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Abstract

Electric propulsion represents the new technological frontier of space propulsion; although
it is a technology still under development and with major performance limitations, in
some speci�c cases it presents aspects that are absolutely advantageous. The possibility of
generating thrust using electricity is one of these: in Earth orbit solar radiation is such as
to provide a constant supply of energy that would not be possible to exploit with chemical
engines. On the other hand, the chemical engine still represents the most e�ective method
for a launcher to carry loads into orbit, since the thrust of an electric motor has not yet
reached levels capable of ful�lling this task. Electric thrusters are mainly divided into two
classes, cathode thrusters and cathodeless thrusters. The thruster that will be studied in
this thesis belongs to the category of cathodeless thrusters, and more speci�cally we talk
about Helicon Plasma Thrusters. The name of these thrusters derives from the helical
shape that the charged particles draw with their trajectory when immersed in a magnetic
�eld. The purpose of this thesis will be to optimize a 50W Helicon Plasma Thruster using
the so-called "Global Model", a code written in Matlab language which describes the
physics of the plasma and subsequently determines the propulsive performance of the
engine itself. The Global Model allows to solve two di�erential equations of the second
order which are respectively the mass balance equation and the energy equation. It is from
the solution of these equations that it subsequently becomes possible, through another
block of code called "Propulsion Model", to determine the propulsive characteristics of
the engine.

Our analysis focuses �rst on the choice of the most suitable propellant for our purposes.
The most used gases for electric propulsion are Argon, Krypton, Neon and Xenon, and all
the most relevant aspects of these must be evaluated to choose the most suitable gas for
our needs. The gas that best meets our requirements turned out to be Xenon. Speci�cally,
thrust e�ciency was chosen as the propulsive parameter to be maximized during our
analysis. Using Xenon as a propellant gas, the optimization is performed by determining
the optimal dimensions of the source (cylindrical in shape), the mass �ow rate of the
propellant, the intensity of the magnetic �eld and the electrical power generated by an RF
antenna around the source. This analysis is conducted considering the technological limits
imposed by the state of the art and by the size of the CubeSat that hosts REGULUS. The
analysis is subsequently re�ned more and more until optimal values of ηmax = 7.39% are
obtained with R = 0.03m, L = 0.1m, Ûm = 96 × 10−9kд/s , B0 = 600 × 10−4T and Pw = 40W .
When these results have been obtained, we proceed with an evaluation of how much the
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limits imposed by the dimensions and technology have in�uenced the maximization of
the thrust e�ciency it is determined that the intensity of the magnetic �eld represents
the most stringent limit to the propulsive performance of our engine .



Sommario

La propulsione elettrica rappresenta la nuova frontiera tecnologica della propulsione
spaziale; sebbene si tratti di una tecnologia ancora in fase di sviluppo e con grosse limi-
tazioni prestazionali, presenta in alcuni speci�ci casi degli aspetti che sono assolutamente
vantaggiosi. La possibilità di generare spinta sfruttando energia elettrica è uno di questi:
in orbita terrestre la radiazione solare è tale da fornire un costante approvvigionamento di
energia che con i motori chimici non sarebbe possibile sfruttare. D’altro canto, il motore
chimico rappresenta ancora oggi il metodo più e�cace per un lanciatore di portare carichi
in orbita, poiché la spinta di un motore elettrico non ha ancora raggiunto livelli tali da
adempiere a questo compito. I propulsori elettrici si suddividono principalmente in due
classi, propulsori con catodo e propulsori senza catodo. Il propulsore che verrà studiato
in questa tesi appartiene alla categoria dei cathodeless thrusters, e più nello speci�co
si parla di Helicon Plasma Thrusters. Il nome di questi propulsori deriva dalla �gura
elicoidale che le particelle cariche disegnano con la loro traiettoria se immerse in un
campo magnetico. Lo scopo di questa tesi sarà quello di ottimizzare un Helicon Plasma
Thruster da 50W attraverso l’utilizzo del cosiddetto “Global Model”, un codice scritto
in linguaggio Matlab che descrive la �sica del plasma e successivamente determini le
performance propulsive del motore stesso. Il Global Model permette di risolvere due
equazioni di�erenziali del secondo ordine che sono rispettivamente l’equazione di bilancio
di massa e l’equazione dell’energia. E’ dalla soluzione di queste equazioni che diviene
successivamente possibile, tramite un altro blocco di codice chiamato “Propulsion Model”,
determinare le caratteristiche propulsive del motore.

La nostra analisi si concentra dapprima sulla scelta del propellente più adatto ai nostri
scopi. I gas più comunemente usati per la propulsione elettrica sono Argon, Krypton, Neon
e Xenon, e di questi andranno valutati tutti gli aspetti più rilevanti per scegliere il gas più
adatto alle nostre esigenze. Il gas che meglio soddisfa i nostri requisiti si è rivelato essere
lo Xenon. Nello speci�co, è stata scelta l’e�cienza di spinta come parametro propulsivo
da massimizzare durante la nostra analisi. Utilizzando lo Xenon come gas propellente, si
precede con l’ottimizzazione determinando le ottimali dimensioni della sorgente (di forma
cilindrica),la portata massica di propellente, l’intensità di campo magnetico e la potenza
elettrica generata da un’antenna RF attorno alla sorgente. Si conduce questa analisi
tenendo conto dei limiti tecnologici imposti dallo stato dell’arte e dalle dimensioni del
CubeSat che ospita REGULUS. L’analisi viene successivamente ra�nata sempre di più �no
ad ottenere i valori ottimali di ηmax = 7.39% con R = 0.03m, L = 0.1m, Ûm = 96 × 10−9kд/s ,
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B0 = 600 × 10−4T and Pw = 40W . Quando sono stati ottenuti questi risultati si procede
con una valutazione di quanto i limiti imposti dalle dimensioni e dalla tecnologia abbiano
in�uito sulla massimizzazione dell’e�cienza di spinta s determina che l’intensità di campo
magnetico rappresenta il limite più stringente alle performance propulsive del nostro
propulsore.
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Introduction

Cathodeless Thrusters

These thrusters are characterized by an exhaust that is totally free of electric charge,
meaning that a neutralizing cathode for the expelled particles is not required. Such
thrusters can be divided into “grid” and “magnetic nozzle” thrusters. The grid thruster
involves the use of polarized grids thanks to which an electrostatic potential di�erence
is imposed between the grids and the plasma itself: this ensures that an acceleration
mechanism of the charged particles is guaranteed. In this type of thruster, the grids are
polarized with alternating positive and negative potential, so that both the electrons (with
a negative charge) and the ions (with a positive charge) composing the plasma are ejected
out of the nozzle [9]. On the other hand, the magnetic nozzle thruster uses divergent
magnetic �eld lines (which act in a similar way to De Laval physical nozzle) by converting
the internal energy of the plasma into the kinetic energy of the particles ejected from
the engine [1], [19]. For this type of thrusters, it is of fundamental importance that the
plasma generated in the source has a high temperature and a high density, since the thrust
generated by the engine strongly depends on the internal enthalpy of the plasma. It is
possible to generate a plasma with these characteristics by irradiating the gas contained
in the source with electromagnetic waves produced by an RF antenna: this process favors
the generation of high-density plasma through the collision between neutral atoms and
free electrons [9].

Typically, cathodeless thrusters have a structure that can be divided into three sections:
the propellant storage and supply system, the plasma source and the acceleration zone.
We describe the various sections one at a time: the storage and supply system are basically
a tank from which the propellant is taken to be injected into the source through an injector.
The source is made of a cylinder of dielectric material where the gas is injected with a
certain �ow rate, which is then irradiated with electromagnetic waves until plasma is
obtained. The external walls of the source are surrounded by the RF antenna which permits
to ionize the gas through electromagnetic waves. A magnetic �eld is also generated inside
the source, using either electromagnets or permanent magnets: both con�gurations have
advantages and disadvantages, for example the fact that the electromagnets require a
constant current �ow to be activated, whereas permanent magnets are typically heavier
and generate a magnetic �eld that cannot be switched o� when needed. The �eld of use
of the thruster must always be taken in consideration, and from that decide which type
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of magnet is the best to adopt [11]. The region of acceleration of the ejecta is instead
formed by a so-called "magnetic nozzle", formed by the natural divergent attitude of the
magnetic �eld lines, and is usually associated with a physical De Laval nozzle capable of
generating propulsive thrust also for the gas that has not been ionized [17]. Focusing on
the ionized part, the plasma exhaust can be divided into two distinct regions: the �rst
will be de�ned by the region of space in which the charged particles follow a trajectory
along the magnetic �eld lines, while the second part is delimited by the so-called zone of
detachment and from this point on the particles will no longer follow the �eld lines but
will continue along a rectilinear trajectory that runs parallel to the axis of the source. The
moment in which the trajectory of the charged particles detaches from the �eld lines is of
fundamental importance: in fact, if this were not the case, the particles would continue to
follow the �eld lines, which according to Maxwell’s laws would close on themselves, thus
generating zero net thrust.

The presence of a magnetic �eld around the source therefore assumes a threefold
function: it favors the di�usion of the electromagnetic waves through plasma in the
source, it helps to con�ning the charged particles in a certain volume, keeping them away
from the walls (with the double e�ect of thickening the charged particles and limiting
losses due to collisions with the walls themselves) and allows to transform the thermal
energy contained in the plasma of the source into axial kinetic energy and therefore into
thrust. The presence of a magnetic �eld around the source therefore assumes a threefold
function: it favors the di�usion of the electromagnetic waves through plasma in the
source, it helps to con�ning the charged particles in a certain volume, keeping them away
from the walls (with the double e�ect of thickening the charged particles and limiting
losses due to collisions with the walls themselves) and allows to transform the thermal
energy contained in the plasma of the source into axial kinetic energy and therefore into
thrust. The presence of a magnetic �eld around the source therefore assumes a threefold
function: it favors the di�usion of the electromagnetic waves through plasma in the
source, it helps to con�ning the charged particles in a certain volume, keeping them away
from the walls (with the double e�ect of thickening the charged particles and limiting
losses due to collisions with the walls themselves) and allows to transform the thermal
energy contained in the plasma of the source into axial kinetic energy and therefore
into thrust [17], [9]. The cathodeless thrusters can be further subdivided according to
the nature of the electromagnetic waves generated by the RF antenna: we are therefore
talking about Helicon Plasma Thrusters (HPTs) and Electron Cyclotron Resonance (ECR),
which are distinguished according to the frequency of the electromagnetic waves generate.
Helicons’ waves belong to the whistler waves or electromagnetic waves that propagate
inside the plasma con�ned in a certain volume by the magnetic �eld. These waves,
characterized by a frequency in the MHz order, transmit energy in a very e�cient way
to all the free electrons of the gas, guaranteeing a high number of collisions between
these free electrons and the neutral gas particles, which are thus ionized. This excellent
energy transmission turns out to be about three orders of magnitude higher than if only
the energy transmitted by the collisions of the excited electrons were considered [2].
Speaking instead of the Electron Cyclotron Resonance, we have electromagnetic waves
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Figure 1: Scheme of a cathodeless Plasma Thruster

characterized by frequencies in the order of GHz, which have an e�ciency of about 95%
in energy transmission. Thanks to this high e�ciency, the electrons reach a high thermal
energy, which is then exploited to increase the collisions between electrons and neutral
atoms generating a high density plasma [8].

Cathodeless thrusters present innumerable advantages: their components are not very
complex and cheap, and the fact that they do not need a cathode to neutralize the exhaust
guarantees a long life both for the component and for the engine itself. They also have a
wide range of applicability: they can be used from microsatellites in low Earth orbit to
interplanetary missions, which translates into a wide electrical power spectrum (from
∼ 20W to 200kW). They also o�er the possibility of using various propellants, including
Iodine [3] (stored in the solid state) and gases such as Argon and Xenon [20], alongside
a wide range of possible mass �ow rates. One of the major disadvantages in the use
of cathodeless thrusters is the relatively low thrust e�ciency, which usually does not
exceed 20% [8]. Knowing this data, it is therefore easy to understand how the power
supplied by the RF antenna is mainly used for the excitation of neutral atoms and in
the neutralization of the ions, instead of being transformed into propulsive thrust. The
ionization of neutral atoms takes place through various steps (which is the most e�ective
method of ionizing an atom) but at the same time involves the formation of excited atoms
in the intermediate steps. This process can lead to the de-excitation of the atoms before
they have been ionized, or to the expulsion of the same atoms through the exhaust. In
both cases, there is a loss of energy, which is in no way exploited to generate propulsive
thrust. In addition to these phenomena, it has been noted that the number of ionizations
inside the source far exceeds the number of electrons leaving the exhaust: this means
that many plasma particles tend to be neutralized due to impacts with the walls, and the
expenditure of energy becomes double that which would be strictly necessary to generate
the same quantity of plasma [11].



Since the �rst research on a Helicon Plasma Thruster was presented in the 2000s
(Boswell, Australian Space University) [7], many experiments have been conducted and
many contributions have been given to the development of this technology, including
REGULUS, developed by Technology for Innovation (T4i), a start-up associated with the
University of Padua [17]. REGULUS is a 50W plasma thruster of the Helicon Plasma
Thrusters family, developed to be placed on board small CubeSAT units. This speci�c
engine will be the thesis topic to be developed in this draft.

Models for Cathodeless Thrusters
In order to develop a precise model of cathodeless thrusters, it is necessary to use numerical
simulations that describe and allow us to fully understand the dynamics of the plasma.
To ensure that the modeling is accurate, it is good to be able to integrate the following
aspects into the simulation [5], [16]:

• Adequately model the coupling between electromagnetic waves and the plasma, and
this strongly depends on the geometry of the magnetic �eld and on the parameters
that characterize the plasma itself.

• Precisely describe the ionization of the propellant, all the reactions that take place
between the particles and the di�usion of all the charged particles, which then
de�ne the steady state characteristics in the source.

• The expansion and acceleration of the propellant in the area of the magnetic nozzle.

• Modeling of the detachment criteria of plasma particles from magnetic �eld lines.

During the entire path of the gas, from the injection into the source to the discharge
of the magnetic nozzle, the physics and characteristics of the plasma and the neutrals
undergo signi�cant variations: in the source the plasma has typical densities of 10−19m−3
while in the area of the magnetic nozzle the density is reduced to 10−14 m−3. For this
reason, di�erent classes of algorithms are used for each di�erent area of the engine.

Fluid codes:
They allow to calculate the characteristics of the plasma as a function of space and time,
through the integration of the Magnetohydrodynamic (MHD) equations. These equations
are meant to be used mainly in regions where the plasma assumes high densities [5], [16].

Particle Codes:
This type of code, on the other hand, allows the trajectories of the individual particles
to be integrated and is particularly suitable for areas where the plasma is present in low
densities [5], [16].
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Hybrid Codes:

Finally, this kind of code is a hybrid between the other two codes mentioned above. It
describes the motion of electrons through the Fluid Code and the dynamics of the ions
through the Particle Codes [10].

In addition to these models, which provide precise and accurate results, analytical and
semi-analytical models have also been developed. The rapid results that the latter can
provide are useful for preliminary designs, to study the system as a whole and determine
which phenomena are of mainly importance to de�ne propulsive performance. In 2014
La�eur proposed a semi-analytic model of a whole HPT, which included both a model
for the source (based on the simpli�cation and subsequent integration of the MHDs in a
one-dimensional domain) and a model for the acceleration region (based on the hypothesis
of an isothermal expansion of the plasma). Another quasi one-dimensional kinetic model,
based on the evaluation and integration of the distribution function of ions and electrons,
has been proposed by Martinez et al., and has been simpli�ed from Plaza et al. along with
La�eur et al. They also proposed an empirical model of the acceleration region, and this
model aims to link the thrust generated by the propulsor to the �nal temperature of the
electrons, through the derivation of an empirical constant. Fruchtmann et al. instead dealt
with de�ning a model that describes the acceleration region, using a two-dimensional
and semi-analytical model based on the strategy of separating the variables between their
axial and radial components.

The latter model was revised and modi�ed by Ahedo and Navarro-Cavallè who
integrated this model with that of a two-dimensional nozzle, in order to create a tool
that can e�ciently simulate the steady state of the HPT. In this drafting a semi-analytical
model written on Matlab code is used for the study of the thrusters, and this model is
articulated in two main blocks: �rst block describes a model of the source (which includes
the production of the plasma, the collisions of the particles and the di�usion of the same)
and the second block describes the model of the acceleration region. The plasma source
is modeled through a 0-dimensional Global Source Model (GSM) based on the description
of the source as a single node characterized by the mass and energy balance entering and
leaving the source itself. Contrary to the other models, this last one allows to describe the
magnetic �eld no longer as paraxial but considering all the typical topological peculiarities
of the magnetic �elds produced by toroidal permanent magnets, as well as the presence
of cusps within the source. The acceleration region is instead described by another code,
which is written by adapting and combining the GSM model with the three models of the
MN seen previously: the La�eur model (LM) the Martinez-Sanchez model (MSM) and the
Correyero Plaza model (CPM). In addition, various criteria are taken into consideration to
de�ne the region where the particles ejected from the exhaust detach from the magnetic
�eld lines, and these are Olsen’s criterion and Are�ev’s criterion [12].



Thesis’ structure and objective
This thesis work aims to optimize a REGULUS thruster, through computer simulations
of the physics of the thruster, with the aid of precompiled Matlab code. This code
requires the following quantities to be adopted as input variables: mass �ow rate injected
into the source, intensity of the magnetic �eld produced by the permanent magnets
around the source, electrical power supplied to the plasma by the RF antenna, source
length and source radius. The code allows to solve two di�erential equations describing
respectively mass balance and energy balance in the source. Solutions provided by the
code are continuous functions in time domain describing how the following quantities
vary during simulation time interval: density of the neutral and charged species and
electron temperature. Thanks to the �nal values that these quantities assume once the
steady state is reached, it is possible to calculate the propulsive performance through
another block of code, which returns the following quantities: speci�c impulse, thrust
e�ciency and propellant consumption.



–1–
Reference Models

In this chapter we will try to describe in more depth the nature of the equations that make
up the two models used by our Matlab code. The models used is speci�cally the Global
Model.

1.1 Global Model

This model describes in a simpli�ed way what happens inside the source, taking into
consideration both the neutral gas atoms and the plasma particles. Its main characteristic
is that it is a 0-dimensional model: this means that the source domain will not be modelled
to obtain a gradient of all the characteristic quantities describing the plasma, but rather to
obtain such quantities averaged over the whole source domain. In other words, if we took
as an example a variable such as the temperature of the electrons Te , we will not obtain a
function that describes the temperature of the electrons at a given point of the source,
but we will obtain a function that describes the time variation of the average Te of all the
electrons in the source.

1.1.1 Hypotheses
As already mentioned above, the 0-dimensional model that is the Global Model is a
combination and a simpli�cation of other models describing plasma physics. To ensure
that the Global Model represents physical phenomena as validly as other more complex
models, it is due to list the hypotheses under which Global Model must operate:

• The magnetic �eld B produced by the permanent magnets has a cylindrical shape
and it’s axial; moreover, the e�ects of the magnetic �eld cusps are not considered,
since these models are also used to study cases in which the source is surrounded
by coiled electromagnets instead of permanent magnets.

• The ion’s temperature is considered constant and is equal to the temperature of the
neutral gas at the time of injection into the source.

7



• The transmission of power is assumed, but without de�ning a model. Therefore, in
the Global Model a power deposition e�ciency has been considered.

• At the edges of the sheath, the velocity of the ions equals the Bohm velocity (Bohm’s
criterion) [14].

• The di�usion of the plasma is modelled with the aid of the Langevin section [14].

• The ratios between the core plasma density and the sheath edge density are calcu-
lated using the heuristic parameters hR and hL [14], [13].

• For neutral particles, it is assumed that the nozzle is choked. A similar assumption
is also adopted for the plasma: the magnetic Machm = v/uB (where uB is the Bohm
velocity) in the throat is considered as equal to 1 [18].

• Given the assumption of ions at constant temperature, it is necessary to include
a detachment criterion: the chosen criterion states that the ions detach from the
magnetic �eld lines when the Larmor radius equals the local radius of the magnetic
�eld �ux tube [13].

• It is assumed that the electrons are present in the source according to a Maxwellian
distribution.

1.1.2 Mass and Energy balances
As has been described in �gure 1.1, in addition to the engine performance, the results
obtained from the GM code block accurately describe what happens in the source in
terms of density of the species present and temperature of the electrons Te . Since the
simpli�cations made through the hypotheses described above are valid, these parameters
are su�cient to describe what happens in the source. To obtain these parameters, Matlab
must solve two di�erential equations relating to the mass and energy balance, and this is
what we will illustrate in the next paragraphs.

Mass Balance
There is a generic di�erential equation describing the mass balance in an exhaust chamber,
which is as follows:

dn

dt
= Rc − Rwall − Rex + Rin (1.1)

It is due to specify that all terms to the right of the equal have units of measure expressed
in [m−3s−1], and now these terms will be treated one by one:

1. The particles source-sink term related to the reactions taking place inside the source
is described in the equation 1.2:

Rc =
∑
j

nenjK
k (1.2)
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Wherenj andne are respectively the density of the considered species and the density
of the electrons and Kk is the reaction coe�cient for the considered reaction. The
term Rc considers from time to time all the particles of the various species (neutral,
ions, excited particles) which are continuously formed and lost due to the reactions
already described. Therefore, Rc can be positive or negative, depending on the
considered reaction.

2. If an ion were to impact against the wall of the source, there would be a high
probability that it would snatch an electron from the wall itself, and that as a result
the ion would return to being a neutral particle. To include this eventuality in the
calculations, the term describing these losses is introduced into the mass balance
equation:

Rwall = Γwall
Ae f f

V
(1.3)

The term Γwall describing the ion �ux (which is also equal to the electron �ux) is
calculated as:

Γwall = nivi = ni

√
qTe
mi

(1.4)

Where υi = uB is the Bohm velocity of the ions while ni and mi are respectively
the density of the ions and their atomic mass. In equation 1.3, Ae f f is the e�ective
area related to di�usion phenomena, which is calculated in equation XXX. The
two components of this equation are nothing more than the two longitudinal and
perpendicular components of the e�ective area and these components are calculated
as seen from the equation 1.5.

Ae f f = A | |B +A⊥B

A | |B = hLβavдπR
2 A⊥B = 2hRπRL (1.5)

The parameters present in this last equation, hL, hR and βavд are de�ned in the
section that describes the Di�usion Model.

3. The term representing the number of particles that are ejected out of the exhaust is
described by:

Rex =
Ûmn

mn

1
V
+ Γex

Asec

V
(1.6)

The �rst term to the right of the equation describes the number of neutral particles
leaving the source, considering the particle stream as isentropic and the nozzle
as chocked. Since the plasma thruster is expected to operate in the vacuum of
space, the chocked nozzle hypothesis always holds true [21]. The second addendum
refers to the ions ejected from the exhaust, where the nozzle area at each point is
calculated as: Asec = πR

2. The �ow of ions is instead described by:

Γex = βavдnihLuB (1.7)



It is also assumed that the �ow of electrons leaving the nozzle is equal to the number
of electrons, to guarantee the quasi-neutrality of the plasma.

Γex,e = Γex,i (1.8)

4. The particles that are injected into the source through the injector are represented
by the term:

Rin =
Γin
V

(1.9)

Where the term Γin represents the mass �ow rate of neutral gas entering the source.

Energy Balance

The energy balance equation allows to determine the temperature of the electronsTe , and
this balance is expressed as written below:

d

dt
(
3
2neTe) = Pacq − Plost (1.10)

The �rst term to the right of the equal represents the amount of energy that is absorbed
by the gas and then transformed into plasma:

Pacq =
Pabs
qV

(1.11)

Where the term Pabs is de�ned between the model inputs. The second term instead
describes the energy loss de�ned by collisions with the walls, collisions with other
particles and the material ejected from the exhaust:

Plost = Pwall + Pcollision + Pexhaust (1.12)

Again, addends of equation 1.12 are analysed one by one. The power lost due to collisions
with walls can be expressed as follows:

Pwall =
εwallΓwallAe f f

V
(1.13)

Where Γwall is the same term that is described in the equations 1.4 and the term εwall
represents the energy dispersed to the walls and is de�ned by the 1.14.

εwall = keTe =

(
2.5 − ln

(√
2πme

mAr

))
Te (1.14)

where the term ke indicates the energy that is dispersed for each electron that is torn from
the walls. The power loss given by collisions between two di�erent species is calculated
as indicated by the equation 1.15:

Pcollision =
∑
j

nenAr ,jK
j
Arε

j
Ar (1.15)
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where the index j is used to indicate the species involved in the reaction. Finally, the
power dissipated in the ejection of particles from the exhaust is expressed as follows:

Pexhaust = keTe
Γex,eAsec

V
(1.16)

Concerning the previous equation, we recall that the term Γex,e has already been de�ned
in the equation 1.8.

1.1.3 Acceleration Model
This model allows to evaluate the propulsive performance of the engine. It is good
to point out, as indeed it was anticipated in previous sections, how the hypothesis of
isothermal ions makes it necessary to de�ne a criterion for the detachment of these
particles (positively charged). The detachment criterion considered in this case is the
La�eur criterion [13]. One of the most interesting propulsive parameters is thrust; it can
be seen as the sum of two contributions, one of which is linked to the thrust generated by
the neutral particles and the other generated by the charged particles that are expelled
from the nozzle.

T = Ti +Tn (1.17)

The contribution to the thrust that is given by the ions depends directly on the detachment
criterion that is chosen [13]:

Ti = T0

(
M2

det
+ 1

2Mdet

)
(1.18)

In the previous equation, the term T0 = 2qβhLniTeAth is the thrust that is generated by
the charged particles leaving the source, while the second member, which depends on
Mdet represents the acceleration component due to the presence of the magnetic nozzle.
To determine the detachment Mach number, the following equation must be solved [13]:

1
2 (M

2
det − 1) − ln(Mdet ) = ln

(
qB2R2

th

miT∞

)
(1.19)

which was obtained by integrating the momentum conservation equation of the charged
particles. The integration extremes are represented respectively from the point where the
particles leave the source (nozzle throat) to the point where the gyroradius of the charged
particles equals the radius of the magnetic �ux tube that composes the magnetic nozzle.
The thrust component produced by the neutral particles is calculated using the classic
form of the chocked nozzle crossed by an isentropic �ow, which we remember to be [21]:

Tn = Ûmnun + pexitAexit (1.20)

Now that it is known how both the thrust components are calculated, as well as the total
thrust value, it is possible to derive another important propulsive parameter, which is the



Figure 1.1: Scheme of Inputs and Outputs of the Model

speci�c impulse. It helps us de�ne how e�ciently our engine uses propellant to generate
thrust.

Isp =
T

wtotд
(1.21)

Since the thrust e�ciency η will be one of the parameters that occur most often within
this draft, we report below a brief description of the same, de�ned as the ratio between the
kinetic energy of the particles ejected form the engine and the electrical energy supplied
to the source Pw , as we can see in equation 1.22:

η =
Isp ×Thrust × д

2Pw (1.22)

1.1.4 Inputs and outputs of the model

The Global Model, as previously mentioned, outputs the various quantities that character-
ize the plasma in the source and through another block of code it is possible to determine
the propulsive performance of the entire engine such as thrust, speci�c impulse and thrust
e�ciency. In �gure 1.1 we see a graphical representation of the variables entering the
code and in the blocks with red background we see the variables that are presented on
the screen at the end of each solution cycle.
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Reactions

In this section we will look more deeply into the reactions that are considered by the block
of code called the Di�usion Model. In this example, the gas considered is Argon, but in
the continuation of the drafting we will analyse all the possible gases that could be used
as propellants. It should also be speci�ed that this model does not take in consideration
the collisions between heavy particles and electrons, but only describes the collisions
between neutral gas atoms and electrons. The reactions considered are summarized in
table 1.1.

Reaction Name Threshold Energy [eV]

Ar + e → Ar + e Elastic Collision ϵenAr = (3me/mAr )Te

Ar + e → Ar ∗ + e Excitation ϵelecAr = 11.55
Ar + e → Ar+ + 2e Ionization ϵionAr = 15.76

Table 1.1: List of reactions considered and threshold energies related to them [14]

In table 1.2 instead, the values of the reaction constants relative to table 1.1 will be
de�ned:

Reaction Expression

Elastic Collision Ken
Ar = 2.336 × 10−14T 1.609

e exp(0.0618(lnTe)2 − 0.1171(lnTe)3)
Excitation Kelec

Ar = 5.02 × 10−15T 0.74
e exp(−11.56/Te)

Ionization Kion
Ar = 2.34 × 10−14T 0.59

e exp(−17.8/Te)

Table 1.2: List of reactions coe�cients [14]

Di�usion Model

The di�usion of ions and electrons inside the source is closely related to the way in which
these particles, thanks to the action of the magnetic �eld, move along the axial and radial
directions. As has already been mentioned among the Global Model hypotheses, the block
of code describing the Di�usion Model uses the concept of the Langevin section [14].
The so-called Langevin Scattering, correlated with the elastic collision reactions of the
electrons, allowing to calculate the mean free path of the electrons and consequently to
calculate the collision frequency of the particles. Taking again Argon as the example gas,



it is possible to de�ne the Langevin section as follows:

σi = −2.95 × 10−19
√

3
2T∞ + 10.65 × 10

−19 − 2 × 10−19
√

3
2T∞ + 7.8 × 10

−19 (1.23)

In equation 1.23,T∞ represents the temperature of the neutral gas. As we have already
anticipated in the list of hypotheses, it is assumed that the temperature of the ions is equal
to the initial temperature of the neutral gas at every instant: therefore, T∞ also represents
the temperature of the ions. Now that the value of the Langevin section is known, the
mean free path of the electrons will be:

λi =
1

(
∑

j ni)σi
(1.24)

And consequently, the collision frequency between the ions can be expressed as:

νi =
vth
λi

(1.25)

Where the term υth =
√

8kBT∞
πm represents the thermal velocity of the electrons (while

instead kB is Boltzmann’s constant). The collision frequency of the electrons is instead
de�ned by the following formula:

νe =
∑
j

nnK
j (1.26)

Here instead, the term nn represents the density of the neutral particles and the term K j

indicates the generic reaction coe�cient, already described in the previous paragraphs.

Di | | =
kBT∞
miνi

De | | =
qTe
meνe

The mobility coe�cient µ | | and the di�usion coe�cients D | | along the axial direction of
the magnetic �eld can be calculated for both electrons and ions as a function of the

collision’s frequencies seen in equations 1.25 and 1.26 [14]. We see them written below:

µi | | =
q

mivi
µe | | =

q

meve
(1.27)

In these formulas it is good to pay attention to the fact that the temperature of the
electrons Te is expressed in [eV ] while the temperature of the ions Ti is expressed in [K].
From this di�erence in units of measure it is immediately understandable the presence
of two di�erent terms in the numerator of the two di�usion coe�cients. Knowing these
parameters, we can now calculate the same di�usion and mobility coe�cients, this time
along the direction perpendicular to the magnetic �eld lines, making use of the so-called



Chapter 1 - Reference Models 15

magnetic factor f = 1
1+(ων )

2 ,which in this case will be the same for both ions and electrons.
The following expressions are obtained:

D⊥ = D | | f µ⊥ = µ | | f (1.28)

With the coe�cients just calculated, the parameters of ambipolar scattering in the direction
parallel and perpendicular to the magnetic �eld lines can �nally be calculated. The
ambipolar coe�cient along the direction parallel to the �eld lines is obtained from the
equation 1.29. While for the ambipolar coe�cient in the direction perpendicular to
the �eld lines two formulations are possible, expressed as a function of the magnetic
�eld intensity, they are reported in the two equation 1.30 (respectively for low and high
B) [14],) [6].

Da | | =
µi | |De | | + µe | |Di | |

µi | | + µe | |
(1.29)

Da⊥1 =
µ⊥|De⊥ + µe⊥Di⊥

µi⊥ + µe⊥
Da⊥2 = µ1⊥Te (1.30)

The resulting coe�cient of the perpendicular component will be a combination of the
two transverse coe�cients described in the following equation:

DRT = exp((1 − λ)loд(Da⊥1) + λloд(Da⊥2)) (1.31)

Where λ is, in this case, the coe�cient of the weights [15] and is set equal to 0.9. The am-
bipolar coe�cients consider the di�usion phenomena which, due to the ambipolar electric
�eld that develops in the plasma, tend to keep the plasma neutral. These parameters allow
to obtain the two heuristic ratios between the densities that exist between the heart of
the source and its walls, and these parameters are respectively hL and hR [13], [14].

hL =
0.86√

3 + L
2λi + (

0.86LuB
πDa
)2

hR =
0.86√

4 + R
λi
+ (

0.8RuB
2.045J1DRT

)2

βavд =
1

7(1 − h
1
6
R )

{[(1 − h
1
6
R ) − 1]

7 + 1} (1.32)

Where the parameter βavд represents the mean of the plasma density in the radial direc-
tion [13].





–2–
Preliminary Analysis

2.1 Evaluation of propulsive performances for each gas

The �rst challenge to face for the development of a space thruster is represented by the
choice of the propellant. The most common propellant for electric propulsion are noble
gases such as Argon, Krypton, Neon and Xenon; the task of the author of this thesis is to
choose the gaseous propellant that presents the best propulsive performances, conducting
a graphical analysis based on data obtained from Matlab simulations. Once the propellant
gas has been chosen, only that gas will be used to proceed with subsequent thruster
optimization analyses. It is good to mention the existence of a prototype of the REGULUS
thruster, an HPT with a power of about 150W, which uses Xenon as a propellant gase [17].

2.1.1 Input parameters to the code
As already seen in �gure 1.1, the Matlab code displays the following eight parameters on
the command window as results of the simulations:

• Electron temperature

• Electron density

• Ionization ratio

• Neutral density

• Thrust

• Speci�c Impulse

• Thrust e�cency ratio

• Propellant utilization e�cency

17



Figure 2.1: REGULUS Thruster
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These parameters are calculated within the "main" code which includes Global Model
and Propulsion Model. At the "main" code, the following six parameters are supplied as
inputs:

• Propellant gas

• Electrical Power

• Magnetic �eld intensity

• Mass �ow rate

• Source radius

• Source length

These input parameters are brie�y described in the following lines:

1. Propellant gas
The Global Model is written in a Matlab code document called "main" and is supplied
together with another Matlab document folder called "gas_data", from which the
"main" imports the data related to each propellant gas to be used. Speci�cally,
this folder contains four �les that indicate all the parameters necessary for the
“main” code to perform the calculations with all four possible gases to be used as
propellants. These four gases are listed below:

• Argon
• Krypton
• Neon
• Xenon

In line 24 of the "main" code it is possible to type the name of the gas to be used in
the simulation (�gure 2.2) to ensure that the "main" code knows from which �le in
the "gas_data" folder to import the data.

Figure 2.2: Line 24 of "main", where Gas_name is to be selected

2. Electrical power
REGULUS is mounted on board a satellite which generates electric power with the
aid of solar panels mounted on its surface. It is understandable that due to the small
size of the satellite, the electrical power generated will have upper limits, which in



our case are around a value of 50W [17]. Furthermore, during the transmission of
energy from the solar panel up inside the neutral gas in the source, an e�ciency
factor around η = 0.8 was observed. It can therefore be written:

Pдas = ηPelectrical (2.1)

As a result, the 2.1 equation gives about 40W of power supplied to the neutral gas
and plasma in the source. This power input is written by the user himself at line 61
of the "main" code, as we see in �gure 2.3.

Figure 2.3: Line 61 of "main", where Pw value is to be selected

3. Magnetic �eld intensity
As we have already described in the introduction to this draft, REGULUS mounts
around the source two toroidal-shaped permanent magnets with a rectangular
section. The thruster is housed in a case with dimensions of 1.5 CubeSat units and
the remaining part of the avionics must also �nd accommodation inside the same
case. Given these stringent volume limits, it is possible to de�ne from the outset
the dimensions of these magnets and consequently the intensity of the magnetic
�eld generated by them. The magnetic �eld intensity obtained is around 600 × 10−4
Tesla and in the "main" this datum can be set in line 62 of the code:

Figure 2.4: Line 62 of "main", whereMaдnetic Field Intensity value is to be selected

4. Propellant mass �ow rate
To de�ne the propellant mass �ow rate value, it is �rst necessary to carry out an
analysis of the relationship between the mass of an electric propulsion unit and
its speci�c impulse. The relationship between these two quantities is represented
in �gure 2.5, and it is good to know that this curve, having a positive in�ection
trend and with the presence of a minimum, is an exclusive characteristic of electric
propulsion systems.
The resulting curve indicated in �gure 2.5 with ∆m +mp is clearly the sum of the
two contributions ∆m and mp which on the graph are indicated by the two dotted
lines: the contribution ∆m represents the mass of propellant, while the contribution
mp denotes the mass of the power unit of the satellite. We describe these two
contributions in the following lines in more detail:
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Figure 2.5: Isp in function of mass contributes ∆m andmp

• Propellant mass
More precisely, ∆m represents the trend of the propellant mass as a function
of time, and is expressed according to the equation 2.2:

∆m = Ûm∆t =
T∆t

д0Isp
(2.2)

Note how this expression is directly proportional to the term Ûm which expresses
the propellant mass �ow rate.

• Power supply unit mass
The second contribution describes the mass of the power unit (which on an
electric propulsion unit represents the most signi�cant contribution to the
total mass) as directly proportional to the electrical power generated. We can
describe the relationship betweenmp and the electric power P in equation 2.3:

mp = αP = α
Ûmv2

e

2η =
αд0T Isp

2η (2.3)

Note how the term Ûm appears here too, expressing the mass �ow rate. At
the point of the curve which represents the minimum total mass, an optimal



Figure 2.6: Exploded view of REGULUS plasma thruster

speci�c impulse value is de�ned, called Îsp. This value is expressed as follows:

ˆIsp = 1
д0

√
2η∆t
α

(2.4)

Returning to the value of Ûm, we note that there is a minimum total mass value,
which we know from depends on the two contributions ∆m andmp seen in �gure 2.5.
Since both contributions depend on the value of Ûm, we can conclude that, for a given
thruster, exists a value of Ûm which de�nes a minimum total mass, and consequently
an optimal speci�c impulse Îsp . Plasma thrusters are designed to have burning
times ∆t in the order of months and, given the small size of the satellite under
examination, only small masses of propellant ∆m can be carried onboard. Since
the mass �ow rate can be expressed as Ûm = ∆m

∆t it is clear that, given the orders of
magnitude of the numerator and denominator, the mass �ow rate assumes very
small values. Therefore, it becomes important to have very precise control over
this parameter, and this is achieved by adopting suitable �ow regulation valves.
Based on simulations performed on the previous REGULUS version, a mass �ow
rate value of 30 × 10−9 kд/s , written in line 60 of the "main" code, is adopted for
the preliminary analyses.

5. Source length
As we can see from the exploded view in �gure 2.6, the maximum length of the
source is limited by the size of the single CubeSat unit in which the same source
must be contained. Since the side dimension of a CubeSat unit is standardized at
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0.1m we can impose this value on the length of the source, at line 53 of the "main"
code (�gure 2.7).

Figure 2.7: Block of code relative to source’s geometry

Before proceeding with the description of the output parameters of the Matlab code it
is necessary to make a clari�cation: once the propellant gas to be used in the simulation
has been chosen, all the input parameters mentioned above are considered constant for
the entire duration of the simulation, made exception for the electrical power. Contrary
to all the other quantities, the electric power is not modelled as a step function (meaning
that its value is zero up to an instant before the start of the simulation and from the
following instant constantly equal to the �nal value), but follows an exponential law
which starts from zero at the initial instant and tends asymptotically to the �nal value
which is imposed at line 61 of the code. This exponential law is described in the equation
below:

Pabsorbed = Pw/q/V
(
1 − e−t/0.0001

)
(2.5)

Focusing on the second factor of the multiplication, which is the exponential function,
we can observe how it is represented in the graph in �gure 2.8:

Figure 2.8: Graph of exponential function in equation 2.5



We note that this function reaches the �nal value in a time interval lower than 10−3s .
Therefore, if compared with the entire duration of the simulation (which in our case
remains �xed at 4s) the power trend can also be traced back, with good approximation, to
a step function. The need to de�ne the trend of the absorbed power in his way derives
from the desire to avoid the divergence of the solution of the energy equation. As we
know, the energy equation is nothing more than a second order di�erential equation;
as such, the convergence of its solution will strongly depend on the initial conditions
that are imposed. A step modelling of the power trend could not guarantee an adequate
convergence of the solution and for this reason it was decided to adopt the form described
by the equation 2.5. This form guarantees a much more stable behaviour to the solution
of the energy equation.

2.2 Results presented on screen

Once the parameters described in the paragraph above have been entered, it is possible to
launch the simulation in Matlab. After some seconds (the resolution time depends on the
initial parameters entered) Matlab returns two results to the screen: one appears in a new
window, representing the electron temperature and density trends of species present in
the source over time (�gure 2.9) and another in the command window, where the most
relevant parameters are presented at the end of the simulation together with the resulting
propulsive parameters (�gure 2.10). The two simulation’s results are described in more
detail below.

1. Temperature and density of present species

The graphs shown on the screen describe the following parameters as a function of
time:

• nдs de�nes the density of neutral gas in the source
• n1sm de�nes the density of atoms in the source with electrons excited at the 1s

orbital that are metastable
• n1sr de�nes the density of atoms in the source with electrons excited to the 1s

orbital that are resonant
• n2p de�nes the density of atoms in the source with electrons excited at the 2p

orbital
• ne de�nes the electron density in the source
• Te de�nes the temperature of the electrons in the source

These graphs all show the time variable [s] along the X-axis, and the time interval
represented is equal to the duration of the simulation, which in this case is 4s .
Note in �gure that this value does not appear on the abscissa axis, due to the
decision to adopt the logarithmic scale to represent this quantity. The duration
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of the simulation is chosen to ensure that all the values could reach the so-called
steady state, which is the condition whereby the values remain constant over time
from a certain instant onward. The graphs in �gure 2.9 show that this condition
has been reached, since after a given instant of time the curves show a �at trend
until the end of the simulation. If this does not occur, it is advisable to increase the
simulation time so that this steady state condition occurs anytime. In this draft, for
all the conducted analyses, the simulation time equal to t = 4s was always su�cient
for all quantities to reach the steady state.

Figure 2.9: Graphs presented in new window

2. Steady state parameters and propulsive �gures of merit

The result appearing in the command window, on the other hand, presents the
following values on the screen:

• Steady state temperature of the electrons [eV]
• Steady state density of electrons [m−3]
• Initial temperature of the neutral gas [K]
• Steady state ionization ratio [-]
• Steady state neutral pressure [Pa]
• Thrust [mN]



• Speci�c impulse [s]
• Thrust e�ciency [-]
• Propellant utilization e�ciency [-]
• Mass �ow rate [mg/s]

The propulsive parameters (Thrust , Isp,Thrust E f f iciency, Propellant U tilization
E f f iciency) are calculated from a second block of code using the steady state
parameters as input.

Figure 2.10: Parameters presented in command window

Now that the code has been described exhaustively, let’s proceed with the generation of
graphs that help the reader to better understand how the steady state parameters and
propulsive �gures of merit vary at the variation of the di�erent input parameters.

2.3 Trends of the output parameters at variation of a
single input parameter

To have the broadest possible view on the operation of the plasma thruster, it was decided
to produce graphs that allow to study the trends of all the parameters in the "main" output
as a single input parameter varies, while the other parameters are kept constant. We
summarize in the following lines the selected values of all the input parameters:

• Ûm = 30 × 10−9kд/s

• Magnetic Field Intensity = 600 × 10−4 T

• Pw = 50W

• R = 0.02m

• L = 0.1m
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2.3.1 Mass Flow Rate
Matlab’s "linspace" function allows us to generate a vector with a number of elements
equal to the number of iterations we prefer (imputable as "n_iter" in line 49 in �gure ??).
We note in line 51 of the code how the extremes of this vector are de�ned: the lower
extreme will have a value of 0.1 times the pre-selected value of mass �ow rate, while the
upper extreme will have a value of 10 times the pre-selected valure of mass �ow rate.
The interval of two orders of magnitude between the �nal and initial values is chosen
arbitrarily by the student; it is believed that such a wide interval is su�cient to sweep
many of the most interesting values for the considered quantities ( Ûm in this case). For
each single mass �ow value de�ned with “linspace”, a simulation is performed and the
output data from the code is saved in vectors ready to be exported for further analyses.
This procedure is carried out for all gases (Argon, Krypton, Neon and Xenon), to obtain
the propulsive performance trends as the mass �ow rate varies for each of the possible
propellant gases. Once all the data has been saved, proceed by comparing the curves
obtained on the same graphs, as we can see in �gure 2.11. With reference to the graph

Figure 2.11: Output parameters in function of Ûm

above, we can make the following observations:

• The trends of the curves of all the parameters described as Ûm vary are also similar
among the di�erent gases considered.

• In some cases, the curves tend to be more detached, while in other cases they can
even intersect. Let us see, for example, how the trends di�er for a mass �ow rate
value of 100 × 10−9 kд/s: if our goal is to have the maximum plasma density in the
source (observe the graph of ne ) it is clear that using Xenon as a propellant gas



would have clear advantages over all the others, but if our goal were to maximize
thrust or thrust e�ciency, we note that, for the same mass �ow rate, a di�erent
propellant gas would have very little in�uence.

• The curves relating to electron density, ionization ratio, thrust, thrust e�ciency and
propellant utilization e�ciency all have local maxima: this means that, all other
input parameters being equal, there is a certain mass �ow value such that any one
of these parameters can be maximized.

2.3.2 Magnetic field intensity
The procedure is similar to that relating to the mass �ow: a preselected value of magnetic
�eld intensity (600 × 10−4 T ) is de�ned and the "linspace" function generates a vector
with extremes[0.1 × 600T , 10 × 600T ]. An iterative cycle is then de�ned in Matlab which
allows to have in line 62 input one element at a time of the new magnetic �eld intensity
vector. The iterative cycle is repeated for all four possible gases to be used, and the
resulting output data is again saved and subsequently analysed. The following graphs are
obtained:

Figure 2.12: Output parameters in function of Magnetic Field Intensity

Referring to the graphs in �gure 2.12 we can observe the following aspects:

• The curves are all clearly distinct from each other (except for very low values of
magnetic �eld intensity values) and this suggests that as the propellant gas used
varies, the characteristics of the plasma and the propulsive performance will tend
to undergo variations. For example, for a magnetic �eld of 0.5T we can see that the
speci�c impulse we would obtain if we used Neon as a propellant gas is around
200s while, if we had used Xenon, we would have generated a speci�c impulse of
almost 600s .
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• The curves all show a monotonic trend without any relevant maxima, and this
suggests the non-existence of an optimal value of magnetic �eld intensity that
maximizes propulsive performance.

• The trends of the propulsive performance graphs are almost all monotonous in-
creasing. Note how these curves present a �rst part in which, up to a certain
point, propulsive performance also increases as the intensity of the magnetic �eld
increases. From a certain point on, however, an increase in magnetic �eld intensity
does not produce signi�cant changes in propulsive performance.

2.3.3 Electrical power
The chosen value of electrical power supplied will be 50W while the vector generated with
"linspace" will again have the extremes de�ned as [0.1 × 50W , 10 × 50W ]. The iterative
cycle is performed on the electrical power vector and the following graphs are obtained
for di�erent propellants. We deduce from �gure 2.13 the following characteristics:

Figure 2.13: Output parameters in function of Pw

• The trends in the graphs do not have a uniform trend for all considered gases and
the curves often tend to intersect each other; in this case it is less immediate to
de�ne which propellant gas determines the best propulsive performances.

• The presence of the peak in the ne electron density curve relating to Xenon, Krypton
and Argon is of considerable interest. This trend deserves a more accurate analysis
that we will not deal with in this draft.

• The propulsive performance curves almost all show an increasing monotonic trend:
the speci�c impulse and thrust values tend to increase as the electrical power



supplied increases, while it is noted that the values of thrust e�ciency and propellant
utilization e�ciency reach a saturation beyond which there are no increases in
performance.

2.3.4 Source Radius
The chosen source radius value is 0.02m, but this time the endpoints of the vector used
for the iterations are de�ned di�erently: the "linspace" function is set to generate a vector
having endpoints [0.1 × 0.02m, 6 × 0.02m]. The reason for this di�erent de�nition will be
explained later in the following comments. Proceeding with the iterations on the elements
of the vector containing all the possible source radii, always for each possible propellant
gas, the underlying graphs are obtained. From �gure 2.14 we can observe that:

Figure 2.14: Output parameters in function of source radius

• The curves sometimes remain quite distinct from each other along the entire interval
considered, while sometimes the curves tend to intersect for short stretches. As
we have already seen for mass �ow, for the values of source radius where the
curves intersect, the choice of one propellant gas rather than another will have a
reduced in�uence on propulsive performance. On the other hand, for sections where
the curves are quite distinct, the propulsive performance will be more markedly
in�uenced by the choice of propellant gas.

• The propulsive performance graphs all have an appreciable maximum point, and
this indicates that, for a given propulsive �gure of merit, there is an optimal radius
for maximizing it (all other input parameters being equal).

• Unlike Ûm , Pw and Maдnetic f ield Intesity seen previously, the graphs of the
di�erent propellant gases have not been represented along the same range of values
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(note the brevity of the Krypton and Xenon curves). This is due to an intrinsic
feature of the Matlab code: as we have already mentioned, the Global Model includes
two second order di�erential equations and the stability of their solution strongly
depends on the initial conditions that are imposed; some source radius values do
not guarantee adequate stability to the solution of the di�erential equation, and
therefore the data obtained are not considered valid for making a clear comparison
between the performance of the various gases. This is the reason why the vector of
source radius generated with the "linspace" function has the extremes de�ned in a
di�erent way compared to all the other vectors seen previously.

2.3.5 Source Length
The chosen source length value is 0.1m, and the extremes of the vector generated by the
"linspace" function this time are [0.1 × 0.1m, 10 × 0.1m]. Following the iterative cycles,
performed for each propellant gas, we obtain the underlying graphs. From the graphs in

Figure 2.15: Output parameters in function of source length

�gure 2.15 we can conclude that:

• The characteristics of the plasma are represented by curves which in some sections
are quite distinct from each other. The same curves suggest that there is an optimal
source length value to maximize the electron density ne and the ionization ratio,
but not Te and ne .

• By carefully observing the curves that describe the propulsive performance, we
notice that most of them have a maximum even if for thrust, speci�c impulse
and thrust e�ciency it is di�cult to recognize: a more detailed analysis showed
clearly that for low values of source length there exist a maximum over the The



intersection between the curves that is present in the thrust, speci�c impulse and
thrust e�ciency graphs suggests that there is a certain length of the source such that
a di�erent choice of propellant gas would not bring any bene�t for these quantities.

2.4 Propellant gas choice
Before proceeding with the choice of propellant gas, there is an important question to be
asked: what are the desired requirements for the values of each parameter represented in the
�gures above?

We can break down the desired requirements as follows:

• High value requirement
ne

Ionization ratio

Thrust

Isp

η

If the values of these parameters are high, an optimal plasma density in the source
is guaranteed together with the best propulsive performances.

• Low value requirement
Te

Neutral pressure

If these parameters are characterized by reduced values, a high plasma density in
the source and a good stability of the plasma itself are guaranteed, which would
instead become unstable if the temperatures were too high.

Proceed with the choice of the propellant gas by referring to the graphical results described
in the previous section. Note how in �gure 2.12 and in �gure 2.14 (relative to Magnetic
�eld intensity and R) Xenon always guarantees better propulsive performance than all
other gases. To correctly evaluate the graphs that describe the other parameters as the
mass �ow rate, the electrical power and the length of the source vary, it is good to make
further clari�cations.

1. Mass �ow rate

To de�ne which gas guarantees the best propulsive performance, it is useful to
have an estimate of the mass �ow values that will �ow into our engine. From
�gure 2.11 we note that while the value of Isp grows exponentially as the mass
�ow rate decreases, the graphs of Thrust, η and Propellant utilization e�ciency show
maximums for mass �ow values between

[
0.3 × 10−9kд/s, 1 × 10−9kд/s

]
. Within

this range in particular, Xenon stands out as the best propellant.
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2. Electrical power

The electric power available on board is strongly limited by the dimensions of
solar panels mounted on the hosting satellite. We know that for these satellites
the standard of power supplied to the propulsion block is ∼ 50W [4]. In the range
[0.5W , 50W ] the Xenon again has the most desirable characteristics.

3. Source length

Again, the standard size of a CubeSat unit is 0.1m and de�nes the upper limit
of source length. From �gure 2.15 it is clear that in the possible range of values
[0.01m, 0.1m] it is Xenon that guarantees the best performance.

We can undoubtedly conclude that on the basis of the simulations we performed, Xenon
is the best gas to use as a propellant on REGULUS. From now on, the optimization of our
Helicon Plasma Thruster will proceed with one less variable, since the propellant gas to
use is no longer an unknown in our problem.

2.5 HPT optimization

Now that the propellant gas has been chosen, the methods for optimizing the other �ve
input parameters remain to be de�ned. We remind the �ve remaining input parameters
to be: mass �ow rate, magnetic �eld intensity, electrical power, source radius and source
length. However, we can refer to the graphs presented in the previous section to try to
have the clearest possible view. Before delving into the resolution of this problem, it is
necessary to �nd an answer to this fundamental question: which propulsion parameter is
this optimization interested in maximizing?

The answer to this question is by no means obvious, since for di�erent mission pro�les
there may be di�erent requirements to satisfy: if, for example, REGULUS was required
for an interplanetary mission, ∆v would be by far the most relevant parameter, while for
an engine that were to perform orbit changes or station keeping would be the Thrust
to become the fundamental requirement [21]. Since this thesis work is not aimed at
optimizing a thruster for a given mission, thrust e�ciency η has been chosen as the
propulsive �gure of merit to be maximized. The thrust e�ciency is de�ned in the code
block describing the "propulsion_model" function.

Equation 1.22 indicates that maximizing thrust e�ciency means making sure that the
ratio between the kinetic power of the jet leaving the engine and the electrical power
supplied is as high as possible. Following a more careful analysis of the graphs in section
2.3, further simpli�cations can be immediately made. It has already been noted that
the curves relating to the propulsive parameters as a function of the variations of Pw
and the Magnetic Field Intensity are monotonically increasing, and don’t present any
relevant maxima. In other words, all the propulsive parameters are improved the higher
the magnetic �eld intensity and the higher the electrical power supplied. All we must do
is imposing the highest possible values of these two parameters which, as we have already



explained, are Pw = 40W (see equation 2.5) and Magnetic �eld intensity = 600 × 10−4T .
Given this consideration, the parameters to be optimized remain Ûm, R and L.

2.5.1 Thrust e�iciency in function of Ûm, R and L

If in the previous section the graphs of an output variable as a function of another input
variable were drawn, this time we study the merit parameter η as a function of three input
variables R, L and Ûm (see following equation).

η = f (R, L, Ûm) (2.6)

Conducting analysis with iterative cycles on all three input parameters would involve
a high processing time by the Matlab software. To create the graphs of the previous
section, 100 iterations were performed for each parameter (de�ned in line 49 in �gure ??).
If vectors were constructed with 100 elements for each of the three input parameters to
the function in equation 2.6, the number of iterations to be performed would be 1003 or
1000000 iterations. Considering an average time for each of them of about 20s , it would
take about 231 days to obtain a �rst solution. Nor should we overlook the fact that such
a solution would present a very high level of uncertainty. Let us take for example the
length of the source, which in the previous analyses was studied along an interval of
extremes [0.01m, 1m]: if this interval were divided into 100 parts, one would obtain an
uncertainty of ±0.0099m, clearly too high for a thruster up to 0.1m long. These issues are
resolved by adopting the following methods:

1. Mass �ow rate outside of iterative cycles

Instead of setting iterative cycles on three variables, the mass �ow rate is imposed
on line 2.11 before launching the simulation and iterative cycles are performed
only on the geometry of the source, therefore on R and L. In this way it is possible
to obtain graphical results that are easily interpretable and are displayed on the
screen in two ways: one uses the "surf" function while the other uses the "contourf"
function of Matlab.
“Contourf” works in a similar way but is represented only in 2D as the X and Y
coordinates always represent L and R, while the thrust e�ciency is represented on
the graph by di�erent shades of colors, while the values of η are presented to the
reader with the aid of contour lines (�gure 2.16a).
“Surf” de�nes a set of points in space where the X coordinate represents the radius
of the source (R), the Y coordinate represents the length of the source (L) and the Z
coordinate indicates the thrust e�ciency η related to each combination of R and L
considered (�gure 2.16b).
The mass �ow values that are set manually for every possible case are the elements
of the vector in equation 2.7:

Ûm = [50, 70, 90, 110, 130, 150, 170, 190, 210, 230, 250, 270, 290, 300] e−9kд/s (2.7)
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2. Vectors of L and R of up to 10 elements

Having only two iterative cycles to do, the number of iterations is imposed as a
maximum of 102, that means 100 iterations for each mass �ow value expressed in
the equation 2.7.

3. Extrema of the vectors of L and R around the known maxima

In section 2.3 a preliminary analysis of the propulsive performance as the geome-
try varies has already been conducted. To ensure that the intervals between the
extremes of the vectors are smaller than in section 2.3 , we choose to study the
values of R and L in a neighbourhood of the optimal values identi�ed in �gures
2.14 and 2.15. The breadth of this neighborhood is de�ned arbitrarily from time to
time, seeking a compromise between the limits already described and the interest
of having a vision on a spectrum of values that we want as wide as possible.

We see in the �gures below an example of the graphs obtained. The label of the �gures
indicates the mass �ow rate to which they refer.



(a)

(b)

Figure 2.16: (a) Contourf graph for Ûm = 110e − 9kд/s (b) Surf graph for Ûm = 110e − 9kд/s

Based on the graphs shown in �gure 2.16a and 2.16b, it is advisable to make the
following clari�cations:

• The graph of the “contourf” function is set to show contour values only for η values
included in the interval [4, 7.5]%.

• The graph of the surf function indicates that there is an optimal source radius, but
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not an optimal source length for maximizing η. A surface that would be dome-
shaped could have been expected, but for the mass �ow rate under consideration
this is not the case. Clearly, the length of the source that would maximize the thrust
e�ciency would be larger than the side of the CubeSat.

• It has already been mentioned that the extrema of the vectors of L and R are
chosen arbitrarily for each di�erent value of Ûm. For the choice of these values, two
criteria are mainly followed: The �rst takes into consideration the dimensions of
the CubeSat and, considering that maximum R is 0.03m and maximum L is 0.1m,
the thrust e�ciency is studied around these two values. The second criterion, on
the other hand, is necessary because the di�erential equations solved during the
iterations do not always �nd a convergent solution for all combinations of R and
L. In these cases, it is plausible that the interval between the extremes is too large
and should be reduced, so that it is always possible to obtain a solution that is
convergent. This latter issue is particularly relevant for lower mass �ow values,
where two things may happen: either the Te is too high to guarantee stability to
the solution or the volume is too large for a small amount of gas, preventing the
achievement of the plasma density necessary to ensure the right stability over
time. Since these problems mainly concern the extrema of the vectors of R and L
considered, it will �rst be necessary to perform a solution cycle of 4 iterations, one
for each combination between the extrema of the vectors R and L. If the Matlab
code can provide a solution for all the combinations of the four extremes, it is very
probable that it will also be able to solve all the combinations of intermediate values
of L and R.

The graphs obtained for each mass �ow value considered are shown in Appendix A.

2.5.2 Determination of maximum thrust e�iciency
To determine the maximum thrust e�ciency, it is necessary to export and archive all the
data relating to the L and R iterations which are represented by �gures 2.16a and 2.16b.
A folder will be created for each mass �ow rate considered, within which there will be
three text documents, one containing the array of the considered Ls , one containing the
Rs and the third a matrix describing the thrust e�ciency obtained for each combination
of R and L. Before de�ning the geometry that determines the best thrust e�ciency for
a given mass �ow, it is good to discard data that do not meet the desired requirements.
Three di�erent requirements can be de�ned that distinguish valid data from invalid data,
which are the followings:

1. L ≤ 0.1m
If the maximum η were determined by a source length greater than the dimensions
of the CubeSat, this datum would be discarded in favour of another datum that
satis�es this requirement.



2. R ≤ 0.03m
The same reasoning applies to the radius of the source, we want it to be lower than
a certain limit imposed by the dimensions of the CubeSat.

3. Te < 15eV
Using Xenon as a propellant gas, for high electron temperatures, there is instability
in the solution of the di�erential equation; this problem had already been encoun-
tered also in some of the previous simulations. It is chosen to impose an upper
limit of 15eV of temperature to guarantee that the result is reliable and that it is the
result of a convergent solution: therefore, all the combinations of L and R which
determine a temperature Te ≥ 15eV will be considered as invalid data.

To have a graphical comparison of these limits, see in �gure the di�erence between
the graphs obtained from the iterations (�gure 2.17a) on L and R and after excluding the
data that do not satisfy the requirements (�gure 2.17b).

As can be seen from �gure 2.17b, η values that do not satisfy the requirements are set
as equal to 0: in this way, when searching for the maximum η value, these values equal
to 0 will be automatically excluded. At this point it will be su�cient to write another
piece of Matlab code which determines which point of the graphs in �gure 2.17b is the
one with the highest η, and to which values of L and R it corresponds. We then proceed
by exporting the data into a vector, composed as follows:

veci =
[
Ûm,ηmax ,Rηmax , Lηmax

]
(2.8)

Where the i index describes the i − th element of mass �ow vector in equation 2.7. The
mass �ow rate is set manually from time to time as seen in �gure 2.11, while the other
three elements of the vector in equation 2.8 are the result of the optimization analyses
just described. The vectors are all saved in a dedicated folder, and then imported into
another Matlab document to continue with the data analysis. We proceed by plotting the
graphs of ηmax as a function of Ûm, Rηmax as a function of Ûm and Lηmax as a function of Ûm,
represented in �gure 2.18. As expected, these graphs are characterized by very rough
curves, which do not allow to analyze the data as precisely as we would like. However, it
is possible to de�ne a certain trend for all the di�erent curves:

1. Maximum thrust e�ciency curve

The function ηmax ( Ûm) has a peak in the range [70, 150] ∗ 10−9kд/s . This area of
the function will later be re�ned to obtain the most precise �nal values which will
lead to engine optimization. In the absence of more precise data, we can make
a prediction that the maximum thrust e�ciency ηmax is reached for a value of Ûm
around 100 ∗ 10−9kд/s .

2. Optimal source radius curve

Note that the source radius increases rapidly as the mass �ow rate injected into the
source increases, until it reaches the maximum value of 0.03m which is imposed
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(a)

(b)

Figure 2.17: (a) Contourf and Surf graph for Ûm = 110e − 9kд/s , before data selection (b)
Contourf and Surf graph for Ûm = 110e − 9kд/s , after data selection

by the limits already discussed in this section. It is also clear, despite the high
uncertainties, that the radius of the source that maximizes η will be around the
set limit. We will try to validate this hypothesis through subsequent more precise
analyses.

3. Optimal source length curve

As happens for the optimal source radius curve, the source length curve also grows
rapidly as the mass �ow rate increases and then reaches the limit of 0.1m set in this
section. Beyond the mass �ow rate value of 1.5 × 10−9kд/s the curve seems to take
on a decreasing monotonous attitude, but this impression must not overlook the
high uncertainties relating to these data.



Figure 2.18: ηmax ,Rηmax ,Lηmax in function of Ûm



–3–
Data analysis with uncertainity

requirements

Once these �rst results have been obtained, we proceed with the analysis until we obtain
data with levels of uncertainty that are lower than a certain value. The question that
arises now is: how do you de�ne an uncertainty value that is low enough? The answer lies
in the nature of the same quantities that we want to optimize:

1. Uncertainty about Ûm

In the T4i laboratory we know that, for technologies similar to REGULUS, it was
possible to control a Xenon mass �ow rate with a sensitivity of 2×10−9kд/s . Based on
this last datum, it was decided to adopt ±2 × 10−9kд/s as the maximum uncertainty
on the Ûm values.

2. Uncertainty about L and R

The geometric parameters of the size of the source will instead depend on the
technologies used for the machining. From the data provided by the T4i laboratory,
we know that the machining comes to model the components with an accuracy of a
tenth of a millimetre. This is the value of ±1 × 10−4m that we have chosen to adopt
as the maximum permissible uncertainty on the geometric measurements of the
source.

Before proceeding with the subsequent analyses, we must re�ect on the computational
cost of these new precision requirements. Assume, absurdly, that we have to conduct
this analysis with the preliminary vectors de�ned in section 2.3, which had extremes of
[45, 300] × 10−9kд/s for the vector of Ûm, [0.002, 0.12]m for the vector of R and [0.015, 1]m
for the vector of L. To satisfy the precision requirements, the vectors of the three quantities
should have a number of elements which is equal to:

numberelements =
extremesuperior − extremein f erior

uncertainity
(3.1)
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From equation 3.1 it results that the vector of Ûm will have a number of elements equal to
127, the vector of R will have a number of elements equal to 1180 while the vector of L will
have 9850 elements. Multiplying together the number of elements of the three vectors,
we get the total number of iterations to perform, which is about 1.5 billion iterations. It is
therefore clear that to proceed with this calculation it is �rst necessary to adopt suitable
simpli�cation strategies.

3.1 Simplification of geometry iterations
From the graphs in �gure 2.16a and 2.16b we can see how the "Contourf" and "Surf"
functions determine the point that represents ηmax , Rηmax and Lηmax for a given �ow rate
massive. To increase the precision of the analysis we have chosen to perform these
iterations again, but this time with a new de�nition of the extrema of the vectors of R
and L. Once the optimal value of R and L which maximizes the thrust e�ciency has
been determined, the new extrema of the vectors of R and L for the subsequent analyzes
are de�ned as follows: the element preceding the optimal value will become the lower
extremum, while the element following the optimal value will become the upper extremum.
In �gures 3.1a and 3.1b we have a graphical representation of this procedure, where the
red dot indicates the combination of R and L which determines ηmax , while the green
dots represent the new extremes of the vectors used for the subsequent analyses. See a
numerical example to better understand this procedure, relating to the mass �ow rate of
Ûm = 170e − 9kд/s . The initial vectors chosen for the preliminary analysis are:

L = [0.04, 0.0489, 0.0578, 0.067, 0.075 , 0.084, 0.093, 0.102, 0.111, 0.12]m
R = [0.02, 0.0239, 0.0278, 0.03167, 0.0356, 0.0394, 0.0433, 0.0472, 0.0511, 0.055]m

(3.2)

The maximum thrust e�ciency ηmax = 6.67% is determined by the combination of the
two optimal dimensions:

Lηmax = 0.093m
Rηmax = 0.0278m

(3.3)

According to vector L in �gure 3.1, the element before the optimal value is 0.084m and the
element after it is 0.102m. For the vector of R in �gure 3.1, the element before the optimal
value is 0.0239m and the element after it is 0.03167m. The new vectors for subsequent
analyses will be de�ned by the "linspace" function, as written below:

L1 = linspace
(
0.084m, 0.102m,niterL

)
R1 = linspace

(
0.0239m, 0.03167m,niterR

) (3.4)

Where usually niterL = niterR = 10 This analysis will provide two new values of
Rηmax and Lηmax , and this procedure is repeated until the underlying condition, deriving
from equation 3.1, is satis�ed:

uncertainity >=
extremesuperior − extremein f erior

niter
(3.5)
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It is probable that one of the two dimensions will satisfy this condition before the other;
it will be su�cient to decrease the number of iterations for the �rst quantity and increase
the number of iterations for the quantity which has not yet satis�ed condition in equation
3.5.

(a)

(b)

Figure 3.1: (a) Contourf and Surf graph for Ûm = 170 × 10−9kд/s , before data selection, with
representation of next iterations’ domain (b) Contourf and Surf graph for Ûm = 170×10−9kд/s ,
after data selection, with representation of next iterations’ domain



3.2 Simplification of Mass Flow Iterations
Observing the graph in �gure 2.18 relative to ηmax as a function of Ûm, it was possible to
distinguish a certain trend despite the high uncertainty: it has already been hypothesized
that the peak ofηmax is determined for mass �ow values included in the interval [0.7, 1.5]×
10−9kд/s . To arrive at precise results on the value of Ûm that maximize ηmax , it will be
su�cient to carry out the analyses only in this last range of mass �ows. The di�erence
between one mass �ow rate value and the previous one must be taken into consideration,
making sure that the value of this di�erence is less than or equal to the sensitivity
with which the mass �ow rate is controlled, which is 2 × 10−9kд/s . Having made these
considerations, we can de�ne the mass �ow rate values to be analysed, which are grouped
in the underlying vector:

Ûm = [70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90,
92, 94, 96, 98, 100, 102, 104, 106, 108, 110,
112, 114, 116, 118, 120, 122, 124, 126, 128, 130,
132, 134, 136, 138, 140, 142, 144, 146, 148, 150] ∗ 10 − 9kд/s

(3.6)

Thanks to these simpli�cations, the number of iterations will be signi�cantly reduced.
For each mass �ow, the vectors of L andR must be combined for a total of 100 combinations.
Assume that the process is repeated on average 5 times to meet the required precision
requirements, obtaining a total of 500 iterations for each mass �ow value: multiplied
by all the mass �ow values we want to study, we obtain approximately 20000 iterations,
which is clearly a smaller number than the one obtained at the beginning of this chapter.

3.3 Final results
Figure 3.2 shows the graphs resulting from the more precise analysis just described.
Only the mass �ow values contained in the vector in equation 3.6 are represented on
the abscissas of these graphs. Given the higher precision of these data, the curves turn
out to be a lot smoother and trends are much more easily analysable. As expected, the
ηmax curve has a peak in the interval considered, con�rming that the trends obtained
following the roughest analyses still provided reliable results. The optimal R and L curves,
on the other hand, tend to quickly reach a �at trend, given that the upper limits have
been imposed on these two dimensions, respectively 0.03m and 0.1m. All that remains
is to analyse these curves more closely to obtain a geometric con�guration and a mass
�ow value that optimize η. From the graph in �gure 3.3 we can have a more detailed view
of the peak on the ηmax curve. From the graphs in �gure 3.3 it emerges that the optimal
values of R, L and Ûm can be obtained, reported in equation 3.3.

Rηmax = (0.03 ± 0.0001)m
Lηmax = (0.1 ± 0.0001)m
Ûmηmax = (96 ± 2) × 10−9kд/s

(3.7)
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Figure 3.2: ηmax , Rηmax and Lηmax curves, in function of Ûm, for Ûm values equal to 3.6

Figure 3.3: ηmax , Rηmax and Lηmax curves, in detail to determine peak of ηmax curve

These values, together with the values of Pw = 40W and Magnetic Field Intensity=
600 × 10−4T de�ne a value of ηmax equal to:

ηmax = (7.39 ± 0.0007)% (3.8)

Plasma thrusters similar to REGULUS (in terms of size and electrical power) are charac-
terized by thrust e�ciencies of the same order of magnitude, which con�rms the good
quality of our analyses.





–4–
Further Analysis

We summarize in the following lines all the input values resulting from the optimization
of the propulsor:

• Ûm = 96 × 10−9kд/s

• Magnetic Field Intensity = 600 × 10−4T

• Pw = 40W

• R = 0.03m

• L = 0.1m

We recall how these results were obtained through an analysis that imposed limits of
both a technological and geometric nature. Faced with the values obtained, the following
question arises spontaneously: Which of the dimensional and technological limits that have
been imposed is the one that has most limited the maximization of the thrust e�ciency value?
An initial answer to this question could be hidden in a more careful observation of the
graphs obtained following the preliminary analysis, where the trends of the propulsive
parameters were studied as each parameter in input to the system varied. However, it
is good to �rst ask ourselves whether those graphs, obtained from preliminary values
deriving from a similar engine, are su�ciently representative of the engine that we have
managed to optimize in this draft. To get a clear answer, let’s pay attention to �gure 4.1: In
the graph on the left, two color lines have been integrated on the surface, which represent
the trends of η as a function of L for two di�erent constant values of source radius R (see
legend in �gure 4.1). In the graph on the right, the same curves are put comparison, to
have a clear view of how the trend of η as a function of L is strongly in�uenced by the
value of R that is chosen. Following these considerations, we can conclude that in order
to have a precise view of how the various input parameters can in�uence the propulsive
performance of our HPT speci�cally, the graphs obtained in section 2.3 will have to be
drawn again, taking care to impose the chosen values as the values appearing at the
beginning of this chapter. Since our optimization analysis is concerned with maximizing
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Figure 4.1: Confront between the trend of η in function of L for two di�erent values of R. The
value of mass �ow rate considered in this case is Ûm = 190 × 10−9kд/s

η, we will then only represent the graphs relating to this speci�c propulsive performance
as a function of all the various input parameters. The graphs relating to all the output
parameters as a function of the variation of a single input parameter are collected in
Appendix B.

4.1 η in function of Ûm

To evaluate how the propulsive performances vary around the optimal mass �ow value,
refer to �gure 3.3: no limit has been imposed on the mass �ow value and since it was one
of the three parameters to be optimized in section 3.2, its optimal value corresponds to
the maximum η value on the curve.

4.2 η in function of Pw

Refer to �gure 4.2. On this graph it was decided to represent the results of our optimization
with a green dot, while the red dot represents the maximum of the thrust e�ciency curve
as a function of the power output. We note how, although the electric power Pw is limited
by the technology, the maximum thrust e�ciency does not deviate too much from the
hypothetical maximum it could reach: the value we obtain thanks to our optimization
is η = 7.39% with a power of 40W , while the maximum shown on this curve would be
η = 8.918% for a power amount of Pw = 234W . The electrical power is known to be
supplied to our thruster by the solar panels of the host satellite, which has dimensions
between 6 and 24 CubeSat units. Any satellite that could supply the 234W of power
necessary to maximize the thrust e�ciency of our thruster would �nd itself having a very
modest increase in η at the price of a major modi�cation on the solar panels. Therefore,
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Figure 4.2: Graphic representation of ηmax found after precision analysis confronted with
hypothetical maximum in function of Pw

we can conclude that the optimization we performed, despite the technological limitations,
represents a good engineering compromise between the two quantities.

4.3 η in function of Magnetic field intensity
The curve represented in �gure 4.3 denotes the same behaviour as the same curve seen
in section 2.3, with an increasing monotone trend without appreciable maximum points.
This behaviour denotes that the higher the magnetic �eld, the more the thrust e�ciency

Figure 4.3: Graphic representation of ηmax found after precision analysis over the curve of η
in function of Magnetic �eld intensity

increases. We note how our optimization, also limited by technological limitations, is
located on a section of the curve whose tangent line has a high slope: a possible increase
in magnetic �eld intensity would produce signi�cant improvements in the achievable
thrust e�ciency. For our optimized thruster, with a magnetic �eld of 600 × 10−4T we
get η = 7.38%. If there were a technology that allowed to generate a magnetic �eld of
intensity 1200 × 10−4T occupying the same volume and with the same weight, a thrust
e�ciency equal to η = 10.08% would be obtained, a signi�cant increase if compared
with that obtained with the curve Pw . The technologies used on our engine are already



those with the most advanced state of the art, but it is good to know how a possible
improvement of the same can accentuate the propulsive characteristics of our HPT.

4.4 η in function of R

From �gure 4.4 it is immediately noticeable how, despite the limits imposed, the optimiza-
tion of our propulsor is very close to the optimal value obtainable without imposing any
limit on source radius. This fact can be interpreted in two ways:

• If our desire was to reach the maximum thrust e�ciency, it would be enough to
increase the radius by very little to reach the dimension that maximizes η (R =
0.0324m for ηmax = 7.441%).

• if for some reason one wanted to reduce the radius of the source, for example to
install more performing magnets, one could arrive at a radius R = 0.0237m still
having a thrust e�ciency equal to or greater than η = 7%. The proximity to the
maximum of the curve represents an advantage in terms of dimensional tolerance of
R, which can therefore be varied within certain limits without signi�cantly a�ecting
the thrust e�ciency.

Figure 4.4: Graphic representation of ηmax found after precision analysis confronted with
hypothetical maximum in function of R

4.5 η in function of L

Refer to the graph in �gure 4.5. Note how the optimum point determined following our
analyses deviates from the maximum point of the curve η(L) especially if compared with
the proximity of the points seen with η(R). The maximum point corresponds to a thrust
e�ciency equal to η = 8.069% as a function of a length L = 0.3665m: such an insigni�cant
increase in thrust e�ciency ∆η = 0.679% does not justify a similar increase in source
size. If we wanted to double L, we would obtain a thrust e�ciency equal to η = 7.946%,
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Figure 4.5: Graphic representation of ηmax found after precision analysis confronted with
hypothetical maximum in function of L

still too modest for such a dimensional variation. We can conclude that the limitations
of L imposed by the dimensions of the CubeSat do not excessively a�ect the propulsive
performances and any increases of the same would require too signi�cant variations to
be advantageous.

4.6 Possible improvements
Before moving on to the conclusions, a re�ection was made on all those aspects of the
process that could be improved in all the di�erent analyses.

1. Matlab knowledge
In writing the codes, solution methods based on the knowledge of Matlab acquired
during studies have often been used. Such knowledge is not always su�cient to
address problems inherent in plasma physics; a preliminary study is necessary for
a clear understanding of the physical phenomena occurring in the source, but the
current knowledge of the student does not allow a clear and rapid interpretation of
the code. With a broader experience on Matlab, the student will be able to tackle
the optimization problem with tools more suitable for this task.

2. Computational power
The computational price of the Global Model is su�ciently low if one wants to
perform a single simulation with static input data, but it is equally true that to face
an analysis with iterative cycles the computational costs become very high, and with
them the times to obtain results. To overcome these obstacles, various simpli�cations
have been used and the work has been divided into smaller problems, gradually
increasing the precision (see chapter 3). A calculator with higher computing power
would be an excellent resource to use for this kind of problem, guaranteeing a precise
analysis more quickly, even without resorting to simpli�cations of the problem.

3. Pass to next iteration in case of error



This problem was mainly encountered during the iterations in chapter 3, where R
and L were combined to obtain the three-dimensional thrust e�ciency graphs ( see
appendix A): it happened that, for some combinations of L and R at a given mass
�ow rate, the block of code for solving the di�erential equation could not reach a
convergent solution, showing an error signal on the screen and interrupting the
process before analyzing the successive combinations of R and L. This problem
was solved by reducing the intervals between the extremes of the vectors of R
and L, until all the combinations of the elements of these two vectors had not
given acceptable results. However, this process inevitably leads to reducing the
domain of the geometries analyzed and to neglecting some of them that could be
interesting even for a preliminary study. A better idea would have been, with a better
knowledge of Matlab, to force the solver block "ode_15" to skip those iterations that
did not lead to a convergent solution and to continue with the subsequent ones,
without necessarily having to reduce the domain of geometries to be analysed.
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Conclusions

At the end of this thesis work, it is necessary to re�ect on the path that has been followed.
Working on a plasma space thruster represented for the student the opportunity to

study a topic that otherwise would not have been possible to explore in a normal course
of study. The new knowledge that has been acquired ranges from the most varied �elds,
from mathematics, to programming, to plasma physics, up to scienti�c comunication. For
the graduating student entering the world of work, the mastery of these skills represents
a powerful ally to face the engineering challenges that the future holds for him.

Carrying out this work was the �rst approach to the modelling of complex physical
phenomena such as those that occur in the presence of plasma. The Global Model
implemented in the Matlab codes represented a great stumbling obstacle for the neophyte
student, which he managed to overcome through meticulous study and later managed
to use for his own research. The understanding and utilization of this model had to
collide with the limits that this same model has hidden inside, leading the student �rst
to identify these limits and then to de�ne the best solutions to ensure that the model
continues to operate in regimes that kept it as faithful as possible to physical reality. It
has also been seen, beyond all the di�culties just mentioned, that further strategic work
had to be carried out to cope with the limited computing power that a personal computer
is able to o�er, allowing the required results to be achieved, albeit despite the poorly
performing means. The achievement of a �rst result, although it complies with all the
required requirements, has placed the student in the position of having to question his
work again, asking himself a di�erent question each time and looking for answers that
demonstrate the validity of the procedure carried out.

Of fundamental importance in this process was the help of a supervisor, someone who
dedicates their time to guiding those who are approaching these topics for the �rst time.
A path of this di�culty would not have been possible without the help of those who are
able to teach; not only to transmit knowledge, but to instil in the listener the desire to
learn more.

Ultimately, it is also good to mention the feeling of belonging that working on this
thesis has given rise to in the student, of the collaboration with a team of other researchers
to achieve a common goal, driven by the desire to see the evolving future of man into
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space.
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