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INTRODUCTION

Introduction

The problem of determining if, given a vector �eld f , there exists a function whose
gradient is f is a common question in Analysis. In R the Fundamental theorem of calculus
states that if f is continuous then the inde�nite integral of f is an antiderivative, while
in higher dimension the existence of a function whose gradient is f depends on whether
or not curlf is zero at the points of a simply connected open set; if this does not happen,
there cannot exist a potential of f de�ned on the whole domain. Nonetheless, there are
other results regarding functions with prescribed gradient, stating that a potential can
be de�ned outside a set �small enough�, under the right conditions.

In 1990 Giovanni Alberti published the paper [1], where he presented and proved a
theorem on functions with prescribed gradient that shared some similarities to Lusin's
Theorem, hence the �Lusin-type� de�nition used by Alberti to describe his result. More
speci�cally, the theorem stated that given a Borel vector �eld f on a �nite measure set
and some ε greater than zero, it is always possible to �nd a set of measure less than ε
such that there exists a function whose gradient is exactly f outside this set, and whose
p-norm is bounded by the norm of f ; in other words, the theorem states that for every
vector �eld there exists a function which is a potential for it outside a small set.

A decade later, in 2003, Zoltan M. Balogh ([2]) studied characteristic sets and found
a connection between them and the set where f agrees with the gradient of a function.
In Chapter 4 of that work, Balogh proved that if f is a C 1 smooth vector �eld, estimates
similar to those by Alberti can be obtained even imposing higher regularities on the
functions, such as asking that the gradient of the function is not only continuous but also
Lipschitz or α-Hölder.

The purpose of this work is to study the topic of functions with prescribed gradient
analysing the main results contained in those two papers and presenting proofs of some
of them; to do that we will use common notions in Real Analysis and Measure Theory,
along with some more speci�c results on Hausdor� measures.

After some preliminar de�nitions and results in Chapter 1, in Chapter 2 we will
discuss and prove Alberti's Lusin-type theorem. The proof, which comes from Alberti's
paper, is a constructive one: after splitting the domain of f in cubes, we will construct
appropriate functions on the cubes and use them to de�ne a function whose gradient
approximates f outside a set of measure ε; then, we will use an iterative construction to
describe the function as a series and prove that this series satis�es the desired properties.

Chapter 3 will instead be dedicated to some re�nements and applications of Alberti's
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theorem. We will follow Balogh steps and prove his result, similarly to Alberti's theorem:
with an iterative construction we will build a fractal set and we will prove that a function
de�ned on it has the correct regularity and its gradient agrees with f on it; the estimates
will follow from those on the measure and the Hausdor� dimension of the set.

Lastly, we will consider a speci�c vector �eld and study the set where the gradient
agrees with the function; in this example (also by Balogh) we will use speci�c notions
from Geometric Measure Theory to prove that imposing higher regularities, such as the
function being of class C 2, strongly bounds the Hausdor� dimension of the set where the
gradient agrees with f .
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CHAPTER 1. PRELIMINAR RESULTS

Chapter 1

Preliminar results

In this chapter we will present some useful preliminar results; they will be de�nitions and
well-known results and theorems in Analysis that will be used frequently in the following
chapters.

For the whole chapter we will consider functions de�ned on Ω ⊆ RN open set, unless
speci�ed di�erently.

We begin with common notions regarding di�erentiability, gradients and the Mean
value theorem.

De�nition (Gradient and Hessian of a function). Given f : Ω → R di�erentiable in Ω,
we de�ne the gradient of f as ∇f : Ω → RN with components

(∇f)i =
∂f

∂xi

for all 1 ≤ i ≤ N .
Given f : Ω → R, if all second-order partial derivatives of f exist we de�ne the

Hessian of f as the matrix ∇2f : Ω → Mn×n(R) with components

(∇2f)i,j =
∂2f

∂xi∂xj

for all 1 ≤ i, j ≤ n.

De�nition (Functions of class Ck). Let f : Ω → R be a function. Then:

� for k ∈ N we say that f is of class C k, and we write f ∈ C k(Ω), if all k-th order
partial derivatives of f are de�ned and they are continuous functions in Ω;

� we say that f is of class C∞, and we write f ∈ C∞(Ω), if f ∈ C k(Ω) for every
k ∈ N;

� for 0 < α ≤ 1, we say that f is of class C 1,α, and we write f ∈ C 1,α(Ω), if
f ∈ C 1(Ω) and ∇f is α-Hölder, meaning that there exists a constant C > 0 such
that |∇f(x) − ∇f(y)| ≤ C|x − y|α for all x, y ∈ Ω; in particular f ∈ C 1,1(Ω) if
f ∈ C 1(Ω) and ∇f is Lipschitz.
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Theorem 1.1 (Mean Value Theorem). Let g : [a, b] → R be a continuous function and

di�erentiable on ]a, b[, where a < b. Then there exists τ ∈]a, b[ such that

g(b)− g(a) = g′(τ) · (b− a).

Theorem 1.2 (Di�erentiability of a function series). Let {fn}n∈N be a sequence of func-

tions in C 1(Ω) and let f be de�ned as the series f(x) =
∑∞

n=1 fn(x). If

i. there exists x0 ∈ Ω such that f(x0) converges,

ii. the series F (x) =
∑∞

n=1∇fn(x) is uniformly convergent in Ω,

then f(x) is uniformly convergent in Ω and ∇f = F in Ω.

Then, we introduce some important concepts in Measure Theory, such as Lebesgue
measure and its properties, Lp norms and Hölder's Inequality and Lusin's Theorem.

De�nition (Lebesgue measure). Denoting by L (RN ) the σ-algebra of Lebesgue-measurable
subsets of RN , for all E ∈ L (RN ) we denote with |E| the Lebesgue measure of E. By
de�nition of measure, the following properties hold true:

� |∅| = 0;

� |E| ≥ 0 for all E ∈ L (RN );

� | · | is σ-additive, meaning that given {Ei}i∈N collection of pairwise disjoint sets in
L (RN ), we have ∣∣∣∣∣

∞⋃
i=1

Ei

∣∣∣∣∣ =
∞∑
i=1

|Ei|.

Moreover, | · | is subadditive, meaning that given {Ei}i∈N collection of sets in L (RN )
we have ∣∣∣∣∣

∞⋃
i=1

Ei

∣∣∣∣∣ ≤
∞∑
i=1

|Ei|.

Theorem 1.3 (Continuity of the Lebesgue measure). If {En}n∈N is a sequence in L (RN )
such that En ⊆ En+1 for all n ∈ N, then∣∣∣∣∣

∞⋃
n=1

En

∣∣∣∣∣ = lim
n→∞

|En|.

If {Fn}n∈N is a sequence in L (RN ) such that Fn+1 ⊆ Fn for all n ∈ N and |F1| <∞,

then ∣∣∣∣∣
∞⋂
n=1

Fn

∣∣∣∣∣ = lim
n→∞

|Fn|.
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Theorem 1.4 (Regularity of the Lebesgue measure). For E ∈ L (RN )

|E| = inf{|U | : E ⊆ U, U open set} = sup{|K| : K ⊆ E, K compact set}.

De�nition (Borel sets and Borel functions). The Borel σ-algebra B(Ω) is the smaller
σ-algebra of subsets of Ω that contains all open subsets of Ω with respect to the topology
induced on Ω; a set E ∈ B(Ω) is called Borel set.

The function f : Ω → RM , is a Borel function if for all A ⊆ RM open sets, f−1(A) ∈
B(Ω).

De�nition (Lp norm). Given f : Ω → RM measurable function:

� for 1 ≤ p < ∞ we denote ∥f∥p =
( ∫

Ω |f(x)|pdx
)1/p

, where the integral is with
respect to the Lebesgue measure;

� we denote
∥f∥∞ = inf

{
K ≥ 0 :

∣∣{x ∈ Ω : |f(x)| > K}
∣∣ = 0

}
.

De�nition (In�nity-norm for matrices). Given F : Ω → MN×N (R) we will use the
following notations:

∥F (x)∥∞ = max
{
|(F (x))i,j | : 1 ≤ i, j ≤ N

}
∥F∥∞ = inf

{
K ≥ 0 :

∣∣{x ∈ Ω : ∥F (x)∥∞ > K}
∣∣ = 0

}
.

Theorem 1.5 (Hölder's Inequality). Suppose 1 ≤ p, q ≤ ∞ such that 1/p+1/q = 1 (where

we consider 1/∞ = 0). If f, g : Ω → R are measurable functions on Ω then

∥fg∥1 ≤ ∥f∥p ∥g∥q .

Theorem 1.6 (Lusin's Theorem). Let Ω ⊆ RN be an open set with �nite measure and

let f : Ω → RN be a measurable function. Then, for every ε > 0 there exists a compact

set K ⊆ Ω such that |Kc| < ε and f restricted to K is continuous; moreover, there exists

a continuous function f1 : Ω → RN that coincides with f on K.

In Chapter 3 we will also use other Measure Theory notions, such as Hausdor� mea-
sures and Hasudor� dimension.

De�nition (Hausdor� measures). Let k ≥ 0, δ > 0 and E ⊆ RN ; we denote

Hk
δ (E) =

ωk

2k
inf

{∑
n∈N

(diam(An))
k : diam(An) < δ, E ⊆

⋃
n∈N

An

}
where

ωk =
πk/2

Γ(1 + k/2)
and Γ(t) =

∫ ∞

0
xt−1e−xdx.

We de�ne the k-dimensional Hausdor� measure by

Hk(E) = sup
δ>0

Hk
δ (E).
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Lemma 1.7. Given k ≥ 0 and E ⊆ RN , the function Hk
δ (E) is decreasing in δ, meaning

that

Hk(E) = sup
δ>0

Hk
δ (E) = lim

δ→0+
Hk

δ (E).

Theorem 1.8 (Properties of the Hausdor� measures). Considering the Hausdor� mea-

sures in RN we have:

� for every k ≥ 0, Hk is a Borel measure, meaning that all Borel sets are Hk-

measureable sets;

� H0 is the counting measure in RN ;

� for k > N , Hk(E) = 0 for all E ⊆ RN ;

� if B ⊆ RN is a Borel set, then for all δ > 0 we have |B| = HN (B) = HN
δ (B).

De�nition (Hausdor� dimension). The Hausdor� dimension of E ⊆ RN is de�ned as

dimH(E) = inf{k ≥ 0 : Hk(E) = 0}.

Theorem 1.9 (Hausdor� measure of a set depending on its dimension). Given E ⊆ RN

we have that if 0 ≤ k′ < k and Hk(E) > 0, then Hk′(E) = ∞. It follows that Hk(E) =
∞ if k < dimH(E) and Hk(E) = 0 if k > dimH(E).

Lemma 1.10. Restricting the coverings of E ⊆ RN to coverings with cubes Qn with

faces parallel to the coordinate hyperplanes, we can de�ne

Mk
δ (E) = inf

{∑
n∈N

(ℓ(Qn))
k : diam(Qn) < δ, E ⊆

⋃
n∈N

Qn

}

where ℓ(Qn) is the side length of Qn, and

Mk(E) = sup
δ>0

Mk
δ (E).

With these de�nitions, there exist two constants K1,K2 > 0 such that for all E ⊆ RN

K1 · Mk(E) ≤ Hk(E) ≤ K2 · Mk(E);

this means that evaluating the measures with only cubes gives the same Hausdor� dimen-

sion.

De�nition (Bi-Lipschitz function). A function f : RN → RM is bi-Lipschitz if there
exist two constants A,B > 0 such that

A|x− y| ≤ |f(x)− f(y)| ≤ B|x− y| ∀x, y ∈ RN .
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Theorem 1.11 (Invariance of Hausdor� dimension under bi-Lipschitz functions). Let

M ≥ N and f : RN → RM be a bi-Lipschitz function; then for all 0 ≤ k ≤ N and

E ⊆ RN

dimH(f(E)) = dimH(E).

Lastly, we present some other de�nitions and results, including a lemma which will
be used often in the following chapters and that we will prove.

De�nition (Distance between two sets). Given two sets A,B ⊆ RN we de�ne the dis-

tance between A and B as dist(A,B) = inf{|x − y| : x ∈ A, y ∈ B}; in particular, given
x0 ∈ RN the distance between x0 and B is dist(x0, B) = inf{|x0 − y| : y ∈ B}.

Theorem 1.12 (Distance between closed and compact sets). If A,B ⊆ RN are disjoint

closed sets and A is compact, then dist(A,B) > 0.

De�nition (Operator norm). Let V,W be normed R-vector spaces, V ̸= {0}, and let
A : V →W be a linear operator; then the operator norm of A is

∥A∥op = inf{C ≥ 0 : |Av| ≤ C|v| for all v ∈ V } = sup

{
|Av|
|v|

: v ∈ V ∖ {0}
}

where we denoted both the norm in V and the norm in W as | · |.

De�nition (Line integral). Let f : Ω → RN be a vector �eld; given a piecewise smooth
curve γ : [a, b] → RN with |γ′(t)| ̸= 0 for all t ∈ [a, b] and γ([a, b]) ⊆ Ω, the line integral

of f along γ is ∫
γ
fds :=

∫ b

a
f(γ(t)) · γ′(t)dt.

Theorem 1.13 (Gradient theorem). Let u : Ω → R be a di�erentiable function and

γ : [a, b] → RN with |γ′(t)| ̸= 0 for all t ∈ [a, b] and γ([a, b]) ⊆ Ω; if γ is a piecewise

smooth curve and Ω is simply connected, then∫
γ
∇u ds = u(γ(b))− u(γ(a));

if γ is a closed curve, meaning that γ(a) = γ(b), then∫
γ
∇u ds = 0.

Theorem 1.14 (Tietze Extension Theorem). If X is a normal space, A ⊆ X is a

closed subset and f : A → RN is continuous, then there exists a continuous function

F : X → RN such that F |A = f and

sup
x∈X

|F (x)| = sup
x∈A

|f(x)|.
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Lemma 1.15. Let A,B ⊆ RN be closed cubes with the same center and parallel faces,

with side length respectively 2a and 2a + 4d, a, d > 0; then there exists a function φ :
RN → RN such that:

(i) φ ∈ C∞(RN );

(ii) 0 ≤ φ(x) ≤ 1 for all x ∈ RN ;

(iii) φ(x) = 1 for x ∈ A and φ(x) = 0 for x ∈ Bc;

(iv) ∥∇φ∥∞ ≤ C1/d and
∥∥∇2φ

∥∥
∞ ≤ C2/d2 for some constants C1, C2.

Proof. Without loss of generality we can assume A = [−a, a]N and B = [−a−2d, a+2d]N ,
since all wanted properties are invariant for isometries and in these hypotheses A and B
are isometric to the aforementioned cubes via the same translation and rotation.

Denoting with Br the closed ball in RN of center 0 and radius r, let ψ ∈ C∞
c (RN )

be a function such that ψ ≥ 0, supp(ψ) ⊆ B1 and
∫
RN ψ(x)dx = 1; these properties can

always be obtained eventually normalizing appropriately a generic function in C∞
c (RN ).

We then de�ne ψd, φ : RN → R as

ψd(x) =
1

dN
ψ
(x
d

)
and φ(x) =

(
1[−a−d,a+d]N ∗ ψ

)
(x) =

∫
RN

1[−a−d,a+d](x− y)ψ(y)dy

where 1I is the indicator function of I and ∗ is the convolution product.
Since 1[−a−d,a+d]N ∈ L1(RN ) and ψ ∈ C∞(RN ) it follows that φ ∈ C∞(RN ) thus

proving (i), and for all i, j ∈ {1, . . . , N}

∂φ

∂xi
= 1[−a−d,a+d]N ∗ ∂ψd

∂xi
and

∂2φ

∂xj∂xi
= 1[−a−d,a+d]N ∗ ∂2ψd

∂xj∂xi
. (1.1)

It can be seen that∫
RN

ψd(x)dx =

∫
RN

1

dN
ψ
(x
d

)
dx =

∫
RN

1

dN
ψ(y)dN dy =

∫
RN

ψ(y)dy = 1;

since 0 ≤ 1[−a−d,a+d]N ≤ 1 and ψd ≥ 0, for all x ∈ R

φ(x) =

∫
RN

1[−a−d,a+d]N (x− y)ψd(y)dy ≥ 0

and

φ(x) =

∫
RN

1[−a−d,a+d]N (x− y)ψd(y)dy ≤
∫
RN

ψd(y)dy = 1

thus proving (ii).
For x ∈ A and y ∈ Bd we have |(x − y) − x| = |y| ≤ d so x − y ∈ [−a − d, a + d]n,

and supp(ψd) = Bd, therefore

φ(x) =

∫
RN

1[−a−d,a+d]N (x− y)ψd(y)dy =

∫
Bd

1[−a−d,a+d]N (x− y)ψd(y)dy =

=

∫
Bd

ψd(y)dy = 1;
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while for z ∈ Bc we have |(z−y)−x| = |(z−x)−y| ≥ |z−x|− |y| > 2d−d = d therefore
z − y ̸∈ [−a− d, a+ d]N and

φ(z) =

∫
Rn

1[−a−d,a+d]N (z − y)ψd(y)dy =

∫
Bd

1[−a−d,a+d]N (z − y)ψd(y)dy = 0,

which proves (iii).
Lastly, since ψ ∈ C∞(RN ), all �rst-order and second-order derivatives of ψ are con-

tinuous on its support, which is a compact set, therefore they have maximum, meaning
that

∥∇ψ∥∞ <∞ and
∥∥∇2ψ

∥∥
∞ <∞.

Since for all x ∈ RN

∇ψd(x) = ∇
(

1

dN
ψ
(x
d

))
=

1

dN+1
∇ψ

(x
d

)
and ∇2ψd(x) =

1

dN+2
∇2ψ

(x
d

)
we have, using (1.1)

|∇φ(x)| ≤
∫
RN

|∇ψd(y)| dy ≤
∫
Bd

1

dN+1

∣∣∣∇ψ (y
d

)∣∣∣ dy ≤ 1

dN+1

∫
Bd

∥∇ψ∥∞ dy =

=
KdN ∥∇ψ∥∞

dN+1
=
C1

d

and ∥∥∇2φ(x)
∥∥
∞ ≤

∫
RN

∥∇ψd(y)∥∞ dy ≤
∫
Bd

1

dN+2

∥∥∥∇2ψ
(y
d

)∥∥∥
∞
dy ≤

≤ 1

dN+2

∫
Bd

∥∥∇2ψ
∥∥
∞ dy =

KdN
∥∥∇2ψ

∥∥
∞

dN+2
=
C2

d2
.

for some constants K,C1, C2.
Then

∥∇φ∥∞ ≤ C1

d
and

∥∥∇2φ
∥∥
∞ ≤ C2

d2

proving (iv).
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CHAPTER 2. ALBERTI'S LUSIN-TYPE THEOREM

Chapter 2

Alberti's Lusin-type theorem

The purpose of this chapter is to prove Alberti's Theorem, a result that states that given
a Borel vector �eld f and ε > 0, f agrees with ∇u for some function u of class C 1 outside
an open set with measure less than ε.

In general, given a vector �eld f : Ω → RN with Ω ⊆ RN simply connected open set,
there exists a function whose gradient is f if and only if curl f = 0 on Ω. This means
that if curlf ̸= 0 at some points of Ω such function whose gradient is f cannot exist; but
Alberti's theorem states that if f is a Borel vector �eld, a weaker property holds true:
there exists a function whose gradient is f outside a set of arbitrarily small measure.
This is true even if curl f ̸= 0 everywhere in Ω: in this case the set where f does not
agree with ∇u must be dense in Ω.

Theorem 2.1 (Alberti's Theorem). Let Ω be an open subset of RN with �nite measure

and let f : Ω → RN be a Borel function; then ∀ε > 0 there exist an open set A ⊆ Ω and

a function u ∈ C 1(Ω) such that

|A| ≤ ε|Ω| (2.1a)

f = ∇u on Ω∖A (2.1b)

∥∇u∥p ≤ Cε
1/p−1 ∥f∥p ∀p ∈ [1,+∞] (2.1c)

where C is a constant which depends on N only.

Remark 2.2. When p = 1 Alberti's Theorem holds true even without |Ω| < ∞ and it
can be stated as follows:

Let Ω be an open subset of RN and let f : Ω → RN be a Borel function; then ∀ε > 0
there exist a function u ∈ C 1(Ω) such that f = ∇u outside an open set with measure
less than ε and ∥∇u∥1 ≤ C ∥f∥1.

We now prove Alberti's Theorem. Before doing that, we prove some auxiliary lemmas
needed to prove the Theorem.

This �rst lemma gives a property similar to uniform continuity on compact sets.
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Lemma 2.3. Let Ω ⊆ RN be an open set with �nite measure, let K ⊂ Ω be a compact

set and let f : Ω → RN be a continuous function. Then ∀η > 0 there exists δ > 0 such

that for all x ∈ K, y ∈ Ω if |x − y| < δ then |f(x) − f(y)| < η, and Q(x, 4δ) ⊆ Ω where

Q(x, 4δ) is the cube with center x and side 4δ.

Proof. Since K ⊂ Ω and Ω is an open set, Ωc and K are disjoint closed sets and K
is compact, so 0 < d = dist(Ωc,K) < ∞ by (1.12). It can be seen that Q(x, 4δ′) ⊆
B(x, 2δ′

√
N); if 2δ′

√
N < d, i.e. δ′ < d/2

√
N, then Q(x, 4δ′) ⊆ Ω.

Let then K ′ = {x ∈ RN : dist(K,x) ≤ d/2
√
N = δ1}; K ′ is compact, so by Heine-

Cantor theorem f is uniformly continuous on K ′, meaning there exists δ2 > 0 such that
∀x, y ∈ K ′ if |x− y| < δ2 then |f(x)− f(y)| < η.

Then, choosing δ < min{δ1, δ2} it can be seen that ∀x ∈ K ⊆ K ′, y ∈ Ω if |x−y| < δ,
then y ∈ K ′ because δ < δ1 and |f(x)− f(y)| < η because δ < δ2; moreover, from δ < δ1
it follows Q(x, 4δ) ⊆ Ω, which proves the lemma.

We then prove another auxiliary lemma.

Lemma 2.4. Let Ω be an open subset of RN with �nite measure, let f : Ω → RN and let

η and ε be positive real numbers. Then there exist a compact set K ⊂ Ω and a function

u ∈ C 1
c (Ω) such that

|Ω∖K| ≤ ε|Ω| (2.2a)

|f −∇u| ≤ η on K (2.2b)

∥∇u∥p ≤ C ′ε1/p−1 ∥f∥p ∀p ∈ [1,+∞] (2.2c)

where C ′ is a constant which depends on N only.

Proof. We can assume that 0 < ε < 1.
Since Ω has �nite measure, by the regularity of the Lebesgue measure (1.4) there

exists a compact set K ′ ⊂ Ω such that |Ω ∖ K ′| < ε
2 |Ω|. By Lemma 2.3 there exists

δ > 0 such that

∀x ∈ K ′, y ∈ Ω , if |x− y| < δ then |f(x)− f(y)| < η , and Q(x, 4δ) ⊂ Ω. (2.3)

Let {Ti}i∈I be the family of the closed cubes with side δ and centers yi on the lattice
(δZ)N that intersect K ′; K ′ is a compact set so the family {Ti} is �nite, i.e. |I| < ∞,
and by choice of δ it follows that Ti ⊆ Ω ∀i ∈ I.

For all i ∈ I:

� let Qi be the closed cube with center yi and side (1− ε
2N )δ, meaning that Qi ⊂ Ti ;

� let ai ∈ RN be the mean value of f on Ti, i.e. ai =
1

|Ti|
∫
Ti
f(x)dx ;

� let φi ∈ C 1(Ω) be such that φi(x) = 1 for x ∈ Qi, φi(x) = 0 for x ∈ T c
i and

∥∇φi∥∞ ≤ 8C1N/δε ; such functions exist thanks to Lemma 1.15 on cubes Qi, Ti
with d = δε/8N.
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Eventually, let u : Ω → R be u(x) =
∑

i∈I φi(x)⟨ai, x − yi⟩ and K =
⋃

i∈I Qi; K
is a compact set, because it is a �nite union of compact sets, while for u the following
properties hold true:

� supp(u) ⊆
⋃

i∈I Ti because supp(φi) ⊆ Ti for all i ∈ I by de�nition;

� u is a sum of functions of class C 1, thus u ∈ C 1(Ω) ;

� for i ̸= j we have Qi ∩ Tj = ∅, φj |Qi = 0 and φi|Qi = 1, therefore

u|Qi =
∑
j∈I

φj |Qi(x)⟨aj , x− yj⟩ = ⟨ai, x− yi⟩

so ∇u|Qi = ai.

It is now necessary to prove that u and K satisfy (2.2a), (2.2b) and (2.2c).
The property (2.2a) follows from the inequality

1−
(
1− ε

2N

)N
≤ ε

2
for 0 ≤ ε < 1

which is Bernoulli's inequality

(1 + x)n ≥ 1 + nx ∀n ∈ N ∀x > −1

evaluated at n = N and x = −ε/2N > −1.
Using this inequality

|Ti ∖Qi| = |Ti| − |Qi| =
[
1−

(
1− ε

2N

)N]
|Ti| ≤

ε

2
|Ti|;

since K ′ ⊆
⋃

i∈I Ti ⊆ Ω and K =
⋃

i∈I Qi ⊆
⋃

i∈I Ti,

Ω∖K ⊆ (Ω∖K ′) ∪

(⋃
i∈I

(Ti ∖Qi)

)

and thus

|Ω∖K| ≤ |Ω∖K ′|+
∑
i∈I

|Ti ∖Qi| ≤
ε

2
|Ω|+

∑
i∈I

ε

2
|Ti| ≤

ε

2
|Ω|+ ε

2
|Ω| = ε|Ω|.

As for (2.2b), from ∇u|Qi = ai it follows that for x ∈ Qi

|∇u(x)− f(x)| = |ai − f(x)| =
∣∣∣∣ 1

|Ti|

∫
Ti

f(y)dy − 1

|Ti|

∫
Ti

f(x)dy

∣∣∣∣ ≤
≤ 1

|Ti|

∫
Ti

|f(x)− f(y)|dy ≤ 1

|Ti|

∫
Ti

η dy =
1

|Ti|
· η|Ti| = η

Lusin-type theorem for functions with prescribed gradient 11



where the last inequality follows from (2.3) since x ∈ K and for y ∈ Ti ⊆ Ω, |x− y| < δ
as Ti has side δ.

Concerning (2.2c), by the Leibniz rule

∇u(x) = ∇

(∑
i∈I

φi(x)⟨ai, x− yi⟩

)
=
∑
i∈I

∇φi(x)⟨ai, x− yi⟩+
∑
i∈I

aiφi(x)

and so

∥∇u∥p ≤

∥∥∥∥∥∑
i∈I

∇φi⟨ai, · − yi⟩

∥∥∥∥∥
p

+

∥∥∥∥∥∑
i∈I

aiφi

∥∥∥∥∥
p

In order to evaluate the p-norms the following facts are useful:

a. supp(φi) are disjoint;

b. ∇φi(x) = 0 for x ∈ (Ti ∖Qi)
c;

c. |∇φi(x)| ≤ ∥∇φi∥∞ ≤ 8C1N/δε;

d. for x ∈ Ti |⟨ai, x− yi⟩| ≤ |ai||x− yi| ≤
√
Nδ|ai| by the Cauchy-Schwarz inequality

and the fact that Ti is a cube of side δ;

e. |Ti ∖Qi| ≤ ε
2 |Ti| < ε|Ti|;

f.
∫
Ω |φi(x)|pdx =

∫
Ti
φi(x)

pdx ≤ |Ti| using the facts that φi(x) = 0 for x ∈ T c
i and

0 ≤ φi ≤ 1.

For 1 ≤ p <∞∥∥∥∥∥∑
i∈I

∇φi⟨ai, · − yi⟩

∥∥∥∥∥
p

=

(∫
Ω

∣∣∣∣∣∑
i∈I

∇φi(x)⟨ai, x− yi⟩

∣∣∣∣∣
p

dx

)1/p

=

a.
=

(∫
Ω

∑
i∈I

|∇φi(x)⟨ai, x− yi⟩|p dx

)1/p

=

b.
=

[∑
i∈I

(∫
Ti∖Qi

|∇φi(x)|p|⟨ai, x− yi⟩|pdx
)]1/p

≤

c.&d.
≤

[∑
i∈I

(∫
Ti∖Qi

(
8C1N

δε

)p

(
√
Nδ|ai|)pdx

)]1/p

=

=

[∑
i∈I

(
8C1N

√
N

ε

)p

|ai|p|Ti ∖Qi|

]1/p

≤

e.
≤ 8C1N

√
N

ε

[∑
i∈I

ε|ai|p|Ti|

]1/p

= 8C1N
√
Nε

1/p−1

[∑
i∈I

|ai|p|Ti|

]1/p

12 Emanuele Prati
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and∥∥∥∥∥∑
i∈I

aiφi

∥∥∥∥∥
p

=

(∫
Ω

∣∣∣∣∣∑
i∈I

aiφi(x)

∣∣∣∣∣
p

dx

)1/p

a.
=

[∑
i∈I

(
|ai|p

∫
Ω
|φi(x)|pdx

)]1/p
f.
≤

[∑
i∈I

|ai|p|Ti|

]1/p

.

Using Holder's inequality (1.5)∣∣∣∣∫
Ti

f(x)dx

∣∣∣∣p ≤ (∫
Ti

|f(x)|dx
)p

≤
(∫

Ti

|f(x)|pdx
)(∫

Ti

1
p

p−1dx

)p−1

= |Ti|p−1

∫
Ti

|f(x)|pdx

which means that∫
Ti

|f(x)|pdx ≥ |Ti|1−p

∣∣∣∣∫
Ti

f(x)dx

∣∣∣∣p = |Ti|
∣∣∣∣ 1

|Ti|

∫
Ti

f(x)dx

∣∣∣∣p = |Ti||ai|p

and thus ∫
Ω
|f(x)|pdx ≥

∑
i∈I

∫
Ti

|f(x)|pdx ≥
∑
i∈I

|Ti||ai|p

It follows that

∥∇u∥p ≤ 8C1N
√
Nε

1/p−1

(∑
i∈I

|ai|p|Ti|

)1/p

+

(∑
i∈I

|ai|p|Ti|

)1/p

≤

≤ C ′ε
1/p−1

(∑
i∈I

|ai|p|Ti|

)1/p

≤ C ′ε
1/p−1

(∫
Ω
|f(x)|pdx

)1/p

= C ′ε
1/p−1 ∥f∥p

with C ′ = 8C1N
√
N+1, where C ′ε1/p−1 ≥ 8C1N

√
Nε1/p−1+1 because ε ≤ 1 and 1/p ≤ 1

and so ε1/p−1 ≥ 1.

For p = ∞, since supp(∇φi) ⊆ Ti are disjoint, and so are supp(φi) ⊆ Ti∥∥∥∥∥∑
i∈I

∇φi⟨ai, · − yi⟩

∥∥∥∥∥
∞

≤ sup
i∈I

∥∇φi⟨ai, · − yi⟩∥∞ ≤

c.&d.
≤ sup

i∈I

{
8C1N

δε

√
Nδ|ai|

}
=

8C1N
√
N

ε
sup
i∈I

|ai|

and ∥∥∥∥∥∑
i∈I

aiφi

∥∥∥∥∥
∞

≤ sup
i∈I

∥aiφi∥∞ ≤ sup
i∈I

|ai| ∥φi∥∞ ≤ sup
i∈I

|ai|

using that ∥φi∥∞ = 1.

Since

|ai| =
1

|Ti|

∫
Ti

|f(x)|dx ≤ 1

|Ti|

∫
Ti

∥f∥∞ dx ≤ ∥f∥∞

Lusin-type theorem for functions with prescribed gradient 13



it follows that

∥∇u∥∞ ≤ 8C1N
√
N

ε
sup
i∈I

|ai|+ sup
i∈I

|ai| ≤ C ′ε−1 sup
i∈I

|ai| ≤ C ′ε−1 ∥f∥∞

with the same C ′ as before.

Lastly, we prove the Theorem.

Proof of Theorem 2.1. We may suppose ε < 1 and f not almost everywhere zero. We
discuss separately the following two cases.

First case. f is a continuous bounded function.

Let {ηn}n∈N be a sequence of positive numbers.

We build the sequences {un}n∈N, {Kn}n∈N and {fn}n∈N by induction. We de�ne
u0 = 0, K0 = Ω and f0 = f ; then, given un−1, Kn−1, fn−1 we apply Lemma 2.4 to
obtain compact set Kn and un ∈ C 1

c (Ω) such that

|Ω∖Kn| ≤ 2−nε|Ω| (2.4a)

|fn−1 −∇un| ≤ ηn on Kn (2.4b)

∥∇un∥p ≤ C ′(2−nε)
1/p−1 ∥fn−1∥p ∀p ∈ [1,+∞] (2.4c)

Then we de�ne fn(x) = fn−1(x) − ∇un(x) ∀x ∈ Kn, which is continuous because
fn−1 is continuous by induction and un ∈ C 1

c (Ω), and apply Tietze Extension Theorem
(1.14) to fn continuous on Kn to extend it to the whole of Ω so that

sup
x∈Ω

|fn(x)| = sup
x∈Kn

|fn(x)| ≤ ηn. (2.5)

Set A = Ω∖
⋂

nKn and u =
∑

n un; we will choose {ηn}n∈N such that (2.1a),(2.1b)
and (2.1c) are satis�ed, as shown later.

Since A = Ω ∖
⋂

nKn = Ω ∩ (
⋃

nK
c
n) =

⋃
n (Ω ∩Kc

n) =
⋃

n (Ω∖Kn), A is an open
set because it is union of open sets Ω ∖ Kn and by (2.4a) and subadditivity of the
measure, |A| = |

⋃
n (Ω∖Kn)| ≤

∑
n |Ω∖Kn| ≤

∑
n 2

−nε|Ω| = ε|Ω|, proving (2.1a).
For 1 ≤ p ≤ ∞, de�ning 1/∞ = 0, we have (2−n)1/p−1 = 2−n/p · 2n ≤ 2n because

2−n/p ≤ 1, and

∥fn∥p =
(∫

Ω
|fn|p

)1/p

≤
(∫

Ω
∥fn∥p∞

)1/p

= |Ω|1/p · ∥fn∥∞ ;
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therefore

∞∑
n=1

∥∇un∥p
(2.4c)

≤
∞∑
n=1

C ′(2−nε)
1/p−1 ∥fn−1∥p ≤ C ′ε

1/p−1
∞∑
n=1

2n ∥fn−1∥p ≤

≤ 2C ′ε
1/p−1

(
∥f0∥p +

∞∑
n=1

2n ∥fn∥p

)
≤

≤ 2C ′ε
1/p−1

(
∥f∥p +

∞∑
n=1

2n ∥fn∥∞ |Ω|1/p
)

≤

(2.5)

≤ 2C ′ε
1/p−1 ∥f∥p

(
1 +

|Ω|1/p

∥f∥p

∞∑
n=1

2nηn

)
.

As f is bounded and not almost everywhere 0, p 7→ |Ω|1/p
∥f∥p

is continuous and positive

in [1,∞] hence it has a positive upper bound M <∞; {ηn}n∈N can be chosen such that∑∞
n=1 2

nηn ≤ 1/M . Then

∥∇u∥p =

∥∥∥∥∥
∞∑
n=1

∇un

∥∥∥∥∥
p

≤
∞∑
n=1

∥∇un∥p ≤ 2C ′ε
1/p−1 ∥f∥p

(
1 +M · 1

M

)
= 4C ′ε

1/p−1 ∥f∥p

which proves (2.1c) with C = 4C ′.
Lastly, if x ∈ Ω∖A =

⋂
nKn then x ∈ Kn for every n ∈ N and thus by de�nition

fn(x) = fn−1(x)−∇un(x) = (fn−2(x)−∇un−1(x))−∇un(x) = · · · =

= fn−m(x)−
n∑

i=n−m+1

∇ui(x)

and for m = n

fn(x) = f0(x)−
n∑

i=1

∇ui(x) = f(x)−∇u(x) +
∞∑

i=n+1

∇ui(x);

from this it follows that

|f(x)−∇u(x)| ≤ |fn(x)|+

∣∣∣∣∣
∞∑

i=n+1

∇ui(x)

∣∣∣∣∣ ≤ ηn +

∞∑
i=n+1

|∇ui(x)| ≤ ηn +

∞∑
i=n+1

∥∇ui∥∞ .

We already proved that
∑∞

n=1 ∥∇un∥∞ ≤ 4C ′ε−1 ∥f∥∞ < ∞ because f is bounded,
which means that

∑∞
i=n+1 ∥∇ui∥∞ converges to 0 as n → ∞; similarly,

∑∞
n=1 2

nηn ≤
1/M <∞ and thus 2nηn converges to 0 for n→ ∞.

Then |f(x)−∇u(x)| ≤ ηn +
∑∞

i=n+1 ∥∇ui∥∞ → 0 for n→ ∞, so |f(x)−∇u(x)| = 0
which means f = ∇u on Ω∖A, proving (2.1b).

Second case. f is a Borel function.

Lusin-type theorem for functions with prescribed gradient 15



Let ε > 0 be �xed. Then, there exists r > 0 such that, with B = {x ∈ Ω : |f(x)| > r},
|B| < ε/4. This follows from the fact that, denoting En = {x ∈ Ω : |f(x)| > n},
En ⊆ En+1 and

⋂
nEn = ∅ and |E1| ≤ |Ω| < ∞ so by continuity from above (1.3) we

have limn→∞ |En| = |
⋂

nEn| = 0 and thus there exists n̄ such that |En̄| < ε/4.
By Lusin's Theorem (1.6) there exist f1 continuous on Ω and a Borel set C such that

|C| ≤ |B| and f1 agrees with f outside C. We then de�ne

f2(x) =

{
f1(x) if |f1(x)| ≤ r

rf1(x)
|f1(x)| if |f1(x)| > r

Since f1 = f outside C and |f(x)| ≤ r outside B, f2 agrees with f outside C ∪ B.
We have that f2 is continuous, because f1 is, and bounded, because |f2(x)| ≤ r ∀x ∈ Ω;
moreover |C ∪ B| ≤ |C| + |B| ≤ 2|B| < ε/2 and thus, by regularity of the Lebesgue
measure (1.4), there exists A1 ⊇ C∪B open set such that |A1| < ε/2 and f2 agrees with
f outside A1.

It can be seen that ∀p ∈ [1,∞[∫
C∪B

rpdx = rp|C ∪B| ≤ rp(|C|+ |B|) ≤ 2rp|B| = 2

∫
B
rpdx ≤ 2

∫
B
|f(x)|pdx

since |f | > r on B.
Then using |f2| ≤ r and f2 = f on Ω∖ (C ∪B), ∀p ∈ [1,∞[∫

Ω
|f2(x)|pdx =

∫
Ω∖(C∪B)

|f2(x)|pdx+

∫
C∪B

|f2(x)|pdx ≤

≤
∫
Ω∖(C∪B)

|f(x)|pdx+

∫
C∪B

|r|pdx ≤

≤
∫
Ω∖(C∪B)

|f(x)|pdx+ 2

∫
B
|f(x)|pdx ≤

≤
∫
(Ω∖(C∪B))∪B

|f(x)|pdx+

∫
B
|f(x)|pdx ≤ 2

∫
Ω
|f(x)|pdx

which means that ∥f2∥p ≤ 21/p ∥f∥p ≤ 2 ∥f∥p.
This inequality holds true also for p = ∞: if |B| > 0, then ∥f∥∞ > r ≥ ∥f2∥∞

whereas if |B| = 0, |C ∪ B| ≤ 2|B| = 0 and thus |C ∪ B| = 0 and f2 = f outside C ∪ B
which means that ∥f∥∞ = ∥f2∥∞.

Since f2 is bounded, from the �rst case there exist A2 open set with |A2| < ε/2 and
u ∈ C 1(Ω) such that ∇u = f2 outside A2 and ∥∇u∥p ≤ 4C ′(ε/2)1/p−1 ∥f2∥p ∀p ∈
[1,+∞].

Then: |A1 ∪A2| ≤ |A1|+ |A2| < ε, proving (2.1a); for A = A1 ∪A2, ∇u = f outside
A since f2 = f outside A1, proving (2.1b); and ∀p ∈ [1,+∞]

∥∇u∥p ≤ 4C ′
(ε
2

)1/p−1
∥f2∥p ≤ 4C ′(2ε

1/p−1)(2 ∥f∥p) ≤ 16C ′ε
1/p−1 ∥f∥p

proving (2.1c) and thus the theorem.
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CHAPTER 3. FUNCTIONS WITH HIGHER REGULARITY

Chapter 3

Functions with higher regularity

In this chapter, the term �cube� means a closed cube of RN with faces parallel to the
coordinate hyperplanes; this means that a �cube of side length d > 0 and center y ∈ RN �
is a set τ([−d/2, d/2]N ) where τ : RN → RN is the translation τ(x) = x+ y.

We now re�ne Alberti's result. Speci�cally, we want some estimates on the Lebesgue
measure and the Hausdor� dimension of the set where ∇u agrees with f when we impose
higher regularities on the function u.

We write Au,f to denote the set where ∇u and f agree, meaning that

Au,f = {x ∈ Ω : ∇u(x) = f(x)}.

With this notation, Alberti's Theorem states that given a Borel vector �eld f : Ω → RN

and ε > 0, there exists uε ∈ C 1(Ω) such that |Auε,f | ≥ (1− ε)|Ω|.
The following result shows that if f is a smooth C 1 vector �eld, a result similar to

Alberti's theorem can be obtained with functions u whose gradient ∇u is α-Hölder for
all 0 < α < 1; moreover, the Hausdor� dimension of the set Au,f can be arbitrarily near
N taking an appropriate function u with Lipschitz gradient.

Theorem 3.1. Let Q ⊆ RN be the unit cube and let f : Q→ RN be a C 1 smooth vector

�eld; then:

i. for any α > 0 there exists a C 1,1 smooth function uα : Q→ R such that dimHAuα,f ≥
N − α;

ii. for any ε > 0 there exists uε : Q → R, uε ∈ C 1,β(Q) for all 0 < β < 1 such that

|Auε,f | ≥ 1− ε.

Proof. For the proofs of both statements we will construct Cantor-type sets and functions
with prescribed gradient on them, in a way similar to that used to prove Lemma 2.4

and Theorem 2.1.

First statement. For every k > 0, given Q cube of side length l, we de�ne kQ as the
cube with the same center as Q but side length k · l; we also de�ne I = {1, 2, . . . , 2N}.

Lusin-type theorem for functions with prescribed gradient 17



Let δ = 2−N/N−α; since N/N−α > 1 it follows that δ = 2−N/N−α < 1/2.
We start by dividing Q in 2N cubes Q̃i1 , i1 ∈ I of side length 1/2 and then we take

the cubes Qi1 = 2δQ̃i1 , which have side length 2δ · 1/2 = δ < 1/2; in the second step, each
Qi1 is divided in 2N cubes Q̃i1i2 , i2 ∈ I and as before Qi1i2 = 2δQ̃i1i2 , with side length
δ2.

In general, given the cubes Qi1...in with im ∈ I for 1 ≤ m ≤ n, the (n + 1)-th
step consists in dividing each of them in 2N cubes Q̃i1...inin+1 and taking the cubes

Qi1...inin+1 = 2δQ̃i1...inin+1 , which have side length δn+1 by induction.
From now on we will use the following notation:

� we de�ne In = {1, 2, . . . , 2N}n = {(i1, . . . , in) : im ∈ I for 1 ≤ m ≤ n} and S =⋃∞
m=1 I

m; moreover, if i = (i1, . . . , in) ∈ In then for 1 ≤ k ≤ n we de�ne i(k) as
i(k) = (i1, . . . , ik) ∈ Ik;

� for i = (i1, . . . , in) ∈ S we denote Qi = Qi1...in and Qij1...jk = Qi1...inj1...jk with
jm ∈ I for 1 ≤ m ≤ k; the set S can be seen as the free semigroup on I with the
operation of concatenation and Qi de�ned coherently with this operation;

� we de�ne Qn =
⋃

i∈In Qi and C =
⋂∞

n=1Q
n .

The sets Qn are closed sets because they are �nite union of closed sets Qi, and
Qn+1 ⊆ Qn because by de�nition Qij ⊆ Qi for every i ∈ S, j ∈ I; therefore C is a
Cantor-type set and thus, by well known results [3, page 130], dimH C = N − α.

We will now de�ne an appropriate function uα on C whose gradient will be f , from
which it will follow that C ⊆ Auα,f and thus dimH Auα,f ≥ dimH C = N − α.

To do that:

� for all n ∈ N and i ∈ In let φi ∈ C 2 (Q) be a function such that

0 ≤ φi ≤ 1 and φi(x) =

1 if x ∈
(
1 +

1/2−δ
3

)
Qi

0 if x ̸∈
(
1 +

1/2−δ
2

)
Qi

and

∥∇φi∥∞ ≤ K1

δn(1/2 − δ)
and

∥∥∇2φi

∥∥
∞ ≤ K2

δ2n(1/2 − δ)2
(3.1)

for some constants K1,K2; this functions exist by Lemma 1.15 applied on those
cubes with

d =
1

4

[(
1 +

1/2 − δ

2

)
δn −

(
1 +

1/2 − δ

3

)
δn
]
=

(1/2 − δ)δn

24
;

� for i ∈ S, j ∈ I let

aj =
1

|Qj |

∫
Qj

f(x)dx and aij =
1

|Qij |

∫
Qij

f(x)dx− 1

|Qi|

∫
Qi

f(x)dx

with the aforementioned notations;
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� let un(x) =
∑

i∈In φi(x)⟨ai, x − yi⟩ where yi ∈ Q is the center of Qi and let
uα(x) =

∑∞
n=1 un(x) .

With i ∈ In, from the de�nition of ai it follows that

n∑
k=1

ai(k) =
1

|Qi|

∫
Qi

f(x)dx (3.2)

because the sum is telescoping.
We also have that |ai| ≤ K3 δ

n for some constant K3; it is enough to prove this for
n ≥ 2 since the constant K2 can always be increased to include the cases with n = 1 too.

Since f is of class C 1 on Q compact set, f is Lipschitz with Lipschitz constant M ′;
this means that for i ∈ In and x, y ∈ Qi we have

|f(x)− f(y)| ≤M ′|x− y| ≤M ′ ·
√
N · δn =Mδn.

Then, for i ∈ In, j ∈ I and yij center of Qij ⊆ Qi

|aij | =

∣∣∣∣∣ 1

|Qij |

∫
Qij

f(x)dx− 1

|Qi|

∫
Qi

f(x)dx

∣∣∣∣∣ ≤
≤

∣∣∣∣∣ 1

|Qij |

∫
Qij

f(x)dx− f(yij)

∣∣∣∣∣+
∣∣∣∣ 1

|Qi|

∫
Qi

f(x)dx− f(yij)

∣∣∣∣ ≤
≤ 1

|Qij |

∫
Qij

|f(x)− f(yij)|dx+
1

|Qi|

∫
Qi

|f(x)− f(yij)|dx ≤

≤ 1

|Qij |
|Qij | ·Mδn+1 +

1

|Qi|
|Qi| ·Mδn ≤M(δ + 1)δn ≤ 3M

2
δn = K3 δ

n,

proving the estimate.

The functions un are C 1(Q) by construction, therefore one can de�ne the series
F (x) =

∑∞
n=1∇un(x), possibly divergent for some x ∈ Q; by (1.2), if the series uα con-

verges at least at one point, the uniform convergence of F gives that uα(x) =
∑∞

n=1 un(x)
is convergent and of class C 1 on Q and

∇uα(x) = F (x) =
∞∑
n=1

∇un(x).

The convergence of uα at one point can be easily seen choosing x ̸∈ C: x is inside
�nitely many cubes Qi therefore only �nitely many functions un are non zero at x and
thus the series uα(x) is a �nite sum. Then, we only need to prove that F is uniformly
convergent, meaning that∥∥∥∥∥F −

n∑
m=1

∇um

∥∥∥∥∥
∞

=

∥∥∥∥∥
∞∑

m=n+1

∇um

∥∥∥∥∥
∞
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converges to 0 for n→ ∞. To do it, it is enough to prove∥∥∥∥∥
∞∑

m=n+1

|∇um|

∥∥∥∥∥
∞

≤ K
1/2 − δ

δn → 0 (3.3)

because the second term converges to 0 for n→ ∞.
It can be seen that for every m ≥ n + 1 um = 0 outside Qn by de�nition of φi

therefore it is enough to evaluate the norm on Qn.
For x ∈ Qn ∖ C there exists j ∈ Ik with k ≥ n such that x is inside the cubes Qj(m)

with 1 ≤ m ≤ k but x ̸∈ Qk+1, because if x were inside in�nitely many cubes Qi, it
would be in C.

We now remember that:

a. x is outside Qk+1 therefore um(x) = 0 for m ≥ k + 2 ;

b. for y ∈ Q

∇um(y) = ∇

(∑
i∈Im

φi(y)⟨ai, y − yi⟩

)
=
∑
i∈Im

φi(y)ai +
∑
i∈Im

∇φi(y)⟨ai, y − yi⟩;

since all φi with i ∈ In have disjoint supports we have

∇um(x) = φj(m)(x) aj(m) +∇φj(m)(x)⟨aj(m), x− yj(m)⟩;

c. 0 ≤ φi ≤ 1 and by Cauchy-Schwarz inequality |⟨ai, x− yi⟩| ≤ |ai| · |x− yi|;

d. for m ≥ n + 1 we have |aj(m)| ≤ K3δ
m ≤ K3δ

n by the previous result and |x −
yj(m)| ≤ K4δ

m ≤ K4δ
n where K4 =

√
N/2, because x ∈ Qj(m).

Then

∞∑
m=n+1

|∇um(x)| a.&b.
=

k+1∑
m=n+1

|φj(m)(x) aj(m) +∇φj(m)(x)⟨aj(m), x− yj(m)⟩| ≤

c.
≤

k+1∑
m=n+1

|aj(m)|+ |∇φj(m)(x)| · |aj(m)| · |x− yj(m)| ≤

d.& (3.1)

≤
k+1∑

m=n+1

K3δ
n +

K1

(1/2 − δ)δn
·K3δ

n ·K4δ
n =

K
1/2 − δ

δn;

this proves the estimate for x ∈ Qn ∖ C, which is dense in Qn, therefore the estimate
holds in the whole Qn and thus in Q, proving (3.3).

It follows that uα(x) =
∑∞

n=1 un(x) ∈ C 1(Q) and ∇uα(x) =
∑∞

n=1∇un(x).

Now, let x ∈ C. There exists a sequence of cubes {Qjn}n∈N , with jn ∈ In uniquely
determined by the property x ∈ Qjn for all n ∈ N; by construction Qjn+1 ⊆ Qjn .
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By de�nition, for every n ∈ N we have φjn(x) = 1 thus un(x) = ⟨ajn , x − yjn⟩ and
∇un(x) = ajn .

Then from ∇uα =
∑∞

n=1∇un it follows that

∇uα(x) =
∞∑
n=1

∇un(x) =
∞∑
n=1

ajn = lim
m→∞

m∑
n=1

ajn
(3.2)
= lim

m→∞

1

|Qjm |

∫
Qjm

f(y)dy = f(x),

by continuity of f .
This proves that C ⊆ Auα,f and therefore dimH Auα,f ≥ dimH C = N − α.

Lastly, we need to prove the higher regularity of uα, and in particular that ∇uα is
Lipschitz. We want to prove the estimate

|∇uα(x)−∇uα(y)| ≤
K

(1/2 − δ)2
|x− y|

for all x, y ∈ Q and for some constant K.
With the same notations as before for a �xed x ∈ Q∖ C, we have for every m ∈ N:∥∥∇2um(x)

∥∥
∞

b.
=
∥∥∇ (φj(m)(x)aj(m) +∇φj(m)(x)⟨aj(m), x− yj(m)⟩

)∥∥
∞ =

=
∥∥∇2φj(m)(x)⟨aj(m), x− yj(m)⟩+ 2 · ∇φj(m)(x)⊗ aj(m)

∥∥
∞ ≤

c.
≤
∥∥∇2φj(m)

∥∥
∞ · |aj(m)| · |x− yj(m)|+ 2

∥∥∇φj(m)

∥∥
∞ · |aj(m)| ≤

d.& (3.1)

≤ K2

(1/2 − δ)2δ2m
·K3δ

m ·K4δ
m + 2 · K1

(1/2 − δ)δm
·K3δ

m ≤ K

(1/2 − δ)2

for some constant K.
Since ∇φi have disjoint supports by de�nition, so do ∇2φi and thus ∇2um have

disjoint supports for m ∈ N, which means that

∇2

(
n∑

m=1

um(x)

)
=

n∑
m=1

∇2um(x);

for every x ∈ Q ∖ C either ∇2um(x) = 0 ∀m ∈ N or there exists a unique m ∈ N such
that ∇2um(x) ̸= 0, it follows that∥∥∥∥∥∇2

(
n∑

m=1

um(x)

)∥∥∥∥∥
∞

=

∥∥∥∥∥
n∑

m=1

∇2um(x)

∥∥∥∥∥
∞

≤
∥∥∇2um(x)

∥∥
∞ ≤ K

(1/2 − δ)2
.

The uniform estimate for x ∈ Q ∖ C and the facts that Q ∖ C is dense in Q and
uα ∈ C 2(Q) give that ∥∥∇2uα

∥∥
∞ ≤ K

(1/2 − δ)2
.

Then the Mean value theorem (1.1) applied to

g : [0, 1] → RN , g(t) = ∇uα(tx+ (1− t)y)
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gives

|∇uα(x)−∇uα(y)| = |g(1)− g(0)| ≤ (1− 0)|g′(t)| = |∇2uα(tx+ (1− t)y)(x− y)| ≤

≤
∥∥∇2uα

∥∥
∞ |x− y| ≤ K

(1/2 − δ)2
|x− y|

which proves that ∇uα is a Lipschitz function.

Second statement. Let ε > 0 and for every k ∈ N let δk = 2−1−c/k2 < 1/2 for some
constant c = c(ε) > 0 chosen appropriately; then de�ne for every n ∈ N

∆n =
n∏

k=1

δk = 2−n−
∑n

k=1
c/k2 ≤ 2−n.

We then construct the set C similarly to that in the �rst statement. The �rst step
consists in dividing Q in 2N cubes Q̃i1 , i1 ∈ I of side length 1/2 and then taking the cubes
Qi1 = 2δ1Q̃i1 , with side length ∆1 = δ1; then in general, given the cubes Qi, i ∈ In,
in the (n + 1)-th step we divide each of them in 2N cubes Q̃iin+1 and take the cubes

Qiin+1 = 2δn+1Q̃iin+1 , with side length ∆n+1 by induction. Then, Qn =
⋃

i∈In Qi and
C =

⋂∞
n=1Q

n.
Since Qn+1 ⊆ Qn for every n ∈ N, by continuity from above (1.3) we have |C| =

limn→∞ |Qn|. Since all Qi with i ∈ In are disjoint, we have

|Qn| =

∣∣∣∣∣ ⋃
i∈In

Qi

∣∣∣∣∣ = ∑
i∈In

|Qi| = 2Nn∆N
n = 2Nn · 2−Nn−N

∑n
k=1

c/k2 = 2−Nc
∑n

k=1
1/k2 → 2−Kc

for n→ ∞, because
∑∞

k=1
1/k2 converges; we then choose

c = c(ε) ≤ − 1

K
log2(1− ε)

so that
|C| = lim

n→∞
|Qn| = 2−Kc ≥ 1− ε.

Like before, we will construct a function uε with gradient on C equal to f , so C ⊆
Auε,f and thus |Auε,f | ≥ |C| ≥ 1− ε.

For all n ∈ N and i ∈ In we de�ne φi ∈ C 2
(
RN
)
as before applying Lemma 1.15

to cubes

A =

(
1 +

1/2 − δn
3

)
Qi and B =

(
1 +

1/2 − δn
2

)
Qi

such that instead of (3.1) we have

∥∇φi∥∞ ≤ k1
∆n(1/2 − δn)

and
∥∥∇2φi

∥∥
∞ ≤ k2

∆2
n(1/2 − δn)2

; (3.4)

then, we de�ne ai and un as before and uε =
∑∞

n=1 un.
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From the inequality e−x ≤ 1− x/2 which holds for 0 ≤ x ≤ π/2, for n large enough we
have

2−
c/n2

= e−
c ln(2)/n2 ≤ 1− c ln(2)

2n2
= 1− k3

n2

and therefore

1− 2−
c/n2 ≥ k3

n2
so

1

2
− δn =

1

2
(1− 2−

c/n2
) ≥ k3

2n2

Then from (3.4) we obtain

∥∇φi∥∞ ≤ k1
∆n(1/2 − δn)

≤ 2k1n
2

∆nk3
=
K1n

2

∆n
and

∥∥∇2φi

∥∥
∞ ≤ K2n

4

∆2
n

(3.5)

for some constants K1,K2.

Again, with the same notations as before and using the inequalities ∆n ≤ 2−n,
|aj(m)| ≤ K3∆n and |x− yj(m)| ≤ K4∆n for m ≥ n+ 1, for x ∈ Qn ∖ C we have:

∞∑
m=n+1

|∇um(x)| ≤
k+1∑

m=n+1

|aj(m)|+ |∇φj(m)(x)| · |aj(m)| · |x− yj(m)| ≤

≤
k+1∑

m=n+1

K3∆n +
K1n

2

∆n
·K3∆n ·K4∆n ≤ K5n

2∆n ≤ K5n
2

2n

which extends to all x ∈ Q and therefore by (1.2) it gives the uniform convergence of∑∞
n=1∇un = ∇uε.

Regarding the regularity of uε, we will prove a weaker estimate than the one in the
proof of the �rst statement.

With the same calculations as before, for x ∈ Q∖ C and m ∈ N

∥∥∇2um(x)
∥∥
∞ ≤

∥∥∇2φj(m)

∥∥
∞ · |aj(m)| · |x− yj(m)|+ 2

∥∥∇φj(m)

∥∥
∞ · |aj(m)| ≤

≤ K2m
4

∆2
m

·K3∆m ·K4∆m + 2 · K1m
2

∆m
·K3∆m ≤ K6m

4

which means that Lip(∇um) =
∥∥∇2um

∥∥
∞ ≤ K6m

4.
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For any x, y ∈ Q, chosen n ∈ N such that 2−n−1 ≤ |x− y| ≤ 2−n, we have

|∇uε(x)−∇uε(y)| =

∣∣∣∣∣
n∑

m=1

∇uk(x)−
n∑

m=1

∇uk(y) +
∞∑

m=n+1

∇uk(x)−
∞∑

m=n+1

∇uk(y)

∣∣∣∣∣ ≤
≤

∣∣∣∣∣
n∑

m=1

(∇uk(x)−∇uk(y))

∣∣∣∣∣+
∣∣∣∣∣

∞∑
m=n+1

∇uk(x)

∣∣∣∣∣+
∣∣∣∣∣

∞∑
m=n+1

∇uk(y)

∣∣∣∣∣ ≤
≤ Lip

(
n∑

m=1

∇um

)
· |x− y|+ 2

∥∥∥∥∥
∞∑

m=n+1

|∇uk|

∥∥∥∥∥
∞

≤

≤ K6

(
n∑

m=1

m4

)
|x− y|+ 2K5n

2 · 2−n ≤

≤ K6n
5|x− y|+ 2K5n

2 · 2−n ≤ K6n
5|x− y|+ 2K5n

5 · 2|x− y| =
= Kn5|x− y| ≤ K |log2 |x− y||5 |x− y|

where the last inequality follows from −n−1 ≤ log2 |x−y| ≤ −n and thus | log2 |x−y|| ≥
n.

Given 0 < α < 1, the function g : R>0 → R de�ned as g(x) = | log2(x)|5x1−α can
be extended by continuity at x = 0 as g(0) = 0; with this extension, g is continuous in
[0,

√
N ] and thus it has maximum over it, meaning that g(x) ≤ M for all x ∈ [0,

√
N ].

Since for x, y ∈ Q, |x− y| ∈ [0,
√
N ] we have that

|∇uε(x)−∇uε(y)| ≤ K |log2 |x− y||5 |x− y| =

= K
(
|log2 |x− y||5 |x− y|1−α

)
|x− y|α ≤ KM |x− y|α

which proves that ∇uε is α-Hölder for all 0 < α < 1.

Despite the theorem we just proved, not for all C 1 smooth vector �elds the set Au,f

is guaranteed to have maximal Hausdor� dimension when u has high regularity. In fact,
the following result shows that, at least for some vector �elds, if u has Lipschitz gradient
then the set Au,f cannot have maximal Hausdor� dimension, while if u is taken to be C 2

then the Hausdor� dimension of Au,f is smaller than half of that of the whole space.

Theorem 3.2. Let Q̃ ⊆ RN and Q = Q̃ × Q̃ ⊆ R2N = RN × RN be respectively

the unit cubes in RN and R2N and let f0 : Q → R2N be the vector �eld de�ned as

f0(x, y) = (2y,−2x) for all x, y ∈ Q̃ ⊆ Rn. Then:

i. if u : Q → R is a C 1,1 smooth function, then dimHAu,f0 ≤ 2N − λ where λ > 0
depends on the Lipschitz constant for ∇u, therefore there cannot exist a C 1,1 smooth

function u such that dimHAu,f0 = 2N ;

ii. if u : Q → R is a C 2 smooth function, then HN (Au,f0) < ∞, meaning that

dimHAu,f0 ≤ N .
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Proof. First statement. Let u : Q → R be of class C 1,1 and let l > 0 be the Lipschitz
constant of ∇u.

Given an arbitrary cube Q′ ⊆ Q of side length d > 0, we denote by r the supremum
of radii of balls all contained in Q′∖Au,f0 . We want to prove that there exists a constant
α which depends only on l such that r > αd; from this kind of porosity it will follow that
the set Au,f0 cannot have Hausdor� dimension 2N .

We now suppose r ≤ d/4 otherwise r > d/4 and we have the porosity estimate with
α = 1/4.

Denoting by x1, x2, . . . , xN , y1, . . . , yN the coordinates in R2N , if the center of Q′ is
x̃ = (x̃1, x̃2, . . . , x̃N , ỹ1, . . . , ỹN ) we de�ne P as the plane of points in R2N such that
xi = x̃i, yi = ỹi for 2 ≤ i ≤ N . Points on P can be described by the local coordinates
z1 = (x1, y1) and x̃ ∈ P has local coordinates z̃1 = (x̃1, ỹ1). Then, we take γ a closed
cycle on P in the shape of a square of side length d/2 with center in z̃1 and sides parallel
to the coordinate axes of P .

By de�nition of r it follows that for all p ∈ γ the ball B(p, 2r) intersects Au,f0 in at
least one point. It can be easily seen that given a, b ∈ Q we have |f0(a)−f0(b)| = 2|a−b|;
then, �xed p ∈ γ and taken q ∈ B(p, 2r) ∩Au,f0 , we have f0(q) = ∇u(q) and therefore

|f0(p)−∇u(p)| = |f0(p)− f0(q) +∇u(q)−∇u(p)| ≤
≤ |f0(p)− f0(q)|+ |∇u(q)−∇u(p)| ≤ 2|p− q|+ l|p− q| <
< 2(2 + l)r

using the fact that ∇u is a Lipschitz function with Lipschitz constant l.

By the gradient theorem (1.13)
∫
γ ∇u ds = 0 because γ is a closed curve; therefore

we obtain∣∣∣∣∫
γ
f0 ds

∣∣∣∣ = ∣∣∣∣∫
γ
(f0 −∇u) ds

∣∣∣∣ ≤ ∫
γ
|f0 −∇u| ds <

∫
γ
2(2 + l)r ds = 2(2 + l)r · 2d

because the length of γ is 2d.

We now evaluate explicitly the integral along the curve γ.

We denote by (·)z1 the restriction of functions in the local coordinates z1 on P: in
particular, given x = (x1, . . . , xN , y1, . . . , yN ) we have (x)z1 = (x1, y1), while (f0(x))z1 =
(2y1, . . . , 2yN ,−2x1, . . . ,−2xn)z1 = (2y1,−2x1).

We can parametrize the cycle as γ : [0, 1] → P ⊆ R2N such that γ([i−1/4, i/4]) for
i = 1, 2, 3, 4 are the four sides of the square of the cycle γ. We then suppose (γ(0))z1 =
(x̃1 + d/4, ỹ1 + d/4) and γ going counterclockwise.

We now evaluate the integral along γ([0, 1/4]); the integrals along the other three sides
are analogous. For t ∈ [0, 1/4] we have

(γ(t))z1 = (γ(0))z1 + (−2dt, 0) =

(
x̃1 +

d

4
− 2dt, ỹ1 +

d

4

)
(γ′(t))z1 = (−2d, 0)
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(f0(γ(t)))z1 =

(
2ỹ1 +

d

2
,−2x̃1 −

d

2
+ 4dt

)
(f0(γ(t)))z1 · (γ′(t))z1 = −2d ·

(
2ỹ1 +

d

2

)
= −4dỹ1 − d2

from which it follows that∫
γ([0,1/4])

f0 ds =

∫ 1/4

0
f0(γ(t)) · γ′(t) dt =

∫ 1/4

0
(−4dỹ1 − d2) dt = −dỹ1 −

d2

4
.

Splitting the integral over the intervals γ([i−1/4, i/4]) we obtain∫
γ
f0 ds =

(
−dỹ1 −

d2

4

)
+

(
−dx̃1 −

d2

4

)
+

(
dỹ1 −

d2

4

)
+

(
dx̃1 −

d2

4

)
= −d2;

from

d2 =

∣∣∣∣∫
γ
f0 ds

∣∣∣∣ < 4(2 + l)rd

it follows

r >
d

4(2 + l)

which gives the porosity estimate with α = 1/4(2+l).

We now prove that from the porosity estimate it follows that dimHAu,f0 < 2N − λ
where λ depends only on l.

Firstly, the estimate is true also for the supremum of side lengths of open cubes all
contained in Q′ ∖ Au,f0 . In fact, if B ⊆ Q′ ∖ Au,f0 is a ball of radius rB, then there
exists an open cube QB ⊆ B ⊆ Q′ ∖ Au,f0 of side length dB = 2rB/

√
N and therefore the

supremum of side lengths of open cubes all contained in Q′ ∖Au,f0 is

r ≥ sup
B⊆Q′∖Au,f0

dB =
2√
N

sup
B⊆Q′∖Au,f0

rB >
2√
N
αd = αd.

From now on, we will denote the new porosity estimate on cubes like the one on balls,
with r and α in place of r and α.

Let then Q′ be a cube of side length d that covers a portion Q′ ∩ Au,f0 of Au,f0 ; by

the new porosity estimate there exists a cube Q̃ ⊆ Q′∖Au,f0 of side length r̃ > αd. With
k ∈ N such that 2−kd < r̃/2, we can divide each side of Q′ in 2k parts, thus dividing Q′

in 22Nk cubes of side length 2−kd; then, there is at least one of these cubes all contained
in Q̃, meaning that to cover Q′ ∩Au,f0 it is enough to use 22Nk − 1 of these cubes.

Fix 0 ≤ D ≤ 2N , δ > 0 and ε > 0; by de�nition of Hausdor� measure, there exists a
sequence {Qi}i∈N of cubes such that diam(Qi) < δ for all i ∈ N, Au,f0 ⊆

⋃
i∈NQi and

HD
δ (Au,f0) ≥ C

∞∑
i=0

ℓ(Qi)
D − ε.
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As said previously, each cube Qi can be decomposed in 22Nk cubes Qi,j with only
the �rst 22Nk − 1 necessary to cover Qi ∩ Au,f0 ; each Qi,j has diam(Qi,j) < δ/2k and
Au,f0 ⊆

⋃
i,j Qi,j so it follows that

HD
δ/2k(Au,f0) ≤ C

∞∑
i=0

22Nk−1∑
j=1

ℓ(Qi,j)
D = C

∞∑
i=0

(22Nk − 1)

(
ℓ(Qi)

2k

)D

=

=
22Nk − 1

2kD

(
C

∞∑
i=0

ℓ(Qi)
D

)
≤ 22Nk − 1

2kD
(
HD

δ (Au,f0) + ε
)
.

Since this is true for all ε > 0 we obtain

HD
δ/2k(Au,f0) ≤ βD · HD

δ (Au,f0) with βD =
22Nk − 1

2kD
;

then, by induction we have for n ∈ N

HD
δ/2nk(Au,f0) ≤ βnD · HD

δ (Au,f0).

We have βD < 1 if 22Nk − 1 < 2kD meaning that

D >
1

k
log2(2

2Nk − 1) =: 2N − λ with λ > 0.

Then for D ∈
]
2N − λ, 2N

]
we have that

HD(Au,f0) = lim
η→∞

HD
η (Au,f0) = lim

n→∞
HD

δ/2nk(Au,f0) ≤ lim
n→∞

βnD · HD
δ (Au,f0) = 0

because βD < 1.
Therefore dimHAu,f0 ≤ 2N − λ, where λ depends only on α which depends only on

l, proving the result.

Second statement. Let u : Q → R be of class C 2. Denoting by J the matrix

J =
(

0 1N
−1N 0

)
, for x ∈ Au,f0 we can write ∇u(x) = f0(x) = 2Jx thinking of x as

a column vector in R2N .
Let x ∈ Au,f0 and v, w ∈ R2N such that x + v, x + w ∈ Au,f0 too. Applying the

Mean value theorem (1.1) to the function g : [0, 1] → R, g(t) = ⟨∇u(x + tv), w⟩, since
g′(t) = ⟨∇2u(x+ tv)v, w⟩ we have

⟨∇u(x+ v), w⟩ − ⟨∇u(x), w⟩ = g(1)− g(0) = g′(τ1) = ⟨∇2u(x+ τ1v)v, w⟩

for τ1 ∈]0, 1[; therefore

⟨∇2u(x+τ1v)v, w⟩ = ⟨∇u(x+v), w⟩−⟨∇u(x), w⟩ = ⟨2J(x+v), w⟩−⟨2Jx,w⟩ = ⟨2Jv, w⟩.

Similarly, for some τ2 ∈]0, 1[

⟨∇2u(x+ τ2w)w, v⟩ = ⟨2Jw, v⟩;
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since J is antisymmetric and ∇2u is symmetric because u ∈ C 2, then

⟨∇2u(x+ τ2w)v, w⟩ = −⟨2Jv, w⟩.

Putting together the two equations and using Cauchy-Schwarz inequality, we have

|⟨4Jv, w⟩| =
∣∣〈(∇2u(x+ τ1v)−∇2u(x+ τ2w)

)
v, w

〉∣∣ ≤
≤
∥∥∇2u(x+ τ1v)−∇2u(x+ τ2w)

∥∥
∞ · |v| · |w|.

We have u ∈ C 2, so ∇2u is continuous on Q compact set and therefore it is uniformly
continuous. Then ∇2u(x+ τ1v) → ∇2u(x) for |v| → 0 and ∇2u(x+ τ2w) → ∇2u(x) for
|w| → 0; therefore∥∥∇2u(x+ τ1v)−∇2u(x+ τ2w)

∥∥
∞ ≤

≤
∥∥∇2u(x+ τ1v)−∇2u(x)

∥∥
∞ +

∥∥∇2u(x)−∇2u(x+ τ2w)
∥∥
∞ → 0

for |v|, |w| → 0.
This means that for every ε > 0 there exists δε such that if |v|, |w| < δε then

|⟨Jv, w⟩| ≤ ε · |v| · |w|; by uniform continuity of ∇2u, this δε is independent of x.

We now prove the following result: given η0 > 0 there exists ε0 > 0 such that if
K ⊆ S2N−1 has the property that |⟨v, Jw⟩| ≤ ε0 for all v, w ∈ K, then there exists a
N -vector space W in R2N such that dist(k,W ) ≤ η0 for all k ∈ K.

Given N + 1 independent vectors x1, . . . , xN+1 we denote by Vi the N -vector space
generated by all of them except for xi, meaning that Vi = span{xj : j ̸= i}. The N -vector
space W in the result exists if and only if there do not exist x1, . . . , xN+1 ∈ K linear
independent vectors such that for every 1 ≤ i ≤ N + 1, dist(xi, Vi) ≥ αη0 with vi ∈ Vi
and α some geometric constant.

This means that to prove the result it is enough to show that given x1, . . . , xN+1 ∈ K
linear independent vectors such that for every 1 ≤ i ≤ N + 1, dist(xi, Vi) ≥ αη0 =: r0
then there exist 1 ≤ ī, j̄ ≤ N + 1 such that |⟨xī, Jxj̄⟩| ≥ ε0 where ε0 only depends on r0
and not on the vectors xi taken.

A preliminar result states that: given a1, . . . , an basis of unit vectors of Rn such that
for all i we have dist(ai, Ṽi) ≥ r0 with Ṽi := span{aj : j ̸= i}, if v =

∑n
i=1 βiai is a unit

vector then |βi| ≤ r−1
0 for all i. We �x 1 ≤ i ≤ n and we take bi unit vector orthogonal

to Ṽi; since |⟨ai, bi⟩| is the distance of ai from Ṽi, then |⟨ai, bi⟩| ≥ r0. By Cauchy-Schwarz
inequality we have

|⟨v, bi⟩| ≤ |v||bi| = 1

and thus

1 ≥ |⟨v, bi⟩| ≥

∣∣∣∣∣∣
〈

n∑
j=1

βjaj , bi

〉∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

βj⟨aj , bi⟩

∣∣∣∣∣∣ = |βi⟨ai, bi⟩| ≥ r0|βi|

because for all j ̸= i we have aj ∈ Ṽi so ⟨aj , bi⟩ = 0; this gives |βi| ≤ r−1
0 .
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The spaces V = span{xi : 1 ≤ i ≤ N + 1} and W = span{Jxi : 1 ≤ i ≤ N} have
dimension dim(V ) = N + 1 and dim(W ) = N , so necessarily V ∩ W ̸= ∅; let then
v ∈ V ∩W be a unit vector with

v =
N+1∑
i=1

αixi =
N∑
i=1

βiJxi.

We can apply twice the preliminar result on v: V ∼= RN+1 with basis x1, . . . , xN+1 and
the condition on distances follows from the hypothesis so we obtain |αi| ≤ r−1

0 ; similarly
W ∼= RN with basis Jx1, . . . , JxN and the estimate on distances follows the same way
because J is an isometry, so |βi| ≤ r−1

0 .
Then

1 = |v|2 = ⟨v, v⟩ =

〈
N+1∑
i=1

αixi,

N∑
j=1

βjJxj

〉
=

N+1∑
i=1

N∑
j=1

αiβi⟨xi, Jxj⟩ ≤

≤
N+1∑
i=1

N∑
j=1

|αi||βi||⟨xi, Jxj⟩| ≤ r−2
0

N+1∑
i=1

N∑
j=1

|⟨xi, Jxj⟩|

which means, by Pigeonhole Principle, that there exist ī, j̄ such that

|⟨xī, Jxj̄⟩| ≥
r20

N(N + 1)
=: ε0,

which is the result.

Let now ε̄ be the ε0 from this result with η0 = 1/4. We �x x ∈ Au,f0 ; from what we
proved before, there exists δε̄ such that if v, w ∈ R2N are such that x+ v, x+ w ∈ Au,f0

and |v|, |w| < δε̄ then |⟨Jv, w⟩| ≤ ε̄ · |v| · |w|.
We de�ne

Kx =

{
y − x

|y − x|
: y ∈ B(x, δε̄) ∩Au,f0

}
;

if y ∈ B(x, δε̄) ∩Au,f0 the previous result holds, so for v1, v2 ∈ Kx with

v1 =
y1 − x

|y1 − x|
and v2 =

y2 − x

|y2 − x|

we have

|⟨Jv1, v2⟩| =
|⟨J(y1 − x), (y2 − x)⟩|

|y1 − x||y2 − x|
≤ ε̄|y1 − x||y2 − x|

|y1 − x||y2 − x|
= ε̄

which, by the result just proved, means that there exists a N -vector space Wx in R2N

such that dist(k,Wx) ≤ 1/4 for all k ∈ Kx.
This means that given y ∈ B(x, δε̄) ∩ Au,f0 , we have dist(y − x,Wx) ≤ 1/4|y − x|;

denoting by PV (v) the orthogonal projection of vector v on the subspace V , we have in
general that

|PV (v)|2 + dist(v, V )2 = |v|2 so |PV (v)|2 = |v|2 − dist(v, V )2
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therefore with v = y − x and V =Wx we obtain

|PWx(y − x)|2 = |y − x|2 − dist(y − x,Wx)
2 ≥ |y − x|2 − 1

4
|y − x|2 = 3

4
|y − x|2

which means

|PWx(y − x)| ≥ 3

4
|y − x|.

Consider now the Grassmannian G(R2N , N), that is, the set of all N -dimensional
linear subspaces of R2N , equipped with the metric d(X,Y ) = ∥PX − PY ∥op; with this
metric topology G(R2N , N) is compact, so it follows that there exist W1, . . . ,Wm ∈
G(R2N , N) N -vector spaces such that G(R2N , N) =

⋃m
i=1Bd(Wi, 1/4), where m depends

only on N .
For all x ∈ Au,f0 we have Wx ∈ G(R2N , N) so there exists Wi such that

1

4
≥ d(Wi,Wx) = ∥PWi − PWx∥op = sup

v∈R2N

v ̸=0

|(PWi − PWx)(v)|
|v|

using the de�nition of operator norm; then for y ∈ B(x, δε̄) ∩Au,f0 we have

|PWi(y − x)| ≥ |PWx(y − x)| − |(PWi − PWx)(y − x)| ≥ 3

4
|y − x| − 1

4
|y − x| = 1

2
|y − x|.

Let now H be a subset of Au,f0 with diam(H) ≤ δε̄; since H ⊆ B(x, δε̄) ∩ Au,f0 for
any x ∈ H, the projection PWi(y − x) is well de�ned for all y ∈ H and has the previous
property. We then denote by Hi the subset of point of H whose associated N -vector
space is Wi, with 1 ≤ i ≤ m.

Given x ∈ Hi and two points x′, x′′ ∈ Hi such that PWi(x
′ − x) = PWi(x

′′ − x), then

0 = |PWi(x
′ − x)− PWi(x

′′ − x)| = |PWi(x
′ − x′′)| ≥ 1

2
|x′ − x′′|

because x′′ ∈ Hi, which gives x′ = x′′; this proves that the projection of points in Hi on
the a�ne N -space x+Wi is injective, and thus Hi is part of a single graph over Wi.

Speci�cally, Hi is the graph of the inverse of the projection on x + Wi; this is a
bi-Lipschitz function because for any y, x ∈ Hi we have

2|PWi(y − x)| ≥ |y − x| ≥ |PWi(y − x)|

so it follows by (1.11) that the graph containing Hi has Hausdor� dimension equal to
dimHWi = N .

In conclusion, Au,f0 can be split into at most K · δ−2N
ε̄ subsets, each of which can be

split into at most m pieces Hi with dimHHi ≤ N ; therefore, Au,f0 is union of �nitely
many sets of Hausdor� dimension smaller than N so dimHAu,f0 ≤ N .
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