis. A direct way to introduce a
mass in the free Maxwell’s theory is to add a quadratic term in Aµ to (1.5):

LMM = −1

4
Fµν Fµν −

1

2
m2AµAµ . (2.4)

The first important thing to notice is that this lagrangian density is no more gauge in-
variant; infact, under a gauge transformation, the action acquires the term:

−1

2
m2 (∂µΛAµ +Aµ ∂µΛ + ∂µΛ ∂µΛ) = −1

2
m2 ∂µΛ (2Aµ + ∂µΛ) .

5Note that parity transformations in 2 spatial dimensions involve the change of sign of only one coor-
dinate because the change of sign of both of them is equivalent to a half rotation, which does not change
the orientation of the space.
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This expression vanishes only if ∂µΛ = 0 or ∂µΛ = −2Aµ but none of these two cases is
compatible with the arbitrariness of Λ.
It is very easy to derive the equations of motion by varying the action, finding:

∂µF
µν −m2Aν = 0 . (2.5)

By applying ∂ν to (2.5) we find that the potential must satisfy the constraint ∂µA
µ = 0,

that is the only condition that reduces the number of degrees of freedom, since there is
no gauge invariance anymore. Moreover, thanks to this constraint, we can rewrite the
equation (2.5) as the Klein-Gordon equation:(

�−m2
)
Aµ = 0 . (2.6)

This equation, as those of classical Maxwell’s theory, can be solved by performing a Fourier
transformation:(

−pν pν −m2
)
Âµ = 0 =⇒ Âµ(p) = aµ(p) δ

(
m2 + pν p

ν
)

where aµ(p) are functions whose mathematical expression depends on physical situations.
When we return to the coordinate space by integrating in d3p we obtain that Aµ is different
from zero only if pν p

ν = −m2, which shows us explicitely our claim that LMM describes
a field Aµ of mass m. In particular the explicit general solution is:

Aµ(x) =
1

(2π)
3
2

∫
d3p aµ(p) eipνx

ν
δ
(
m2 + pν p

ν
)

(2.7)

where we have to require that aµ(−p) = (aµ)∗(p) in order to have a real Aµ(x). Physically
Aµ(x) is an infinite superposition of functions of the form aµ(p) eipνx

ν
with the constraint

on the wave vector given by the mass squared relation and the transversality condition
∂µA

µ = 0.
Summarinzing, this way to build a massive electrodynamics leads to a theory which, in
contrast to the massless case, has no gauge symmetry and two degrees of freedom, each
one associated with a helicity state, +1 or −1, of the field Aµ.
The last important observation that has to be done is that this theory is invariant under
the full Poincaré group, right as the classical electrodynamics, and particularly it is parity
invariant. Indeed this is consistent with the presence of two degrees of freedom, which are
related by the parity transformation.

2.2.2 Gauge-invariant massive electrodynamics

As anticipated before, we will now consider the coupling of Chern-Simons theory (2.1)
to Maxwell’s theory(1.7), that is the model introduced for the first time in [4]. Defining
κ = 1

2 m, the lagrangian of the theory is:

LMCS =
1

2
Fµ Fµ +

1

2
mεµνρA

µ ∂νAρ =
1

2
Fµ Fµ +

1

2
mAµ Fµ (2.8)

whose corresponding action is obviously:

SMCS =

∫ Σ2

Σ1

d3x

(
1

2
Fµ Fµ +

1

2
mAµ Fµ

)
.
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SMCS is gauge invariant because, as we showed previously, such are its two addends, and
Aµ carries one physical degree of freedom as in the classical Maxwell’s theory, since the
Chern-Simons term doesn’t bring any degree of freedom. But now we will see that Fµ
becomes massive. The first thing to notice is that, as showed in the previous section, m
must have the dimention of the inverse of a length, that is a mass in natural units, so the
claim is dimensionally consistent.
Now to find the equations of motion we consider the variation of SMCS :

δSMCS =

∫ Σ2

Σ1

d3x

(
Fµ δFµ +

1

2
mAµ δFµ +

1

2
mFµ δA

µ

)
=

∫ Σ2

Σ1

d3x

[(
Fµ +

1

2
mAµ

)
εµνρ ∂

νδAρ +
1

2
mFρ δA

ρ

]
=

∫ Σ2

Σ1

d3x

(
−εµνρ ∂νFµ −

1

2
mεµνρ ∂

ν Aµ +
1

2
mFρ

)
δAρ+

+

((((
(((

((((
(((

((((
((((∫ Σ2

Σ1

d3x ∂ν
(
εµνρ F

µ δAρ +
1

2
mεµνρ A

µ δAρ
)

=

∫ Σ2

Σ1

d3x (−εµνρ ∂νFµ +mFρ) δA
ρ

where we have again assumed that δAµ
∣∣
Σ1,2

= 0. Then the equations of motion of the

theory are given by:

mFρ + ερνµ ∂
νFµ = 0 . (2.9)

In order to see that this equation describes a field of mass m let us contract the LHS of
(2.9) with εραβ and then apply ∂α:

mεραβ Fρ +
(
−δανδβµ + δαµδ

β
ν

)
∂νFµ = 0 =⇒ mεραβ Fρ − ∂αF β + ∂βFα = 0

=⇒ ∂α∂
αF β −���

��
∂β∂αF

α −mεραβ ∂αFρ = 0 =⇒ �F β +mεβαρ ∂αFρ = 0 .

Now if we use again (2.9) in order to replace the second term of this expression, we get
the Klein-Gordon equation for the field Fµ:(

�−m2
)
Fµ = 0 . (2.10)

Therefore, as was shown for Aµ in Section 2.2.1, what we have found is basically a theory
in which the field Fµ has become massive and also the gauge invariance is preserved,
unlike in the case analized in secton 2.2.1. This is what makes this model interesting to
study from the physical point of view.
Let us now show what is a convenient gauge fixing choice. If we replace Fµ with its
expression in terms of Aµ in (2.10) and we commute the derivatives, we get:

εµνρ ∂ν
[(
�−m2

)
Aρ
]

= 0

which, thanks to Poincaré lemma, leads to the equation:(
�−m2

)
Aµ = ∂µϕ
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where ϕ is an arbitrary scalar field. Now under a gauge transformation Aµ → Aµ + ∂µΛ
this equation becomes: (

�−m2
)
Aµ = ∂µ

[
ϕ−

(
�−m2

)
Λ
]

and so with a proper choice of Λ (i.e. a gauge choice) we can make the RHS vanish and
we obtain that Aµ satisfies the Klein-Gordon equation too:(

�−m2
)
Aµ = 0 . (2.11)

This choice fixes the gauge up to a Λ′ satisfying
(
�−m2

)
Λ′ = 0 that can be used to

impose also ∂µA
µ = 0. So in this gauge the solutions to the equations of motion are

exactly the same as (2.7):

Aµ(x) =
1

(2π)
3
2

∫
d3p aµ(p) eipνx

ν
δ
(
m2 + pν p

ν
)

(2.12)

where the reality condition on Aµ(x) implies aµ(−p) = (aµ)∗(p). (2.12) describes two
propagating degrees of freedom but if we visualize Aµ in the second term of (2.9) and use
the above gauge fixing conditions, we get an important relation:

mFρ + ερνµ ∂
ν(εµαβ ∂αAβ) = 0 ⇐⇒ mFρ −����∂ν∂ρAν + �Aρ = 0 ⇐⇒

Fρ = −mAρ (2.13)

which reduces the number of independent propagating modes in Aµ to one.
Now let us study properties of conserved quantities in this theory. Computations bringing
to the stress energy tensor of the theory are done in detail in Appendix B; the result is
that, on shell, it may be brought to the same form as in the free electrodynamics i.e.:

Tµν =
1

4
ηµν Fαβ Fαβ + Fµα F ν

α

that in terms of the dual field can be rewritten as:

Tµν =
1

2
ηµν Fα Fα − Fµ F ν . (2.14)

Moreover the field is no more spinless as we can see by computing the angular momentum
tensor (see Appendix A for more detailed explaination of its origin). Note that in its
expression one must use the canonical stress-energy tensor Tµνc that differs from (2.14)
by a total derivative (the exact one computed in Appendix B). To compute the angu-
lar momentum the total variation of the potential is δAµ = ωµν Aν , where ωµν are the
infinitesimal parameters of a Lorentz transfomation, and so the Noether’s current is:

Jµ = −Tµνc δxν +
∂L

∂∂µAν
δAν

= −Tµνc ωνρ x
ρ +

∂

∂∂µAν

(
1

2
Fα Fα +

1

2
mεαβσ Aα ∂βAσ

)
ωνρA

ρ

=
1

2
ωνρ (xν Tµρc − xρ Tµνc ) + ωνρA

ρ

(
Fα ε

αβσ δµβ δ
ν
σ +

1

2
mεαβσ Aα δ

µ
β δ

ν
σ

)
=

1

2
ωνρ (xν Tµρc − xρ Tµνc ) + ωνρ ε

αµν Aρ
(
Fα +

1

2
mAα

)
=

1

2
ωνρ

[
xν Tµρc − xρ Tµνc + (εαµν Aρ − εαµρAν)

(
Fα +

1

2
mAα

)]
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=⇒ J µνρ = xν Tµρc − xρ Tµνc + (εαµν Aρ − εαµρAν)

(
Fα +

1

2
mAα

)
=⇒ Jµν =

∫
d2x

[
xµ T 0ν

c − xν T 0µ
c +

(
εα0µAν − εα0ν Aµ

)(
Fα +

1

2
mAα

)]
.

The non-orbital term of Jµν does not vanish and this means that the field Aµ carries a
spin. A way that brings us to the value of this spin is to consider the non-orbital term of
Jµν , let us call it Sµν , and to analyze how it acts on Aµ as an operator. In particular the
quantity

S ≡ 1

2
εij S

ij =
1

2
εij

∫
d2x

(
ε0ik Aj − ε0jk Ai

)(
Fk +

1

2
mAk

)
=

∫
d2xAk

(
Fk +

1

2
mAk

)
should act as the generator of rotations in the plane, and we should figure out the spin
value by understanding how it acts on the field Aµ. Firstly we have to compute the
canonical momenta conjugate to Aµ:

Πµ ≡ ∂LMCS

∂∂0Aµ
= Fν ε

ναβ δ0
α δ

µ
β +

1

2
mεναβ Aν δ

0
α δ

µ
β = εν0µ

(
Fν +

1

2
mAν

)

=⇒ Π0 = 0 Πi = εij
(
Fj +

1

2
mAj

)
.

Πµ and Aν satisfy the canonical Poisson bracket relations:

[Aµ(t, ~x), Πν(t, ~y)]P = δνµ δ(~x− ~y) ∀t ∈ R .

We can now write S in terms of Πi:

S =

∫
d2xAk εik Πi .

We are finally ready to compute the action of S on Aµ via Poisson bracket:[
S, Aj(t, ~y)

]
P

= εik

∫
d2xAk(t, ~x)

[
Πi(t, ~x), Aj(t, ~y)

]
P

= −εjk
∫
d2xAk(t, ~x) δ(~x− ~y)

= εkj A
k(t, ~y) .

This is the expression for the usual infinitesimal rotation of a vector in R2 per unit of
(small) angle. Hence the spin of the field is 1.
A more formal and somehow easier way to compute its value, is achieved through the use of
group theory tools. We know that the dynamic field of the theory, both in coordinate space
and in momenta space, is associated with a representation (reducible in general) of the (2+
1)-dimensional Poincaré group. As we discussed in Section 1.3 every such representation
is characterized by a particular eigenvalue of each of the two Casimir operators of the
group. Firstly let us search for the eigenvalues of the generator Pµ, whose realization
in the vector representation is −i ∂µ as we said. Considering the single plane wave that
makes up (2.12), it acts on the field Aµ as:

Pµ (Aν) = −i ∂µ
(
aµ(p) eip

αxα
)

= pµAν .
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Hence the momentum pµ carried by the plane wave is an eigenvalue of Pµ. So, as a
consequence of Klein-Gordon equation (2.11), the eigenvalue of Pµ P

µ associated with the
single plane wave field is simply pµ p

µ = −m2.
The fact that W is a pseudoscalar allows us to evaluate it in a clever frame. In particular,
if we choose the rest-frame, the eigenvalue of Pµ is:

pµ = (|m|, 0, 0)

where we take the module of m in order to have a positive energy. Correspondingly the
Pauli-Lubanski operator becomes:

W = −1

2
εij p

0 J ij = −|m| J

where J ≡ 1
2 εij J

ij is clearly identified with the generator of rotations on the plane i.e.
the generator of SO(2). Now we have to find the eigenvalues of the operator J when it
acts on an element Aµ of the representation of interest. Clearly the exponential factor
of the plane wave solution is not affected by a rotation since it is a scalar. So we are
interested only in the trasformation law of aµ(p) = aµ

6, and in particular in that of its
spatial components because the residual gauge fixing condition ∂µA

µ = 0 implies that, in
momentum space, pµ a

µ = 0 which in the rest-frame is satisfied if and only if a0 = 0. This
tells us that the a0 component is non-physical and thus we can restrict to the study of
the two dimensional representation of SO(2) where ai live. Under a spatial rotation by an
angle θ, ai transform in the following way:

a′i = R(θ) ji aj where R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

By definition the generator J is the operator such that an infinitesimal rotation can be
written as the operator I − i δθ J . With this information, we can easily obtain the form
that J acquires in our representation by expanding R(θ) in Taylor series at the first order:

R(dθ) =

(
1 −δθ
δθ 1

)
=⇒ J =

(
0 −i
i 0

)
.

It is now easy to compute the eigenvalues of J by diagonalizing this matrix. It turns out
they are ±1, each one corresponding to a different physical situation. In order to check
which eigenvalue suits to our system, we should write the condition (2.13) in momentum
space in the rest frame:

aµ(p) =
i

m
εµνρ p

ν aρ(p) ⇐⇒ ai =
i

m
εi0j p

0 aj = i
|m|
m

εij a
j .

Now if m > 0 the condition tells us that a2 = −i a1, which corresponds to the eigenvalue
−1 of J , while if m < 0 then a2 = i a1 and the corresponding eigenvalue of J is +1. So
the only possible eigenvalue of W is m. From literature it is known that in 3-dimensional
space the Pauli-Lubanski operator has eigenvalues of the form ms where s is the intrinsic
spin of the representation; this means that we found that the absolute value of the spin of
Aµ is s = 1. Its sign is either +1 or −1 depending on whether the parameter m is positive
or negative. Here is where the parity non-invariance comes: it forbids the field to carry a
±1 spin at the same time.

6We can forget about the dependence of aµ on pµ since we have fixed it with the choice of the rest-frame.
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2.2.3 Dual massive electrodynamics

As in the case of the massless theory, there exist a dual way to handle the theory defined
by (2.8), that is achieved thanks to Chern-Simons term too, as showed in [3]. Let us
consider the following lagrangian density for a dynamic variable fµ:

LMCSD = −1

2
fµ fµ −

1

2m
εµνρ fµ ∂νfρ . (2.15)

We will refer to (2.15) as topologically massive theory, because of the metric independence
of the massive term of the lagrangian (that is the Chern-Simons term). Deriving equations
of motion is straightforward as in the Section 2.2.2 and leads to:

fρ +
1

m
ερνµ ∂

νfµ = 0 . (2.16)

By following a procedure very similar to the one used in Section 2.2.2, we can derive the
equations for fµ in a form that is the same as (2.10) for Fµ:(

�−m2
)
fµ = 0 , (2.17)

In order to check the equivalence between the two theories, we can look at their number of
degrees of freedom. From the (2.16) one can easily see that fµ should obey the constraint
∂µf

µ = 0 which removes one degree of freedom. If we consider (2.16) in the momentum
space, we have:

fρ −
i

m
ερνµ p

ν fµ = 0

and the constraint becomes pµ f
µ = 0. Now let us go to the rest-frame, so that p0 = |m|

and pi = 0. Then p0 f
0 = 0 and so f0 = 0. Thus the equations of motion become:

fj −
i

m
εj0i p

0 f i = 0 =⇒ fj + i
|m|
m

εij f
i = 0

which means that the spatial components of fµ are interrelated. Therefore in this theory
there is one degree of freedom, just as in the Maxwell-Chern-Simons theory. Despite that,
gauge invariance is lost because of the first term in (2.15).
The stress energy tensor of this theory, modulo the equations of motion, is given by (see
Appendix B for complete derivation):

Tµν =
1

2
ηµν fα fα − fµ fν (2.18)

which coincides with (2.14) if the equality fµ = Fµ holds.
The field fµ is formally equivalent to the field Aµ of the Maxwell-Chern-Simons theory
(once we fix its gauge freedom in the previously discussed way) since both of them satisfy
the same equations of motion and the same constraints. Thus we can conclude, without
performing an almost identical analysis, that also fµ carries a spin 1 or −1.

2.2.4 The master lagrangian

All these similarities between the two massive theories just described are actually a con-
sequence of a more general structure. In fact both of them can be derived from a single
lagrangian density:

LT = −1

2
fµ fµ + fµ F

µ +
1

2
mFµAµ . (2.19)
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If we vary the action with respect to fµ, we trivially obtain the identification fµ = Fµ as
an equation of motion and, substituing this into (2.19), we get the lagrangian (2.8) of the
Maxwell-Chern-Simons theory. Instead let us derive the equations of motion of Aµ:

δAµST =

∫ Σ2

Σ1

d3x

[(
fµ +

1

2
mAµ

)
εµνρ ∂νδAρ +

1

2
mFµ δAµ

]
=

∫ Σ2

Σ1

d3x δAρ

[
−εµνρ ∂ν

(
fµ +

1

2
mAµ

)
+

1

2
mF ρ

]
+

+
(((

((((
(((

((((
(((

((∫ Σ2

Σ1

d3x ∂ν

[
εµνρ δAρ

(
fµ +

1

2
mAµ

)]
so that, with the usual boundary conditions, we have:

mF ρ − εµνρ ∂νfµ = 0 . (2.20)

If we use this equation in the last term of (2.19), it becomes:

1

2
εαβµ ∂βfαAµ = ∂β

(
1

2
εαβµ fαAµ

)
− 1

2
fα F

α .

By substituing this into the total lagrangian and then using again (2.20), we get (up to a
total derivative):

LT = −1

2
fµ fµ +

1

2
fµ F

µ = −1

2
fµ fµ +

1

2m
fµ ε

αβµ ∂βfα = LMCSD

This proves that LT produces also (2.15). Therefore the two theories, the Maxwell-Chern-
Simons and the topologically massive one, are dual to each other.





CHAPTER 3

Non-abelian Chern-Simons theory

So far we have considered the abelian Chern-Simons theory where the group of the gauge
transformations is U(1). Now we will study its non-abelian generalization. Firstly we
will briefly introduce the general construction of a gauge theory and describe the common
example given by the Yang-Mills lagrangian. Then we introduce the non abelian Chern-
Simons theory and focus ourselves on the analysis of its gauge invariance.

3.1 Local symmetries and gauge fields

3.1.1 The covariant derivative

The approach that we are going to follow starts from some lagrangian density which,
in most cases, is known to describe some kind of matter in its kinematical behaviour.
Usually this lagrangian is invariant under the action of a continuous symmetry group on
the dynamic field. For instance let us consider a spinorial field ψ described by:

LF =
1

2
ψ̄ γµ ∂µψ . (3.1)

Obvioulsy a constant element of the group U(1), that is associated with a complex phase
factor, acts on ψ leaving (3.1) unchanged:{

ψ −→ ψ′ = eiα ψ

ψ† −→ ψ′† = e−iα ψ†
=⇒ LF −→ L′F = LF ∀α ∈ R .

So U(1) is a rigid symmetry group for the lagrangian density (3.1).
In place of global transformations we can consider gauge transformations, whose group
elements that act on the fields are functions of the point of spacetime. The problem is
that in general the lagrangian density (3.1) is not invariant under such transformations.
In our example we should take α = α(x), so that the transformations are still in U(1) but
they are different for different xµ, which implies:

LF −→ L′F =
1

2
e−iα(x) ψ̄ γµ∂µ

(
eiα(x) ψ

)
= LF +

i

2
∂µα(x) ψ̄ γµ ψ 6= LF .

21
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In order to build an invariant lagrangian density we have to introduce a new operator Dµ

called covariant derivative such that:

Dµψ −→ eiα(x)Dµψ ⇐⇒ Dµ −→ D′µ = eiα(x)Dµ e
−iα(x) .

Clearly (3.1) becomes invariant under gauge transformations if we replace ∂µ with Dµ. The
covariant derivative can be constructed with the use of a field Aµ writing Dµ = ∂µ+ ieAµ,
where e is a non-zero real constant. From the above expression for the transformation law
of Dµ we can derive that of Aµ, finding:

Aµ −→ A′µ = Aµ + e−1∂µα .

Let us now consider a more general case in which the spinorial field carries N internal
indeces r:

LF =
1

2
Ψ̄ γµ ∂µΨ =

1

2
Ψ̄r γµ ∂µΨr (3.2)

where Ψr is a spacetime spinor which transforms under the fundamental representation
of SO+(1,2) for r = 1, ..., N . Let G be its gauge group whose generic element g ∈ G is
identified with a unitary N ×N matrix, which means that the gauge group of this theory
is U(N) or one of its subgroups. When considering spacetime dependent g, the core of
the local invariance problem is that in general (∂µΨ)′ = ∂µ(gΨ) 6= g (∂µΨ). In order to
recover the gauge invariance we introduce the covariant derivative, which is defined by
requiring the following identity be held:

(DµΨ)′ = g (DµΨ) ⇐⇒ D′µ = g Dµ g
−1 . (3.3)

Clearly if (3.3) holds, the lagrangian density:

LF =
1

2
Ψ̄ γµDµΨ (3.4)

is invariant also under local gauge transformations. Now we have to figure out what form
takes this Dµ; clearly it has to be a N × N matrix and since it has to deal with local
behaviour of the gauge group it is natural to write it in terms of the “local elements” of
the group, which are the generators of the corresponding Lie algebra g7. Let T a be the
N2 generators of u(N), whose commutation relations and normalization are given by:

[T a, T b] = ifabc T c Tr(T a T b) =
1

2
δab (3.5)

where fabc are real totally antisymmetric coefficients called structure constants (note that
if the gauge group is commutative, as in the case of U(1), fabc = 0). Let also Aaµ be a set
of N2 covariant vector fields. In analogy to the U(1) case, we define:

Dµ = ∂µ + ieAµ where Aµ ≡ Aaµ T a , e ∈ R . (3.6)

Let us check whether the (3.3) can be satisfied or not:

(DµΨ)′ = g (DµΨ) ⇐⇒ (∂µ + ieA′µ)(gΨ) = g(∂µ + ieAµ)Ψ

7This concept could also be formulated by means of differential geometry language: Lie groups are
differential manifolds whose tangent space over the identity element is identified with their Lie algebras.
Then the covariant derivative descends from the connection of the manifold which in local coordinates is
written as a linear combination of the base of the tangent space i.e. of the Lie algebra generators.
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⇐⇒ (∂µg)Ψ +���g ∂µΨ + ieA′µ gΨ =���g ∂µΨ + ie g Aµ Ψ

⇐⇒ A′µ gΨ = g Aµ Ψ + ie−1 (∂µg)Ψ ⇐⇒ A′µ = g Aµ g
−1 + ie−1(∂µg) g−1 .

So if under a gauge transformation the fields Aµ varies as above, the covariant derivative
has the desirable properties. Moreover what we just found tells us that if we consider a
constant element of the gauge group the second term vanishes and hence the transforma-
tion law of Aµ is that of an element of the adjoint representation of U(N)8.
The physical interpretation of this construction is that the local invariance of the theory
is achieved thanks to the introduction of the fields Aµ, called gauge fields, which mediate
some kind of interaction between the matter fields. The strength of the interaction is
characterized by the constant e which is the coupling constant of the interacting theory.
A concrete example is that of QED: the fermionic lagrangian describes the physics of elec-
trons on their own but when requiring the local invariance under the gauge group U(1)
the electromagnetic potential field Aµ appears and every electron starts to interact with
each other through it.

3.1.2 Yang-Mills theory

So far we have considered gauge fields as external fields. However a physical theory should
also describe their propagation. This result is achieved by including a kinetic term for Aµ
in the lagrangian density, and the Yang-Mills lagrangian features a common choice for it,
ensuring the gauge invariance.
Firstly let us give a general definition of the field strength tensor (that now is an operator):

Fµν ≡ −ie−1 [Dµ, Dν ] (3.7)

which obviously transforms covariantly under the gauge transformations, since Dµ does:

Fµν −→ F ′µν = −ie−1
[
g Dµ g

−1, g Dν g
−1
]

= −ie−1 g [Dµ, Dν ] g−1 = g Fµν g
−1 .

Also Fµν is antisymmetric in µ and ν. We can write it in another form:

Fµν = −ie−1 [∂µ + ieAµ, ∂ν + ieAν ] = [∂µ, Aν ]− [∂ν , Aµ] + ie [Aµ, Aν ] .

We can simplify the first two commutators by observing how they act on a generic matter
field:

[∂µ, Aν ] Ψ = ∂µ(Aν Ψ)−Aν ∂µΨ = (∂µAν)Ψ +���
�Aν ∂µΨ−����Aν ∂µΨ

=⇒ Fµν = ∂µAν − ∂νAµ + ie [Aµ, Aν ] . (3.8)

It is the presence of the commutator between field operators in (3.8) that motivates refer-
ring to Yang-mills theory as a non-abelian theory. Also this expression tells us that Fµν
is an element of the adjoint representation of G too. Recalling the relations (3.5), we can
also expand the expression (3.8) and write it in terms of the vector fields Aaµ:

F aµν = ∂µA
a
ν − ∂νAaµ − e f bcaAbµAcν .

8The adjoint representation of G is definend as that whose elements of the vector space are those of the
Lie algebra associated with G and the homomorphism is given by X ′ = g X g−1 with g ∈ G and X ∈ g.
The dimension of the adjoint representation is the same of G
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Note that Fµν satisfies the Bianchi identity as a consequence of the Jacobi identity9:

DµFνρ +DνFρµ +DρFµν = 0 . (3.9)

where the action of the covariant derivative on Fµν is expressed through the adjoint action
of Aµ on Fµν (accordingly with the fact that both of them are elements of the adjoint
representation):

DµFνρ = ∂µFνρ + ie [Aµ, Fνρ] . (3.10)

Having introduced the generalized field strength tensor, we are now ready to write down
the Yang-Mills lagrangian density:

LYM = −1

2
Tr (Fµν Fµν) . (3.11)

The gauge invariance of this lagrangian density is trivial due to trace properties and the
transformation law of Fµν . Moreover thanks to the trace identity (3.5), LYM can also be
written as:

LYM = −1

2
F aµν F bµν Tr(T a T b) = −1

4
F aµν F aµν .

In order to derive the equations of motion it is convenient to work with the matrix ex-
pression (3.11). The variation of the action is:

δSYM = −
∫ Σ2

Σ1

d3xTr (Fµν δFµν)

= −
∫ Σ2

Σ1

d3xTr [Fµν (∂µδAν + ie δAµAν + ieAµ δAν − (µ↔ ν))]

= −2

∫ Σ2

Σ1

d3x [Tr (Fµν ∂µδAν) + Tr (ie F νµ δAν Aµ) + Tr (ie Fµν Aµ δAν)]

= −2

∫ Σ2

Σ1

d3x [Tr (Fµν ∂µδAν)− Tr (ieAµ F
µν δAν) + Tr (ie FµνAµ δAν)]

= 2

∫ Σ2

Σ1

d3x [Tr (∂µF
µν δAν) + Tr (ie [Aµ, F

µν ] δAν)]

= 2

∫ Σ2

Σ1

d3x Tr [(∂µ F
µν + ie [Aµ, F

µν ]) δAν ]

where we have used the antisymmetry of Fµν , the linearity and the cyclic permutation
invariance of the trace, and boundary conditions such that the surface integral vanishes
when integrating by parts. Clearly δSYM is zero for every arbitrary matrix δAν if and
only if the following equations holds:

∂µ F
µν + ie [Aµ, F

µν ] = 0 ⇐⇒ DµF
µν = 0 . (3.12)

The (3.12) are exactly the equations of motion for a generic pure Yang-Mills theory i.e.
they describe the behaviour of the gauge field decoupled from any interaction with matter.

9For any three elements A, B, C of a Lie algebra, the identity [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0
holds; in our case we consider three covariant derivatives.
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3.2 Non-abelian Chern-Simons theory

Just as we discussed for the Yang-Mills lagrangian, we can introduce the non-abelian
Chern-Simons theory. In view of the form of the covariant derivative, and so of the gauge
fields introduced in (3.6), the non-abelian Chern-Simons lagrangian is:

LCS = κ εµνρ Tr

(
Aµ ∂νAρ +

2

3
ieAµAν Aρ

)
. (3.13)

Clearly this reduces to the previously described theory (2.1) if the gauge fields are com-
mutative, since the extra term vanishes because of the contraction with the totally anti-
symmetryc Levi-Civita tensor. By exploiting the trace properties and cyclic permutation
invariance, we bring the variation of the action to the following form:

δSCS =

∫ Σ2

Σ1

d3xκ εµνρ Tr

[
δAµ ∂νAρ +Aµ ∂νδAρ +

2

3
ie (δAµAν Aρ +Aµ δAν Aρ +AµAν δAρ)

]
=

∫ Σ2

Σ1

d3xκ εµνρ Tr

[
∂νAρ δAµ − ∂νAµ δAρ +

2

3
ie (Aν Aρ δAµ +AρAµ δAν +AµAν δAρ)

]
=

∫ Σ2

Σ1

d3xκTr

[(
εµνρ ∂νAρ − ερνµ ∂νAρ +

2

3
ie (εµνρAν Aρ + ενµρAρAν + ερνµAρAν)

)
δAµ

]
=

∫ Σ2

Σ1

d3xκTr [(2 εµνρ ∂νAρ + 2 ie εµνρAν Aρ) δAµ]

where we have obviously taken boundary conditions such that the surface integral vanishes.
δSCS vanishes for an arbitrary matrix δAµ if and only if:

2κ εµνρ (∂νAρ + ieAν Aρ) = 0 ⇐⇒ κ εµνρ (∂νAρ − ∂ρAν + ieAνAρ − ieAρAν) = 0

⇐⇒ κ εµνρ Fνρ = 0 .

By contracting both members with εµαβ and exploiting the antisymmetry of Fνρ, we get:

Fαβ = 0 (3.14)

which means that the solutions for Aaµ are pure gauge as in the free abelian theory.
The gauge invariance requirement of the action brings us to very important observations.
In Appendix C we go through all the necessary computations, and the result is that the
variation of the lagrangian density under a generic gauge transformation is given by:

δLCS = ie−1κ εµνρ ∂ν Tr
[
(∂µg)Aρ g

−1
]
− e−2κ

3
εµνρ Tr

[
(∂µg) g−1 (∂νg) g−1 (∂ρg) g−1

]
.

The first term is a total derivative and hence, when integrated to get the action, vanishes
for properly chosen boundary conditions on Aµ; instead the second one is not so easy to
get rid of. The variation of the action under a gauge transformation can be written as:

δSCS = −8π2 e−2κ

(
1

24π2

∫ Σ2

Σ1

d3x εµνρ Tr
[
(∂µg) g−1 (∂νg) g−1 (∂ρg) g−1

])
. (3.15)

Let us denote the expression in round brackets in (3.15) with w(g). In order to figure
out what this integral represents, we have to introduce some mathematical concepts and
tools.
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Definition 1. Let X and Y be two topological manifolds of dimension m and f : X → Y
a continuous map. Then the degree of f is an integer number defined by the equality:

deg f

∫
Y
ω =

∫
X
f∗ω (3.16)

where ω is any m-form and f∗ denotes the pullback operator.

Intuitively the degree of a continuous map is an integer that counts how many times the
domain of the map “wraps” around the codomain and thus labels the homotopy class to
which the function belongs. In this sense it is a generalization of the winding number of
a function.

Definition 2. Let G be a compact Lie group. There exist a unique invariant measure
dµ(g) on G satisfing the following properties:
• dµ(g) = dµ(f · g) = dµ(g · f) ∀g, f ∈ G (left- and right-invariance)
•
∫
G dµ(g) = 1 (normalization).

In the following we will denote it simply with dµ.

Now we will show that w(g) is the degree of the map g(x) of spacetime into the group
manifold G.
Firstly let us assume that the time interval [t1, t2] is much bigger than the characteristic
temporal scales of the interactions in the system, so that we can integrate the lagrangian
density over the entire spacetime manifold, sending t1 → −∞ and t2 → +∞. Then it is
convenient to restrict the integral in (3.15) to elements g(x) ∈ SU(2) ∀x (more generally
considering an SU(2) subgroup of U(N)), because the group SU(2) is homeomorphic (i.e.
topologically equivalent) to the sphere S3 and also because, according to [2], interpreting g
as a parametrization of the SU(2) manifold, the expression of w(g) is exactly the integral
of the pullback onto the spacetime of the Haar measure dµ of SU(2). Now the only
problem of using (3.16) to compute deg g is that the function g as defined so far does not
fit exactly into the definition of a continuous map between topological manifolds since
R3 is non-compact while SU(2) ∼ S3 is compact. To improve this, we can transform the
integral in w(g) in an integral over an Euclidean R3 by performing a Wick rotation and
then compactifying it by idetifying all points at infinity.
Let us explain the procedure in more details. Consider the analytic continuation of the
function g : R3 → SU(2) onto C × R2 extending the first coordinate x0 to a complex
variable z0 such that <(z0) = x0. Then let us consider the two closed paths of integration
in the complex plane represented in figure 3.1. Clearly the integrals over these closed
paths vanish because the integrand does not have any poles. Also we should restrict to
the study of phenomena that are local in spacetime i.e. we require gauge transformation
to be the identity IG in the limit of x→ ±∞, which means that also the integrals over the
circular arcs vanish when sending the radius to infinity. These considerations imply that
the integral of the given function over R3 is exactly equal to the integral of its analytic
continuation over iR × R2. The result of all these manipulations is that we can turn the
integral in w(g) over the Minkowski space into an integral over the Euclidean space by
redefing x0 as ix0 and then changing the path of integration as described above.
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<(z0) = x0

=(z0)

0

Figure 3.1: Representation of a Wick rotation in the complex plane.

Now we still have to ensure that the topology on the euclidean R3 is compatible with that
on S3, which easily descends from the requirement that limx→±∞ g(x) = IG. Indeed this
operation is formally an Alexandroff compactification of R3, that is adding a point at its
boundary or, equivalently, identifying all points at infinity, which by definition leads to a
space that is homeomorphic to the sphere S3.
So we found that g induces a map between two 3-spheres that satisfies the requirements
for defining its degree:

deg g

∫
SU(2)

ω =

∫
R3

g∗ω

where ω is any 3-form defined on SU(2). If we pick the Haar measure of SU(2) as ω, the
RHS is exactly w(g) and the integral of LHS gives 1 by definition, so that deg g = w(g).
Summarizing, we proved that w(g) is an integer that defines the homotopy class of the
gauge transformation, an thus the variation of the action (3.15) becomes:

δSCS = −8π2 e−2κw(g) w(g) ∈ N .

Since w(g) does not vanish unless the gauge transformation is continuously deformable to
the identity IG the non-abelian Chern-Simons theory cannot be gauge invariant, at least
in the classical context.
However the gauge invariance can be recovered in the quantum theory. Using the path
integral formulation the expectation value of a generic gauge invariant operator O is given
by:

〈O〉 =
1

Z

∫
DAµO[Aµ] eiS[Aµ]

where Z is a normalization constant. It follows that 〈O〉 changes under a gauge transfor-
mation as:

〈O〉 −→ 〈O〉′ = e−8iπ2 e−2κw(g) 〈O〉 .

Obviously we want 〈O〉′ = 〈O〉 and this can be achieved if the exponential is equal to 1
whatever the winding number of the transformation is. Hence, recalling that w(g) ∈ N,
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the parameter κ should be restricted to:

− 8π2 e−2κ = 2mπ ⇐⇒ κ = − m

4π e−2
m ∈ Z . (3.17)

So we conclude that the non-abelian quantum Chern-Simons theory is gauge invariant if
and only if the parameter κ takes the discrete values expressed by (3.17). This condition
on κ is called level quantization.



CHAPTER 4

Non-relativistic anyons

Topological properties of 2-dimensional spaces are radically different from those of higher
dimensional spaces. One of the consequences is that in two dimensions there exist quantum
particles with different properties from those of bosons and fermions. In particular these
particles have a spin that is not quantized in integer or half-integer values and also they
can satisfy any possible statistics; therefore they are called anyons. We will see that the
anyonic behaviour of a system of particles emerges in a very natural and elegant way when
they are coupled to the Chern-Simons vector field.

4.1 Fractional statistics: general aspects

We start by discussing general aspects of anyons, regardless of the way they are practically
realized. The key of the topic is that in a 2-dimensional space the exchange of two
identical particles can follow an infinite number of homotopically different paths and thus
the argument of the invariance of the wavefunction when a certain exchange is performed
twice, that would have led to bosons and fermions, is no more applicable. Instead in this
case the phase factor acquired by the wavefunction can be arbitrary.
Let us see how it happens. Suppose we have a system made up by N identical hard-core
particles that live in the euclidean Rd, where d is a natural number. We will denote the
configuration space with Md

N . The dynamic of these particles is uniquely specified by the
propagator:

〈q′, t′|q, t〉 =

∫ q′

q
Dq ei

∫ t′
t dτ L(q(τ), q̇(τ)) q, q′ ∈Md

N (4.1)

where L is intended to be the classical lagrangian of the system. Now let us suppose q′ = q
i.e. consider paths that are loops in Md

N . Such paths can be partitioned in homotopy
equivalence classes, and the quotient space, together with a composition law given by the
concatenation of loops, is the fundamental group π1(Md

N ). Also it is true that, given two
fixed and not coincident endpoints, we can associate to every element of the fundamental
group an element of the set of homotopy classes of paths connecting them. More formally,
being x ∈Md

N the base point used to compute the fundamental group, π(q1, q2) the set of

29
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homotopy classes of paths going from q1 to q2, and γ(q) an arbitrary chosen path going
from x to q, there exist a bijection fq1q2 : π1(Md

N )→ π(q1, q2) given by:

fq1q2(α) = [γ−1(q1)] · α · [γ(q2)] ∀α ∈ π1(Md
N ) .

This allows us to label (not uniquely because of the arbitrariety of the choice of γ) each
homotopy class in π(q1, q2) with an element of the fundamental group and so with a little
abuse of language we will say that also open paths with fixed endpoints belong to a certain
element of the fundamental group. In this sense we can then split the path integral (4.1)
into a sum of path integrals 〈q′, t′|q, t〉α, each of them over all possible paths in a single
homotopy class:

〈q′, t′|q, t〉 =
∑

α∈π1(Md
N )

〈q′, t′|q, t〉α =
∑

α∈π1(Md
N )

∫ q′

q
Dqα ei

∫ t′
t dτ L(qα(τ), q̇α(τ)) .

We are going to show that a statistical interaction between particles can be implemented
by assigning different weights χ(α) to each addend of the sum over homotopic classes of
paths defining the propagator:

〈q′, t′|q, t〉 =
∑

α∈π1(Md
N )

χ(α) 〈q′, t′|q, t〉α =
∑

α∈π1(Md
N )

χ(α)

∫ q′

q
Dqα ei

∫ t′
t dτ L(qα(τ), q̇α(τ)) .

(4.2)
The requirement for the propagator to be a probability amplitude imposes a constraint
on the weights. In fact we can write the propagator from q to q′′ as a convolution of
propagators with a fixed intermediate point:

〈q′′, t′′|q, t〉 =

∫
Md
N

dq′ 〈q′′, t′′|q′, t′〉 〈q′, t′|q, t〉

=
∑

α1,α2∈π1(Md
N )

χ(α1)χ(α2)

∫
Md
N

dq′ 〈q′′, t′′|q′, t′〉α2
〈q′, t′|q, t〉α1

=
∑

α∈π1(Md
N )

∑
α1,α2∈π1(Md

N )
α1·α2=α

χ(α1)χ(α2)

∫
Md
N

dq′ 〈q′′, t′′|q′, t′〉α2
〈q′, t′|q, t〉α1

.

(4.3)

On the other hand, the propagator 〈q′′, t′′|q, t〉α can be written as a sum of the convolution
of two propagators over paths whose composition is α:

〈q′′, t′′|q, t〉α =
∑

α1,α2∈π1(Md
N )

α1·α2=α

∫
Md
N

dq′ 〈q′′, t′′|q′, t′〉α2
〈q′, t′|q, t〉α1

.

Now if we substitute this expression into (4.2) and compare the result with (4.3), we obtain
that the weights have to satisfy:

χ(α1)χ(α2) = χ(α1 · α2) . (4.4)

In particular (4.4) tells us that the weights have to be a one dimensional representation
of the fundamental group π1(Md

N ). Also the representation has to be unitary in order to
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not mess up the normalization. The physical meaning of the weight χ(α) is that it is the
phase factor that the wavefunction of the system acquires under an exchange of particles
following a certain path in the homotopy class α at a fixed time t. Indeed this operation
in terms of the path integral can be regarded as a nonphysical abstract process where the
wavefunction ψ(q, t) evolves with the propagators 〈q′, t|q, t〉β = δαβ δ(q − q′)10. Thus the
wavefunction ψ′(q, t) after the exchange will be given by:

ψ′(q, t) =

∫
Md
N

dq′ 〈q, t|q′, t〉ψ(q′, t) =
∑

β∈π1(Md
N )

χ(β)

∫
Md
N

dq′ 〈q, t|q′, t〉β ψ(q′, t)

=
∑

β∈π1(Md
N )

χ(β) δαβ

∫
Md
N

dq′ δ(q′ − q)ψ(q′, t) = χ(α)ψ(q, t)

that is exactly the result we were looking for.
So we have to find out what is the fundamental group associated to our configuration
space. At first sight one could think that Md

N = (Rd)N but it is clear that the hypothesis
of hard-core particles requires to remove configurations such that two or more particles
occupy the same position. Moreover we also have to identify configurations that differ in
the ordering of the particles, which means that we have to quotient by the permutation
group SN . It is clear that there is a significant difference between the case where the space
is 2-dimensional and that where it has a higher dimension. Indeed if we remove a point
from Rd we obtain a space that is not simply connected only if d = 2, which means that
only in this case paths going from one point to another may not be homotopic to each
other. Thus it is not surprising that the fundamental group of Md

N is different in the two
above distinguished cases (see e.g. [9]):

π1(Md
N ) =

{
SN if d ≥ 3

BN if d = 2
(4.5)

where BN is the braid group with N objects. Let us now remind the definition of these
two finite groups.

Definition 3. The permutation (or symmetric) group SN is defined as the group with
N − 1 generators {σ1, ..., σN−1} satisfing the relations:

• σ2
i = I ∀i = 1, ..., N − 1

• σi σj = σj σi if j 6= i± 1
• σi σi+1 σi = σi+1 σi σi+1 ∀i = 1, ..., N − 2.

More informally the permutation group is simply the group where the elements are the
operations that permute a collection of N objects, regardless of the way that has been
used. The generator σi is the operation that exchanges objects i and i+ 1.

Definition 4. The braid group BN is defined as the group with N − 1 generators
{σ1, ..., σN−1} satisfing the relations:

• σi σj = σj σi if j 6= i± 1
• σi σi+1 σi = σi+1 σi σi+1 ∀i = 1, ..., N − 2.

10Intuitively initial and final configurations have to be the same and only the propagator of the a priori
given homotopy class of the exchange must contribute.
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The braid group is conceptually very similar to the permutation group but the fact that in
general σ2

i 6= I means that the way we are exchanging elements is meaningful. A pictorial
way to represent the braid group uses a set of N vertical strings where the operation σi
acts by crossing strings i and i+ 1 with the former passing over the latter, if we suppose
the bottom configuration to be the starting one and the top configuration to be the ending
one. Some examples are represented in the pictures below.

i− 1 i i+ 1 i+ 2

The move σ−1
i σi

1 3 42

The move σ2
1 σ3 σ2

These kinds of diagrams can also be interpreted as describing the world lines of the N
particles in the system and the paths they follow when exchanged.
We are looking for a representation χ : π1(Md

N ) → U(1) where, as we said, the funda-
mental group is either SN or BN . In both cases we can exploit the property σi σi+1 σi =
σi+1 σi σi+1 together with the commutativity of U(1):

χ(σi)χ(σi+1)χ(σi) = χ(σi+1)χ(σi)χ(σi+1)

⇐⇒ χ(σi+1)χ(σi)χ(σi) = χ(σi+1)χ(σi+1)χ(σi) ⇐⇒ χ(σi) = χ(σi+1) .

Hence χ maps every generator of π1(Md
N ) to the same element of U(1), which we denote

with z. Now if d ≥ 3, and so π1(Md
N ) = SN , we also have the property σ2

i = I which
implies that z2 = 1 i.e. that z = 1 or z = −1. Indeed the only one dimensional unitary
representations of SN are the identical one and the alternating one, corresponding exactly
to bosons and fermions respectively. Instead in the case d = 2 i.e. π1(Md

N ) = BN we have
z = e−i νπ, where ν is a real parameter that we will call statistics which depends on the
system. Of course it is possible that ν = 0, 1 which corresponds to a system of bosons or
fermions.
Now let us consider a certain configuration of the given particles in the d = 2 space. We
can describe it by means of the azimutal angles formed by the straight line connecting
each pair of particles and an arbitrary chosen axis, for example the x1 one. In formulae
the angle associated to the couple made up by particle I and particle J , for I < J , is:

θI,J = tan−1

(
x2
I − x2

J

x1
I − x1

J

)
∀I, J = 1, ..., N . (4.6)

We define also the angle with exchanged indeces to be θJ,I = θI,J+π. Under an elementary
exchange operation σk ∈ BN the angle θk,k+1 obviously goes into θ′k,k+1 = θk,k+1 +π while
for all the other angles the indeces k and k + 1 are exchanged i.e. θ′I,k = θI,k+1 and
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viceversa. Thus defining the quantity ∆θ
(α)
I,J ≡ θ′I,J − θI,J , where now θ′I,J are the angles

obtained with a generic permutation α ∈ BN , we get the following identity:∑
I<J

∆θ
(σk)
I,J = π ∀k = 1, ..., N − 1 .

It follows that the above representation of BN can be written in the following form:

χ(σk) = e−i νπ = exp

[
− i ν

∑
I<J

∆θ
(σk)
I,J

]
.

This expression can be extended to every element α = σk1 ... σkp of the braid group, using

the fact that ∆θ
(σk)
I,J + ∆θ

(σl)
I,J = ∆θ

(σkσl)
I,J :

χ(α) = χ(σk1 ... σkp) = χ(σk1)... χ(σkp) = exp

[
− i ν

∑
I<J

∆θ
(σk1

)

I,J

]
... exp

[
− i ν

∑
I<J

∆θ
(σkp )

I,J

]
= exp

[
− i ν

∑
I<J

(
∆θ

(σk1
)

I,J + ...+ ∆θ
(σkp )

I,J

)]
= exp

[
− i ν

∑
I<J

∆θ
(σk1

... σkp )

I,J

]
= exp

[
− i ν

∑
I<J

∆θ
(α)
I,J

]
.

We can now think about the angles θI,J as functions of time (determined by the dynamics
of the particles and in general very complicated) and so write their variation as an integral
between two fixed times of their time derivative:

χ(α) = exp

[
− i ν

∑
I<J

∫ t′

t
dτ

d

dτ
θ

(α)
I,J (τ)

]
. (4.7)

Though expression (4.7) may look rather formal, it brings us to a relevant general result.
In fact substituting (4.7) in (4.2), we get:

〈q′, t′|q, t〉 =
∑

α∈π1(Md
N )

∫ q′

q
Dqα e

i
∫ t′
t dτ

[
L (qα(τ), q̇α(τ))− ν

∑
I<J

d
dτ θ

(α)
I,J (τ)

]
.

Therefore we can regard our system of anyons described by the lagrangian L as a system
of bosons with an additional statistical interaction described by the lagrangian:

L′ = L− ν
∑
I<J

d

dτ
θ

(α)
I,J (τ) . (4.8)

Notice that this additional interaction is relevant only at quantum level since its term is a
total derivative that does not change the classical equations of motion. Indeed it depends
mainly on the topological properties of the configuration space which are clearly non-local
an thus not relevant for the classical system.
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4.2 N particles coupled to the Chern-Simons field

A practical realization of the above general framework is achieved with the use of Chern-
Simons theory. The mechanism that leads to particles acquiring arbitrary phase factors
when exchanged is conceptually similar to that of Aharonov-Bohm effect: the Chern-
Simons field attaches to every charged particle a magnetic flux and thus every particle
feels the statistical effect of the vector potential generated by the others.
Let us consider a non-relativistic quantum system of N particles of mass m and charge
e with respect to the Chern-Simons field Aµ in two spatial dimensions. Let ~rI(t) be the
position of the I-th particle in R2 and vαI (t) = (1, ~vI(t)) its 3-velocity. Charged particles
provide a matter current that satisfies the continuity equation:

jµ(x) =
N∑
I=1

e vµI (t) δ(2)(~x− ~rI(t)) =⇒ ∂µj
µ = 0 . (4.9)

Obiviously we identify j0 = ρ as the charge density and ~j as the current density. So we
can couple the kinetic lagrangian of the particles to the vector field Aµ described by the
abelian Chern-Simons term (2.1) in the standard minimal way. Then the resulting total
lagrangian of the system is:

L =
N∑
I=1

1

2
mv2

I +

∫
R2

dx1dx2 (κ εµνρAµ ∂νAρ + jµAµ) . (4.10)

Note that if we substitute the current expression (4.9) in (4.10) and exploit the Dirac delta
function properties we obtain the following equivalent expression for the lagrangian:

L =
N∑
I=1

[
1

2
mv2

I − e
(
−A0(t, ~rI(t))− ~vI(t) · ~A(t, ~rI(t)

)]
+ κ

∫
R2

dx1dx2 εµνρAµ ∂νAρ .

(4.11)
Being ~aI(t) the acceleration of the I-th particle, the equation of motion for each variable
~rI is then the Lorentz equation:

maiI(t) = e
(
Ei(t, ~rI(t)) + εij vjI(t)B(t, ~rI(t))

)
(4.12)

where obviously ~E and B are defined in terms of the Chern-Simons vector field in the
same way as electric and magnetic fields (see equations (1.4)).
Then we easily find the remaining equations of motion by taking the variation of the action
S =

∫
dtL with respect to Aµ:

jµ = −2κ εµνρ ∂νAρ ⇐⇒ jµ = −κ εµνρ Fνρ . (4.13)

The fact that the Chern-Simons theory does not carry any independent degree of freedom
should suggests that (4.13) just express the fields ~E and B through the matter current.
This can be seen more clearly if we separate the temporal and the spatial equations:

ρ = −κ ε0ij Fij = −κ εij εij B = −2κB

ji = −κ εij0 Fj0 − κ εi0j F0j = 2κ εij F0j = −2κ εij Ej
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=⇒


B(x) = − ρ

2κ
= − e

2κ

N∑
I=1

δ(2)(~x− ~rI(t))

Ei(x) =
1

2κ
εij jj =

e

2κ
εij

N∑
I=1

vjI(t) δ
(2)(~x− ~rI(t)) .

(4.14)

Physically these equations attach an electric and a magnetic field to every particle. These
fields are non-zero only along the particle trajectories. Indeed the Lorentz equation for
the I-th particle becomes:

maiI(t) =
e2

2κ
εij

N∑
J=1

[(
vjJ(t)− vjI(t)

)
δ(2)(~rJ(t)− ~rI(t))

]
which means that a particle feels a non-vanishing force only if it occupies the same position
of another one, which is impossible in the hypothesis of hard-core particles. Hence the
resulting Lorentz force on each particle vanishes.
Even though the total force acting on the particles is zero, the quantum dynamics of
the system is non-trivial because of the presence of statistical interactions arising from
the Aharonov-Bohm mechanism. Indeed let us consider the first equation in (4.14) and
integrate both sides along an arbitrary little circle CI that contains only the I-th particle.
Then the LHS results in the magnetic flux ΦI through the circle, while for the RHS we
have:

− e

2κ

∫
CI

dx1dx2
N∑
J=1

δ(2)(~x− ~rJ(t)) = − e

2κ

N∑
I=1

δIJ = − e

2κ
.

Therefore, whenever a particle has a charge e, the Chern-Simons dynamics makes it also
have a magnetic flux Φ = − e

2κ attached. The standard Aharonov-Bohm effect appears
when we have a magnetic flux confined in a solenoid that affects the wavefunction of
a particle making it acquire a phase factor depending on the line integral of ~A over a
certain path. Here instead each particle takes also the role of the solenoid for all the other
particles, leading to the same kind of phenomenon.
Let us now figure out the behaviour of this system from the statistical point of view
introduced in Section 4.1. Firstly let us write the expression B = − ρ

2κ in terms of Ai:

B =
1

2
εij F ij = εij ∂iAj = − e

2κ

N∑
I=1

δ(2)(~x− ~rI(t)) .

This equation is clearly linear and thus we can solve it for one term of the sum at a time
and then sum together the solutions. Now we notice that a single term equation for the
vector potential, at least in the rest-frame of the particle in consideration, is analytically
analogous to the case of a constant uniform electric current in an infinite solenoid. So the
general solution, with adjusted constants and in the Weyl gauge A0 = 0, is given by (see
[5]):

ÃiI(x) = − e

4πκ
εji

xj − rjI(t)
|~x− ~rI(t)|2

(4.15)

where tilde indicates that this is the field generated by just one particle. However, when
computing the value ~AI of the vector potential that the I-th particle feels, we should pay
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attention to neglect the field generated by itself, since from the Lorentz equation it is clear
that there is no self-interaction:

AiI =
e

4πκ
εij
∑
J 6=I

rjI(t)− r
j
J(t)

|~rI(t)− ~rJ(t)|2
. (4.16)

So, once we have determined the expression for the Chern-Simons field Aµ through its
field equations and thus eliminated its kinetic term from the lagrangian, we are left with
a system of N particles moving in the effective vector potential given by (4.16).
Now if we introduce the azimutal angles of the particles as in (4.6) and think about the
expression (4.16) as a function of the N position vectors ~rI , we have the following equality
(we omit time dependence in order to simplify the notation):

− ∂

∂riI
θI,J = − ∂

∂riI

[
tan−1

(
r2
I − r2

J

r1
I − r1

J

)]
= − 1

1 +
(
r2
I−r

2
J

r1
I−r

1
J

)2

∂

∂riI

(
r2
I − r2

J

r1
I − r1

J

)

= −
(r1
I − r1

J)2

|~rI − ~rJ |2

[
−δi1

r2
I − r2

J

(r1
I − r1

J)2
+ δi2

1

r1
I − r1

I

]
= εij

rjI − r
j
J

|~rI − ~rJ |2
.

It follows that (4.16) can be written in the form:

AiI = − e

4πκ

∂

∂riI

∑
J 6=I

θI,J . (4.17)

Now that we have determined the effective vector potential experienced by the particles,
we can insert it in the lagrangian, obtaining the effective lagrangian describing the system
of particles:

L′ =
N∑
I=1

(
1

2
mv2

I + e viI A
i
I

)
=

N∑
I=1

(
1

2
mv2

I

)
− e2

4πκ

N∑
I=1

∑
J 6=I

viI
∂

∂riI
θI,J .

The double sum in the second term can be simplified:

N∑
I=1

∑
J 6=I

viI
∂

∂riI
θI,J =

N∑
I=1

[
I−1∑
J=1

viI
∂

∂riI
θI,J +

N∑
J=I+1

viI
∂

∂riI
θI,J

]

=

N∑
J=1

J−1∑
I=1

viJ
∂

∂riJ
θJ,I +

∑
I<J

viI
∂

∂riI
θI,J = −

∑
I<J

viJ
∂

∂riI
θI,J +

∑
I<J

viI
∂

∂riI
θI,J

=
∑
I<J

(
viI − viJ

) ∂

∂riI
θI,J

where we have used the fact that ∂
∂riJ

θI,J = − ∂
∂riI

θI,J and ∂
∂riI

θJ,I = ∂
∂riI

θI,J , which are

simple consequences of the definition of θI,J . Moreover the single addend of the sum can
be written as a time derivative:

d

dt
θI,J (~rI(t), ~rJ(t)) =

(
∂

∂riI
θI,J

)
driI
dt

+

(
∂

∂riJ
θI,J

)
driJ
dt

= viI
∂

∂riI
θI,J − viJ

∂

∂riI
θI,J .
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Therefore the expression for the lagrangian L′ becomes:

L′ =

N∑
I=1

(
1

2
mv2

I

)
− e2

4πκ

∑
I<J

d

dt
θI,J . (4.18)

We have thus managed to write down a lagrangian describing our N particles in the form
(4.8) and thus, according to the general framework described in Section 4.1, our particles
can be treated as anyons with statistics:

ν =
e2

4πκ
=
κΦ

4π
. (4.19)

So we can describe quantum particles with any possible statistics by adjusting the constant
κ of the Chern-Simons term.





Conclusion

In the present work we have reviewed the main features of the classical Chern-Simons
theory as a topological gauge theory on the plane. We proved its gauge invariance, its
metric independence, and the fact that it does not carry any local physical degree of
freedom.
We also explored a couple of its important applications. We found that a theory whose
dynamics is governed by a sum of the Maxwell lagrangian and the Chern-Simons one
describes a massive gauge-invariant vector field which is somehow similar to the classical
electrodynamics vector potential yet satisfying Klein-Gordon equation and carring a non-
zero spin. We have showed that the same dynamics is described by a dual theory which
is realized thanks to Chern-Simons lagrangian too, and both the theories actually arise
from a third more general theory.
Also we studied the unusual statistical dynamics of anyons, quasi-particles on the plane
which are neither bosons nor fermions. Topological properties of 2-dimensional spaces
allows their existance and so we explained how Chern-Simons theory provides a way for
modelling a concrete system of N anyons moving freely on the plane.
A further study of this interesting gauge theory could deal with some phenomenological
applications, such as the description of fractional quantum hall effect and quantum vor-
tices, as well as other more formal aspects, for instance its role in topological gravity,
supergravity and string theory.
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APPENDIX A

Noether’s current in classical field theories

In any theory described by a lagrangian the Noether’s theorem states that to every sym-
metry of this lagrangian (i.e. to any transformation that leaves the action unchanged)
corresponds a conserved quantity. In this appendix we recall the general expression of
the corresponding current, the Noether’s current, associated with a generic spacetime
transformation, and therefore the definition of the stress-energy tensor and the angular
momentum density tensor. We will work in 2+1 dimension (it is enough for the purposes
of the thesis), in the setting of a general field theory with ϕI as dynamic variables, where
I is a generic index that labels the fields, so that ϕI can be a scalar, a vector, a higher
order tensor, or whatever else. The infinitesimal transformation acts on the coordinates
and on the fields in the following way:x

′µ = xµ + δxµ

ϕ′I(x
′) = ϕI(x) + δ̄ϕI(x) .

(A.1)

It’s now convenient to define δϕI(x) ≡ ϕ′I(x)−ϕI(x). Note that it doesn’t matter whether
the spacetime point in which we evaluate either δϕI or δ̄ϕI is x or x′ since the differences
between the two cases is negligible (because it is of higher order in δxµ) and the transfor-
mations we are talking about are infinitesimal; this allows us to leave the spacetime point
dependence of the field variations implicit.
We want to find a quantity Jµ such that ∂µJ

µ = 0 and that depends on the particu-
lar symmetry considered. We start from requiring the action to be invariant under the
transformation (A.1) i.e. L′ d3x′ = L d3x (we hide the integrals because the boundaries
transform accordingly with the coordinates). The relation between the two volume forms
is:

d3x′ = det

(
∂x′µ

∂xν

)
d3x = det (δµν + ∂νδx

µ) d3x = (1 + ∂µδx
µ) d3x .

Now let us handle the equality between the actions before and after the symmetry trans-
formations, that must be true at the first order:

L
(
ϕ′I(x

′), ∂αϕ
′
I(x
′)
)
d3x′ = L (ϕI(x), ∂αϕI(x)) d3x
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⇐⇒

L
(
ϕ′I(x

′), ∂αϕ
′
I(x
′)
)

+ L
(
ϕ′I(x

′), ∂αϕ
′
I(x
′)
)
∂µδx

µ − L (ϕI(x), ∂αϕI(x)) = 0

⇐⇒
L
(
ϕ′I(x

′), ∂αϕ
′
I(x
′)
)
− L

(
ϕ′I(x), ∂αϕ

′
I(x)

)
+ L

(
ϕ′I(x), ∂αϕ

′
I(x)

)
∂µδx

µ+

+L
(
ϕ′I(x), ∂αϕ

′
I(x)

)
− L (ϕI(x), ∂αϕI(x)) = 0

⇐⇒

∂µL
(
ϕ′I(x), ∂αϕ

′
I(x)

)
δxµ + L

(
ϕ′I(x), ∂αϕ

′
I(x)

)
∂µδx

µ +
∂L
∂ϕI

δϕI +
∂L

∂∂µϕI
∂µδϕI = 0

⇐⇒

∂µ

[
L δxµ +

∂L
∂∂µϕI

δϕI

]
+

∂L
∂ϕI

δϕI − ∂µ
∂L

∂∂µϕI
δϕI = 0 .

In this equality the terms that are out of the square brackets vanish if the Euler-Lagrange
equations of the theory are satisfied so we find exactly the Noether’s current Jµ we were
looking for:

Jµ ≡ L δxµ +
∂L

∂∂µϕI
δϕI =⇒ ∂µJ

µ = 0 .

Let us now express δϕI as δϕI = δ̄ϕI − ∂µϕI δxµ. It follows:

Jµ = L δxµ − ∂L
∂∂µϕI

∂νϕI δx
ν +

∂L
∂∂µϕI

δ̄ϕI

=

(
L ηµν − ∂L

∂∂µϕI
∂νϕI

)
δxν +

∂L
∂∂µϕI

δ̄ϕI .

The term enclosed in parenthesis is exactly what defines the canonical stress-energy tensor
of the theory:

Tµν ≡ −ηµν L+
∂L

∂∂µϕI
∂νϕI =⇒ Jµ = −Tµν δxν +

∂L
∂∂µϕI

δ̄ϕI .

Note that it is proportional to the Noether’s current associated to spacetime translations;
indeed this symmetry is given by δxµ = aµ, with aµ ∈ R3, and δ̄ϕI = 0, so that Noether’s
current is:

Jµ = −aν Tµν .

The conserved quantity obtained by integrating T 0µ over spatial dimensions is the total
momentum, and so if the theory is invariant under Poincaré spacetime translations, it
directly follows that the momentum is conserved.
The other particularly important symmetry of a relativistic invariant action is the one
under Lorentz transformations, which leds to the definition of the angular momentum
density tensor as a Noether’s current. Writing it in general terms is a little bit tricky and
not so much useful, so it will be computed in specific cases; however we can state that it is
the tensor J µνρ such that Noether’s current associated to Lorentz transformations takes
the form:

Jµ =
1

2
ωνρ J µνρ

where ωνρ is the antisymmetryc parameter tensor of the infinitesimal Lorentz transforma-
tion. J µνρ is significant for understanding whether the field is carrying a spin or not.



APPENDIX B

Stress-energy tensors derivation

Maxwell-Chern-Simons theory

According to the general result reviewed in Appendix A, the canonical stress-energy tensor
associated to the lagrangian density (2.8) is:

Tµνc = −ηµν L+
∂L

∂∂µAρ
∂νAρ

= −ηµν
(

1

2
Fα Fα +

1

2
mAα Fα

)
+

∂

∂∂µAρ

(
1

2
Fα Fα +

1

2
mεαβσ Aα ∂βAσ

)
∂νAρ

= −ηµν
(

1

2
Fα Fα +

1

2
mAα Fα

)
+

(
Fα ε

αβσ δµβ δ
ρ
σ +

1

2
mεαβσ Aα δ

µ
β δ

ρ
σ

)
∂νAρ

= −ηµν
(

1

2
Fα Fα +

1

2
mAα Fα

)
+

(
Fα ε

αµρ +
1

2
mεαµρAα

)
∂νAρ

= −1

2
ηµν Fα Fα −

1

2
mηµν Aα Fα + εαµρ Fα F

ν
ρ + εαµρ Fα ∂ρA

ν +
1

2
mεαµρAα ∂

νAρ

=

(
−1

2
ηµν Fα Fα − Fµρ F νρ

)
− 1

2
mηµν Aα Fα + εαµρ Fα ∂ρA

ν +
1

2
mεαµρAα ∂

νAρ .

Now let us manipulate a bit the last three terms:

−1

2
mηµν Aα Fα + εαµρ Fα ∂ρA

ν +
1

2
mεαµρAα ∂

νAρ

= −1

2
mηµν Aα Fα + εαµρ Fα ∂ρA

ν +
1

2
mεαµρAα F

ν
ρ +

1

2
mεαµρAα ∂ρA

ν

= −1

2
mηµν Aα Fα + εαµρ Fα ∂ρA

ν − 1

2
mηνσ εαµρAα ελσρ F

λ +
1

2
mεαµρAα ∂ρA

ν

=
��

���
��

−1

2
mηµν Aα Fα + εαµρ Fα ∂ρA

ν +
���

���
�1

2
mηνµAα F

α − 1

2
mηναAα F

µ +
1

2
mεαµρAα ∂ρA

ν

= −1

2
mAν Fµ − εαµρAν ∂ρFα −

1

2
mεαµρAν ∂ρAα + ∂ρ

[
εαµρAν

(
Fα +

1

2
mAα

)]
= −Aν (mFµ + εαµρ ∂ρFα) + ∂ρ

[
εαµρAν

(
Fα +

1

2
mAα

)]
.

The first term vanishes because of the equations of motion and other one is of the form
∂ρX

[µρ]ν and thus it does not contribute to the stress-energy tensor. Therefore, modulo
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this term, Tµν turns out to be equivalent to:

Tµν = −1

2
ηµν Fα Fα − Fµρ F νρ =

1

4
ηµν Fαβ Fαβ + Fµρ F ν

ρ .

Note that it can be written in terms of the dual field as follows:

Tµν = −1

2
ηµν Fα Fα − ηνσ εαµρ Fα εβσρ F β = −1

2
ηµν Fα Fα + ηνµ Fα F

α − ηνα Fα Fµ

=
1

2
ηµν Fα Fα − Fµ F ν .

Dual massive electrodynamics

According to the general expression of Appendix A, the canonical stress-energy tensor
associated to the lagrangian density (2.15) is:

Tµνc = −ηµν L+
∂L

∂∂µfρ
∂νfρ = −ηµν

(
−1

2
fρ fρ −

1

2m
εραβ fρ ∂αfβ

)
− 1

2m
εσαβ fσ δ

µ
α δ

ρ
β ∂

νfρ

=
1

2
ηµνfρ fρ +

1

2m
ηµν εραβ fρ ∂αfβ −

1

2m
εσµρ fσ ∂

νfρ

=
1

2
ηµνfρ fρ +

1

2m
ηµν εραβ fρ ∂αfβ −

1

2m
εσµρ fσ η

νλ (∂λfρ − ∂ρfλ)− 1

2m
εσµρ fσ ∂ρf

ν .

Now note that contracting (2.16) with εραβ we obtain:

εραβ fρ +
1

m
εραβ ερνµ ∂

νfµ = 0 ⇐⇒ εραβ fρ =
1

m

(
∂αfβ − ∂βfα

)
. (B.1)

So if we evaluate the stress-energy tensor on the mass shell, we can use the equation (B.1)
to replace the antisymmetryc round bracket term. Let us manipulate also the other terms:

Tµνc =
1

2
ηµνfρ fρ +

1

2m
ηµν εραβ fρ ∂αfβ −

1

2
ηνλ εσµρ fσ εαλρ f

α − 1

2m
εσµρ fσ ∂ρf

ν

=
1

2
ηµνfρ

���
���

���
(
fρ +

1

m
εραβ ∂αfβ

)
+

1

2
ηνµ fα f

α − 1

2
ηνλ fλ f

µ − 1

2m
εσµρ fσ ∂ρf

ν

=
1

2
ηνµ fα f

α − 1

2
fν fµ +

1

2m
εσµρ fν ∂ρfσ − ∂ρ

(
1

2m
εσµρ fσ f

ν

)
=

1

2
ηνµ fα f

α − fν fµ − ∂ρ
(

1

2m
εσµρ fσ f

ν

)
.

The last term is of the form ∂ρX
[µρ]ν and thus does not contribute to the stress-energy

tensor. Therefore Tµν turns out to be equivalent to:

Tµν =
1

2
ηµν fα fα − fµ fν .



APPENDIX C

Gauge transformation of non-abelian LCS

Let us compute how does (3.13) varies under a gauge transformation g. For simplicity
we initially consider separately the two terms Aµ ∂νAρ and AµAν Aρ. In the following
computations we will use the fact that both of them are arguments of the trace and so we
can cyclic permute the composition order of every addend; moreover terms with symmetric
indeces will vanish when contracted with the Levi-Civita tensor and so we will drop them.
For the first term we have:(
gAµg

−1 + ie−1(∂µg)g−1) ∂ν (gAρg−1 + ie−1(∂ρg)g−1) =

=
(
gAµg

−1 + ie−1(∂µg)g−1) [(∂νg)Aρg
−1 + g(∂νAρ)g

−1 + gAρ(∂νg
−1) +((((

(((ie−1(∂ν∂ρg)g−1+

+ ie−1(∂ρg)(∂νg
−1)
]

= gAµg
−1(∂νg)Aρg

−1 + gAµ(∂νAρ)g
−1 + gAµAρ(∂νg

−1) + ie−1gAµg
−1(∂ρg)(∂νg

−1)+

+ ie−1(∂µg)g−1(∂νg)Aρg
−1 + ie−1(∂µg)(∂νAρ)g

−1 + ie−1(∂µg)Aρ(∂νg
−1)+

− e−2(∂µg)g−1(∂ρg)(∂νg
−1)

= Aµ∂νAρ +AρAµg
−1(∂νg) +AµAρ(∂νg

−1)g + ie−1Aµg
−1(∂ρg)(∂νg

−1)g+

+ ie−1Aρg
−1(∂µg)g−1(∂νg) + ie−1(∂µg)(∂νAρ)g

−1 + ie−1(∂µg)Aρ(∂νg
−1)+

− e−2(∂µg)g−1(∂ρg)(∂νg
−1) .

(C.1)

In the same way, for the second term we have:(
gAµg

−1 + ie−1(∂µg)g−1) (gAνg−1 + ie−1(∂νg)g−1) (gAρg−1 + ie−1(∂ρg)g−1) =

=
(
gAµAνg

−1 + ie−1gAµg
−1(∂νg)g−1 + ie−1(∂µg)Aνg

−1 − e−2(∂µg)g−1(∂νg)g−1) (gAρg−1+

+ ie−1(∂ρg)g−1)
= gAµAνAρg

−1 + ie−1gAµAνg
−1(∂ρg)g−1 + ie−1gAµg

−1(∂νg)Aρg
−1 − e−2gAµg

−1(∂νg)g−1(∂ρg)g−1+

+ ie−1(∂µg)AνAρg
−1 − e−2(∂µg)Aνg

−1(∂ρg)g−1 − e−2(∂µg)g−1(∂νg)Aρg
−1+

− ie−3(∂µg)g−1(∂νg)g−1(∂ρg)g−1

= AµAνAρ + ie−1[AµAνg−1(∂ρg) +AρAµg
−1(∂νg) +AνAρg

−1(∂µg)
]
− e−2[Aµg−1(∂νg)g−1(∂ρg)+

+Aνg
−1(∂ρg)g−1(∂µg) +Aρg

−1(∂µg)g−1(∂νg)
]
− ie−3(∂µg)g−1(∂νg)g−1(∂ρg)g−1 .

(C.2)
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The first term of (C.1) and the first of (C.2) make up the starting lagrangian so they
will not appear in the variation. Now in (C.2) we can use the fact that all the terms are
contracted with εµνρ in order to exchange indeces and simplify the expression, so (C.2)
modulo the first term becomes:

3ie−1AµAνg
−1(∂ρg)− 3e−2Aµg

−1(∂νg)g−1(∂ρg)− ie−3(∂µg)g−1(∂νg)g−1(∂ρg)g−1 . (C.3)

Now we put together with the correct coefficients the variation due to the first term (C.1)
and that due to the second (C.3). For simplicity we consider separately the terms with
quadratic, linear and no dependence on Aµ. Quadratic terms:

κ εµνρ Tr
[
AρAµg

−1(∂νg) +AµAρ(∂νg
−1)g − 2AµAνg

−1(∂ρg)
]

=

= κ εµνρ Tr
[
−AµAνg−1(∂ρg)−AµAν(∂ρg

−1)g
]

= −κεµνρ Tr
[
AµAν ∂ρ(g

−1g)
]

= 0 .
(C.4)

Terms linear in Aµ:

κ εµνρ Tr
[
ie−1Aµg

−1(∂ρg)(∂νg
−1)g + ie−1Aρg

−1(∂µg)g−1(∂νg) + ie−1(∂µg)(∂νAρ)g
−1+

+ ie−1(∂µg)Aρ(∂νg
−1)− 2ie−1Aµg

−1(∂νg)g−1(∂ρg)
]

= ie−1κ εµνρ Tr
[
Aµg

−1(∂ρg)(∂νg
−1)g −Aµg−1(∂νg)g−1(∂ρg) + ∂ν

(
(∂µg)Aρg

−1)− ∂ν(g−1(∂µg)
)
Aρ+

+ (∂µg)Aρ(∂νg
−1)
]

= ie−1κ εµνρ Tr
[
Aµg

−1(∂ρg)
(
∂ν(g−1g)

)
+ ∂ν

(
(∂µg)Aρg

−1)−((((((((∂νg
−1)(∂µg)Aρ +((((

((((∂µg)Aρ(∂νg
−1)
]

= ie−1κ εµνρ ∂ν Tr
[
(∂µg)Aρ g

−1] .
(C.5)

Terms not depending on Aµ:

κ εµνρ Tr

[
− e−2(∂µg)g−1(∂ρg)(∂νg

−1) +
2

3
e−2(∂µg)g−1(∂νg)g−1(∂ρg)g−1

]
=

= e−2κ εµνρ Tr

[
(∂µg)g−1(∂νg)

(
(∂ρg

−1) +
2

3
g−1(∂ρg)g−1

)]

= e−2κ εµνρ Tr

[
(∂µg)g−1(∂νg)g−1

(
g(∂ρg

−1) +
2

3
(∂ρg)g−1

)]
= −1

3
e−2κ εµνρ Tr

[
(∂µg)g−1(∂νg)g−1(∂ρg)g−1

]
.

(C.6)

Putting together all the pieces we find the total variation of the lagrangian:

δLCS = ie−1κ εµνρ ∂ν Tr
[
(∂µg)Aρ g

−1
]
− e−2κ

3
εµνρ Tr

[
(∂µg) g−1 (∂νg) g−1 (∂ρg) g−1

]
.
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