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INTRODUCTION

Introduction

The problem of determining if, given a vector field f, there exists a function whose
gradient is f is a common question in Analysis. In R the Fundamental theorem of calculus
states that if f is continuous then the indefinite integral of f is an antiderivative, while
in higher dimension the existence of a function whose gradient is f depends on whether
or not curlf is zero at the points of a simply connected open set; if this does not happen,
there cannot exist a potential of f defined on the whole domain. Nonetheless, there are
other results regarding functions with prescribed gradient, stating that a potential can
be defined outside a set “small enough”, under the right conditions.

In 1990 Giovanni Alberti published the paper [1|, where he presented and proved a
theorem on functions with prescribed gradient that shared some similarities to Lusin’s
Theorem, hence the “Lusin-type” definition used by Alberti to describe his result. More
specifically, the theorem stated that given a Borel vector field f on a finite measure set
and some ¢ greater than zero, it is always possible to find a set of measure less than ¢
such that there exists a function whose gradient is exactly f outside this set, and whose
p-norm is bounded by the norm of f; in other words, the theorem states that for every
vector field there exists a function which is a potential for it outside a small set.

A decade later, in 2003, Zoltan M. Balogh (|2]) studied characteristic sets and found
a connection between them and the set where f agrees with the gradient of a function.
In Chapter 4 of that work, Balogh proved that if f is a ! smooth vector field, estimates
similar to those by Alberti can be obtained even imposing higher regularities on the
functions, such as asking that the gradient of the function is not only continuous but also
Lipschitz or a-Holder.

The purpose of this work is to study the topic of functions with prescribed gradient
analysing the main results contained in those two papers and presenting proofs of some
of them; to do that we will use common notions in Real Analysis and Measure Theory,
along with some more specific results on Hausdorff measures.

After some preliminar definitions and results in Chapter 1, in Chapter 2 we will
discuss and prove Alberti’s Lusin-type theorem. The proof, which comes from Alberti’s
paper, is a constructive one: after splitting the domain of f in cubes, we will construct
appropriate functions on the cubes and use them to define a function whose gradient
approximates f outside a set of measure €; then, we will use an iterative construction to
describe the function as a series and prove that this series satisfies the desired properties.

Chapter 3 will instead be dedicated to some refinements and applications of Alberti’s
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theorem. We will follow Balogh steps and prove his result, similarly to Alberti’s theorem:
with an iterative construction we will build a fractal set and we will prove that a function
defined on it has the correct regularity and its gradient agrees with f on it; the estimates
will follow from those on the measure and the Hausdorff dimension of the set.

Lastly, we will consider a specific vector field and study the set where the gradient
agrees with the function; in this example (also by Balogh) we will use specific notions
from Geometric Measure Theory to prove that imposing higher regularities, such as the
function being of class €2, strongly bounds the Hausdorff dimension of the set where the
gradient agrees with f.

iv Emanuele Prati



CHAPTER 1. PRELIMINAR RESULTS

Chapter 1

Preliminar results

In this chapter we will present some useful preliminar results; they will be definitions and
well-known results and theorems in Analysis that will be used frequently in the following
chapters.

For the whole chapter we will consider functions defined on © C RY open set, unless
specified differently.

We begin with common notions regarding differentiability, gradients and the Mean
value theorem.

Definition (Gradient and Hessian of a function). Given f : 2 — R differentiable in €2,
we define the gradient of f as Vf : Q — RY with components

0
(V=52

forall1 <7< N.

Given f :  — R, if all second-order partial derivatives of f exist we define the
Hessian of f as the matrix V2f : Q — M,,»,(R) with components
0’ f

20y
(v f)z,] 89@09@

forall 1 <14,5 <n.
Definition (Functions of class C*). Let f : Q@ — R be a function. Then:

e for k € N we say that f is of class €%, and we write f € €*(Q), if all k-th order
partial derivatives of f are defined and they are continuous functions in §2;

e we say that f is of class €™, and we write f € €=(Q), if f € €¥(Q) for every
k € N;

e for 0 < a < 1, we say that f is of class €1, and we write f € €1%(Q), if
f € €1 (Q) and Vf is a-Holder, meaning that there exists a constant C' > 0 such
that |Vf(z) — Vf(y)| < Clz — y|* for all 2,y € Q; in particular f € €H1(Q) if
f € €Y(Q) and Vf is Lipschitz.
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Theorem 1.1 (Mean Value Theorem). Let g : [a,b] — R be a continuous function and
differentiable on |a,b[, where a < b. Then there exists T €]a,b| such that

g9(b) — gla) = g'(1) - (b — a).

Theorem 1.2 (Differentiability of a function series). Let {fy,}nen be a sequence of func-
tions in €1 () and let f be defined as the series f(z) = 0% fa(z). If

i. there exists o € Q such that f(xg) converges,
i. the series F(x) =Y 07 V fn(x) is uniformly convergent in Q,

then f(x) is uniformly convergent in Q and Vf = F in Q.

Then, we introduce some important concepts in Measure Theory, such as Lebesgue
measure and its properties, LP norms and Hélder’s Inequality and Lusin’s Theorem.

Definition (Lebesgue measure). Denoting by .Z(RV) the o-algebra of Lebesgue-measurable
subsets of R, for all £ € Z(RY) we denote with |E| the Lebesque measure of E. By
definition of measure, the following properties hold true:

e |0| =0;
e |E| >0 for all E ¢ Z(RN);

e | -| is o-additive, meaning that given {E;};cn collection of pairwise disjoint sets in
Z(RN), we have

o0
e
i=1

00
= 2_IEil
=1

Moreover, |-| is subadditive, meaning that given {E;};en collection of sets in .2 (R”Y)

we have
o o
UE| <) IE]
i=1 i=1

Theorem 1.3 (Continuity of the Lebesgue measure). If { E, }nen is a sequence in £ (RY)
such that B, C E,4+1 for alln € N, then

Uz

n=1

= lim |E,|.
n—oo

If {F, }nen is a sequence in £ (RY) such that F,, 41 C F, for alln € N and |Fy| < oo,

then
Nr

n=1

= lim |F,|.
n—oo
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CHAPTER 1. PRELIMINAR RESULTS

Theorem 1.4 (Regularity of the Lebesgue measure). For E € .Z(RV)
|E| =inf{|U| : E C U, U open set} =sup{|K|: K C E, K compact set}.

Definition (Borel sets and Borel functions). The Borel o-algebra () is the smaller
o-algebra of subsets of €2 that contains all open subsets of €2 with respect to the topology
induced on ; a set E € #() is called Borel set.

The function f: Q — RM is a Borel function if for all A C RM open sets, f~1(A) €

Definition (L? norm). Given f : Q — RM measurable function:

o for 1 < p < oo we denote [|f[l, = ([ |f(x)|pda:)l/p, where the integral is with
respect to the Lebesgue measure;

e we denote

|flloe =inf {K >0: [{z € Q:|f(x)| > K} =0}.

Definition (Infinity-norm for matrices). Given F : Q@ — Myxn(R) we will use the
following notations:

|F(2)]]o = max {|(F(2))ig] : 1 < i,j < N}
1P = mf{K >0: [{zeQ: |F(z)|, > K} = o}.

Theorem 1.5 (Holder’s Inequality). Suppose 1 < p,q < oo such that 1/p+1/q =1 (where
we consider /oo = 0). If f,g: Q — R are measurable functions on Q then

[fglly < [1£1l, lgll, -

Theorem 1.6 (Lusin’s Theorem). Let Q C RY be an open set with finite measure and
let f:Q — RN be a measurable function. Then, for every e > 0 there exists a compact
set K C Q such that |K¢| < € and f restricted to K is continuous; moreover, there exists
a continuous function fi: Q — RY that coincides with f on K.

In Chapter 3 we will also use other Measure Theory notions, such as Hausdorff mea-
sures and Hasudorff dimension.

Definition (Hausdorff measures). Let k£ > 0, 6 > 0 and E C RY; we denote

HE(E) = % inf {Z(diam(An))k : diam(A4,) <6, EC | An}

neN neN
where

k/2 ()
W, T ] and I'(¢) = / e % da.
0

- ['(1+k/2
We define the k-dimensional Hausdorff measure by

HE(E) = sup HE(E).
6>0

Lusin-type theorem for functions with prescribed gradient 3



Lemma 1.7. Given k > 0 and E C RY | the function ”ng(E) 1s decreasing in 0, meaning

that
HE(E) = sup HE(E) = lim HE(E).
§5>0 6—0t

Theorem 1.8 (Properties of the Hausdorff measures). Considering the Hausdorff mea-
sures in RNV we have:

e for every k > 0, H* is a Borel measure, meaning that all Borel sets are HF-
measureable sets;

o 1 is the counting measure in RY;
e fork> N, H¥(E) =0 for all E CRY;
o if B CRY is a Borel set, then for all § > 0 we have |B| = H™(B) = HY (B).
Definition (Hausdorff dimension). The Hausdorff dimension of E C RY is defined as
dimy (E) = inf{k > 0 : H*(E) = 0}.

Theorem 1.9 (Hausdorff measure of a set depending on its dimension). Given E C RY
we have that if 0 <k <k and H*(E) > 0, then H" (E) = co. It follows that HF(E) =
oo if k < dimy(E) and HF(E) =0 if k > dimy/(E).

Lemma 1.10. Restricting the coverings of E C RN to coverings with cubes @, with
faces parallel to the coordinate hyperplanes, we can define

ME(E) = in {Z(f@n))’f : diam(Qu) <8, EC | Qn}

neN neN

where £(Qy,) is the side length of Qn, and

MF(E) = sup ME(E).

6>0
With these definitions, there exist two constants K1, Ko > 0 such that for all E C RN
Ky - MM(E) < HYE) < Ky - MM(E);

this means that evaluating the measures with only cubes gives the same Hausdorff dimen-
S10m.

Definition (Bi-Lipschitz function). A function f : RN — RM is bi-Lipschitz if there
exist two constants A, B > 0 such that

Alz —y| < |f(z) — f(y)| < Blz —y| Va,y e RY.
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CHAPTER 1. PRELIMINAR RESULTS

Theorem 1.11 (Invariance of Hausdorff dimension under bi-Lipschitz functions). Let
M > N and f : RN — RM be a bi-Lipschitz function; then for all 0 < k < N and
ECRY

dimy(f(E)) = dimy (E).

Lastly, we present some other definitions and results, including a lemma which will
be used often in the following chapters and that we will prove.

Definition (Distance between two sets). Given two sets A, B C RY we define the dis-
tance between A and B as dist(A, B) = inf{|x — y| : © € A,y € B}; in particular, given
ro € RN the distance between xo and B is dist(xo, B) = inf{|zg — y| : y € B}.

Theorem 1.12 (Distance between closed and compact sets). If A, B C RN are disjoint
closed sets and A is compact, then dist(A, B) > 0.

Definition (Operator norm). Let V, W be normed R-vector spaces, V' # {0}, and let
A :V — W be a linear operator; then the operator norm of A is

|Allop = inf{C' > 0: |Av| < C|v| for all v € V'} = sup {W weV N {0}}

where we denoted both the norm in V' and the norm in W as | - |.

Definition (Line integral). Let f : Q — R be a vector field; given a piecewise smooth
curve 7 : [a,b] — RN with |7/(t)| # 0 for all t € [a,b] and ¥([a, b]) C Q, the line integral
of f along 7 is

b
[ asi= [ o) 2.
0 a
Theorem 1.13 (Gradient theorem). Let u : Q@ — R be a differentiable function and

v : [a,b] — RN with |5/ (t)] # 0 for all t € [a,b] and v([a,b]) C Q; if v is a piecewise
smooth curve and §2 is simply connected, then

/ Vu ds = u(y(b)) —u(y(a));
.

if v is a closed curve, meaning that v(a) = ~(b), then

/Vuds:().
¥

Theorem 1.14 (Tietze Extension Theorem). If X is a normal space, A C X is a
closed subset and f : A — RN is continuous, then there exists a continuous function
F: X — RY such that F|q = f and

sup |F'(2)| = sup | f(x)].
zeX T€A
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Lemma 1.15. Let A, B C RY be closed cubes with the same center and parallel faces,
with side length respectively 2a and 2a + 4d, a,d > 0; then there exists a function ¢ :
RY — RV such that:

(i) ¢ € €2 (RY);
(ii) 0 < @(z) <1 for all z € RY;
(iii) ¢(x) =1 for x € A and o(x) =0 for x € B;
() Vel < C1/d and HV%&HOO < Cofa? for some constants Cy, Cs.

Proof. Without loss of generality we can assume A = [—a,a]" and B = [~a—2d, a+2d]",
since all wanted properties are invariant for isometries and in these hypotheses A and B
are isometric to the aforementioned cubes via the same translation and rotation.

Denoting with B, the closed ball in RV of center 0 and radius r, let 1) € €°(RY)
be a function such that ¢ > 0, supp(¢)) € By and [px t(x)dz = 1; these properties can
always be obtained eventually normalizing appropriately a generic function in €>°(R).
We then define 14, ¢ : RY — R as

Yale) = =0 (2) and 9(@) = (1w aarar * ) () = /R e gara(® =YY )y

where 17 is the indicator function of I and * is the convolution product.
Since 1;_q_gqpqn € LY (RN) and ¢ € €°(RY) it follows that ¢ € €°(RY) thus
proving (i), and for all 4,5 € {1,...,N}

D Mg 0% 0?1
axi - 1[_a_d’a+d]N * 871'1 and 89@8% - ]1[_a_d’a+d}N * 81'J81‘Z '

(1.1)

It can be seen that

[ atoyte = [ ew (o= [ evdVar= [ oy =1

since 0 < 1|_,_g44qn <1 and ¢pg >0, for all z € R

P0) = [ 1 adaran (o= )vato)dy >0

and
o0 = [ A darap =00y < [ vato)dy =1

thus proving (7).
For x € Aand y € By we have |(z —y) —z| = |y| < dsoxz—y € [-a —d,a + d]",
and supp(tq) = By, therefore

p(z) = /R o Yramdaray (@ = y)Yaly)dy = /B U o—daran (@ — y)valy)dy =

d

= [ Yaly)dy = 1;
By
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CHAPTER 1. PRELIMINAR RESULTS

while for z € B¢ we have |(z—y) —z| = |(z —x) —y| > |z — x| — |y| > 2d—d = d therefore
z—y¢&[-a—d,a+d" and

p(2) :/R L_a—datan (2 — y)aly )d?J:/B L o—garany (2 — y)¥aly)dy =0,

which proves (7ii).

Lastly, since 1) € €°>°(R"), all first-order and second-order derivatives of v are con-
tinuous on its support, which is a compact set, therefore they have maximum, meaning
that

VY], < oo and HVQ@bHOO < 00

Since for all z € RY

it =5 (e (5)) = e (5) - W) = i (5)

we have, using (1.1)

Vel < [ Valdn< [ (90 ()] v < g [ 1960t =
K|Vl G

aN+1 - d
and
Hv%<w>HOOS/RN vad<y>\oodys/ vz |V (5)|_av <
| K|, e
< v [, IVl o= ===
for some constants K, C7, Cs.
Then o o
IVelle < =5 and [[V2] o <2

proving (iv).
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CHAPTER 2. ALBERTT'S LUSIN-TYPE THEOREM

Chapter 2

Alberti’s Lusin-type theorem

The purpose of this chapter is to prove Alberti’s Theorem, a result that states that given
a Borel vector field f and € > 0, f agrees with Vu for some function u of class ! outside
an open set with measure less than e.

In general, given a vector field f : @ — R with @ C R simply connected open set,
there exists a function whose gradient is f if and only if curl f = 0 on 2. This means
that if curl f # 0 at some points of €2 such function whose gradient is f cannot exist; but
Alberti’s theorem states that if f is a Borel vector field, a weaker property holds true:
there exists a function whose gradient is f outside a set of arbitrarily small measure.
This is true even if curl f # 0 everywhere in : in this case the set where f does not
agree with Vu must be dense in (2.

Theorem 2.1 (Alberti’s Theorem). Let © be an open subset of R with finite measure
and let f: Q — RY be a Borel function; then Ve > 0 there exist an open set A C Q and
a function u € €(Q) such that

|A] < €] (2.1a)
f=Vu on QA (2.1b)
IVall, < Ce HIfl, Vp e L, +oo] (2.1c)

where C' 1s a constant which depends on N only.

REMARK 2.2. When p = 1 Alberti’s Theorem holds true even without |Q2] < oo and it
can be stated as follows:

Let © be an open subset of RY and let f : @ — RY be a Borel function; then Ve > 0
there exist a function u € €*(Q2) such that f = Vu outside an open set with measure
less than € and ||Vull; < C| f]l;.

We now prove Alberti’s Theorem. Before doing that, we prove some auxiliary lemmas
needed to prove the Theorem.
This first lemma gives a property similar to uniform continuity on compact sets.

Lusin-type theorem for functions with prescribed gradient 9



Lemma 2.3. Let Q C RY be an open set with finite measure, let K C Q be a compact
set and let f : Q — RN be a continuous function. Then ¥n > 0 there exists 6 > 0 such
that for all x € K,y € Q if |z —y| < 6 then |f(x) — f(y)| <n, and Q(z,4d) C Q where
Q(x,46) is the cube with center x and side 40.

Proof. Since K C  and () is an open set, )¢ and K are disjoint closed sets and K
is compact, so 0 < d = dist(Q°, K) < oo by (1.12). It can be seen that Q(x,40") C
B(z,28'V/N); if 26'VN < d, i.e. §' < d/2yN, then Q(x,448") C Q.

Let then K/ = {z € RV: dist(K,z) < d/2vN = §1}; K’ is compact, so by Heine-
Cantor theorem f is uniformly continuous on K’, meaning there exists d, > 0 such that
Ve,y € K'if | —y| < 02 then |f(x) — f(y)] <n.

Then, choosing § < min{dy,d2} it can be seen that Vo € K C K',y € Qif [z —y| < 4,
then y € K’ because § < d; and |f(x) — f(y)| < n because 6 < d2; moreover, from § < d;
it follows Q(x,46) C €2, which proves the lemma.

]

We then prove another auxiliary lemma.

Lemma 2.4. Let Q be an open subset of RN with finite measure, let f : Q@ — RY and let
n and € be positive real numbers. Then there exist a compact set K C € and a function
u € €1(Q) such that

2\ K| <l (2.2a)
lf =Vu| <n on K (2.2b)
IVull, < C'€YPHIf]l, VP € [1,+od] (2.2¢)

where C' is a constant which depends on N only.

Proof. We can assume that 0 < ¢ < 1.

Since  has finite measure, by the regularity of the Lebesgue measure (1.4) there
exists a compact set K’ C Q such that |Q \ K'| < §[Q|. By Lemma 2.3 there exists
0 > 0 such that

Vee K' yeQ,if |z —y| <§ then |f(z) — f(y)| <n, and Q(x,46) C Q. (2.3)

Let {T;}icr be the family of the closed cubes with side § and centers y; on the lattice
(6Z)N that intersect K'; K’ is a compact set so the family {T;} is finite, i.e. |I| < oo,
and by choice of 0 it follows that T; C Q Vi € 1.

For all 7 € I:

e let Q; be the closed cube with center y; and side (1 — 5% )J, meaning that Q; C T5;

e let a; € RN be the mean value of f on T}, i.e. a; = ‘%' fTi f(x)dx ;

e let ; € €1(Q) be such that ¢;(z) = 1 for z € Q;, pi(r) = 0 for x € Tf and
Vil < 8C1N/se; such functions exist thanks to Lemma 1.15 on cubes Q;,T;
with d = %/sN.

10 Emanuele Prati



CHAPTER 2. ALBERTT'S LUSIN-TYPE THEOREM

Eventually, let u: @ — R be u(z) = > ,c;vi(z){ai,z —y) and K = U;c; Qi K
is a compact set, because it is a finite union of compact sets, while for u the following
properties hold true:

e supp(u) C (U;c; Ti because supp(p;) C T; for all i € I by definition;
e u is a sum of functions of class €, thus u € €*(Q) ;

e for i # j we have Q; NT; =0, pj|lg, = 0 and ¢;|g, = 1, therefore

u’Qz Z¢]|Qz a]’ > <a17x_yl>

Jel

so Vu|g, = a;.

It is now necessary to prove that u and K satisfy (2.2a), (2.2b) and (2.2c).
The property (2.2a) follows from the inequality

which is Bernoulli’s inequality
(14+z2)">14nx ¥YneN Vr>-1

evaluated at n = N and z = —¢/2v > —1.
Using this inequality

e \N €
T\ Qi =T — |Qi| = 1_<1_T7> ;| < SIThl;

since K’ C Uier i € Qand K = J;c; Qi €U

el 1,
ONKC(QNK)U <U(Ti\Qi)>
el
and thus

QN K[ <|QN K[+ T\ Qi _219|+Z |T\<4Q|+ |Q|:5m|.
i€l el

As for (2.2b), from Vulg, = a; it follows that for z € Q;

Vo) - ) = fas - 50)| = | / Py — |T1,| /[ f(:v)dy‘ <

< g v = sy < o [ iy = o aimi =

Lusin-type theorem for functions with prescribed gradient 11




where the last inequality follows from (2.3) since x € K and fory € T; C Q, |z —y| < ¢
as T; has side 4.
Concerning (2.2c), by the Leibniz rule

Vu(z) =V (Z pi(z)(ai, x — yz’>> =Y Vi) {anz —yi) + Y aipi()

iel iel iel
and so

Vull, <

> Veilai, - — i)

el

+

p

> aip;

el

P
In order to evaluate the p-norms the following facts are useful:

a. supp(yp;) are disjoint;
b. Vpi(z) =0 for z € (T; ~ Q;);
c. [Vei(a)] < Vil < 8C1N/se;

d. for z € T; [(a;,x — y;)| < |as||z — yi] < V/Nd|a;| by the Cauchy-Schwarz inequality
and the fact that 7; is a cube of side §;

e. |Ti~ Qif < 5|Ti| < elTil;

f. Jolpi(@)[Pdr = [}, @i(x)Pdx < |T;| using the facts that ¢;(z) = 0 for z € T and

0<p; <1
For 1 <p< o0
p p
d:r) =

> Veilai, - —yi) > Veila){aix —yi)

:(/Q

iel » icl
1/p
= (/ > Vi) (ai,x — yi)[? da:) —
Qher
l/p
b.
= [Z </ IVei(z)|P[{ai, 2 — yi>pdx)] <
iel WTinQi
c.&d. 8C N\ /p
5 (] (52 )] -
- T B 66
el iNQ;
8CINVN \" e
(el
el
8C1NVN Yr 1/p
< % [25|ai’p|ﬂ| = 8C NV Ne'/r—1 [Z la;|P|T3|
el il

12 Emanuele Prati



CHAPTER 2. ALBERTT'S LUSIN-TYPE THEOREM

and

> aip;

el

> aipi(x

el

x) ale (1ad [ it |pda:)] %[Zraszm

el

:(/

Using Holder’s inequality (1.5)

p p p—1
T dy = |T;|P~! x)Pdz
< </Tlf(x)]dx> < </E|f(x)|1’dx> (/Tll d > | T;|P /Tl|f< )[Pd
which means that
/Ti f(x)dz ’ 11/TZ f(z)dx ’

/\f \pdw>2/|f Pde > STl asp

i€l el

x)dx

= [Tilasl”

/ @) Pde > TP
T;

and thus

It follows that

l/p l/p
IVull, < 8C1NVNe/r~! (Z Iail”\Ti!> + <Z IailplTi!> <

i€l i€l
/p /p
< Ol (Z !ai\plTiO < Ol ( @) Vd“) = e,
i€l

with C" = 8Ci NV N +1, where C'e"/*~1 > 8C N/ Ne'/»~1 41 because ¢ < 1 and /p <1
and so /71 > 1.
For p = oo, since supp(Vy;) C T; are disjoint, and so are supp(y;)

> Veilai,- — i)

il

cT,

oo —

<sup [[Veilai, - — i) || <
el

< sup

sup |a;|
el

c.&d {SClN\/—5| Z|} 801N\F

el

and

Z i P;

el

< sup [|aipill, < sup|ail[|@illo < sup|agl
i€l el el
using that ||yl =
Since ) )
a;| = flx)|dx < / fllo dx < ||f
ai m\/n‘”‘ 71 o 1l < 151

Lusin-type theorem for functions with prescribed gradient 13




it follows that

8C1 NV N
&

IVl < sup Ja;| + sup [a;] < C'e™ sup Jag| < C'e7H | fll
i€l i€l i€l

with the same C’ as before.

Lastly, we prove the Theorem.

Proof of Theorem 2.1. We may suppose ¢ < 1 and f not almost everywhere zero. We
discuss separately the following two cases.

First case. f is a continuous bounded function.
Let {nn}nen be a sequence of positive numbers.

We build the sequences {u,}nen, {Kn}nen and {fn}nen by induction. We define
ug = 0, Ko = Q and fy = f; then, given u,_1, Ky_1, fn_1 we apply Lemma 2.4 to
obtain compact set K, and u, € €1(Q) such that

QN K, <277 (2.4a)
| fo—1—Vun| <n, on K, (2.4b)
[Vunll, < C'(27") || faall, ¥ € [1,40d] (2.4c)

Then we define f,(z) = fn—1(x) — Vu,(x) Vo € K,, which is continuous because
fn_1 is continuous by induction and u, € €}(Q2), and apply Tietze Extension Theorem
(1.14) to f, continuous on K, to extend it to the whole of §2 so that

sup | fn(z)| = sup |fu(2)] < np. (2.5)
z€Q zeKy,

Set A=Q~(), Ky and u =), uy,; we will choose {1, }nen such that (2.1a),(2.1b)
and (2.1c) are satisfied, as shown later.

Since A =Q~\ N, K, =90, K5) =U, QNKS) =U, (Q\K,), Aisan open
set because it is union of open sets 2 \ K, and by (2.4a) and subadditivity of the
measure, [A] = |, (2~ Ky)| <D0, QN K, <570, 27" = €]Q, proving (2.1a).

For 1 < p < oo, defining /oo = 0, we have (277)"/p=1 = 27"/» . 2" < 2" because

2"/ <1, and
l/p 1/p .
rfnnp:(/ rfnw) s(/ ufnw;o) — 1 full
Q Q
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CHAPTER 2. ALBERTT'S LUSIN-TYPE THEOREM

therefore

e (2.4c) = Y B = .
MoAVual, < > @) [ faall, < CEPTEY 2 fuall, <
n=1 n=1 n=1
<20t (HfoHp+ > an|!p> <
n=1

< 20" <||f||p +3 2" I fulloo IQll/"> <

n=1
(2.5) - Q .
<20t Hpr <1 + |||f’|| ZQ nn> .
P n=1

1/
As f is bounded and not almost everywhere 0, p — |H JL” is continuous and positive

in [1, o0] hence it has a positive upper bound M < oc; {Un}neN can be chosen such that
Yol 2™n, <1/M. Then

Vull, =

- 1
< 3Vl <20 1l (1407 ) = 40
n=1

which proves (2.1c¢) with C' = 4C".
Lastly, if x € @ N A=), K, then x € K, for every n € N and thus by definition

fn(x) = fo1(w) = Vug(z) = (fa2(x) — Vup_1(2)) — Vug(z) = - =
= fn—m(x) - Z Vu,

i=n—m-+1
and for m =n
fa(@) = fo(z) =) Vui(z) = f(x) = Vu(@) + Y Vui()
i=1 i=n+1

from this it follows that

(@) = V()| < |fulz)| + )| <+ Z Vui(@)] <m+ Y [ Vuill

i=n-+1 i=n-+1

Z Vu;(x

1=n-+1

We already proved that >°°° | [V, < 4C’e7 1| f|l., < oo because f is bounded,
which means that ) 7° [V, converges to 0 as n — oo; similarly, > >, 2", <
1/M < oo and thus 2™, converges to 0 for n — oco.

Then |f(x) — Vu(z)| <0+ >°72, 11 Vil o — 0 for n — oo, so | f(x) — Vu(z)| =0
which means f = Vu on 2 \ A, proving (2.1b).

Second case. f is a Borel function.

Lusin-type theorem for functions with prescribed gradient 15



Let € > 0 be fixed. Then, there exists r > 0 such that, with B = {x € Q : |f(z)] > r},
|B| < e/4. This follows from the fact that, denoting E, = {z € Q : |f(z)] > n},
E, C Eyyq and ), B, = 0 and |Eq| < |2 < oo so by continuity from above (1.3) we
have lim,, o0 |En| = |),, En| = 0 and thus there exists n such that |Ez| < /4.

By Lusin’s Theorem (1.6) there exist fi continuous on 2 and a Borel set C' such that
|C| < |B| and f; agrees with f outside C. We then define

{fl(:c) if [fi(z)] <7
2(z) =

FLS i | ()] >

Since f1 = f outside C and |f(z)| < r outside B, fo agrees with f outside C'U B.
We have that f; is continuous, because fi is, and bounded, because |fo(z)| < r Vo € O
moreover |C' U B| < |C| + |B| < 2|B| < €/2 and thus, by regularity of the Lebesgue
measure (1.4), there exists A1 O C'U B open set such that |4;] < /2 and fa agrees with
f outside A;.

It can be seen that Vp € [1, 00[

/ rPdx = rP|C U B| < rP(|C| + |B]) < 2rP|B| = 2/ rPdz < 2/ |f(z)[Pdx
CUB B B

since |f| > r on B.
Then using |fa] <7 and fo = fon Q~ (CUB), Vp € [1,00]

/ o) Pz = / (fala)Pdz + / () Pdz <
Q Q-(CUB) CUB
<,y I [ <

< /Q PRI /B (@) Pde <

(@) P + /B (@) P < 2 /Q (@) Pdx

<

/(Q\(C’UB))UB

which means that || f2]|, < 27| f[l, < 2] f]l,-

This inequality holds true also for p = oo: if |B| > 0, then |[f||,, > 7 > | f2ll»
whereas if |B| =0, |C U B| < 2|B| =0 and thus |C U B| =0 and f2 = f outside C U B
which means that || f|| = || f2ll -

Since f is bounded, from the first case there exist Ay open set with |As| < /2 and
u € €Y(Q) such that Vu = fy outside Ay and [Vull, < 4C" (g/2)1/P~1 [ f2ll, Vp €
[1, +00].

Then: |A; U Ag| < |A1]|+ |A2| < g, proving (2.1a); for A = A1 U Ay, Vu = f outside
A since fo = f outside Aj, proving (2.1b); and Vp € [1, +0o0]

’ g 1/p—1 / 1/p—1 ! 1/p—1
IVull, <4’ (5) " lIfall, < 4C’ @2 £1l,) < 16C° ) £,

proving (2.1c) and thus the theorem.
O
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Chapter 3

Functions with higher regularity

In this chapter, the term “cube” means a closed cube of RV with faces parallel to the
coordinate hyperplanes; this means that a “cube of side length d > 0 and center y € R”
is a set 7([—d/2,d/2]V) where 7 : RV — R is the translation 7(z) = = + y.

We now refine Alberti’s result. Specifically, we want some estimates on the Lebesgue
measure and the Hausdorff dimension of the set where Vu agrees with f when we impose
higher regularities on the function wu.

We write A, ; to denote the set where Vu and f agree, meaning that

Ay ={z€Q:Vu(zr) = f(x)}.

With this notation, Alberti’s Theorem states that given a Borel vector field f : Q — RY
and £ > 0, there exists u. € €1() such that |A,_ ¢| > (1 —£)|Q].

The following result shows that if f is a smooth €' vector field, a result similar to
Alberti’s theorem can be obtained with functions u whose gradient Vu is a-Holder for
all 0 < o < 1; moreover, the Hausdorff dimension of the set A, ; can be arbitrarily near
N taking an appropriate function v with Lipschitz gradient.

Theorem 3.1. Let Q C RV be the unit cube and let f: Q — RN be a €' smooth vector
field; then:

i. for any o > 0 there exists a €5 smooth function ug : Q — R such that dimy Auof =
N — «;

i. for any e > 0 there exists ue : Q — R, ue € €1P(Q) for all 0 < B < 1 such that
’AUE’H > 1—e.

Proof. For the proofs of both statements we will construct Cantor-type sets and functions
with prescribed gradient on them, in a way similar to that used to prove Lemma 2.4
and Theorem 2.1.

First statement. For every k > 0, given Q) cube of side length [, we define kQ as the
cube with the same center as @ but side length k - [; we also define I = {1,2,...,2V}.

Lusin-type theorem for functions with prescribed gradient 17



Let § = 2=/~ since N/N—a > 1 it follows that § = 2="/N-* < /2.

We start by dividing @ in 2NV cubes @“,11 € I of side length 1/2 and then we take
the cubes Q;; = 20Q);,, which have side length 2§ -1/2 = § < 1/2; in the second step, each
Q, is divided in 2V cubes sz,m € I and as before Q;,i, = 25@2112, with side length
52

In general, given the cubes Q;, ;, with i, € I for 1 < m < n, the (n + 1)-th
step comnsists in dividing each of them in 2N cubes @i1-~~inin+l and taking the cubes
Qi inini, = 25@1-1,,,7;”1-"“, which have side length 6”*! by induction.

From now on we will use the following notation:

e we define I" = {1,2,...,2N}" = {(z’l,.. in):im €1 for 1T<m <n}and S =
Uoo_y I™; moreover, if ¢ = (ig,..., )GI” then for 1 < k < n we define i(k) as
i) = (i, .. iy) € I

e for i = (il,... ,in) € S we denote Q; = Qil...in and Qij1...jk = Qil...injl...jk with
Jjm € I for 1 < m < k; the set S can be seen as the free semigroup on I with the
operation of concatenation and @); defined coherently with this operation;

o we define Q" = J;c;n Qi and C = 02, Q™ .

The sets Q" are closed sets because they are finite union of closed sets );, and
Q™! C Q™ because by definition Qij € Q; for every i € S,j € I; therefore C' is a
Cantor-type set and thus, by well known results [3, page 130], dim_»C = N — a.

We will now define an appropriate function u, on C whose gradient will be f, from
which it will follow that C' C A, r and thus dim» A, ;> dim»C =N — a.
To do that:

e foralln € Nand i € I" let ¢; € €2 (Q) be a function such that

1 ifze (1+22)Q,

0<¢; <1 and gi(z)=
=14 ifrg(1+22)q

and
Kl K2

V@il < 8 and ||V2q4]| < (12 ) (3.1)

for some constants K71, Ko; this functions exist by Lemma 1.15 applied on those
cubes with

o= [(r ) e - (1 ) ] -

o forve S, jellet
1
‘Q]‘ Q]

with the aforementioned notations;

f(x)de and a; = 1 f(x)dx

d
’Q”LJ‘ Qij f(x) !

aj =

1
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CHAPTER 3. FUNCTIONS WITH HIGHER REGULARITY

o let u,(z) = Y i @i(®){ai, v — ;) where y; € Q is the center of Q; and let

ua () =3 52 un(2) .

With ¢ € I, from the definition of a; it follows that

;ai( |er ,, [ (32)

because the sum is telescoping.
We also have that |a;| < K3d" for some constant K3; it is enough to prove this for
n > 2 since the constant K» can always be increased to include the cases with n = 1 too.
Since f is of class €' on @ compact set, f is Lipschitz with Lipschitz constant M;
this means that for ¢ € I" and x,y € QQ; we have

1f(z) = f(y)| < M|z —y| < M- VN - 5" = Ms™.

Then, for 7 € I",j € I and y;; center of Q;; C Q;

1 1
|a;| = 04 o f(z)dr — @l Jo, f(z)dz| <
1 1
<o [ 1) = S)lde + o [ 17w~ fup)las <
a ‘Qiﬂ Qij Qil Jo, -
n+1 1 0. n n % n _ n
‘QU‘IQ@]I M6 +\Q¢! [ M&" < M(S+1)0" < —=0" = K3 ",

proving the estimate.

The functions wu, are €'(Q) by construction, therefore one can define the series
F(z) =>7", Vuy(z), possibly divergent for some x € Q; by (1.2), if the series u, con-
verges at least at one point, the uniform convergence of F' gives that u(x) = > 02 | un(x)
is convergent and of class ¢! on Q and

Vue(z) = Z Vg (x

The convergence of u, at one point can be easily seen choosing x ¢ C: x is inside
finitely many cubes @; therefore only finitely many functions u,, are non zero at x and
thus the series uq(x) is a finite sum. Then, we only need to prove that F' is uniformly
convergent, meaning that

m=1 00 m=n+1 0o
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converges to 0 for n — oo. To do it, it is enough to prove

o0

Z V|

m=n+1

<
T 12-9

5" =0 (3.3)

o0

because the second term converges to 0 for n — oc.

It can be seen that for every m > n+ 1 wu, = 0 outside Q™ by definition of ;
therefore it is enough to evaluate the norm on Q™.

For z € Q™ ~. C there exists j € I* with k > n such that z is inside the cubes Qji(m)

with 1 < m < k but & Q*'!, because if = were inside infinitely many cubes Q;, it
would be in C.
We now remember that:

a. z is outside Q¥ therefore u,,(x) = 0 for m >k + 2 ;
b. fory € Q
Vun(y) = (Z ei(y)(aiy — yi)) = > eiWai+ Y Veily){aiy —ui);
ierm ierm ierm

since all ¢; with ¢ € I™ have disjoint supports we have
V() = ©jm) (%) @jim) + V@j0m) ()(ajm), T — Yjm));

c. 0 < ¢; <1 and by Cauchy-Schwarz inequality [{a;, z — y;)| < |a;| - | — i;

d. for m > n + 1 we have \aj(m)| < K30™ < K30™ by the previous result and |z —
m)] < K46™ < K46" where Ky = VN/2, because x € Qji(m)

Then
00 b k+1
> V(@) =™ 1050 (@) a5m) + VLm0 (@) (@mys T — Yim))]
m=n+1 m=n+1
c. k+1
< >0 ajom | + V0500 @) - ajim] - 17 = yjom| <
m=n+1
d. &(3 1) Kt . . K
mZn:HKgé s _5) CK38™ - Ko™ = =1, 5"

this proves the estimate for x € Q™ ~. C, which is dense in @Q", therefore the estimate
holds in the whole Q™ and thus in @, proving (3.3).
It follows that ua(z) = > 0% up(z) € €HQ) and Vua(x) = >00 Vu,(2).

Now, let € C. There exists a sequence of cubes {Q;, }nen, with j, € I" uniquely
determined by the property x € @, for all n € N; by construction @;,,, € @Qj,.
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By definition, for every n € N we have ¢;, (x) = 1 thus u,(z) = (aj,,z — y;,) and
Vup(z) = aj,.
Then from Vu, = > o7, Vu, it follows that

1
Via(e ZWn =, —,,}ganaJn 2 lim fy)dy = f(z).
n=1

m—o0 |Qj,.| Jq,
by continuity of f.
This proves that C' C A, ; and therefore dim» A, > dimy C =N — a.

Lastly, we need to prove the higher regularity of w,, and in particular that Vu, is
Lipschitz. We want to prove the estimate

K

Ve () — Vua(y)| < WL’U -yl

for all z,y € @ and for some constant K.
With the same notations as before for a fixed z € Q) ~ C, we have for every m € N:

192 (@) o = IV (250m) (#)@0m) + V5m) ()5 m) @ = Yiiom)) ||
= IV%0;(m) (@)@ (m)» T = Yjm)) +2- V%(m)( ) ® @j(m) H <
L (IV205m |y  1ajm)| [2 = Yjem) | + 2 [ Fpiom |, + 1a6m] <
d.&(3.1) K, - - K, - K
< —(1/2 ~5y25em cK30™ - Ky 6™+ 2 7(1/2 — 5o - K30™ < 7(1/2 —5)?
for some constant K.

Since V; have disjoint supports by definition, so do V2¢; and thus V?u,, have
disjoint supports for m € N, which means that

v? <Z um(x)> = Z V2 ()
m=1 m=1

for every x € Q \. C either V2u,,(x) = 0 Vm € N or there exists a unique m € N such
that V2uz(x) # 0, it follows that
K

V2 (7; um(x)> mz:lvzum(x) o < o

The uniform estimate for x € @ ~ C and the facts that @ ~ C is dense in ) and
U, € €2(Q) give that

< V2|

[e.e]

K
~ = =07

Then the Mean value theorem (1.1) applied to

IVPual

g:[0,1] — RV, g(t) = Vug(tz + (1 —t)y)
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gives

Vo (z) — Vua(y)] = |9(1) — g(0)] < (1 = 0)|g'(t)| = |V?ualtz + (1 — t)y)(z — y)| <
<V e~y € e —y

(1/2 = 9)

which proves that Vu,, is a Lipschitz function.

Second statement. Let ¢ > 0 and for every k € N let 6, = 271-7¥* < 1/3 for some
constant ¢ = ¢(e) > 0 chosen appropriately; then define for every n € N

n
A?’L = H 5]{2 = 2_77‘_2211 c/k2 S 2_’”"
k=1

We then construct the set C' similarly to that in the first statement. The first step
consists in dividing @ in 2V cubes @h ,i1 € I of side length 1/2 and then taking the cubes
Qi, = 251@1'1, with side length A; = é1; then in general, given the cubes Q;,i € I"™,
in the (n + 1)-th step we divide each of them in 2V cubes éiin+1 and take the cubes
Qiinsr = 20041Qui, ., with side length A,y by induction. Then, Q" = J;c;n Qi and
C =M Q"

Since Q"1 C Q" for every n € N, by continuity from above (1.3) we have |C| =
lim,, o0 |@™]. Since all @; with ¢ € I" are disjoint, we have

U @

icln

Q" = = Qi = 2NmAY = 9N g NN R o7 o g NeXfy VP 9= Ke

icln

for n — oo, because Y7 1/k? converges; we then choose
1
— ¢(e) < —=logy(1 —
e = cfe) <~ logy(1 - <)

so that
IC] = lim |Q"=2"%¢>1—¢.
n—oo

Like before, we will construct a function w, with gradient on C' equal to f, so C C
Ay, ¢ and thus [A, ¢| > |C| > 1 —e¢.
For all n € N and i € I" we define o; € € (RN) as before applying Lemma 1.15

to cubes ) 5 . 5
44_<1+/T_">Qi and 13_<1+/”_">Qi

3 2
such that instead of (3.1) we have

ko

and HVQQOiHOO < W;

k1
\VAE < e — .

then, we define a; and u,, as before and u. = Y7 | up.
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From the inequality e™* < 1 — #/2 which holds for 0 < z < 7/2, for n large enough we
have

_ _ In(2) ks
9 o/n2 _ —cin(2)/n2 <1_ c M
€ - o2n? n2
and therefore
—c/n2 kg 1 1 —c/n2 ]{3
Then from (3.4) we obtain
/€1 2k1n2 _ K1n2 K2n4

) < = '
IVeille = X =5 S Auks — (3.5)

for some constants K7, K.

Again, with the same notations as before and using the inequalities A, < 277,
|ajom)| < K3An and |2 — yjn) | < K4y for m > n+ 1, for z € Q" \ C we have:

[es) k+1

S Vum@) < Y ajoml + 1V0i0m @) - ajim] - |12 = gjom| <
m=n+1 m=n+1
k+1 2 2
Kln 2 K5n
< K3A, K3, - Ky, < Ksn®A, <
< mzn:H 3Qnp + A, 3 4 51 on

which extends to all 2 € @ and therefore by (1.2) it gives the uniform convergence of
> ooe, Vu, = Vue.

Regarding the regularity of u., we will prove a weaker estimate than the one in the

proof of the first statement.

With the same calculations as before, for x € Q@ ~ C and m € N

[V2um(@)|| o < 1V2050m)| o - lasom)] - 12 = Giem)| + 2 [[V@j0m) | - lajom] <

Kom? Kim?
< A272n K30, - KAy +2- S K3A,, < Kegm*
m m

which means that Lip(Vu,,) = HVQUmHOO < Kgm?*.
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For any z,y € @, chosen n € N such that 277! < |z — y| < 27", we have

|Vue(z) — Vue(y)| = Z Vauy(x) — Z Vg (y) + Z Vuy(z) — Z Vug(y)| <
m=1 m=1 m=n+1 m=n+1
<D (V@) = V)| + | D V()| +| D Vurly)| <
m=1 m=n-+1 m=n-+1
< Lip (Z Vum> Je—yl+2)| Y (V| <
m=1 m=n+1 00

n
< Ks (Z m4> lz —y| +2Ksn? - 27" <
m=1

< KegnSlz —y| +2K5n? - 27" < Kgn®|z — y| + 2K5n® - 2|z — y| =
= Kn’lz —y| < K [logy [z — || |z — |

where the last inequality follows from —n—1 < log, |z —y| < —n and thus | log, |z —y|| >
n.

Given 0 < o < 1, the function g : R~g — R defined as g(x) = |logy(x)|5z!~% can
be extended by continuity at x = 0 as g(0) = 0; with this extension, g is continuous in
[0,v/N] and thus it has maximum over it, meaning that g(z) < M for all = € [0,V/N].
Since for z,y € Q, |z — y| € [0,V N] we have that

[Vue(2) = Vue(y)] < K loga o — yll*|o — y| =
= K (Jlogy |z — 9l — y' =) | — y|* < KMz — |

which proves that Vu. is a-Holder for all 0 < o < 1. O

Despite the theorem we just proved, not for all €' smooth vector fields the set Ay
is guaranteed to have maximal Hausdorff dimension when u has high regularity. In fact,
the following result shows that, at least for some vector fields, if v has Lipschitz gradient
then the set A, ; cannot have maximal Hausdorff dimension, while if  is taken to be ¢?
then the Hausdorff dimension of A, s is smaller than half of that of the whole space.

Theorem 3.2. Let @ C RN and Q = QV X @ C RN = RN x RN be respectively
the unit cubes in RN and R*V and let fo : Q — R2N be the vector field defined as
folz,y) = (2y, —2x) for all z,y € Q CR™. Then:

i ifu:Q — Ris a €Y' smooth function, then dimy Aufo < 2N — X where A > 0
depends on the Lipschitz constant for Vu, therefore there cannot exist a €' smooth
function u such that dimy A, 5, = 2N;

i if u: Q — R s a €% smooth function, then HY (A, ) < oo, meaning that
dimy Ay < N.
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Proof. First statement. Let u : Q — R be of class €' and let | > 0 be the Lipschitz
constant of Vu.

Given an arbitrary cube Q' C Q of side length d > 0, we denote by r the supremum
of radii of balls all contained in @'\ A, f,. We want to prove that there exists a constant
« which depends only on [ such that » > ad; from this kind of porosity it will follow that
the set A, y, cannot have Hausdorff dimension 2.

We now suppose r < d/4 otherwise r > d/4 and we have the porosity estimate with
a=1/4.

Denoting by x1,22,...,ZN,y1,...,yn the coordinates in R*V, if the center of Q' is
T = (T1,%2,...,ZN,¥1,--.,yn) we define P as the plane of points in R*V such that
x; = X4, y; = y; for 2 < i < N. Points on P can be described by the local coordinates
z1 = (z1,y1) and T € P has local coordinates z; = (Z1,y1). Then, we take v a closed
cycle on P in the shape of a square of side length d/2 with center in z; and sides parallel
to the coordinate axes of P.

By definition of r it follows that for all p €  the ball B(p,2r) intersects A, s, in at
least one point. It can be easily seen that given a,b € @ we have |fy(a)— fo(b)| = 2|a—b];
then, fixed p € v and taken q € B(p,2r) N A, f,, we have fy(q) = Vu(q) and therefore

| fo(p) — Vu(p)| = [fo(p) — folq) + Vu(q) — Vu(p)| <
<[folp) = fo(@)| + [Vu(q) — Vu(p)| <2[p—ql +1lp—q| <
<22+ Dr

using the fact that Vu is a Lipschitz function with Lipschitz constant I.
By the gradient theorem (1.13) f,y Vuds = 0 because 7 is a closed curve; therefore
we obtain

/vadS

because the length of v is 2d.

We now evaluate explicitly the integral along the curve ~.

We denote by (+),, the restriction of functions in the local coordinates z; on P: in
particular, given z = (x1,...,ZN,¥1,...,yn) we have (x),, = (z1,y1), while (fo(x)),, =
(2y1, ..., 2yn, —2x1, ..., —2Tp)z = (2y1, —221).

We can parametrize the cycle as v : [0,1] — P C R?Y such that ~([i~1/4,i/4]) for
i =1,2,3,4 are the four sides of the square of the cycle v. We then suppose (7(0)),, =
(T1 + 9/4,1 + 4/4) and ~ going counterclockwise.

We now evaluate the integral along ([0, 1/4]); the integrals along the other three sides
are analogous. For ¢ € [0,1/4] we have

L%—vwm

S/\fo—Vuds</2(2+l)7~ds:2(2+l)7«.2d
v ¥

(0 = OO + (2000 = (1 4+ § - 207+ )

(Y ()2, = (=24, 0)
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(o0 = (2 + 5. 20— § +4at)

_ . d -
() (O = —20- (201 + 5 ) = =4 - &
from which it follows that

1/a 1/a d2
[ hds= [ pG)edi= [t - )t = -di - G
~([0,1/4]) 0 0

Splitting the integral over the intervals ~([i—1/4,%/4]) we obtain

- & - & & _ )
from
/fods
~
d

e TCE)

which gives the porosity estimate with o = 1/4(2+1).

d? = <42+ )rd

it follows

We now prove that from the porosity estimate it follows that dimy A, 7, < 2N — A
where A depends only on I.

Firstly, the estimate is true also for the supremum of side lengths of open cubes all
contained in Q' \ A, s,. In fact, if B C Q" ~\ A, y, is a ball of radius rp, then there
exists an open cube Qg € B C Q' \ Ay, of side length dp = 2r8/VN and therefore the
supremum of side lengths of open cubes all contained in Q' \ A, , is

T > d 2 > 2 d=ad
T > sup B=— sup rg > —ad = ad.
BCQ'\Ay g, VN BCQ'~Ayy, vN

From now on, we will denote the new porosity estimate on cubes like the one on balls,
with r and « in place of 7 and @.

Let then Q' be a cube of side length d that covers a portion Q' N A, 5, of Ay f,; by
the new porosity estimate there exists a cube é C Q' Ay, of side length 7 > ad. With
k € N such that 27%d < 7/2, we can divide each side of @’ in 2¥ parts, thus dividing Q'
in 22Vk cubes of side length 27%d; then, there is at least one of these cubes all contained
in @, meaning that to cover @' N A, y, it is enough to use 22Nk _ 1 of these cubes.

Fix 0 < D < 2N, § > 0 and £ > 0; by definition of Hausdorff measure, there exists a
sequence {Q; }ien of cubes such that diam(Q;) < 6 for all i € N, A, 5, € [J;ey @i and

HP (Augy) > CY UQ)P —e.
=0
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As said previously, each cube Q; can be decomposed in 22V* cubes Q;,j with only

the first 22F — 1 necessary to cover Q; N Ay, fo; €ach @Q;; has diam(Q; ;) < /2% and
Ay f, €U, Qi so it follows that

2t (Q:)\"
H5/2k ufO CZ Z g QZ,] CZ 22Nk < 2kZ > =

=0 gj=1

2Nk _ 2Nk _
_2 1(025@ )_M(Hg(ufo)—i-e).

Since this is true for all € > 0 we obtain

D . 22Nk -1
Hie(Augo) < Bp -5 (Augy)  with  fp = T okD

then, by induction we have for n € N
D D
H5/27Lk (Au,fo) S ﬂ% : H5 (Auvf(])
We have Bp < 1if 22V% — 1 < 2K meaning that

1
D > %log2(22Nk —1)=2N—X with A>0.

Then for D € ]2]\7 — A, 2N] we have that
P (Au,fo) = nh_{go H?(Au,fo) = nh_>ngo H§2nk (Au,fo) < nll_%lo Bh - H(;D(A%fo) =0

because Sp < 1.
Therefore dimy A, f, < 2N — A, where A depends only on a which depends only on
[, proving the result.

Second statement. Let u : Q@ — R be of class 2. Denoting by J the matrix
J = (_0 16\’), for x € A, y, we can write Vu(z) = fo(r) = 2Jz thinking of z as

15y
a column vector in R?V,
Let © € Ay f, and v,w € R?Y such that  + v,2 + w € A, , too. Applying the
Mean value theorem (1.1) to the function g : [0,1] — R, g(t) = (Vu(z + tv), w), since
g (t) = (V2u(x + tv)v, w) we have

(Vu(z +v),w) = (Vu(z),w) = g(1) = g(0) = ¢'(11) = (VZu(z + rv)v, w)
for 7 €]0,1[; therefore
(Viu(z+71v)v, w) = (Vu(z4v), w) — (Vu(z),w) = 2J(z+v), w)— (2Jz,w) = (2Jv, w).
Similarly, for some 72 €]0, 1|

(V2u(z 4 mw)w, v) = (2Jw, v);
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since J is antisymmetric and V2u is symmetric because u € €2, then
(V2u(z 4+ mw)v, w) = —(2Jv, w).
Putting together the two equations and using Cauchy-Schwarz inequality, we have

[(4Jv, w)| = ‘<(V2u(x + 1v) — Viu(z + mw)) v, w)| <
< [|V2u(z + o) = Vu(z + w)]| - [v] - [w].

We have u € 62, so V?u is continuous on @ compact set and therefore it is uniformly
continuous. Then V2u(x + mv) — VZu(z) for [v| — 0 and Vu(z + nw) — V2u(z) for
|w| — 0; therefore

| V2u(z + mv) — V2u(z + nw)]| <
< |Vu(z + 7o) — Vzu(m)Hoo + || V2u(z) — Vu(z + mw)|| =0

for |vl, |w| — 0.
This means that for every € > 0 there exists J. such that if |v|,|w| < J. then
|(Jv,w)| < e |v| - |w|; by uniform continuity of V?u, this & is independent of z.

We now prove the following result: given 79 > 0 there exists ¢g > 0 such that if
K C S*MN-1 has the property that |(v, Jw)| < g¢ for all v,w € K, then there exists a
N-vector space W in R?V such that dist(k, W) < ng for all k € K.

Given N + 1 independent vectors z1,...,xny11 we denote by V; the N-vector space
generated by all of them except for z;, meaning that V; = span{x; : j # i¢}. The N-vector
space W in the result exists if and only if there do not exist x1,...,xny11 € K linear
independent vectors such that for every 1 < i < N + 1, dist(z;, Vi) > ang with v; € V;
and « some geometric constant.

This means that to prove the result it is enough to show that given x1,...,xny41 € K
linear independent vectors such that for every 1 < i < N + 1, dist(z;, V;) > ang =: ro
then there exist 1 <4,j < N + 1 such that |(z7, Jz3)| > o where go only depends on rg
and not on the vectors x; taken.

A preliminar result states that: given ay, ..., ay basis of unit vectors of R" such that
for all i we have dist(a;, V;) > ro with V; := span{aj Jj# i}, ifv=>" fia; is a unit
vector then |3;] < 7“61 for all 2. We fix 1 <4 < n and we take b; unit vector orthogonal
to Vi; since |{as, b;)| is the distance of a; from V;, then |(a;, b;)| > ro. By Cauchy-Schwarz
inequality we have

(v, bi)| < Jol[bs] = 1

and thus

n

1> (v, b;) <Zﬁjaj, > =Y Bjlay, bi)| = |Bilai, bi)| > rolBil

=1

because for all j # i we have a; € Vi s0 {aj,b;) = 0; this gives |5;| < ryt.
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The spaces V = span{x; : 1 < i < N+ 1} and W = span{Jx; : 1 < i < N} have
dimension dim(V) = N + 1 and dim(W) = N, so necessarily VN W # 0; let then
v € VN W be a unit vector with

N+1 N
v = Z ;T = Zﬁzejl'z
i=1 i=1
We can apply twice the preliminar result on v: V =2 RN*! with basis z1,..., 2y, and
the condition on distances follows from the hypothesis so we obtain |a;| < 7y L. similarly
W = RY with basis Jx1,...,Jzy and the estimate on distances follows the same way
because J is an isometry, so |5;| < ral.

Then

o N+1 N+1
1=|v]*= Z aZxZ,Zﬁij] Z Zazﬁz (xi, Jaj) <

i=1 j=1
N+1 N N+1 N
Z Z |8l [{s, Jj)| < g2 ZZ| xi, Jxj)|
i=1 j=1 =1 j=1

which means, by Pigeonhole Principle, that there exist i, j such that

702

(23, J$>|_W

= &0,

which is the result.

Let now € be the ¢ from this result with 7y = 1/4. We fix € A, 4,; from what we
proved before, there exists dz such that if v, w € RV are such that z + v,z +w € Ay fo
and |v], |w| < dz then [(Jv,w)| < &-|v| - |w]|.

We define
Kw—{Z: K yEB(:U(S)ﬁAme};
if y € B(x,0z) N Ay g, the previous result holds, so for vy, vy € K, with
Yy1—x Yo — T
v = and vy =
1 — Y2 — x|

e e (I(on = 2). (2 = 2| _ elyr = e —a
1— ), Y2 — EY1 —X||Y2 — X _
(Jor, v9)] = LW Y <y y -
1 — z|ly2 — x| 1 — z(ly2 — x|
which, by the result just proved, means that there exists a N-vector space W, in R2Y
such that dist(k, W) < 1/4 for all k € K,.
This means that given y € B(x,ds) N Ay f,, we have dist(y — z, W,) < V4ly — z|;
denoting by Py (v) the orthogonal projection of vector v on the subspace V', we have in
general that

Py ()2 + dist(v, V)2 = [o”  so [Py (v)[> = |of? — dist(v, V)?
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therefore with v =y — x and V = W, we obtain

. 1 3
1Py, (y — @)|* = |y — 2| — dist(y — 2, W,)* > |y — 2> — ke x> = 1= xf?

which means

3
|Pw,(y —z)| > Z!y —xl.

Consider now the Grassmannian G(R?Y| N), that is, the set of all N-dimensional
linear subspaces of R?Y | equipped with the metric d(X,Y) = ||Px — Py ||op; with this
metric topology G(R?Y, N) is compact, so it follows that there exist Wi,...,W,, €
G(R?N,N) N-vector spaces such that G(R*N, N) = (I, B4(W;,1/4), where m depends
only on N.

For all x € A, s, we have W, € G(R*¥, N) so there exists W; such that

1 Py, — Pw.)(v
7 2 Wi, W) = | P, = P llop = sup (Pw; — Pw. )(v)]
veR2N |U|
v#£0

using the definition of operator norm; then for y € B(z,dz) N A, s, we have

3 1 1
[P (y — @) 2 [Pw, (y — )] = (P, = P, )(y — @)l 2 |y — 2 = Zly — 2 = Sly — =l.

Let now H be a subset of A, ¢ with diam(H) < dg; since H C B(z, ) N Ay ¢, for
any x € H, the projection Py, (y — z) is well defined for all y € H and has the previous
property. We then denote by H; the subset of point of H whose associated N-vector
space is W;, with 1 <i < m.

Given x € H; and two points 2/, 2" € H; such that Py, (2’ — x) = Py, (2" — x), then

1
0 = |P, (2" —2) — P, (2" — 2)| = |Pw, (2" —2")| = S|a" — 2"

because z” € H;, which gives 2’ = x”; this proves that the projection of points in H; on
the affine N-space x + W; is injective, and thus H; is part of a single graph over W;.

Specifically, H; is the graph of the inverse of the projection on z + W;; this is a
bi-Lipschitz function because for any y,z € H; we have

2|Pw,(y — )| > |y — x| > |Pw,(y — )|

so it follows by (1.11) that the graph containing H; has Hausdorff dimension equal to
dimy W; = N.

In conclusion, A, f, can be split into at most K - subsets, each of which can be
split into at most m pieces H; with dimy H; < N; therefore, A, y, is union of finitely
many sets of Hausdorff dimension smaller than N so dimy A, 5, < N.

—2N
O

O
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