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Introduction

In this Master’s thesis we analyze the propagation of primordial gravitational
wave background through cosmic inhomogeneities. The outline is as follows.

In chapter one we briefly introduce the concept of stochastic gravitational
wave background. Moreover, we discuss its characteristics, the hypothesis
regarding its nature and the experimental limits on its observation.

In chapter two, we discuss the cosmological perturbations theory. We define
what perturbations in a cosmological context are and discuss the gauge problem.
In the final part of the chapter we focus on the dynamics of the perturbations.

In chapter three we study the propagation of gravitational waves in curved
space-time. This is the formalism that is needed in order to describe the effect
of inhomogeneities on the gravitational wave background. We additionally
recall the geometric optics approximation for gravitational waves, that makes
clear the analogy between gravitational waves and electromagnetic waves.

Finally, in chapter four we discuss our results on the propagation of gravi-
tational waves through cosmic inhomogeneities. We discover that they suffer
both the Sachs-Wolfe and Integrated Sachs-Wolfe effect just as electromag-
netic radiation does, and we discuss the correction to the power spectrum of
gravitational radiation due to scalar perturbations.

In this section, we introduce the conventions and notations that will be
used throughout the thesis. The signature of our metric is (−,+,+,+). We
denote the derivative in respect to the cosmic time t with a dot, a prime denotes
differentiation in respect to conformal time η defined through

dη =
dt

a
,

where a is the scale factor. The covariant derivative of a generic function
f is indicated with the symbol Dµf , while the ordinary partial derivative is
indicated with ∂µf . The Hubble rate is defined as

H =
ȧ

a

and the conformal Hubble parameter is

H = aH.

The convention for the Fourier transform is

f(η,x) =

∫
d3k

(2π)3
eık·xf̃(η,k).
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Chapter 1

Gravitational waves: a
preliminary description of
different types of sources

In this section we want to describe, briefly, the different types of sources of
gravitational waves. In fact, there are two different kinds of sources: astro-
physical sources and cosmological sources. With the adjective cosmological
we refer to the mechanism that produced gravitational waves in the early
evolution stage of the universe: the inflation epoch. These sources have peculiar
properties, differently from the astrophysical ones: the gravitational waves
that they produce are spread in a wide range of frequencies, also they are
expected be a stochastic background. Both these properties depend on the fact
that these gravitational waves are the result, in the standard scenario, of the
amplification of the primordial vacuum fluctuations. We will focus on this type
of gravitational waves for the rest of the thesis.

1.1 Gravitational waves from astrophysical sources

In the astrophysical category, as the name suggests, all the astrophysical objects
that produce with their own motion gravitational waves are grouped. We focus
on motion with typical velocity small respect to the speed of light. In this case,
by studying the production of gravitational waves we can use the multipole
expansion. From [5], the gravitational power radiated from a generic isolated
system is

Wgr =
G

5c5
˙̈P ij ˙̈Pij , (1.1.1)

where P ij is the reduced gravitational quadrupole of the system. We do
not want to study in detail the generation of gravitational waves, but it is
important to compare the formula (1.1.1) with the analogous equation for the
electromagnetic power radiated from a charged system

Wem =
1

6πc3
| ~̈D|2 +

1

6πc5
| ~̈M |+ 1

80πc5
˙̈P ij ˙̈Pij , (1.1.2)
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where ~D, ~M and P ij are respectively the electric dipole, the magnetic dipole and
the electric quadrupole [5]. From these formulas we see that the dominant term
in the equation (1.1.2) is of order 1

c3
, while the dominant term of the equation

(1.1.1) is of order 1
c5
. This explains, although the production of gravitational

waves and of electromagnetic waves are similar, the fact that the strength of
these radiations is quite different.

This argument holds only for the gravitational waves from astrophysical
sources, because they are the ones generated by the motion of astrophysical
objects. The mechanism that generated the expected stochastic gravitational
waves background isn’t related to the accelerated motion of some object.

We classify the gravitational waves that come from astrophysical objects by
their properties in the frequency domain.

1.1.1 Continuous gravitational waves

Continuous gravitational waves are produced by systems that have fairly con-
stant and well-defined frequency. Examples of these are binary stars or a single
star swiftly rotating about its axis, with intrinsic asymmetry from residual
crustal deformation. These sources are expected to produce comparatively weak
gravitational waves since they evolve over longer periods of time and they are
usually less catastrophic than sources producing inspiral or burst gravitational
waves. This gravitational waves should produce a “sound” with a continuous
tone since the frequency of the gravitational waves is nearly constant, therefore
these sources are expected to be nearly monochromatic. The typical frequencies
of these waves depend on the properties of the source system, like its mass,
revolution duration ecc. For this reason, we have a very large frequency band
for these continuous sources, from 10−8 Hz to 102 Hz [1].

From this class of gravitational waves, we have obtained the first indirect
proof of the existence of this phenomenon. In 1974, R.A. Hulse and J.H. Taylor
discovered the binary star PSR 1913+16, and after they observed it for ten
years. This pulsar and its companion rotate with a revolution period T ' 7.75
h, with a distance among them of d ' 1.8× 106 km. The pulsar has also a very
fast proper rotation motion along its axis, with a rotation period τ = 59 ms, and
because of this, it emits electromagnetic radiation with the same period. From
the observation of this electromagnetic radiation, Hulse and Taylor studied
the properties of the system. They observed that the orbital period T was
decreasing, due to the fact that the pulsar was emitting gravitational waves
and was losing energy. This discovery earned the Noble Prize of Physics in
1993 to R.A. Hulse and J.H. Taylor [5].

1.1.2 Inspiral gravitational waves

Inspiral gravitational waves are generated during the end-of-life stage of binary
systems where the two objects merge into one. These systems are usually two
neutron stars, two black holes, or a neutron star and a black hole whose orbits
have degraded to the point that the two masses are about to coalesce. As
the two masses rotate around each other, their orbital distances decrease and
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their speeds increase. This makes the frequency of the gravitational waves to
increase until the moment of coalescence. These sources are expected to give a
stronger signal in respect to a binary star system.

Binary star systems are common in our galaxy, but only a thin part of these
will end their life with two compact objects in an orbit tight enough to lead to
compact binary coalescence in a Hubble time. This is due to several causes.
That end result requires both stars to be massive enough to undergo collapse
to a compact object without destroying its companion. The frequency band
expected for this kind of gravitational waves is from 1 Hz to 104 Hz [1]. In
order to estimate the number of merges events that occur in a galaxy of the
dimensions of ours, there are two distinct approaches, one based on an a priori
calculation of binary star evolution. The second estimation method is based
largely upon extrapolation from observed double neutron star systems in our
local galaxy. The analysis of these methods does not concern this thesis.

In summary, these estimates for the coalescence of two neutron stars yield
rates of once every 104 years in a galaxy size of the Milky Way [2]. The
corresponding rates for a neutron star and black hole system coalescence
are once per 300,000 years. For a system formed by two black holes, the
corresponding rates are once per 2.5 million years.

Conversion of coalescence rates into detected coalescence rates depends, of
course, on details of frequency-dependent detector sensitivity and on averaging
over stellar orientations and sky positions.

The coalescence of two compact massive objects (neutron stars and black
holes) into a single final black hole can be divided into three reasonably distinct
stages: inspiral, merger and ringdown. The gravitational waves emitted in
the inspiral phase can be modeled very accurately. The next phases, when
the stars reach the last stable orbit and fall rapidly towards one another are
poorly understood. Neither of these final phases will be likely to generate more
signal than the inspiral phase, so the detectability of such systems rests on the
tracking of their orbital emissions [3].

1.1.3 Burst gravitational waves

Burst gravitational waves come from short-duration unknown sources or unan-
ticipated ones. There are hypotheses that some systems such as supernovae
or gamma ray bursts sources may produce burst gravitational waves, but too
little is known about the details of these systems to anticipate the form these
waves will have.

Burst gravitational waves are the analogue of gamma ray bursts. These
one are associated usually to a catastrophic cosmic event, with the release of a
lot of energy. Electromagnetic observations provide important, even if indirect,
informations on the progenitor. On the other hand, gravitational waves emitted
from the central source, carry direct information on its nature.

Gravitational waves signals are expected to be extremely weak when they
reach the Earth, so a crucial part of any search is to distinguish a real signal from
the “background” of detector noise fluctuations. This is especially important
for a burst search since there isn’t a certain expected waveform to compare
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with and any noise transient might be interpreted as a true gravitational wave
signal.

An example of burst gravitational waves source is a core collapse super-
novae, which has well known dynamics. Gravitational waves from supernovae
carry information about the supernova itself, like neutrinos observation from
supernova.

Figure 1.1: Sources and dectors of gravitational waves as a function of the frequency

1.2 Stochastic gravitational wave background

We now turn to analyze the stochastic gravitational waves of cosmological
origin. The existence of this background of gravitational waves is predicted by
the standard scenario of inflation [26].

A direct detection of these gravitational waves is a step forward in the
understanding of the early universe cosmology and of the high energy physics,
energy that could not be reached from other ways.

1.2.1 The frequency spectrum

A stochastic background of gravitational radiation is a random gravitational
wave signal, that could be thought as the production of a large number of weak,
independent, and unresolved gravitational wave sources. In many ways it is
analogous to the Cosmic Microwave Background radiation.

It is useful to introduce the dimensionless quantity Ωgw(f), which character-
izes the energy distribution in frequencies of the gravitational wave background
in units of ρc, the critical energy density of the universe. It is defined as

Ωgw(f) =
1

ρc

dρgw
d log(f)

, (1.2.1)
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where ρc is the critical density

ρc =
3H2

0

8πG
, (1.2.2)

and H0 is the Hubble parameter evaluated at present time. Usually H0 is
expressed in term of the parameter h as H0 = h× 100 Km s−1Mpc−1. Since in
the determination of h there are several systematic errors that contribute, it is
not a good idea to normalize the value of ρgw with a quantity that depends
on h. For this reason, it is useful to consider the quantity h2Ωgw, which is
independent of h, instead of Ωgw. From the Planck collaboration we have
h = 0.678± 0.009 [9].

We will relate the quantity Ωgw with the power spectrum of the gravitational
waves, that for gaussian gravitational waves completely describes their statistical
properties. The starting point is the plane wave expansion of the gravitational
metric perturbations. In the transverse traceless gauge (which will be defined
in the next chapters), this can be written in the form of a plane wave expansion
[8, 7]

hµν(t,x) =
∑

A=+,×

∫ +∞

−∞
df

∫
S2

dΩhA(f, Ω̂)eı2πf(t−Ω̂·x)eAµν(Ω̂). (1.2.3)

In the previous formula A is a index that labels the two independent polariza-
tions, and h∗A(f,Ω) = hA(−f,Ω), since hµν(t,x) is real.

The equation (1.2.3) requires some explanations. In an expanding universe
we can perform the Fourier transform only in the spatial variable, because our
universe is homogeneous and isotropic only spatially. The integral over the
frequencies must not be confusing: we aren’t doing the Fourier transform of the
temporal component. We have only written the integral over the wavevector k
in polar coordinates, and we have used k = 2πfΩ̂.

The assumptions that the stochastic background produced from inflation
is isotropic and unpolarized imply that the ensemble average of the Fourier
amplitudes hA(f,Ω) could be written as

〈hA(f,Ω)hA
′
(f ′,Ω′)〉 = (2π)3δ(f + f ′)δ(Ω,Ω′)δ(A,A′)P (f), (1.2.4)

where P (f) is the power spectrum, and δ (Ω,Ω′) = δ (cos(θ) + cos(θ′)) δ (φ+ φ′).
The quantity P (f) completely describes the statistical properties of hA(f,Ω),

if it is a random gaussian field, as we have assumed. We can relate P (f) with
the energy density of the gravitational waves. The energy density of the
gravitational waves is given by the formula [25]:

ρgw =
1

32πG
〈 ˙hµν(t,x) ˙hµν(t,x)〉, (1.2.5)

where the over-dot denotes time derivative. Inserting in the equation (1.2.5)
the expansion for hµν(t,x) given by the equations (1.2.3), we can relate ρgw
with P (f), and we obtain

ρgw =

∫ +∞

0
df

(
dρgw(f)

df

)
=

32π5

G

∫ ∞
0

dff2P (f). (1.2.6)
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In order to obtain the previous formula, we used the fact that P (f) = P (−f)
and

∑
A,A′=+,× e

µν
A eA

′
µν = 4. From the definition of Ωgw(f) we obtain

Ωgw(f) =
256π3

3H2
0

f3P (f). (1.2.7)

P (f) is predicted by the theoretical model that one considers. For the standard
inflation scenario of the inflation one has

P (f) =
2π2

f3
A(f0)2

(
f

f0

)nT
, (1.2.8)

where nT is the spectral index, and it is expected to be nearly 0. In this way we
see that Ωgw depends slightly on the frequencies f , i.e. we have contributions
from all the frequencies to Ωgw [12].

The inflation model predicts that also for the scalar perturbations we have a
power spectrum Ps of the form of equation (1.2.7), with spectral index ns. We
could define the quantity r, which is the ratio between the two power spectrums,
as

r =
P

Ps
. (1.2.9)

The inflation model relates the quantity r and the energy at which inflation
takes place with the equation [10]

V '
(
1.88× 1016GeV

)4 ( r

0.10

)
. (1.2.10)

In this way with r ∼ 0.10, we have E ' 1016GeV , which is the typical scale
of Grand Unification theories. The so-called consistency relation holds for
slow-roll inflation models, this relation binds the tensor spectral index nT and
r [26]

r = −8nT . (1.2.11)

e

1.2.2 Observational constraints on the stochastic gravitational
waves background

We now report here some constraints on the stochastic gravitational waves
background. These constraints are expressed in term of upper limits on the
quantity Ωgw, and on the quantity r [10, 16, 13, 15]. These constraints come
from different observations. In some cases we have a constraints on Ωgw in
a certain frequency band, while in other cases we have a constraint in the
integrated value over all frequencies.

Constraint from pulsar timing

A pulsar is a highly magnetized, rotating neutron star that emits a beam
of electromagnetic radiation. High precision measurements of millisecond
pulsars provide a natural way to study low frequency gravitational waves. A
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gravitational wave passing between the earth and the pulsar will cause a slight
change in the time of arrival of the pulse, leading to a detectable signal.

The European Pulsar Timing Array (EPTA) is a European collaboration to
combine five 100m class radio telescopes to observe an array of pulsars with the
specific goal of detecting gravitational waves. They improved the experimental
limit on Ωgw using a six-pulsar data set spanning 18 years of observations from
the 2015 European Pulsar Timing Array data release. The result that they
have found is [16]

h2Ωgw(2.8× 10−9Hz) ≤ 1.1× 10−9, (1.2.12)

Constraints from interferometers

The Laser Interferometer Gravitational Wave Observatory (LIGO) [4] is a
ground based interferometer project operating in the frequency range of 10
Hz − a few kHz. LIGO consists of two Michelson interferometers in Hanford,
Washington, H1 with 4 km long arms, and H2 with 2 km long arms, along with
a third interferometer in Livingston Parish, Louisiana, L1 with 4 km long arms.

Virgo is a ground based interferometer placed in Santo Stefano a Macerata,
Cascina, Tuscany. It has two Michelson interferometers with 3 km long arms.
It is designed to operate in the frequency range 10 Hz − 105 Hz.

A joint analysis of the data of these two interferometers gives us an upper
limit for the stochastic gravitational waves from cosmological origin. We have

Ωgw = (1.8± 4.3)× 10−6 (1.2.13)

for the frequencies band (41.5− 169.5)Hz and

Ωgw = (9.6± 4.3)× 10−5Hz (1.2.14)

for the frequency band (170− 600)Hz [15].

Constraint from nucleosynthesis

The theory of big bang nucleosynthesis successfully predicts the observed
abundances of several light elements in the universe. In doing so, it places
constraints on a number of cosmological parameters. This in turn results in an
indirect constraint on the energy density in a gravitational wave background:
the presence of a significant amount of gravitational radiation at the time of
nucleosynthesis changes the total energy density of the universe, which affects
the rate of expansion, leading to an overabundance of helium and thus spoiling
the predictions of big bang nucleosynthesis. From the nucleosynthesis we obtain
[13] ∫ f2

f1

Ωgw(f)d (log(f)) ≤ 1.5× 10−5. (1.2.15)

We notice that this physical process constrains the integrated value of Ωgw,
over the whole frequency spectrum. The lower cutoff frequency f1 corresponds
to the Hubble radius at the time of big bang nucleosynthesis and takes the
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value f1 ∼ 10−10 Hz. In fact, scales bigger than this were outside the horizon
at that epoch, so they didn’t contribute to the physics of the universe. The
upper cutoff frequency f2 is the ultraviolet cutoff. This is given by the Planck
frequency, f2 = fP = 1.86× 1043 Hz.

Constraint from the Cosmic Microwave Background data

Observations of the Cosmic Microwave Background have implications for a
wide variety of topics, including constrain inflation, dark matter, dark energy
and large scale structure. Gravitational waves induce temperature fluctua-
tions through the Sachs-Wolfe and Integrated Sachs-Wolfe effect, as scalar
perturbations do. From the measurement of these effects we can constrain the
gravitational waves content in the universe.

Maps of the Cosmic Microwave Background polarization anisotropies are
naturally decomposed into curl-free E modes and gradient-free B modes. Pri-
mordial gravitational waves can be observed in the polarization of the Cosmic
Microwave Background. B modes are not generated at linear order in pertur-
bation theory by the scalar perturbations. Tensor perturbations are expected
to produce B-mode polarization on large angular scale. The B-mode polariza-
tion signal produced by scalar perturbations is very small and is dominated
by the weak lensing of E-mode polarization on small angular scales. Until
now, B modes polarization generate unambiguously generated from tensor
perturbations have not yet been detected.

The Planck mission was to produce full sky maps of the Cosmic Microwave
Background anisotropies, and recently they have released results from four
years of data acquisition.

The result for the value of r is

r < 0.10, (1.2.16)

at 95% of confidence level [10], at which corresponds the value for Ωgw [11]

h2
0Ωgw ≤ 1× 10−14 (1.2.17)

in the frequency range 10−17 ÷ 10−16Hz.
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Chapter 2

Cosmological perturbations

Like in any other perturbation theory, this approach is based on the existence
of a background solution. In this case the background solution is the Standard
Hot Big-Bang Model, which is based on the hypothesis of homogeneity and
isotropy of the universe. This model excellently describes a lot of observations
of our universe: the expansion and cooling of the universe, the abundance of
light nuclei from primordial nucleosynthesis and finally the Cosmic Microwave
Background isotropy, which was the first proof in ’60 of the Standard Hot
Big-Bang model. Obviously, this model is only a rough approximation, and
there are a lot of observational confirmations of that, like the anisotropies of
the Cosmic Microwave Background.

In order to describe these observational issues, we add to the homogeneous
and isotropic background model small quantities, which allow us to study the
problem with the techniques of perturbations theory. The main difference
between cosmological perturbation theory, and the ordinary one which is used
in other branches of physics is that in cosmology we perturb the metric tensor,
so it is the geometry of space-time which results changed. So we have to
compare quantities defined in different space-times (manifolds), which requires
a prescription for switching from the background manifold to the physical
manifold. This is the Gauge problem, which follows from the arbitrariness of
the map which we can use. Obviously, physical quantities cannot depend on
the gauge choice, so it is important to distinguish geometric and gauge modes
in the metric perturbations. Einstein equations relate the metric tensor with
the energy-momentum tensor of the matter, for this reason we have to perturb
also the energy-momentum tensor. As for the metric tensor, we have also gauge
modes in the energy-momentum tensor perturbations.

Cosmological perturbations theory is a very well studied argument. There
are several reviews in the literature, for example [17] and [18] for linear theory.
The gauge problem in cosmology is treated in [22], and a review about the
possible gauges is [20]. Second order perturbation theory was reviewed in [23].
For a complete treatment about the gauge problem in cosmology see [22]. A
useful reference about gauge-invariant variables is [29]. For a solution of the
second-order perturbation equations see [21] and [30].
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2.1 Defining perturbations

Any tensor quantities can be separated in to a homogeneous time dependent-
part, defined in the background, plus inhomogeneous perturbation, which
depends both time and space coordinates

T (η,x) = T (0)(η) + δT (η,x). (2.1.1)

The perturbation can be expanded in series as

δT (η,x) =
∞∑
n1

λn
δT (n)(η,x)

(n!)
, (2.1.2)

where the subscript represents the order of the perturbation.
We now define the perturbations of the metric tensor. These definitions are

given without specifying the gauge. We will follow in this section [20], which is
a complete review of this topic. Our background space-time is described by a
spatially flat FRW metric, defined by the line element

ds2 = a2
(
−dη2 + xixjδij

)
, (2.1.3)

where η is the conformal time and a(η) is the scale factor. Cosmic time and
conformal time are related through the relation dt = a(η)dη. The perturbations
to the metric tensor are:

δg00 = −2a2Φ, (2.1.4)

δg0i = a2Bi, (2.1.5)

δgij = 2a2Cij . (2.1.6)

We can split the δg0i and δgij in scalar, vector and tensor quantities

Bi = B,i − Si, (2.1.7)

Cij = −Ψδij + E,ij +
1

2
(Fi,j + Fj,i) +

1

2
hij . (2.1.8)

In these formulas Φ, B, Ψ and E are scalar quantities, Fi and Si are vector
quantities and hij is a tensor perturbation. The adjectives tensor, vector and
scalar reflect the transformation property of these quantities under spatial
coordinates transformation of the constant η hypersurface.

This decomposition of Bi and Cij is known in Euclidean space as Helmholtz
decomposition and implies some properties of these quantities. The pure vector
perturbations like Fi and Si are divergence-free, while any vectors constructed
from a scalars like E,i and B,i are curl-free.

The tensor hij is transverse, h i
ij, = 0, and trace-free, hii = 0. We rise and

lower spatial index of perturbation with the comoving background metric δij .
Note that we have 10 degrees of freedom (d.o.f) in δgµν , as we expected,

since the metric tensor must be symmetric. These d.o.f are given by four scalars,
two vectors (each one with two d.o.f) and one tensor (with two d.o.f). This
division of the metric tensor in scalars, vectors and tensor is arbitrary, but it
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is useful since at linear order in perturbation theory these quantities evolve
independently, as we will see later.

The quantities defined in equations (2.1.4)-(2.1.6) include all orders. With
the expansion given in the equation (2.1.1), we can write for the metric pertur-
bations, up to second-order,

Φ = Φ(1) +
1

2
Φ(2), (2.1.9)

Bi = B
(1)
i +

1

2
B

(2)
i , (2.1.10)

Cij = C
(1)
ij +

1

2
C

(2)
ij . (2.1.11)

The contravariant metric tensor follows from the constraint

gµνg
νρ = δ ρ

µ , (2.1.12)

which, at second-order, gives

g00 = − 1

a2

(
1− 2Φ(1) − Φ(2) + 4Φ(1)2 −B(1)

k B(1)k
)
, (2.1.13)

g0i =
1

a2

(
Bi(1) +

1

2
B(2)i − 2Φ(1)Bi(1) − 2B

(1)
k Cki(1)

)
, (2.1.14)

gij =
1

a2

(
δij − 2Cij(1) − Cij(2) + 4Cik(1)C

(1)j
k −B

(1)iB(1)j
)
. (2.1.15)

We have written the perturbations division for a rank-two tensor, but clearly
this division holds also for a four-vector,

V µ =
(
V 0, V i

, + V i
)
. (2.1.16)

As before, V 0 and V are scalars on the spatial hypersurfaces, whereas V i is a
divergence-free vector.

2.2 Geometry of spatial hypersurfaces

With the perturbed metric defined in the previous section, we can define a unit
time-like vector, which is a normal vector to constant η hypersurface. This is
defined as

nµ = α
∂η

∂xµ
, (2.2.1)

where α is a normalization factor.
We immediately see that ∂η

∂x0
= 1 and ∂η

∂xi
= 0; these relations give us that

the normalization factor

nµn
µ = α2 ∂η

∂xµ
∂η

∂xν
gµν = α2

(
∂η

∂x0

)
g00α2 = g00α2 = −1, (2.2.2)

which gives
α = ±

(
−g00

)− 1
2 . (2.2.3)
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Inserting in the previous equation the expression for g00 given by equation
(2.1.4), we get

α = ±
[
a−2

(
1− 2Φ(1) − Φ(2) + 4Φ(1)2 −B(1)

k B(1)k
)]− 1

2
. (2.2.4)

Since the perturbations are small quantities, we can expand the square root.
In doing this, we have to pay attention that the expansions in different pertur-
bations are independent. We have

(1− 2Φ(1) + 4Φ(1)2)−
1
2 ' 1 + Φ(1) − Φ(1)2

2
, (2.2.5)

(1− Φ(2))−
1
2 ' 1 +

Φ(2)

2
, (2.2.6)

(1−B(1)iB
(1)
i )−

1
2 ' 1 +

B(1)iB
(1)
i

2
. (2.2.7)

With this manipulation we get for α

α = −a
(

1 + Φ(1) +
1

2
Φ(2) − 1

2
Φ(1)2 +

1

2
B

(1)
k B(1)k

)
(2.2.8)

where we selected the minus sign for α, in order to have a time-like unit vector,
which becomes

nµ = −a
[
1 + Φ(1) +

1

2
Φ(2) − 1

2
Φ(1)2 +

1

2
B

(1)
k B(1)k,0

]
, (2.2.9)

From this formula, with the metric given in equations (2.1.13)-(2.1.15), we
can calculate the contravariant constant η hypersurface vector,

n0 =
1

a

(
1− Φ(1) − 1

2
Φ(2) +

3

2
Φ(1)2 − 1

2
B

(1)
k B(1)k

)
, (2.2.10)

ni =
1

a

(
−Bi − 1

2
B(2)i + 2B

(1)
k C(1)ki + Φ1B

(1)i

)
. (2.2.11)

The covariant derivative of any time-like vector, can be decomposed following
[28, 24], as

nµ;ν =
1

3
θPµν + σµν − ωµν − aµnν (2.2.12)

where Pµν is a projector orthogonal to nµ

Pµν = gµν + nµnν , (2.2.13)

the expansion rate θ is
θ = nµ;µ, (2.2.14)

the symmetric and trace-free shear is

σµν =
1

2
PαµPβν (nα;β + nβ;α)− 1

3
θPµν , (2.2.15)
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the antisymmetric vorticity is

ωµν =
1

2
PαµPβν (nα;β − nβ;α) , (2.2.16)

and the acceleration is
aµ = nµ;νn

ν . (2.2.17)

This expansion could be done for every time-like vector, as the fluid four-velocity
uµ is. If we restrict our study to spatial hypersurfaces, these quantities are
analogous to those that we define in Newtonian fluid dynamics. The vorticity
for nµ given in the formula (2.2.16) is automatically zero, because the term in
parenthesis vanishes.

The scalar part of the shear is given by

σij =

(
∂i∂j −

1

3
∇2δij

)
aσ, (2.2.18)

where σ is the shear potential

σ = E′ −B. (2.2.19)

The vector and tensor parts of the shear are given by

σV ij = a
(
F ′(i,j) −B(i,j)

)
, σT ij =

a

2
h′ij . (2.2.20)

2.3 Gauge transformations

We analyze now how tensorial quantities change under gauge transformations.
One basic assumption of perturbation theory is the existence of a one-parameter
family of solutions, which depends on one real parameter λ. The family of
solutions is Mλ; λ = 0 identifies the background solution, and after the
calculations we can set λ = 1 to recover the physical solution.

Following [21] and [22], we consider two one-to-one parameter maps from
M0 to Mλ, and we call these maps φλ and ψλ. The choice of one of these
maps is the gauge choice. If we set onM0 the coordinates system xµ, these
coordinates will be carried onMλ with one map, φλ as example.

Consider p a point in the background, with coordinates xµ(p), and O = ψλ(p)
the associated point onMλ with the same coordinates xµ. Let’s assume that if
we use the map φλ, the same point O is the image of the point q. In that way
a gauge transformation could be seen as a one-to-one correspondence through
different points of the background, keeping the coordinates system fixed. In
fact we can construct this map just considering the composition Φλ = φ−1

λ (ψλ),
which relates the point p with the point q. This map, which expresses the
coordinates of q, x̃µ(q) as a function of those of xµ(p), is called “active coordi-
nates transformation” because it works keeping fixed the coordinates system
over the space-time. Differently from this, a usual coordinate transformation is
called “passive coordinate transformation”, and it changes only “the label” of
each point ofM0.
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Consider now a generic tensor T defined onMλ. With the two gauges we
can define two different tensors onM0, calling them Tλ(p) and T̃λ(q), which
are two representations of Tλ onM0. These tensors are related to each other
by the map Φλ. Now we define the perturbation, by comparing these tensors
with the background tensor T (0)

δTλ = Tλ(p)− T (0), (2.3.1)
˜δTλ = T̃λ(q)− T (0). (2.3.2)

Taking the difference of these two equations we get

˜δTλ = δTλ + T̃λ(q)− Tλ(p) (2.3.3)

In order to obtain the transformation rule for the perturbations we have to
calculate the difference between two tensors, but those tensors are calculated
at different space-time points, keeping fixed the coordinate system. These two
tensors are related through Φλ, which could be written at first-order in λ as

xµ(q) = xµ(p) + λξµ(x(p)), (2.3.4)

which is an active coordinate transformation. Starting from (2.3.4), we can
define a passive coordinate transformation, defining a new coordinate system,
y, in such a way that the y’s coordinates of the point q coincide with the x’s
coordinates of the point p

yµ(q) := xµ(p) = xµ(q)− λξµ(x(p)) ' xµ(q)− λξµ(x(q)), (2.3.5)

where the last ' is justified by the fact that the difference between xµ(p)
and xµ(q) is of first-order in λ, and then ξ term is already of first-order in λ.
Considering now as a concrete case a rank-two tensor Tµν(x); the transformation
rule under a passive coordinate transformation is

T̃µν(y) =
∂xρ

∂yµ
∂xσ

∂yν
Tρσ(x). (2.3.6)

The Jacobian matrix of the transformation to first-order in ξ is

∂xρ

∂yµ
= δρµ +

∂ξρ

∂xµ
, (2.3.7)

where ξ and its derivatives are infinitesimal 4-vectors. Using this equation on
(2.3.6) we obtain

T̃µν(y) = Tµν(x) +
∂ξρ

∂xµ
Tρν(x) +

∂ξσ

∂xν
(x)Tµσ(x) +O(ξ2) (2.3.8)

In the left head side of the previous equation we have the tensor T̃ evaluated
at the point y. If we insert equation (2.3.5), we get

T̃µν(y) = T̃µν(x− ξ) = T̃µν(x)− ∂Tµν
∂xρ

ξρ(x) +O(ξ2), (2.3.9)

22



where in the last term we replace T̃ with T , since the difference between these
terms is O(ξ). Summarizing, we have

T̃µν(x) = Tµν(x)+
∂Tµν
∂xρ

ξρ(x)+
∂ξρ

∂xµ
Tρν(x)+

∂ξσ

∂xν
(x)Tµσ(x)+O(ξ2), (2.3.10)

which is the expression of the Lie derivative Lξ along the vector ξ, for a rank 2
covariant tensor,

T̃µν(x) = Tµν(x) + λLξTµν . (2.3.11)

Equation (2.3.9) is only the first-order transformation rule, since we have
considered in (2.3.4) only first-order transformations in λ. In general, one can
write ξ as a series

ξµ = λξµ1 +
1

2
λ2ξµ2 +O(ξ3), (2.3.12)

and defining a generalization of the equation (2.3.4)

x̃µ(q) = xµ(p) + λξµ(x(p)) +
λ2

2

(
ξµ(1),νξ

ν − ξµ(2)

)
+O(λ2). (2.3.13)

With these definitions, one can demonstrate [22] that the equation (2.3.11)
could be generalized as

T̃ (x) = eλLξT (x) = T + λLξ(1)T +
λ2

2

(
L2
ξ(1)

+ Lξ(2)
)
T + . . . (2.3.14)

that at first-order reduces to (2.3.11). Looking back at equation (2.3) we read
the first-order gauge transformation rule for a generic perturbation, which is

˜
δT

(1)
λ = δT

(1)
λ + LξTλ = δT

(1)
λ + λLξT (0), (2.3.15)

and the gauge transformation rule for a second-order perturbation

˜
δT

(2)
λ = δT

(2)
λ + 2Lξ1δT

(1)
λ + Lξ2T

(0)
λ + L2

ξ1T
(0)
λ . (2.3.16)

Starting from these formulas,then we can move from one gauge to another,
by specifying the components of vectors ξ(1) and ξ(2). The choice of gauge in
which to work, is dictated by convenience, in fact there are gauges in which
calculations are simpler, or by physical reasons. In fact one could work in a
gauge in which some physical properties of the dynamics of perturbations are
evident.

According with the split of the perturbations in scalars, vectors and tensors,
we also split the vectors ξµ, which are the generators of the gauge transformation.
We write

ξ(1)µ =
(
α(1), β(1) i

, + γ(1)i
)
, (2.3.17)

and for the second-order transformation generator

ξ(2)µ =
(
α(2), β(2) i

, + γ(2)i
)
, (2.3.18)

γi is divergence-free.
We calculate now explicitly how tensorial perturbations change under a

gauge transformation. We start from the simplest one, the four-scalar.
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• Four-scalar

The first-order transformation rule is given in equation (2.3.15). The Lie
derivative formula for a scalar is

Lξφ = φ,λξ
λ, (2.3.19)

which gives
δ̃ρ(1) = δρ(1) + ρ′(0)α(1). (2.3.20)

At second-order, with the same procedure but with the formula (2.3.16), we
obtain

δ̃ρ(2) =δρ(2) + ρ′(0)α(2) + α(1)
(
ρ′′(0)α(1) + ρ′(0)α′(1) + 2δρ′(1)

)
+
(

2δρ(1) + ρ′(0)α(1)
)
,k

(
β(1) k

, + γ(1)k
)
.

(2.3.21)

• Four-vectors

We now look to a four-vectors, like the four-velocity of the fluid. The procedure
is the same of the four-scalars case, but now we have to use the Lie derivative
formula for a four-vector, which is

Lξuµ = uµ,αξ
α + uαξ α, µ . (2.3.22)

Up to first-order we obtain, with equation (2.3.15),

δ̃u
(1)
µ = δu(1)

µ + u′(0)
µ α(1) + u

(0)
λ ξ(1)λ

,µ . (2.3.23)

Up to second-order we obtain, from equation (2.3.16), the transformation rule

δ̃u
(2)
µ =δ(2)

µ + u′(0)
µ α(2) + u

(0)
0 α(2)

,µ + u′′(0)
µ α(1)2 + u′(0)

µ α
(1)
,λ ξ

(1)λ

+ 2u
′(0)
0 α(1)α(1)

,µ + u
(0)
0

(
ξ(1)λα

(1)
,µλ + α

(1)
,λ ξ

(1)λ
,µ

)
+ 2

(
δu

(1)
µ,λξ

(1)λ + δu
(1)
λ ξ(1)λ

,µ

)
.

(2.3.24)

• Rank-two tensors

For a rank-two tensor, we will act in the same ways of the cases presented
before. Now the calculation is a bit longer, due to the expression of the Lie
derivative for tensors, which is

Lξgµν = gµν,λξ
λ + gµλξ

λ
,ν + gνλξ

λ
,µ . (2.3.25)

Let’s start from the first transformation rule. Applying this equation to the
0− 0 component of the equation we get,

˜
δg

(1)
00 = g00,0ξ

(1)0 + 2g00ξ
(0)0

,0 = δg00 − 2a′aα(1) − 2a2α′(1) , (2.3.26)

where δg(1)
00 = −2a2Φ(1), from which we read

Φ̃(1) = Φ(1) +Hα(1) + α′(1). (2.3.27)
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The previous equation shows us that the lapse function transforms as a four-
scalar.

We turn now on the 0−i component of the metric tensor. The Lie derivative
is

Lξg0i =g0i,λξ
(1)λ + g0λξ

(1)λ
,i + gλiξ

(1)λ
,0

− a2α
(1)
,i + a2ξ

(1)
i,0

(2.3.28)

from which we obtain, having in mind that δg(1)
0i = a2B

(1)
i ,

B̃i
(1)

= B
(1)
i − α

(1)
,i +

(
β
′(1)
,i + γ

′(1)
i

)
. (2.3.29)

If we take the divergence, we get the transformation rule of B

B̃(1) = B(1) + β′(1) − α(1). (2.3.30)

Subtracting this part to equation (2.3.29) we have the rule for Si

S̃i
(1)

= B̃i
(1) − B̃,i

(1)
= S

(1)
i − γ

′(1)
i . (2.3.31)

We apply again the equation (2.3.25), in order to obtain the transformation
rule for δg(1)

ij = 2a2C
(1)
ij ,

Lξ(1)gij =gij,0ξ
(1)0 + gikξ

(1)k
,j + gjkξ

(1)k
,i

2aa′δijα
(1) + a2

(
ξ

(1)
i,j + ξ

(1)
j,i

)
,

(2.3.32)

which becomes for Cij(1)

2C̃ij
(1)

= 2C
(1)
ij + 2Hα(1)δij + ξ

(1)
i,j + ξ

(1)
j,i . (2.3.33)

We report here (2.1.8), where we split the perturbation C(1)
ij in scalars, vectors

and tensors: C(1)
ij = −Ψ(1)δij(1) + E

(1)
,ij + 1

2

(
F

(1)
i,j + F

(1)
j,i

)
+ 1

2h
(1)
ij .

Taking the trace of the equation (2.3.32) we get

−3Ψ̃(1) +∇2Ẽ(1) = −3Ψ(1) +∇2E(1) + 3Hα(1) +∇2B(1), (2.3.34)

and applying the operator ∂i∂j to (2.3.32) we obtain

−3∇2ψ̃(1) +∇2∇2Ẽ(1) = −3∇2Ψ(1) +∇2∇2E(1) + 3H∇2α(1) +∇2∇2β(1).
(2.3.35)

Now obtaining Ψ̃(1) from (2.3.34), and inserting it in equation (2.3.35) we read
the transformation rule for E:

Ẽ(1) = E(1) + β(1). (2.3.36)

Putting this inside equation (2.3.35), we obtain the transformation law for Ψ :

Ψ̃(1) = Ψ(1) −Hα(1). (2.3.37)
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To obtain the transformation law for F (1)
i we have to consider the trace of

(2.3.32)

2C̃
(1) j
ij, = 2C

(1) j
ij, + 2Hα(1)

,i +∇2ξ
(1)
i +∇2β

(1)
,i . (2.3.38)

Using the transformation rules for E(1) and Ψ(1) in this equation we obtain the
law for F (1)

i :
F̃i

(1)
= F

(1)
i + γ

(1)
i . (2.3.39)

Finally, if we insert equations (2.3.36), (2.3.37) and (2.3.39) in (2.3.32), we
have the transformation rule for tensor perturbations

h̃ij
(1)

= h
(1)
ij . (2.3.40)

The last equation tells us that tensor perturbations, at first-order, are gauge-
invariant. This could be expected since in the generator of the gauge transfor-
mation ξ(1) we have only two scalars and one vector. This gauge invariance is
useful since we do not have to take care about working with gauge-invariant
quantities, since tensors are already invariant.

The procedure for obtaining the second-order transformation rule follows
what we have already done for the first-order. The metric tensor transforms,
using equation (2.3.16), as

˜δgµν
(2)

=δg(2)
µν + g

(0)
µν,λξ

(2)λ + g
(0)
λν ξ

(2)λ
,µ

+ 2
(
δg

(1)
µν,λξ

(1)λ + δg
(1)
µλ ξ

(1)λ
,ν + δg

(1)
λν ξ

(1)λ
,µ

)
+ g

(0)
µν,λαξ

(1)λξ(1)α

+ g
(0)
µν,λξ

(1)λ
,αξ

(1)α + 2
(
g

(0)
µλ,αξ

(1)αξ(1)λ
,ν + g

(0)
λν,αξ

(1)αξ(1)λ
,µ

+g
(0)
λαξ

(λ)
,µξ

(α)
,ν

)
+ g

(0)
µλ

(
ξ(1)λ

,ναξ
(1)α + ξ(1)λ

,αξ
(1)α

,ν

)
+ g

(0)
λν

(
ξ(1)λ

,µαξ
(1)α + ξ(1)λ

,αξ
(1)α

,µ

)
.

(2.3.41)

We get the transformation equation for Ψ(2) by looking at the 0− 0 component
of the equation (2.3.41)

Φ̃(2) =Φ(2) +Hα(2) + α′(2) + α(1)
(
α′′(1) + 5Hα′(1) + (H′ + 2H2)α′(1)

+4HΦ(1) + 2Φ′(1)
)

+ 2α′(1)
(
α′(1) + 2Φ(1)

)
+ ξ

(1)
k

(
α′(1) +Hα′(1)

+2Φ(1)
) k
,

+ ξ
′(1)
k

(
α(1) k

, − 2B(1)k − ξ′(1)k
)
.

(2.3.42)

From the 0− i component of the equation (2.3.41) we get the transformation
formula for B(2)

i , which is

B̃
(2)
i = B

(2)
i + ξ

′(2)
i − α(2)

,i + χBi, (2.3.43)
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where χBi contains the terms quadratic in the first-order perturbations, and it
is

χBi =2
(

(2HB(1)
i +B

′(1)
i )α(1) +B

(1)
i,k ξ

(1)k − 2Φ(1)α
(1)
,i +B

(1)
k ξ

(1)k
,i +B

(1)
i α′(1)

+2C
(1)
ij ξ

′(1)j
)

+ 4Hα(1)(ξ
′(1)
i − α(1)

,i ) + α′(1)(ξ
′(1)
i − 3α

(1)
,i ) + α(1)(ξ′′(1))i

− α′(1)
,i ) + ξ′(1)k(ξ

(1)
i,k + 2ξ

(1)
k,i ) + ξ(1)k(ξ

′(1)
i,k − α

(1)
,ik )− α(1)

,k ξ
′(1)k

,i .

(2.3.44)

To get the transformations of the vector and of the scalar part of B(2)
i , we take

the divergence of equations (2.3.44) and after that we apply the inverse of the
Laplacian. We find for the scalar part

B̃(2) = B(2) − α(2) + β′(2) +∇−2χ k
B ,k, (2.3.45)

and for the vector part we get

S̃
(2)
i = S

(2)
i − γ

′(2)i − χBi +∇−2χ k
B ,ki. (2.3.46)

We now turn to the transformation properties of the spacial part of the metric
tensor. The expressions are more complicated, because now we have an inverse
gradient that operates on the product of first-order quantities. The perturbed
spatial part transforms to second-order as

2C̃
(2)
ij = 2C

(2)
ij + 2Hα(2)δij + ξ

(2)
i,j + ξ

(2)
j,i + χij , (2.3.47)

where χij contains terms quadratic in the first-order perturbations, and it is
given by the expression

χij =2

[(
H2 +

a′′

a

)
α(1)2 +H(α(1)α′(1) + α

(1)
,k ξ

(1)k)

]
δij

4
[
α(1)(C

′(1)
ij + 2HC(1)

ij ) + C
(1)
ij,kξ

(1)k + C
(1)
ik ξ

(1)k
,j + C

(1)
jk ξ

(1)k
,i

]
+ 2(B

(1)
i α

(1)
,j +B

(1)
j α

(1)
,i ) + 4Hα(1)(ξ

(1)
i,j + ξ

(1)
j,i )− 2α

(1)
,i α

(1)
,j

+ 2ξ
(1)
k,i ξ

(1)k
,j + α(1)(ξ

′(1)
i,j + ξ

′(1)
j,i ) + (ξ

(1)
i,jk + ξ

(1)
j,ik)ξ

(1)k

+ ξ
(1)
i,k ξ

(1)k
,j + ξ

(1)
j,k ξ

(1)k
,i + ξ

′(1)
i α

(1)
,j + ξ

′(1)
j α

(1)
,i .

(2.3.48)

The spatial part of the metric perturbation is decomposed as we wrote in
equation (2.1.8), which, at second-order, gives

2C
(2)
ij = −2Ψ(2)δij + 2E

(2)
,ij + 2F

(2)
(i,j) + h

(2)
ij . (2.3.49)

We now follow what we did in the first-order case. The trace of equation (2.3.47)
is

−3Ψ̃(2) +∇2Ẽ(2) = −3Ψ(2) +∇2E(2) + 3Hα(2) +∇2β(2) +
1

2
χkk. (2.3.50)
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Now applying ∂i∂j to equation (2.3.47) we obtain

−∇2Ψ̃(2)+∇2∇2Ẽ(2) = −∇2Ψ(2)+∇2∇2E(2)+H∇2α(2)+∇2∇2β(2)+
1

2
χ

(2)ij
,ij .

(2.3.51)
From equations (2.3.50) and (2.3.51) we get the transformations of Ψ(2) and
E(2), which are

Ψ̃(2) = Ψ(2) −Hα(2) − 1

4
χkk +

1

4
∇−2χij,ij , (2.3.52)

Ẽ(2) = E(2) + β(2) +
3

4
∇−2∇−2χij,ij −

1

4
∇−2χkk. (2.3.53)

Taking the divergence of equation (2.3.47) we obtain

2C̃
(2) j
ij, = 2C

(2) j
ij, + 2Hα(2)

,j +∇2ξ
(2)
i +∇2β

(2)
,i + χ k

ik, , (2.3.54)

and substituting the results for Ẽ(2) and Ψ̃(2) we get

F̃
(2)
i = F

(2)
i + γ

(2)
i +∇−2χ k

ik, −∇−2∇−2χkl,kli. (2.3.55)

We are now able to give the transformation rules of the second-order tensor
perturbations, by substituting the equations for Ψ(2), E(2) and F (2). We obtain

h̃
(2)
ij =h

(2)
ij + χij +

1

2
(∇−2χik,kl − χkk)δij +

1

2
∇−2∇−2χkl,klij

1

2
∇−2χkk,ij −∇−2(χ k

ik, j + χ k
lk, i).

(2.3.56)

2.4 Energy-momentum tensor for fluids

General Relativity strictly connects the evolution of the geometry of the space
time with its matter and energy content, through the Einstein field equation.
It is quite obvious that perturbations in the components of the metric tensor
generate perturbations in the stress energy tensor of the system, and vice-versa.
This is the reason why, in order to consider the evolution of the perturbations,
we must perturb the stress energy tensor.

We define the four-velocity of the matter fluid as

uµ =
dxµ

dτ
, (2.4.1)

where τ is the proper time comoving with the fluid, subject to the condition

uµuµ = −1. (2.4.2)

From the isotropy requirement of the background universe, we deduce that the
spatial part of the four velocity has to be null, since the existence of a peculiar
velocity will break this assumption. So the background four-velocity is

uµ = (1,0) . (2.4.3)
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The spatial part of the four-velocity is, up to second-order

ui =
dxi

dτ
=

1

a

dri

dτ
=

1

a

(
v(1)i +

1

2
v(2)i

)
(2.4.4)

From the relation uµuνgµν = −1, we calculate the time component u0,
which is

u0 =
1

a

(
1− Φ(1) − 1

2
Φ(2) +

3

2
Φ(1)2 +

1

2
v

(1)
k v(1)k + v

(1)
k B(1)k

)
. (2.4.5)

With the inverse metric gµν we calculate the covariant four-velocity, which is

u0 = −a
(

1 + Φ(1) +
1

2
Φ(2) − 1

2
Φ(1)2 +

1

2
v

(1)
k v(1)k

)
, (2.4.6)

ui = a

(
v

(1)
i +B

(1)
i +

1

2
v

(2)
i +

1

2
B

(2)
i − Φ(1)B

(1)
i + 2C

(1)
ik v

(1)k

)
. (2.4.7)

As usual, we split vi in scalar and vector parts

vi = v,i + v(vec)i, (2.4.8)

where v(vec)i is divergence-less.
We consider a single fluid system. The background energy-momentum

tensor is defined as [25]

T (0)
µν = (ρ(0) + p(0))u(0)

µ u(0)
ν + p(0)g(0)

µν ; (2.4.9)

this is the energy-momentum tensor for a perfect fluid, since as said before,
in the background there are no peculiar velocities. As usual the background
quantities are function only of η.

Now we turn to the perturbations; we consider two types of perturbations:
the first one do not alter the shape of the energy-momentum tensor, so we write

Tµν = (ρ+ p)uµuν + pgµν , (2.4.10)

where all the quantities of this formula have background and perturbation
terms

ρ = ρ(0) + δρ(1) +
1

2
δρ(2), p = p(0) + δp(1) +

1

2
δp(2), (2.4.11)

and uµ has the expression of formula (2.4.3), while gµν is given in section
2.1. This type of perturbations do not alter the perfect fluid shape of the
energy-momentum tensor.

Secondly, we add to the energy-momentum tensor of equation (2.4.9) the
anisotropic stress πµν . The tensor, if we put together these contributions, is

Tµν = (ρ+ p)uµuν + pgµν + πµν , (2.4.12)

where πµν has first-order and second-order parts

πµν = π(1)
µν +

1

2
π(1)
µν . (2.4.13)
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piµν is subject to the condition

πµνu
ν = 0, πµµ = 0. (2.4.14)

The anisotropic stress vanishes for a perfect fluid, and also for a minimally cou-
pled scalar field. Equation (2.4.14) permits to constrain the energy-momentum
tensor. At first-order we get

π(0)
µν u

ν(1) + π(1)
µν u

ν(0) = 0

π(1)
µν u

ν(0) → π
(1)
µ0 = 0,

πµµ = 0→ π
(1)0

0 = −π(1)i
i = 0.

(2.4.15)

At second-order (2.4.14) gives

π(2)
µν u

ν(0) + π(1)
µν u

ν(1) + π(0)
µν u

ν(2) = π
(2)
µ0 u

0
(0) + π

(1)
µi u

i
(1)

π
(1)
0i v

i
(1) +

1

2
π

(2)
00 → π

(2)
00 = 0

πµµ = 0→ π
(2)0

0 = −π(2)i
i = 0.

(2.4.16)

We split the anisotropic stress in scalar, vector and tensor contributions,

πij = a2

(
Π,ij −

1

3
∇2ΠδijΠ(i,j) + Πij

)
. (2.4.17)

We follow [17] in defining the proper energy density as the eigenvalue
of the energy-momentum tensor, and the four-velocity as the corresponding
eigenvector,

Tµν u
ν = −ρuµ. (2.4.18)

We obtain for the zero order component

T
(0)0

0 = −ρ(0)

T
(0)0

i = 0

T
(0)i

j = −p(0)δij ,

(2.4.19)

and for the first-order

δT
(1)0

0 = −δρ(1)

δT
(1)0

i = (ρ0 + P0)(v
(1)
i +B

(1)
i )

δT
(1)i

j = δijp
(1) +

1

a2
π

(1)i
j

(2.4.20)

and at second-order

δT
(2)0

0 = −δρ(2) − 2(ρ(0) + p(0))v
(1)
k (v(1)k +Bk(1)),

δT
(2)0

i =(ρ(0) + p(0))
(
v

(2)
i +B

(2)
i + 4C

(1)
ik v

(1)k − 2Φ(1)(v
(1)
i + 2B

(1)
i )
)

+ 2(δρ(1)) + δp(1))(v
(1)
i +B

(1)
i ) +

2

a2
(B(1)k + v(1)kπ

(1)
ik),

(2.4.21)
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δT
(2)i

j = δp(2)δij +
1

a2
π

(2)i
j −

4

a2
C(1)ikπ

(1)
jk + 2(ρ(0) + p(0))v(1)i(v

(1)
j +B

(1)
j )

(2.4.22)
We haven’t split the quantities in scalar, vector an tensor parts for simplicity.
Quantities as the energy density, and the three-velocity vi are gauge-dependent,
and they change along with the choice of the gauge. On the other hand, the
anisotropic stress is gauge-independent at first-order, as shown in [20].

2.5 Possible gauge choices and gauge-invariant quan-
tities

As seen in section 2.3, we have to deal with the problem of the gauge. This
can also be seen as an asset, because it allows us to simplify the calculations,
because we can cancel some perturbations.

How to make a gauge choice? There are no preferred gauges, but different
gauges emphasize different features of the dynamical equations. Here we present
some common gauges that are often used in the literature. The gauge choice are
made by the set up the quantities ξ(n)

µ . So at first-order, we can fix two scalar
and one vector perturbations. At second-order we have another four-vector, so
we can fix two other scalars, and another vector perturbation.

The gauges that we treat in this section are defined and analyzed at first-
order. We consider only the Poisson gauge up to second-order, since it is the
one that we will use in the next chapters of the thesis.

2.5.1 Poisson gauge

First order
The Poisson gauge is defined by the choice

• Bp = 0,

• Ep = 0,

• F ip = 0.

This gauge generalizes the so-called longitudinal [18] or Newtonian gauge [19],
in which vector and tensor perturbations are not considered. By looking at
the transformation properties of B, E and Fi in formulas (2.3.30), (2.3.36) and
(2.3.39), we find that in this gauge

α(1)
p = B(1) − E′(1) (2.5.1)

β(1)
p = −E(1) (2.5.2)

γ(1)i
p = −F (1)i, (2.5.3)

where the subscript p stands for Poisson. With these formulas we can calculate
the expression in this gauge for the scalar perturbations Φ

(1)
p and Ψ

(1)
p , from

equations (2.3.27) and (2.3.37) we obtain

Φ(1)
p = Φ(1) +H(B(1)

p − E′(1)
p ) + (B(1)

p − E′(1)
p )′, (2.5.4)
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Ψ(1)
p = Ψ(1) −H(B(1)

p − E′(1)
p ). (2.5.5)

In this gauge the energy density and scalar velocity are

δρ(1)
p = δ(1)

ρ + ρ′0(B(1) − E(1))) (2.5.6)

v(1)
p = v(1) + E′(1) (2.5.7)

The name Newtonian for this gauge derives from the fact that in many physical
situations we have Φ = Ψ, and this variable satisfies a generalization of the
Poisson equation.

Second order
In order to extend the Poisson gauge up to second-order, we work in the

same way as in the first-order case. The Poisson gauge at second-order is
defined by the conditions:

• B(2)
p = 0,

• E(2)
p = 0,

• F (2)i
p = 0.

Requiring E(2)
p = 0, from equation (2.3.53), we can determine β(2)

p

β(2)
p = −E(2)

p −
3

4
∇−2∇−2χij,ij +

1

4
∇−2χkk. (2.5.8)

α(1), β(1) and γ(1)
i are fixed because we imposed the Poisson gauge at first-order.

From the condition B(2)
p = 0, with the transformation equation (2.3.45), we

obtain the expression for α(2)
p

α(2)
p = B2 + β′(2)

p +∇−2χ k
B ,k, (2.5.9)

with β(2)
p given by the equation (2.5.8).

Requiring F (2)i
p = 0, from equation (2.3.55), we can set F (2)i

p = 0

γ
(2)
ip = −F (2)

i −∇−2χ k
ik, +∇−2∇−2χkl,kli. (2.5.10)

We now have fixed α(2), β(2) and γ(2)
i , then from equations (2.3.42) and (2.3.52)

we can read the expressions in this gauge for Φ
(2)
p and Ψ

(2)
p . We obtain

Φ(2)
p =Φ(2) +Hα(2)

p + α′(2)
p + α(1)

p

(
α′′(1)p + 5Hα′(1)

p + (H′ + 2H2)α′(1)
p

+4HΦ(1)
p + 2Φ′(1)

p

)
+ 2α′(1)

p

(
α′(1)
p + 2Φ(1)

p

)
+ ξ

(1)
pk

(
α′(1)
p +Hα′(1)

p

+2Φ(1)
p

) k
,

+ ξ
′(1)
kp

(
α(1) k

, p − 2B
(1)
kp − ξ

′(1)k
p

)
,

(2.5.11)

and for Ψ
(2)
p

Ψ̃(2)
p = Ψ(2)

p −Hα(2)
p −

1

4
χkkp +

1

4
∇−2χij,ijp. (2.5.12)
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From equation (2.3.56), we can read the second-order tensor perturbations in
the Poisson gauge, which are

h
(2)
ijp =h

(2)
ij + χijp +

1

2
(∇−2χ ik

p ,kl − χ k
p k)δij +

1

2
∇−2∇−2χ kl

p ,klij

1

2
∇−2χ k

p k,ij −∇−2(χ k
pik, j + χ k

plk, i).

(2.5.13)

2.5.2 Synchronous gauge

The Synchronous gauge is defined by the conditions [19]

• Φ
(1)
syn = 0,

• B(1)
syn = 0,

• S(1)i
syn = 0.

In this gauge the proper time of an observer at fixed spatial coordinates,
coincides with cosmic time in the FRW background. From the transformation
properties of B, Φ and Si in formulas (2.3.27),(2.3.30) and (2.3.31) we get

αsyn(1) = −1

a

(∫
aΦ(1)dη − C(xi)

)
, (2.5.14)

β(1)
syn =

∫ (
α(1)
syn −B(1)

)
dη − Ĉ(xi), (2.5.15)

γ(1)i
syn =

∫
S(1)idη + Ĉ(xi). (2.5.16)

The matter variables are

δρ(1)
syn = δρ(1) − ρ′(0)

a

(∫
aΦ(1)dη − C(xi)

)
, (2.5.17)

v(1)
syn = v(1) +B(1) − α(1)

syn. (2.5.18)

Equations (2.5.15) and (2.5.16) do not determine the time slicing unambiguously
and we are left with two arbitrary scalar functions of the spatial coordinates,
C(xi) and Ĉ(xi). We are thus left with a residual gauge-freedom [20].

2.5.3 Comoving orthogonal gauge

The comoving gauge is defined by choosing spatial coordinates such that the
three-velocity of the matter fluid vanishes [20]. Orthogonality of the constant-η
hypersurfaces to the four-velocity, uµ, then require ṽi + B̃i = 0. Summarizing,
we have

• v(1)i
com = 0,

• B(1)i
com = 0.
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From the transformation properties of B(1) and v(1) in formulas (2.3.23)
and (2.3.30) we have

α(1)
com = v(1) +B(1) (2.5.19)

β(1)
com =

∫
v(1)dη + C(xi), (2.5.20)

Density perturbations in this gauge follows from equation (2.3.20)

δρ(1)
com = δρ+ ρ′(0)(v(1) +B(1)). (2.5.21)

2.5.4 Spatially flat gauge

In this gauge we select spatial hypersurfaces in which the induced three-metric
is flat [17, 20]. This corresponds, considering only vectors and scalars, to the
conditions

• Ψ
(1)
flat = 0,

• E(1)
flat = 0,

• F (1)i
flat = 0.

By looking at the transformation properties of E, Ψ and Fi in formulas (2.3.36),
(2.3.37) and (2.3.39) we obtain

α
(1)
flat =

Ψ(1)

H
, (2.5.22)

β
(1)
flat = −E(1), (2.5.23)

γ
(1)i
flat = F (1)i. (2.5.24)

The energy-density perturbation in this gauge is

δρ
(1)
flat = δρ(1) + ρ(0) Ψ(1)

H
, (2.5.25)

and the scalar velocity is

v
(1)
flat = v(1) + E′(1). (2.5.26)

2.5.5 Uniform density gauge

This gauge, as the name suggests, is defined by setting to zero the density
perturbation [20]

• δ(1)ρun = 0.

This, fixes the value of α(1) from equation (2.3.20) as

α(1)
un = −δρ

(1)

ρ′(0)
. (2.5.27)

This condition does not completely exhaust gauge fixing.
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2.5.6 Gauge-invariant variables

From this not exhaustive list of possible gauges, one would think that the
solution of our perturbed equations of motion depends on the gauge in which
we write down the equations. This is not true at all, because the physical
quantities, which are the only ones measurable through experiments, have to be
gauge-invariant. We expect to have two scalars and one vector gauge-invariant
quantities, by looking at the d.o.f of ξ.

Bardeen, by studying the transformations of metric perturbations in [29],
constructed two gauge-independent variables, looking only at geometrical per-
turbations

Φ
(1)
B = Φ(1) +H(B(1) − E′(1)) + (B(1) − E′(1))′, (2.5.28)

Ψ
(1)
B = Ψ(1) −H(B(1) − E′(1)), (2.5.29)

which are called Bardeen gauge-invariant gravitational potentials. It is impor-
tant to notice that in the longitudinal gauge, the Bardeen potentials coincide
with the scalar perturbations Φ(1) and Ψ(1).

The only gauge-invariant vector variable, that we can build from metric
perturbations, is

Σ
(1)
i = S

(1)
i + F

′(1)
i . (2.5.30)

This quantity represents the amplitude of the shear due to vector perturbations.
With matter quantities we can construct other gauge-invariant variables.

The scalars are
E(1)
m = δρ(1) + ρ(0)(v(1) +B(1)), (2.5.31)

E(1)
g = 2δρ(1) + ρ′(0)(2v(1) − E′(1)). (2.5.32)

These could be seen as energy density from different points of view. The first
one is the energy density from the matter point of view, because E(1)

m = δρ(1)

when v(1) = −B(1) which is the condition for which matter world-lines are
orthogonal to the constant τ hypersurface. One can also see that E(1)

g measures
the energy density relative to hypersurfaces where a normal vector has zero
shear.

With matter vector perturbations we can construct the gauge-invariant
quantity

V
(1)
i = v

(1)
(vec)i + F

′(1)
i . (2.5.33)

2.6 Dynamics

In general relativity the geometry of space time is related with the matter
content through the Einstein equations

Gµν = 8πGTµν , (2.6.1)

where the Einstein tensor is defined as

Gµν = Rµν −
1

2
gµνR (2.6.2)
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The covariant derivative Dµ of the Einstein tensor is zero. This thing guarantees
the continuity equation for the energy-momentum tensor, DµTµν = 0. The
background equations that we calculate with the FRW metric are the Friedmann
equations,

H2 =
8πG

3a2
ρ, (2.6.3)

H′ = −4πG

3
a2 (ρ+ 3p) . (2.6.4)

The continuity equation for the energy density is

ρ′ = −3H(ρ+ p). (2.6.5)

The next step is to perturb the Einstein equations, stopping at first-order
in perturbations theory. This is quite a tedious operation. From the perturbed
metric we calculate δΓµνρ, and with this we can then calculate the perturbation
of Riemann tensor δRµνρσ, Ricci tensor Rµν and curvature scalar R [20].

2.6.1 Scalar perturbations

The 0− 0 component of Einstein equations, without specifying the gauge, is

3H(Ψ′(1) +HΦ(1))−∇2(Ψ(1) +Hσ(1)) = −4πga2δρ(1), (2.6.6)

where σ(1) is given by the formula (2.2.19). The 0− i components give

Ψ′(1) +HΦ(1) = −4πGa2(ρ(0) + p(0))V (1), (2.6.7)

where the total velocity V (1) is

V (1) = v(1) +B(1). (2.6.8)

The perturbed spatial Einstein equations at first-order also gives two evolution
equations for scalar metric perturbations

Ψ′′(1) +2HΨ′(1) +HΦ′(1) +(2H′+H2)Φ(1) = 4πGa2(δp(1) +
2

3
∇2Π(1)), (2.6.9)

σ′(1) + 2Hσ(1) + Ψ(1) − Φ(1) = 8πGa2Π(1). (2.6.10)

These equations are general, since the gauge is not specified. If we use the
longitudinal gauge, the last equation becomes

ΦB −ΨB = 8πGa2Π(1), (2.6.11)

because the scalar shear potential (2.2.19) vanishes in the longitudinal gauge,
and also the Bardeen scalar potential coincides with the scalar perturbations
Ψ(1) and Φ(1).

Equation (2.6.11) shows that ΦB −ΨB is driven by the anisotropic stress.
The anisotropic stress vanishes for a perfect fluid or for a minimally coupled
scalar field, but it is non-zero to first-order in the presence of free-streaming
neutrinos or of a non-minimally coupled scalar field [20, 26]. In longitudinal
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gauge, and in the absence of anisotropic stress, equation (2.6.9) provides a
second-order evolution equations where the source term is proportional to the
isotropic pressure

Ψ
′′(1)
B + 3HΨ

′(1)
B + (2H′ +H2)Ψ

(1)
B = 4πGa2δp(1) (2.6.12)

We can relate the pressure perturbation with the density perturbation in the
case of adiabatic perturbations. In this case we have

δp(1) = c2
sδρ

(1), (2.6.13)

where c2
s is the speed of sound, defined as

c2
s =

p′

ρ′
. (2.6.14)

In this case, equations (2.6.9) and (2.6.6) yield an evolution equation for Ψ [18]

Ψ′′(1) + 3(1 + c2
s)HΨ′(1) +

[
2H′ + (1 + 3c2

s)H2 − c2
s∇2

]
Ψ(1) = 0. (2.6.15)

The continuity equation gives the evolution equation for the perturbed
energy-density and velocity

δρ′(1) + 3H(δρ(1) + δp(1))− 3(ρ+ p)Ψ′(1) + (ρ+ p)∇2(V (1) + σ(1)), (2.6.16)

V ′(1) + (1− 3c2
s)HV (1) + Φ(1) +

1

ρ+ p
(δp+

2

3
∇2Π) = 0. (2.6.17)

2.6.2 Vector perturbations

The divergence-free part of δT0i is

δq
(1)
i = (ρ+ p)(v

(1)
(vec)i − S

(1)
i ), (2.6.18)

and obeys the momentum conservation equation

δq
(1)
i + 4Hδq(1)

i = −∇2Π
(1)
i . (2.6.19)

In the absence of anisotropic stress, this equation tells us that the vector
perturbations are red-shifted away by the Hubble expansion. The Einstein
equations for the gauge-invariant vector perturbations is

∇2(F
′(1)
i + S

(1)
i ) = −16πGa2δq

(1)
i . (2.6.20)

This equation tells us that the vector metric perturbation could be supported
only by divergence-free momentum perturbations, so we conclude that in the
absence of anisotropic stress, vector perturbations are negligible. This could
be seen as a consequence of Kelvin circulation theorem, which says that in the
absence of dissipative effects, vorticity is conserved along the fluid trajectories.
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2.6.3 Tensor perturbations

The trace-free part of the i− j Einstein equations gives the wave equation

h′′
ij(1)

+ 2Hh(1)
ij −∇

2h
(1)
ij = 8πGa2Π

(1)
ij . (2.6.21)

Again, in the absence of anisotropic stress, we have

h
′′(1)
ij + 2Hh(1)

ij −∇
2h

(1)
ij = 0 (2.6.22)

This equation has oscillating solutions, which correspond to the propagation
of gravitational waves. It is important to note that at first-order gravitational
waves are not coupled with density perturbations. The coupling between
scalar perturbations (which at first -rder depend on density perturbations) and
gravitational waves is a second-order effect, that we will consider in the next
chapters.

We decompose tensor modes in a scalar amplitude and in a polarization
tensor

hij = h(η)eij(x), (2.6.23)

and going to Fourier space, we find that h(η) satisfies the equation

h(η)′′ + 2Hh′(η) + k2h(η) = 0. (2.6.24)

This is the same equation of motion of a massless scalar field φ in an unperturbed
FRW metric, which is

�φ =
1√
−g

∂µ
(√
−ggµν∂νφ

)
. (2.6.25)

From these considerations we conclude that the two polarization modes behave
as two massless scalar fields.

The solution of equation (2.6.22) for a generic fluid is [21, 31]

h
(1)
ij (η,x) =

1

(2π)3

∫
d3keikxh(1)

σ (η,k)eσij(k̂), (2.6.26)

where eσij is the polarization tensor, and σ is the polarization index. h(1)
σ is the

scalar amplitude of the gravitational waves, and it has the following expression

h(1)
σ (η,k) = A(k)a(η)

j1(kη)

kη
T (k), (2.6.27)

where j1 is the first-order spherical Bessel Function. T (k) is the transfer function
for gravitational waves; which a numerical fit is given in [31] . The quantity
A(k) depends on the mechanism that generated gravitational waves; for the
standard inflation scenario it is nearly scale invariant.

We will use this equation as a zero-order solution in chapter (4), in order to
calculate the correction due to matter inhomogeneities to the evolution equation
of primordial gravitational waves.

In this section we have treated only the dynamics of first-order perturbation
theory. In the literature there are several works that study the dynamics of
second-order perturbations; see for example [21] and [30].
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Chapter 3

Gravitational wave propagation
in curved space-time

In this section we will present some basic results about propagation of grav-
itational waves in curved space-time. We will consider general gravitational
waves, in fact we won’t refer to the cosmic gravitational wave background,
still the results that we will obtain are valid also for gravitational waves from
astrophysical sources.

When we consider gravitational waves in Minkowsky flat space-time we have
a clear distinction of what is the background metric and what is the “ripple”,
since the background is independent of the space-time point, and gravitational
waves are the only quantities that depend on the coordinates. Instead, when we
consider gravitational waves on a curved background, the distinction between
perturbations and background is more subtle, because both background metric
and gravitational waves depend on the coordinates. As in any other application
of general relativity, our equations of motion are covariant under a generic
coordinate transformation. We will use this tool to simplify the equation of
motion for the gravitational waves.

Gravitational waves in flat space-time are treated in any books about
General Relativity, as examples [24, 25]. For propagation of gravitational
waves in curved space time we refer to [35, 36, 38]. The geometric optics
approximation for gravitational radiation is discussed in [35, 38, 39]

3.1 Gravitational waves in flat space-time

We briefly review the propagation of gravitational waves in a flat background,
since a generalization of that is the most interesting case of gravitational waves
on curved space-time.

As starting point, we assume that the metric could be written as

gµν(x) = ηµν + hµν(x), (3.1.1)

where ηµν is the Minkowski metric, and h satisfies | hµν |� 1. With this
metric, we can expand the Einstein equations, to obtain the linear theory in
hµν [25]. Since the numerical values of the components of the metric tensor
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depend on the reference frame in which we calculate them, we assume that exist
a coordinate system in which equation (3.1.1) holds. Even after setting the
coordinate system, we still remain with a residual coordinate transformation
freedom . Consider now the transformation

xµ → x
′µ = xµ + ξµ. (3.1.2)

The metric transforms as a rank-two tensor so we obtain, for the perturbation
hµν , the transformation

h′µν(x′) = hµν(x)− (∂µξν + ∂νξµ) . (3.1.3)

If we impose that the components of ξ satisfy | ξ |� 1, also h′µν will satisfy
| h′µν |� 1.

The equations of motion are the Einstein equations, linearized in hµν . In
order to compute the equation, we have to calculate Riemann tensor at linear
order in h, which is

Rµνρσ =
1

2
(∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ) . (3.1.4)

The Riemann tensor is invariant under residual coordinate transformations, as
we can easily see inserting equation (3.1.3) in the previous equation [38].

Instead of hµν , it is useful to consider the quantity

h̄µν = hµν −
1

2
ηµνh, (3.1.5)

where
h = hµνη

µν . (3.1.6)

The Riemann tensor expressed in term of h̄µν , becomes

Rµνρσ =
1

2

(
∂ν∂ρh̄µσ + ∂µ∂σh̄νρ − ∂µ∂ρh̄νσ − ∂ν∂σh̄µρ

− 1

2
ηµσ∂ν∂ρh̄−

1

2
ηνρ∂µ∂σh̄+

1

2
ηνσ∂µ∂ρh̄+

1

2
ηµρ∂ν∂σh̄ ) .

(3.1.7)

After calculating the Ricci tensor and the curvature scalar, the Einstein equa-
tions can be written as

� ¯hµν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂µh̄νρ − ∂ρ∂ν h̄µρ = −16πGTµν . (3.1.8)

We use now the invariance of the Riemann tensor in transformation like
that of equation (3.1.3), in order to set at zero the divergence of h̄µν ,

∂µh̄′µν = 0. (3.1.9)

This is possible, because if we start from

∂ν h̄µν = fν , (3.1.10)
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we will end up, after the transformation, with

∂µh̄′µν = ∂µh̄µν −�ξν . (3.1.11)

It is sufficient to set �ξν = fν (which has always a solutions since the �
operator is invertible), and we obtain condition (3.1.9).

With this assumption, the Einstein equations become

�h̄µν = −16πTµν . (3.1.12)

This equation, together with equation (3.1.9), implies

∂µT
µν = 0, (3.1.13)

which is the conservation of the energy-momentum tensor in the linearized
theory.

In order to study the propagation of the gravitational waves outside the
source, the Einstein equations become

�h̄µν = 0. (3.1.14)

In this case, we can further simplify equation (3.1.9). In fact, we can perform
another transformation of the type of (3.1.3). Now we set �ξµ = 0, in such a
way that the condition given in equation (3.1.9) still holds. If �ξµ = 0, also
�ξµν = 0, with

ξµν = ∂νξµ + ∂µξν − ηµν∂ρξρ, (3.1.15)

because the D’Alembert operator and partial derivatives commute. We can use
the four functions ξµ to constrain equation (3.1.14). We can set the condition
h̄ = 0 with ξ0; in this case we get h̄µν = hµν . With the remaining functions ξi,
we set h0i = 0. Condition (3.1.9) for µ = 0, gives

∂0h00 + ∂ih0i = 0, (3.1.16)

which implies that
∂0h00 = 0. (3.1.17)

Since the gravitational waves are, by definition, time dependent quantities,
the previous condition implies h00 = 0. Summarizing, fixing all the symmetry
transformations allowed from our equations, we have the following conditions:

h0ν = 0, h = 0, ∂jhij = 0. (3.1.18)

These conditions define the transverse trace-less gauge [25]. Note that the
assumption of being in the vacuum, where Tµν = 0, is necessary to set h00 = 0.

The procedure that we adopted here is analogous of what we do in classical
electrodynamics. Here the equation of motion in the vacuum is ∂µFµν = 0,
which is invariant under the transformation Aµ → Aµ + ∂µθ. We impose the
gauge condition ∂µAµ = 0, and we obtain the equation �Aµ = 0. We have the
residual gauge invariance and if we perform a gauge transformation, with a
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function θ′ that satisfies the condition �θ′ = 0, the four-potential stays the
same. We fix the residual gauge invariance by setting A0 = 0 and ∂iAi = 0.

Equation (3.1.14) now describes the propagation of two degrees of freedom
and, as a solution, it admits a superposition of plane waves

hij(t,x) =

∫
d3k

(2π)3

(
A(k)ije

ıkx +A(k)∗ije
−ıkx

)
, (3.1.19)

where
Aij(k) = Aeij(k). (3.1.20)

A is the amplitude of the fluctuation and eij is the polarization tensor [25, 38].

3.2 Gravitational waves in curved spacetime

Until now we have considered gravitational waves in flat background. In such
a case, since the background does not depend on the coordinates, while the
fluctuations do, there is a clear distinction between the background and the
fluctuations. Now, instead, we have in addition a background which is a function
of the space-time point. The question is: how can we separate the background
from the fluctuations? As we have done before, we split the metric as [38]

gµν(x) = ḡµν + hµν(x), (3.2.1)

with the condition
| hµν |� 1. (3.2.2)

When we have a clear separation in the scale (spatial or in time) of variation
of the two terms on the right side of the equation (3.2.1), the separation is
well defined. In particular, we assume that, in some coordinate systems, ḡµν
varies on a scale Lb, while hµν varies on a scale λ. In this case the separation
performed in equation (3.2.1) is well defined only if we have

λ� Lb. (3.2.3)

The same argument can be used in the frequency domain. In fact, calling f
the typical frequency of hµν , and fb the typical frequency of variation of ḡµν ,
we also have

f � fb. (3.2.4)

Note that the conditions in equations (3.2.3) and (3.2.4) are independent,
because Lb and fb are not related in principle [38].

Now, we study how the perturbation hµν propagates over the background
metric, and how it modifies it. The first step is to expand the Einstein equations
in hµν . Differently from the flat background case, now we have two parameters
that control this expansion [38]. One of the parameters is given by the typical
amplitude of the perturbations

h =| hµν |, (3.2.5)
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and the other is
ε =

λ

Lb
. (3.2.6)

It’s convenient to write Einstein equations in the form

Rµν = 8πG

(
Tµν −

1

2
gµνT

)
, (3.2.7)

where T is the trace of the energy-momentum tensor. Now we expand the
Einstein equations in powers of h. The Ricci tensor is

Rµν = R̄µν +R(1)
µν +R(2)

µν + · · · (3.2.8)

Now we use the second parameter of the expansion, λ
Lb

. R̄µν contains only low

frequencies modes, since it is constructed only with ḡµν . Instead, R
(1)
µν contains

only high frequency modes, because it is linear in hµν . Finally, R
(2)
µν , which is

quadratic in hµν , contains both high and low frequency modes. That happens
because, in terms like hµνhρσ, we can have a mode with high k, and another
one with k′ = −k, which combine themselves in a low frequencies mode.

We can now separate the equation (3.2.7) in high and low parts [35, 36, 37],

R̄µν = −R(2)low
µν + 8πG

(
Tµν −

1

2
gµνT

)low
, (3.2.9)

R(1)
µν = −R(2)high

µν + 8πG

(
Tµν −

1

2
gµνT

)high
, (3.2.10)

where the superscript “low” denotes the projection on the low wavelengths,
while the superscript “high” denotes the projection on the high wavelengths.

The first equation describes how gravitational waves modify the background
curvature, while the second one could be seen as a dynamical propagation
equation of the gravitational waves [38].

Even if our goal is to study the propagation of gravitational waves over a
curved space-time, for the sake of completeness we will now concentrate on
equation (3.2.9).

3.2.1 Gravitational wave effects on the background space-time

When there is a clear separation between the scale λ and Lb, the low frequency
equation can be treated with an average technique. This method has been
introduced for the first time in the astrophysical context by Brill and Hartle in
[37]

It is based on the definition of a new scale l, which respects the condition
λ � l � Lb. The projection over the long wavelength modes is performed
by computing the average of the equation (3.2.9) over a scale with typical
size l. This average leaves unchanged the long wavelength modes, since they
are constant over a scale l, because l� Lb. High wavelength modes, instead,
oscillate very fast, so, when they are mediated over a scale l the result is zero
[38].
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This average technique was first applied in statistical physics to integrate
out fluctuations that take place over a scale smaller than l. That was done to
study the dynamics of the system on long scales, how Lb is in our case. Now
this technique is widely used in several branches of physics. We can write the
equation (3.2.9) as

R̄µν = 〈R(2)
µν 〉+ 8πG〈Tµν −

1

2
gµνT 〉. (3.2.11)

We define an effective matter energy-momentum tensor, T̄µν , as

〈Tµν −
1

2
gµνT 〉 = T̄µν −

1

2
ḡµν T̄ , (3.2.12)

where T̄ = ḡµν T̄µν is the trace. From the average definition, we know that T̄µν
has only low frequency modes, and it could be seen as a macroscopic version of
Tµν . We also define the quantity

tµν = +
1

8πG
〈R(2)

µν −
1

2
ḡµνR

(2)〉, (3.2.13)

where R(2) = ḡµνR
(2)
µν . We define the trace of tµν

t = ḡµνtµν =
1

8πG
〈R(2)〉. (3.2.14)

To obtain this equation we bring ḡµν inside the average parenthesis, because it
contains only low frequency modes [38]. Inserting equation (3.2.14) in (3.2.13),
we see that

−〈R(2)
µν 〉 = 8πG

(
tµν −

1

2
ḡµνt

)
. (3.2.15)

With this formula, we can rewrite the equation (3.2.9) as

R̄µν = 8πG

(
T̄µν −

1

2
ḡµν

)
+ 8πG

(
tµν −

1

2
ḡµνt

)
, (3.2.16)

or, equivalently as

R̄µν −
1

2
ḡµνR̄ = 8πG

(
T̄µν + tµν

)
. (3.2.17)

These are the “coarse grained” Einstein equations [38]. They determine the
evolution of the background metric ḡµν (which is the long wavelength component
of the metric) as a function of the long wavelength modes of the matter
energy tensor T̄µν , and tµν (which depends only on the gravitational wave field
hµν). From equation (3.2.17) we see that the effects on the background of
hµν are formally identical to those of matter with energy-momentum tensor
tµν . Therefore, we can identify tµν with the energy-momentum tensor of the
gravitational waves [38, 36]. We also note that the Bianchi identities hold for
the background metric,

Dµ

(
R̄µν −

1

2
ḡµνR̄

)
= 0, (3.2.18)
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which implies
Dµ
(
T̄µν + tµν

)
= 0. (3.2.19)

The conservation of the sum of the background and gravitational wave energy-
momentum tensors tells us that, in general, matter sources and gravitational
waves exchange energy and momentum.

3.2.2 Gravitational wave propagation equation

We will analyze now equation (3.2.10), because our goal is to study the evolution
of gravitational waves in a curved background. We are not interested in how
the curvature of the background is modified by gravitational waves.

The explicit expression of Rµν is obtained from the Levi Civita connection,
which can be written as

Γµνρ = Γ̄µνρ + Γ(1)µ
νρ, (3.2.20)

where Γ
(1)µ

νρ is

Γ(1)µ
νρ =

1

2
ḡµσ (Dνhρσ +Dρhνσ −Dσhνρ) , (3.2.21)

and the covariant derivatives are calculated with the background metric ḡµν
[27, 38]. The formula (3.2.21) is easy to obtain in a locally inertial frame
corresponding to ḡµν , converting the ordinary derivatives to covariant deriva-
tives. That can be done because the difference between two affine connections
corresponding to two metrics, ḡµν and gµν , is a tensor [27].

In the same way, we perform the calculation of the Riemann tensor, to first-
order in hµν . Then, we perform the calculation in the frame where Γ̄µνρ = 0.
From (3.2.21) we see that Γµνρ = O(h), so we deduce that the term ΓΓ doesn’t
contribute. In this way we have Rµνρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ +O(h2). Replacing

this formula in equation (3.2.21), and writing covariant derivative instead of
ordinary derivative (since Γ̄µνρ = 0) we obtain a covariant expression for the
Riemann tensor

Rµνρσ =R̄µνρσ +
1

2
(DρDνhµσ +DσDµhνρ −DρDµhνσ −DσDνhµρ

+h τ
µ R̄τνρσ − h τ

ν R̄τµρσ
) (3.2.22)

To obtain the linearization of the Ricci tensor, we start from the definition
Rµν = gαβRαµβν . The linear contributions are due to ḡαβR(1)

αµβν −h
αβR̄αµβν .

Finally, the linear Ricci tensor is

R(1)
µν =

1

2
(DαDµhνα +DαDνhµα −DαDαhµν −DνDµh) , (3.2.23)

where h = ḡαβhαβ [27, 38].
In the equations (3.2.9) and (3.2.10) we apparently have terms with different

power dependence on h, because R(1)
µν is linear in h, while R(2)high

µν is quadratic
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in h. This is not an inconsistency, because we have a second small parameter,
ε which can compensate the different power dependencies on h of the terms in
equations (3.2.9) and (3.2.10) [38].

Let’s consider first the case of no external matter, Tµν = 0. Now the relative
strength of ε and h are fixed by equation (3.2.9). The terms involved in these
equations are

R̄µν ∼ (∂g)2 + ∂∂g, (3.2.24)

and ∂g ∼ 1
Lb
, from the definition of the scale Lb. The other term involved is

R
(2)low
µν , which gets contributions of the type

R(2)low
µν ∼ (∂h)2 + h∂∂h, (3.2.25)

and again we can estimate the order of magnitude of the derivative of h by
∂h ∼ h

λ . We can conclude from equation (3.2.9), in the absence of matter, that

1

L2
b

∼
(
h

λ

)2

, (3.2.26)

which gives

h ∼ λ

Lb
= ε. (3.2.27)

Consider now the opposite limit, where Tµν 6= 0 and the contribution of the
gravitational waves to the curvature is much smaller than the contribution of
matter. In this case we have 1

L2
b
∼
(
h
λ

)2
+ (matter contribution)�

(
h
λ

)2, so in
this case we have

h�
(
λ

Lb

)2

. (3.2.28)

From these conditions, given in equations (3.2.27) and (3.2.28), we under-
stand why we can’t extend the linearization procedure, given in the previous
section, beyond linear order. In fact, if we force the background metric to
be ηµν , this corresponds to send Lb to 0, or equivalently 1

Lb
= +∞. In this

situation, any small perturbation h violates the condition h
<∼ λ

Lb
, and the

expansion in powers of h has no validity.
We can also understand from equations (3.2.27) and (3.2.28) that the

gravitational waves are well defined only for small fluctuations, because if h ∼ 1,
also ε = λ

Lb
∼ 1. Also the separation between the scales λ and Lb is the basis

of the definition of the gravitational waves on curved backgrounds, so if this
condition lacks, the gravitational waves are not well defined. [38, 35]

We will study now equation (3.2.10) with external matter presence. In
this case we know from the previous argumentation that the expansions in the
parameters h and ε are different, because h� ε. We keep only terms linear in
h. Then we expand the result in powers of ε, and we obtain

R(1)
µν = 0. (3.2.29)

R
(2)high
µν is negligible because it is quadratic in h, while R(1)

µν is linear in h.(
Tµν − 1

2gµνT
)high has a high frequency component. Tµν is smooth, because it
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is the energy-momentum tensor of the matter source, but it has a high frequency
part because, in general, it depends on the metric gµν . Also the term gµνT has
high frequency parts. The first one is given by the product of hµν , with the
low frequency mode of T . The second one is due to the product of ḡµν , with
the high frequency parts of T .

Summarizing we have(
Tµν −

1

2
gµνT

)high
∼ O(

h

L2
b

). (3.2.30)

In addiction, we know that

R(1)
µν ∼ ∂2h ∼ O(

h

λ
). (3.2.31)

So we see, by comparing the formulas (3.2.30) and (3.2.31) that
(
Tµν − 1

2gµνT
)high

is smaller, by a factor ε2, than R(1)
µν [38]. So it doesn’t contribute to first-order

in ε.
Using the expression given in formula (3.2.10) for R(1)

µν , equation (3.2.29)
becomes

ḡρσ (DρDνhµσ +DρDµhνσ −DνDµhρσ −DρDσhµν) = 0. (3.2.32)

This equation could be simplified following what we have done in section 3.1,
using now ḡµν instead of ηµν [38]. We can use the transverse trace-less gauge,
which is identified by the conditions

Dνhµν = 0, h = 0. (3.2.33)

After switching the covariant derivatives of the first and second terms, equation
(3.2.32) becomes,

DρDρhµν + 2Rµρνσh
ρσ −Rµρhρν −Rνρhρµ = 0. (3.2.34)

We can further simplify this equation, outside the matter source, where T̄µν = 0.
In this case, we know from equation (3.2.9) that R̄µν depends only on R(2)low

µν ,
so R̄µν = O

(
h2

λ2

)
. If we restrict our treatment to linear order in h, we can drop

R̄µν because it is quadratic in h. Also, since Rµρνσhρσ = O
(
h
L2
b

)
we neglect the

term Rµρνσh
ρσ. This term is linear in h and hence it is allowed from this point

of view, still we restrict further our calculation to first-order in ε. From the
same arguments we have DρDρhµν = O

(
h
λ2

)
, therefore Rµρνσhρσ is negligible

in this approximation [38].
Thus, restricting our treatment to first-order in h and in ε we have

DρDρhµν = 0. (3.2.35)

This is the propagation equation for gravitational waves in curved space time,
in the limit λ� Lb. So we find that, after separating the Einstein equations in
high and low frequencies modes, the low mode equation describes the effect of
gravitational waves on the background space-time, while the high mode equation
describes the propagation of gravitational waves on the curved space-time. The
next step is to treat the equation with the geometric optics approximation
[35, 38, 39].

47



3.3 Geometric optics approximation

We have seen that if we consider the gravitational waves in flat background, we
find that these satisfy a wave equation. Therefore a generic solution is given
by a superposition of elementary plane waves like h ∼ Aeıkx, where k satisfies
the null ray condition k2 = 0 [25]. This solution is in very close analogy with
the geometric optics approximation or eikonal approximation of the Maxwell
equations for light rays. The eikonal approximation was applied to gravitational
waves in curved space-time for the first time by Isaacson in his two papers
[35, 36].

In curved space-time we still have a wave equation, but now the equations
depend on the background metric through the covariant D’Alembertian operator,
�ḡ = DµDν ḡ

µν . The eikonal approximation is valid when λ is much smaller
than the other length scales considered in the problem. So we set λ� Lb, as
we did several times in the previous section. Lb is the typical scale of variation
of the background metric. Under these conditions we can use the eikonal
approximation. This approximation consists in considering a phase φ of the
gravitational waves, phase that varies rapidly with respect to the scale Lb. We
define the expansion for hµν as [38, 39]

hµν(x) = Aµνe
ı
φ(x)
ε , (3.3.1)

where ε is an expansion parameter equal to λ
Lb
, which is set to unit after the

calculation. Equation (3.3.1) is only an ansatz, which we have to insert in the
equation (3.2.35). We define the gravitational waves wave-vector as

kµ = ∂µφ, (3.3.2)

and inserting the ansatz (3.3.1) in equation (3.2.35) we obtain

ε−2
[
−(Dρφ)(Dρφ)Aµν

]
+ ıε−1

[
(DρD

ρφ)Aµν + 2(Dρφ)(DρAµν)
]

+ (DρD
ρφ)Aµν = 0.

(3.3.3)

To leading order (ε−2), we see that the wave-vector of the gravitational waves
has to satisfy the condition

ḡµνkµkν = 0. (3.3.4)

This condition is the equivalent in curved space-time of the condition k2 = 0,
condition that light rays and gravitational waves satisfy in flat space-time
[35]. Equation (3.3.4) tells us that gravitational wave wave-vector is a null
type vector, and is called “eikonal equation”. From equation (3.3.4) it follows
that Dν (kµkµ) = 2kµDνk

µ = 0. From the definition of the wave-vector,
kµ = ∂µφ = Dµφ (φ is a scalar quantity), we can interchange the µ and ν indices
because the covariant derivatives of a scalar quantity commute, Dνkµ = Dµkµ.
With this consideration, we obtain the equation

kµDµkν = 0. (3.3.5)
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Equation (3.3.5) is the geodesic equation in the background metric ḡµν . We
can consider the line with kµ as tangent vector, kµ = dxµ

dl , where l is the affine
parameter that parametrizes xµ(l) [35]. With this definition we can rewrite the
equation (3.3.5) as

d2xµ

dl2
+ Γµρσ

dxρ

dl

dxσ

dl
= 0. (3.3.6)

To write equation (3.3.6), we use the fact that kµDµ = d
dλ . Equation (3.3.6)

states that the curves orthogonal to the surfaces with constant phase travel
along null geodesics of the background. This statement is the analogue of what
we have for light rays, where the direction of propagation is orthogonal to the
constant-phase plane.

The next order(ε−1) gives the equation

(DρD
ρφ)Aµν + 2(Dρφ)(DρAµν). (3.3.7)

We write the quantity Aµν as

Aµν = Aeµν , (3.3.8)

where A is the scalar amplitude, and eµν is the polarization tensor, which is
normalized to unit: eµνeµν = 1. When we insert this decomposition in equation
(3.3.7), we get

2kρ(DρA)eµν + 2kρ(Dρeµν)A+AeµνDρk
ρ = 0. (3.3.9)

Multiplying this equation by eµν we see that the second term of the equation
(3.3.9) is the derivative of the normalization factor of the polarization tensor,

2kρ(Dρeµν)eµνA =
d

dl
(eµνe

µν)A = 0, (3.3.10)

which gives zero [35]. This tells us that the polarization tensor is parallel
transported along the null geodesic. We haven’t imposed the gauge condition
until now. The Lorentz gauge conditions are Dνhµν = 0, h = 0, and they
constrain the polarization tensor which satisfies the conditions

kνeµν = 0 eµν ḡ
µν = 0. (3.3.11)

Summarizing, the polarization tensor is transverse and parallel transported.
Because of this consideration, the equation (3.3.9) becomes

2kρ(DρA) +ADρk
ρ = 0, (3.3.12)

and using the fact that kµDµ = d
dl , we have

d ln(A)

dl
= −1

2
Dµk

µ, (3.3.13)

which is the equation that governs the evolution of the amplitude of the
gravitational wave [35].
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We have seen that gravitational waves are in a close relation with light rays,
since they share the same features. Gravitons, like photons, propagate along
null geodesics, and suffer the same physical effects of photons. When they pass
near massive objects they are deviated, with the same deflection angle, and
they are redshifted, just as photons are.

In the study of the anisotropies of the Cosmic Microwave Background, the
electromagnetic radiation that passes through inhomogeneities, experimented
also the Sachs Wolfe effect and integrated Sachs Wolfe effect [33, 34]. Since
gravitational radiation behaves like electromagnetic radiation in the geometric
optics limit, we expect also gravitational radiation to have the same effects [39].
If we focus on the primordial gravitational wave stochastic background, we will
find that the analogy with the Cosmic Microwave Background is very strong.
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Chapter 4

Primordial gravitational wave
propagation through cosmic
inhomogeneities

In chapter 2 we have defined the perturbations in the cosmological context, and
in chapter 3 we have reviewed how gravitational radiation propagates through
a curved space-time. The aim of this thesis is to apply this formalism to the
stochastic gravitation radiation originated by the early evolution of the universe,
having in mind the standard slow-roll inflation scenario [26].

This gravitational radiation is represented in this scenario by the tensor
perturbations modes in the division of the metric that we have performed in
section 2.1. Also, in section 2.6, we have reported the solution of the first-order
equation of motion for tensor perturbations. At first-order, the propagation
equation for tensor perturbations is simply the equation of motion for a massless
scalar field.

In chapter 3 we have studied the propagation of gravitational waves in a
generic background. We have to stress once again, that the gravitational waves
that we considered in that section are general. They could be the primordial
gravitational waves, just as they could be gravitational waves originated from
astrophysical process. In section 3.3 we have introduced the geometric optics
approximation for gravitational radiation, and we have seen that, in this limit,
gravitational radiation behaves like electromagnetic radiation.

In the first part of this chapter we will apply the formalism developed in
chapter 3 to the primordial gravitational waves described in chapter 2. In
this way, and with the tools of the geometric optics approximation, we will
calculate the correction to amplitude, frequencies and phase. These corrections
are analogous to those of electromagnetic radiation [39]. Since we are interested
in primordial gravitational waves, the parallel with the Cosmic Microwave
Background is straightforward. We will find that there is an analog for gravita-
tional radiation of the Integrate Sachs-Wolfe effect for the Cosmic Microwave
Background.

In the second part of the chapter we will analyze the problem from a different
point of view, without geometric optics approximation. We will do this because
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with this approach we can apply the Green method, and therefore we can
calculate the correction to the power spectrum expected from the standard
inflation scenario.

4.1 Metric in the longitudinal gauge

Before moving forward it is necessary to specify the background metric in which
the gravitational waves are moving through. The background metric that we
consider is given by the FRW metric, plus the scalar perturbations. We will
work in the longitudinal gauge, where we have only the scalar perturbations
Φ and Ψ. To consider only scalar perturbations and to neglect all the vector
modes, results in more than the mere choice of the gauge. In fact, we can’t
neglect all the vector modes present in the perturbed metric only with the
choice of the gauge. By considering only these two perturbations, we fix the
dynamical statement not to consider vector perturbations. We are allowed to do
that, because, in the standard inflation scenario, we don’t have the production
of vector perturbations [21]. The background metric ḡµν(η,x) is

ḡµν(η,x) =
−a2(η)e−2Φ(η,x) 0 0 0

0 a2(η)e−2Ψ(η,x) 0 0

0 0 a2(η)e−2Ψ(η,x) 0

0 0 0 a2(η)e−2Ψ(η,x)

 .

(4.1.1)

We write the metric in this way, with the exponential factor, because it is easier
to compute the inverse metric, since the metric is diagonal and we have only to
change the sign at the exponent. The inverse metric is

ḡµν(η,x) =
−a−2(η)e+2Φ(η,x) 0 0 0

0 a−2(η)e+2Ψ(η,x) 0 0

0 0 a−2(η)e+2Ψ(η,x) 0

0 0 0 a−2(η)e+2Ψ(η,x)

 .

(4.1.2)

If we expand the exponential factors in the metric up to first-order in Φ
and Ψ, we find that the metric calculated in the longitudinal gauge becomes :

ḡµν(η,x) =

a2(η)


−1 + 2Φ(η,x) 0 0 0

0 1− 2Ψ(η,x) 0 0
0 0 1− 2Ψ(η,x) 0
0 0 0 1− 2Ψ(η,x)

 .

(4.1.3)

The total metric is the sum of background metric and tensor perturbations

gµν(η,x) = ḡµν(η,x) + hµν(η,x). (4.1.4)
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4.2 Integrated Sachs-Wolfe effect for gravitational ra-
diation

Now, we apply the equations of the geometric optics obtained in section 3.3
together with the metric form given in equation (4.1.3). These equations
constrain the amplitude, the wavevector and the frequencies of the gravitational
waves, as we will see. The gravitational wave wave-vector have to satisfy the
condition kµDµkν = 0, which implies that the curve xµ with tangent vector kµ

satisfies the equation
d2xµ

dl
+ Γµρσ

dxρ

dl

dxσ

dl
= 0. (4.2.1)

Since the gravitational wave-vector satisfies the null geodesic equation, one
can essentially follow the derivation of the temperature anisotropies of the
Cosmic Microwave Background [32]. It will be convenient to separate the
dependence on the scale-factor by working in the conformal background metric
g̃µν = a−2ḡµν . The wave-vector kµ of a light ray in the physical metric is related
to the wave-vector k̃µ in the conformally transformed metric by k̃µ = a−2kµ; the
affine parameters are related by dl = adλ. The null geodesics xµ(l) with affine
parameter l in the background metric ḡµν are the same as the null geodesic
x̃µ(λ) with affine parameter λ, in the perturbed metric g̃µν [32, 39].

Let’s consider the geodesic equation for x̃µ(λ) in the conformally transformed
metric

dk̃µ(λ)

dλ
+ Γ̃µρσk̃

ρk̃σ = 0 (4.2.2)

Following [39], we write the perturbed geodesic as

x̃µ(λ) = x̃(0)µ(λ) + x̃(1)µ(λ) (4.2.3)

and the perturbed wavevector as

k̃µ(λ) = k̃(0)µ(λ) + k̃(1)µ(λ). (4.2.4)

The zero-order geodesic is

x̃(0)µ(λ) = (λ, (λr − λ)ni) (4.2.5)

and the unperturbed wavevector is

k̃(0)µ(λ) = (1,−ni). (4.2.6)

We set the observer at the coordinates point xµ = (ηr,~0) and ni is a unit vector
that points in the direction of arrival of the gravitational waves. Equation
(4.2.2) becomes, to first-order in perturbations

k̃(1)µ(λ)

dλ
+ Γ̃(1)µ

ρσk̃
(0)ρ(λ)k̃(0)σ(λ) = 0, (4.2.7)

where we used Γ̃
(0)µ

ρσ = 0. We now report the affine connection coefficients:

Γ̃0
00 = Φ′, (4.2.8)
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Γ̃0
i0 = Φ,i, (4.2.9)

Γ̃0
ij = −Ψ′δij , (4.2.10)

Γ̃i00 = Φ,i (4.2.11)

Γ̃ij0 = −Ψ′δij , (4.2.12)

Γ̃ijk = −Ψ,kδ
i
j −Ψ,jδ

i
k + Ψi

,δjk. (4.2.13)

The temporal component of the wavevector obeys the following equation

dk̃(1)0

dλ
= ∂η(Φ + Ψ)− 2

dΦ

dλ
, (4.2.14)

where we have used the expression given in equations (4.2.8)-(4.2.13), and also
we used dΦ

dλ = ∂ηΦ− Φ,in
i. As far as the spatial component is concerned it’s

convenient to separate the vector in parallel and perpendicular components to
the vector ni. We define the projector

⊥ij = δij − ninj (4.2.15)

this operator, acting on a vector, gives a vector orthogonal to ni. To obtain
the component parallel to ni of a given vector, we simply project the vector on
ni. One finds for k̃(1)i

‖

dk̃
(1)i
‖

dλ
= −ni

(
d(Φ−Ψ)

dλ
+ ∂η(Φ + Ψ)

)
, (4.2.16)

and for k̃(1)i
⊥

dk̃
(1)i
⊥
dλ

= −(δij − ninj)∂j(Φ + Ψ), (4.2.17)

where we have defined
k̃

(1)i
‖ = ninj k̃

(1)j (4.2.18)

and
k̃

(1)i
⊥ = ⊥ij k̃(1)j , (4.2.19)

which satisfies
k̃(1)i = k̃

(1)i
‖ + k̃

(1)i
⊥ (4.2.20)

We can integrate the equations (4.2.14) and (4.2.16) from the emission to
the observer position. We call λe the affine parameter at the beginning of the
geodesic. We have imposed as initial condition that k̃(1)µ is a null type vector

k̃µk̃ν ḡµν(λe) = 0. (4.2.21)

If we open the previous formula we have three contributions

k̃µk̃νgµν(λe) =k̃(1)µk̃(0)νg(0)
µν + k̃(0)µk̃(1)νg(0)

µν + k̃(0)µk̃(0)νg(1)
µν

= 2
(
k̃(1)0(λe)(−1) + k̃(1)i(λe)ni

)
+ (Φ(λe) + Ψ(λe))

= 0

(4.2.22)
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For the sake of simplicity we can set k̃(1)i(λe) = 0, and we obtain from the
previous formula

k̃(1)i(λe) = 0, k̃(1)0(λe) = − (Φ + Ψ) |λe (4.2.23)

With this initial condition, we integrate (4.2.14) and (4.2.16), and we obtain

k̃(1)0(λ) = − (Φ + Ψ) |λe −2Φ |λλe +

∫ λ

λe

∂η (Φ + Ψ) dλ′ (4.2.24)

k̃
(1)i
‖ = k̃(1)i

(
(Ψ− Φ) |λλe +

∫ λ

λe

∂η (Φ + Ψ) dλ′
)

k̃
(1)i
⊥ = −⊥ij

∫ λ

λe

∂j(Φ + Ψ)dλ′
(4.2.25)

The integral in the previous formula is the integrated Sachs-Wolfe effect for
gravitational radiation analogous to that of the Cosmic Microwave Background.
We can see this effect by looking at the frequency of the gravitational waves,
that is defined in the reference frame of the cosmological fluid, which is defined
as

ω = −uµkµ, (4.2.26)

where uµ is the covariant four-velocity of the fluid, given by the formulas (2.4.6)
and (2.4.7), and kµ = a−2k̃µ. We obtain for the frequency

ω =
1

a

(
1−Ψ(λe)− Φ |λλe +~n · ~v + IiSW

)
, (4.2.27)

where we have defined

IiSW =

∫ λ

λe

∂η (Φ + Ψ) dλ′ (4.2.28)

From equation (4.2.27) we can calculate the ratio between receiving and emitting
frequencies, and we find

ωr
ωe

=
νr
νe

=
1− Φ |re +~n · ~v |re +IiSW (λr)

1 + z
, (4.2.29)

where z is the redshift, defined as usual

1 + z =
ar
ae
. (4.2.30)

From equation (4.2.29) we see that the presence of the inhomogeneities causes
corrections to the usual redshift effect that occurs in the FRW background.
We have a non-ntegrated effect, which is proportional to the value of the
gravitational potential at emission and reception, and an integrated Sachs-
Wolfe correction. The formula (4.2.27) is analogous to what we find for the
temperature anisotropies of the Cosmic Microwave Background [33, 34].
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We can calculate the gravitational wave phase fluctuations due to inhomo-
geneities from the formula

dφ

dλ
= k̃(0)µDµφ = −k̃(0)µk̃(1)

µ = −k̃(1)0,+k̃
(0)
i k̃

(1)i
‖ , (4.2.31)

which gives
dφ

dλ
= Ψ + Φ→ φ =

∫ λ

λe

(Ψ + Φ) dλ′. (4.2.32)

This is the Shapiro time delay, analogous to that associated to the electromag-
netic radiation moving through a gravitational field.

Now, we look at the gravitational waves amplitude, which is regulated by
equation (3.3.13). We rewrite here the equation:

d ln(A)

dl
= −1

2
Dµk

µ (4.2.33)

We write the amplitude as

A = A(0)(1 + ξ). (4.2.34)

The amplitude equation becomes

1

1 + ξ

dξ

dλ
= −1

2

(
∂ηk̃

(1)0 + ∂ik̃
(1)i
‖ + ∂ik̃

(1)i
⊥ + Γ̃µµν k̃

(0)ν
)
, (4.2.35)

where we have expanded the denominator

1

1 + ξ
= 1− ξ, (4.2.36)

since the correction is small.

−2
dξ

dλ
= ∂ηk̃

(1)0 + ∂ik̃
(1)i
‖ + ∂ik̃

(1)i
⊥ + Γ̃µ(1)

µν k̃
(0)ν . (4.2.37)

The terms on the right hand side of the previous equation are

∂ηk̃
(1)0 = ∂η (−2Φ + IiSW ) (4.2.38)

∂ik̃
(1)i
‖ = k̃(0)i∂i (Ψ− Φ− ISW ) =

d

dλ
(Ψ− Φ + ISW )− ∂η (Ψ− Φ + ISW )

(4.2.39)

∂ik̃
(1)i
⊥ = −⊥ij

∫ λ

λe

∂j∂i (Φ + Ψ) dλ′ (4.2.40)

Γ̃µ(1)
µν k̃

(0)ν =
d

dλ
(Φ− 3Ψ) (4.2.41)

Summing all these terms, we find for the amplitude perturbation ξ the
equation

−2
dξ

dλ
= −∂η (Ψ + Φ) +

d

dλ
(−2Ψ + IIS)−⊥ij

∫ λ

λe

∂j∂i (Φ + Ψ) dλ′ (4.2.42)

56



which, after integration, gives

ξ = −Ψ |λλe −
1

2
⊥ij

∫ λ

λe

∫ λ′

λe

∂j∂i (Φ + Ψ) dλ′dλ′′. (4.2.43)

We note that the IiSW term has been canceled. The remaining contribution is
the magnification due to gravitational lensing [41].

Summarizing the results of this section, we have :

hµν = Aeµνeı
φ
ε , (4.2.44)

φ =

∫ λ

λe

(Ψ + Φ) dλ′, (4.2.45)

A = A(0) (1 + ξ) = A0

(
1−Ψ |λλe −

1

2
⊥ij

∫ λ

λe

∫ λ′

λe

∂j∂i (Φ + Ψ) dλ′dλ′′

)
,

(4.2.46)
ωr
ωe

=
νr
νe

=
1− Φ |re +~n · ~v |re +IiSW (λr)

1 + z
(4.2.47)

Inserting all these results in equation (4.2.44), we get

hµν = A(0)eµν

(
1−Ψ |λλe −

1

2
⊥ij

∫ λ

λe

∫ λ

λe

∂j∂i (Φ + Ψ) dλ′dλ′′
)
e
∫ λ
λe

(Φ+Ψ)dλ′ .

(4.2.48)
This result is general. In fact gravitational waves with different origin could be
distinguished by the zero-order amplitude A(0). The unperturbed amplitude in
the case of primordial gravitational waves is given by equation (2.6.25), which
is the solution of the equation of the first-order tensor perturbations.

A(0)(x, η) =

∫
d3k

(2π)3
3χ(k, 0)

j1(kη)

kη
T (k)eık·x. (4.2.49)

4.3 Primordial gravitational wave power spectrum
corrections

In the previous section, we used the geometric optics approximation, and we
obtained some useful information about the behavior of the gravitational waves
moving through cosmic inhomogeneities, which are described by the scalar
perturbations Φ and Ψ.

Now we won’t use the geometric optics approximation. We will expand
equation (3.2.35), which is the equation of motion for the gravitational waves
in curved background. We will integrate this equation using the Green method
for a partial differential equation. The zero order solution that we will use is
given by equation (2.6.25), since, once again we are interested in primordial
gravitational waves originated from inflation.

The equation of motion for gravitational waves in the limit of λε � 1 is

�ḡhµν = 0. (4.3.1)
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It is known that gravitational waves satisfy the same equation of a massless
scalar field. So, we can use the expansion for the D’Alembertian operator for
scalar quantities, which is

�ḡχ =
1√
−ḡ

∂µ(
√
−ḡḡµν∂νχ), (4.3.2)

where ḡ stands for the determinant of the background metric ḡµν . Using the
metric with the exponential factor, we have

√
−ḡ = a4eΦ−3Ψ. (4.3.3)

Expanding equation (4.3.2), with the metric given from equation (4.1.1), we
get

�ḡχ =
1√
−ḡ
[
∂0(−a2e−3Ψe−Φ∂0χ) + ∂ia

2eΦe−Ψ∂iχ)
]

=
1√
−ḡ

[
−2a′ae−Φe−3ψχ′ − a2(e−3Ψ−Φ)′χ′

−a2e−3Ψ−Φχ′′ + a2∂i(e
Φ−Ψ)∂iχ+ a2eΦ−Ψ∇2χ

]
= 0.

(4.3.4)

We said previously that we won’t use the geometric optics approximation in
this section. But, according to what we said in chapter 3, in the study of
gravitational waves on curved background, it is fundamental the existence of a
well defined separation of the scales fb, which represents the typical time scale
of variation of the background quantities, and f , which represents the time
scale of variation of the gravitational waves. According to this assumption, we
have neglected the time derivatives of scalar perturbations.

From equation (2.6.11) we could see that the difference between the scalar
potentials Φ and Ψ, in the longitudinal gauge, is proportional to the anisotropic
stress. But, the anisotropic stress is zero to first-order if we consider cold
dark matter and baryon. Free-streaming neutrinos contribute to anisotropic
stress with a first-order effect [20]. We do not consider the contribution of the
free-streaming neutrinos, since their amount is small in the energy budget of
the universe. In this way we can argue that the difference between Φ and Ψ
is a second-order effect, and according to our approximations we can neglect
∂i(e

Φ−Ψ).
With this approximation, the equation becomes

DµD
µχ = −2

a′

a3
e−2Φχ′ − e−2Φ

a2
χ′′ +

e2Ψ

a2
∇2χ = 0, (4.3.5)

which could be written finaly as

χ′′ + 2Hχ′ − e2Ψ+2Φ∇2χ = 0. (4.3.6)

Equation (4.3.6) holds also for the gravitational waves, and we can write

h′′µν + 2Hhµν − e2Ψ+2Φ∇2hµν = 0. (4.3.7)
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To solve equation (4.3.7) it is convenient to do the Fourier transform. In our
convention we have

hµν(x, η) =

∫
d3k

(2π)3
hµν(k, η)eık·x. (4.3.8)

The Fourier transform of equation (4.3.7) is∫
d3k

(2π)3
h′′µν(k, η)eık·x + 2H

∫
d3k

(2π)3
hµν(k, η)eık·x

− e2Ψ+2Φ∇2

∫
d3k1

(2π)3
hµν(k1, η)eık1·x = 0.

(4.3.9)

Now, we expand the exponential factor to first-order in the scalar perturbations
and, also, we neglect the difference between Φ and Ψ, e2Φ+2Ψ ≈ 1 + 2Φ + 2Ψ ≈
1 + 4Φ. The third term of equation (4.3.9) becomes

− e2Ψ+2Φ∇2

∫
d3k1

(2π)3
hµν(k1, η)eık1·x = (1 + 4Φ)

∫
d3k1

(2π)3
k2

1hµν(k1, η)eık1·x

=

(
1 +

∫
d3k

(2π)3
Φ(k− k1, η)eı(k−k1)·x

)∫
d3k1

(2π)3
k2

1hµν(k1, η)eık1·x

=

∫
d3k1

(2π)3
k2

1hµν(k1, η)eık1·x + 4

∫
d3k1

(2π)3
Φ(k− k1, η)k2

1hµν(k1, η).

(4.3.10)

With this manipulation, equation (4.3.9) becomes

h′′µν(k, η)+2Hhµν(k, η)+k2hµν(k, η)+4

∫
d3k1

(2π)3
Φ(k−k1, η)k2

1hµν(k1, η) = 0.

(4.3.11)
Now, we recall that in our gauge we have h0µ = 0 and h = 0, so we can

write the indices in the previous formula as spatial indices. We decompose as
usual the gravitational waves as hij(k, η) = h(k, η)(α)e

(α)
ij (k), where h is the

scalar amplitude and eij is the polarization tensor. (α) is an index that assumes
the value + and ×, and labels the two independent polarization components.
We will consider polarization tensors given by

e
(+)
ik (k) =

1√
2

(e1i(k)e1j(k)− e2i(k)e2j(k)) (4.3.12)

e
(×)
ik (k) =

1√
2

(e1i(k)e2j(k) + e2i(k)e1j(k)) , (4.3.13)

where e1 and e2 are unit vectors orthogonal to k. By multiplying equation
(4.3.9) by eij(α) we get

h′′(α)(k, η) + 2Hh(α)(k, η) + k2h(α)(k, η)

+

∫
d3k1

(2π)3
Φ(k− k1, η)k2

1hij(k1, η)eij(α) = 0
(4.3.14)
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Equation (4.3.14) is the main equation of this section, and it is the starting
point to calculate the corrections to the power spectrum arising from the
presence of inhomogeneities. In fact, the last term of the equation (4.3.14) is
the one responsible for the coupling between gravitational waves and scalar
perturbations. In this term, we have the presence of k2

1, which could be
dominant on small scales.

Our strategy is to solve equation (4.3.14) with the Green method. In this
way we will have a zero order solution, and a correction that will depend on
the potential Φ.

We now define the new quantity

χ(k, η)(α) = a(η)h(α)(k, η). (4.3.15)

With this new variable, equation (4.3.14) becomes

χ′′(α)+

(
k2 − a′′

a

)
χ(α)+4

∫
d3k1

(2π3)
Φ(k−k1)k2

1χij(k1, η)eij(α)(k) = 0 (4.3.16)

The zero-order equation is obtained by setting the scalar potential Φ to
zero in equation (4.3.16)

χ′′(α) +

(
k2 − a′′

a

)
= 0. (4.3.17)

This is the equation (2.6.22) expressed using the quantity χ. We already have
written the solution of this equation in the formula (2.6.25). For χ(k, η) we
obtain

χ(k, η) = 3χ(k, 0)
J1(kη)

kη
T (k), (4.3.18)

where T (k) is the linear transfert function for gravitational waves [31], and j1
is the first-order spherical Bessel function.

Since we are interested in small scales, and for kη � 0 we have j1 ' cos(kη)
kη ,

and equation (4.3.18) becomes

χ(k, η) = 3χ(k, 0)
cos(kη)

(kη0)2
T (k) = A(k) cos(kη), (4.3.19)

where in the denominator we have replaced η with η0, where the subscript
0 stands for quantities evaluated at the present time. We have done this
because kη � 0. In this way we have written the zero order solution, given in
equation (4.3.19), as an oscillating solution, with an amplitude proportional to
the wavenumber; in fact we have

A(k) = 3
χ(k, 0)

(kη0)2
T (k). (4.3.20)

We can now compute the first-order solution of equation (4.3.14). We use the
two independent solutions χ = A cos(kη) and χ̄ = B sin(kη), which are obtained
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from equation (4.3.17) by neglecting the expansion term in the equation. We
find

χ(α)(k, η) = χα0 (k, η)

+ 4

∫
d3k1

(2π3)
Φ(k− k1)k2

1Σ(α)(k,k1)

∫ η

0
dη′

χ(k, η)χ̄(k, η′)− η̄(k, η)χ(k, η′)

W (η′)

× χ0(k1, η
′),

(4.3.21)

the Wronskian of χ and χ̄ is W = −ABk, and χ0(k1, η
′) is given by equation

(4.3.19), and

Σ(α)(k,k1) = e
(+)

ij(k1)e(α)ij(k) + e
(×)

ij(k1)ε(α)ij(k) (4.3.22)

is due to the combination χij(k1)e(α)ij(k) in equation (4.3.21). We can easily
perform the integration over η′ and we get∫ η

0
dη′

χ(k, η)χ̄(k, η′)− χ̄(k, η)χ(k, η′)

ABk

= A(k)

∫ η

0

cos(kη) sin(kη′) cos(k1η
′)− cos(kη′) sin(kη) cos(k1η

′)

−k

= A(k)

[
cos(k1η)− cos(kη)

k2 − k2
1

]
.

(4.3.23)

With this result, the equation (4.3.16) becomes

δχ(α)(k, η) = 4

∫
d3k1

(2π3)
Φ(k− k1)k2

1Σ(α)(k,k1)A(k)

[
cos(k1η)− cos(kη)

k2 − k2
1

]
.

(4.3.24)
The term δχα(k, η) quantifies the correction to the stochastic gravitational
waves background due to the presence of inhomogeneities.

To compute Σ(α)(k,k1), we choose the vector k along the z axis. We can
thus take the vectors e1(k) and e2(k), present in equations (4.3.12) and (4.3.13),
as the unit vector of the x and y axes. The three vectors e1, e2 and k form an
orthogonal complete set of vectors, and they are

k =

 0
0
k

 , e1(k1) =

 1
0
0

 , e2(k1) =

 0
1
0

 (4.3.25)

We now define θ and φ as the polar and azimuthal angles of k1, in the coordinates
system given by e1(k),e2(k) and k̂. Then we define the two vectors e1(k1)′ and
e2(k1)′, which are orthogonal to k1. These vectors are given by

k1 =

 sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 , e′1(k1) =

 sin(φ)
− cos(φ)

0


,e′2(k1) =

 − cos (θ) cos (φ)
− cos(θ) sin(φ)

sin(θ)

 .

(4.3.26)
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We can compute Σ(+)(k, k1) and Σ(×)(k, k1), by using equations (4.3.12) and
(4.3.13).

2Σ(+)(k, k1) = (1+cos2(θ))(sin2(φ)−cos2(φ))−4 cos(θ) sin(φ) cos(φ) (4.3.27)

and

2Σ(×)(k, k1) = −2(1 + cos2(θ)) sin(φ) cos(φ)− 2 cos(θ)(sin2(φ)− cos2(φ)).
(4.3.28)

We can compute the power spectrum of the primordial gravitational waves.
Since we have the correction δχα to the solution χα obtained in the case without
inhomogeneities, we will obtain a correction term to the power spectrum. We
define the power spectrum of the quantity χ(k)(α) as

〈χ(α)(k, η)χ(α)(k′, η)〉 = (2π)3δ3(k + k′)P (α)(k). (4.3.29)

Now χ(α) = χ
(α)
(0) + δχ(α), so we can define the quantity ∆P (α)(k) from the

following equation:

〈δχ(α)(k, η)δχ(α)(k′, η)〉 = (2π)3δ3(k + k′)∆P (α)(k), (4.3.30)

where ∆P (α)(k) represents the correction to the power spectrum. In the previous
formula we have assumed that when we calculate the quantity 〈χ(α)

(0) δχ
(α)〉 we

obtain 0, since as an assumption they belong to different statistical ensembles.
By inserting in equation (4.3.30) the expression for δχ(α) given by the equation
(4.3.24), we get

〈δχ(α)(k, η)δχ(α)(k′, η)〉 = 〈
∫

d3k1

(2π)3

∫
d3k′1
(2π)3

Φ(k− k1)Φ(k′ − k′1)

× Σ(α)(k,k1)Σ(α)(k′,k′1)×A(k)A(k′)f(k, k1)f(k′, k′1)〉,
(4.3.31)

with f(k, k1) defined as

f(k, k1) = 4k2
1

[
cos(k1η)− cos(kη)

k2 − k2
1

]
. (4.3.32)

Keeping the average parenthesis inside the integral, and introducing the power
spectrum of the scalar perturbations PΦ(k) defined as

〈Φ(k)Φ(k′)〉 = (2π)3δ3(k + k′)PΦ(k) (4.3.33)

and the power spectrum of the quantity A(k) defined as

〈A(k)A(k′)〉 = (2π)3δ3(k + k′)PA(k), (4.3.34)

equation (4.3.31) becomes

∆(α)P (k) =

∫
d3k1

(2π)3
f(k, k1)2Σ(α)(k,k1)2PΦ(| k− k1 |)PA(k1). (4.3.35)
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PA(k) is related with Pχ(0), the power spectrum of primordial gravitational
waves generated from inflation through equation (4.3.20), and we have

PA(k) = 9
Tg(k)2

(kη0)4
Pχ(0), (4.3.36)

where

Pχ(0) =
2π2

k3
A2
T (k0)(

k

k0
)nT (4.3.37)

is the power spectrum of the primordial gravitational wave generated from
inflation, with AT (k0) amplitude to a certain scale of reference and nT as
spectral index. It’s important to stress that in order to obtain equation (4.3.35),
we had made a double average. One is related to the stochastic properties of
gravitational waves, and the other one is related to the stochastic properties
of the scalar perturbations Φ. These averages are independent, since we have
averaged quantities which are defined as statistically independent. Another
approach could have been computing only the average of the gravitational waves,
and considering a well-defined Φ profile characteristic of a cosmic structure. An
interesting case could be considering the profile originated from a dark matter
halo.

We can relate the power spectrum of the scalar potential Φ with the matter
perturbations power-spectrum Pδ through the Poisson equation, which in
Fourier space is

δ(k, a) = −2

3
k2 Φ(k)(a)a(η)

ΩmH2
0

. (4.3.38)

Introducing the dimensionless power spectrum ∆δ(k) = 2π2

k3
Pδ(k) (that doesn’t

depend on the convention choice of Fourier transform) we get

PΦ(k) =
9

4

Ω2
mH

2
0

k4a(η)2

2π2

k3
∆δ(k). (4.3.39)

Equation (4.3.35) becomes

∆(α)P (k) =

∫
d3k1

(2π)3
16k4

1

[
cos(k1η)− cos(kη)

k2 − k2
1

]2

| Σ(α)(k1) |2

×
[

9

4

Ω2
mH

4
0

| k− k1 |4 a(η)2

2π2

| k− k1 |3
∆δ(| k− k1 |)

] [
9
Tg(k1)2

(k1η0)4

2π2

k3
1

A2
T (k0)(

k1

k0
)nT
]
.

(4.3.40)

It is useful to consider the integral over d3k1 in spherical coordinates, because
we can easily do the integral over φ. In fact the only quantity that depends on
φ is | Σ(α) |2. Having squared equations (4.3.12) and (4.3.13), and after having
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integrated them over φ, we obtain the following result for ∆P (k):

∆P (k) =
9

4

Ω2
mH

4
0

a2(η)

∫ 1

−1
d(cos(θ))(4 cos2(θ) + (1 + cos2(θ))2)

×
∫ ∞

0

dk1

k1

k3
1

| k− k1 |3

[
cos(k1η)− cos(kη)

k2 − k2
1

]2 k4
1

| k− k1 |4
∆δ(| k− k1 |)

×
[
9
Tg(k1)2

(k1η0)4

2π2

k3
1

A2
T (k0)(

k1

k0
)nT
]
.

(4.3.41)

In the previous formula we dropped the polarization index α. We have done
this because the integral over φ of | Σ(+) |2 and | Σ(×) |2 gives the same result.
The polarization components of the gravitational waves are affected by cosmic
inhomogeneities just as we expected. We expected that since the power spectrum
is a quantity that doesn’t depend by the polarization, and we considered scalar
perturbations. If we would have considered vector perturbations instead of
scalar perturbations, we would have not expected the integrals to give the
same results. In fact, in this case we would have had a privileged direction,
and the result would have depended on the relative position of the direction
of observation of the gravitational waves and the mean value of the vector
perturbations.

We can simplify equation (4.3.41). We define the new variables

y =
k1

k
, x =

| k− k1 |
k

. (4.3.42)

With these variables we have that cos(θ) = 1+y−2x2

2y , and the integral becomes

∆P (k) =
√

2
9

4

Ω2
mH

4
0

a2(η)

[
2π2

k3
A2
T (k0)

(
k

k0

)nT ] ∫ +∞

0
dyy2

[
9ynT

Tg2(ky)

(k2y2η2)

]
×
[

cos(kyη)− cos(kη)

1− y2

]2 ∫ |1−y|
|1+y|

dx

x6
∆δ(kx)

×

4

(
1 + y − 2x2

2y

)2

+

(
1 +

(
1 + y − 2x2

2y

)2
)2
 ,

(4.3.43)

where we added a
√

2 that comes from the square sum of the two polarization
contributions.

In the last formula we have indicated the dimensionless power spectrum
as ∆δ. At linear order, we can relate the density fluctuation δ(k, η) at late
time with the primordial potential fluctuations Φ(k, 0), using the linear transfer
functions T (k)

δ(k, η) = −3

5

k2

H2
0 Ω0m

Φ(k, 0)T (k)D(a), (4.3.44)

where D(a) is the growing mode.
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However, the structures are highly non linear in this epoch, and it is better
to leave indicated ∆δ. Another option could be to use a numerical fit [40] for
the non linear power spectrum.

These non-linearities are present starting from scales of order L ' 2.5
h Mpc,

corresponding to a frequency of fb ' c
L ' 10−15hHz, (at the present epoch).

We are thus interested in frequencies f of the gravitational waves, that are
higher than the scale fb.

This frequency band is reachable with the proposed detectors eLISA (10−5Hz
÷0.1)Hz [14] and BBO (optimal frequencies around 0.1Hz with Ωgw ∼ 10−17 ).
The goal is to see what is the resulting power spectrum at these frequencies,
which is due to the presence of high over-density on scales less than a few mega
parsec, entering through equation (4.3.11). The approximation that we have
done in section 4.3, when we have neglected the time derivative of the scalar
potentials, results, retrospectively, to be valid since we have f � fb. When
this condition holds, we are in the region in which geometric optics apply, and
the results obtained in section 4.2 are valid for these frequencies. In this region
also the wave effects (diffraction) discussed in [41] are negligible.
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Conclusions and future outlook

In this thesis we studied the propagation of stochastic gravitational wave
background through cosmic inhomogeneities. The aim of our work was to
characterize the effects suffered by gravitational waves during that propagation.
In doing so, we followed two different approaches.

First, we studied the how gravitational radiation propagates via the geo-
metric optics approximation. By means of this approximation, valid only for
frequencies higher than the inverse of the typical time-scale variation of scalar
perturbations, the analogies between the Cosmic Microwave Background and
the stochastic gravitational wave background became immediately clear. In
fact, we found that both the amplitude (equation (4.2.43)) and the frequency
of the gravitational waves (equation (4.2.27)) experience the same effect as
those of the Cosmic Microwave Background: the Sachs-Wolfe and Integrated
Sachs-Wolfe effect.

After the characterization of these effects, we adopted another approach.
In particular, we didn’t use the geometric optics approximation anymore, even
if we maintained the fact that the frequencies of interest are higher than the
time-scale variation of scalar perturbations. We solved the equation of motion
for gravitational waves with the Green method and employing this solution
we calculated the correction for the power spectrum of gravitational waves.
In doing so, we averaged on both the tensor perturbations and the scalar
perturbations, even if these averages in principle are separated. As a result,
we found a correction of the power spectrum that depends on the matter
perturbation power spectrum through the double integral of equation (4.3.43).

Further extensions of these two approaches are possible. In fact, we have
to consider that our theoretical results relate the quantities describing the
gravitational waves with scalar perturbations: a possible improvement of this
could be the explicit calculation of the integral present in Eq. (4.2.27) and
Eq. (4.2.43) with the potential profile of dark matter halos given e.g. by the
Navarro Frenk White profile [42].

Equation (4.3.30) could also be further investigated, since we left the integral
written in an implicit form. A possibility would be to try to solve the integral
with numerical or analytical techniques and then to study the behavior of the
correction at different frequencies.

Another topic that we didn’t explore is the wave effects that occur when the
wavelength of the gravitational waves reaches the dimensions of the structure
that originated the potential perturbations. Note that in this limit we cannot
apply the geometric optics approximation: the problem has to be studied with
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the tools from scattering theory.
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