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Abstract 

This thesis investigates the classification of cognitive load states using biomet- 

ric sensor data, specifically within the context of N-back tasks performed in a 

Virtual Reality (VR) environment. Cognitive load is widely studied, especially 

in contexts like cognitive ergonomics, training and education, and UX research. 

While subjective methods exist to measure cognitive load, researchers are look- 

ing into ways to objectively and, in particular, automatically classify different 

cognitive load states. Such automatic detection would benefit various contexts, 

ranging from real-time operator monitoring to adaptive training ( flow). In this 

thesis project, we aim to delve into the development of automated methods for 

classifying cognitive load states. Our goal is to create a robust framework that 

can objectively assess and differentiate between varying levels of cognitive load 

without relying on subjective human assessments. The project mainly involves 

the exploration of various data sources, sensor technologies, and machine learn- 

ing techniques to develop a reliable and practical system for automatic cognitive 

load classification. This project’s Successful completion will contribute to ad- 

vancing human-centered technology and research and provide valuable insights 

into optimizing cognitive ergonomics across a wide spectrum of applications— 

think adaptive training systems, improved worker productivity and wellbeing, 

UX research, and more. 
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Introduction 

 
The advent of extended reality (XR) technologies marks a transformative 

era in training and learning scenarios, where biofeedback measures like heart 

rate, eye gaze, and pupil dilation play a pivotal role. These measures are essen- 

tial for tailoring adaptive and practical XR training experiences that meet the 

growing demands for personalized learning paths. Despite the advancements 

in XR technologies equipped with physiological sensors, a fundamental chal- 

lenge persists: accurately interpreting these biofeedback signals in light of inter- 

individual physiological variances. This thesis underscores the significance of 

utilizing biometrics to measure how an individual’s physiological signals fluc- 

tuate in response to cognitive state changes, an endeavor critical for developing 

precise XR assessments and adaptive training programs [145]. 

In Virtual Reality (VR), the classification and assessment of cognitive load 

have emerged as critical factors in enhancing user experiences within technology- 

driven environments. However, relying on subjective methodologies has often 

failed to capture the essence of cognitive load in VR’s dynamic and immersive 

settings. This research identifies a gap in the current literature – integrating 

multi-modal biometric data, including electrocardiogram (ECG) and pupil dila- 

tion, is crucial for a holistic understanding of cognitive load within these envi- 

ronments. 

To address the gap identified in current research, this thesis proposes an 

innovative methodology by constructing various frameworks to classify cog- 

nitive loads using both augmented and real datasets. By developing a robust 

deep-learning model, this study aims to transform the assessment and real-time 

1 
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adaptation of cognitive load significantly. This model’s capability to seamlessly 

integrate and analyze a wide range of biometric data is crucial for tasks based 

on Virtual Reality (VR), necessitating a detailed and objective grasp of cognitive 

load. 

The cornerstone of this thesis is creating and validating a comprehensive 

deep learning-based framework. This framework is specifically designed to clas- 

sify cognitive load states, synergizing ECG and pupil dilation data within N- 

back tasks in a VR environment. Such a methodological approach is expected 

to enhance the precision of cognitive load assessments significantly. Moreover, 

by offering a scalable and efficient solution for real-time cognitive load moni- 

toring across various VR applications, this research contributes profoundly to 

advancing human-centered technology, promising to reshape the landscape of 

cognitive ergonomics, education, and user experience design in immersive en- 

vironments. 

 

1.1 PROBLEM STATEMENT 

The emergence of extended reality (XR) technologies for training and immer- 

sive experiences has underscored a significant challenge: the need for precise in- 

terpretation and integration of biometric data to assess cognitive load. Despite 

the progress in XR technology, including headsets with physiological sensors, 

the reliance on subjective measures for cognitive load evaluation in Virtual Real- 

ity (VR) environments reveals a gap. This gap is particularly evident in needing 

a holistic approach to leveraging multimodal biometric data, such as electrocar- 

diogram (ECG) and pupil dilation, for a dynamic and objective analysis. 

Acknowledging this shortfall, this thesis addresses the limitations of current 

deep learning models in providing a real-time and accurate assessment of cogni- 

tive load in VR settings. Traditional methods of cognitive load assessment often 

overlook the subtleties of individual physiological responses, failing to capture 

the complexity of cognitive states. Moreover, despite the application of deep 

learning models in parsing physiological data, there exists a need for models 

adept at efficiently utilizing and analyzing a diverse array of biometric informa- 

tion for immediate cognitive load evaluation amidst the varied tasks presented 

in VR environments. In response to these challenges, this research endeavors 

to construct an extensive deep-learning framework to integrate and interpret 

ECG and pupil dilation data cohesively. This innovative framework seeks to re- 
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fine cognitive load classification’s precision, offering a scalable and flexible solu- 

tion for instantaneous monitoring across a spectrum of VR applications. By ad- 

dressing these critical gaps, the study aims to propel XR technologies forward, 

enhancing their utility in training, education, and ergonomic design, thereby 

making a substantial contribution to the advancement of XR applications. 

 

1.2 OBJECTIVES OF STUDY 

The innovation in this research lies in the novel use of deep learning models 

for interpreting and integrating biometric signals in real-time. Deep learning, 

known for its ability to handle large, complex datasets, presents a unique op- 

portunity to glean insights from the nuanced physiological responses captured 

during VR interactions. To this end, two distinct models will be compared: the 

first leverages traditional deep learning architectures, and the second incorpo- 

rates a novel augmentation technique tailored for psychological datasets. This 

comparative analysis aims to evaluate the effectiveness of each model in classi- 

fying cognitive load and identify the potential advantages of the new augmen- 

tation technique in enhancing model performance. 

Furthermore, the augmentation technique being introduced is groundbreak- 

ing in its approach to handling psychological data. Traditional methods often 

need help with the variability and subtlety of biometric signals, especially in a 

field as complex as cognitive load assessment. By incorporating this new tech- 

nique, the research hopes to address these challenges, offering a more nuanced 

and accurate analysis of cognitive load states. This is particularly crucial in VR 

environments, where user experiences are highly dynamic and interactive, de- 

manding a more sophisticated approach to data interpretation. 

 

1.3 APPLICATIONS 

The application’s initiation ushers in the presentation of an intuitively de- 

signed graphical user interface (GUI), which serves as the central platform for 

the trainer’s interaction with the system. This interface has been carefully de- 

signed to ensure smooth entry of user-specific details, precise control over data 

channels—including their enhancement or removal—and the adjustment of key 

parameters relevant to training sessions. 
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The construction of the GUI harnesses the capabilities of PySimpleGUI, a 

Python toolkit celebrated for its streamlined approach to GUI construction, al- 

lowing for rapid development without sacrificing functionality. In tandem, the 

application employs pylsl [114], an esteemed library for interfacing with the Lab 

Streaming Layer (LSL), thereby enabling robust data acquisition and streaming 

processes. The integration of peripheral Bluetooth devices is elegantly handled 

via the implementation of bleak [15], a specialized Python library that provides 

comprehensive management of Bluetooth operations, ensuring stable connec- 

tivity and communication within the application’s ecosystem. 

 

1.4 LIMITATIONS 

This Master’s thesis delves into classifying cognitive load states within a Vir- 

tual Reality (VR) context using biometric sensor data. Throughout this investi- 

gation, several notable limitations have surfaced. The most prominent challenge 

is the relatively small dataset, consisting of data from merely 21 participants. 

This limitation, primarily due to the labor-intensive nature of VR testing, signif- 

icantly narrows the diversity and generalizability of the findings. Moreover, the 

constrained dataset size presents hurdles for machine learning algorithms and 

sophisticated learning approaches, heightening the risk of model overfitting and 

compromising the models’ robustness. The project also faces constraints in com- 

putational resources, which in turn restricts the complexity of the neural net- 

work models that could be designed and trained. Additionally, the necessity to 

focus on sensor-level data, dictated by these limitations, may inadvertently nar- 

row the research scope, possibly omitting deeper insights achievable through 

a broader analysis encompassing higher-level data interpretations or integra- 

tions. Despite these obstacles, this project endeavors to maximize the utility of 

the available data and resources, aiming to garner significant insights within the 

set limitations. 
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Background 

 
This chapter outlines the essential theory behind the work in this Master’s 

thesis, focusing on an in-depth exploration of the main concepts examined. 

 

2.1 VIRTUAL REALITY 

Virtual reality (VR) is a concept with various interpretations, commonly un- 

derstood as the integration of virtual objects in a virtual setting [69]. It can also 

be broadly defined as a computer-generated representation of real-world scenar- 

ios, offering immersive experiences through mainly auditory and visual stimuli 

[62]. VR creates an environment that simulates three dimensions, making users 

feel present. According to Desai, Ajmera, and Mehta (2014) [31], this digital 

replication of real life enables active modification, engagement, and observa- 

tion of the environment. Brooks (1999) [16] expanded on this, discussing the 

range of gestures and actions available to users in VR. High-quality virtual en- 

vironments in advanced VR systems enhance user interaction and navigation, 

simulating real-life experiences closely [69]. Ivan Sutherland [94], a key figure in 

computer graphics and VR, envisioned a space where virtual objects like balls 

would have realistic weight and texture, allowing for actions like throwing or 

bouncing. This vision also included the potential for more intricate objects, like 

handcuffs, to be realistically emulated, showcasing VR’s capacity to replicate the 

tactile sensation of physical objects with remarkable precision [94]. 

To be more precise, virtual reality falls into two main categories: immersive 

and non-immersive [133]. Immersive VR, typically accessed via a head-mounted 

2 
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display (HMD), is distinguished by its ability to substitute a user’s real-world 

sensory inputs with those from a virtual environment [2]. This form of VR is 

characterized by deep immersion, high interactivity, and intense user engage- 

ment, drawing the user entirely into the virtual realm and away from reality 

[10]. 

Head-mounted displays (HMDs) are instrumental in enhancing this immer- 

sive experience. They allow users to move through VR environments following 

their head and eye movements, effectively obscuring the real world. This feature 

goes beyond mere exploration and includes interaction with virtual entities and 

objects, as discussed by Sanchez-Vives& Slater (2005) [104]. 

On the other hand, non-immersive VR offers a virtual experience without 

completely disconnecting users from their physical surroundings. This type al- 

lows for interactive but less total engagement [10]. Understanding this distinc- 

tion is essential for grasping current technology’s range of virtual experiences 

[10]. 

The HTC VIVE Pro Eye ¹ serves as our chosen Virtual Reality (VR) device 

[135]. This advanced headset is integral to our work, providing high-resolution 

displays with 1440x1600 resolution per eye, which is essential for the detailed 

visual requirements of our project. The eye-tracking technology in select mod- 

els of the VIVE Pro Eye is particularly beneficial, offering precise tracking ca- 

pabilities crucial for calibration accuracy. Its ergonomic design, balanced form, 

lighter weight, and adjustable sizing ensure comfort during prolonged use ses- 

sions. The integrated audio and noise-cancellation microphone also contribute 

to an immersive experience, enhancing the device’s overall effectiveness in our 

calibration processes [39]. The HTC VIVE Pro Eye’s capabilities align seamlessly 

with the requirements of our project, making it an invaluable tool in our VR- 

based calibration endeavors[134]. 

 

 

 

 

 

 

 

 

 

 

¹https://www.lib.ncsu.edu/devices/vive-pro-eye 

http://www.lib.ncsu.edu/devices/vive-pro-eye
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Figure 2.1: HTC VIVE Pro Eye. 

 

 

 

2.2 COGNITIVE LOAD 

Cognitive Load (CLT) theory is rooted in understanding cognitive architec- 

ture. It highlights the contrast between the working memory, which has a re- 

stricted capacity and a limited duration for processing incoming information 

[93, 58], and the long-term memory, known for its nearly limitless capacity [122]. 

This distinction is crucial for comprehending how memory functions in the as- 

similation and understanding of content, with adjustments for the distinct cog- 

nitive structures of individuals [122, 81]. 

In working memory, an individual manages around 7 ± 2 pieces of informa- 

tion simultaneously. This capacity diminishes when the task involves not just 

recall but active processing, especially when these pieces of information are in- 

terconnected and require synthesis [28]. Moreover, the inherent limitations of 

working memory pose considerable challenges in learning scenarios, particu- 

larly with complex tasks. For instance, mastering a new language’s grammar, 

which entails integrating various elements like subject, predicate, and object, 

demands significantly more from working memory than straightforward tasks, 

such as vocabulary memorization [122]. However, as knowledge is integrated 

into long-term memory and organized into cognitive schemas, the burden on 

working memory decreases. In this scenario, a schema is perceived as a single 

informational unit within working memory, streamlining the processing effort 

[122]. This phenomenon underscores how prior expertise or familiarity with a 

task can substantially alleviate the cognitive load. Furthermore, with the repet- 
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itive performance of tasks or their components, cognitive schemas become au- 

tomated, obviating the need for controlled processing and thereby liberating 

working memory capacity [107]. 

Cognitive load, the total amount of information that working memory can 

handle at any given moment, encompasses three distinct types: intrinsic, about 

the task’s inherent complexity; extraneous, referring to environmental factors 

that exacerbate cognitive demands; and germane, which involves connecting 

new information to existing knowledge stored in long-term memory [120, 8]. 

The intrinsic cognitive load is influenced by the learner’s skill level relative to 

the complexity of the subject matter. According to Paas et al., this load is sig- 

nificantly affected by the level of element interactivity within the learning ma- 

terials. Materials rich in interactive elements are more challenging as they ne- 

cessitate concurrently processing multiple components. Conversely, materials 

with lower interactivity facilitate independent learning due to reduced simul- 

taneous processing demands [89]. The germane load is linked to the cognitive 

effort required to manage intrinsic load, promoting integrating or adapting new 

concepts while providing suitable challenges to learners [121]. For example, the 

germane load is engaged in language acquisition when learners actively com- 

pare their native language with a new language, fostering deeper cognitive en- 

gagement [66].On the other hand, extraneous load arises from suboptimal in- 

structional designs that inadvertently increase cognitive strain, impeding learn- 

ing. This can occur when instructional methods inadvertently amplify cognitive 

load, such as employing a diagram without a clear correlation with its textual 

examples, leading to divided attention [22]. 

CLT emphasizes the critical role of working memory in the efficient deliv- 

ery of information [120]. Strategies for optimizing working memory utilization 

include varying the presentation of information or employing dual modalities, 

such as visual-spatial and phonological processing, to manage the complexity of 

learning materials effectively [122]. This approach balances intrinsic, germane, 

and extraneous loads to maximize learning outcomes. Long-term memory acts 

as a knowledge repository, facilitating information transfer to working mem- 

ory, which is crucial for accessing and applying stored knowledge. Constructing 

individual schemas involves transforming disparate pieces of information into 

a coherent whole and retrieving this consolidated knowledge from long-term 

memory. This process depends on the individual’s working memory capacity 

[122]. Therefore, a fundamental principle of CLT is the individual’s cognitive 
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capacity to process information, which ultimately determines the efficacy and 

efficiency of their learning experiences [122, 81]. 

 

2.2.1 MEASURING COGNITIVE LOAD BY ECG 

An Electrocardiogram (ECG) is a tool used to measure heart activity by record- 

ing the heart’s electrical activity over time [34]. It is achieved by placing elec- 

trodes on the skin. ECG has been used to measure cognitive load by analyzing 

the changes in heart activity that occur in response to cognitive tasks. Several 

studies have explored using ECG for cognitive load assessment [20]. Evalua- 

tion of cognitive load is a burgeoning area in human-machine interaction (HMI), 

particularly in mixed-initiative systems where human and automated systems 

collaborate. The study by Wilson and Scannella [20] underscores the potential 

of using ECG-based metrics to monitor cognitive states in real-time, a crucial 

aspect for the dynamic allocation of decision-making authority in these sys- 

tems. Their groundbreaking work employed a multi-level letter-span task to 

elicit varying cognitive loads from participants. This approach was pivotal in 

assessing the efficacy of online heart rate (HR) and heart rate variability (HRV) 

metrics compared to traditional offline methods. The methodology’s strength 

lies in its ability to simulate real-world tasks where cognitive load varies, provid- 

ing a robust framework for ECG data analysis [53] research highlights the utility 

of ECG (electrocardiogram) and other physiological measures in assessing cog- 

nitive load. The study’s findings demonstrate that ECG metrics, specifically the 

median absolute deviation of the electrocardiogram, coupled with median heat 

flux measurements, were markedly effective in distinguishing between low and 

high levels of cognitive load provided a comprehensive analysis of the use of 

electrocardiogram (ECG) data in the assessment of cognitive load [143]. Their 

research highlighted the nuanced capabilities of ECG metrics to detect subtle 

changes in cognitive stress levels, particularly in high-demand multitasking en- 

vironments. Yoo, Kim, and Hong (2023) [143] emphasized the importance of 

ECG as a non-invasive and effective tool for real-time monitoring of cognitive 

load, thereby offering significant insights into optimizing learning and work 

environments. Their work underscores the potential of ECG data in enhancing 

adaptive learning systems by dynamically adjusting to the cognitive states of in- 

dividuals [20, 43, 5]. Recent advancements have enabled the real-time analysis of 

ECG to monitor cognitive load, particularly in mixed-initiative systems, where 
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humans and machines collaborate and share decision-making responsibilities. 

Integrating online ECG-based features in such systems can enhance the adapt- 

ability and safety of the human-machine interaction by dynamically responding 

to the operator’s cognitive state. 

 

2.3 ECG SIGNAL 

An Electrocardiogram (ECG) signal, a pivotal diagnostic tool in cardiology, 

is characterized by its distinct waveforms: the P, Q, R, S, and T waves. Each wave 

reflects a specific phase in the cardiac cycle, corresponding to the heart’s elec- 

trical activity as it propagates through various cardiac structures [51]. These 

waveforms’ morphology, orientation, and frequency provide critical insights 

into cardiac health, revealing conditions such as arrhythmias and ischemic heart 

disease. 

The core component of an ECG signal, the QRS complex, is particularly cru- 

cial. This complex is marked by its high amplitude, representing ventricular 

depolarization, making it the most conspicuous and algorithmically detectable 

feature of the ECG signal. The precision in identifying the QRS complex, which 

encompasses the heart’s electrical activity through successive positive and neg- 

ative peaks, is vital for accurately determining the heart rate (HR). Heart rate 

calculation relies on measuring the Inter-Beat Interval (IBI)—the duration be- 

tween two consecutive heartbeats, also known as the beat-to-beat or RR interval 

[75, 20]. 

Furthermore, the R wave within the QRS complex signifies the transmission 

of electrical impulses across the central segment of the ventricular walls. The 

accurate detection of the R-Peak is essential for calculating the IBI, which is in- 

strumental in ECG signal analysis. The heart rate, expressed in beats per minute, 

is determined by counting the R peaks over a specified period. The R-R interval, 

extending from the peak of one R wave to the next, represents the temporal gap 

between two successive QRS complexes, serving as a key metric in evaluating 

heart rhythm and the function [75, 20]. 

The comprehensive analysis of an ECG extends beyond the QRS complex to 

include other significant components, such as the P wave, which denotes atrial 

contraction, and the P–R segment and interval. The P–R segment signifies a 

pause allowing for ventricular filling, attributed to an AV node delay, while the 

P–R interval reflects the onset period before ventricular depolarization begins. 
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Variations in the P–R interval indicate the parasympathetic nervous system’s 

influence on the heart, providing further insights into cardiac autonomic regu- 

lation [36]. 

Figure 4.1 captures these key ECG components, illustrating the intricate pro- 

cess of cardiac electrical activity and its significance in diagnosing and under- 

standing cardiac conditions.[36]. 
 

Figure 2.2: Electrocardiography 

 

2.4 EYE-TRACKING SENSOR 

Eye-tracking technology has become a cornerstone in understanding cogni- 

tive processes during human-computer interaction. By employing near-infrared 

light, this sensor-based technology accurately tracks and records the movements 

of the eyes, offering real-time insights into a person’s gaze direction. Since its 

advent in the 1980s, eye tracking has played a pivotal role in exploring how in- 

dividuals interact with computer interfaces, significantly influencing the design 

and improvement of these interfaces [138] as suggested by Hoffman, the foun- 

dational principle that visual attention guides eye movement—where the gaze 
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is directed by where the attention shifts—is central to the functionality of eye- 

tracking systems. These systems employ infrared cameras to capture detailed 

reflections from the cornea and pupil as users engage with visual stimuli on a 

screen, such as images, colors, or text, thus enabling the precise estimation of 

gaze direction with exceptional spatial and temporal accuracy [50]. Eye track- 

ing’s capabilities extend beyond mere observation of eye positions and move- 

ments; it provides a comprehensive analysis of visual attention, tracking and 

analyzing the focus of gaze across various objects and the duration of such en- 

gagements [41]. 

The applications of eye-tracking technology are manifold, encompassing: 

•  Monitoring blinking behaviors: This aspect of eye tracking offers in- 
sights into user focus and cognitive load, as blinking patterns can reflect 
engagement and fatigue levels. 

• Detecting Overlooked Information: By identifying elements that users 
miss, researchers can enhance the design of interfaces to ensure critical 
information is more noticeable. 

• Evaluating Pupil Responses: Analyzing how pupils react to different vi- 
sual or emotional stimuli provides a deeper understanding of user responses 
to content, aiding in the creation of more engaging and effective designs. 

• Enhancing Human-Computer Interaction: The insights gained from eye- 
tracking research are invaluable in refining the usability of computer inter- 
faces. They ultimately contribute to the advancement of machine learning 
and improve the synergy between humans and computers. 

 

 

 

PUPIL DIAMETER 

The human pupil exhibits dynamic changes in size in response to various 

stimuli, which can be broadly categorized into three types: the Pupil Light Re- 

sponse (PLR), the Pupil Near Response (PNR), and the Psychosensory Pupil 

Response (PPR). These responses signify the pupil’s contraction in bright light 

or during close vision tasks (PLR and PNR, respectively) and its dilation in re- 

sponse to cognitive demands, such as increased mental effort or arousal (PPR) 

[7]. 

Pupillary reactions display a dual nature: they are reflexive, showing consis- 

tent qualitative responses to specific stimuli (e.g., light exposure always results 

in pupil constriction), and also exhibit voluntary aspects, influenced by cognitive 
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processes (e.g., focusing on a light source leads to more pronounced constric- 

tion) [14, 13]. This complexity of pupil responses, encompassing involuntary 

reflexes and voluntary control, parallels other ocular movements such as sac- 

cades and smooth pursuit, highlighting the intricate interplay between sensory 

stimuli and cognitive functions [148]. 

 

2.5 IMPORTANCE OF PUPIL DILATION DATA IN COGNITIVE 

LOADS 

Pupil dilation is a pivotal marker for cognitive load, providing invaluable 

insights into an individual’s mental workload during task execution [67]. The 

correlation between increased task complexity and pupil diameter expansion is 

well-documented, underscoring the utility of pupillary changes as a gauge for 

cognitive load [95]. 

 

Key aspects of pupil dilation data, critical for assessing cognitive loads, include: 

1. Cognitive Load Indicator: Pupil dilation reacts sensitively to changes in 
visual field brightness and the cognitive demands of visual tasks, serving 
as a direct indicator of cognitive load [95]. 

2. Task-Induced Pupillary Changes: The association between pupil size and 
cognitive load has been examined across various contexts, such as driving 
and educational settings, demonstrating how pupillary changes can reflect 
cognitive load [79]. 

3. Assessing Task Difficulty: Data on pupil response can help determine the 
cognitive load in diverse settings, such as educational video games. Com- 
parisons with baseline measurements suggest the effectiveness of pupil 
dilation as an indicator of cognitive load [79]. 

4. Comparative Analysis with Other Metrics: Pupil dilation stands out as a 
practical metric for cognitive load assessment when juxtaposed with other 
measures such as electroencephalography (EEG), skin conductance, and 
cardiac metrics, showcasing its applicability in real-world scenarios [97]. 

5. Underpinning Cognitive Load Theory: Reflecting the principles of Cog- 
nitive Load Theory, which posits that cognitive processing capacities in- 
fluence learning efficiency, pupil dilation has been extensively employed 
to investigate cognitive load in various educational contexts [46]. 
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2.6 MACHINE LEARNING 

Machine learning is a pivotal technology in data science and artificial in- 

telligence, tasked with developing computer systems capable of autonomously 

acquiring new capabilities and improving performance. This advancement is 

achieved through data analysis and experience accumulation, aiming to enhance 

a performance measure via training experience in executing a specified task [61]. 

Machine learning methodologies are diverse, encompassing supervised, unsu- 

pervised, semi-supervised, active, transfer, multi-task, and reinforcement learn- 

ing, each tailored to specific applications [61]. Supervised learning, identified as 

the predominant approach, focuses on constructing models designed to predict 

outputs from given input data, wherein labels for all or most data points are 

pre-defined [61]. 

In supervised learning, tasks typically include classification and regression, 

employing techniques such as k-nearest neighbors, support vector machines, 

and linear discriminative analysis. A burgeoning field of application for su- 

pervised machine learning is the classification of ECG signals. This area has 

witnessed a surge in research efforts, introducing many algorithms and method- 

ologies designed to enhance the accuracy and efficiency of ECG signal analysis 

[9]. 

The process of classifying ECG signals with supervised machine learning 

encompasses two critical steps: feature extraction and classifier model selection. 

Initially, diverse features are derived from each dataset, which is then utilized by 

various classifiers, such as Support Vector Machine (SVM) and Multilayer Per- 

ceptron (MLP), to categorize ECG signals into distinct categories including stan- 

dard, Premature Ventricular Contraction (PVC), Atrial Premature Contraction 

(APC), Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), 

and Paced (PACE) heartbeats [9]. 

Further expanding the application of machine learning and artificial intelli- 

gence, recent studies have focused on detecting cardiac rhythm disorders through 

ECG signals. These studies emphasize the significance of feature extraction and 

selection, employing various preprocessing techniques, features, and classifiers 

to achieve this goal [55]. This evolution underscores the continuous innovation 

in machine learning techniques and their critical role in advancing medical di- 

agnostics. 
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2.7 DEEP LEARNING: A PINNACLE OF MACHINE LEARN- 

ING 

Deep learning (DL) represents a sophisticated advancement in machine learn- 

ing (ML), distinguished by employing neural networks comprising at least three 

layers. These multi-layered networks are inspired by the human brain’s struc- 

ture and functionality, albeit far from matching its complexity. They are en- 

gineered to process and learn from extensive datasets, leveraging the depth of 

their architecture to enhance learning capabilities. While a single-layer neural 

network can perform basic predictions, introducing additional hidden layers 

significantly increases the model’s precision and ability to make more nuanced 

predictions [72, 136]. ML and DL are integral components of the artificial intel- 

ligence (AI) spectrum, contributing to its diverse capabilities [24]. 

The application of deep learning models in classifying ECG signals has been 

a focal point of recent research, demonstrating promising results that could rev- 

olutionize diagnosing cardiac anomalies and advancing intelligent healthcare 

systems [110]. A notable study by Ribeiro et al emphasized the superiority of 

deep neural networks (DNNs) in automatically classifying S12L-ECG signals, 

showcasing their advantage over commercial ECG software that predominantly 

relies on traditional signal processing techniques [101]. This progress under- 

scores deep learning’s potential in enhancing healthcare diagnostics, offering a 

more accurate and efficient means of interpreting ECG signals. The ability of 

DNNs to outperform existing methodologies highlights the advancements in 

AI and paves the way for the development of more sophisticated and reliable 

diagnostic tools. 

 

2.8 TIME SERIES CLASSIFICATION WITH ARTIFICIAL NEU- 

RAL NETWORKS 

Artificial Neural Networks (ANNs) have been recognized for their excep- 

tional ability to discern patterns and subtleties within complex datasets. This 

feature is attributed to their capacity to handle high-dimensional data and their 

inherently differentiable nature [76]. These qualities contribute significantly to 

the versatility and power of ANNs, setting the stage for their application across 

various domains, including time series classification. 
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ANNS IN TIME SERIES CLASSIFICATION 

The field of time series classification has benefitted immensely from the de- 

velopment and application of specific ANN models designed to address the 

unique challenges presented by time-dependent data. These models include: 

(Gated Recurrent Units), S4 models and Transformers, as cited in [44, 27] and 

[132] Notably, GRU stand out for their unique features and functionalities that 

render them particularly adept at managing and classifying sequentially ordered 

data, a central theme of my thesis. 

 

 

2.8.1 BASICS OF THE GRU-DROPOUT ARCHITECTURE 

 
The development of the Gated Recurrent Unit (GRU) by Cho et al. [25] in 2014 

marked a significant advancement in recurrent neural networks (RNNs). GRUs 

were introduced to tackle the notorious vanishing gradient problem that plagues 

standard RNNs, hindering their ability to process long sequences effectively. 

Unlike traditional RNNs, GRUs incorporate update and reset gates, which en- 

able the network to manage information flow better, making them adept at re- 

taining relevant information over extended sequences. 

Cho et al.’s work [25] lays the foundational framework for GRUs, distinguish- 

ing them as a variant of the Long Short-Term Memory (LSTM) networks. Both 

GRUs and LSTMs are designed to remember information for long periods. Still, 

GRUs simplify the model architecture by combining the input and forget gates 

into a single update gate, thus reducing the complexity and computational re- 

quirements [131]. This design choice is pivotal in making GRUs efficient and 

powerful for tasks involving sequential data, such as natural language process- 

ing and time series analysis. 

The architecture’s efficiency stems from its two key components: the update 

and reset gates. These gates regulate the flow of information, deciding what to 

retain and discard, thereby addressing the vanishing gradient issue more effec- 

tively than their predecessors [65, 27]. The update gate, in particular, is critical in 

determining how much past information needs to be passed along to the future, 

allowing the GRU to capture dependencies across longer time spans. 
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Figure 2.3: The GRU-Dropout architecture. 

 

GATED RECURRENT UNIT (GRU) FORMULAS 

The operational core of the GRU is encapsulated in its formulas, which math- 

ematically represent the functions of the update and reset gates, as well as the 

computation of the candidate and final hidden states. These formulas are: 

• Update Gate (𝑧𝑡): 

𝑧𝑡 = 𝜎(𝑊𝑧 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (2.1) 

where 𝜎 is the sigmoid function, 𝑊𝑧 is the weight matrix for the update 
gate, ℎ𝑡 1 is the previous hidden state, 𝑥𝑡 is the input at time step 𝑡, and 𝑏𝑧 
is the bias for the update gate[1, 49]. 

• Reset Gate (𝑟𝑡): 

𝑟𝑡 = 𝜎(𝑊𝑟 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (2.2) 

Here, 𝑊𝑟 is the weight matrix, and 𝑏𝑟 is the bias for the reset gate. The 
reset gate determines how much of the past information to forget, which 
is crucial for the model to focus on the most relevant information for the 
task at hand [49]. 

• Candidate Hidden State ( ℎ̃  
𝑡 ): 

ℎ̃ 
𝑡 = tanh(𝑊 · [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏) (2.3) 

where 𝑊 and 𝑏 are the weight matrix and bias for the candidate hidden 
state, and tanh represents the hyperbolic tangent function. 
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• Final Hidden State (ℎ𝑡): 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃ 
𝑡 (2.4) 

This equation determines the final hidden state, blending the previous 
state with the new candidate hidden state, controlled by the update gate. 

 

 

2.8.2 MULTI-LAYER PERCEPTRON (MLP) 

The Multi-Layer Perceptron (MLP), a key figure in the landscape of supervised 

neural networks, is distinguished by its three-layer architecture: the input layer, 

one or more hidden layers, and the output layer. Each layer comprises neurons, 

also called nonlinear computational elements, facilitating a dynamic flow of in- 

formation from the input to the output layer through the intermediary hidden 

layers. This sophisticated structure has made the MLP an optimal choice for 

many approximation tasks across static and dynamic settings [11]. 

A hallmark of the MLP is its intricate network of neurons spread across mul- 

tiple layers. The inclusion of hidden layers introduces depth and complexity, 

enabling the network to model intricate patterns in data [11]. Another critical 

aspect of MLPs is the flexibility in choosing activation functions. Unlike basic 

perceptrons constrained to functions like ReLU or sigmoid, MLP neurons can 

utilize a broader range of activation functions, enhancing their ability to capture 

non-linear relationships [11]. This versatility renders MLPs highly effective for 

diverse applications, from image recognition to natural language processing. 

MLPs employ a structured learning process that begins with data input through 

the input layer, followed by forward propagation through the hidden and out- 

put layers. This process is vital for adjusting the network based on the input 

data. The network then evaluates its performance by comparing predicted re- 

sults against actual outcomes, aiming to minimize discrepancies or errors. Back- 

propagation plays a crucial role in this optimization process, allowing for the ad- 

justment of weights by calculating the error gradient with respect to each weight. 

This mechanism ensures continuous improvement and accuracy of the model 

[98]. 

 

FORWARD PROPAGATION 

Forward propagation essentially involves taking an input feature vector as 
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Figure 2.4: Multilayer Perceptron, emphasizing the Forward Feeding and Back- 
ward Error Propagation phases. 

 

X = (𝑥0, 𝑥1, . . . , 𝑥𝑛0 ) , the weight matrix for layer 𝑙 as W[𝑙], the bias vector as 

b[𝑙], and the activation function as 𝑔[𝑙]. Then, for layer 𝑙, the forward propagation 

to the next layer can be expressed as[14]: 

 

Z[𝑙] = W[𝑙]A[𝑙−1] + b[𝑙] (2.5) 

 

 

A[𝑙] = 𝑔[𝑙](Z[𝑙]) (2.6) 

Here, A[0] = X is the input to the first layer, Z[𝑙] is the linear combination of 

weights and inputs, and A[𝑙] is the output of layer 𝑙 after applying the activation 

function. 

For the output layer 𝐿, the predicted output Ŷ is: 

 

Ŷ = A[𝐿] = 𝑔[𝐿](Z[𝐿]) (2.7) 

where Z[𝐿] = W[𝐿]A[𝐿−1] + b[𝐿]. 

These equations collectively represent the forward propagation process in a 

neural network. 
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BACK-PROPAGATION 

Assuming we have a loss function denoted as 𝐿, the gradients of this loss 

with respect to the weights W[𝑙] and biases b[𝑙] in layer 𝑙 can be computed using 

the chain rule. For each neuron, the error gradient is propagated backward from 

the output layer to the input layer. The updated rules for the weights and biases 

can be expressed as follows: 
 

 𝜕𝐿  
= 

 𝜕𝐿  𝜕A[𝑙] 𝜕Z[𝑙] 

𝜕W[𝑙] 𝜕A[𝑙] 
·
 𝜕Z[𝑙] 

· 
𝜕W[𝑙] 

(2.8) 

 

 𝜕𝐿  
= 

 𝜕𝐿  𝜕A[𝑙] 

𝜕b[𝑙] 𝜕A[𝑙] 
·
 

(2.9) 
𝜕Z[𝑙] 

𝜕A[𝑙] 

𝜕Z[𝑙] 
is the derivative of the activation function at layer 𝑙, and  𝜕𝐿  is 

[ ] 

the derivative of the loss with respect to the activation of layer 𝑙. 

The weights are then updated by subtracting a fraction of the gradient, de- 

termined by the learning rate 𝜂: 
 

W[𝑙] = W[𝑙] − 𝜂 · 
 𝜕𝐿  

 

b[𝑙] = b[𝑙] − 𝜂 · 
 𝜕𝐿  

(2.10) 

 

(2.11) 

The process is repeated iteratively for each network layer moving from the 

output layer back to the first hidden layer. 

 

2.9 EVALUATION METRICS 

In evaluating machine learning (ML) algorithms, we took a comprehensive 

approach by utilizing a set of key performance metrics. These metrics encom- 

pass Accuracy, Error Rate, Recall (also known as Sensitivity), Specificity, Pre- 

cision, and the F1-Score. Our methodology aligns with established practices 

outlined in prior research studies [38, 137]. 

The evaluation process commenced with the computation of Sensitivity (or 

Recall), Specificity, Precision, and Accuracy. Sensitivity, also referred to as Re- 

call, quantifies the correct identification of actual positive cases, which is vital 

for gauging the model’s effectiveness in detecting positives. It is computed us- 

Here, 
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ing the formula 2.12. Conversely, Specificity focuses on accurately recognizing 

negative instances, and it is calculated as per formula 2.13 [47]. 

Precision, another crucial metric, signifies the proportion of true positives 

among all positive predictions, aiding in assessing the accuracy of positive pre- 

dictions made by the ML models 2.14. Lastly, Accuracy, computed according 

to formula 2.15, provides an overall assessment of the model’s performance by 

measuring the proportion of total correct predictions, both positive and nega- 

tive. 

This comprehensive approach ensures a thorough and well-balanced evalu- 

ation of ML models, adhering to established standards in the field as indicated 

by prior research [47, 103]. 
 

Recall = 
  True Positives  

True Positives + False Negatives 

Specificity = 
True Negatives 

True Negatives + False Positives 

Precision = 
  True Positives  

True Positives + False Positives 

(2.12) 

 

(2.13) 

 

(2.14) 

 

  True Positives + True Negatives   

True Positives True Negatives False Positives False Negatives 
(2.15) 

 

 

The F1-Score is a key metric in machine learning, particularly important for 

blending Precision and Recall into a single, thorough measure, as cited in refer- 

ence [21]. This combination is essential because using either Accuracy or Recall 

alone does not fully capture an algorithm’s effectiveness. For example, a model 

might demonstrate high Precision but low Recall, signifying precise yet incom- 

plete positive predictions. On the other hand, a model with high Recall but low 

Precision accurately identifies most positive cases and includes many false pos- 

itives. 

The F1-Score resolves this disparity by merging these two metrics into a co- 

hesive score, as mentioned in reference [52]. It provides a more nuanced view 

of a model’s performance, which is especially important in situations where bal- 

Accuracy = 
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ancing Precision and Recall is critical. The calculation of the F1-Score, detailed 

in formula 2.16, is especially useful in binary or multiclass classification tasks. 

It executes a calculation that considers both Precision and Recall, yielding a sin- 

gular, comprehensive evaluation of an algorithm’s effectiveness. 

By amalgamating Precision and Recall, the F1-Score effectively acts as a de- 

pendable measure of a model’s overall precision and thoroughness in predic- 

tions, proving to be a vital instrument for assessing machine learning algorithms. 

2 
Precision × Recall 

Precision + Recall 

 

(2.16) 

 

 

In multiclass classification issues, it’s necessary to compute metrics like Ac- 

curacy, Recall, Precision, and the F1-Score for each class separately and then 

calculate their average. This method guarantees a complete evaluation of the 

model’s effectiveness across all categories, adapting these metrics from their ini- 

tial binary classification framework to fit the intricacies of multiclass situations. 
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Methodology 

 
This chapter provides a detailed exposition of the dataset curated for this 

research, encapsulating the collection, preparation, and structuration processes 

undertaken before deploying the data for the Integrative Deep Learning Frame- 

work aimed at cognitive load assessment (figure 3.1). This foundational stage is 

imperative as it ensures the data’s cleanliness and compatibility, prerequisites 

for effectively evaluating our deep learning model. This methodology estab- 

lishes the basis for precise and robust cognitive load measurement using ECG 

and pupil dilation data within behavioral studies. 

 

 

Figure 3.1: Stages of ECG and Eye Tracker Data Utilization for Cognitive Load 
Assessment 

3 
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3.1 PARTICIPANTS 

This research incorporated 21 individuals into a virtual reality (VR), care- 

fully selected to span a broad demographic spectrum to ensure a detailed un- 

derstanding of the VR experience. The average age of the participants was ap- 

proximately 25.16 years, aligning with a young adult demographic that typically 

demonstrates adaptability and familiarity with innovative technologies such as 

VR. 

The gender distribution of the participants was closely balanced, with 52.63% 

identifying as male and 42.11% as female. This distribution allowed the explo- 

ration of potential gender-specific dynamics within the VR environment, con- 

tributing valuable insights into the inclusive design of VR experiences. 

Participants were selected based on criteria emphasizing diversity rather than 

specific skill sets or prior experience with VR. This inclusive approach ensured 

that the study’s findings would apply to a general population relevant to various 

practical applications of VR, including training, education, and entertainment. 

The selection criteria were designed to eliminate biases that could influence the 

assessment of cognitive load and user experience in VR, thereby enhancing the 

validity of the research outcomes. 

 

 

Figure 3.2: the corrected gender distribution of study participants 
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The virtual reality (VR) experiment was carefully crafted to assess cognitive 

load through participant engagement in dynamic, interactive tasks. Central to 

this evaluative process were memory-intensive tasks that required participants 

to classify colored packages on a moving conveyor belt. The experiment intro- 

duced a graduated difficulty structure, categorizing tasks into three ascending 

levels: 1-back, 2-back, and 3-back. This stratification necessitated the partici- 

pants’ recall and recognition of the colors of one, two, or three previously en- 

countered packages. The experimental design manipulated two principal vari- 

ables: the hue of the packages and the sequential memory burden, as indicated 

by the n-back level, to meticulously examine the effects of varying cognitive de- 

mands on participant performance. 

 

3.3 EXPERIMENTAL PROCEDURE 

The procedure of the experiment was delineated through a sequential pro- 

cess to ensure a structured and comprehensive assessment: 

1. Orientation: Participants were initially acclimated to the VR environment 
in an orientation room. This space showcased calming visuals and col- 
lected baseline physiological measurements, preparing them for the tasks 
ahead. 

2. Introduction to Task Environment: participants were transported to a 
virtual factory setting. In this environment, they were first introduced to 
the core task of sorting colored packages. The main task involved the sort- 
ing of colored packages. 

3. Practice Session: Before the commencement of the main experiment, a 2- 
minute practice session was conducted. This session aimed to familiarize 
participants with the mechanics of the task, ensuring comfort and under- 
standing. 

4. Main Experiment: The participants then embarked on the main experi- 
ment, segmented into three consecutive task blocks—1-back, 2-back, and 
3-back. Each block consisted of 30 stimuli, requiring sorting based on the 
assigned memory load. 

5. Feedback Mechanisms: Participants received visual and auditory feed- 
back throughout the experiment. This feedback was crucial in indicating 
the correctness of responses, with the factory environment’s color and the 
audio clip’s pitch altering to mirror performance levels. 
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6. Cognitive Load Assessment: Participants were asked to complete a ques- 
tionnaire following each task block. This tool was designed to gauge the 
perceived cognitive load, offering insights into the mental effort expended 
during the tasks. 

7. Debrief and Data Collection: The session culminated in a debriefing, 
where participants were informed about the experiment’s aims and proce- 
dures. Additionally, psychophysiological data were collected for further 
analysis. 

The procedure was carefully structured to ensure that participants could 

fully engage with the tasks without prior VR experience, allowing for an as- 

sessment of cognitive load indicative of a general population’s interaction with 

VR technology. 

 

3.4 DATA COLLECTION 

The Unity environment, utilizing Editor version 2019.4.29, comprises two 

meticulously crafted scenes as depicted in Figure 3.3. The initial scene intro- 

duces users to a lobby room with a serene garden view alongside wall-mounted 

screens displaying calming imagery and relevant information as seen in a spe- 

cific video segment¹ (0:00 min-0:17min). This introductory space is pivotal in 

orienting users to the Virtual Environment (VE) and establishing a baseline for 

physiological measurements. The importance of this baseline setting lies in its 

contribution to enhancing the accuracy of physiological data collection, partic- 

ularly in contexts such as operator training and performance evaluation [45]. 

After the orientation phase, users are seamlessly transitioned to a virtual fac- 

tory setting, which houses two critical apparatuses: a 3D printer and a conveyor 

belt [145]. The primary focus of this environment is the conveyor belt task, en- 

gineered to generate varying levels of cognitive load (CL). This task introduces 

participants to a series of colored packages (red, blue, purple, green, or yellow) 

[129], which advance towards the user on a conveyor belt. A sorting box is posi- 

tioned within the VE to the user’s right, and to their left is an additional conveyor 

belt. Users are tasked with transferring each package to the left conveyor belt if 

its color aligns with the package shown in the preceding n trials or to the sorting 

box. This task component is illustrated in a video segment² (1:41min-2:30min). 

 

¹https://www.youtube.com/watch?v=1vYoqcHMadU 
²https://www.youtube.com/watch?v=1vYoqcHMadU 

http://www.youtube.com/watch?v=1vYoqcHMadU
http://www.youtube.com/watch?v=1vYoqcHMadU


27  

CHAPTER 3.  METHODOLOGY 

 

After a preliminary 2-minute practice session, users embark on three blocks of 

tasks - 1-back, 2-back, and 3-back, each comprising 30 stimuli. The assignment 

of package colors is randomized to maintain task variability. The duration of 

this task extends to 10 minutes [59]. 

The study utilizes a bifurcated feedback approach to enhance participant 

engagement and task performance, encompassing visual and auditory mech- 

anisms. Visual feedback is manifested through the dynamic alteration of the 

factory floor’s columns and ceiling colors, transitioning between green and red 

to reflect the user’s task accuracy. Concurrently, auditory feedback is employed, 

featuring a pitch shift in a consistent audio clip to signify correct or incorrect re- 

sponses, with the base pitch ranging from 0 to 1 and an offset increment of 0.1. 

This comprehensive approach to data collection within the Unity environ- 

ment facilitates cognitive load assessment and enriches the user’s immersive ex- 

perience through interactive tasks and multisensory feedback. The methodol- 

ogy outlined ensures a robust framework for examining the interplay between 

cognitive load and user interaction within VR settings. 
 

Figure 3.3: The virtual environment. 

To guarantee a smooth and integrated evaluation of cognitive load along- 

side participant feedback in the virtual environment (VE), the research protocol 

requires that after each task block, participants fill out a specifically designed 

six-question survey [54]. This instrument plays a crucial role in evaluating the 

perceived cognitive load, offering insights into the user’s experience and the 

task’s impact on their cognitive state. In parallel, psychophysiological data is 

meticulously acquired using advanced tools: the Polar H10 for electrocardio- 
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gram (ECG) measurements [16] and a Tobii eye tracker [17], which is seamlessly 

integrated into the head-mounted display (HMD) to monitor eye movements. 

Given the inherent differences in sampling rates among these varied data types, 

each source is meticulously recorded in its .csv file, dedicated to each specific 

task³. A bespoke Python class has been developed to streamline the processing 

and analysis of the gathered data. This class introduces a standardized process- 

ing pipeline designed to efficiently calculate features from the collected data, 

thereby producing separate data frames for each task. Accessibility and ease of 

use are enhanced through a user-friendly graphical user interface (GUI), which 

simplifies the process of data processing and facilitates the generation of out- 

put data systematically stored in a pre-specified folder. The culmination of this 

process results in the derivation of processed data that encompasses a compre- 

hensive array of metrics. These metrics include performance measures, average 

scores from the NASA-TLX assessment of cognitive load, heart-related features, 

and analyzing the frequency of gaze switches [145]. This integrated approach 

ensures a cohesive and coherent framework for evaluating cognitive load and 

physiological responses, enhancing the study’s overall efficacy and insight into 

the interactive dynamics within the VE. 

 

3.5 DATASET PREPROCESSING 

Our study executes the dataset preparation and preprocessing through a se- 

ries of defined steps to ensure the data is ready for neural network model train- 

ing. Initially, the dataset is loaded into a pandas DataFrame, a critical step for 

structuring the data for accessibility and manipulation. Subsequently, we filter 

out specific participants to align the dataset with our research parameters, main- 

taining the integrity and relevance of our study. Following this, feature scal- 

ing is applied using Scikit-learn’s StandardScaler, a crucial process that normal- 

izes the features’ range across the dataset to aid the neural network’s learning 

efficiency. Moreover, categorical labels indicating cognitive load levels—easy, 

medium, and hard—are transformed into numerical values via Scikit-learn’s 

LabelEncoder. This transformation is vital for the neural network’s algorith- 

mic processing of these labels. To facilitate efficient batch processing, a cus- 

 

 

³https://osf.io/754tu/?view𝑜 𝑛𝑙 𝑦 = 7 𝑓 7𝑑1𝑏30𝑎 𝑓 𝑒 𝑒4 𝑓 99𝑏3𝑐𝑑45𝑏𝑏631 𝑓 𝑐 𝑓 91 
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tom PyTorch CustomDataset class is developed to handle the preprocessed data, 

leveraging PyTorch’s DataLoader for optimized computational efficiency. These 

steps ensure that the dataset is formatted correctly, normalized, and primed for 

practical neural network training. 

 

3.5.1 PREPOSSESSING OF PHYSIOLOGICAL DATA 

In this study, we employed a variety of Python libraries specialized in signal 

processing and analysis to preprocess and extract features from electrocardio- 

gram (ECG) data. This included BioPSy for initial ECG signal processing, like 

filtering and R-peak detection, HRVAnalysis for removing ectopic beats from RR 

intervals, and PyWavelets for advanced wavelet analysis. Additionally, SciPy 

was integral for various signal-processing tasks and statistical calculations, in- 

cluding using its Short-Time Fourier Transform (STFT) and Welch frequency 

analysis method and its statistical functions for deriving measures like kurto- 

sis and skew. 

 

PREPROCESSING AND FREQUENCY DOMAIN ANALYSIS OF ECG 

DATA 

The preprocessing of ECG data begins with extracting and processing the 

signal at a sampling rate of 130 Hz. To isolate R-peaks, a bandpass filter within 

the range of 0.5 to 50 Hz is employed to eliminate extraneous noise, succeeded 

by applying the EngZee segmenter algorithm [90]. Subsequently, RR intervals 

are determined from these detected peaks, with ectopic beats being excised to 

ensure a precise analysis of heart rhythm. 

The subsequent phase involves the frequency domain function analyzing 

the heart rate variability (HRV) within the frequency domain based on these 

RR intervals. This analysis initiates with the interpolation of RR intervals to 

achieve uniform spacing, setting the stage for the accurate execution of the Welch 

method. This method is tasked with determining the power spectral density of 

the intervals, dividing the data into segments with a maximum length of 256 

points. It then delineates the low-frequency (0.04 to 0.15 Hz) and high-frequency 

(0.15 to 0.4 Hz) bands, essential for deducing HRV metrics. The power within 

these frequency bands is quantified using the trapezoidal rule, and the LF/HF 

ratio is calculated, serving as an essential marker for assessing the autonomic 
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nervous system’s equilibrium. This comprehensive process ultimately yields 

the LF and HF power values and their ratio, providing an in-depth analysis of 

cardiac rhythm and autonomic nervous system interactions based on the ECG 

data. 

Table 3.1: Summary of ECG Data Preprocessing and HRV Analysis Steps 
 

Process Step Details 
 

ECG Sampling Frequency 130 Hz 
Bandpass Filter 0.5 to 50 Hz (to remove noise) 
R-peak Detection EngZee segmenter algorithm 
RR Interval Calculation From R-peaks 
Ectopic Beat Removal For accurate heart rhythm analysis 
HRV Frequency Domain Analysis 

- Interpolation Uniform spacing of RR intervals 
- Welch Method Power spectral density computation 
- Segment Length Up to 256 points 
- Frequency Bands Low-frequency (0.04 to 0.15 Hz) 

High-frequency (0.15 to 0.4 Hz) 
- Power Calculation Trapezoidal method 
- LF/HF Ratio Autonomic nervous system balance indicator 

Output LF power, HF power, LF/HF ratio 
 

 

3.5.2 LABELING OF PHYSIOLOGICAL DATA 

In experimental research, precisely labeling physiological data is crucial for 

mapping participant responses to specific experimental conditions or occurrences. 

This segment of our Python script demonstrates a methodical approach to an- 

notating ECG (electrocardiogram) and eye-tracking data, ensuring alignment 

with various study phases. The initial step in this labeling process involves 

identifying critical events within the study. These events, which could range 

from ’baseline’ periods to ’practice’ sessions or different levels of task difficulty, 

are meticulously recorded with accurate timestamps in an ’events.csv’ file. This 

file’s timestamps are vital for accurately labeling each participant’s dataset. 

To maintain uniformity across the datasets, the script utilizes a function, 

clean_col_name, to standardize the column names in the ECG and eye-tracking 

data files. This function converts all text to lowercase, strips unnecessary spaces 

or special characters, and ensures that column names are consistent, clear, and 

error-free. Furthermore, when an event recurs (for example, multiple ’practice’ 
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sessions), the script employs an intelligent mechanism to distinguish each oc- 

currence by appending an index (such as ’practice_0’, ’practice_1’). This nu- 

anced approach to labeling is indispensable in experimental designs where par- 

ticipants are subjected to repeated or similar conditions, providing a structured 

and error-free dataset for subsequent analysis. 

 

Algorithm 1 EngZee Segmenter for R-peak Detection 
 

Require: ECG signal 𝑆, Sampling rate 𝑓𝑠 
Ensure: R-peak indices 

1. Preprocessing: 
2. Apply a bandpass filter to 𝑆 with cutoff frequencies 𝑓𝑙𝑜𝑤 = 8 𝐻𝑧 and 𝑓ℎ𝑖𝑔ℎ = 
20 𝐻𝑧. 
3. Derive the signal to emphasize the QRS complex: 𝑆′ = 𝑑𝑆 . 

4. Squaring and Integration: 
5. Square the derivative: 𝑆′′ = (𝑆′)2. 

𝑑𝑡 

6. Apply a moving window integration to 𝑆′′ with a window width 𝑊, typi- 
cally related to the expected width of the QRS complex. 
7. Thresholding and Peak Detection: 
8. Set a threshold, 𝑇, based on the median or mean of 𝑆′′. 
9. Identify segments where 𝑆′′ exceeds 𝑇. 
10. Within each segment, locate the local maximum, which is considered an 
R-peak candidate. 
11. Post-Processing: 
12. Apply adaptive thresholding to distinguish true R-peaks from noise. 
13. Use a search-back algorithm to correct for missed R-peaks, adjusting the 
threshold as needed. RETURN Indices of detected R-peaks. 

 

 

 

SEGMENTING DATA BASED ON EVENTS 

The core of the labeling process is segmenting the physiological data accord- 

ing to these events. The script uses the pandas.cut() function segments the ECG 

and eye-tracking data based on the event timestamps, assigning each data point 

a label corresponding to the ongoing event. This segmentation is integral for 

analyzing physiological responses in specific experimental conditions. Finally, 

the script saves each participant’s labeled ECG and eye-tracking data. This data, 

now segmented and labeled in line with the study’s events, is ready for detailed 

analysis, offering researchers insights into how different conditions affect phys- 

iological responses. The automated labeling of physiological data in this script 
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not only streamlines the data processing workflow but also enhances the accu- 

racy and reliability of the analysis. By aligning physiological responses with 

specific events in an experiment, researchers can draw more precise and mean- 

ingful conclusions, crucial in psychology, neuroscience, and human-computer 

interaction. 

 

3.6 FEATURE CALCULATION 

Feature extraction is increasingly critical in analyzing biomedical signals, 

mainly as datasets grow to include thousands of features. This surge in data 

availability results from the extended periods over which biomedical signals 

can now be collected, introducing unique challenges to the field [68, 96]. Under- 

standing physiological signal properties is foundational for effective analysis. 

These signals are characterized by several distinct features [68]: 

A. Non-stationary: Their properties change over time. 

B. Non-linear: Their behavior is not captured by linear models. 

C. Non-Gaussian: They do not follow a normal distribution. 

D. Non-short form: They extend over lengthy periods, complicating analysis. 

These characteristics add complexity to feature extraction and signal analy- 

sis, emphasizing the need for extracted features to capture relevant signal pat- 

terns and behaviors precisely [68, 96]. Before feature extraction, it is crucial to 

convert continuous analog signals to discrete digital signals using an analog- 

to-digital converter (ADC). This step is essential for pattern recognition across 

discrete intervals [68]. Post-extraction, feature selection plays a key role. Se- 

lecting the right features for machine learning model training can significantly 

affect the model’s performance, positively or negatively. 

 

3.6.1 ECG FEATURES 

The electrocardiogram (ECG) signal is a rich source of information regarding 

cardiac function, offering critical insights that can be unlocked through feature 

extraction processes [64]. ECG features include frequency, time, morphology, 

energy, and the RR interval, each providing a different perspective on the heart’s 

electrical activity [83]. The extraction of these features involves various compu- 

tational techniques meticulously designed to quantify distinct elements of the 
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ECG signal [109]. For practical utility, it is advisable to tailor feature selection 

to the specific requirements of the application at hand. This ensures the chosen 

features are directly relevant to the patterns and behaviors of interest, facilitating 

a more focused and effective analysis [96, 68]. 

 

THE KEY STATISTICAL OF TIME-DOMAIN 

A key aspect of feature extraction within ECG data analysis focuses on time- 

domain measurements, which are pivotal for evaluating heart rate variability 

(HRV). These time-domain features encompass statistical measures such as the 

mean, median, standard deviation, skewness, and kurtosis of the RR intervals, 

offering a comprehensive view of the heart’s rhythmic patterns [56, 64]. Further 

enriching this analysis, including the RMSSD (Root et al. of Successive Differ- 

ences) metric provides a nuanced measure of HRV, capturing the variability in 

time intervals between successive heartbeats [12]. 

The formula for RMSSD is: 

 
 

 

 

 

In this formula: 

𝑅𝑀𝑆𝑆𝐷 = 
1 

𝑁 − 1 

𝑁−1 

(𝑅𝑅𝑖+1 − 𝑅𝑅𝑖)2 

𝑖= 

(3.1) 

• 𝑅𝑅𝑖 and 𝑅𝑅𝑖+1 represent successive RR intervals. 

• 𝑁 is the total number of RR intervals. 

• The term 𝑅𝑅𝑖 1 𝑅𝑅𝑖 2 calculates the square of the difference between 
successive RR intervals. 

• The sum of these squared differences is then divided by 𝑁 1, which is 
the total number of intervals minus one. 

• Finally, the square root of this value gives the RMSSD. 

 

Features like the mean and median are used to assess the central tendency 

of the ECG signal, while the standard deviation, range, and interquartile range 

capture its statistical dispersion. Kurtosis and skewness are employed to evalu- 

ate the asymmetry and peak sharpness of the ECG signal distribution [6]. 

    

1 
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Table 3.2: Time Domain Features 
 

Parameter Units Description 

SDRR ms Standard Deviation of RR intervals. 
NNx Count Number of pairs of successive RR intervals. 
pNNx % Proportion of NNx intervals. 
SD1 ms Standard deviation, measuring short-term HRV. 
SD2 ms Standard deviation, measuring long-term HRV. 
CSI Unitless Cardiac Sympathetic Index. 

CVI Unitless Cardiac Vagal Index, a logarithmic transformation. 

 

THE KEY STATISTICAL OF FREQUENCY-DOMAIN 

In the realm of ECG signal analysis, frequency-domain features are indis- 

pensable for a detailed examination of heart rate variability (HRV) and for elu- 

cidating the interplay between sympathetic and parasympathetic nervous sys- 

tems in modulating heart rate dynamics[84]. The Power Spectral Density (PSD) 

analysis is a fundamental tool in this context, dissecting the ECG signal to iso- 

late and examine its frequency constituents. This analysis illuminates the critical 

segments of HRV across the very-low-frequency (VLF), low-frequency (LF), and 

high-frequency (HF) bands. These frequency bands play a pivotal role in decod- 

ing the nuances of autonomic nervous system regulation and comprehensively 

understanding the breadth of HRV[84]. 

 

Power Spectral Density (PSD) formula: 
 

 

 

 

where: 

𝑃𝑆𝐷 𝑓  = 
 1

 
𝑁 

𝑁 

𝑋  𝑓  2 (3.2) 
𝑀𝑊 

𝑖= 

• 𝑃𝑆𝐷( 𝑓 ) is the Power Spectral Density at frequency 𝑓 . 

• 𝑁 is the number of segments the signal is divided into. 

• 𝑀 is the length of each segment. 

• 𝑊 is the normalization factor, calculated as 𝑊 = 𝑤 𝑡 2, the sum of the 
squared window function. 

•  𝑋𝑖 𝑓 is the Fast Fourier Transform (FFT) of the 𝑖-th windowed segment of 
the signal. 

1 
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Table 3.3: Frequency Domain Features 
 

Parameter Units Description 

VLF Power ms2
 Power in the Very Low-Frequency range (0.003-0.04 Hz). 

LF Power ms2
 Power in the Low-Frequency range (0.04-0.15 Hz). 

HF Power ms2
 Power in the High-Frequency range (0.15-0.4 Hz). 

Total Power ms2
 Total spectral power across all frequency bands. 

LF/HF Ratio Unitless Ratio of LF to HF power, a measure of autonomic balance. 
Spectral Entropy Unitless Entropy of the power spectral density. 
Normalized LF % LF power normalized by total power minus VLF power. 

Normalized HF % HF power normalized by total power minus VLF power. 

 

3.6.2 PUPIL DILATION FEATURES 

In the virtual reality (VR) technology[19], integrating eye-tracking sensors 

is a critical advancement. These sensors are adept at monitoring changes in 

pupil dilation within VR environments, thus providing a pathway to unearth 

valuable insights regarding users’ emotional responses to VR content. A no- 

table example is the Pupil Labs HTC eye-tracker, distinguished by its eye gaze 

tracking capability of 120 Hz, a high accuracy of 0.6 degrees, and the precision 

to measure pupil diameter to within 1 mm [23]. Similarly, Varjo’s eye-tracking 

technology proves instrumental in gathering data on user fixations, saccades 

blink, and pupil dilations [40]. Varjo extends this functionality by incorporating 

pupil dilation measurements, enriching its application in research and social 

VR settings [42]. Research findings have illustrated that eye fixation, utilized 

as a metric for learning, enhances the accuracy of emotion classification within 

VR environments, offering superior performance over pupil diameter measure- 

ments in this regard [146]. In this context, our study leverages computational 

methods to dissect eye-tracking data, mainly focusing on pupil dilation metrics, 

focusing predominantly on the left pupil diameter. Within the statistical sum- 

mary in Table??, a comparative analysis reveals the descriptive statistics about 

the pupil diameters of both the left and right eyes. This analysis highlights a 

notable consistency across various statistical metrics, affirming the symmetrical 

nature of pupil responses to stimuli. Nonetheless, the analysis also identifies 

minor discrepancies, which warrant further exploration. 

In our research, we delve into various statistical metrics to understand the 

dynamics of pupil dilation. These metrics indicate the eye’s response over time 

and under different conditions. 
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Table 3.4: Transposed Descriptive Statistics 
 

Statistic Right.PupilDiameter Left.PupilDiameter 

Valid 65437 65437 
Missing 0 0 
Mean 3.344 3.067 
Std. Deviation 1.147 1.142 
Coefficient of Variation 0.343 0.372 
Variance 1.317 1.305 
Range 6.669 6.669 
Minimum -1.000 -1.000 

Maximum 5.669 5.669 

 

STATISTICAL ANALYSIS OF PUPIL SIZE 

Kurtosis: These statistical tests shed light on the shape and asymmetry of 

the pupil size distribution. Kurtosis is an indicator of the extent to which a dis- 

tribution’s peak deviates from that of a normal distribution. A distribution with 

a high kurtosis (a value exceeding +2) is more sharply peaked, suggesting a con- 

centration of responses in the middle. Conversely, a kurtosis value lower than 

-2 signals an overly flat distribution or spread out [74, 106]. 

Formula 

 

𝑛 

( +  )  

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) 
𝑖=1

 

 𝑥𝑖  Mean  4 

Standard Deviation 

3(𝑛 − 1)2
 

− 
(𝑛 − 2)(𝑛 − 3) 

(3.3) 

Where: 

𝑛 = number of observations 

𝑥𝑖 = each individual data point 

𝑥  = mean of the data 

𝑠 = standard deviation of the data 

Interquartile Range (IQR): The IQR focuses on the middle 50% of pupil 

sizes, offering insights into the central tendency of pupil dilation while elimi- 

nating the influence of outliers. 

The interquartile range (IQR) is calculated as: 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (3.4) 
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Area Under the Curve (AUC): The AUC provides a singular value encapsu- 

lating the overall pupil dilation experience. It combines the size and duration 

of dilation into one metric, offering a unique and comprehensive perspective on 

the eye’s response over time. 

The area under the curve (AUC), assuming equally spaced measurements, 

is: 
 

𝐴𝑈𝐶 = 

 

 𝑛−1 
(𝑥𝑖 + 𝑥𝑖+1) 

 

These diverse metrics offer a detailed and nuanced understanding of pupil 

dilation, which is vital for interpreting physiological responses in our study. 

They help correlate pupil behaviour with various stimuli or psychological states, 

enhancing the depth and breadth of our research findings. 

Table 3.5: Analysis of Pupil Size Features 
 

Feature Units Description 

Mean Pupil Diameter mm The average pupil diameter. 
Standard Deviation mm Variation in pupil diameter size. 
Max Pupil Diameter mm The largest recorded. 
Min Pupil Diameter mm The smallest recorded. 
Amplitude of Pupil Oscillations mm The difference between max and min pupil diameters 
Kurtosis Unitless Sharpness of the distribution. 

Skewness Unitless Asymmetry of the distribution. 

 

 

3.7 FEATURE SELECTION USING FISHER SCORES 

The Fisher score is employed as a strategy for feature selection by ranking fea- 

tures based on their ability to differentiate between distinct classes or groups. 

This method, rooted in a filter-based, supervised feature selection framework, 

allocates weights to features, with a higher Fisher score denoting a feature’s en- 

hanced discriminative capability and its value in classification endeavours [3, 

116]. 

 

THE FISHER SCORE MODEL 

The fundamental concept of the Fisher Score involves selecting a group of 

features [119] that effectively maximizes the distinction between data points be- 
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longing to different classes and, at the same time, minimizes the distinction 

within the same class. This process involves calculating a score for every fea- 

ture to determine its ability to discriminate between classes. In particular, given 

a training dataset X ∈ R𝑚×𝑛 with respect to 𝑐 different classes, the Fisher score 

of the 𝑖𝑡ℎ feature is computed [139, 117] by 
 

𝐹𝑆( 𝑓𝑖) = �𝑐 
𝑆𝐵( 𝑓𝑖) 

𝑆𝑊 ( 𝑓𝑖) 
, (3.6) 

 

 

where 𝑆𝐵( 𝑓𝑖) = 
�𝑐 𝑛𝑘(𝜇(𝑘) − 𝜇𝑖)2 is the between-class scatter of the 𝑖𝑡ℎ fea- 

ture, 𝑛𝑘 is the number of samples in the 𝑘𝑡ℎ class, 𝜇(𝑘) is the mean of the 𝑖𝑡ℎ feature 

in the 𝑘𝑡ℎ class, 𝜇𝑖 is the mean of the 𝑖𝑡ℎ feature in X, 𝑆𝑊 ( 𝑓𝑖) = 

�𝑛𝑘
 

(𝑥
(𝑘) 

− 𝜇
(𝑘)

)2 

is the within-class scatter matrix of the 𝑖𝑡ℎ feature with respect to the 𝑘𝑡ℎ class, 

and 𝑥(𝑘) denotes the value of the 𝑖𝑡ℎ feature for the 𝑗𝑡ℎ sample in the 𝑘𝑡ℎ class. 

 

THE FISHER SCORE IN CLASSIFYING COGNITIVE LOAD STATES 

 
The Fisher score significantly contributes to the feature selection process in 

developing advanced deep learning models for classifying cognitive load states 

[111]. Its adoption within our research framework serves multiple crucial pur- 

poses: it facilitates the practical distinction between classes, reduces the com- 

plexity of the dataset, improves model performance, illuminates principal phys- 

iological indicators of cognitive load, and ensures methodological rigor [111]. 

This score is pivotal in evaluating the discriminative capacity of individual fea- 

tures across varying cognitive load states. By assigning priority to features ac- 

cording to their Fisher scores, our approach refines the dataset by eliminating 

unnecessary noise and less pertinent features. Concentrating on the most dis- 

criminative features, as highlighted by their elevated Fisher scores, generally 

yields models that are not only more precise but also exhibit superior gener- 

alization capabilities, thereby achieving a harmonious balance between com- 

plexity and practicality [117, 111]. Moreover, the feature selection process via 

the Fisher score reveals critical physiological markers of cognitive load, deep- 

ening our comprehension of cognitive load evaluation [102, 118]. Utilizing the 

𝑗=1 
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Fisher score in our research lays a quantifiable, statistically sound basis for fea- 

ture selection, guaranteeing that model development is empirically solid and 

data-driven [118]. 
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Code 3.1: Feature Selection using Fisher Scores 

 

The accompanying figure 3.4 illustrates the top 15 features selected based on 

their Fisher Scores from the ECG and pupil dilation datasets. It is evident from 

the chart that ’Pupil Size’ has the highest Fisher Score, signifying its discrimina- 

tive solid ability in the context of cognitive load classification. The chart provides 

a clear visualization of the feature selection process, showcasing the scores from 

highest to lowest and thus highlighting the most informative features for our 

deep learning models. This prioritization of features is instrumental in enhanc- 

ing the accuracy and efficiency of our classification tasks. 

def calculate_fisher_scores(X, y): 

selector = SelectKBest( score_func=f_classif , k='all') 

selector.fit(X, y) 

scores = selector. scores_ 

return scores 

 

# Calculate Fisher scores for features 

fisher_scores = calculate_fisher_scores(df[ feature_columns], df[' 

label_encoded']) 

 

# Copy the original feature columns 

original_feature_columns = feature_columns.copy()  

 

# Selecting the top features based on Fisher scores 

num_top_features = 15 # Select the top 15 features 

top_features_indices = np. argsort( fisher_scores)[- num_top_features:] 

top_features = [ feature_columns[i] for i in top_features_indices] 

 

# Update the feature columns to include only the top selected 

features 

feature_columns = top_features 
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Table 3.6: Top 15 Features based on Fisher Scores 
 

Rank Feature Fisher Score (Approx.) 

1 Pupil Size 0.1 
2 Pupil Size Std 0.15 
3 Band Power 0.2 
4 LF/HF Ratio 0.25 
5 Modified CVI 0.3 
6 LF Norm 0.35 
7 HF Norm 0.4 
8 ECG F5 SDNN 0.45 
9 ECG F2 Differences Mean 0.5 
10 ECG F3 Differences Max 0.55 
11 ECG F4 SD1 0.6 
12 ECG F9 SD2 0.65 
13 ECG F11 LFnu 0.7 
14 ECG F10 HFnu 0.75 

15 ECG F19 Total Power 2.5 

 

Figure 3.4: Feature selection with Fisher score 

 

3.8 ARTIFICIAL NEURAL NETWORKS 

This research investigated cognitive load classification by deploying two neu- 

ral network architectures: the Multilayer Perceptron (MLP) and the Gated Re- 

current Unit (GRU). Each model was chosen for its unique strengths in handling 

different data types and contributing to our understanding of cognitive load dy- 

namics. 
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3.8.1 MLP 

In our pioneering journey to understand human behaviour through the lens 

of cognitive load states, we employed cutting-edge Deep Learning models. Specif- 

ically, we utilized the Multi-Layer Perceptron (MLP) to classify cognitive load 

states by integrating ECG and pupil dilation data. This approach allowed us to 

delve deep into the nuances of how cognitive load impacts physiological and 

psychological responses. The MLP is a cornerstone in our methodology thanks 

to its robust framework for managing complex, multi-dimensional data. It is a 

configuration that excels in pattern recognition and is ideally suited for our pur- 

pose. The MLP architecture we designed includes several fully connected lay- 

ers, or linear layers, which are the bedrock of the model. These layers perform 

essential linear transformations on the input data, mapping it efficiently to an 

output that correlates with different cognitive load states. We enriched the MLP 

with batch normalization layers to ensure consistent data distribution through- 

out the network. This step is crucial for maintaining the speed and stability of the 

training process. It addresses potential issues of internal covariate shift, paving 

the way for faster model convergence. Non-linearity is injected into the MLP 

through ReLU (Rectified Linear Unit) activation functions. This choice allows 

our model to capture and represent complex patterns in the data, a capability 

beyond the reach of linear models. ReLU is particularly valued for its effective- 

ness and simplicity in introducing non-linearity into our model. Dropout lay- 

ers were strategically included to enhance the model’s robustness and prevent 

overfitting. These layers randomly deactivate specific neurons during training, 

forcing the network to learn more generalized features that are not dependent 

on minor data points. This technique ensures that our model is accurate and 

reliable when applied to new, unseen data. 
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class MLP(nn.Module): 

def   init  (self, input_size , output_size , dropout_rate=[0.5 , 

0.6], activation='relu'): 

super(MLP , self).   init  () 

self.fc1 = nn.Linear(input_size , 64) 

self.bn1 = nn. BatchNorm1d (64) 

self.relu1 = nn.ReLU() 

self. dropout1 = nn. Dropout( dropout_rate[0]) 

self.fc2 = nn.Linear(64 , 16) 

self.bn2  =  nn. BatchNorm1d (16) 
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Code 3.2: MLP Model 

 

3.8.2 GRU 

Diving into the intricacies of human behavior and cognitive load through 

ECG and pupil dilation data, we have also embraced the power of the Gated 

Recurrent Unit (GRU) model. Our GRU model is designed with precision to 

harness time-series data effectively, a perfect match for the temporal nature of 

our study. We configured the GRU with a focus on simplicity and efficacy. 

It features a singular GRU layer chosen to streamline the model’s architecture 

without compromising its capability to process complex sequences. This de- 

cision reduces the model’s complexity, making it more manageable and less 

prone to overfitting. Acknowledging the potential risk of overfitting, we have 

implemented an increased dropout rate. This strategy introduces randomness 

into the model training process, effectively helping the network generalize bet- 

ter by preventing it from relying too heavily on any specific data part. Our GRU 

model operates bidirectionally to efficiently capture the nuances of time-series 

data. This means it processes data forwards and backward, providing a more 

comprehensive understanding of the dataset. The output from this bidirectional 

GRU feeds into a simplified, fully connected layer designed to output the classifi- 

cation results based on the processed ECG and pupil dilation data. By choosing 

a bidirectional approach, we ensure our model captures all temporal dependen- 

cies, offering a richer, more nuanced analysis of cognitive load states. This GRU 

model is a testament to our commitment to leveraging deep learning in innova- 

tive ways to illuminate the subtle dynamics of human behavior. 
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class  GRUModel(nn.Module):  

def   init  (self, input_size , hidden_size , output_size , 

num_layers=1, dropout_rate=0.5):  

super(GRUModel , self).   init  () 

 

# Using a single GRU layer instead of multiple to reduce 

complexity 

self.gru = nn.GRU(input_size , hidden_size , num_layers= 

num_layers , 

self.relu2  =  nn.ReLU() 

self. dropout2 = nn. Dropout( dropout_rate[1]) 

self.fc3 = nn.Linear(16 , output_size) 
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Code 3.3: GRU Model Class Definition 

 

3.9 MACHINE LEARNING CLASSIFIERS IN STACKED ENSEM- 

BLE MODEL 

Our approach employs a stacked ensemble model, integrating several ma- 

chine learning classifiers to capitalize on their individual and combined strengths 

for enhanced classification accuracy of cognitive loads. The ensemble model in- 

cludes: 

• Random Forest (RF), an ensemble learning method that operates by con- 
structing a multitude of decision trees at training time and outputting the 
mode of the classes (classification) of the individual trees. RF’s resilience 
against overfitting and its aptitude for handling high-dimensional data 
makes it a valuable component of our model. 

• Support Vector Classifier (SVC), known for its effectiveness in high-dimensional 
spaces, employs a hyperplane to distinguish between classes, offering ro- 
bustness to the model. 

• Light Gradient Boosting Machine (LightGBM) is a gradient boosting frame- 
work that utilizes tree-based learning algorithms. It is recognized for its 
efficiency and performance in processing large datasets and categorical 
features. 

The essence of our stacked ensemble model lies in its hierarchical architec- 

ture. The primary tier consists of the base classifiers, functioning collectively yet 

independently, to provide preliminary predictions. The subsequent tier, or the 

batch_first=True , bidirectional=True) 

 

# Increasing dropout to prevent overfitting 

self. dropout = nn. Dropout( dropout_rate) 

 

# Simplifying the fully connected layer 

self.fc = nn.Linear( hidden_size * 2, output_size) # *2 for 

bidirectional 

 

def forward(self, x): 

x, _ = self.gru(x) 

x = self. dropout(x) 

x = x[:, -1, :] # Taking the output of the last time step 

x = self.fc(x) 

return x 
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meta-classifier, synthesizes these initial predictions into a consolidated output. 

Through logistic regression, this meta-classifier is adept at weighing the prob- 

abilistic contributions of each base model, ensuring a comprehensive analysis 

that accounts for the nuanced variations across input features. The ensemble 

model chosen structure indicates our commitment to a methodology that not 

only captures the intricacies of the data but also amplifies the predictive accu- 

racy through strategic classifier integration. 

 

ADDRESSING DATASET IMBALANCES 

Acknowledging the prevalence of class imbalances in physiological datasets 

pertinent to cognitive loads, our model incorporates the Synthetic Minority Over- 

sampling Technique (SMOTE). This intervention augments the representation of 

minority classes within the training dataset, thus rectifying imbalances and en- 

hancing the model’s ability to generalize across diverse data points. 

 

3.10 TECHNIQUES TO MITIGATE OVERFITTING 

In supervised machine learning, a prevalent issue is the challenge of overfit- 

ting, where models excellently adapt to training data but stumble when applied 

to new, unseen datasets [37]. This phenomenon, recognized for its detrimental 

impact on a model’s ability to generalize, is marked by a model’s flawless per- 

formance on its training set contrasted with its underperformance on the test 

set. Overfitting stems from a model’s tendency to learn and memorize the train- 

ing data, capturing its noise as patterns, which skews its predictive capabilities 

[142]. 

Our exploration adopts two acclaimed strategies to mitigate this challenge: 

Dropout and Batch Normalization. These methods are integral to improving 

model performance and reducing the risk of overfitting, thereby ensuring that 

our models learn effectively from training data and retain their accuracy on novel 

datasets [32]. 

Table 3.7: Overfitting Prevention Techniques Utilized in MLP and GRU Models 
 

Model Dropout L-Regularization BN Optuna Data Standardization 
MLP ✓ ✓ ✓ ✓ ✓ 
GRU ✓ ✓  ✓ ✓ 
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3.10.1 DROPOUT 

Dropout, a cutting-edge regularization strategy, stands apart from traditional 

regularization methods like L1 and L2, which typically adjust the cost function. 

Instead, dropout transforms the architecture of the network itself. This strat- 

egy is particularly relevant in the context of deep neural networks. With their 

multiple non-linear hidden layers, these networks can learn complex functions. 

However, they are susceptible to overfitting, especially when training data is 

sparse. Dropout, as a regularization technique, is crafted to address this very 

challenge [33]. 

The core mechanism of dropout involves the random exclusion of neurons 

and their connections from the neural network during each training iteration. 

This ingenious process emulates the effect of training numerous distinct neu- 

ral networks, echoing the principles behind ensemble methods. While each 

network may overfit in its unique manner, collectively, they work to counter- 

balance their respective overfitting tendencies. A notable feature of dropout is 

the shared weights across these various network configurations, leading to in- 

frequent training for each specific configuration. However, this approach has 

demonstrated significant efficacy in meeting regularization objectives. [112]. 

The advent of dropout in 2014 marked a pivotal moment in regularization tech- 

nology. Its implementation showcased an improvement in classification accu- 

racy on the MNIST dataset by 0.4%, particularly when combined with L2 regu- 

larization. Since its introduction, dropout’s ability to diminish overfitting has 

gained widespread acknowledgment in a plethora of applications. By com- 

pelling networks to not rely excessively on any single feature, dropout fosters 

the learning of more robust features, thus enhancing the model’s generalizabil- 

ity and reliability across different settings. This narrative underscores the foun- 

dational contributions of Srivastava et al. (2014) in introducing dropout as a 

robust solution to overfitting, further solidified by the empirical evidence pre- 

sented in their seminal work [112]. 
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Figure 3.5: Dropout 

 

 

3.10.2 BATCH NORMALIZATION 

Batch normalization (BatchNorm), introduced by Ioffe and Szegedy in 2015, 

has revolutionized the architecture of deep learning models [60]. This technique 

is a cornerstone in supervised learning for standardizing the outputs across the 

layers within a neural network, essentially ”resetting” the distribution of these 

outputs before they proceed to the next layer. This reset improves the subse- 

quent layer’s ability to interpret the data more efficiently, facilitating a smoother 

and more effective learning process [136]. 

The implementation of BatchNorm brings a multitude of benefits to the neu- 

ral network training procedure. Primarily, it stabilizes the training by address- 

ing the internal covariate shift, a common challenge during the training phase. 

This shift often complicates the model optimization, but BatchNorm simplifies 

this by ensuring a consistent distribution of inputs across the layers. Moreover, it 

significantly bolsters the model’s generalization capabilities. By normalizing the 

activations in each layer, BatchNorm reduces the risk of overfitting, thereby im- 

proving the model’s performance on unseen data. These advantages underscore 

the efficacy of BatchNorm in enhancing both the performance and efficiency of 

neural network training [136]. 

Fundamentally, BatchNorm stabilizes the input distribution for each network 

layer during training, especially over a minibatch. It achieves this by introduc- 

ing additional layers that adjust the distribution’s first two moments—mean and 

variance—to zero and one, respectively. Moreover, inputs undergoing batch 
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normalization may be scaled and shifted via trainable parameters, preserving 

the network’s ability to express complex functions. Typically, this normalization 

precedes the prior layer’s activation function, ensuring optimal data preparation 

for the following processing stage [105]. 

During training, the activations of a layer are normalized for each mini-batch 

of data using the following equations: 

Mean Calculation: 
 

 

 

Variance Calculation: 

mean = 
 1

 
𝑚 

 
 

 𝑚 

𝑚 

𝑥𝑖 
𝑖=1 

variance = 
 1

 
𝑚 

𝑥𝑖 mean 2 
𝑖=1 

 

Normalization of Activations: 

𝑦 = 
(𝑥𝑖 − mean) 

variance + 𝜀 

 

Scaling and Shifting of Normalized Activations: 

𝑧𝑖 = 𝛾𝑦𝑖 + 𝛽 

 

where 𝛾 and 𝛽 are learned parameters. 

During inference, the activations of a layer are normalized using the mean 

and variance of the activations calculated during training, rather than using the 

mean and variance of the mini-batch: 

Normalized Activations: 

𝑦 = 
(𝑥𝑖 − mean) 

variance + 𝜀 

 

Scaled and Shifted Activations: 

𝑧𝑖 = 𝛾𝑦𝑖 + 𝛽 
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3.10.3 REGULARIZATION AND CLASS WEIGHT HANDLING 

In deep learning, embracing regularization and adeptly managing class weights 

are crucial for augmenting model efficacy and minimizing the risk of overfitting 

[57, 78]. 

 

REGULARIZATION 

Regularization enhances a model’s generalizability and curtails overfitting. 

This is accomplished by introducing methods that balance the reduction of gen- 

eralization error through a delicate trade-off—increasing bias to decrease vari- 

ance. Among the spectrum of regularization techniques, L1 and L2 regular- 

izations are noteworthy. Both methodologies augment the loss function with 

a penalty term designed to restrain the magnitude of the weights, thereby pre- 

venting the model from overfitting to the training data [63, 130, 100]. 

 

L1 REGULARIZATION (LASSO) 

LASSO regression, through the use of genetic algorithm descriptors, effec- 

tively simplifies model complexity by reducing coefficients, as first detailed by 

Tibshirani in 1996 [71]. It combines subset selection benefits with ridge regres- 

sion’s stability, aiming to minimize the Mean Squared Error (MSE) and the pre- 

dictor count. The optimal coefficient set, 𝑏LASSO, is determined at the point of 

MSE minimization, influenced by the tuning parameter 𝜆, where a larger 𝜆 in- 

duces more zero-value coefficients [85, 70, 130]. 

L1 formula where the objective is to minimize the residual sum of squares 

combined with the L1 norm of the coefficients, the equation can be denoted[30] 

as: 
 

 

𝛽̂LASSO = arg min 
  1    

 
(𝑦𝑖 − 𝑋𝑖𝛽)2

 

𝑝 

+ 𝜆 
 

|𝛽𝑗  | 
  

. (3.7) 
𝛽 

𝑖=1 
 𝑗=1  

L2 REGULARIZATION( RIDGE REGULARIZATION) 

The L2 regularization formula, commonly used to penalize the magnitude 

of coefficients in regression models, is given by [99, 85]: 
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𝑛 

2 
𝑖 

 

Where: 

𝑖=1 

• ℒ is the original loss function of the model. 

• 𝜆 is the regularization parameter. 

• 𝑤𝑖 are the coefficients of the model. 

• The sum is taken over all 𝑛 coefficients. 

 

 

3.10.4 EARLY STOPPING TECHNIQUE 

In our deep learning model, we embraced an essential regularization tech- 

nique called EarlyStoppingto to ward off overfitting. During our GRU model’s 

training phase, Early Stopping was pivotal, optimizing both performance and 

efficiency. 

This regularization method is key to combating one of machine learning and 

deep learning’s frequent hurdles: overfitting, which happens when a model 

overly familiarizes itself with the training data, learning its noise and fluctua- 

tions at the cost of its ability to perform well on new, unseen data. The EarlyStopping 

class offers a robust remedy for this issue, ensuring our model remains general- 

izable and effective [73, 17]. 

 

The EarlyStopping class is initialized with four key parameters: 

1. Patience (patience=7): The patience parameter in our EarlyStopping setup 
waits for seven epochs without improvement in validation loss before halt- 
ing training. This ensures efficiency by stopping training early if progress 
stalls. 

2. Verbose (verbose=False): 

3. Minimum Change (delta=0): The delta parameter sets the minimum 
change in the monitored quantity to qualify as an improvement. This pre- 
vents stopping training for very minute improvements. 

4. Checkpoint Path (path='checkpoint.pt'): This parameter specifies the 
path to save the model when a new minimum in the validation loss is ob- 
served. This ensures that the model is preserved at its best performance 
state. 
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The EarlyStopping method operates by continuously monitoring the vali- 

dation loss after each epoch. Training is halted if the validation loss does not 

improve beyond the specified delta for several epochs equal to the patience 

value. This technique ensures that the model does not overfit and maintains a 

generalized performance. 

Additionally, the EarlyStopping class includes functions to save the model 

checkpoint (save_checkpoint) when a new minimum validation loss is achieved 

and to load the best model (load_best_model) for future use or evaluation. This 

functionality is critical in our deep learning workflow, ensuring the retention 

and availability of the most effective version of the model. 

1 

2 

 

3 self. patience = pa tience 

4 self. verbose = ver bose 

5 self. counter = 0  

6 self. best_score = None 

7 self. early_stop = False 

8 self. val_loss_min = np.Inf 

9 self.delta  =  delta  

10 self.path  =  path  

11   

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 
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36 

Code 3.4: EarlyStopping Class 

 

3.10.5 HYPERPARAMETER OPTIMIZATION WITH OPTUNA 

Optuna, an open-source tool for hyperparameter optimization, revolution- 

izes the fine-tuning process of machine learning models by enabling a struc- 

tured and flexible hunt for the ideal hyperparameters. This is crucial for en- 

hancing the models’ accuracy and effectiveness. Employing sophisticated algo- 

rithms such as Bayesian optimization, Tree-structured Parzen Estimators (TPE), 

and evolutionary strategies, Optuna excels in efficiently exploring the hyperpa- 

rameter space, as highlighted in the work by Akiba et al. (2019) and the Optuna 

team (2019) [4, 124, 87]. 

In the paper ”Hyperparameter Optimization via Sequential Uniform Designs,” 

Zebin Yang and Aĳun Zhang introduce an innovative strategy known as sequen- 

tial uniform design (SeqUD) for optimizing hyperparameters. This approach is 

executed using the Optuna framework. Optuna, available under the MIT license 

⁴, has been actively used in production at Preferred Networks for over a year [4]. 

Optuna’s integration into this research simplifies conducting extensive hy- 

perparameter domain explorations. It allows for numerous trials, each propos- 

ing a distinct hyperparameter combination, with the objective function guiding 

optimization based on the model’s efficacy. This adaptability in tackling vari- 

ous optimization challenges confirms Optuna’s critical role in this thesis’s deep 

learning model development, as acknowledged by various sources, including 

the Optuna team (2019) and others [35, 88, 125]. 

Fine-tuning the GRU model’s hyperparameters with Optuna focused on se- 

lecting the best values for learning rate, batch size, epochs, layers, hidden unit 

size, dropout rate, and L1 regularization strength, aiming to maximize the F1 

 

⁴https://github.com/pfnet/optuna/ 

if  self. verbose: 

print(f'Validation  loss  decreased  ({ self. val_loss_min :.6 f 

} --> { val_loss:.6 f}). Saving model ...') 

torch.save(model. state_dict(), self.path) 

self. val_loss_min = val_loss 

 

def    load_best_model(self,    model): 

model. load_state_dict(torch.load(self.path))  
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score. This meticulous optimization underscores Optuna’s instrumental role in 

refining model performance. 

Table 3.8: Optuna Hyperparameter Tuning for GRU Model 
 

Hyperparameter Description 
 

Learning Rate Optimal value for the learning rate of the model. 
Batch Size Optimal batch size for training the model. 
Number of Epochs Optimal number of training epochs. 
Number of Layers Optimal number of GRU layers in the model. 
Hidden Unit Size Optimal size of the hidden units in the GRU layers. 
Dropout Rate Optimal dropout rate for regularization. 
L1 Regularization Strength Optimal strength of L1 regularization. 

Note: The optimization process aimed to maximize the 
F1 score, which is the harmonic mean of precision and 
recall. 

 

 

In the context of enhancing machine learning model efficacy, hyperparame- 

ter optimization emerges as a pivotal technique to refine performance metrics. 

Utilizing the Optuna framework, this study focuses on the systematic tuning of 

the LightGBM model—a method celebrated for its expediency and proficiency 

with extensive datasets. The accompanying table (3.9) delineates the hyper- 

parameters subject to optimization, each playing a crucial role in modulating 

model complexity, convergence rate, and overall accuracy. 
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Table 3.9: Optuna Hyperparameter Tuning for LightGBM Model 

Hyperparameter Description 
 

objective Specifies the learning task and objective. 
metric Metric used for model evaluation. 
num_class Number of classes in the target variable. 
verbosity Level of output verbosity. 
boosting_type Type of model boosting. 
num_leaves Number of leaves in full trees. 
min_child_samples Minimum number of data points in a leaf. 
max_depth Maximum depth of the tree. 
learning_rate Step size shrinkage used to prevent overfitting. 
n_estimators Number of boosting iterations or trees. 
random_state Seed used for random number generation. 

 

Note: The hyperparameters were tuned with the aim 
of maximizing the accuracy of the LightGBM model 
on the given dataset. 

 

 

3.11 ADDITIONAL TECHNIQUES 

In biometrics, especially with complex datasets like ECG and eye-tracking 

data, it is crucial to use various techniques to deepen and enhance analysis qual- 

ity. These methods bolster the study’s robustness and tackle challenges like data 

scarcity, variability, and overfitting. A critical approach here is data augmenta- 

tion, significantly contributing to the analysis’s depth and quality by enriching 

the data landscape, as underscored by the extensive research and applications 

in the field. 

 

3.11.1 DATA AUGMENTATION TECHNIQUES FOR BIO-METRIC DATASET 

Data augmentation is a technique that artificially increases dataset size by 

altering existing samples through various manipulations to expand the dataset 

[127]. 

This method includes strategies like geometric adjustments—flips, resizes, 

crops, rotations, and scaling—color property modifications, such as adjustments 

to brightness, contrast, and adding noise, and more advanced methods like the 

use of adversarial and generative adversarial networks (GANs). It also encom- 

passes text data alterations through synonym replacement, translations, and text 
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generation via GANs, all of which are highlighted in the contributions of several 

researchers and articles emphasizing the technique’s significance in enhancing 

data analysis and model training [127, 128, 108, 82]. 

We delve into data augmentation methods for ECG and eye-tracking data 

within biometric datasets, which are vital for boosting dataset robustness and 

reliability. We implement Gaussian Noise Addition for ECG data to simulate 

environmental interference, Physiological Noise Addition to mimic physiologi- 

cal changes like respiratory sinus arrhythmia, and Time Warping for non-linear 

time axis distortion to reflect heart rate variability. Eye data augmentation in- 

cludes Gaussian Noise Addition for pupil diameter measurement error simula- 

tion, Random Blink Simulation to represent natural blinking patterns, and Pupil 

Size Variation to emulate daily pupil size fluctuations. These techniques, ap- 

plied via a script in a nested loop structure, enrich the realism of each partici- 

pant’s data, expanding the dataset from 21 to 64 participants effectively. 

• Parameter tuning for noise levels. 

• Introducing more diverse augmentation methods. 

• Implementing robust error handling. 

• Establishing a logging mechanism for process tracking. 

This holistic approach to data augmentation automates and standardizes the 

enhancement of biometric datasets, integrating realistic complexity. It is partic- 

ularly crucial for research, ensuring consistency and contributing significantly 

to the datasets’ robustness and reliability, making it an invaluable asset for in- 

depth analysis and application. 

Table 3.10: Data Augmentation Techniques and Parameters 

Data Type Augmentation Technique Parameters 

ECG Gaussian Noise Noise level: 0.005 - 0.02 
ECG Physiological Noise Amplitude: 1 - 10, Frequency: 0.1 - 0.5 Hz 
ECG Time Warping Warp factor: 0.8 - 1.2 
Eye Gaussian Noise Noise level: 0.01 - 0.1 
Eye Random Blinks Blink rate: 0.01 - 0.05 

Eye Pupil Size Variation Variation factor: 0.05 - 0.15 
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Figure 3.6: The number of real participants compared to augmented ones 

 

3.12 CLASSIFICATION FUNDAMENTALS 

The Gated Recurrent Unit (GRU) model, a variant of the recurrent neural 

network, shines in analyzing brain activity, notably for decoding complex ECG 

data patterns where timing plays a critical role [26]. 

The GRU model’s efficacy is notably enhanced through Fisher score-based 

feature selection. This method zeroes in on essential features within high-dimensional 

data, directing the GRU’s focus toward critical aspects of brain activity. Such 

precision not only heightens classification accuracy but also aids in pinpoint- 

ing key features that signal different cognitive states or responses. The GRU 

model’s adaptability is further demonstrated across various domains—ranging 

from emotion recognition to motion prediction and EEG signal classification— 

underscoring its capability to grasp temporal dynamics and analyze intricate 

datasets [140, 48, 144]. 

 

3.12.1 DATA SPLIT AND PREPARATION 

Our study’s data preparation involved intensive preprocessing before train- 

ing our Artificial Neural Networks model. Initially, we processed the dataset us- 

ing label encoding, turning categorical labels into the numerical format, which is 

crucial for the following stages of machine learning. Following that, we applied 
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standard scaling to even out the feature columns, ensuring each attribute equally 

influences the learning process and preventing any from overshadowing others 

due to scale differences. Once preprocessing was complete, we segmented our 

data into separate training and testing sets. This separation is vital for assessing 

the model’s performance on new data and objectively evaluating its predictive 

capabilities. 

 

CROSS-VALIDATION TECHNIQUES 

To rigorously assess the model’s effectiveness and ensure its generalizability, 

we employed both K-Fold and Stratified K-Fold cross-validation techniques. 

K-Fold cross-validation involved partitioning the data into ’K’ equal subsets 

and iteratively using one subset for testing while utilizing the remaining sub- 

sets for training. This method ensures that every data point is used for training 

and testing exactly once, offering a comprehensive evaluation of the model’s 

performance across the entire dataset. 

Stratified K-fold cross-validation, on the other hand, maintained the original 

distribution of classes in each fold. Stratified K-fold cross-validation, a modi- 

fication of the traditional K-fold cross-validation approach, is widely adopted 

in classification tasks, particularly when handling imbalanced datasets. Its pri- 

mary goal is to maintain a consistent distribution of class labels across each fold 

in the cross-validation dataset, aligning with the overall class proportions of the 

dataset. 

This technique proves especially advantageous when dealing with datasets 

characterized by uneven class distributions, a scenario frequently encountered 

in relatively small datasets. While oversampling or undersampling techniques 

can address class imbalances [115], stratified K-Folds cross-validation takes a 

different approach. It divides the dataset into k subsets, ensuring that each sub- 

set retains a nearly identical proportion of minority and majority class instances 

as observed in the complete dataset. During each iteration, one subset serves 

as the test set, while the remaining subsets are combined for training purposes. 

This process follows the steps outlined in Algorithm 2 [123], with subsequent 

stages mirroring those of standard cross-validation [80]. 

Representation of Stratified K-Fold Cross-Validation in figure3.7 showing the 

equitable distribution of class samples in training (blue) and testing (red) sets 

across folds. 
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Algorithm 2 SCV Partitioning Method 
 

for each class 𝑐𝑗 𝐶 do 
𝑛 count 𝑐𝑗 𝑘 
for each fold 𝐹𝑖 𝑖 = 0, . . . , 𝑘 1 do 
𝐸 randomly selects 𝑛 examples of class 𝑐𝑗 from 𝐷 
𝐹𝑖 𝐹𝑖 𝐸 
𝐷 𝐷 𝐸 

end for 
end for 

 

Figure 3.7: Stratified K-Fold cross-validation 

 

IMPORTANCE OF SAMPLE SIZE 

The size of the dataset plays a pivotal role in the model’s learning efficacy. 

A larger dataset typically leads to better model performance, as it captures a 

wider range of variability within the data, allowing for more accurate parameter 

estimation and reduced overfitting. In our study, the dataset size was a critical 

factor, particularly given the complexity of combining ECG and pupil dilation 

features. The augmented size of the dataset, achieved through data augmenta- 

tion techniques, was instrumental in enriching the training process, enabling the 

GRU model to learn more nuanced patterns and relationships within the data, 

ultimately leading to more accurate and generalizable classification results. 

 

3.12.2 TRAINING AND EVALUATION 

The training process involved iterating over each fold as defined in the Strat- 

ified K-Fold cross-validation. In each iteration, the model was trained on the 



58  

3.12. CLASSIFICATION FUNDAMENTALS 

 

training subset and validated on the test subset. The training loop was designed 

as follows: 

1. Forward Pass: For each batch in the training data, the model’s forward 
method was invoked to compute predictions. 

2. Loss Computation: The Cross-Entropy Loss function, weighted for class 
imbalances, was used to calculate the difference between the model’s pre- 
dictions and actual labels. 

3. Backward Pass and Optimization: The loss was backpropagated to up- 
date the model’s weights using the AdamW optimizer, aiming to minimize 
the loss over successive iterations. 

We employed a custom dataset class in PyTorch to manage our data, ensur- 

ing that each sample was appropriately reshaped and fed into the model. This 

preparation was vital for the GRU model, which requires data to be in a sequence 

format. 

During the training process, our model’s performance was continuously mon- 

itored. We employed EarlyStopping to halt training when the model’s perfor- 

mance on the validation set ceased to improve, thereby preventing overfitting. 

The model’s effectiveness was evaluated using metrics such as precision, recall, 

and F1 score, calculated for each fold of cross-validation. These metrics pro- 

vided a comprehensive view of the model’s performance across various aspects 

of classification accuracy. 

Furthermore, we computed the confusion matrix to gain deeper insights into 

the model’s classification capabilities, particularly to understand its performance 

across different classes. 

Post-training, we calculated the Fisher Information of our model’s parame- 

ters, offering insights into the importance of each parameter in the prediction 

task. Additionally, we visualized the training and validation losses across dif- 

ferent iterations of cross-validation, providing a graphical representation of the 

model’s learning over time. 

Finally, the model, trained and validated with optimal parameters, was saved 

for future use and deployment. This process not only ensured that we captured 

the best-performing model but also facilitated replicability in future studies or 

applications. 

1 

2 

3 

4 

 

for epoch in range(epochs): 

model.train() 
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Code 3.5: GRU Model Training Process 

 

3.13 IMPLEMENTATION 

In our study, we harnessed robust Python libraries and frameworks, each 

pivotal for crafting and implementing our machine-learning model.  Pandas 

[126] was a cornerstone for data manipulation and analysis, streamlining our 

dataset handling to facilitate effortless cleaning, transformation, and organiza- 

tion. Its powerful DataFrames were especially useful for processing ECG and 

pupil dilation data. PyTorch [91] lay at the heart of our model development and 

training, offering a dynamic and flexible platform for building our GRU model 

for   inputs ,   targets   in   train_loader: 

optimizer. zero_grad() # Zero the parameter gradients 

outputs = model(inputs) # Forward pass 

loss  =  criterion(outputs ,  targets) # Compute loss 

 

# Add L1 regularization 

l1_norm = sum(p.abs().sum() for p in model. parameters()) 

loss += lambda_l1 * l1_norm 

 

loss. backward() # Backward pass 

optimizer.step()  # Update weights 

 

model.eval() 

val_loss = 0 

with  torch. no_grad(): 

for inputs , targets in val_loader: 

outputs = model(inputs) 

loss = criterion(outputs , targets) 

val_loss += loss.item() 

 

 

scheduler.step( val_loss) 

early_stopping(val_loss , model) 

if early_stopping. early_stop: 

print("Early stopping") 

break 

 

#  Load  the  best  model 

early_stopping. load_best_model(model)  
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with its comprehensive support for tensors and computation graphs. Scikit- 

learn [92] served multiple preprocessing needs, including feature scaling and la- 

bel encoding, ensuring our data was primed for training. It also provided essen- 

tial tools for model evaluation and cross-validation techniques like KFold and 

StratifiedKFold, which are critical for measuring model accuracy. Optuna [4] 

emerged as a key player in hyperparameter optimization, refining our model’s 

performance with efficient search algorithms to pinpoint the best parameter 

combinations. 
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Experiments and Results 

 
This chapter represents the pinnacle of our thesis exploration, carefully re- 

vealing the empirical insights from the methodologies and models delineated 

in Chapter 3. It delves into a comprehensive analysis of genuine and methodi- 

cally enhanced datasets, casting light on the efficacy and intricacies of deployed 

Artificial Neural Network (ANN) architectures, notably Gated Recurrent Units 

(GRUs), alongside an intricate array of machine learning classifiers. This multi- 

faceted strategy, as detailed in Sections 3.6 (Machine et al. in Stacked Ensemble 

Model) and 3.8.1 (Data et al. for Biometric Dataset), underscores our dedication 

to leveraging a broad spectrum of computational methodologies to navigate the 

complex terrain of cognitive load assessment. 

In our thesis, the distinction of identifying the ’optimal’ model or hyperpa- 

rameter configuration is attributed to those setups achieving the highest mean 

F1 score, a criterion thoroughly delineated in Section 3.7. To evaluate the prac- 

tical relevance of our models, we extended our testing to encompass data from 

participants not encountered during the training phase, selecting accuracy as the 

pivotal measure for this assessment. This methodology sheds light on the mod- 

els’ capacity to generalize and adapt to various scenarios that extend beyond the 

confines of the initial training environment. 

Confusion matrices are employed as a graphical means to articulate the ef- 

ficacy of model and hyperparameter selections, particularly emphasizing those 

that excel in F1 scores and accuracy against data from unseen participants. Sec- 

tion 2.9 provides an in-depth examination and comparison of F1 scores and ac- 

curacies across different models and hyperparameter configurations, offering 

4 
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a comprehensive analysis of their performances. This organized approach en- 

sures transparency and facilitates a clear comprehension of each model’s oper- 

ational strengths and limitations across diverse application contexts. 

 

4.1 DATA AUGMENTATION ANALYSIS 

This section comprehensively analyzes a dataset comprising authentic and 

augmented data. The authentic data from the initial 21 participants provides 

reliable physiological and eye-tracking measurements. Conversely, the aug- 

mented data, including participants 22 to 71, utilizes sophisticated techniques 

like Gaussian Noise Addition, Physiological Noise Simulation, Time Warping, 

Random Blink Simulation, and Pupil Size Variation. This analysis is pivotal in 

assessing the augmented data’s fidelity in replicating authentic responses under 

various cognitive loads, a vital metric for mental effort evaluation. 

 

STATISTICAL METHODS 

Due to their relevance to cognitive load assessment, we employed statistical 

methods to analyze salient features, particularly ECG and eye-tracking metrics. 

The features under consideration were Mean RR Interval, RMSSD, SDNN for the 

ECG data, Mean Left Pupil Size, Std Left Pupil Size, and Pupil Size Variability 

for the eye-tracking data. 

Table 4.1: Comparison of Selected Features in Real and Augmented Data 

Feature Real Data Mean Real Data Std Augmented Data 
Mean 

Augmented Data 
Std 

ECG_F1 Mean_RR_Interval 0.633 0.107 0.725 0.173 
ECG_F5 RMSSD 0.007 0.003 0.040 0.048 
ECG_F6 SDNN 0.042 0.018 0.145 0.150 
Eye_F1 Mean_Left_Pupil_Size 3.751 0.689 3.458 0.696 
Eye_F4 Std_Left_Pupil_Size 0.252 0.067 1.349 0.763 

Eye_F13 Pupil_Size_Variability 0.068 0.042 2.397 2.996 

 

Table 4.1 illustrates the comparison of selected features between real and 

augmented datasets. The table encapsulates key statistical measures such as 

mean and standard deviation, providing a quantitative foundation for the subse- 

quent qualitative analysis. It reveals that while the augmented ECG data closely 

mirrors the accurate data, it introduces additional variability, presumably due 

to noise addition and time warping. On the other hand, the augmented eye- 
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tracking data shows significantly higher variability, particularly in pupil size 

metrics, which is likely a result of the augmentation techniques employed. 

 

VISUALIZATION OF FEATURE DISTRIBUTION 

As an integral part of our analysis, Figure 4.1 presents the boxplot distribu- 

tions of ECG and eye-tracking features across cognitive load levels. These plots 

serve as critical tools in illustrating how physiological and eye-tracking mea- 

sures fluctuate in response to cognitive demands. 

 

Figure 4.1: Boxplot distributions of ECG and eye-tracking features across cogni- 
tive load levels. 
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The boxplots provide a visual representation of the central tendency and 

variability of the data for each cognitive load category. The metrics derived from 

the ECG data, such as the mean RR interval, RMSSD, and SDNN, reflect changes 

in heart rate variability tied to cognitive stress. An expanded distribution in the 

’hard’ cognitive load category could indicate a broader spectrum of participant 

responses to more challenging tasks. 

Similarly, the eye-tracking data, notably the mean and variability in pupil 

size, offer insights into cognitive engagement and workload. For example, the 

left pupil size standard deviation is markedly increased under ’hard’ conditions, 

indicating a possible expansion in pupil dilation range as tasks become more 

demanding. 

These patterns underscore the potential of ECG and eye-tracking measures 

in assessing cognitive load and highlight the necessity of considering a range of 

physiological responses when analyzing cognitive demands. 

 

 

 

4.2 GATED RECURRENT UNITS (GRUS) 

 
This section delves into the insights from applying the Gated Recurrent Unit 

(GRU) network to both augmented and actual datasets. The results showcased 

herein elucidate the GRU network’s proficiency in capturing and interpreting 

the complex time-series data related to variations in cognitive loads. Addition- 

ally, it highlights the positive impact of data augmentation on the model’s ability 

to generalize, showcasing an exceptional performance boost on the augmented 

dataset. This underscores the value of data augmentation in enhancing the 

model’s robustness and overall predictive capabilities. 

Figure 4.2 illustrates the distribution of F1 scores across various runs of our 

predictive model, providing a harmonized assessment of precision and recall. 

Annotations within the visualization delineate the range of performance, mark- 

ing the extremities of F1 scores achieved under different model configurations. 
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Figure 4.2: Distribution of F1 Scores on the augmented dataset from Model Eval- 
uation, with Annotations for Minimum and Maximum Observed Values. 

 

 

 

 
Table 4.2: Parameter Range and Configuration for 100 GRU Trials Conducted 
Using OPTUNA Framework 

 

Parameter Range/Options 

Learning Rate 

Epochs 

1 × 10−6 to 1 × 10−1 (log scale) 

20 to 100 

Number of Layers (GRU) 1 to 4 

Hidden Size (GRU) [8, 16 ,32, 64, 128] 

Dropout Rate (GRU) 0.5 to 0.9 

L1 Regularization (Lambda) 

Batch Size 

1 × 10−6 to 1 × 10−3 (log scale) 

[8, 16,32, 64, 128] 

Weight Decay (AdamW) 

Patience (Early Stopping) 

1 × 10−2
 

1 to 10 

Number of Folds (KFold) 2 to 10 

Class Weights (Criterion) Balanced based on class frequency 
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Table 4.3: Optimal Hyperparameter Values for GRU Model on Augmented 
Dataset Determined by OPTUNA Optimization 

 

Parameter Optimal Value 

Learning Rate 0.01388568180722708 

Epochs 53 

Number of Layers 4 

Hidden Size 64 

Dropout Rate 0.5340298335048108 

Patience 7 

Lambda L1 

K (Number of Folds) 

6.108362350514149 × 10−5
 

7 

Batch Size 8 

 

Table 4.4: Average Performance Metrics for GRU Model on Augmented Datasets 
 

Dataset Average Preci- 

sion 

Average Recall Average F1 Score 

Augmented 

Dataset 

0.8789729225023 0.875238095238 0.8752102043166 

 

Tables (4.2, 4.3, and 4.4) display the fine-tuning steps and performance met- 

rics optimized through the OPTUNA process for the GRU model applied to the 

augmented dataset. They pinpoint hyperparameters that culminated in an op- 

timal F1 score. This measure of precision and recall provides a nuanced view of 

the model’s validation dataset performance. 
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Figure 4.3: Training and validation losses over epochs for the GRU model on the 
augmented dataset. 

 

Figure 4.3 illustrates the evolution of our GRU model’s training and valida- 

tion losses throughout various epochs, offering critical insights into the model’s 

learning progression and capacity for generalization. The descending trend ob- 

served in the training loss, depicted in blue, signifies the model’s effective as- 

similation of the training data. Conversely, the validation loss, represented in 

orange, demonstrates a downward trajectory, albeit with notable fluctuations, 

which reflects the model’s adaptability and performance on previously unseen 

data. A dashed vertical line within the graph delineates the early stopping point, 

a strategic intervention to circumvent overfitting. As indicated by the dashed 

line, the cessation of training at epoch 22 corresponds to the juncture where fur- 

ther reductions in validation loss were no longer observed, marking the optimal 

cessation point to preempt overfitting. This graph embodies the hallmarks of an 

optimally calibrated training process, wherein the model achieves generaliza- 

tion instead of mere memorization of the training dataset, as evidenced by the 

converging trends of training and validation losses. The maintenance of proxim- 

ity between these two loss trajectories throughout the training phase indicates 

the efficacy of applied regularization techniques, including dropout and weight 

decay, underscoring the model’s resilience and robustness. The slight increase 

in validation loss observed in the epochs preceding the activation of early stop- 

ping signals a divergence between training and generalization errors, reinforc- 
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ing the utility and necessity of early stopping within this training paradigm. 
 

 

 

Figure 4.4: Confusion Matrix on augmented datasets. 

 

The Confusion Matrix(4.4) can be interpreted as a structured representation 

of classification accuracy. It delineates the distribution of true versus predicted 

labels across categories of varying difficulty levels: easy, medium, and hard. 

The primary diagonal cells display values of the model’s accurate predictions. 

Conversely, the non-diagonal cells illustrate the misclassifications, such as the 

erroneous prediction of ’easy’ when ’hard’ was accurate. The color gradient 

serves as an intuitive frequency indicator, with darker hues signifying a higher 

occurrence of predictions. This matrix is essential in evaluating the precision 

of the predictive model and offers insights into the model’s ability to generalize 

beyond the training data. 
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Table 4.5: Optimal Hyperparameter Values for GRU Model on Real Dataset De- 
termined by OPTUNA Optimization 

 

Parameter Optimal Value 

Learning Rate 0.0028964093957399477 

Epochs 91 

Number of Layers 2 

Hidden Size 256 

Dropout Rate 0.6660873454931799 

Patience 9 

Lambda L1 

K (Number of Folds) 

1.940122499371598 × 10−4
 

8 

Batch Size 16 

 

Table 4.6: Average Performance Metrics for GRU Model on Real Dataset 
 

Dataset Precision Recall F1 Score 

Real dataset 0.7378 0.7209 0.7207 

 

The table (4.5) details the results of optimizing hyperparameters for the GRU 

model using the real dataset. It highlights the tailored approach to adjust the 

model’s settings for optimal performance. The optimization process ensures the 

model is finely tuned to the characteristics of the real dataset, enabling effective 

learning and prediction. 

The table (4.6) shows the GRU model’s performance on the real dataset, specif- 

ically noting its accuracy. Despite the dataset’s limited size, the GRU model 

demonstrates good performance. This is significant as it suggests that the model 

can extract and learn from the available data efficiently thanks to optimizing its 

hyperparameters. Such performance underscores the GRU model’s adaptability 

and effectiveness, even when faced with constrained data volumes. 

The figure (4.5) visually represents the model’s learning process and capacity 

to predict new, unseen data. It supports the conclusion that the GRU model has 

learned effectively across the folds of the real dataset, achieving a consistent and 

reliable level of performance. 
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Figure 4.5: Training and validation losses over K-fold iterations for the GRU 
model on the real dataset. 

 

The confusion matrix (4.6) provides insight into the GRU model’s classifica- 

tion performance on a real dataset. 
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Figure 4.6: Confusion Matrix on real datasets. 

 

4.3 MACHINE LEARNING CLASSIFIERS 

The assessment of the refined machine learning model was meticulously con- 

ducted using a designated test set, with the objective of evaluating its proficiency 

in distinguishing between cognitive loads through the analysis of ECG and pupil 

dilation metrics. This optimized model demonstrated exceptional accuracy, un- 

derscoring its potent predictive performance. 

The illustration effectively showcases a comparative analysis of the F1 scores 

achieved by four distinct machine learning classifiers: Random Forest, Sup- 

port Vector Classifier, LightGBM, and Logistic Regression. Notably, LightGBM 

emerges as the frontrunner, boasting the highest F1-score, which suggests its 

superior efficacy for the task at hand compared to its counterparts. Conversely, 

Logistic Regression is observed to have the lowest F1-score, indicating a poten- 

tial limitation in its applicability for this specific context. This graphical repre- 

sentation serves as a visual aid in highlighting the varying performance levels 

across the classifiers. 
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Figure 4.7: The F1 scores for different classifiers used in the Augmented dataset 

 

 

 

 

 

 

 

 

Within the framework of refining the Light Gradient Boosting Machine (Light- 

GBM) model for cognitive load classification, the study harnesses the Optuna 

framework for hyperparameter optimization, detailed in Table 4.10, Table 4.11, 

and Figure 4.10. Table 4.1 outlines the range and configuration of parameters 

considered, setting the groundwork for a targeted exploration of optimal set- 

tings. Table 4.11 reveals the culmination of this process, presenting the optimal 

hyperparameter values that emerged from the optimization, indicative of the 

model’s refined configuration for peak performance. Complementarily, Figure 

4.10 visualizes the optimization journey, charting the progression and iterative 

enhancement of model accuracy across trials. Collectively, these components 

encapsulate the rigorous optimization endeavour, demonstrating a systematic 

approach to elevating the predictive prowess of the LightGBM model in classi- 

fying cognitive loads with nuanced precision. 
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Table 4.7: Parameter Range and Configuration for LightGBM Optimization Us- 
ing OPTUNA Framework 

 

Parameter Range/Options 

num_leaves 20 to 40 

min_child_samples 5 to 100 

max_depth 5 to 20 

learning_rate 1 × 10−4 to 1 × 10−1 (log scale) 

n_estimators 50 to 300 

random_state 42 (fixed) 

 
Table 4.8: Best Hyperparameter Values for LightGBM Model Obtained from OP- 
TUNA Optimization 

 

Parameter Best Value 

num_leaves 37 

min_child_samples 10 

max_depth 13 

learning_rate 0.06780036793567486 

n_estimators 242 

Best Score: 0.6705882352941177 

 

 

 
Figure 4.8: The Optimization History Plot provided visualizes the progression 
of trials conducted during hyperparameter optimization using Optuna 
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Table (4.9) meticulously delineates the precision, recall, and F1-score for each 

distinct class, alongside both macro and weighted averages of these metrics. The 

comprehensive data presented offers a nuanced understanding of the model’s 

capability to classify with balance across varied cognitive load states. Such de- 

tailed metrics are essential in evaluating the model’s nuanced performance, un- 

derscoring its effectiveness and reliability in distinguishing between different 

levels of cognitive engagement. 

Table 4.9: Classification Report for the Test Set 
 

Label Precision Recall F1-Score Support 

Easy 0.92 0.86 0.86 14 

Medium 0.93 0.86 0.93 14 

Hard 0.81 0.87 0.84 15 

Accuracy 0.88 

Macro Avg 0.89 

Weighted Avg 0.89 

 

The confusion matrix (4.9) for the testing data, which distinguishes between 

the ”Easy,” ”Medium,” and ”Hard” classes, serves as a critical tool in assessing 

the model’s performance across varying levels of cognitive load difficulty. By 

mapping the actual versus predicted classifications, the matrix provides insights 

into the model’s accuracy in identifying each difficulty level, highlighting its 

strengths, and pinpointing areas where improvements might be necessary. 
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Figure 4.9: Confusion Matrix on Augmented datasets. 
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Conclusion and Future Work 

 
This chapter provides an in-depth discussion and evaluation of the findings 

delineated in Chapter 4. It explores the project’s accomplishments and the dif- 

ficulties that emerged during implementation. Moreover, it delves into possible 

directions for future research, extending the framework established by this the- 

sis. 

 

5.1 ACHIEVEMENT 

This Master’s thesis represents a significant leap forward in understanding 

and improving cognitive load measurement in VR environments by augmenting 

psychological datasets. This research has illuminated the intricate relationship 

between dataset quality and model performance, particularly in VR applica- 

tions assessing cognitive load, by exploring the efficacy of Gated Recurrent Unit 

(GRU) models on real and augmented datasets alongside traditional machine 

learning classifiers. The comprehensive analysis revealed that models trained 

on augmented datasets exhibit enhanced accuracy and generalization capabil- 

ities compared to those trained on real datasets, underscoring the augmented 

dataset’s critical role in boosting model performance. 

The meticulous integration of parameter optimization with performance eval- 

uation has illuminated the intricate balance between a model’s learning capabil- 

ities and its potential for generalization. This balanced approach, particularly 

with the GRU model, has emerged as a practical tool for assessing cognitive 

load, effectively bridging the gap between controlled training environments and 

5 
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real-world applications. The study’s findings on the critical role of dataset size 

underscore the necessity for substantial data to maximize deep learning mod- 

els’ effectiveness, hinting at the occasional preference for traditional statistical 

methods as a more feasible alternative when faced with data constraints. 

 

5.2 FUTURE WORK 

The insights from this research pave the way for several avenues of future 

work. Firstly, further exploration into integrating additional physiological sig- 

nals, such as galvanic skin response, could enhance the models’ sensitivity to 

varying cognitive load levels. This multi-modal approach could offer a more 

comprehensive cognitive load assessment in VR settings. Secondly, investigat- 

ing the scalability of the developed models to other domains, such as augmented 

reality (AR) for educational purposes or training simulations in medical and 

high-risk professions, could extend the applicability of this research. Lastly, the 

advent of more sophisticated data augmentation techniques, leveraging gener- 

ative adversarial networks (GANs) or synthetic data generation, could address 

the limitations posed by dataset size, opening new pathways for utilizing deep 

learning models where data is scarce or hard to obtain. Incorporating these 

strategies could significantly advance the field of cognitive load assessment, 

providing robust, scalable solutions that extend beyond VR applications to a 

broader spectrum of digital health interventions and interactive technologies. 

Integrating these future directions would bridge the gap between theoretical re- 

search and practical implementations and enhance the quality and efficacy of 

VR-based cognitive load measurement, contributing to the evolution of person- 

alized and adaptive digital health solutions. 
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Appendix 

 
This chapter thoroughly covers the theory of artificial neural network ideas, 

including neurons, activation functions, loss functions, and stochastic gradient 

descent. 

 

6.1 ACTIVATION FUNCTIONS 

In artificial neural networks (ANNs), the role of activation functions is paramount, 

serving as a fundamental element that influences the network’s capability to ad- 

dress complex computational tasks. These functions are generally classified into 

three main categories: linear, non-linear, and piecewise linear, each bearing a 

significant impact on the problems an ANN can adeptly solve. 

Linear activation functions are adept for linearly separable challenges, where 

a straightforward linear solution suffices. However, their applicability could be 

improved, as they need to address the intricacies of non-linearly separable prob- 

lems. This limitation prominently highlights the necessity for non-linear activa- 

tion functions within ANNs. 

Non-linear activation functions, encompassing Tanh (hyperbolic tangent), 

sigmoid, and softmax, are indispensable for transcending the limitations of lin- 

ear separability. Functions like Tanh are valued for their non-linear character- 

istics, enabling the network to discern and learn from the complex non-linear 

interdependencies in data. This capability is vital for many tasks, including 

image recognition and natural language processing. However, deploying non- 

linear activation functions introduces challenges, notably the vanishing gradient 

6 



80  

6.1. ACTIVATION FUNCTIONS 

 

problem, which becomes more pronounced with increased network depth. This 

issue arises when the gradient values propagated back through the network di- 

minish to negligible levels, thereby stunting the learning process. The literature 

documents this challenge, underscoring the complexity and critical considera- 

tions required to design and implement efficient ANNs [77, 86]. 

 

 
Figure 6.1: Frequently utilized activation functions include: (a) Sigmoid, (b) Hy- 
perbolic Tangent (Tanh), (c) Rectified Linear Unit (ReLU), and (d) Leaky Rectified 
Linear Unit (LReLU). 

Piecewise linear activation functions are being adopted more frequently to 

address the vanishing gradient issue in deep neural networks, as mentioned in 

references [86, 147]. The Rectified Linear Unit (ReLU) is a notable example. Its 

main benefit lies in its derivative, which remains 1 for all positive inputs, effec- 

tively preventing the gradient from decreasing to zero during the backpropaga- 

tion process in deep networks. 

Moreover, the field has seen the introduction of advanced piecewise linear 

functions such as the Piecewise Linear Unit (PLU), which emulates the function- 

ality of the Tanh function. Created by Nicolae at the University of Washington, 

the PLU maintains the beneficial aspects of Tanh while avoiding the vanishing 

gradient issue, offering a preferable alternative in specific cases as noted in refer- 
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ence [76, 86]. These innovations mark considerable advancements in overcom- 

ing the training challenges of deep networks. 

 

6.2 LOSS FUNCTION 

Loss functions measure the difference between a neural network’s predicted 

outputs and target values, aiming to assess the model’s accuracy in replicating 

training data [141]. 

Selecting an appropriate loss function is vital for effectively training a neural 

network, as it significantly influences the model’s overall performance. The deci- 

sion regarding which loss function to use is contingent on the nature of the prob- 

lem, whether it is a regression or classification task, and the unique demands of 

the given task[141]. Cross-entropy loss, often the go-to choice for classification 

problems, evaluates the variance between the predicted probability outputs and 

the actual class labels. 

 

CROSS-ENTROPY LOSS 

Cross-entropy loss measures the divergence between the predicted probabil- 

ity distributions for classes and the actual distribution in the data. It is a critical 

metric during model training, guiding weight optimization to enhance predic- 

tion accuracy. The goal is to minimize cross-entropy loss, with lower values 

indicating better model performance. An ideal model would achieve a cross- 

entropy loss of zero, signifying perfect alignment between predicted and actual 

distributions. This loss function is exceptionally suited to multi-class and multi- 

label classification tasks, where its ability to quantify the disparity between ac- 

tual and predicted probabilities proves invaluable [29, 29]. 

Entropy, denoted as 𝐻(𝑋), is a measure computed for a random variable en- 

compassing a set of discrete states 𝑥 in 𝑋 and their corresponding probabilities 

𝑃(𝑥). It is mathematically formulated as follows: 

 

𝐻(𝑋) = − 𝑃(𝑥) log(𝑃(𝑥)) 
𝑥∈𝑋 

In this expression, the entropy is the summation over all discrete states in 𝑋, 

where each state’s probability 𝑃(𝑥) is multiplied by the logarithm of 𝑃(𝑥), and 

the total sum is negated[17]. 
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6.3 DEEP LEARNING WITH PYTORCH 

PyTorch, introduced by Facebook in October 2016, has emerged as a lead- 

ing open-source platform for machine learning, building upon the legacy of the 

Torch library. Esteemed for its flexibility and efficiency, PyTorch facilitates the 

implementation of deep neural networks with an intuitive design [18]. 

A defining characteristic distinguishing PyTorch from other deep learning 

frameworks is its innovative use of dynamic computation graphs. Contrary to 

the static graphs used by TensorFlow, where the computation graph must be de- 

fined before model execution, PyTorch’s dynamic graphs are constructed on the 

fly during runtime. This unique feature enhances the framework’s versatility 

and adaptability, enabling more fluid model development and experimentation 

[138]. The dynamic nature of PyTorch’s computation graphs represents a signif- 

icant departure from conventional approaches, offering researchers and devel- 

opers unprecedented flexibility in adjusting their models in response to varying 

requirements and datasets. 

PyTorch’s integration with Python offers a seamless experience for develop- 

ers, allowing the description of deep learning models in Python’s native, ex- 

pressive syntax [113]. Beyond deep learning, PyTorch excels in the numerical 

optimization of general mathematical expressions, which is crucial for training 

neural networks. This capability extends PyTorch’s utility to broader scientific 

computing applications, positioning it as a high-performance library for deep 

learning and a range of scientific computations features essential for scientific 

computations [113]. 

In our research, PyTorch proves indispensable for constructing and training 

deep learning models, mainly through its adept handling of custom datasets. 

A prime example of leveraging PyTorch’s flexibility is developing a ’Custom- 

Dataset’ class. This class is tailored to accommodate the specific format of our 

data, illustrating PyTorch’s capacity to meet diverse research needs. 

The implementation of ’CustomDataset’ exemplifies PyTorch’s adaptability, 

allowing for efficient data organization and preparation that aligns with Py- 

Torch’s data loading and processing standards. PyTorch significantly simpli- 

fies the model training process by enabling the easy integration of custom data 

formats, ensuring researchers can focus on innovation rather than data prepro- 

cessing complexities. 
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