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Abstract

Neural Human-Machine Interfaces (HMI) are technologies that allow a hu-
man being to communicate his/her intention to external devices — such as
computers, robots and prostheses — through the acquisition of signals from
the central nervous system. To overcome the limitations of interfaces based
on unimodal neural signals, the research community recently introduced the
concept of hybrid neural interfaces based on the combination of brain and
muscular signals. However, state-of-the-art approaches still relies on simple
additive fusion techniques or heuristic decision rules, limiting the perfor-

mance in complex decoding tasks.

To go beyond the state-of-the-art, this thesis proposes to model the con-
nectivity in the human neuromuscular system through a weighted undirected
graph: the nodes of the graph represent the electroencephalography (EEG)
and electromyography (EMG) channels, and the weight of the connections
represents signals’ correlation. Then, a graph convolutional neural network
(GCN) with learning structure was defined and implemented to let the model
learn both the graph connections and the feature extraction automatically
from the data. The GCN has been evaluated in different deep learning archi-
tectures combined with gated recurrent units (GRU), as well as with input
signals in both the time and frequency domain, in a multi-class upper limb

motion classification application.



The obtained results show that the proposed cortico-muscular graph neu-
ral network (CMGNet) is capable of predicting reaching, grasping and wrist
twisting with more than 99% accuracy on average. In addition, it shows
promising performance in a challenging classification scenario with 11 dif-
ferent upper limb motions, outperforming state-of-the-art machine learning
approaches.

The encouraging results suggest that the development of advanced Al
approaches which explicitly consider the inner function of the human neu-
romotor system may be the key to significantly improve the reliability of

neuro-driven devices.
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1 Introduction

1.1 Background

The rapid technological advancement has seen an increase in the use of com-
puters in fields where normally there would not be. The area most affected
by this phenomenon is the medical system, which has acquired new methods
and tools for diagnosis and treatments. Some of them has the objective not
to cure the people, but to improve their life because the illness that afflict
them can be impossible to totally resolve or irreversible, e.g. amyotrophic
lateral sclerosis, amputations or Parkinson disease.

One of the tools that is receiving attention from the researchers is the
human-machine interface (HMI), that refers to a channel that allow commu-
nications between a person and a machine, computer program, or system.
Other terms exist which are synonyms or similar concepts, such as human-
machine interaction [6] or man-machine interface [7]. The HMIs’ field is very
wide, they can be applied everywhere, in fact every day we use some HMI
such as the mouse and the keyboard to utilize the computer, the smartphone
touchscreen, the buttons to change the radio station or the volume in the car
or also the switches in an industrial machine.

The medical HMIs utilize biological signals to determine what action

should be done based on them. Especially the neurophysiological signals
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has started to been used thanks also to the fact that they are electrical by
nature and so they can be measured easily without too much effort. For
this reason the neuroscience has started to develop HMIs to interpret the
signals and use them to predict what the subject is doing anticipating the
action. This high HMIs usage has led to two new terms, one to refer to this
specific HMI application, the brain-computer interface, and the other to the
neuroscience branch that implement the command execution into robots, the

neurorobotics.

Usually electroencephalography (EEG) and electromyography (EMG) are
used in neurorobotics due to the fact that they are non-invasive and their
components are portable therefore make these type of acquisitions wearable
by the subjects. EMG signals are more informative about various movements,
but the activity can be impaired by various neuromuscular pathologies. The
EEG signal instead, can be used without the actual movement, so it can
potentially predict the intentions before the actual execution. On the other
hand it is noisier and more complex to process due to artifacts and non-

stationarities.

To overcome these issues, some HMIs that use more than a modality are
born and called hybrid or multimodal HMIs (hHMI). The aim of hHMIs is to
extract the most discriminative information from every signal and combine
them to increase the performance of their unimodal counterparts. A lot of
research effort is spent in identifying novel approaches to fuse multimodal sig-
nals since different fusion methods can drastically change the results, in fact
many research papers are constantly published to understand and improve

them but also to increase the chance for a progress breakthrough.

My thesis try to propose a bioinspired hHMI that simulates the connectiv-

ity between the brain and the muscles and also between themself [8, 9, 10].
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The interface learns to combine the features coming from the multimodal
data by itself, making the model more independent of the choices made dur-
ing the development and more subject dependent, improving its inter-subject

adaptability.

1.2 Human Machine Interface

The birth of HMIs is due to the continuous technological advancement, that
has led to low cost and more powerful electronics and the necessity of helping
people. By definition, there is a large variety of interfaces with very different
usage, e.g. home, hospitals and industries

As has been said in Section 1.1, the terms human machine interface indi-
cate anything that is between a human and a machine, computer program, or
system that is controlled by him. A lot of types of HMI do exist with many
applications, such as the button that can start some action from a machine,
the remote controller for the television or also the graphic interface that is
used for controlling a dam or a nuclear reactor.

Every HMI can be schematized as a closed-loop. It is composed by three
blocks that send signals to each other [Figure 1.1] [11, 12].
The starting point is the subject-acquisition block where the human inter-
action or intention is acquired and processed. Then the feature extraction
from the previous information is done to use a classification or regression
to transform the command machine readable. The control data are sent to
the last part of the loop, the execution-feedback block that return a visible
feedback on the interface or with the commands’ actuation on devices.

The most common unimodal HMI that uses biological signals are the brain

computer interfaces that use the brain signals and the myoelectric interfaces
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Acqu|5|t|on Feature extraction Classification

> —_—

Online feedback

Subject AT devices

Figure 1.1 The HMI closed loop. Bottom left: subject-acquisition block; Upper right:
processing-feature extraction block; Bottom Right: execution-feedback block

that instead use the EMG signal.

1.2.1 Brain Computer Interface (BCl)

Electroencephalography (EEG) is one of the most common signal used in
BCI, since it is noninvasive, low-cost, and with an high temporal resolution
compared with other methods [13]. The EEG has become popular, unlike
other methods such as magneto encephalography (MEG) or functional near-
infrared spectroscope (fNIRS), for its inexpensiveness, the higher wearability
and its direct measures of the brain activity [14, 15].

The signals are recorded by placing some electrodes on the scalp to detect
the pyramidal neurons’ electrical activity, which are parallels to each others.
The main reasons that make these neurons very important are their firing
synchronisation and their proximity to the head, which leads to an increase

in the common electrical fields that can be detectable from the sensors [16].
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The spatial resolution is poor due to the combination of signals from many
neurons close to each others, while the temporal resolution is very high be-
cause the recordings are directly collected from the activity sampling. The
EEG signal is very noisy as a result of the presence of neurons activity also in
a resting state. For this reason, the signal without external stimuli is called
spontaneous and, when stimulus are given, a brain response can be seen in
the signal in the form of an Event-Related Potential (ERP) [17].

The amplitude of the spontaneous EEG oscillations is in the range of
50-200 pV while for the ERP is between 10-20 pV.

In the frequency domain, the EEG occupies a range from 0.1 Hz to 100
Hz that is commonly divided in the literature into five sub-bands linked with
different neurophysiological states. The five bands are illustrated in Figure

1.2 [18, 19]:

e [0.1 - 4 Hz] Delta waves: The amplitude decreases with the age and
in adults they are associated with a deep sleep. If a large activity is
present during the waking state, the waves are considered pathological.

They are present posteriorly in child and frontally in adults.

e [4 - 8 Hz| Theta waves: They are common in children and in adults
during sleep or, in some cases, linked with stress. They are located in

the parietal areas.

e [8 - 13 Hz| Alpha waves: Present during relaxation in a waking state
and their amplitude increases if the eyes are closed and decreases if
reopened or some mental activity is done. They are principally located
in the occipital areas. Within this same frequency range, there is also
the p rhythm which is associated to motor activity and, thus, it is

located over the sensory-motor area.
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e [13 - 30 Hz| Beta waves: Their presence indicates that the brain is in-
volved in some mental effort during the waking state. These frequencies
are also linked with movements that can be real or imaginary. They

are present in the frontal and parietal regions.

e [30 - 100 Hz] Gamma waves: They are linked with deep concentration
or during muscle maximum contraction. The activity is present on the

somatosensory cortex.

el Ao

Gamma: 30-100+ Hz

R

Beta: 12-30 Hz

AN

Alpha: 8-12 Hz
/\/J\/\/"vw\
Theta: 4-7 Hz

Delta: 0-4 Hz

Figure 1.2 The EEG rhythms

Regarding the evoked potentials, which come from the presence of exter-
nal stimuli, two of the most common ones are the P300 and the Steady State
Visual Evoked Potentials (SSVEP)[20]. The P300 occurs in response to an
infrequent stimuli, and it’s characterized by positive peak about 300 ms after

the rare stimulus appearance, commonly in the scalp central position [21].
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The SSVEP is a type of steady-state potential which is evoked by periodic
or repetitive visual stimuli [22].

Another recently explored ERP is represented by the error potential (ErrP).
This potential is generated as a consequence of an incorrect action (response
ErrP), of a feedback that indicates a mistake (feedback ErrP), from observ-
ing other people making an error (observation ErrP) or when an object does
not respect a certain order (interaction ErrP) [23]. The ErrP is characterized
by a three-phase wave with two negative peaks and a positive peak in the
middle, appearing in the central-frontal area approximately 450 ms after the

error recognition.

Another category of features that can be extracted from the EEG signal
are the ones voluntarily generated by the subject through the imagination
and/or execution of a movement, i.e. sensorimotor rhythms. In particular,
the modulation of the y and ( frequency bands is attenuated in correspon-
dence to a motor task or a sensory stimulation, that can be also imagined, a
phenomenon known as Event-Related Desynchronisation (ERD).

When the motor task is terminated, the Event-Related Synchronisation (ERS)
of the § band occurs, also known as S-rebound [24]. The ERS symbolize a de-
activated or inhibited cortical areas, instead the ERD represent the activated
areas related to the motor imagination or the preparation for the execution

of a movement.

The BCI gives new channels to control and communicate that do not
depend on the normal brain routes like muscles and nerves and so, the pos-
sibility to control devices without the necessity to physically control them.
This is very useful for people with some disabilities caused by, for example,
strokes, amputations, spinal cord injury or ALS, which impairs the commu-

nication between the brain and the other body parts.
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BClIs can be with or without the aim of rehabilitation, both using a open
or closed loop system. The latter objective is to analyze the brain activity to
create a direct pathway to control the equipment, the other instead uses the
feedback coming from the system to recover the brain activity and plasticity,
[25].

The BClIs can be also classified according to the type of signal acquisition
used [26]. The non-invasive BCI use the homonymous signal acquisitions,
which has only the problem of low amplitude that needs to be amplified. The
invasive BCI has a better signal in amplitude, frequency range and spatial
resolution but it implies other difficulties, such as the surgical operation with
insertion risks and the formation of glial scars, that after some time involves
the removing of the electrodes with a new operation.

Synchronous and asynchronous BCIs [27] exist as well. For the syn-
chronous BCI the activity has to be made in precise moments, e.g. after
a visual cue, and outside that period the computer will not receive any in-
puts. On the other hand, the asynchronous BCIs can receive commands in
every moment, so the subject can do the task at self pace. Clearly these
methods gives more flexibility but it needs to be always active and it has
to classify a lot more data than its counterpart, with the risk of delivering

undesired spurious commands.

1.2.2 Myoelectric Interface

In this particular type of interfaces the EMG signals are used, which measure
the electrical activity of the muscles motor units, but what is really recorded
is the signal that the muscle fibers use to generate the strength [28].

For the acquisition there are two possibilities, invasive or non invasive.

For the invasive acquisition, needles are placed between the muscle fibers
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and they are commonly adopted for diagnostic purposes [29]. For the nonin-
vasive acquisition, electrodes are placed on the skin in correspondence of the
muscle belly [30]. The two acquisition modalities provide signals with dif-
ferent amplitudes and wave forms, i.e. the amplitude (SEMG: 500uV-2mV,
nEMG: 501 V-50mV) and the useful frequencies (sSEMG: 5Hz-500Hz, nEMG:
1KHz-20KHz) [Figure 1.3]. When the muscular effort increases, to obtain
more strength the firing frequency of the fibers increase and more motor
units are recruited, resulting in a burst with higher amplitude in the EMG

recording.

-] Surface EMGs
E ‘ |
= | . . Mmmm—

Intramuscular EMGs

TN

T :

0 2 4 6 8 10 12 14 16 18 20
Time (s)

Figure 1.3 Surface EMG and intramuscular (needle) EMG

Also for the EMG signal, features can be extracted in both the time and
frequency domain [31, 32] to be used in myoelectric interfaces.

Common time domain features are the mean absolute value and the mean
absolute value slope, the integrated EMG, and the zero crossing. Other com-
mon time features analyse the variation of the signal around its mean, and
are the EMG variance, the root mean square and the waveform length or
the standard deviation. The frequency features, e.g. the frequency median,
centroid of frequency and the modified median frequency, can be extracted
directly from the signal, e.g. the autoregressive coefficients, or from a prior

transformation in the frequency domain using the Short-Time Fourier Trans-
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form (STFT) or the Wavelet Transform (WT) [33, 34, 35].

1.2.3 Limitations of unimodal interfaces

Neurophysiological signals have been shown to be very useful in HMI, but

taken individually they have some limitations due to their nature.

EEG can be used to predict the subject intentions and executions, but
the signal is very noisy and subjected to artifact disturbances that hide the
brain-related activity [36]. This increase the difficulty to correctly process the
features and to create an online BCI. The source of artifacts can be divided
in two categories [37]: the internal artifacts are generated by body activity,
e.g. eye blinking, neck muscular signal or movement-related artifacts and
the external artifacts can be generated from nearby equipment, e.g. electro-
magnetic noises from the power supply or motors. Even if several algorithms
have been proposed in the literature to get rid of artifacts, these method-
ologies have also the risk of removing useful brain information, limiting the

reliability of EEG as driving signal to control complex applications [38].

EMG are more informative about the movement, but several neuromuscu-
lar pathologies can impair their activity, e.g. paraplegia or quadriplegia [39].
For subjects with such problems, the EMG signal is often not usable or the
usage of this signal alone to control a robotic device can lead to early muscle
fatigue. In addition, the use of the muscular activity alone may prevent the
identification of a clear-cut biomarker that precedes biomechanical modifica-
tions, which is most likely to be a cerebral signature, i.e. anticipatory brain

potentials.

For these reasons in the last years more and more hybrid HMI are born

to overcome these limitations.
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1.3 Hybrid Human Machine Interface

An hybrid HMI, also know as multimodal HMI, records two or more physio-
logical signals and combines their information at a certain level of the process-
ing pipeline [40, 41]. hHMI are used to overcome the single-signal limitations
utilizing the strength of multiple modalities to have a better model.

The most discriminant taxonomy in hHMI is where and when to combine
the data [42, 43].
Regarding where the data are fused in the model structure, three distinction

can be made [Figure 1.4] [1]:

e Data level: the acquisitions are fused before every elaboration. This
implies that there isn’t information loss but it’s very susceptible to
noise as no preprocessing has been applied yet. Usually the data level
fusion is used when the signals are coming from the same or similar

source.

o [eature level: the features from every data are joined together before
the decision-making. Unlike the data level fusion, it has a bit of infor-
mation loss but handles the noise better. This kind of union is used

with modalities that are synchronized or closely paired.

e Decision level: after the features classification, the outputs of the clas-
sifiers are combined to make a final choice. The noise sensitivity is
very low due to the previous elaborations, but it does not provide the
possibility to extract multimodal features. Nevertheless, this way of
combining the data is the most used in multimodal models because
the join is done after the signals are elaborated independently, hence

acquisitions that are very different can be used also together.
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Figure 1.4 Main types of fusion approaches depending on where data are fused: data,
feature and decision level [1]

Looking for when the combination can be done other distinctions can be

done from a temporal point of view [Figure 1.5] [2]:

o Feature combination: is the most common and as input the raw signals
or their features are used with same weights to have a complete inter-
action between them. This union can be seen as data or feature level
fusion depending on the model’s input. The objective is to improve the

model increasing the data informativeness using other signals.

e Parallel processing: every modality has its own model and the elabo-

rations are done in parallel. The combination is done at the end with
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their outputs, as the decision level fusion, with the purpose to improve

the predictions using additional modalities.

e Cascade prediction: it processes the modalities sequentially, constrain-

ing the outputs relying on the previous. In other words, from the first

model decision the second one is chosen and so on, to restrict the pos-

sible solutions. This approach is used when a signal is better, or it has

more important information, than the others.

sEMG I\
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Figure 1.5 Main types of fusion approaches depending on when data are fused: feature
combination, parallel processing and cascade prediction [2]

Regarding how the fusion can be done there are two possibilities [Figure

1.6] [3]:

o Additive fusion: it’s the simplest one, it assumes that every input is

potentially useful and so it should be used in the model. The HMI has

to determine the quality of each signal using the combined features and

this is true if there is a large amount of data.

o Multiplicative fusion: it uses some weight for every input to take into

account their quality and model meaningfulness.

In this way weak
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modalities has less importance than the others, restricting their out-

put influence and improving the overall performance. It’s also called

Bayesian fusion because usually the weights are linked with the inverse

of the errors’ distribution, like the Bayesian inference.

These two modalities can be used together, i.e. the additive fusion to create

a mixture of the data to increase the number of inputs and the available

information, then the multiplicative one to selects useful modalities and their

mixtures [3].
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Figure 1.6 Main types of fusion approaches depending on how data are fused: additive,
multiplicative and their combination [3]

hHMIs need a deep data analysis to work correctly and to have satisfying

performances. For this reason, the models that fit better this need are coming

from machine learning and deep learning networks and in fact usually hHMI

are developed using these strategies.

1.3.1 Works in literature for hHMI

The classical methods used for the hybrid HMI and the features merging are

based on machine learning techniques.
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Li et al. [44] acquired SEMG and EEG to improve the control of the hand
prosthesis using the features combination. After the data pre-processing, the
information from the data were extracted independently and then merged to
be feeded into a Linear Discriminant Analysis (LDA) classifier.

Bakshi et al. [45] used the parallel processing of EMG and EEG data to
predict the movements of different parts of the arm. When the muscular fea-
tures were extracted, three Kernel Recursive Least Square Tracker (KRLS-T)
were used to tracking the 3D positions of the upper part of the arm, while
the EEG information were used in a two-stage multiclass Support Vector
Machine (SVM) to estimate the motion of the hand and wrist.

Davarinia et al. [46] with a cascade prediction wanted to obtain the elbow
angle trajectory using the EMG and the SSVEP. After the models train,
the brain signal was used to distinguish the arm target and so the corrected
trained model was chosen and used with the new EMG data to estimate the
elbow angle.

Leerskov et al. [47] objective was to check if a subject with spinal cord injury
could control an HMI. They extracted the EMG and EEG characteristics in-
dependently and then they were merged at features level before being used
in a LDA classifier.

Tryon et al. [48] wanted to classify the elbow extension and flexion move-
ments at decision level. They used two SVM classifiers for the two data
modalities and then the last SVM for merging the previous decision. This
attempt didn’t give the hoped-for results, in fact the usage of only the EMG
gave better results than the hybrid one.

Riccio et al. [49] used an hHMI to correct the errors during spelling tasks.
They used a feature level joint obtaining great results and positive feedback

from the subjects.
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Leeb et al. [50, 51] did a study about the classification accuracy that de-
crease in presence of muscular fatigues. In both the reports they merged
at classification level, but in the first case they used an additive fusion, like
all the previous works, and in the second paper a multiplicative fusion was
used. The results were very similar but in the bayesian fusion the standard
deviation of the accuracy was lower.

Hooda et al. [52] wanted to classify the unilateral foot movements testing
a parallel processing and a cascade prediction. The last structure obtained
better results, using the EEG to recognize the resting and non resting state
while the EMG was used for the movement classification with a decision tree.
In the parallel processing a SVM classifier was used.

Cui et al. [53] classified nine lower limbs movements using a decision level
structure. For the EEG a SVM was used while for the EMG a random for-
est (RF) technique was applied. They used different models for the decision
merging such as SVM, RF and nearest neighbour.

1.3.2 Deep learning in hHMI

In recent years, deep neural networks are more and more used in HMI
[54]. Differently from standard machine learning (ML) methods that requires
hand-crafted features, the advantage of the deep neural networks (DNN) is
the possibility to achieve a end-to-end learning in which the most discrimi-
native features in the data are automatically extracted by the model during
training [55].
Different hHMI types and DNN models can be found in the literature.

Tortora et al. [56] utilizes EEG and EMG for gait decoding. Every modality
is processed in parallel and decoded through stacked LSTM layers, and their

decisions are weighted and added using the principle of Bayesian inference.
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In particular, the EEG signal is utilized to recognize the movement intention,
while the EMG identify which leg is moving. It was seen that the perfor-
mances of the multimodal network are better than the ones with only the
EEG signals or the EMG signals.

Chiarelli et al. [57] uses two brain signals, i.e. EEG and f{NIRS, to do a motor
imagery classification. A parallel processing is used with a 6 layer CNN and
the inputs are the moving average of a 1 second window for every channel.
The objective is to classify if the motor imagery task is done with left or
right hand. Different structures are used but the multimodal DNN has the

best performance, with respect to MLL models and single modality DNN.

Deep learning in multimodal HMIs is giving interesting and promising
results with its restrains. Besides the classical DL limitations [58], such as
the dependency on hyper-parameters or the structure and the impossibility
to have explicit rules to determine them, the literature models treat different
signals independently or at least, if the data come from the same source, they

are directly joined [59, 57].

In the case of HMI, and more in BCI, the data coming from the subjects
are biological signals that are somewhat linked or with some dependency
[60, 61]. The DNN are bio-inspired, in fact they were developed to mimic
how brain neurons work, so not consider the coherence between biological
signals during the model construction can lead to results that not follow the

source functioning and connectivity.
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1.4 Thesis aims and structures

Despite the promising performance with respect to single-signal interfaces,
the usage of hybrid brain-muscle interfaces for real-time control applications
is currently scarce and only a few studies exist that have considered them
for clinical applications [62, 47, 63]. The reason for this is twofold: first,
as shown in Section 1.3.1, state-of-the-art approaches for combing brain and
muscle signals still rely on standard machine learning methods with simple
additive fusions (e.g., concatenation, Bayesian fusion), or heuristic decision
rules (e.g., the EMG interface is triggered when the BMI output is above a
confidence threshold). This aspect poses a strong limit to the performance
that can be achieved with hybrid interfaces, particularly in complex decoding
tasks such as multi-class classification or limb trajectory prediction. Second,
traditional approaches often disregard the temporal relationship among the
brain and muscle signals and the deeper semantic coupling to the neurophys-
iological processes underpinning the movement generation. Corticomuscular
coactivation was found to be one of the underlying mechanisms for effective
corticospinal interaction which can improve motor functionality [64]. Thus,
it would be important for clinical applications of hybrid interfaces to model
the cortical and peripheral nerve connectivity, which will be suitable not only
for providing neurofeedback related to a therapeutic exercise, but also effec-
tive for motor recovery monitoring. Lately, deep learning models have been
introduced to open a new perspective for dealing with multimodal inputs, as
shown in Section 1.4, but their use with neurophysiological signal is still at its
infancy and, definitely not completely explored. In conclusion, in the litera-
ture exists a lack of approaches that exploit explicitly the connections that

exist in our neuromusculoskeletal system, considering the EEG and EMG
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signals as fully independent multimodal inputs.

The aim of this thesis is to combine deep learning and neuroscience to pave
the way for a new generation of hybrid neural interfaces. In particular, the
breakthrough idea of my work is based on the modeling of the neuromuscular
system as a weighted undirected graph: the nodes are the EEG and EMG
channels, while the edges represent the brain-to-brain, muscle-to-muscle and
brain-to-muscle connectivity. The strength of these connectives is unknown
a priori. Thus, in this thesis I propose and validate a novel DNN model
to estimate the neuromuscular connectivity through a graph convolutional
network (GCN) with learning structure [65], and to use the learned model
for the multi-class classification of upper limb movements.

The rest of the thesis manuscript is organized as follows: Chapter 2 first
introduces the main principles of standard convolution and graph convolu-
tion in DNN. Then, the GCN implementation and the proposed hHMI are
described in details. Finally, the dataset used for the method validation, as
well as the pre-processing methods to clean the data from noise, are pre-
sented; Chapter 3 shows the results coming from the training and testing of
proposed GCN, and the performance are compared with respect to machine
learning methods which represent the gold-standard for movement classifica-
tion. The results are discussed in Chapter 4, and some conclusive remarks

and future perspectives are provided in Chapter 5.
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2 Materials and Methods

2.1 Overview

The neural networks creation and validation pipeline is composed by the
pipeline shown in Figure 2.1. From different subjects, the data is pre-
processed with a downsampling, to decrease the data size, and some filters
are applied to remove the noise.

Different signal features have been considered as input for the proposed
neural network, either the time or frequency domains. In addition, differ-
ent network configurations have been implemented and evaluated in order to
identify the deep learning architecture maximazing the classification perfor-
mance. To avoid the risk of overfitting, the dataset of each subject is split
into a train set, a validation set and a test set. Networks are trained on the
train set, the validation set was considered to check the absence of overfitting
during the training progress, while the final performance have been obtained
on the unseen data of the test set. Two classification scenarios have been
taken into consideration: a simpler one in which the network is used for the
classification of three macro groups of movements, i.e. reaching, twisting
and grasping. Then, a more challenging condition is considered in which the
network is asked to recognize between 11 different movements. The metrics

used for the network goodness are principally the accuracy, the loss and the
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confusion matrix between the single movements and their macro groups.
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Figure 2.1 Scheme of the proposed approach

2.2 Deep learning fundamentals

The machine learning has evolved during the years creating new learning al-
gorithms and new evaluation techniques. The most important achievements
is the improvement of artificial neural networks (ANN), or neural networks
(NN), with deeper architectures with better learning abilities called deep
learning (DL) [66]. These new methods have been applied in a variety of

cases, e.g. speech and visual recognition, object detection, genomics and
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natural language, surpassing the state-of-the-art thanks to their ability to
discover intricate structures in high-dimensional data [67]. The learning pro-
cess in DL consists in the estimation of the model parameters and weights
fitting the input data and the desired output.

Exist different types of NN and learning, i.e. supervised, unsupervised,
semi-supervised and reinforced [68], but only the first one will be considered
due to the fact that it’s the learning process used for the proposed graph
neural network (GNN). It is a new neural network born just some years ago
to try to overcome some situations where the data is not completely suitable
for the classical nets. Its core is the usage of the graphs as structure for the

features processing.

2.2.1 Supervised learning and backpropagation

The supervised learning need a labelled dataset that will be used in the pro-
cess of learning, giving the desired outputs with the corresponding inputs
[69]. A NN is a series of artificial neurons that create an output using an
activation function and the combination of the inputs [70]. The neurons are
grouped into multiple layers connected in a network and can be distinguished
into input layer, that receive the input data, the output layer, that is respon-
sible of the NN output, and the hidden layers which links the input and
output layer. The different neurons connections present inside the layers and
between them, are expressed as weight values that are modified during the
training process.

The principal supervised nets are of two types

o [eedforward [Figure 2.2 [71]: the connections pass the layers output to
the next one, and so on until the output layer is reached. In this case

connections inside the same layer or with the previous are not present.
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e Recurrent [Figure 2.3 [72]: it’s similar to the feedforward nets but feed-
back connections are added, usually in the same layer but not always.
This links allow the information to persist, giving some kind of mem-
ory to the neural net but increasing the complexity of the training and
the flow of information. The present of a memory requires to use a
sequence of data points which makes this net useful in sequence data
analysis such as speech, biomedical signal and natural language process-
ing. The Long Short-Term Memory (LSTM) unit and Gated Recurrent
Units (GRU) [73] are two of the most used nets of this category.
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Figure 2.2 Scheme of a feedforward net

Q\Q

The neural networks use the gradient descent (GD) and the backpropaga-
tion to modify their connections.
The GD is used to minimize the loss function L parameterized by the net’s
weights W € R™ by updating them in the opposite direction of the loss gra-
dient Vi L(W). The learning rate « is the size of the step that is done along
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Figure 2.3 Scheme of a recurrent net

the GD [74].
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W = W' — aVy L(W) (2.2)

Vi L(W) (2.1)

The predictions of the neural networks, as seen in this section, are a
combination of the input x and the net weights depending on the net structure
and its decision function h(-). Calling § = h(z, W) the predictions, the loss
is calculated as L(g,y) but since h(-), and so g, is a function of functions [75]
the computation of the gradient descent is not immediate. For this reason
the backpropagation algorithm applied the chain rule to compute the loss
gradient to be used in (2.2) [76]

oh  0Oh oh
Vwh(W) = | 50 i g s
| .
Vi L(W) = ‘;—hvwh(W)

As the number of parameters increase, the calculations for their update
increase considerably and this can lead to a weights disappearing or explosion

that creates issues for the gradient which can vanish or explode [77].
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2.2.2 Convolutional neural network (CNN)

The CNNs are traditional neuronal networks inspired by the mechanism of
the animal visual perception [78] and they are composed by different layers
such as a pooling, an activation and a fully connected. As the name sug-
gests, the convolution layer uses the convolution to extract the features from
the previous layer outputs. The image processing normally uses the spatial
filters to acquire the information needed and it is done using an operation
of convolution, the same used in the layer. In fact, the CNNs are the best
neural networks for images elaboration, for example the classification, the
retrieval and the segmentation. Another reason why they are widely used is
their ability to benefit from the correlations in the data, both spatially and
temporally.

The layer’s neurons act as a series of convolutional kernels defined by the
width and the stride. The first determines their size, so how many points are
taken into account per convolution, and the second instead is the number of
points that the kernel skip for every computation. In this way the original
input is divided into smaller blocks, called receptive fields, to help the feature
extraction [79)].

The kernels are composed by the weights that the CNN learns during the
training, if the width is 4, the total number of weights for a kernel is 16.

These values are used into the convolution as
filr,c) = Zin(as,y) ki(Ky —2, Ky —y), n=12..N (2.4)
x7y

where f is a feature map’s pixel of the jth neuron in position (r,c) and 7 is
the receptive field coming from the input that is divided in N smaller parts.

The neuron kernel k& with dimensions (K, K,) is flipped around the center
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and multiplied element wise with the receptive field to be summed together.
Usually the kernel’s dimensions are equal and odd, to have a squared matrix
with a single pixel in the center.

Assuming for the jth neuron that the inputs has dimension (X,Y’) and

strd is the stride, the output feature map is expressed as
f](]-a]-) f](].,C)
fj(R7 1) fJ(va)

with R= % 1 0=10 4,

Unless it’s used strd = 1 and K, = K, = 1, the dimensions of the
features maps decrease in the successive layers and their shrinkage is more
accentuated with big kernels and with a large stride. This is due to the fact
that the input corners can’t be a center of a receptive field if it were, the kernel
would go out of bounds which is not possible. To overcome this, usually at
the input is applied a padding that increases the input dimensions adding
pixels around the borders. Different types of padding exist, but the most
used is the zero-padding that add zeros to not introduce artificial values and
noise. If K, = K, = K, the padding dimension has to be of % to maintain
the input dimensions in every layer.

Based on the kernel dimensions, three different layers with different con-
volutional kernels can be constructed.

The 1D convolution it’s the only kernel that is not squared and, as the
name suggests, it has only one dimension (1, K). This kernel is preferable to
the others for the 1D inputs, e.g. biological signals. To reach the state of the
art, shallow 1D CNN nets with 1 or 2 layers are sufficient and there are not so

many weights to train. Thanks to this, they are easier to process because it’s
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not necessary to have a big computational power and so its implementation
in low-cost and real time devices are suggested.

The 2D convolution is the most used to process images or videos frame
by frame, but also all the data that can be written as a grid, for example
the concatenation of signals where the rows and the columns can be channels
and observations. They are usually used in deep neural networks for their
ability in the features’ extraction also from raw data input, and the possibility
that increasing the number of layers the features’ abstraction also increase.
Due to their structure, 2D CNNs can compute big data more efficiently than
the fully-connected networks because the neurons are not all connected to
each others but they are sparsely-connected. Independently from the input
size, the 2D convolutional network can adapt their-self, making themselves
immune to small geometric transformation of the data.

The 3D convolution is the same as the 2D convolution but with 3 dimen-
sions (K, K, K,). It’s used with data volumes such as RGB images, videos
or MRI. Differently from the previous type, the 3D convolution extracts the

features from multiple input slices simultaneously.

2.2.3 Graph convolutional network (GCN)

Using classical neural networks, e.g. CNN and RNN; it’s assumed that the
data are coming from an euclidean space. This is not always true, in par-
ticular in data mining, biology and molecular chemistry, so a different type
of layer is needed. One way to represent non-euclidean data, e.g. the con-
nectivity between the brain areas, the structure of molecules or the language
processing, are the graphs [80]. The GNNs utilize this structure to predict or
classify using euclidean and non-euclidean data making them very adaptable

in a lot of situations.
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The main applications of the GNNs can be divided in five groups

e Graph classification: the neural network learns to divide the graph into
subgroups to classify them. It’s similar to the image classification or

segmentation, but in the graph domain.

e Node classification: one or more vertices has to be labeled from their
neighbours. The inputs are not all known and the training is made in

a semi-supervised way.

e Link prediction: differently from the other cases, all or a part of the
graph structure is unknown and from the data the network tries to

forecast which nodes are connected with each other.

e Graph clustering: the vertex or graphs clustering exists. The first
organizes the network nodes into highly linked groups based on the
edge distance or weights, while int the second the graphs are considered

the ones to be grouped based on similarity.

o Graph visualization: it’s the visual projection of the graphs, which
shows the structures and eventually the abnormalities in the data to

help the user to understand them.

A graph G is a structure consisting of two components, the nodes or
vertices V, and the edges E C {{m,n} € V | m # n} between them. If the
edges link symmetrically the nodes, then it’s an undirected graph, otherwise
it’s a directed graph.

Calling ne) and cop; the neighbours of node v; and its edges, [; and ; ;)

the label of the node v; and the label of the link between him and the node
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vj, the state x; can be evaluated as

ri= ) hollilig,zi 1), i€V (2.5)
jgne[i]
i = Tl looyy > ey bney) (2.6)

where h,, is a parametric function that transform the input vector into a
d dimensional space. The (2.5) refers to a general GNN where the relative
positions of the nodes to each other is not important, instead for the (2.6)
they are utilized in the formula. Given the state z; the output of the node ¢

is calculated

with ¢, the parametric local output function [81].

To represent the edges is usually used the adjacency matrix A. Assuming
that the total number of nodes is N, A = RV*N because for every vertex exist
N possible links with the others, including itself. If A(vy,v9) = 1, it means
that between node v; and vy an edge exists, if not A(vy,v2) = 0. A can be
symmetrical and in that case the edges have no direction because every link
has its opposite, otherwise at least one edge has not its opposite creating a

non symmetrical matrix.

The adjacency matrix A brings only the information about if an edge
exists or not, calling the graph unweighted. In some cases can be useful to
know some kind of numerical proprieties of the links that depends on the
problem, e.g. if the nodes are cities the edges can be the distance between
them but also the travel cost or its time, the traffic density or its probability
to occur. To take into account this need, a weight is associated with every

edge from A, leading to a weight matrix W and a weighted graph. All the
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considerations for the adjacency matrix can be applied to the weight matrix

with only the variation that inside W the values are not only zeros and ones.

One of the most used GNN variants is the GCN, which computes the
convolution between connected nodes to obtain the graph output. For this
type of neural network, the variation of the nodes’ number inside the layer
can lead to a vanishing or exploding gradient problem. To overcome this
possibility, the normalized adjacency matrix A is calculated using the degree

matrix D and its square root D

N
Du:ZAz]7 7;:1,2,...,N

=1

=

Can be demonstrated [82] that the nodes’ convolution evaluation can be

done using the graph matrices

C=A-X-® (2.9)

with X € RV*F the input with NV nodes and F features for each one of them,
® € RF*T a matrix of filter parameters and C' € RM*” the convolved input

matrix.

Due to the fact that the GCN can compute the convolution with nodes
that can be both nearby and far away, it can be seen as a generalization
of the CNN, which does a convolution between pixels but only with those
directly next to. In the GCN instead it is not necessarily that close node are
in the same calculation and so the CNN is a particular type of GCN where

the pixels are the nodes and the central pixel of every kernel has a link with
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the other ones inside it.

2.3 Cortico-Muscular Graph Network (CMGNet)

For utilizing the GCN for classification, the graph’s structure has to be known
but it’s not always the case, because it can be impossible or hard to obtain
leaving it completely or partially unknown. Recently some algorithms were
developed to try to obtain the edges from the data, using both weighted and
unweighted graphs [83, 84, 85, 86].

To obtain the graph structure I was inspired from connections between the
brain and the muscles that are both physical and functional [87, 88]. One way
to measure this connections is the cortico-muscular connectivity [8], therefore
the graph kernel of my network is constructed to simulate these links. The
network tries to evaluate the bonds from the data and the acquired model
structure tries to simulate the cortico-muscular system for the movement
predictions.

I have created different neural networks, using only the GCN and also
adding other kind of layers such as LSTM and GRU. I did this because in
biological signals exist a time correlation and so, using networks with memory,
they can help with the classification. The results with the GRUs were better
than the ones with the LSTMs, thus only them are presented.

2.3.1 GCN with learning structure

The GCN layer that I have created tries to obtain the graph structure using a
symmetrical weighted matrix W, while doing a classification. To reduce the
computational time, only a vector of weights M € R with G = N(N+1)/2

are set to be trainable. The length of M is equal to the number of values of
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the lower triangular part of W, and to reconstruct it, M is reshaped inside
W4 and then flipped.

During the training and its error back-propagation, the M’s weights are up-
dated and since the graph structure matrix W, is constructed using them,

the edges are generated and refined.

The objective of the GCN layer is to repeat the acquisition setup to see
if the graph structure and the nodes that it learns can be used to simulate
the real channels. The usage of the weights in the edges could be used to
understand them and to give an evaluation of the links that can or could not
exist between the sources that have created the signals. In my case I had 35
EEG channels and 6 for the EMG, so the numbers of nodes N is set to be
41 and therefore the weighted matrix has dimensions of 41x41. In this way
every channels has a corresponding node and the edges connections are the

channels connectivity.

To compute the convolution the layer uses the equations in (2.8) and (2.9),
with A = W, and ® as a second learnable matrix which is used to define the
layer output. In particular the dimension 7" is the number of output features

coming from the GCN.

As input X I have used both the frequency and the temporal domain using
EEG and EMG together. Before extracting the inputs, the EMG signals are
passed to the Hilbert transform and then their absolute values are taken to

make the signal proprieties similar to the EEG ones.

For the time domain, the EEG signals are filtered between the 8 and 30
Hz, the most related frequencies to the movements thanks to the presence
of the alpha and beta waves. This approach prefers to remove the most
amount of noise while deleting also some signal information to have a high

signal-to-noise ratio.
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In the latter case the data coming from EEG and EMG is given to the
neural network using every acquisition point as single input. The frequency
input instead, is composed of the PSD’s natural logarithm [Table 2.1] that
is extracted from the brain and muscles signals. Not all the frequencies are
used, in fact only the ones that are between the 4 Hz and the 30 Hz are held.
The reasons are the same of the other domain, but they start from the 4 Hz
due to the fact that calculating the PSD the frequencies are more spaced.
The presence of the GRUs in the networks implies that the inputs have to
be constructed as sequences of the signals or of the PSDs because blocks of

data is needed for the memory flow.

2.3.2 Network architectures

The constructed networks can have two types of input, one constructed using
the data points and the other with the data PSD. Referring to the equation
(2.9) only the matrix X changes, in the first case the number of features F
are equal to 1 while in the second F' is 14 because the PSD’s frequencies are
spaced by 2 Hz and they are limited between 4 Hz and 30 Hz.

Some considerations were made about the connections of the graph nodes
to take into account different cortico-muscular connections.
At the start the adjacency matrix weights were used only to evaluate only
the edges between the brain and the muscles without their inter-connections,
putting their weights to zero. This was done to consider the system as simple
as possible with only two groups that can communicate only to each other to
have a first evaluation of the links and to remove spurious bonds that could
create noise inside the structure.
To mimic the reality, also the weighted adjacency matrix with all the weights

is trained to consider the brain connectivity [89] and the muscles connectivity
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[10]. Doing this every link is used, trying to improve the model using the all
existing connectivities.
Having every channel corresponding to a node means that the values of every
channel with a vertices has to be 1, but giving no restrain in the weights
means that is not certain to be respected. For this reason I have also tried
to fixed the weights in the weighted adjacency matrix diagonal to 1 to have
an effective evaluation of the links between a channel and the others coming
from the EEG and EMG.

At the beginning, I created a neural network with only a GCN and a
classification block to test the new layer and to create a starting point, using
it also as a compass for the networks improvements.

The neural networks parts can be summarized in four blocks
e [nput: a z-score normalization is done between the sequences

e GCN:it’s composed by the custom graph layer with a ReLU activation
function. Then a batch normalization is done to overcome gradient

problems and a drop out layer is placed for the over-fitting.
e GRU: only a GRU layer is present with its drop out

e C(lassification: it’s the last block and it’s used for the classification. It
start with a fully-connected layer with a softmax, and then a classifi-

cation layer to extract the final classes

The first network [Figure 2.4] utilizes a parallel processing to extract
the features. A GCN block receives the complete dataset composed by the
EMG and EEG data, while other two GRUs blocks are used to process the
information that comes from different sources. The starting dataset is splitted

into a subgroup that contain the 35 channels EEG signals and another one



36 Materials and Methods

that has the 6 channel EMG ones. This division was made with the idea
that computing the dataset in different forms independently could have better
features and merging them could improve the network performances. Also the
GCN block output goes thought a GRU block, trying to learn the temporal
correlation, before being concatenated with the other GRUs outputs and to

be given to the classification block.
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Figure 2.4 The tested network with parallel processing. The input features are divided
in three pathways: the upper and the lower paths receive respectively the data from
the EEG and EMG channels, while the middle one that contains the graph layer uses
both modalities

The second network [Figure 2.5] is similar to the first one with the dif-
ference that the blocks are used in series. It start with a GCN block with
the complete dataset as input, then its output is divided using the same first
network principle, so the upper one use 35 output features and the bottom
one the remaining 6. These two new inputs are given to different GRUs

to use the time correlations of the data sequences. The GRUs’ outputs are

concatenated and given to the last block for the classification.
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Figure 2.5 The tested network with sequential processing. After the graph’s dropout
layer, the features are divided according to the input data composition: the upper path
receives the first 35 output features (corresponding to the EEG channels), while the
bottom path uses the last 6 output features (corresponding to the EMG channels)

With regards to the network hyper-parameters I have done a dense grid

search and using the best performances to choose the values.

Train Parameters Value
GCN output features 42
GRU hidden units 150
GCN drop out 0.3
GRU drop out 0.3
PSD window length 0.5s
PSD window shift 0.02 s
Input sequence window length ls
Input sequence window shift 0.04 s

Table 2.1 Summary of the parameters used for the nets' training

2.4 Network validation

The dataset chosen is coming from an open repository thanks to Jeong et al.

[4]. It’s composed of EEG, EMG and EOG signals coming from 25 young
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Adam Parameters Value
b1 0.900
Ba 0.999
€ 1078
Regularization term L2
Regularization factor 0.0001
Max epochs 7or 15
Mini-Batch size 256
Initial Learning Rate 1072 or 1073
Learning Rate Drop 1071
Drop Period 2 or 12

Table 2.2 Summary of the training parameters used within the Adam optimizer

subjects (15 men and 10 women) that performed 11 different movement upper
limb tasks.

The participants are all right-handed and completely healthy without
abnormalities that can impair the acquisitions. At them was also asked to
get sufficient sleep, avoid alcohol, caffeine, and strenuous physical activity

before the experiment.

2.4.1 Dataset

The EEG acquisitions was taken using a 64 channels EEG cap (actiCap,
BrainProduct GmbH, Gilching, Bayern, Germany), which 60 of them used
for the EEG (10-20 international configuration) and 4 for the EOG [Figure
2.6]. Ground and reference channels were placed on the Fpz and FCz and
the impedances of all the electrodes were maintained less than 15 k). The
signal was sampled at 2500 Hz with a notch filter at 60 Hz to remove elec-
trical noises. The same acquisition method was used for the EOG, with the
objective to use it for removing ocular artifacts in the preprocessing phase.

For the EMG, 7 silver/silver chloride electrodes were used [Figure 2.6] and
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the EEG acquisition setup was used, such as ground and reference channels,
sampling and notch frequency and impedances. The last electrode was placed

on the elbow as an alternative reference signal.
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Figure 2.6 Electrodes configuration for the 60 EEG, 7 EMG, and 4 EOG acquisitions
[4]

The experiment was divided in 3 sessions to take into account the inter-
session, inter-participant variabilities and to let the subjects rest. The data
contains the acquisitions of 11 different upper limb movements that were done
both via imagery and moving the arm. The tasks can be divided in 3 macro
groups, arm-reaching, hand-grasping, and wrist-twisting. The reaching was
composed by 6 directions, the grasping by 3 shapes and the twisting by
clockwise and anti-clockwise rotation [Figure 2.7].

To pace the movements, visual instructions were provided on a monitor.
First, a black cross was displayed for 4 s to rest, then a visual cue with a text

sign for 3 s to prepare the participants to the task. When it disappeared,
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Figure 2.7 Single trial paradigm and the visual cues of the 11 task

a text was presented (“Movement Execution” or “Movement Imagery”), and
they were requested to perform the corresponding movement for 4 s [Figure
2.7]. Every movement was done for 50 times per session, for a total of 3300
trials per movement.

The dataset was validated to confirm the accuracy and the truthfulness

of the acquisitions and the results was reported in the paper.

2.4.2 Data processing

The public dataset is divided in subsets by session, subject, type of macro
movement and if it’s a real or imaginary movement is done. Due to the pres-
ence of significant EMG signal only in the effective movement the imagery one
is discarded. To prepare the dataset for the thesis purpose, a pre-processing
pipeline is applied to it which can be seen in the left part of Figure 2.1.
First of all, the files from 5 different subjects were concatenated to have a

continuous signal like a single session. To decrease the space occupied and to
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speed up the following operations of pre-processing the sampling frequency

was decreased from 2500 Hz to 1000 Hz.

To the EEG was applied a zero-phase forward and reverse filtering with a
low and a high pass 4" order Butterworth filter [90]. The chosen frequencies
were of 1 Hz to clean every slow artifact, e.g. respiratory, and of 40 Hz to
keep only the important information about the movements.

For the EMG instead only a high pass filter with the same modality and
type for the EEG was utilized. The cutting threshold was of 5 Hz because in
the signal, due to the movements, various drastic changes in its mean were
present. A low pass filter was not applied because in the process of down-
sampling, it was already applied with a cut off frequency equal to the new

sampling. So a low pass filter of 500 Hz is sufficient to clean the EMG [91].

I have chosen to remove the electrodes and their signals that are not com-
ing from the motor sensory cortex to not introduce other noises or neurons
activations that are not due to the movements [92]. From the starting 60
electrodes, after removing the ones that are not useful, they ended to be
34. The FCz electrode is used as reference in the EEG and so its signal and
location is not present [Figure 2.8]. This gap in the cap can compromise
the correct evaluation of the dataset. This was corrected using a common
average reference (CAR) filter to re-reference the EEG signal [93] and then
using a spherical interpolation from the other electrodes to obtain the FCz

values. Adding this signal, the final number of electrodes increased to 35.

To remove the noise from the signals, a sequence of algorithms was used.
Starting with artifact subspace reconstruction (ASR) [94] to normalize the
peaks that surpass a threshold, and canonical correlation analysis (CCA) [95].
At the end, Adaptive Mixture ICA (AMICA) [96] was applied to decompose

the signals into components and then the ICLabel algorithm [97] was used to
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Figure 2.8 Left: EEG channels' locations before the pre-processing. Right: EEG
channels’ locations after the pre-processing

have a first recognition of their nature, e.g. brain, muscles, eyes and noise,.
To better recognize which are not coming from neuronal activations, I have
divided the dataset into epochs using the movement onset as a reference to see
if some peaks appears in the same moment every time. Only the components

that appear to have brain signals with a good signal to noise ratio were held.

2.4.3 Data organization

The data that were used to train and evaluate the neural networks were

divided into a training, a validation and a test set.

The fact that the signals were divided for computing the PSD, implies
that the casual division into the subsets can put adjacent windows in different
groups, e.g. the validation and the test set. This can impair the training
and the performances evaluation, because signal parts that are nearby are

correlated due to the fact that are biological and belonging to the same
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movement. If this happens, it would bring to an over evaluation of the
accuracies for the reason that conceptually very similar signals are used in
subgroups that must be independent to each others.

For this reason, the division was made between whole trials instead of the
individual windows. To maintain the correct distribution of the movements,
every class was divided independently to not have strong imbalances and to
train the neural network correctly. I have placed 60% of the trials in the
training set, 20% into the validation set and the last 20% in the test set
for the initials evaluations. The final trainings are performed removing the
validation set and distributing its data into the other subset, which then were
of 60% of the total for the training set and the remaining 40% for the test

set.

2.4.4 Machine learning comparisons

To make a comparison between the state-of-the-art EMG movement classifi-
cation and my networks, I have used two machine learning techniques, linear
discriminant analysis (LDA) and random forest (RF) trained with a set of
hand-crafted features [98].

LDA try to find the best discriminant features considering the distance
between-class and the distance within-class, maximizing their ratio [99], while
the RF is a set of tree-structured classifier where the inputs are chosen ran-
domly with the same probability among the input features and every tree
vote for an output [100].

The chosen EMG features were selected from the literature [101]. Calling
x the EMG signal inside a window with N total acquisition point and P; the
power spectrum at frequency j with M total frequencies, I have extracted

these features for the movement classification, which formulations can be
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found in [31]

o Mean absolute value (MAV): the average of the EMG absolute values

N
1
MA :_E 2.1
V Nn:1|:vn| (2.10)

e Standard deviation (SD): the standard deviation of the EMG values

N N
1 1
SD = i ngl(xn — )%, where p= N nE 1 Tn (2.11)

e Zero crossing (ZC): how many times the EMG cross the value of zero

N-1
ZC = Z [sgn(z, X Tpi1) N |2y — Tpgr]| > 0],

n=1

, (2.12)
1 if >0
where sgn(x) =

0 otherwise

e Root mean square (RMS): the average of the EMG squared values

(2.13)

1
WL=—=>|rn41 — 2 (2.14)

o Mean frequency (MNF): the weighted mean of the EMG frequencies
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and their power spectrum

. Zj\il fj PJ

MNF = (2.15)
M
> i1 b

o Median frequency (MDF): the EMG frequency with the median power

spectrum value

MDF M 1 M
D b= > P=33.0 (2.16)
j=1 j=MDF j=1

For the EMG windows the suggested length are about 200-400 ms, but
the classification accuracy increases with the windows’ length [102]. Based
on this and to keep consistency with the PSD windows used in the MCGnet,
the EMG features have been computed in moving windows with a length of

500 ms and a shift of 20 ms.
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Figure 3.1 Raw EEG and the same signal portion after the pre-processing (subject 7)

The pre-processing in the EEG and EMG signals has successfully re-
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Figure 3.2 Raw EMG and the same signal portion after the pre-processing and the
Hilbert transformation (subject 15)

moved the principal artifacts and noises from the data. In Figure 3.1 a high

frequency noise is present and also a very high amplitude artifact around

the zero with smaller ones during the movement can be found in the sig-

nal, while in the processed one they are not present. In the raw EMG is

present an high low frequency component due to the electrodes shifting dur-

ing the movement that have been removed by the pre-processing [Figure
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3.2], together with the high-frequency noise. Even after the pre-processing,
the subject’s heart-beat (i.e., electrocardiogram (ECG)) is still overlapped
with the EMG signal. Eventually, it can be removed with an adaptive filter
[103], but since this artifact represents a common signal component to all
the trials, it does not compromise the classification performance as it is not

a discriminant feature.
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Figure 3.3 Subjects’ mean accuracies of the trained networks predicting the 3 macro
classes

The subjects’ mean accuracies [Figure 3.3] evaluated using the macro
classes for the parallel and the sequential networks matches the random forest
ones in both input domains, reaching the 100% recognition rate. The net
that uses only a GCN layer has different results depending on the input.
The higher accuracies are obtained using the GCN trained with inputs from
the frequency domain. Using features from the time domain, the results are

lower but comparable with the LDA results. The worst result is obtained
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Figure 3.4 Subjects’ mean final loss of the trained networks predicting the 3 macro
classes

by the only GCN in the time domain with total connectivity and no fixed
diagonal, achieving an accuracy of 43+11% which is the lowest. With regard
to the subjects’ mean cross-entropy loss [Figure 3.4], it reflects the situation
in the recognition rate, in fact the networks that has a higher accuracy has

also a lower loss.

Considering the case with the 11 classes [Figure 3.5] and the input in the
time domain among the subjects, as for the macro classes the net with only
the GCN layer has the worst results, but still comparable with the results
obtained by the LDA classifier. The other networks, i.e. the parallel and
the sequential, reach the random forest’s results, with two exceptions. The
second net with total complete adjacency matrix and fixed diagonal surpasses
the state-of-the-art, while the same structure but without the fixed diagonal

reaches only the LDA accuracy. Regarding the frequency domain results
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Type of net Accuracy [%)] Loss
Partial Connectivity 98 £ 3 0.03 £ 0.03
Parallel with fixed diagonal 100 £ 0 0.01 £ 0.00
Total Connectivity 99 £ 0 0.01 £+ 0.00
with fixed diagonal 100 £1 0.01 £ 0.01
Partial Connectivity 99 +1 0.01 £+ 0.01
Sequential with fixed diagonal 98 + 2 0.02 £+ 0.02
Total Connectivity 97 £ 3 0.04 £+ 0.03
with fixed diagonal 100 + 0 0.00 + 0.00
Partial Connectivity 86 £+ 3 0.16 £ 0.04
Only GCN with fixed diagonal 68 £ 9 0.30 £ 0.05
Total Connectivity 43 + 11 0.43 £ 0.00
with fixed diagonal ==X 0.23 £ 0.04
LDA 837 0.19 £+ 0.08
Random Forest 98 + 1 0.02 £ 0.01

Table 3.1 Summary of the subjects’ mean accuracies and losses of the tested networks
for the 3 macro classes in the time domain

instead, almost all networks’ result are similar without much differences with
only one exception, the simplest net with the full weighted adjacency matrix
without the fixed diagonal has the worst results that are very far from the

other networks.

Using all the classes higher subjects’ mean accuracies doesn’t imply lower
subjects’ mean losses [Figure 3.6]. In fact, in the time domain the parallel net
with partial connectivity has the highest loss, almost the double with respect
to the other networks with parallel architecture even if the mean accuracy is
comparable. Similarly, in the frequency domain, the networks with parallel
architecture show the highest losses with respect to the other networks. For
what concern the time domain, the lowest loss is obtained mostly by the
sequential networks. In addition, on average the networks that include the

GCN with full connectivity provide better performance than the ones with



52 Results

Type of net Accuracy [%)] Loss
Partial Connectivity 99 + 0 0.01 + 0.01
Parallel with fixed diagonal 9 £1 0.01 + 0.01
Total Connectivity 99 + 0 0.01 £+ 0.01
with fixed diagonal 99 + 0 0.01 + 0.01
Partial Connectivity 95 4+ 10 0.07 + 0.14
Sequential with fixed diagonal 99 + 1 0.02 £ 0.01
Total Connectivity 97 + 2 0.04 + 0.02
with fixed diagonal 99 + 0 0.01 + 0.01
Partial Connectivity 96 + 2 0.04 + 0.02
Only GCN with fixed diagonal 94 + 4 0.07 £ 0.05
Total Connectivity 4 +9 0.25 + 0.07
with fixed diagonal 94 + 6 0.08 + 0.07
LDA 83+ 7 0.19 £ 0.08
Random Forest 98 £1 0.02 + 0.01

Table 3.2 Summary of the subjects’ mean accuracies and losses of the tested networks
for the 3 macro classes in the frequency domain

only the partial brain-muscle connectivity.

To have a better view for an online application, the predictions in output
from the classifiers are accumulated over time after the appearance of the cue
using a linear integrator. In this way, the classification at the current time

step depends also on the previous classifier outputs.

As shown in Figure 3.7 (right) and Figure 3.8 (right), the networks trained
with features in the frequency domain present no or limited improvements
over time, with an average improvement at the end of the trial of 3.1+0.8%
and of 2.1+0.3% for the parallel and sequential networks on average.

On the other hand, the networks trained with features from the frequency
domain benefit more from the accumulation over time, as shown in Figure 3.7
(left) and Figure 3.8 (left). For the parallel networks, a flex in the classifica-

tion accuracy occurs after about 800 ms from the trial onset, with the partial
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Figure 3.5 Subjects’ mean accuracies of the trained networks predicting the 11 classes

connectivity and fixed diagonal that improved the recognition rate of about
10%. Thanks to the accumulation, the best performance are obtained by the
sequential network with total connectivity and fixed diagonal trained with
time domain features. Figure 3.11 illustrates the classification performance
of the best network with respect to the average signal time course of the first
EMG channel. The network shows a rapid improvement of the performance
at 500 ms from 26% to 46% on average.

Looking at the upper part of Figure 3.11 the overall improvement in time
is in the wrist rotation and the object grasping micro movements, which
are the first and third groups, while for the arm reaching there is no much
difference. In the evaluation at the end of the trial instead, the recognition
rate for every micro movement improve, also managing to distinguish clearly
between two movements in a case.

Depending on the weighted matrix diagonal, the network extract different
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Figure 3.6 Subjects’ mean final loss of the trained networks predicting the 11 classes

graph structures [Figure 3.12] due to their different weights values. Both the
matrices are symmetrical as expected, and the input channels are present
vertically, while the horizontal axis in composed by the first layer of graph
nodes. The graph neurons utilize both the data that comes from the brain

and from the muscles, managing to merge the multimodal data by itself.
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Type of net Accuracy [%] Loss
Partial Connectivity 31 £+£3 1.59 £+ 0.09
Parallel with fixed diagonal 34+£6 0.67 = 0.10
Total Connectivity 32+3 0.65 4+ 0.08
with fixed diagonal 33+5 0.68 £+ 0.10
Partial Connectivity 31 £ 2 0.79 £ 0.11
Sequential with fixed diagonal 30 £ 2 0.79 £+ 0.05
Total Connectivity 27T £ 3 0.66 £ 0.04
with fixed diagonal 39+ 6 0.69 + 0.06
Partial Connectivity 25 + 2 0.76 = 0.04
Only GCN with fixed diagonal 19 + 2 0.91 £ 0.05
Total Connectivity 10£0 1.04 + 0.00
with fixed diagonal 21 £2 0.84 £ 0.04
LDA 26 £5 0.80 4+ 0.09
Random Forest 34+£3 1.06 £ 0.04

Table 3.3 Summary of the subjects’ accuracies and losses of the tested networks for
the 11 classes in the time domain

Type of net Accuracy [%)] Loss
Partial Connectivity 29 + 2 1.65 = 0.11
Parallel with fixed diagonal 30 £+ 2 1.61 £ 0.09
Total Connectivity 29 + 2 1.61 + 0.09
with fixed diagonal 29 + 2 1.62 + 0.09
Partial Connectivity 27+ 5 1.11 + 0.08
Sequential with fixed diagonal 29 + 1 1.22 + 0.11
Total Connectivity 27 + 2 0.68 4+ 0.03
with fixed diagonal 28 £1 1.36 £ 0.09
Partial Connectivity 29 £ 3 0.67 £ 0.03
Only GCN with fixed diagonal 27 + 2 0.74 + 0.04
Total Connectivity 20 £ 2 0.87 £ 0.07
with fixed diagonal 27T £ 4 0.70 £ 0.06
LDA 26 £5 0.80 £ 0.09
Random Forest 34 +3 1.06 + 0.04

Table 3.4 Summary of the subjects’ accuracies and losses of the tested networks for
the 11 classes in the frequency domain



56 Results

Partial Connectivity
Parallel net on all classes Total Connectivity
~-~-~-Fixed diagonal

Time domain Frequency domain
. - . : v :

r T 1 I T T T
45% 45%
40% 1 40%
35% - 1 35% - q
5. 30% 5. 30%
9 9
e e
5 5
2 3
S I+
< <
25% 25%
20% 20%
15% | 1 15% |
10% - 1 10% -
L 1 L 1 1 1 1 1 1 1 il L 1 1 1 1 1 1 L 1 1
0 02 04 06 08 1 1.2 14 16 18 2 0 0.2 04 06 08 1 12 14 16 1.8 2
Time [s] Time [s]

Figure 3.7 Varying subjects’ mean accuracy by accumulating the prediction rates of
the parallel network for the 11 classes
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Figure 3.11 Upper part: subjects’ mean confusion matrices of the predicted trial
classes at different moments. The first is at 10% between the maximum and the
minimum values of the EMG which correspond to the effective movement trigger. The
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for online application [5] and the last is at the end of the considered trial length. The
white spaces correspond to values of zero. Bottom part: best accumulating subjects’
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Figure 3.12 Normalized weighted adjacency matrix of the time input sequential net
with and without fixed diagonal of one subject (subject 15) for the 11 classes



4 Discussion

My thesis motivation was to create a new hybrid neural interface that com-
bine neuroscience and deep learning using a weighted undirected graph to

model the connectivity of the neuromuscular system.

Evaluating the accuracy for the networks in the three macro-movements
classification scenario among the subjects [Figure 3.3], i.e. reaching, wrist
twisting and grasping, it can be seen that the two most complex networks can
recognize them clearly, but have some difficulties to classify the movements
that belong to the same group as the random forest. My networks instead has
less variance between the subjects and a lower loss than the RF, implying an
higher confidence in the classes prediction. Overall, no significant differences
in the classification performance have been found between the parallel and
the sequential architecture, as well as if the network is trained with time or
frequency domain features, even if with the time domain features a lower loss

is obtained on average.

On the other hand, differences in the network configuration become clearer
when the more complex classification scenario with all the 11 classes is con-
sidered. In this case, the network shows higher performance in the time
domain rather than in the frequency domain. In addition, allowing the net-
work to learn the total connectivity between the input channels increases

the discriminant power of the proposed approach. My proposed approach
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reaches or surpasses the state-of-the-art performances, in particular in the

sample-to-sample accuracy and in the loss.

The common difficulty of distinguishing the micro-movement can be due
to the electrodes position [Figure 2.6]. To have a better signal difference
and a better recognition between the different reaching positions, but also
between them and the grasping ones, other electrodes should be placed on

the deltoid anterior, deltoid medial and deltoid posterior [104].

In general, the addition of memory-based layers, such as the GRU, signifi-
cantly improves the accuracy of the GCN. Nevertheless, it is worth highlight-
ing that for the networks trained with features from the frequency domain,
the networks with only the GCN layer achieved comparable accuracy, and
even lower loss than the use of deeper networks. This results are thanks to
the presence of the cortico-muscular coherence in the dataset, that normally

it can be evaluated doing an analysis in the frequency domain [105].

From the definition of the standard binary cross-entropy loss [106], it
can be seen as a valuation of the predictions’ confidence when the networks
classifications are correct or, in the case they aren’t, the loss evaluates how
much the predictions are distant from the correct ones. This interpretation
becomes more evident when the output of the network is accumulated over
time. Networks and the machine learning methods with higher sample-to-
sample classification loss have lower benefit from the accumulation. In fact,
putting in correspondence the average net results, for example the parallel
net [Figures 3.5, 3.6] with the accumulating ones [Figure 3.7], the accuracies
start from the same level from their average recognition rate. In the input
frequency domain and in one case in the time domain, the loss values are the
highest and the evolution during the trial doesn’t change so much, remaining

almost constant or increasing by up to 5%. On the other hand, the proposed
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sequential network with time domain features and total connectivity, that
achieved the lowest loss, achieves an improvement in the accuracy of more
than 20%, outperforming the state-of-the-art approaches.

There is a general increase of the loss with the frequency input in the complex
networks than the simplest one. The time domain data contain multiple
samples within the same window and so the GRUs are likely to be better able
to identify discriminative temporal features. In contrast, in the frequency
domain, to obtain the PSD we have decrease the temporal resolution in the

windows, making it more difficult for GRUs to discriminate.

As the EMG signal suggests [Figure 3.2] the effective movements occur
after 500 ms from the starting cue but in the EEG some movement-related
cortical potentials are present for the motor preparation, in particular the
negativity slope (NS) which is present about 400 ms before the motor exe-
cution [107, 108]. The improvement of the network performance before the
motion onset can be explained by the possibility for the hybrid networks to
exploit the pre-movement EEG correlates until the appearance of the EMG
activity.

The parallel net [Figure 3.7] at 800 ms has an increase in the accuracy thanks
to the support of the EMG that helps to increase the prediction rate for a
specific movement during the duration of the trial. Instead, the sequential
net [Figure 3.8] with the full weighted matrix and fixed diagonal succeeds to
utilize the muscular features without any delay from the movement onset,
improving the classification with a steeper curve. Interestingly, the networks
that has only the GCN layer are the only ones characterized by a steeper
increase of the classification accuracy about 100 ms before the motion onset
[Figure 3.9]. Further exploration of the data and the network parameters

should be performed in the future work to understand if this phenomenon is



62 Discussion

effectively due to the recognition of a NS feature in the EEG data.

To conclude, the usage of multimodal data has effectively improved the
classes predictions than the state-of-the-art methods that use unimodal data,
with also the possibility to predict the user’s intention before the motion on-

set.

To better understand what the GCN is learning, I looked at the weighted
adjacency matrix obtained after the network training. Indeed, the adjacency
can be seen as a proxy of the task-specific neuromuscular connectivity. The
networks have successfully learnt by itself how to combine the brain and
the muscle modalities. In the networks in which the diagonal of the adja-
cency matrix is fixed during learning, the network is forcing the nodes’ self
connections and only learns the relationship between each channel and the
other channels, either EEG or EMG in the case of the total connectivity.
In the case of the fixed diagonal, it can be noticed that in general the con-
nections between EEG and EMG channels have generally negative weights,
which can be interpreted as a negative correlation between the two signals.
This aspect can be explained by the fact that the EEG signal was filtered
in the frequency range of the sensory-motor rhythms. Indeed, the alpha and
beta EEG rhythms decrease in power during the execution of a movement
(i.e. ERD) [109, 110]. At the same time, a burst in the muscle activity sig-
nal generates an increase in the EMG signal power, allowing the graph to
learn the negative correlation with the activity in the EEG channels. On the
other hand, the adjacency matrix obtained when the diagonal is not fixed are
harder to interpret. To give it a biological meaning for the neuromuscular
system, its characteristics such as the corticomuscular coherence [111] or the
brain-to-muscle connectivity [60] have to be evaluated on the dataset and

compared with the adjacency matrix values. For this reason it’s not explic-
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itly comprehensible the weights meaning and their correlation in a biological
context, and a deep exploration of the patterns obtained should be performed

in future work, which goes beyond the scope of this thesis.
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Discussion




5 Conclusions

In this thesis I proposed and developed a novel hHMI based on GCN layers
that uses EEG and EMG data to create a graph structure that attempts to

simulate the neuromuscular system and to classify upper limb movements.

The hHMIs have some design choices that can create very different results
and designer-dependent structures. In particular where and when the data
has to be fused and how it has to be done. For this reason the development of
hybrid interfaces is very hard and time consuming. To resolve these problems,
I propose a new hHMI structure that use a GCN layer to make the data
merging automatic and try to extract some discriminant data characteristics
in an almost end-to-end fashion.

The proposed approach overcomes the results [Figure 3.3, 3.5] of the ran-
dom forest which is used as comparison method for the movement classifica-
tion with the EMG signals.

The hHMI has automatically learnt the graph structure during the training
[Figure 3.12] and it has successfully merged the EEG and the EMG signals
due to the presence of brain and muscle weights for every GCN node. The
graph edges can be correlated with the brain behaviour of neurons synchro-

nization [110] during the movements.

Future developments will focus on the study of the weighted adjacency

matrix explanation linked with the corticomuscular coherence [111], the brain-
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to-brain connectivity [112] and the muscle synergies [113]. Then, an online
application for devices control could be designed to evaluate the performance

in a time control application.
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