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Introduction

One trending topic of the last years is with no doubt Neural Networks. Applications
of this branch of Machine Learning can range over a wide variety of subjects, just
think of automatic translators, voice assistants, object recognition, financial previ-
sions and much more. But what are Neural Networks? They are a family of models
that, as the name suggests, are inspired by biology and try to reach a task through
a network; more precisely it is a collection of algorithms aiming to approximate a
function f ∗, through the composition of a bunch of functions f1, f2, ...fn, simulating
the concept of the network observed in human brain. Roughly speaking, Neural
Networks can be considered as a big optimization problem.

The historical birth of Neural Network goes back to 1943 thanks to Warren
McCulloch and Walter Pitts. Since that a lot of research has worked out and the
majority of its theory has been developed within 1990s. Nevertheless the biggest
applicative results have been found only in the latest years. This can be explained
by two factors: a tremendous quantity of data is now available in any sector and
the computational power has increased exponentially in the latest years.

Indeed the biggest challenges that have been faced are that these models require
a lot of data in order to learn and they are quite generic and complex, thus, in the
most general case, a big quantity of parameters is needed. For this reason classical
optimization algorithms are considered too computationally expensive, so they are
not used. Then much simpler ones, like classic Gradient Descent, are used. But
it is a matter of fact that they have slow convergence, thus a lot of heuristic and
intuitions are used to speed up the process.

This brought to one more problem, that is the utilization of Neural Networks
in a black-box way. Namely this means that, in general, there is no way to deter-
mine what property a model should have to achieve good approximation capability,
and most of the literature about this topic is made by considering many different
architectures with no precise criteria.

With that in mind, the purpose of this thesis is to investigate whether the heuris-
tics behind this popular family of models has mathematical confirmation. In partic-
ular well known mathematical systems are used to generate data, in order to be able
to compare the results obtained through Neural Networks with the true dynamic.

In the first chapter Neural Networks and its training procedure is presented in
the most general setting. In particular the three main classes of model are going
to be explained, both heuristically and mathematically: Multi Layer Perceptrons,
Convolutional Neural Networks and Recursive Neural Networks. Beside that, it is
going to be explained how the learning process works.

In the second chapter the most significant theoretical results are shown. In par-
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ticular the Universal Approximation Theorem, that justify the use of these models,
and a mathematical based discussion on some of the most used optimization algo-
rithms. Moreover some accurate investigation is made on some relevant aspect in
the stage of building a Neural Networks.

Finally, in the last chapter, some task related to DLTI systems, whose mathe-
matical behaviour is well known, is considered. This allows to take a rigorous look at
how each of the techniques in this topic is able to influence convergence and at what
happens inside the models. In this chapter it is going to be investigated whether
the empirical intuition behind Neural Networks has a practical and mathematical
confirmation or not.



Chapter 1

Neural Networks

In this chapter the general frame of Deep Learning is going to be showed. In partic-
ular the three main structures for Neural Networks will be presented, namely Multi
Layer Perceptron (section 1.1), Convolutional in 1.2 and Recurrent Neural Networks
in 1.4. Moreover it is going to be introduced the so called learning process, that is
the optimization strategy used in Deep Learning, in section 1.3.

But the first step is to build a reference structure for a generic Neural Network.
The founding concept at the basis of this family of models is to approximate an
objective function f ∗ through the composition of a bunch of functions f1, f2, ...fn
as shown in figure (1.1). Each of them is called layer, and in particular the last
function, fn, is called output layer, while the others will be referred as hidden layers.
Pay attention: in most of the literature the term layer is often referred to the output
of these functions.

To make the frame of these functions fi clearer, let’s take a practical consider-
ation: every dataset is made of a bunch of examples and each of them is made by
a collection of observation. For this reason a single example can be considered as a
vector and any other layer can be endowed of the same structure. The same exact
representation can be noticed in human brain as well, if every component of hidden
layers’ (called units) vectors was considered as a neuron. Then the graph of Neural
Networks can be represented as in figure (1.1).

Figure 1.1
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1.1 Multi-Layer Perceptron

In this section the most intuitive Neural Network model will be built. Since every
layer’s output is none other than a vector, the simplest functions that can be im-
plemented are affine functions. Thus the output of this family of models is going to
be a function of an affine transformation of the input.

Consider for example the case of a classification task, in particular let’s suppose
that the dataset is made of two families of samples. One simple case is given by the
following figure, where the data are sampled by two distributions, centered in (0, 0)
and in (3, 2) as in the following image:

Figure 1.2

The partition of the dataset is clear, and the model can find an affine transfor-
mation splitting the input in the two families. In other words there exists a line,
parametrized by (w1, w2, b) that divides the two groups, as figure (1.2) can suggest.
This argument can be generalized for multi dimensional input as follows:{

Family 1 if w1x1 + ...+ wnxn + b > 0

Family 2 if w1x1 + ...+ wnxn + b < 0.

However not every function can be approximated by this kind of models: let’s take
as an example a simple function, named XOR (exclusive or), that takes as input
two binary values x1 and x2 and outputs 1 if and only if exactly one among x1 and
x2 equal to 1. Graphically it could be represented as in figure (1.3).

Clearly, no such model can split the two families. The reason is quite intuitive:
these data can not be divided by a line. In particular two key elements are missing
in this example: non linearity and, accordingly, composition, since composing affine
functions is the same of computing a single affine transformation, and thus it is
useless. On the other hand, if each layer would be provided with a nonlinear function,
then composition becomes significant. Then, implementing these components plays
a key role in Neural Networks.

Each layer is then computed as g(W Tx+b), where g is a fixed non linear function
applied element wise. Intuitively this representation means that the layers do not
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1 0 1
1 1 0

Table 1.1: XOR

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.5

1

1.5

1

1

x1

x
2

Output=0
Output=1

Figure 1.3

consist of applying the affine model directly to the input x, but to a transformed
input Φ(x), where Φ is a nonlinear transformation, and eventually it allows to com-
bine more than one layer. Φ is called activation function. In this way the linear
separation is not applied to the data represented in the classic Cartesian plane, in-
stead it is applied to the data represented in a new shape, that may be helpful to
find the key features.

In particular, in the example above, one possible solution may be considering Φ
as: (

h1
h2

)
= max{0,W Tx+ c} (1.1)

where:

W =

(
1 1
1 1

)
, c =

(
0
−1

)
Notice that the activation function is not applied to all the vector, but actually to
each unit.

Graphically speaking the data in the new space are represented by figure 1.4.

In this representation, there is a clear separation line between the two families
of data.
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Activation Functions

The last building block of Multi Layer Perceptron is then the choice of the non linear
activation function g. One of the most common as well as the first class of function
considered for this task, is the sigmoid one, which are monotonically increasing
functions that asymptotes at some finite value as is approached ±∞. The most
common examples are the standard logistic sigmoid σ(x) = 1

1+e−x and hyperbolic

tangent tanh(x) = ex−e−x

ex+e−x . This class of functions is used because of a simple reason:
they allows to represent binary target values (e.g. {0, 1} for the logistic sigmoid or
{±1} for hyperbolic tangent). This is due to an important biological consideration:
in human brain neurons interact with each other through electricity, in the sense that
every neuron can either give an impulse or not and, roughly speaking, the decision
is took by considering what units have given such an impulse. Thus tanh and σ,
and more in general sigmoid functions, are implemented to replicate this argument:
they try to squash the input in two different classes. However the functions that
achieved the main results in Neural Networks are the so called rectifiers or ReLu
units, that are the functions used to solve the XOR problem, i.e. f(x) = max{0, x}.
The reason why these functions are preferred will be explained with more details in
section 2.3.3.

1.2 Convolutional Neural Networks

Multi Layer Perceptrons may seem perfect models for analysing almost any kind of
real data. However there are many drawbacks in using them. First of all they are
very expensive both in computational and in memory cost. Indeed, let’s suppose
that a certain layer is given n inputs and has to calculate m outputs. The operation
it has to compute is a matrix-vector product, and it needs n ·m+m parameters, one
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for each entry of the matrix and one for each bias term. This also means that there
is an high risk of getting an overfitting model. Moreover the computational cost is of
the order of O(n ·m) for the same reason. And this is not even the main drawback:
the principal problem is due to the fact that they do not consider the structure of
the data at all. Consider, for example, the task of recognizing an object given a
certain image, after that the training has been done: there is no way to have the
same exact settings for two different images, even though they represent the same
subject. Real world data have lot of details that can change, for example it may be
the case of a slight change in the lighting or in the position of the object considered
in the classification, since the location of the key features, like an eye or the mouth,
can be translated by some pixel. These differences are meaningless for human being,
but actually they are important for models like Multi Layer Perceptron. The reason
is quite simple: once the training is completed, the weights and the biases of each
layer are fixed. This means that small changes in the input will cause a change in
the next layers and this variation will propagate through all the layers. Thus if two
similar images representing the same object are taken as samples, the Network may
output different values. This problem is attributable to a lack of invariance for little
translations.

The last problem is once again related to structured inputs and it is completely
heuristic. Multi Layer Perceptrons do not care about the topology of the data. This
concept could be better understood by a question: does considering the interaction
between two far inputs (in time or in space, for example) make sense? More prac-
tically, in most cases, it is unnecessary to consider a feature given by the value of
the pixel in the high-left corner and the one in the down-right corner, because there
is no characteristic of the image that can be deduced in real world data, with an
high probability. On the contrary, it makes sense to consider a sparse interaction
network, instead of a fully connected network, like Multi Layer Perceptron.

One of the ways that have been suggested to solve all these problems is to consider
a model that is able to preprocess the raw data in order to get a vector of features.
This vector can then be processed by a Multi Layer Perceptron since it is just a
small list of values with no intrinsic meaning. The state of the art of this kind of
models is represented by Convolutional Neural Networks (CNNs): they are made by
a series of so called convolutional layers (used to pre process the data) and, in the
final stage, by a small of Multi Layer Perceptron, also called, in CNNs’ literature,
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Fully Connected Layers.

Convolutional layers’s structure is quite similar to the one of the Perceptrons,
in the sense that the input and the output are still vectors (or, more in general,
tensors). However these layers implement two new functions that are able to solve
all the problems described above: convolution and pooling.

The purpose of this section is then to show the benefits given by convolutional
layers and to examine rigorously these functions.

1.2.1 Convolution

Convolution is the main component of CNNs. The empirical meaning of this op-
eration is essential, if one wants to understand why convolution is so important.
Convolving a vector with one other, called kernel, has to be considered not only as
the mathematical operation, but also as the correlation between the two inputs (in
fact they the two operators are equivalent) or, more intuitively, as filtering the data
through the kernel. Let’s make this concept more clear and, in particular, consider
the case of processing a black and white image. In image analysis convolving a small
piece of the matrix given by the greyscale value of each pixels with a specific kernel
allows to find a value associated with the characteristic correlated with the kernel.
The higher this value is, the higher the probability of having this characteristic in
that small piece of image. Repeating this procedure for all the pixels gives a new
image (that will be called feature map) that empirically can be thought as an heat
map for the sought characteristic. For example the following kernel is used to seek
the edges:

M =

−1 −1 −1
−1 8 −1
−1 −1 −1


Then the result of convolving an image with this kernel is a new figure composed
only by the edges of the starting image.

Advantage of using convolution

Clearly convolution is based on sparse interaction and this solves the third problem
presented in the first part of the section. Empirically the algorithm looks for local
features that will be assembled in the next layers to get overall features, whereas
Perceptrons try to find overall features immediately. The second advantage is given
by the fact that the input may be very large, virtually millions of values, but the
kernel is usually restrained. Let’s suppose to consider a layer whose input’s size is n
and it outputs a vector of dimension m. These quantities may be very big. Then, as
stated before, a Multi Layer Perceptron needs a matrix of size n ·m (and eventually
m biases), and the computational cost will be O(n ·m). On the other hand, if the
size of the kernel is k (<< n,m), then the parameter required are only k, since the
convolution is computed using always the same kernel, and the computational cost
will be O(k ·m). This means that the memory and the computational cost required
are way less than the ones required by Perceptrons. Moreover, as a consequence,
the capacity of the model is reduced and then this operations prevents overfitting.
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Mathematics and other types of convolution

The starting point of convolution is the classic mathematical operation between two
real valued functions f and g:

f ∗ g(t) =

∫ +∞

−∞
f(t− τ)g(τ)dτ

However in data analysis the convolution is computed between two vectors x and w
with a finite dimension. In this case w is the kernel and its dimension, indicated by
k, is supposed to be inferior with respect to the dimension of x. Then the operation
is discretized, and the result is:

x ∗ w(n) =
k∑
i=1

x(n− i)w(i) (1.2)

This operation is called discrete convolution. Since in Neural Networks the kernel
is not pre defined, it can be ”flipped”, in the sense that its last component becomes
the the first, the last but one component becomes the second one and so on. Notice
that this procedure is not a crime because the kernel has to be learned, but it gives
a more suitable shape to equation (1.2):

x ∗ w(n) =
k∑
i=1

x(n+ i)w(i)

This operation can be extended to two dimension cases in a straightforward way. If
the input matrix is y, the kernel is v and its dimension is k1 × k2, then:

x ∗ w(n,m) =

k1∑
i1=1

k2∑
i2=1

y(n+ i,m+ j)v(i, j)

This is the classic equation used in image processing. However in this work the
notation will be slightly different and it will be based on Python’s notation. Thus
a vector of dimension k will have components running from 0 to k − 1 and the
equations will be rewritten as:

x ∗ w(n) =
k−1∑
i=0

x(n+ i)w(i) (1.3)

y ∗ v(n,m) =

k1−1∑
i1=0

k2−1∑
i2=0

y(n+ i,m+ j)v(i, j)

This notation is useful since it allows to use more compact formula in the next lines.
Nevertheless, calculations in CNNs are a bit different. Indeed, if the input is an

image it may be that its components are not just a matrix, but a 3-D array, since
it may be given with a RGB representation (with colours). Moreover the process
described above works if the model is interested in only one feature, because the
output of equation (1.4) is a feature map corresponding only to one characteristic,
but in general more features are required. In the literature these multiple feature
maps are called channels, both for the input and the output. The result of these
considerations is that the kernel has to be a 4-D array, let’s say vmijk where:
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• m ≡ output channel;
• i ≡ input channel;
• j, k ≡ raw and column distance of the output element with the input’s one.

Namely, for any a, b, the element in the row a and column b of the m−th output
channel is influenced with a weight equal to vmijk by the input of channel i of
the (a+ j)−th row and (b+ k)−th column.

Then the equation of convolution used in CNNs (for images) is:

O(m, a, b) =
M−1∑
i=0

k1−1∑
j=0

k2−1∑
k=0

y(i, a+ j, b+ k)v(m, i, j, k)

Now, suppose the image considered has a resolution of 1000× 1000 pixels, that is a
realistic size (it could be even higher). The dimension of the kernel will naturally
grow as well, since considering a portion of 3 × 3 pixels is quite insignificant. The
same reasoning could be applied in one other sense, bringing to the question: does
applying convolution centered in every pixel make sense? A priori, having a big
feature map is not wrong, but it may result pretty useless. Thus one may think to
translate the center of the n-th convolution by more than one pixel with respect to
the (n− 1)-th convolution. In order to define mathematically this argument, a new
parameter (eventually an array) is introduced: the stride s.

O(m, a, b) =
M−1∑
i=0

k1−1∑
j=0

k2−1∑
k=0

y(i, a · s1 + j, b · s2 + k)v(m, i, j, k) (1.4)

Actually this is not the only operation that is allowed in a convolutional layer, but
there are other ones that can be used according to the particular model one may
wish to use.

The first case is the so called unshared convolution. Even though this is classified
as convolution, it computes each entry of the output with an affine transformation
of a portion of the input. Conceptually it is like a mix between Perceptron’s and
convolutional layers, since there is sparse interaction among input’s neurons, but
each output’s unit is calculated with new parameters (in convolution the parameters
are shared). This kind of layers are used if the model is thought to look for different
feature for each location of the input. The computational cost of such a layer is
O( n

k·s ·m) and the number of parameters is about n
s
. The equation of this operation

is given by:

O(m, a, b) =
M−1∑
i=0

k1−1∑
j=0

k2−1∑
k=0

y(i, a+ j, b+ k)v(m, a, b, i, j, k)

A middle way between classic and unshared convolution is the so called tiled con-
volution. The idea is to consider a certain number of kernels that are alternated,
in the sense that, if there are 5 kernels, the first one is used to compute the first,
the sixth,... convolution. In most application this kind of layer is used in order to
consider different transformation of the same feature. Let’s make this concept more
clear: instead of seeking vertical edges with a single kernel, in some applications one
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may be interested in looking for edges inclined with a fixed slope of, let’s say, π
3

and
−π

3
as well. Then tiled convolution uses three kernels in the same feature map. The

idea is to make a summary of these computations, for example taking the maximum
among these values, in order to get the value that could be read as: there is an edge
with slope either π

3
or −π

3
or a vertical with probability λ.

Then, if the number of kernels is t, the equation is:

O(m, a, b) =
M−1∑
i=0

k1−1∑
j=0

k2−1∑
k=0

y(i, a%t+ j, b%t+ k)v(m, a%t, b%t, i, j, k)

Finally, the last algorithm that is going to be mentioned is dilated convolution. It
is a classic convolution, but for every term of the summation the step in the input
is not 1, but d (called dilation rate). It is the same of considering a sparse kernel.
In formula:

O(m, a, b) =
M−1∑
i=0

k1−1∑
j=0

k2−1∑
k=0

y(i, a · s+ j · d1, b · s+ k · d2)v(m, i, j, k)

Zero padding and output dimension

One natural question that arises when considering convolutional layers is: what is
the dimension of the feature map? Well, let’s consider equation (1.4), with an input
y ∈ RN1×N2 it is easy to see that the answer, in this case, is:{

width = bN1−k1
s
c+ 1

height = bN2−k2
s
c+ 1

(1.5)

This formula shows a problem of such models: the dimension of the output is fixed
once all the parameters are fixed. Since this dimension is smaller than the input
one, the number of layers is limited. For this reason convolutional layers implicitly
provides a zero padding for the input in order to control the output size. Thus,
defining the padding parameter as P , that symmetrically surround the input, this
dimension is going to be: {

width = bN1−k1+2P1

s
c+ 1

height = bN2−k2++2P2

s
c+ 1

There are two special cases for zero padding. The first is reached when P is simply
set to 0, and in this case the convolution is called valid convolution. The second one
is the natural case, that is P is choosen in order to maintain the dimension of the
output equal to the one of the input. In this case the convolution is called same
convolution. These are the most used padding strategies, and most of the libraries
implementing Neural Networks uses, like TensorFlow uses command ”same” and
”valid”. However, since these are the extreme cases, in most applications P may be
choosen higher than 0 and lower than the ”same” value.
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1.2.2 Pooling

Pooling is the second main function used in convolutional layers. It is a generic
statistics used to summarize the results obtained in a certain region. Intuitively
convolution looks for features all over the input and pooling summarizes the result,
telling that a certain characteristic is present in a wider zone or not. The two
most popular pooling functions are the arithmetic mean (average pooling) and the
maximum function (max pooling).

Advantage of using pooling

The obvious advantage of using a pooling function is that it reduces the size of the
feature map. This means that the computational cost is reduced as well as the risk
of overfitting. Moreover, this function is helpful in handling input of varying size,
together with equation (1.5). However the most sharp effect is that is permits to
learn the transformation of the input, together with tiled and unshared convolution.
As stated in the last section, using different kernels to compute the same feature
map can be thought as the research of different characteristics in any different place
of the image. Now, let’s suppose that the difference is just the fact that every kernel
looks for the same characteristic, but transformed. For example a straightforward
transformation could be rotation. Using max-pooling among all the values calculated
by computing the convolution for every single kernel allows the model to understand
if that characteristic is in that particular zone, no matter if it is rotated (or more in
general transformed). This process is called learned transformation.

1.2.3 Construction of a CNN

Now that all the ingredients have been presented, it is possible to present to build
a Convolutional Neural Network. First of all, a certain number of convolutional
layers has has to be implemented. The first step is to calculate the feature map
through convolution (on of the different types presented in this work), whose entries
are typically transformed by the activation nonlinear function (the most used one
is ReLu). Then, the final stage of the convolutional layer is the pooling function,
that is not always necessary. A bunch of these layers is composed and the output
of the CNN is obtained by applying by the Fully Connected model to the features
spotted in the first stage. Pay attention: in general, the feature map computed
by convolutional layers is a tensor, whereas the input required by a Multi Layer
Perceptron is a vector. It is then needed a process whose purpose is to vectorize
this tensor. This intermediate step is called flattening.

1.3 Learning Process

Recall the structure of a general Neural Network: it is a composition of parametric
functions, whose purpose is to approximate a certain function f ∗. The learning
problem consists of finding the optimal combination of weights so that the network
function approximates f ∗ as closely as possible. However, f ∗ is not given explicitly,
but only implicitly through some examples.
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Now, let’s consider a general model and suppose that it receives as input x and
a set of weights θ, it combines them and it obtains an output y. The idea is to
evaluate the goodness of such a model through a loss function, that measures the
performance. It could be considered as the error function to make the concept more
clear. Then the aim is to minimize this error.

Clearly, the branch of the mathematics that studies this problems is optimiza-
tion. However there are a lot of drawbacks for applying the precise mathematical
algorithms, like the fact that they would bring computational cost extremely high.
Then in the following subsections, some meta heuristic methods used in Neural
Network learning process will be presented.

1.3.1 Learning Algorithms

Gradient Descent

Gradient descent is one of the most popular algorithms to perform optimization
and most primitive way to optimize Neural Networks. This is an iterative method
that makes use of a classical mathematical result that states that the opposite of
the gradient of the loss function, calculated in the current point θ, is a descent
direction, in the sense that there exists a (sufficiently small) step size η such that
the loss function has a lower value, if it is calculated in θ+ η · d. Then the frame of
the algorithm is to iteratively calculate the parameters following the rule:

θk+1 = θk − η∇θL(θk)

This approach has a lot of drawbacks. The first one is the computational cost: the
loss function is the sample mean of the loss functions calculated on each single exam-
ple of the dataset. Moreover gradient is a linear operator, then calculating ∇θL(θ)
requires calculating the gradient of the loss function for each sample. Moreover, in
complex NN there may be lot of parameters to be determined. Virtually, combining
all these factors makes the computational cost very high. Then one may wonder
if considering just a portion of the dataset would cause an high distortion for the
accuracy of the computation. This observation deals with a simple probabilistic
proposition:

Proposition 1.3.1. The variance of the sample mean of a family of i.i.d. random
variables {Xn}n∈1,..,N is 1

N
V ar(X1)

Proof. Since V ar(aX) = a2V ar(X) and V ar(X1 +X2) = V ar(X1) + V ar(X2)

V ar(
1

N

N∑
n=1

Xn) =
1

N2
V ar(

N∑
n=1

Xn)

=
1

N
V ar(X1)

This means that, since standard deviation can be computed as the square root
of the variance, the estimated loss of accuracy decreases like

√
N as the number
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of samples increases. More practically, this means that considering N rather than
10000 ·N samples means losing two significant figures only. This is the peculiarity
of Mini Batch Gradient Descent (MBGD). It works exactly as GD, but it uses only
a portion of the dataset to compute the gradient. Common mini batch sizes range
between 32 and 256, since power of 2 sized batches offer better runtime [1]. This
algorithm is guaranteed to converge and it is much faster than simple Gradient
Descent. Moreover, since its variance is higher, it provides a simple way to avoid
getting stuck in a non optimal stationary point. However, for the same reason, the
solution found by MBGD may oscillate around the optimal solution. In addition to
these problems, there are also other problems related to the structure of Gradient
Descent: the parameter η, called learning rate, in optimization theory is usually
computed using some technique such as the Armijo method. However these are
quite expensive methods, then they can not be implemented in Neural Network,
thus η is a fixed hyperparameter for Gradient Descent. How can be determined a
good value for η? This is not an easy task, since choosing η too small brings to a
painfully slow convergence; on the other hand, if η is too big, convergence is not
guaranteed any more, since the update of parameters may not decrease the value of
the loss function. In order to have an algorithm that adapts the learning rate to the
specific task Momentum algorithm will be presented.

Additionally, the same learning rate applies to all parameter updates. If the
gradient is sparse or the features have very different frequencies, one might not
want to update all of them to the same extent, but perform a larger update for
rarely occurring features. Let’s make an example to clarify this example: consider
the case in which the loss function has an high value due to only one parameter w.
However, suppose that, around the particular θ considered in a particular iteration,
the function, considered only as a function of w is almost flat. This means the
partial derivative with respect to that particular parameter is very small or even
zero and that the update of w will be insignificant. Then the loss function will not
reach a much lower value. One may want to make a bigger step on w in order to
move on a different field. On the other hand, considering such a fixed high value for
the learning rate may bring convergence problems, as stated above. The idea is to
consider the learning rate not as a fixed number, but rather a vector with different
values for each parameter. The algorithms that try to attempt this purpose are
called Adaptive.

Momentum and Nesterov Algorithm

MBGD has troubles navigating areas where the surface curves much more steeply
in one dimension than in another, which are common around local optima. In
these scenarios, MBGD oscillates across the slopes of the ravine while only making
hesitant progress along the bottom towards the local optimum. This behaviour can
be explained by a simple example: consider a ball rolling down an hill. The ball rolls
down following a dominant direction, even if it is contrasted by friction and it is
slightly influenced by hill’s morphology. In this example MBGD makes a small step
and then stops at each iteration. Then it will neither follow the correct direction,
since it will be influenced by the slope of the hill in that particular point, nor have
an high velocity. Following this argument, Momentum algorithm is implemented.
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The update rule is: {
vk+1 = γvk + η∇θL(θk)

θk+1 = θk − vk+1

where γ is a coefficient, usually set to 0.9.
However, a ball that rolls down a hill, blindly following the slope, is highly

unsatisfactory. The idea is to have a smarter ball, that has a notion of where it is
going so that it knows to slow down before the hill slopes up again. This purpose is
reached by considering the fact that the dominant factor of γvk + η∇θL(θk) is γvk
since η usually is about 10−3. Then θk+1 will be in the neighborhood of θk − γvk,
so the evaluating the gradient in that point is a good approximation to the real
gradient calculated in θk+1 and can give an indication to the algorithm in advance.
Thus usually Momentum algorithm is boosted by Nesterov algorithm:{

vk+1 = γvk + η∇θL(θk − γvk)
θk+1 = θk − vk+1

Adaptive Algorithms

Adaptive algorithms for gradient-based optimization does just this: they adapt the
learning rate to the parameters, performing smaller updates (i.e. low learning rates)
for parameters associated with frequently occurring features, and larger updates
(i.e. high learning rates) for parameters associated with infrequent features. For
this reason, it is well-suited for dealing with sparse data. Previously, the update
was performed for all parameters θ at once as every parameter θi used the same
learning rate η. As the considered algorithm uses a different learning rate for every
parameter θi at every step k, the algorithm will be shown per-parameter update:mk+1,i = mk,i +

(
∂
∂θi
L(θk)

)2
θk+1,i = θk,i − η√

mk+1,i+ε
∂
∂θi
L(θk)

This describes the procedure of Adagrad. The main deficiency of this approach
is that mk is a sum of positive terms, thus for some parameters it could become very
big. So the new learning rate can be so small that the parameter will not be update
significantly.

This is the reason why a new algorithm is preferably used: RMSProp. It works
exactly as Adagrad, but the vector m has an exponential decay:mk+1,i = βmk,i + (1− β)

(
∂
∂θi
L(θk)

)2
θk+1,i = θk,i − η√

mk+1,i+ε
∂
∂θi
L(θk)

Adam

The last optimization algorithm used in Neural Networks that is going to be showed
is the so called Adam (Adaptive Moments). It has been presented for the first time
in 2014, in the article [12] by D.P. Kingma and J.L. Ba. As the name may suggest,
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it combines both Adaptive methods and Momentum algorithm. The algorithm is
given by: 

vk+1 = β1vk + (1− β1)∇θL(θk)

mk+1,i = β2mk,i + (1− β2)
(

∂
∂θi
L(θk)

)2
v̂k+1 = vk+1

1−βk+1
1

m̂k+1 = mk+1

1−βk+1
2

θk+1,i = θk,i − η√
m̂k+1,i+ε

v̂k+1,i

Moreover the authors suggest to use the following values for the hyperparameters
of this algorithm: 

η = 0.001

β1 = 0.9

β2 = 0.999

ε = 10−8

(1.6)

mk and vk are estimates of the first moment (the mean) and the second moment (the
variance) of the gradients respectively. As mk and vk are initialized as vectors of 0’s,
the authors of Adam observe that they are biased towards zero. To counteract this
effect, v and m are rescaled in order to get bias-corrected terms, v̂ and m̂. Indeed
they are unbiased estimators of the first and the second moment of the gradient:

Proof. Suppose that the gradients are independent and identically distributed vari-
ables. Let’s call the partial derivative with respect to the i-th variable gi. Then:

E[mk,i] = E[β1mk−1 + (1− β1)g2i ] = (1− β1)
k∑
j=1

βj1E[gj,i]

= (1− β1)
1− βk1
1− β1

E[gi,1]

= (1− βk1 )E[gi,1]

The computations for v are analogous.

Finally Adam combines the techniques described above in computing the new
parameters.

1.3.2 Back Propagation

The final step of learning consists of actually computing the gradient with respect
to the weights of the loss function. However computing an analytical expression for
the gradient is straightforward, but numerically evaluating such an expression can
be computationally expensive. Back Propagation is a simple algorithm that trades
off memory for computational cost.

Let’s consider a simple portion of a layer, in particular consider the procedure
used to calculate a certain unit ui in (n+1)-th layer. It will be the result of a certain
computation of some input x1, ...xk and weights w1, ...wh, that is ui = fi(x,w). Now,
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let’s make this example very simple and suppose that these weights and are used
only in the calculation of u and no other neurons. Finally, imagine the loss function
as a particular function of the (n + 1)-th layer: L = F (u). Thus the gradient of L
with respect to xi and wj will be:

∂L(x,w)
∂x1

= ∂L(x,w)
∂ui

∂ui(x,w)
∂x1

...
∂L(x,w)
∂xn

= ∂L(x,w)
∂ui

∂ui(x,w)
∂xn

∂L(x,w)
∂w1

= ∂L(x,w)
∂ui

∂ui(x,w)
∂w1

...
∂L(x,w)
∂wh

= ∂L(x,w)
∂ui

∂ui(x,w)
∂wh

Here is the point: the coefficient ∂L(x,w)
∂ui

is calculated for every variable that con-
tribute in calculating ui. This procedure can be generalized: y and v are the inputs
and the weights used to calculate (x,w), then ∇(y,v)L employs ∂L(x,w)

∂ui
once again,

for every variable, because of the chain rule. If this argument was repeated for each
layer it is easy to understand that the number of times in which ∂L(x,w)

∂ui
is calculated

grows exponentially with the number of layers before u, that is n. For this reason
computing the analytical expression of the gradient is infeasible.

Nevertheless the same reasoning can be used to find a solution. The main prob-
lem is that a lot of coefficient has to be calculated many times per Gradient Descent
iteration. What if these numbers were stocked in memory? This is the way Back
Propagation works: starting from the output it moves back and for each step it
calculates a gradient with respect to the weights and one with respect to the inputs.
The latter is used to calculate the gradients of the previous layer, whereas the former
is stocked to compute optimization steps.

Now it is easy to understand the name Back Propagation: this method flow
backward through the computational graph of the NN and computes a derivative
for each connection between two consecutive layers, adding all the contributes as
stated by the chain rule.

Back Propagation in CNNs

Let’s consider a particular convolutional layer that, given the matrices of inputs x
and of the weights w ∈ Rk1×k2 , computes the output y ∈ RN1×N2 as follows:

y(a, b) =

k1−1∑
i=0

k2−1∑
j=0

x(a+ i, b+ j)w(i, j) (1.7)

After that, y is used to compute the loss function L through a generic function F .
Considering the operation of Back Propagation, the aim is to calculate ∂L

∂x(a,b)
and

∂L
∂w(i,j)

for all indices, given the matrices of partial derivatives of L with respect to y,

that is ∂L
∂y(a,b)

for all (a, b) ∈ RN1×N2 . Let’s calculate the matrices of derivatives with
respect to the weight, and the one of the inputs can be calculated analogously:

∂L

∂w(i, j)
=

N1−1∑
a=0

N2−1∑
b=0

∂L

∂y(a, b)

∂y(a, b)

∂w(i, j)
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Now, equation (1.7) brings to:

∂L

∂w(i, j)
=

N1−1∑
a=0

N2−1∑
b=0

∂L

∂y(a, b)
x(a+ i, b+ j)

This is a classic convolution, where the kernel is given by the matrix of the derivatives
of L with respect to the next layer y.

1.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of Neural Network that is generally
used to study sequences. The peculiarity of this data type is the importance of the
order of the records, due to the fact that each sample is not independent from the
others anymore. Intuitively RNNs come into picture when the context is needed in
order to provide the output based on the input and they are widely used in next word
prediction, image captioning, speech recognition, time series analysis, stock market
prediction.

1.4.1 Are CNNs perfect?

It has already been showed that every function can be approximated by Multi Layer
Perceptrons (and Convolutional Neural Networks), but nothing has been said about
the efficiency. In the following, some of the drawbacks related to MLPs and CNNs
are going to be exposed.

• Input and output size: the first problem that is faced in these models is
the length of the input. For example, let’s consider an algorithm that tries
to analyse a word text. It can assume several meanings according from the
context. And how many word is a context? Clearly it is not possible to give
an answer. A more rigorous example is a model whose purpose is to predict
the time series generated by the following dynamical system:

y(k) + y(k − 1) = u(k) ∀k ≤ time series length (1.8)

where y is the response, whereas u is the input. Clearly a traditional Neural
Network can take into account N(=time series length) elements and return N
values for the output. However it is obvious that the system (1.8) can generate
sequences of any length, provided that the input is large enough! And that
is not all, because sometimes the dimension of the output can be variable as
well. For example the system:

y(k) = f(y(k − 1), ..., y(k −m)) + g(u(0), ..., u(t)) (1.9)

can generate a time series of any length, provided that the input size is t. But
classical models can not, since the input and the output sizes are fixed. The
only shrewdness that can be used is to set a big enough size for the input
and the output, eventually through zero padding. However this is not clever,
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since it would require much higher capacity than what is needed and thus
overfitting risk and much more parameters to train. And this is obvious since
both examples compute recursively the same operation on the input and on
the past output, but the model is looking for a number of functions that will
be equal to the output size.
• Information flow: as it has already been said in the introduction of this

section, RNNs rose in order to study sequences, whose peculiarity is that its
elements are related to each others. This means that in order to predict the
next element of a sequence, the knowledge of what happened before is needed.
For example, let’s think about prediction of the next word in a sentence:
in order to get the best output, the context is needed. Furthermore, the
systems (1.8) and (1.9) need the past outputs to compute the present one.
But classical networks can only take as input (u(0), ..., u(k), y(0), ..., y(k − 1))
and output y(k), but this is not enough, since this operation has to be repeated
for every k (that is the prototype of an RNN). Eventually it could take the
input (u(0), ..., u(k)) and predict the whole sequence of output y, but this
would be a simple map connecting u and y, without getting the real structure
of the model (the map should involve a connection between y and itself).
• The importance of the order: let’s say that a model trying to find the

meaning of a text, a very important task nowadays, Google Translator or any
voice assistant are some of the exponents of this. One simple idea is to consider
the words of the dictionary as the components of the input. Then the vector
associated to the sentence has coordinates that indicate the number of times
that a particular word has been wrote in it. For example the phrase:

”The food was good, not bad at all” (1.10)

would correspond to the vector with all 1 components, if the dictionary is
{the, food, was, good, not, bad, at, all}. But then, also:

”The food was bad, not good at all” (1.11)

would have the same representation, even though the meaning is the opposite!
The problem of this architecture is that it associates a weight to each word,
without considering the order at all. One possible way to remedy this situation
is to pair each word with its position. This make the order matter within the
model. Then the input would be a matrix. One problem is that this model is
hard to train. This is because the same meaning can be expressed by different
sentences, for example:

”It was snowing on monday” (1.12)

”On monday it was snowing” (1.13)

whose two input matrices have very different representations. Moreover it
requires a lot of parameters, since the dimension of the input is

(dimension of the dictionary) · (number of possible positions)

a number that may be very large.
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1.4.2 Construction of an RNN

The purpose is to build a Network that can remedies all the inefficiencies of stan-
dard networks when the problem is related to a sequence. Thus, in particular, one
of the properties needed is parameter sharing for different times, that enables the
generalization of the model to input/output of different shape and introduces the
concept of time/order. One obvious and intuitive way to achieve that is the intro-
duction of a loop in the computational graph, in the sense that the current output
is computed as a function of the input and one or more elements of the previous
time steps, eventually more than one, as shown in figure (1.6). Here, three simple
examples from Deep Learning [1] are given:

• Hidden-to-hidden connection: for this group of models the propagation of
the information is given by considering the current hidden unit as a function
of the previous one and of the input. Mathematically:

h(t) = ActivationFunction(Uu(t) +Wh(t− 1) + b)

o(t) = V h(t) + c

This representation is usually referred as the classical Recurrent Neural Net-
work;
• Output-to-hidden connection: in this case the hidden unit is given by:

h(t) = A.F.(Uu(t) +Wo(t− 1) + b)

o(t) = V h(t) + c

Empirically this representation is weaker, since the output can be considered as
a function of the information h, thus in this case not every piece of information
can flow through the graph. However this allows to use a less expensive training
technique called teacher forcing, that will be explained in section 1.4.3;
• Hidden-to-hidden connection with single output: now the process is

the same of the first case, but there is a single output.

h(τ) = A.F.(Uu(τ) +Wh(τ − 1) + b) ∀τ ∈ {t−m, ..., t}
o(t) = V h(t) + c

such a network can be used to summarize a sequence and produce a fixed-size
representation used as input for further processing.

Recall that one of the main innovations given by Neural Networks is the so called
deep structure and notice that these models may seem not so deep. But these
are just simple examples used to introduce the structure of an RNN. Consider the
classical RNN: it can be described by three blocks of parameters,

1. from the input to the hidden state

2. from the previous hidden state to the present one

3. from the hidden state to the output
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Figure 1.6

The depth of Recurrent Neural Networks is given by expanding the central block,
implementing more than one layer. The experimental evidence is in agreement with
the idea that enough depth is needed in order to perform the required mappings [1].

The key feature that has been introduced in RNNs is the sharing of a single
model shared throughout different instants. This allows to use just few parameters
and the sharing of information (in the shape of hidden units, outputs, etcetera...)
between subsequent times.

Notice that the concept of parameter sharing has already been developed in
CNNs’ structure, but it is shallower. The reason is that the result is a sequence
whose members depend on some neighboring elements of the input. By contrast the
operation made by RNNs is stronger since it involves every previous time step and
allows a very deep computational graph.

One other architectural difference between Feed Forward Neural Networks and
Recurrent Networks is that the former is only able to map one input to one output,
whereas the latter can map more input to one output (classification of a voice), or
more outputs (translation), or even one input to more outputs (time series predic-
tion).

These differences can be seen from a different point of view, involving the com-
putational graph of the Network and in particular the way through which the hidden
layer is obtained. Indeed it can be calculated as:

h(t) = g(u(t), u(t− 1), ...; θ) (1.14)

= f(h(t− 1), u(t); θ) (1.15)

The formulation (1.14) is the process that is made by Feed Forward Neural Networks
to process sequences, taking the whole past sequence as input and producing the
current state h(t). On the other hand (1.15) is RNNs’ one, and it is the mathematical
implementation of the unfolded graph, like in figure (1.6). Clearly this notation
introduces two major advantages:

1. Regardless of the sequence length, the learned model always has the same input
size, because it is specified in terms of transition from one state to another
state, rather than specified in terms of a variable-length history of states;

2. It is possible to use the same transition function f with the same parameters
at every time step.
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These two factors make it possible to learn a single model f that operates on all
time steps and all sequence lengths, rather than needing to learn a separate model
gt for all possible time steps.

1.4.3 Back Propagation of RNNs

Consider a classic RNN, with input u and output o with size equal to t. Let’s say
that the label for this model is the sequence y. As usual a loss function is needed
in order to compute the optimization step. In particular the total loss will be given
by:

L({y(t), ..., y(1), u(t), ..., u(1)}) =
t∑

τ=1

Lτ (1.16)

that clearly involves involves the predicted outputs o and the vector y. Moreover
the calculation of the gradient is expensive. In fact suppose, for example, that the
model is a classifier, whose output is given by:

h(τ) = tanh(Uu(τ) +Wh(τ − 1) + b)

o(τ) = V h(τ) + c

ĥ(τ) = softmax(o(τ))

and the loss function is given by the negative log likelihood. Thus equation (1.16)
becomes:

L(t) =
t∑

τ=1

−pmodel(y(τ) | u(τ), ..., u(1)) (1.17)

where pmodel is given by reading the entry corresponding to y(t) given by the output
of the model ŷ(t). The gradient computation involves performing a forward propa-
gation pass, in order to obtain the vector ŷ(t) followed by a backward propagation
pass, that computes the actual gradients. Then the computational cost of the back
propagation is O(t), as well as the memory cost and it can not be reduced as done
before because of the sequential structure given to the model, since both procedures
require the computation of the previous (t− 1) steps.

However there are some techniques that allows computing the gradients sepa-
rately for different time steps. For example, as described in Deep Learning [1], when
considering the output-to-hidden model. Since in supervised learning problems the
real output is given, the gradient step for a fixed time τ does not require the knowl-
edge of the previous ones, since in the back propagation step the model can be
considered as:

h(τ) = tanh(Uu(τ) +Wy(τ − 1) + b)

o(τ) = V h(τ) + c

which differs from the computation that is actually done in the layer. However this
separates the operation at time step τ from the results obtained at time τ − 1. This
technique is called teacher forcing. However it must be brought to attention the fact
that these models are less powerful than the hidden-to-hidden ones.
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Theoretical Results

2.1 Universal Approximation Theorem

Initially Neural Networks have been thought as a collection of models built in order
to replicate the behaviour of human brain. The question is: are these models reliable
or they are just an heuristic set of algorithms? This section is written with the
purpose of investigating the theoretical convergence properties of Neural Networks.

First of all a rigorous definition of squashing function is needed, since the first
convergence results are associated with them:

Definition 2.1.1. • C r = {f : Rr → R | f is continous}
• M r = {f : Rr → R | f is Borel mesurable}
• Br is the Borel σ−algebra in Rr

Definition 2.1.2. ψ : R→ [0, 1] is called squashing function is it is monotone non
decreasing and:  lim

x→−∞
ψ(x) = 0

lim
x→∞

ψ(x) = 1

The class of squashing functions includes the Heaviside step function psi(x) =
1x≥λ and the logistic sigmoid, for example.

The first significant result has been achieved by George Cybenco in 1988, [9]:

Theorem 2.1.3. Let σ be a squashing function. Then finite sums of the form

G(x) =
N∑
j=1

αjσ(wTj x+ bj)

are dense in C (In), where In = [0, 1]n.

Independently from Cybenko, Kurt Hornik, Maxwell Stinchcombe and Halbert
White in 1989, [7], proved a more general statement for the approximation properties
of Neural Networks. Before getting into the theorem and its proof, some notation
is needed.

Definition 2.1.4. A subset S of a metric space (X, ρ) is ρ−dense in T ⊂ X if
∀ε > 0, t ∈ T,∃s ∈ S such that ρ(s, t) < ε.

Definition 2.1.5. A subset S ∈ C r is said to be uniformly dense on compacts in
C r if ∀K ⊂⊂ Rr, S is ρK−dense in C r, where ρK is defined by:

ρK(f, g) = sup
x∈K
| f(x)− g(x) | ∀f, g ∈ C r

27
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Moreover a sequence of functions {fn}n ∈ N converges to a function f uniformly on
compacts if ∀K ⊂⊂ Rr, ρK(fn, f) −−−→

n→∞
0.

Definition 2.1.6. Let µ be a probability measure on (Rr,Br). Then f, g ∈M r are
µ−equivalent if µ({x : f(x) = g(x)}) = 1.

This definition is given by convenience. Actually all the following results can be
equivalently stated for any finite measure µ, that is µ(Rr) = α <∞.

Definition 2.1.7. Any probability measure µ defines a metrics ρµ : M r×M r → R.
In particular:

ρµ(f, g) = inf{ε > 0 : µ({x :| f(x)− g(x) |> ε) < ε}

That is ρµ(f, g) is small if and only if the measure of the set in which f and g
differs significantly is small. In particular ρµ(f, f) = 0. The final step is represented
by constructing the function spaces that are dense in C r and M r. This means that
any function f ∈ r or f ∈M r can be approximated for every rate of accuracy by a
function in that space.

Definition 2.1.8. Given a Borel measurable function F : Rr → R

• Σr(F ) = {f : Rr → R | f(x) =
N∑
i=1

βiF (Ai(x)), βi ∈ R, Ai affine function}

• ΣΠr(F ) = {f : Rr → R | f(x) =
N∑
i=1

βi
li∏
k=1

F (Ai,k(x)), βi ∈ R, Ai,k affine function}

Now the main result can be stated:

Theorem 2.1.9. Let σ be a squashing function. Then Σr(σ) is uniformly dense on
compacts in C r and it is ρµ dense in M r.

This result means that every single-layer perceptron can approximate arbitrarily
well any measurable function and it can be said universal approximator. Before
getting into the proof of theorem (2.1.9), a series of preliminary results are needed.

Theorem 2.1.10. For any F : R → R continuous and non constant function,
ΣΠr(F ) is uniformly dense on compacts in C r.

Proof. The reasoning makes use of an important result of functional analysis, that is
the Stone-Weiestrass theorem. Thus, first of all, let’s recall its statement. Suppose
A is an algebra of real continuous functions on a compact set K, that means that it
is closed under addition, multiplication and scalar multiplication. Moreover suppose
that A separates points on K (that is, ∀x, y ∈ K, x 6= y,∃f ∈ A such that f(x) 6=
f(y)) and A vanishes at no point of K, meaning that there exists a function f ∈ A
such that f(x) 6= 0 ∀x ∈ K. Then the uniform closure of A consists of all real
continuous functions on K. Equivalently A is ρK−dense in the space of C (K).
Therefore, if K ⊂⊂ Rr, proving that ΣΠr(F ) satisfies the hypothesis of Stone-
Weiestrass theorem is enough to prove the result.

• K ⊂⊂ Rr is clearly an algebra of continuous functions on K;
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• suppose x, y ∈ K, x 6= y. Since F is not constant, there exists a, b ∈ R such
that F (a) 6= F (b). It is then sufficient to find an affine transformation A(·)
satisfying A(x) = a,A(y) = b. This ensures K ⊂⊂ Rr separates points on K;
• again, using the fact that F is not constant, there exists a point c ∈ R such

that F (c) 6= 0. Then, picking A(x) = 0Tx + b shows that K ⊂⊂ Rr vanishes
at no point of K.

Since K is arbitrary, the proof is obtained through Stone-Weiestrass theorem.

Lemma 2.1.11. The following are equivalent:

(a) ρµ(fn, f)
n→∞−−−→ 0;

(b) ∀ε > 0, µ({x :| fn(x)− f(x) |> ε}) n→∞−−−→ 0;

(c)
∫

min{| fn(x)− f(x) |, 1}dµ(x)
n→∞−−−→ 0.

Proof. (a)⇔(b) is trivial;
(b)⇒(c): by hypothesis, there exists n̂ such that ∀n ≥ n̂, µ(R) < ε

2
, where R = {|

fn(x)− f(x) |> ε}. Then, ∀n ≥ n̂,∫
Rr

min{| fn(x)− f(x) |, 1}dµ(x) <

∫
Rr\R

dµ(x) +

∫
R

ε

2
dµ(x) < ε (2.1)

(c)⇒(b): suppose (b) is not valid. Then there exists ε > 0 such that µ(R) > ε,
where R = {| fn(x)− f(x) |> ε}. This means that:∫

Rr

min{| fn(x)− f(x) |, 1}dµ(x) >

∫
R

εdµ(x) > ε2 > 0 (2.2)

Then (c) is not verified as well.

Lemma 2.1.12. If {fn}n∈N converges uniformly on compacts to f ,
then ρµ(fn, f)

n→∞−−−→ 0.

Proof. From lemma (2.1.11), it is enough to show that∫
min{| fn(x)− f(x) |, 1}dµ(x)

n→∞−−−→ 0

Consider ε > 0 and suppose µ(Rr) = 1. Since Rr is a locally compact metric
space, µ is a regular measure. Thus there exists K ⊂⊂ Rr with the property that
µ(K) > 1 − ε

2
. Since fn converges uniformly on every compact to f , there exists

n̂ ∈ N such that ∀n ≥ n̂, sup
x∈K
| fn(x)− f(x) |< ε

2
. Now:

∫
min{| fn(x)− f(x) |, 1}dµ(x) =

∫
Rr\K

dµ(x) +

∫
R

ε

2
dµ(x) < ε (2.3)
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Lemma 2.1.13. For any finite measure µ, C r is ρµ−dense in M r.

Proof. The aim of the following reasoning is to prove that, given any f ∈M r and
ε > 0, there exists g ∈ C r such that ρµ(f, g) < ε.
For sufficiently large M ,

∫
min{| f1{|f |<M} − f |, 1}dµ < ε

2
. Moreover there exists a

continuous function g such that
∫

min{| f1{|f |<M} − g |, 1}dµ < ε
2
. Then the result

is obtained by applying triangular inequality.

Theorem 2.1.14. For any F : R → R continuous and non constant function, and
for any µ finite measure on (Rr,Br), ΣΠr(F ) is ρµ−dense on compacts in M r.

Proof. From theorem (2.1.10) it follows that for any given continuous and non con-
stant function F , ΣΠr(F ) is uniformly dense on compacts in C r. Then lemma
(2.1.12) shows that ΣΠr(F ) is ρµ−dense in C r. Now, since C r is ρµ−dense in M r

by lemma (2.1.13), applying triangular inequality brings to the result.

Lemma 2.1.15. Let F be a continuous squashing function and ψ an arbitrary
squashing function. Then, ∀ε > 0 there exists Hε ∈ Σr(ψ) such that

sup
λ∈R
| F (λ)−Hε(λ) |< ε

Proof. The purpose is to find such an Hε(x) =
Q−1∑
j=1

βjψ(Aj(x)). These Q, βj and Aj

has to be found.
Pick an arbitrary ε > 0 and suppose, without loss of generality, that ε < 1. Now

pick Q such that 1
Q
< ε

3
. Since ψ is a squashing function, there exists M > 0 such

that ψ(−M) < ε
2Q

and ψ(M) > 1− ε
2Q

. Finally, for j ∈ {1, ..., Q− 1}, let’s define

rj = sup{λ : F (λ) =
j

Q
}

and rQ = sup{λ : F (λ) = 1 − 1
2Q

. It is possible to define such rjs since F is
continuous. Moreover, for any r < s it is possible to find an affine transformation
Ar,s such that Ar,s(r) = M and Ar,s(s) = −M .

Finally it is possible to build Hε:

• βj = 1
Q

• Aj = Arj ,rj+1

Let’s prove the desired inequality. First of all consider x ∈ (ri, ri+1]. In this case:

Hε(x) =

Q−1∑
j=1

1

Q
ψ(Arj ,rj+1

(x)) (2.4)

=
i−1∑
j=1

1

Q
ψ(Arj ,rj+1

(x)) +
1

Q
ψ(Ari,ri+1

(x)) +

Q−1∑
j=i+1

1

Q
ψ(Arj ,rj+1

(x)) (2.5)

Thus this quantity belongs to the interval:((i− 1)

Q
(1− ε

2Q
) +

ε

2Q2
,
i− 1

Q
+

1

Q
(1− ε

2Q
) +

ε

2Q2
(Q− i− 1)

)
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That can be rewritten as:(i− 1

Q
+

ε

2Q2
(2− i), i

Q
− ε

2Q2
+

ε

2Q2
(Q− i− 1)

)
and, since the following are surely true:

ε
2− i
2Q2

> ε
−Q
2Q2

> − 1

Q
(2.6)

− ε

2Q2
+

ε

2Q2
(Q− i− 1) <

ε

2Q
<

1

Q
(2.7)

it is possible to say that:

Hε(x) ∈
(i− 2

Q
,
i+ 1

Q

)
Hence | Hε(x)− F (x) |< 3

Q
< 1.

If x ∈ (−∞, r1], then F (x) ∈ [0, 1
Q

. And in this case:

Hε(x) <
ε

2Q2
Q <

ε

2Q
<

1

2Q
(2.8)

and the inequality is easily verified.
The final case is x ∈ (rQ,∞), but it is trivial.

Theorem 2.1.16. For any squashing function ψ, and for any µ finite measure on
(Rr,Br), ΣΠr(ψ) is dense on compacts in C r and it is ρµ−dense on compacts in
M r.

Proof. By theorem (2.1.14), it follows that for every F continuous squashing func-
tion, ΣΠr(F ) is uniformly dense on compacts in C r and ρµ−dense on comacts in
M r. Thus, given any squashing function ψ, by lemma (2.1.12) it is enough to show
that ΣΠr(ψ) is uniformly dense on compacts in ΣΠr(F ) for some continuous squash-
ing function F . To this purpose, it is sufficient to show that every function of the

form
l∏

k=1

F (Ak(·)) can be approximated by an element of ΣΠr(ψ).

Hence, given ε > 0, there exists δ > 0 such that

| ak − bk |< δ 0 ≤ ak, bk ≤ 1 ∀k ∈ {1, ..., l} ⇒|
l∏

k=1

ak −
l∏

k=1

bk |< ε

Thus, by lemma (2.1.15) there exists a function Hδ(·) =
r∑
l=1

βlψ(Alδ(·)) such that:

sup
x∈R
| F (x)−Hδ(x) |< δ

and then: ∑
x∈Rr

|
l∏

k=1

F (Ak(x))−
l∏

k=1

Hδ(Ak(x)) |< ε
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The proof of theorem (2.1.9) is derived from the following three lemmas, whose
proof is omitted (it can be found in [6]).

Lemma 2.1.17. For any squashing function ψ, every ε > 0 and every M > 0 there
is a function cosMx ∈ ΣΠr(ψ) such that:

sup
λ∈[−M,M ]

| cosMx(λ)− cos(λ) |< ε

Lemma 2.1.18. Let g(·) =
N∑
i=1

βicos(Ai(·)), with Ai affine function. For arbitrary

squashing function ψ, for arbitrary compact K ⊂⊂ Rr and for arbitrary ε > 0 there
is an f ∈ Σr(ψ) such that:

sup
x∈K
| g(x)− f(x) |< ε

Lemma 2.1.19. For every squashing function ψ, Σr(ψ) is uniformly dense on com-
pacts in C r.

Then the proof of theorem (2.1.9) is easy:

Proof. By lemma (2.1.19), Σr(ψ) is uniformly densse on compacts in C r. Thus
lemma (2.1.12) implies that Σr(ψ) is ρµ−dense in C r. Triangular inequality and
lemma (2.1.13) imply that Σr(ψ) is ρµ−dense in M r.

In 2015 the same result was proved for ReLu activation function, [7].
These theorems show that Single Layer Perceptron can approximate all functions

that are relevant in applications. However no theoretical result has been found to
determine how many units are needed to reach a certain accuracy yet. Moreover,
experimental results show that adding layers is more efficient than adding units on
existing layers. This intuition is justified by heuristic, since every layer allows to
represent its input in a new shape, as encoders do, like it has been seen in chapter 1.1
and, in particular, in figure (1.4). Thus, adding more layers intuitively means that
the input’s representation is way more suitable to make the input (encoded)-output
relationship simpler.

From the application point of view each layer outputs a series of features, thus
the more layers are considered, the more sophisticated features can be attained,
allowing to have a smoother transition from the input to the output.

2.2 On The Convergence and Reliability of Adap-

tive Algorithms

Adaptive algorithms are the most used, and, maybe abused, optimization techniques
for Neural Networks. As it has already been seen this is due to two factors: first of
all, more sophisticated optimization algorithms, like Gauss-Newton or Levenberg-
Marquardt, are too expensive as far as computation and memory are concerned. For
example, the complexity of those algorithms is about O(N3), where N stands for
the number of parameters, and Neural Networks are built with a lot of parameters.
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On the other hand, simple Gradient Descent is a slow optimization algorithm and it
is subject to many issues described in section 1.3.1. However, if Adaptive algorithms
do not converge, it is quite useless to train Neural Networks with them. Thus the
question is: what are the convergence properties of Adaptive algorithms?

There are not so many theoretical results to answer with certainty to this ques-
tion, but in the following few lines, the latest researches are going to be reported.

First of all, it has not be proved that any Adaptive method is convergent to an
optimal solution. On the contrary, in [10] it has been showed the following result:

Theorem 2.2.1. For any constant β1, β2 ∈ [0, 1) such that β1 <
√
β2 there is a

stochastic convex optimization problem for which ADAM does not converge to the
optimal solution.

Notice that the values of β1 and β2 are compatible to the value suggested by the
creators of Adam, as seen in (1.6).

Moreover, recent researches showed that Adaptive algorithms are not always
better than Gradient Descent based ones. In particular it has been experimentally
seen that sometimes the accuracy achieved through Stochastic Gradient Descent
is higher than what is obtained through Adam or AdaGrad, or, that, even if the
training accuracy achieved by Adam or AdaGrad are higher than SGD, the solution
found by the former generalize worse than the one found with the latter, [11],[13].

These results are not surprising, since there is no reference that can prove the
convergence of any adaptive algorithms. For example, as far as Adam is concerned,
the validity of its proof has been argued recently. The main problem is that the
convergence can be proved only in a very particular setting and provided that a non
proved conjecture is valid, [14].

To conclude this section, an intuitive mathematical based comparison between
the two algorithms is made. In particular two main elements have to be analysed:
computational and memory cost and adaptive learning rates. As far as the latter is
concerned, it has the undoubted advantage that it speeds up the learning and avoids
a lot of vanishing gradient problems. Nevertheless there are some drawbacks. For
example in the neighborhood of a stationary point the value of the gradient of the
loss function is quite small, but the adaptive learning rate makes the updating step
higher. On the contrary gradient descent let it to be small, as it should be. For
a certain point of view this is not good, since it does not allow to move from a
stationary point with an high value for the loss function. On the other hand in
many cases Adam might oscillate around the optimal stationary point, when many
iterations are with a small gradient. This is due to the fact that the moving average
of the squared partial derivative is smaller and smaller, thus at a certain iteration
the algorithm is forced to make bigger steps than the gradient is, bringing the loss
function to an high value. This has been seen experimentally in many occasions
during this work.

As far as the cost is concerned, Gradient Descent is surely less demanding. If
N is the number of parameters, for each step, apart from computing the gradient,
it requires only N multiplications and N summations. On the other hand Adam
algorithm requires to compute the moving average of the squared gradient (O(N +
N) operations), and the moving average of the gradient as well (O(N + N + N)).
Moreover Adam it requires also resources in memory, since it has to store the moving
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average of past gradients (N elements) and of the squared gradients (one more
element).

It must be said that this is not such a big difference, since both the algorithm
have computational cost linear in N .

2.3 Empirical Advices

The purpose of this section is to analyse some simple situation that brings to non
convergence algorithms, in order to obtain some advice that is universally valid.

First of all, recall that all the optimization steps are made through a gradient
descent based or an adaptive method. Both these classes are made of iterative algo-
rithms that need the computation of the gradient of a loss function for each epoch.
Thus, given a certain loss function L it is important to recall how its derivatives
with respect to the parameters are calculated in Neural Networks, that is Back
Propagation, as explained in 1.3.2:

∂L

∂u
(n)
j

=
∑
i

∂L

∂u
(n+1)
i

∂u
(n+1)
i

∂u
(n)
j

∂L

∂w
(n)
j

=
∑
i

∂L

∂u
(n+1)
i

∂u
(n+1)
i

∂w
(n)
j

(2.9)

Since a general equation for the forward computation of the j−th unit of the (n +
1)−th layer is:

u
(n+1)
j = σ(

∑
i

u
(n)
i w

(n)
i,j + b

(n)
j ) (2.10)

The following results can be easily deduced:

∂u
(n+1)
j

∂u
(n)
i

= σ′i(...)w
(n)
i,j (2.11)

∂L

∂u
(n)
i

=
∑
j

∂L

∂u
(n+1)
j

∂u
(n+1)
j

∂u
(n)
i

=
∑
j

∂L

∂u
(n+1)
j

σ′j(...)w
(n)
i,j (2.12)

∂L

∂w
(n)
i,j

=
∑
s

∂L

∂u
(n+1)
s

∂u
(n+1)
s

∂w
(n)
i,j

=
∂L

∂u
(n+1)
j

σ′j(...)u
(n)
i (2.13)

∂L

∂b
(n)
i

=
∑
j

∂L

∂u
(n+1)
j

∂u
(n+1)
j

∂b
(n)
i

=
∂L

∂u
(n+1)
i

σ′i(...) (2.14)

where, with an abuse of notation, σ′i(...) stands for the derivative of σ calculated in

the i-th affine transformation, that is
∑
i

w
(n)
i,j u

(n)
i + b

(n)
i . Notice that these equations

make sense only if the n is does not denote the last layer, since in this case there is
no (n+ 1)-th layer.

Once the gradient has been computed, the update of the parameters follows by
the definition of the optimization algorithm. In particular, as an example element
of gradient descent methods, the classic (stochastic) gradient descent is considered:

θk+1 = θk − η∆θL(θk) (2.15)
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whereas Adam is taken as one exponent of the adaptive algorithms’ class:

vk+1 = β1vk + (1− β1)∇θL(θk)

mk+1,i = β2mk,i + (1− β2)
(

∂
∂θi
L(θk)

)2
v̂k+1 = vk+1

1−βk+1
1

m̂k+1 = mk+1

1−βk+1
2

θk+1,i = θk,i − η√
m̂k+1,i+ε

v̂k+1,i

(2.16)

Notice that in this case the update of parameters is not given by following the
opposite of the gradient direction any more, but every component of the update
direction is the result of the combination of an exponential moving average of the
gradients computed during all previous iterations whose components are individually
scaled by a quantity that can be thought as the inverse of the square root of an
exponential moving average of the squared partial derivative of the loss function with
respect to the corresponding parameter. However a small coefficient ε is inserted in
order to prevent the denominator to be too small.

2.3.1 Weights and Bias Initialization

The first issue bringing to a non convergent model is not updating the weights. This
means that the dependency of the output on the input is not adjusted during the
training. In particular, not updating a certain parameter w

(n)
i,j can be caused by

three factors, as it can easily be deduced by (2.13): a zero value either for ∂L

∂u
(n+1)
j

or σ′(
∑
i

u
(n)
i w

(n)
i,j + b

(n)
j ) or u

(n)
i . On the other hand, not updating a bias term b

(n)
i is

due to ∂L

∂u
(n+1)
i

or σ′(
∑
s

u
(n)
s w

(n)
s,i + b

(n)
i ) only.

If the activation function has the property σ(0) = 0, then initializing weights
and bias to 0 is the most dangerous thing to do. In fact in this case all units of
every layer is zero, and, as a consequence, the partial derivatives with respect to
every weight is zero as well. Thus neither weights are going to be updated, because
of (2.13), nor biases of every but the last layer, since ∂L

∂u
(n+1)
i

is zero, by (2.12) and

the fact that all weights are zero. The only element that is going to be updated is
the vector of biases of the last layer, since neither its derivative depends on any unit,
nor the derivative of the loss function with respect to the output units is null. Thus
the output is going to be constant (it is going to be the last bias). This argument
may suggest the use of an activation function that has not the property σ(0) = 0.
However this is not a good choice, as it is going to be explained in 2.3.3.

Now let’s look at Adam algorithm (2.16): without the term ε the numerator
and the denominator can be thought as with the same order of magnitude, then
the length of the updating step follows the value η. However ε is necessary in order
to avoid the nullification of the denominator, and since it is set by default to the
value of 10−8, the denominator is always greater than 10−8. This means that if
the magnitude of the numerator is inferior, the updating step can be significantly
smaller than η.
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Example 2.3.1. Consider a generic Multi Layer Perceptron made of N layers, with
ki units each, whose weights and biases are initialized to a fixed value µ. Suppose
there is no parameter sharing. The idea is to get an intuition about the magnitude
of the derivatives based on weights and biases. To this purpose, suppose that the
module of each partial derivative of the loss functions with respect to the output
units can be upper bounded by a finite value L and the derivative of the activation
function can be limited up to D. Then:

∂L

∂u
(N)
i
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And so on. Then ∂L
∂w(N−n) = O((

∏
1≤i≤n

kN−i)µ
n−1u(N−n)). On the other hand ∂L

∂b(N−n)

is O((
∏

1≤i≤n
kN−i)µ

n−1).

This example is quite exhaustive, however it must be said that the most general
case deals with both parameter sharing and non constant values for the initialization
of the parameters.

Thus if the magnitude of the weights and biases is very small, deep networks are
more likely to have very small gradients for the first layers. In particular, supposing
that the input and the output are normalized, smart initialization values should
be smaller than 1, otherwise the predicted output magnitude would be different
from the actual labels’ one. But they should not be too small, since they may
cause the convergence problem just analysed. One more problem of small value for
the parameters is that if the learning rate is significantly bigger and the activation
function is centered in zero, one optimization step would bring to biases much bigger
than weights, since the additional term u in (N-1), (N-2) and all previous layers bring
the partial derivative of the weights to be much lower than the one of the biases. If
the activation function is ReLu this could bring to a point in the parameter space
that can not be updated with an optimization step.

One other issue is due to high magnitude parameters. Forward propagation
brings deep layers to high value units and this gives rise to the problem of saturation
of sigmoids or dead ReLu, but this will be investigated with more details in 2.3.3.

2.3.2 Preprocessing the Data

Neural Networks can be considered as made of two main elements: the dataset and
the model itself. Thus, one may wonder whether there exists a Neural Network
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capable to catch efficiently the relationship in any input-output couple or not. Oth-
erwise, is it possible to represent a given dataset in a different shape in order to
attain better approximation properties?.

A key role in convergence properties of Neural Networks is played by its input
(and eventually its labels), [8]. In particular, it is a standard practice to rescale
the input and the output in order to have zero mean elements. The reason why
this is recommended is quite intuitive: suppose that all the inputs are positive.
Thus, by equation (2.13), if a Multi Layer Perceptron is considered, all the weights
concurring on the same unit can only all decrease or all increase together. Thus, if the
optimal value for the vector can be reached through a direction having components
of different sign, it can be reached only by zigzagging. Thus, having input with
different sign elements is preferred and this concept is generalized in having zero
mean input.

One more commonly used practice is to normalize the input. In particular it is
convenient to give all the input the same standard deviation, that should not be
too high. This is due to the fact that, if all the weights are initialized with the
same process as it has been seen in section 2.3.1, different magnitude in the input
could bring to output of different shape, giving more importance to some input’s
component with respect to others that in the computation of the loss function.
Moreover the magnitude of the dataset is meaningful as well. In particular high or
small valued inputs or labels could bring to high or small valued parameters, as it
can be seen in equations (2.13).

The solution proposed by Yann LeCun in [8] is to set the standard deviation to 1,
apart from the case in which it is assumed that some component is more significant
than the others. In general, the more a component is significant, the higher standard
deviation it should have, with respect to the others components.

Thus it is widely accepted that compacting all features, input and output in
order to make the most part of them range in a certain limited interval is a good
strategy. Normalization and Standardization are the most used ones. The former
consists of compacting all features in a certain interval that usually is [0, 1]. In this
case the formula used to transform the data is:

xnorm =
x− xmin

xmax − xmin
(2.17)

The former is used to make the dataset with 0 mean and standard deviation unitary.
In particular the transformation is:

xstd =
x− µx
σx

(2.18)

where µx and σx are the mean and the standard deviation of the feature among all
the dataset.

2.3.3 Activation Functions

From the first chapter it is clear that activation functions are one of the most impor-
tant part of Neural Networks, since they give non linearity and allow stacking more
than one layer in the same structure without redundancy. However, it is not really
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clear whether to use a certain non linear function or one other. Thus the purpose
of this section is to analyse these functions.

The most intuitive properties an activation function should have are clearly non
linearity and differentiability, because it has to be derived in order to compute Back
Propagation. Actually differentiability has been expanded to functions with a finite
number of non differentiability, by choosing default values for non regular points.
For example ReLu is not differentiable in 0, as it can be easily seen in figure (2.1),
but it is set, by default f ′(0) = 0.

Moreover there is one other crucial observation related to the derivatives of
a potential activation function: saturation problem. All Gradient Descent based
optimization algorithms, like Adam or Gradient Descent itself, update parameters
according to the value of the gradient. However the derivative of the functions that
are usually considered as activations is very small or even zero for large portions
of the real domain. This is due to the fact that, in general, using functions with
limited derivative is necessary, because if it does not happen, the gradient might be
very big, making the optimization step not stable. The same could happen if the
function is not limited, because of equation (2.13). However, using limited functions
brings the derivatives to be very small in a large portion of the domain. This can be
noticed in figure (2.1), in the black and the blue lines, that represent the derivative
of two popular sigmoid functions. Equivalently there exists an infinite region in
the parameters’ space in which gradient is too small to get a significant update of
the parameter considered. Furthermore since the value of a partial derivative with
respect to a particular unit plays a key role in computing the derivative of all the
parameters that are connected with that unit, as can be understood by (2.11), this
”small derivative” makes impossible to update a big part of the weights.

One related problem is that it is preferred to use functions such that σ(0) = 0.
To understand why, let’s take logistic sigmoid as an example. By figure (1.5) it can
be deduced that σ(x) > x for x near the origin. Thus all those inputs are biased
toward an higher value. Combining many units and many layers would bring the
Network to have very high magnitude units, making the model unable to update
significantly the parameters, because of vanishing gradient problems.

Considering these observations and that it is usual to have both weights and
inputs with 0 mean, as described in sections 2.3.1 and 2.3.2, it is preferable to use
function similar to the identity functions near the origin. In particular it is required
that

σ(0) = 0 (2.19)

σ′(0) = 1 (2.20)

As far as the three activation functions that have been considered until now, the only
one that observe any condition is the hyperbolic tangent. Nevertheless experimental
results showed that ReLu achieves much better results as an activation function, [?].
It could seem quite strange, since some of the criteria above are not respected. In
particular it is non differentiable and non limited. Moreover its derivative is exactly
zero for half of its domain. On the other hand there are also many advantages
given by using ReLu. The first and simplest reason is that it has a much easier
representation than many other functions and its derivative does as well. It is quite
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intuitive, since:

ReLu(x) =

{
x if x > 0

0 if x ≤ 0
ReLu′(x) =

{
1 if x > 0

0 if x ≤ 0
(2.21)

For example, hyperbolic tangent is much more complex:

tanh(x) =
1− e−2x

1 + e−2x
tanh′(x) =

( 2e−x

1 + e−2x

)2
(2.22)

One more advantage of ReLu is related to the vanishing gradient problem. By
looking at figure (2.1) it can be noticed that the derivative of many of the most
popular activation functions is near zero in almost every point. On the contrary
ReLu derivative is zero just in half of its domain. Pay attention: this does not
mean that this problem does not exist. As a matter of fact it could even be more
dangerous, since in the other half of the domain the derivative is zero, causing the
so called dead ReLu issue. For this reason attention must be paid on how many
layers are given ReLu activation function, since the more of this kind of layers there
are, the higher the risk of having zero gradient is.

Finally the last e maybe the most important incentive to use this function is
that it allows a sparse representation. In particular if the parameters of the Neural
Network are initialized randomly, about 50% of the units having ReLu is set to zero.
This allows to have a much less expensive model, computationally speaking, but it
is not the only advantage. It also brings to a lower risk of overfitting, due to the
fact that it implicitly drops all the non significant components of the Network.

Figure 2.1
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2.4 An applicative example

One of the most classical examples one may encounter when approaching Neural
Networks is the so called MNIST 10. The dataset is made of black and white
images representing handwritten digits and the goal is to build a Network that is
able to associate the correct number to as many images as possible.

This experiment consists of comparing the results achieved with the same model,
but with different initialization values of the parameters. In particular five scenarios
have been tested. In all these cases the parameters have been initialized through
a truncated normal distribution with 0 mean, with different variance: 0.05, 0.01,
0.0001, 10−6, 10−8.

The input: since these images are made of 28 × 28 pixels each, the input is
considered as a 28× 28 matrix, whose components are in the interval [0, 1] and they
represent the greyscale value of the corresponding pixels.

The architecture of the model: in this case it is not possible to give a
mathematical meaning to the process that brings to the decision of which digit is
represented in an image. Many different examples of architectures can be found
in the web. The structure that has been considered in this case is made of two
convolutional layers and two fully connected ones. In particular:

Ĉ1 = ReLu[(U ∗W1) + b1]

C1 = P (Ĉ1)

Ĉ2 = ReLu[(C1 ∗W2) + b2]

C2 = P (Ĉ2)

F = vectorization of C2

H1 = ReLu[W3F + b3]

O = W4H1 + b4

,



W1 ∈ R5×5×1×16

W2 ∈ R5×5×16×36

W3 ∈ R1764×128

W4 ∈ R128×10

b1 ∈ R16

b2 ∈ R36

b3 ∈ R128

b4 ∈ R10

(2.23)

where ReLu stands for the rectifier function applied to each unit and P is the pooling
function with kernel size equal to 2× 2 and stride equal to 2. Thus:

U ∈ R28×28×1

C1 ∈ R14×14×16

C2 ∈ R7×7×36

F ∈ R225792

H1 ∈ R128

O ∈ R10

(2.24)

The loss function is the cross entropy and the optimization algorithm is Adam, with
learning rate set as 0.01, using mini batches of size 64.

Results: it must be said that, since the initialization of the parameters and the
choice of the optimization batch are stochastic, results can slightly vary if the same
algorithm is run different times.

After 1000 epochs the algorithms with 0.01 and 0.05 variance in the data reach
an accuracy of about 98, 5%, whereas the ones with very small variance (10−6, 10−8)
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Conv.
1

Conv.
2

F.C.
1

F.C.
2

Pesi> 0 77 2782 81409 579
Pesi< 0 323 11618 144383 701
Bias> 0 8 23 72 7
Bias< 0 8 13 56 3

Conv.
1

Conv.
2

F.C.
1

Unità> 0 1229 63 24
Unità= 0 1907 1701 104

Table 2.1: On the left a scheme representing how positive and negative parameters
are distributed in the standard case. On the right the Networks activation values
for a random sample of the test set

are stuck at about 10%. On the other hand the results achieved with parameters’
variance of 10−4 are not sure, meaning that it could either converge or not.

Moreover the speed of the convergence is slightly different for different initializa-
tion variances. In particular if the variance is 0.05% the accuracy after 100 epochs is
5% more accurate than the case of 0.01 variance, on average. And this difference is
considerably higher when the algorithm with variance 10−4 converges, since it reach
90% of accuracy after at least 9000 iterations.

However the most interesting observation made for these experiments is the
number of the so called dead units, that are the units with 0 value. As it can be seen
from table (2.1), after 1000 epochs the number of positive neurons of the output of
the first fully connected layer is not negligible in the case of 0.05 variance, but it
decreases when the variance is smaller and in the extreme cases, there is no non zero
units, as table (2.2) may suggest. The average number of non zero units decrease
considerably even in the case of 0.01 variance.

Conv.
1

Conv.
2

F.C.
1

F.C.
2

Pesi> 0 73 9010 99930 671
Pesi< 0 327 5390 125862 609
Bias> 0 2 5 1 3
Bias< 0 14 31 127 7

Conv.
1

Conv.
2

F.C.
1

Unità> 0 349 248 0
Unità= 0 2787 1516 128

Table 2.2: On the left a scheme shows that there is not a significant difference for
the distribution of positive and negative weights between the standard case and the
cases with smaller inputs. The main difference is given by a significantly higher
number of negative biases and mostly by the fact that there is no non zero unit in
the output of the fully connected layer, when evaluated for a generic input
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Chapter 3

DLTI systems and Neural
Networks

It should be clear from chapter 2 that a lot of heuristics is at the basis of Neural Net-
works. As an example, adaptive optimization algorithms and superposition of more
than one non linear layer effectiveness have no rigorous mathematical explanation.

In this chapter all the tasks are going to be related to a well known class of
mathematical systems: the so called DLTI systems. So results and parameters
obtained through Deep Learning can be compared with the true physical one and a
more accurate study can be accomplished.

At first it is going to be investigated whether Convolutional Neural Networks are
able to catch the constitutive laws that generate DLTI systems, by analysing many
input-output relationships.

The results show that there exists an actual equivalence between the two repre-
sentations. Thus in the last section a more complex task. Pay attention, the world
complex is used in order to underlie that the input-response relationship is not given
explicitly any more, but it affects implicitly the output of the dataset.

In this case results show that the model is not able to catch the inner structure
of DLTI system, and this brings to generalization problems.

3.1 Mathematical environment

A linear time-invariant system (LTI systems) is a transformation T that is both
linear and time-invariant. Linearity means that, given any two input sequences
u1, u2, the response of any linear combination of them is the same linear combination
of the individual responses, y1, y2, that is:{

T (u1) = y1

T (u2) = y2
⇒ T (α1u1 + α2u2) = α1y1 + α2y2 ∀α1, α2 ∈ R (3.1)

On the other hand the property of time invariance means that the output does not
depend on the instant when the system is applied. In formulas:

T (u(t)) = y(t)⇒ T (u(t+ τ)) = y(t+ τ) (3.2)

By rewriting the input signal u as:

u(t) =

+ inf∫
− inf

u(τ)δ(t− τ)dτ (3.3)

43
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and, more in general:

u(·) =

+ inf∫
− inf

u(τ)δ(· − τ)dτ (3.4)

it easily follows that:

y(·) = T

 + inf∫
− inf

u(τ)δ(· − τ)dτ

 (3.5)

=

+ inf∫
− inf

u(τ)T (· − τ)dτ (3.6)

=

+ inf∫
− inf

u(τ)h(· − τ)dτ (3.7)

thus, given an input u, the corresponding output y will be:

y(t) =
(
u ∗ h

)
(t) (3.8)

where ∗ stands for the convolution operation and h is a linear function that will
be called response to the unitary sample, that is the response of the system to
Kroenecker delta, namely the function:

δ(t) =

{
1 if t = 0

0 otherwise
(3.9)

These models can be equivalently represented by a system of differential equation,
thanks to the introduction of an internal state vector x. This allows to write the
following: {

ẋ(t) = Acx(t) +Bcu(t)

y(t) = Ccx(t) +Dcu(t)
(3.10)

where x ∈ Rk, Ac ∈ Rk×k , Bc ∈ Rk×m, Cc ∈ Rn×k, Dc ∈ Rn×m.
As it has already been stated, the representation of the system through (3.8)

is equivalent to (3.10), with the right choice of h,Ac, Bc, Cc, Dc. This fact will be
proved soon in a particular setting.

Since in the sections below these systems have to be simulated and it is not
possible to simulate the exact motion of a differential equation, a discretized version
of the LTI systems has to be considered: the so called DLTI systems.

The corresponding DLTI representation of (3.10) is given by the following system
for the state-space form {

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(3.11)
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that can be obtained from (3.10) through a discretization method for differential
equations, as a generic θ-method.

On the other hand, the corresponding discrete convolutional structure (3.8) is:

y(k) =
k∑
j=1

h(k − j)u(j) (3.12)

where h is the discrete response to:

h(k) =

{
1 if k = 0

0 otherwise
(3.13)

To make the concept of the equivalence between the two representations a little
more rigorous, let’s consider the particular case of C = 1 and D = 0. This means:

y(1) = x(1) = Ax(0) +Bu(1)

y(2) = x(2) = Ax(1) +Bu(2) = A2x(0) + ABu(1) +Bu(2)

y(3) = x(3) = ... = A3x(0) + A2Bu(1) + ABu(2) +Bu(3)
...

y(k) = x(k) = Akx(0) +
k∑
j=1

Ak−jBu(j)

from this series of equations, it can be easily noticed that:

Y (k) = Akx(0) +
(
u ∗ h

)
(k) ∀k ∈ N (3.14)

and, in particular, that, given u ∈ R, the unitary response or, equivalently, the
kernel of the convolution (3.12) can be rewritten as:

h(j) = AjB (3.15)

It must be said that this is just a particular case of equation (3.11). The most
general unitary response is given by the so called Markov coefficients :

h(j) = CAjB (3.16)

3.2 Finite Response State Space Model

Let’s consider the following DLTI system, represented in the State Space form:{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(3.17)

where

y ∈ R3, A =

0 1 2
0 0 3
0 0 0

 , B =

0
0
1

 , C = 1, D = 0 (3.18)
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This is one of the simplest DLTI systems that can be considered. Namely, all
parameters have a restrained dimension and thus it is easier to analyse in this
particular setting A is chosen in order to be nilpotent. This fact, together with
(3.15), means that the unitary response is non trivial if and only if j = 0, 1, 2. In
particular:

h(0) =

0
0
1

 h(1) =

2
3
0

 h(2) =

3
0
0

 (3.19)

The first experiment that will be considered is to try to approximate the input
output relationship in the system that has just been presented with a basic convo-
lutional Network in order to verify both the equivalence of this DLTI system and
the convolutional Layer, and the ability of these models to approximate the actual
kernel.

In particular suppose that an input sequence U ∈ R20×1 generated by a random
normal distribution is given. For every mode-1 element of U (in this case it cor-
responds to the component of the vector) the system described in (3.17) raises a
response of dimension 3. Then the whole output sequence is Y ∈ R20×3, meaning
that it is made of 3 output channels, with 20 evaluations each.

Therefore the simplest architecture of a network considered able to model this
system is a basic CNN:

O = (U ∗W ) + b ,


O ∈ R20×3

U ∈ R20×1

W ∈ R3×1×3

b ∈ R3

(3.20)

Where O is the output predicted by the model, that has to be as close to the true
response of the system as possible. The loss function that has been chosen is the
mean squared error and the optimization algorithm is Adam with learning rate equal
to 0.01.

As already observed model (3.20) is equivalent to the State Space system when
weights corresponds to the value presented in (3.19) and biases are zero. In partic-
ular, notation introduced in chapter 2 means that the correct matrix representing
the only slice of the weight tensor obtained by fixing the input channel is:

W [:, 0, :] =

h(0)T

h(1)T

h(2)T

 =

0 0 1
2 3 0
3 0 0

 (3.21)

The input output generation is repeated 20000 times, thus the dataset that is
going to be considered is made of 20000 couples (U, Y ) ∈ R20×1 × R20×3.

The first step is to check the effective equivalence between the two representations
by initializing the weights and biases with the correct values in order to verify that
optimization steps do not change significantly the parameters. This is actually what
happens, since just 100 iterations bring the slice of the weight tensor to the value:

W [:, 0, :] =

−0.0000000 0.0000000 1.0000000
2.0000000 3.0000000 −0.0000000
3.0000000 −0.0000000 0.0000000

 (3.22)
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After that, one may wonder if this Network is able to find the correct parameters,
even when the initialization is not correct. For this purpose weights and biases
are initialized as constants equal to 0. After 3000 epochs the parameters obtained
through the training reach a great accuracy, since all biases, that should be zero,
are lower than 10−5 and the slice of the weight tensor are:

W [:, 0, :] =

−0.0000164 −0.0000002 0.9999998
1.9999838 2.9999955 0.0000000
2.9999850 0.0000002 0.0000000

 (3.23)

And the accuracy is even better if the optimization step is run 10000 times. In this
case the predicted 0 parameters are about 10−10.

3.2.1 Increasing Capacity

Two Layers Models

The results and the models built in the previous examples have been obtained since
the structure of the system was well known, so the parsimony criterion could be
applied perfectly.

On the contrary suppose now that the structure is unknown. Therefore a bigger
architecture is considered, so that a big family of systems, including the one that
has to be approximated, can be represented with high accuracy from this model.

Thus two different enlargements of the basic network are considered to achieve
the convergence.

The first model is similar to (3.20):

O = (U ∗W ) + b ,


O ∈ R20×3

U ∈ R20×1

W ∈ R20×1×3

b ∈ R3

(3.24)

In particular it is made of a single convolutional layer, with kernel size equal to 20 (in
the previous case it was equal to 3), dimension of the output 3 and no final activation
function. In this case all parameters are initialized as 0 and the optimization step
is made by considering mean squared error as the loss function and Adam as the
optimization algorithm with learning rate 0.01. Notice that there is no risk of
not updating parameters since there is only one layer. After 3000 iterations every
parameters that is supposed to be zero has magnitude lower than 10−7. On the
other hand the first three rows of the slice of the weight tensor obtained by fixing
the input channel are:

W [: 2, 0, :] =

−0.0000001 0.0000000 0.9999998
1.9999983 2.9999962 0.0000000
2.9999952 0.0000002 0.0000000

 (3.25)

This is exactly what was expected, since all weights with offset index (the first one)
from the fourth to the last are near 0, whereas the first three are the real values, as
described in (3.21).
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Figure 3.1: The red plot represents the weights of the dynamic system’s kernel,
whereas the blue one is the learned one. There is a figure for each output channel.

The second model is made of two convolutional layers. We made the original
intuition that the first convolutional layer represents the real transformation and
the second one is just the identity. Thus the dimensions of the parameters follows
easily:

{
H1 = (U ∗W1) + b1

O = (H1 ∗W2) + b2
,



O ∈ R20×3

U ∈ R20×1

H1 ∈ R20×3

W1 ∈ R3×1×3

W2 ∈ R3×3×3

b1 ∈ R3

b2 ∈ R3

(3.26)

All parameters are initialized to 0.1. After 5000 iterations of Adam optimization
algorithm with learning rate 0.01, the results found are quite surprising. The biases
are set to a very small value (about O(10−8), and weight are as follows. For the first
convolutional layer:

W1[:, 0, :] =

 1.1303016 1.1303016 1.1303010
−0.0000004 −0.0000004 0.0000006
0.0000001 0.0000001 −0.0000003

 (3.27)

This matrix has to be read as: the element of position i, j is the contribute of the
(k + i)− th input the k-th element of the j-th channel of the output H1, for every
k. In particular 3.27 means that

H1[i, j] = 1.131106 ∗ U [i] + bj (3.28)

approximately.
On the other hand the output of the second convolutional layer is computed

through the following matrices:

W2[:, :, 0] =

0.0000000 0.0000000 −0.0000001
0.5898130 0.5898130 0.5898135
0.8847203 0.8847203 0.8847190

 (3.29)

W2[:, :, 1] =

−0.0000000 −0.0000000 0.0000000
0.8847198 0.8847198 0.8847197
−0.0000002 −0.0000002 0.0000004

 (3.30)
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W2[:, :, 2] =

 0.2949066 0.2949066 0.2949066
−0.0000000 −0.0000000 0.0000001
0.0000001 0.0000001 −0.0000002

 (3.31)

Each matrix represents the contribution of the corresponding component of H1 to
the channel of the output, that is the slices of the weight tensor obtained by fixing the
index corresponding to the output channel. This means that the element W2[i, j, k]
is the scaling factor to the output channel k of the element of the channel j of the
input with an offset equal to i.

They could seem quite unreasonable, since one would expect that the intuitive
representation of the transformation in this environment is the first kernel set as the
actual convolutional kernel and the second one made only of 1 for the first element
and 0 for all the others. However this is not a bad result at all! The transformation
is learned in a different representation, but with the same properties. In particular
the model scales the input through the factor 1.1303016 (equation (3.28)) and the
second layer recreates three times the true transformation by applying it to each
output of the first hidden layer. This might be clearer by looking at figure (3.1) and
by noticing that:

3 ∗ 1.1303016 ∗ 0.2949066 = 1.00000020549168 (3.32)

3 ∗ 1.1303016 ∗ 0.5898130 = 1.9999997328023997 (3.33)

3 ∗ 1.1303016 ∗ 0.8847198 = 3.0000006164750395 (3.34)

This means that the matrices of the second layer can approximately be seen as:

W2[:, :, 0] =
1

1.1303016
· 1

3

0 0 0
2 2 2
3 3 3

 (3.35)

W2[:, :, 1] =
1

1.1303016
· 1

3

1 1 1
0 0 0
0 0 0

 (3.36)

W2[:, :, 2] =
1

1.1303016
· 1

3

3 0 0
3 0 0
3 0 0

 (3.37)

Three Layers Model

It is a common belief that increasing the capacity of a certain model can improve
convergence results. Thus, what happens if the model is enlarged? Can convergence
results, obtained in the previous section, be affected by any particular choice in the
architecture of the Network?
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In the following the model considered is:

H1 = (U ∗W1) + b1 ,


U ∈ R20×1

H1 ∈ R20×3

W1 ∈ R3×1×3

b1 ∈ R3

(3.38)

H2 = (H1 ∗W2) + b2 ,


H2 ∈ R20×3

W2 ∈ R3×3×3

b2 ∈ R3
(3.39)

O = (H2 ∗W3) + b3 ,


O ∈ R20×3

W3 ∈ R3×3×3

b3 ∈ R3

(3.40)

(3.41)

Basically the difference between this model and (3.26) consists of an extra hidden
convolutional layer. This architecture is still compatible with the original system,
since one possible representation could be the following:

• the first and the second convolutional layers can convey the input, eventually
rescaled, to the tensor H2;
• the third layer (3.39) recreates the real transformation.

This intuition is given by recreating the behaviour of the trained model obtained in
(3.26). One other possible generalization can be:

• the parameters of the first and the second layer behave exactly as in the 2-
layers model;
• the third layer can convey H2 to the output, and eventually rescaling its com-

ponents.

The results obtained after 8000 epochs of Adam algorithm with learning rate and
initialization values for the parameters are 0.001 are not as expected. In particular
the MSE is about 10−7 and the model obtained is not considerable as linear any
more, since the biases that have been found are:

b1 =
(
−0.0000032 −0.0000032 −0.0000091

)
(3.42)

b2 =
(
−0.0001234 −0.0001234 0.0002484

)
(3.43)

b3 =
(
−0.0000099 −0.0000153 0.0003193

)
(3.44)

Moreover weights are neither sparse nor shared as in (3.27)-(3.31). For example the
weight tensor for the first layer is:

W1[:, 0, :] =

0.6463890 0.6463890 0.6462395
0.0663007 0.0663007 0.0667040
0.0025836 0.0025836 0.0090527

 (3.45)
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And it is even more evident for deeper layers:

W3[:, :, 0] =

 0.3632962 0.3632962 0.3945965
0.5775110 0.5775110 0.5791647
−0.0441417 −0.0441417 0.0588008

 (3.46)

In order to gain better convergence properties the model has been upgraded, by
increasing the kernel size of each layer:

H1 = (U ∗W1) + b1 ,


U ∈ R20×1

H1 ∈ R20×3

W1 ∈ R20×1×3

b1 ∈ R3

(3.47)

H2 = (H1 ∗W2) + b2 ,


H2 ∈ R20×3

W2 ∈ R20×3×3

b2 ∈ R3

(3.48)

O = (H2 ∗W3) + b3 ,


O ∈ R20×3

W3 ∈ R20×3×3

b3 ∈ R3

(3.49)

(3.50)

This representation is not natural, since it is basically the representation that is
used in an infinite length unitary response. However the results found after 5000
iterations of Adam optimization algorithm with learning rate equal to 0.001 and
initialization values for the parameters equal to 0.001 as well are much better than
before. In particular all biases are near zero (they are about 10−9) and the final
MSE is about 10−13. In this case there are two interesting factors.

First of all in this case it can be observed that weights are replicated among all
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the output channels. For example:

W1[:, 0, :] =



0.5921481 0.5921481 0.5921481
0.2660780 0.2660780 0.2660780
0.0056468 0.0056468 0.0056468
−0.0185987 −0.0185987 −0.0185987
0.0220667 0.0220667 0.0220667
0.0031530 0.0031530 0.0031530
−0.0027568 −0.0027568 −0.0027568
0.0024285 0.0024285 0.0024285
0.0021107 0.0021107 0.0021107
0.0013231 0.0013231 0.0013231
0.0024848 0.0024848 0.0024848
0.0028737 0.0028737 0.0028737
0.0017980 0.0017980 0.0017980
0.0012938 0.0012938 0.0012938
0.0014946 0.0014946 0.0014946
0.0008530 0.0008530 0.0008530
−0.0015292 −0.0015292 −0.0015292
−0.0032948 −0.0032948 −0.0032948
−0.0023037 −0.0023037 −0.0023037
−0.0031917 −0.0031917 −0.0031917



(3.51)

Furthermore as far as the weight tensor of the first two layers are concerned, the
parameters are shared among the three slices obtained by fixing the index corre-
sponding to the output channel. For example the first three elements of the weight
tensor of the second layer are:

W2[: 3, :, 0] =

0.5920714 0.5920714 0.5920714
0.2659931 0.2659931 0.2659931
0.0041708 0.0041708 0.0041708

 (3.52)

W2[: 3, :, 1] =

0.5920714 0.5920714 0.5920714
0.2659931 0.2659931 0.2659931
0.0041708 0.0041708 0.0041708

 (3.53)

W2[: 3, :, 2] =

0.5920713 0.5920713 0.5920713
0.2659931 0.2659931 0.2659931
0.0041708 0.0041708 0.0041708

 (3.54)

This does not happen in the third layer and this is not surprising: the aim of the
third layer is the same of the second one in (3.26).

W3[: 3, :, 0] =

−0.0000009 −0.0000009 −0.0000008
0.6338437 0.6338437 0.6338437
0.3811884 0.3811884 0.3811884

 (3.55)

W3[: 3, :, 1] =

−0.0000027 −0.0000027 −0.0000026
0.9507663 0.9507663 0.9507663
−0.8543857 −0.8543857 −0.8543857

 (3.56)
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Figure 3.2: In this graph the variance of the random variable used to initialize the
weights is set on the abscissa. On the ordinate the average of the variance of the
trained parameters. This is referred to the second layer of model (3.26).

W3[: 3, :, 2] =

 0.3169168 0.3169168 0.3169168
−0.2848194 −0.2848194 −0.2848194
0.1866540 0.1866540 0.1866540

 (3.57)

One more interesting consideration is that the representation is not sparse any more.

Random initializations

One simplification of models in this section is the basic initialization of the weights.
In all cases it is set to a tensor with equally valued elements. What happens when
this hypothesis falls? In particular it is interesting to understand whether the prop-
erties found above (like sparsity and repetition of the weights) are still reached.

Consider, as an example, model (3.26). When it is trained with all the same hy-
perparameters described before, but with parameters initialized with random normal
of variance 0.1, the result are quite different. In particular:

W1[:, 0, :] =

0.37731665 −0.36477697 0.5041107
1.1142182 0.91963494 −0.99504423
0.91104233 0.17498589 0.03419494

 (3.58)

And also the second layer loses the sparsity and repetition properties. However the
composition of the two kernels bring to an equivalent representation of the physical
transformation.

More in general, in figure (3.2) it is possible to see that optimization step do not
change the variance of the weights: the one of the initialization random variable is
the same of the trained parameters.
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3.3 Infinite response State Space Model

One of the many simplifications in the process of building the system (3.17-3.18)
consists of considering a nilpotent matrix A, so that the unitary response has a finite
length. Thus in that case, it was easy to build a model with the right architecture
and to compare the weights obtained with the real unitary response (3.21).

However this occurrence is quite anomalous and, more in general, the unitary
response has infinite length, due to a non nilpotent matrix A in the state space
representation of the system. Thus the purpose of this section is to analyse whether
or not the results previously obtained can be extended to a non finite response DLTI
system.

Therefore consider the DLTI system{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(3.59)

where

y ∈ R3, A =

0.6 0.6 0.6
0.6 0 0.6
0 0.6 0

 , B =

0
0
1

 , C = 1, D = 0 (3.60)

(the values in A are chosen in order to not have an output with too high magnitude).
A is not nilpotent anymore, thus the unitary response is not zero for every

evaluation, as equation (3.15) may suggest.
First of all let’s build the samples: as already done, consider an input sequence

U ∈ R20×1, so that the response of the system is the output sequence Y ∈ R20×3.
The dataset is made by 20000 of these couples (U, Y ) ∈ R20×1 × R20×3.

Now consider the Network already seen in (3.24):

O = (U ∗W ) + b ,


O ∈ R20×3

U ∈ R20×1

W ∈ R20×1×3

b ∈ R3

(3.61)

where O is the output of the Neural Network given the input U . Thus the aim of
the loss function that has to be considered is any norm representing the difference
between O and Y . As done before, the chosen loss function is the mean squared
error.

Since there is a strong relationship between the parameters of the model and the
unitary response, the interesting part of the experiment consists of comparing these
two elements. In particular, it can be deduced from (3.60) that the biases should be
zero, while weights should be:

W [:, 0, :] ∼


BT

(AB)T

(A2B)T

...
(A19B)T

 (3.62)
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All parameters are initialized with 0 (there is no risk of stopping the training since
there is only one layer) and Adam is considered as the optimization algorithm, with
learning rate equal to 0.01.

After 10000 epochs the mean of the difference between

E[W [:, 0, :]−


BT

(AB)T

(A2B)T

...
(A19B)T

] ∼ 10−6 (3.63)

where the operation E[·] is the mean of the module of the elements in the object
considered. Biases are O(10−7), thus the model obtained is actually equivalent to
the true system.

3.4 Time Variant Systems

Now suppose that a the dataset is generated by a time variant system, like the
following: {

x(k + 1) = A(k)x(k) + u(k)

y(k) = Cx(k) +Du(k)
(3.64)

where

y ∈ R3, A =



0 1 2

0 0 3

0 0 0

 0 ≤ k ≤ 9

0 2 3

0 0 4

0 0 0

 10 ≤ k ≤ 19

, B =

0
0
1

 , C = 1, D = 0 (3.65)

The only difference with the system described in (3.17)-(3.18) is that dynamic of the
data is controlled by a DLTI system for the first 10 steps, by one other for the last
ones. Thus the process is not time invariant any more and the equivalence between
the system and convolution is not valid for the whole input output relationship.
However u[: 9] generates x[: 9] through a convolution, and so does u[9 :] with respect
to x[9 :]. In particular the kernel of the the first convolution is given by:

h1(0) =

0
0
1

 h1(1) =

2
3
0

 h1(2) =

3
0
0

 (3.66)

whereas the second one is:

h2(0) =

0
0
1

 h2(1) =

3
4
0

 h2(2) =

8
0
0

 (3.67)
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Consider a dataset made by applying the system (3.64)-(3.65) to 20000 different
inputs U ∈ R20×1, each of whom generated by a random normal distribution.

The first model that is going to be considered is the following:

O = (U ∗W ) + b ,


O ∈ R20×3

U ∈ R20×1

W ∈ R2×3×1

b ∈ R

(3.68)

The output of the model O has to be considered as an approximation of the dynamic
response Y to the input U , thus the Network is trained by using mean squared error
as the loss function and Adam algorithm with learning rate set to 0.01.

However two separate convolutions generate the response in the dynamic system
(3.64), thus good approximation properties of this model are rather unlikely, because
of only one kernel is considered. Nevertheless, it would be interesting to understand
what happens to the parameters of the Network.

The error is quite high, the biases are:(
0.01437 0.00258 5 · 10−9

)
(3.69)

and the weights are:

W [:, 0, :] =

−0.0043934 −0.0128955 1.0000001
2.5247779 3.5258610 0.0000000
5.6695366 −0.0146008 0.0000000

 (3.70)

Thus, as expected, the estimates are not very good, but it is quite interesting to
notice that the slice obtained by fixing the output channel index is similar to the
mean of the unitary response of the two DLTI system, that is equal to:(h1(0)+h2(0)

2
)T

(h1(1)+h2(1)
2

)T

(h1(2)+h2(2)
2

)T

 =

 0 0 1
2.5 3.5 0
5.5 0 0

 (3.71)

It is not surprising that the smallest bias corresponds to the third coordinate, that is
generated with the same dynamic by both systems (3.66)-(3.67) and the difference
between the third column of the mean of the responses and the learned one is almost
zero.

One more surprising fact is that, if the model (3.68) is given more layers, it does
not improve the accuracy. On the contrary, it works exactly as described in section
3.2.1, meaning that the output does not change. This observation can be deduced
by comparing the outputs of the two different Networks and by looking at the fact
that the mean of the absolute value of their difference is about 0.09. Even the test
error is always about 1.9.

Moreover, if it is given non linearity, the accuracy get worse, even if this is not
surprising, since the system is linear.

One different approach is to consider a fully connected Neural Network. Previous
model could not converge because it reuses the same transformation for each time
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(parameter sharing), even though the real dynamic is generated by different convo-
lutions. This operation has to be generalized, and a linear model can be suitable in
this situation:

O = U ·W + b ,


O ∈ R60

U ∈ R20×1

W ∈ R20×60

b ∈ R60

(3.72)

where O represents an approximation of Y in a different shape. Thus, after having
reshaped O to the dimension (20, 3), the loss function is, again the mean squared er-
ror and the parameters are trained through gradient descent optimizer with learning
rate equal to 0.05 and batch size equal to 50.

In this case, after 15000 epochs, convergence has been achieved, as the mean
squared error on the test set is about O(10−9). Moreover the real kernel has been
found and the biases are all O(10−7). It is not possible to report all the learned
weights (they are 1200), thus to give a proof of the actual convergence, the mean of
the absolute value of difference between the weights obtained and and the expected
ones is lower than O(10−5).

3.5 Inverse estimates

In this section, it is going to be investigated whether CNNs are able to represent
the inverse estimates (output-input) of a DLTI system. From the theoretical point
of view, this is plausible, since from (3.11) it can be deduced:

Bu(k) = y(k + 1)− Ay(k) (3.73)

that resemble a convolution. The only difference is that if u is scalar, B a vector
and A a matrix, as considered until now, the relationship between u[:] and y[:] is
not clear, since B can not be inverted.

The simplest case is to consider B made of all zeros with the exception of one
component. For example:

A ∈ R3×3, B =

0
0
α

 , C = 1, D = 0, y(k) =

y0(k)
y1(k)
y2(k)

 (3.74)

In this scenario u can be computed easily:

u(k) =
1

α
(y2(k + 1)− (Ay(k)))2 (3.75)

Hence the following system is used to generate the dataset:{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(3.76)

where

y ∈ R3, , B =

1
1
1

 , C = 1, D = 0 (3.77)
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and A is a 3 × 3 matrix generated through a random normal N(0; 0.1). The input
to the system U ∈ R20×1 is generated randomly; in particular all of its elements are
taken as the module of a random standard normal. 20000 input output couples are
generated through system (3.76)-(3.77) and this constitutes the dataset.

The particular CNN considered is:

O = (Y ∗W ) + b ,


O ∈ R20×1

Y ∈ R20×3

W ∈ R2×3×1

b ∈ R

(3.78)

The dimension of W are deduced from (3.75). The purpose is to approximate U
with O, thus the loss function that has been considered is the mean squared error.

The Network is initialized with zero valued parameters and it is trained through
Adam with learning rate 0.001 and batch size 64. After about 15000 iterations the
loss function reaches a very low value and the weights and biases found are similar,
but not exactly equal, to what was expected. For example, the process of generating
of the matrix A gives rise to:

A =

0.04203465 −0.06176848 0.0063325
0.04226415 −0.04879597 −0.03071113
0.06982541 0.09223424 0.20546796

 (3.79)

In this case, for the previous reasoning, it would be expected that the slices of the

weight tensor, obtained through fixing the first index, correspond

0
0
1

 and to the

third row of matrix A. Even though the result is similar to the expected one, it can
not be considered equal to. In fact, the bias is very small, about 10−6, but the slices
are:

W [0, :, 0] =

−0.1355553
0.2123551
1.0000001

 W [1, :, 0] =

−0.0725815
−0.0901222
−0.1980880

 (3.80)

In particular, neither the first two elements of W [0, :, 0] can be considered zero, nor
W [1, :, 0] can be an approximation of the third row of A. However it can be noticed
that:

A[0, :] ·W [0, 0, 0] + A[1 :] ·W [0, 1, 0] + A[2, :] ·W [0, 2, 0] =

0.07310241
0.09024523
0.19808792

 (3.81)

It means that the algorithm finds that the significant element for determining U is
the third component of y(k+1)−A·y(k). However instead of nullifying the other two
components of the weight vector corresponding to y(k+1) and approximating A[2, :]T

with W [0, 2, 0], it reaches a point that satisfy equations (3.75) and the following:

α0 (y(k + 1)0 − (Ay(k))0) = 0 (3.82)

α1 (y(k + 1)1 − (Ay(k))1) = 0 (3.83)
1

α
(y(k + 1)1 − (Ay(k))1) = u(k) (3.84)
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Thus, in this case, it is acceptable any solution such that:
W [0, 0, 0] = a0

W [0, 1, 0] = a1

W [0, 2, 0] = a2

(3.85)

W [1, :, 0] =
(
A[0, :] · a0 + A[1 :] · a1 + A[2, :] · a2

)T
(3.86)

That is a generalization to the argument made in the beginning of the section, since
the latter would be obtained by setting α0, α1 = 0.

Generalizing this experiment can be done, for example, by considering any vector

B =

b1b2
b3

. Mathematically speaking the new scenario is the following:

(y(k + 1)0 − (Ay(k))0) = b0u(k) (3.87)

(y(k + 1)1 − (Ay(k))1) = b1u(k) (3.88)

(y(k + 1)1 − (Ay(k))1) = b2u(k) (3.89)

Now, suppose that each equation is rescaled through a coefficient αi and then sum
the three equations:

α0 (y(k + 1)0 − (Ay(k))0)

+ α1 (y(k + 1)1 − (Ay(k))1)

+ α2 (y(k + 1)1 − (Ay(k))1)

= (α0b0 + α1b1 + α2b2)u(k) (3.90)

Thus the physical acceptable solutions are:

W [0, :, 0] = a a ·B = 1 (3.91)

W [1, :, 0] =
(
A[0, :] · a0 + A[1 :] · a1 + A[2, :] · a2

)T
(3.92)

This is actually what has been found. In particular the dataset is generated by
20000 couples (U, Y ) with the dynamic described in (3.76), with A generated by a
random normal N(0; 0.1) and

B =

0
0
1


The Network (3.78) has been trained with Adam optimizer with learning rate set
to 0.001, batch size 50 and loss function mean squared error. After about 16000
iterations these are the results:

W [0, :, 0] =

0.24229373
0.24563794
0.26977462

 W [0, :, 0] ·B ∼ 10−8 (3.93)

Moreover:

A[0, :] ·W [0, 0, 0] + A[1, :] ·W [0, 1, 0] + A[2, :] ·W [0, 2, 0] +W [1, :, 0] ∼ 10−6 (3.94)
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3.6 DLTI systems classification

In this experiment, the input-output relationship is given by the following:{
x(k + 1) = AV x(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(3.95)

where V is a discrete random variable such that:

V ∈ {0, 1, 2, 3, 4} (3.96)

with the same probability, that is P(V = i) = 1
5
. Moreover:

y ∈ R3, , B =

0
0
1

 , C = 1, D = 0 (3.97)

A0 =

0 1 1
0 0 1
0 0 0

A1 =

0 2 2
0 0 2
0 0 0

A2 =

0 1 2
0 0 3
0 0 0

 (3.98)

A3 =

0 2 3
0 0 3
0 0 0

A4 =

0 1 3
0 0 1
0 0 0

 (3.99)

These matrices are taken in order to be simple to analyse. In particular they all are
nilpotent and all possible results of B,AB,A2B are made of positive components.

Since the response of the system (3.95) depends on the value of V , the purpose of
this experiment is to classify the input-output relationship in the 5 different classes.
Moreover, it would be interesting to understand whether a multi layer Network is
able to achieve lower level physical relevant information.

For example, after having built the dataset by considering 20000 samples gener-
ated by an input U ∈ R20×1-output Y ∈ R20×3 through the model (3.95)-(3.98), let’s
consider the following architecture:


H1 = (I ∗W1) + b1

H2 = flattening(H1)

L = (H2 ·W2) + b2

,



O ∈ R5

I ∈ R20×4

H1 ∈ R20×15

H2 ∈ R300

W1 ∈ R3×4×15

W2 ∈ R300×5

b1 ∈ R15

b2 ∈ R5

(3.100)

This architecture has been inspired by a simple intuition: I is the superposition of
U and Y and the 5 channels of H1 should represent Ỹi−Y , where Ỹi is the predicted
output of each DLTI system and Y is the actual output signal.
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For the sake of classification, L is a vector with 5 entries. Each of them can be
considered as the non normalized log probability that I is an input-output couple
generated through the DLTI system corresponding to that index. Thus softmax
cross entropy is considered as loss function. Convergence is obtained even after just
100 iterations of Adam optimizer with learning rate set to 0.001 and batch size 50.

However the results show that the first layer does not give the physical relevance
given by human intelligence. This is due to the fact that biases are of the order of
10−2 and thus the model is can not be considered linear, as intuition would suggest.
Moreover, if the following architecture is considered:

{
H1 = flattening(Y )

L = (H1 ·W1) + b1
,



O ∈ R5

Y ∈ R20×3

H1 ∈ R60

W1 ∈ R60×5

b1 ∈ R5

(3.101)

This is a black-box model mapping the output Y directly to its class. Convergence
is achieved rapidly as well.

The question is: how is it possible that the model is able to classify without
knowing the structure of the system? Looking at the 5 systems, it can be noticed
that they are quite different from each other. It is plausible that the network is able
to catch the shape of the response instead of the physical frame. Intuitively, thus,
the Network can learn by just looking at the magnitude of the signal.

Now one may wonder whether a more complex dynamics can force the Neural
Network to learn the true kernels of the different DLTI systems. For example, con-
sider again the model (3.95)-(3.97), but replace equation (3.98) with the following:

Ai = 0.1 ∗RandomNormal(3× 3) Bi = 0.1 ∗RandomNormal(3× 1) (3.102)

In this case, the dynamic is more complex, thus it is possible for the Network to
catch the structure of the system instead of the shape of the signal.

In this case the Neural Network analogous to (3.100) is:


H1 = (I ∗W1) + b1

H2 = flattening(H1)

L = (H2 ·W2) + b2

,



O ∈ R5

I ∈ R20×4

H1 ∈ R20×5

H2 ∈ R100

W1 ∈ R20×4×5

W2 ∈ R100×3

b1 ∈ R5

b2 ∈ R5

(3.103)

Again, the intuition is quite simple, since the convolutional layer is thought to catch
the discrepancy between the predicted output and the true one. However in this
case it is not possible to achieve convergence. In particular it has not been found
any way to get more than 40% accuracy. If activation functions are added in the last



62 CHAPTER 3. DLTI SYSTEMS AND NEURAL NETWORKS

layer, as suggested by universal approximation theorem 2.1.9, the accuracy reached
is at most 60%.

Thus, following one of the most popular and strong beliefs in Neural Networks’
community, it has been built a model that could effectively been considered a multi
layer network, that is, an activation function has been inserted between H1 and H2.
In formulas:


H1 = ReLu[(I ∗W1) + b1]

H2 = flattening(H1)

L = (H2 ·W2) + b2

,



O ∈ R5

I ∈ R20×4

H1 ∈ R20×5

H2 ∈ R100

W1 ∈ R20×4×5

W2 ∈ R100×5

b1 ∈ R5

b2 ∈ R5

(3.104)

The only difference between (3.103) and (3.104) is the ReLu activation function in
the first layer. Pay attention, activation function is computed for each element of
H1! Thus the loss function is still softamx cross entropy. In this case, 100% accuracy
is achieved in just 35 iterations of Adam optimizer with learning rate 0.01 and batch
size 50. This is an experimental evidence of the power of multi layer networks with
respect to single layer ones. Now, a key point is to understand whether the network
utilizes physical information in H1 or it just looks for positive or negative peaks that
are characteristic properties of each system.

The answer is that the physical model can not be seen in the weights. In partic-
ular, the sign of the first three elements in the first kernel of the Neural Networks
does not match the true one of the convolutional kernels, nor it is the exact opposite.
This observation is crucial, since in the physical point of view, it is important to
understand how different kernels affect the output, thus having W as convolutional
kernel or α ·W , α ∈ R is the same. This means that at least a portion of the the
physical information is not used in H1.

Until now it has been seen that classification can be achieved successfully by
using a non trivial Neural Network. It would be interesting to understand whether
the network needs effectively all the pieces of information that it has been given. In
particular, since it has been seen that the true convolution has not been learned, is it
possible to classify successfully even if the input signal is not given to the Network?
Thus the following architecture has been considered:
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H1 = ReLu[(Y ∗W1) + b1]

H2 = flattening(H1)

L = ReLu[(H2 ·W2) + b2]

,



O ∈ R5

Y ∈ R20×3

H1 ∈ R20×5

H2 ∈ R100

W1 ∈ R20×3×3

W2 ∈ R60×5

b1 ∈ R5

b2 ∈ R5

(3.105)

That is very similar to (3.104), with the only difference that the input is not the
couple (U, Y ) ∈ R20×4 any more, but just Y . However, classification’s results are
very good because 97% is reached after about 160 epochs of optimization step, even
though 100% accuracy is never obtained.

But let’s make it even more difficult and suppose that only one channel of the
output of the dynamical system (3.95) is given to the Network. Thus the structure
has to be the following:


H1 = ReLu[(I ∗W1) + b1]

H2 = flattening(H1)

L = ReLu[(H2 ·W2) + b2]

,



O ∈ R5

Y ∈ R20×1

H1 ∈ R20×5

H2 ∈ R100

W1 ∈ R20×1×3

W2 ∈ R60×5

b1 ∈ R5

b2 ∈ R5

(3.106)

In this case convergence is much slower, since 90% accuracy is reached in more than
2300 epochs and to obtain the 99% 13000 and more iterations have to be waited.

Now, the question is: what happens when the dynamic that generates the data
is forced into the Network? In other words, let’s consider firstly a Network whose
purpose is to approximate the responses on a fixed channel of the 5 DLTI systems.
Figure (3.3) represents this argument. Thus the first step is to consider the model:

O = (U ∗W1) + b1 ,


O ∈ R20×15

U ∈ R20×1

W1 ∈ R20×1×15

b1 ∈ R15

(3.107)

And the corresponding dataset is made by 20000 samples of the shape
(U, Y0, Y1, Y2, Y3, Y4), where U ∈ R20×1 is the input signal and it is the input to the
Network as well. On the other hand Y0, ..., Y4 are the components corresponding to
the chosen channel of the response to the signal U of each DLTI system. It has been
decided to consider only one channel because of the fact that, in general it is much
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Figure 3.3

more difficult to achieve convergence in this case, as observed previously. Once the
training is done, the trained weights are used in the following model:


H1 = (U ∗W1) + b1

H2 = stack(H1, Y )

L = H2 ·W2 + b2

,



L ∈ R5

U ∈ R20×1

Y ∈ R20×3

H1 ∈ R20×5

W1 ∈ R20×1×5

W2 ∈ R160×5

b1 ∈ R5

b2 ∈ R5

(3.108)

Three different experiments are made:

1. consider W1 fixed with the value found in the training of model (3.107);

2. W1 is variable and initialized with the values above found as above;

3. finally, initialize randomly W1.

It must be said that results depend on the matrices A, on the vector B and on the
data. The latter is due to the fact that sinusoidal input signals makes the data much
more difficult to approximate, because of their frequency spectrum.

However repeating the experiment many times, it has been found that this kind of
model can not reach any kind of convergence in the most general setting. Neverthe-
less, it is interesting to see the results in two separate settings: random or sinusoidal
input. If the input is random, convergence is easily achieved with Network (3.108)
in no more than 300 iterations through Adam optimization with learning rate 0.01.
If Gradient Descent with the same learning rate is used, more than 1900 epochs
are needed. In any case there are some curious differences arising when the con-
volutional part is set in the three ways just presented. In particular the Network
with fixed convolutional weights has the slowest convergence, while the completely
random one has the fastest. This is not so evident with Adam (the three cases
needs about 250 iterations for the fastest, 300 for the slowest), but it is prominent
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for Gradient Descent. In particular when the convolution is fixed, the optimization
step has to be run about 4000 times in order to converge. On the contrary, if also
the convolutional parameters are variable, 2500 epochs are needed when the initial-
ization is the correct one, whereas only 1900 iterations are necessary for the random
initialization.

In the case of sinusoidal input, the convergence is not so easy. In particular the
Network (3.108) is not able to converge. However, if the network is given one more
non linear fully connected layer, namely:


H1 = (U ∗W1) + b1

H2 = stack(H1, Y )

H3 = ReLu(H2 ·W2 + b2)

L = H3 ·W3 + b3

,



L ∈ R5

U ∈ R20×1

Y ∈ R20×3

H1 ∈ R20×5

W1 ∈ R20×1×5

W2 ∈ R160×5

W3 ∈ R5×5

b1 ∈ R5

b2 ∈ R5

b3 ∈ R5

(3.109)

it is very interesting to analyse the results. In particular, for any choice of the
convolutional layer, the network is never able to reach the perfect accuracy with
Adam optimizer. When the convolution is fixed 98% accuracy is reached in less
epochs than the trainable case. And more interestingly in the latter the weights W1

obtained are completely different from the true one. As an example the results of a
particular experiment are going to be shown. In this case Ŵ1 are the correct weights
and W1 are the weight found by training all the Network (3.109). Thus:

W1[: 3, 0, :] =

−0.37233993 −0.93339639 −0.33790907 0.03506417 −0.15369382
−0.23304437 −0.23825402 −0.31590494 0.13513074 0.02095338
−0.03579723 0.11440075 −0.09640872 −0.02512695 0.00057436


(3.110)

Ŵ1[: 3, 0, :] =

−0.6040414 −1.2870907 −0.6166479 0.06861603 −0.17842875
0.0399288 −0.34307066 −0.27957436 0.4304605 0.04269145
−0.2789009 0.554305 0.05700739 −0.14468141 −0.05165162


(3.111)

It can be easily checked that there is no permutation of the indices, nor a rescaling
that can match W1 and Ŵ1. Moreover the weights found by the Network are all
about 10−1, but the true ones are even 10−6 for the latest indices. This can be seen
in figure (3.4). This figure compares the first channel of the response of the first
DLTI system with the parameters obtained in all the 5 corresponding channels of
the CNN. As it can be seen, no significant relationship can be deduced.

But there is a more interesting fact about model (3.109). If the dataset is gener-
ated by a series of random inputs U , the trained parameters are completely different
from the ones obtained with a dataset obtained by sinusoidal signals U . Figure
(3.5) provides an intuitive qualitative comparison between those two classes. In
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Figure 3.4: These figures compare each of the kernels of the 5 output channels of
the Convolutional Neural Network obtained by training model (3.109) with the true
convolutional kernel of the first DLTI system.

both layers the weights fluctuate around zero, but the set of weights generated by
the random inputs is about 10 times lower than the others. The figure represents
only 20 of each of them, so that they are significant, but this relationship can be
seen for all the weights.

Moreover if the training set is generated by a sinusoidal set of different U , the
test accuracy on a dataset generated by random signals U is about 20% and vice
versa.

All these considerations mean that Deep Learning fails to get the true inner
structure of the dynamic system. Thus the intuition that superposing more layers
means getting more specific features, fails completely in this case.

Figure 3.5: Comparison between the weights trained with different dataset. The red
plot represents a set of weights corresponding to an output channel when the inputs
are sinusoidal. The black one is the same weights obtained by considering random
signals.
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3.7 Conclusion

3.7.1 Neural Networks and DLTI systems

In sections 3.2-3.5 the relationship between DLTI systems and Neural Networks has
been investigated. First of all it has been observed that the changes carried to
Gradient Descent still preserve convergence of the optimization procedure, in gen-
eral. More specifically, if the Network satisfies the parsimony criterion, the trained
weights correspond to the true one (result obtained in section 3.20).

This means that, in the perfect scenario, Neural Networks can catch the inner
structure of DLTI systems.

This happens even if the architecture of the model gets more complicated. In
particular when the simple convolutional Network with only one layer is given more
units nothing significant happens, whereas if the number of layers grows, the final
parameters depend on the initial ones. This actually makes sense: the optimization
algorithm brings the parameters to values that are near, even though they are not
the most intuitive ones.

Sections 3.4 and 3.5 confirm the intuition that Neural Networks are able to catch
the inner structure of the system if it has to approximate a certain explicit input
output relationship, even when the task is more complicated.

3.7.2 Generalization

When the input-output relationship is not explicitly given to the Network, the results
are not good any more. Conversely in the experiments of classification made in
section 3.6 neither the actual physical kernel is reached, nor any of its rescaled
versions does.

However a couple more observations are interesting. First of all, models (3.104)-
(3.105) show that adding layers is effectively helpful in reaching better convergence
properties. This confirms the intuition, but it can not be compared with any math-
ematical meaningful element of the kernel. Moreover, if the true structure of the
system is given to the Network, as in experiments (3.108)-(3.109), the convergence
is not faster. It does not even allow to use a less complex Network. On the contrary,
giving that particular a priori knowledge slows down significantly the convergence.

But the most important result obtained in this chapter is reached with model
(3.109) and it is the following. Even though the model that generates the responses
does not depend on the inputs it is given, the Neural Network does. This is not
surprising, since a similar observation arose also in section 3.2.1. The key point is
that the learned models are valid only when similar samples are given to it. For
example if the training set is constituted by responses to sinusoidal signals, the final
parameters are not capable to classify a signal that is the response of a random
input. In other words, Deep Learning does not catch the physical constitutive laws,
even though it has been shown in sections 3.2 and 3.5 that it has the capability to
do that. On the contrary the hidden layers, in this specific case, do not contain any
cryptic feature.
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