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Introduction

In this thesis will present and explain the isoperimetric property of the hypersphere,
formulated by Ennio De Giorgi and proved in [4]. Such property asserts that, in
arbitrary dimension, the set (in the class of sets with orientable boundary and finite
measure) that minimizes its “perimeter” to parity of “volume” is (equivalent to) an
hypersfphere.

In order to accomplish this objective we need first to give a precise mathematical
definition of “volume”. This will be realized in Chapter 1, in particular in Section 1,
where we present some elementary definitions and results of measure and integration
theory from [7], [8] and [1]. In the same section we will also give an important
generalization of the notion of (positive) measure, that is a vector-valued measure.
Since many different textbooks give many different definitions of what a vector-
valued measure is, we specify that in this work we will be using the definition given
in [8]. Finally, in Chapter 1, we will state and prove the Gauss Greens theorem as
stated in [9].

Once we have defined the “volume of a set”, we will then proceed to define
its perimeter. As it will be seen in Chapter 2, there are two distinct definition of
perimeter: the Caccioppoli’s definition the definition formulated by Ennio De Giorgi
(see [2]). The first definition introduces the concept of perimeter of a N -dimensional
Borel set using the theory presented in Section 1 of Chapter 2, in particular it
defines the perimeter of a set as the total variation of its characteristic function
(see [6]); the latter, on the other hand, in [2] introduces a smoothing operator and
this, thanks to the property of convolution exposed in Section 2 of Chapter 1, will
allow to approximate “well enough” the characteristic function of a set by a family
of C∞ functions, thereby defining the perimeter of a set as a limit of an integral of
the norm of a (non-distributional) gradient. In Section 2 of Chapter 2 it will be
proven the equivalence between these definitions, and we will motivate the choice
of using the De Giorgi’s definition.

Lastly, in Chapter 3, it will be proven the isoperimetric property. As we will
see, the proof is a consequence of different results found in [2] and [3], perhaps
the most important one in the fact that the perimeter of a general Borel set can
be thought as the limit of the perimeter of some appropriate poligonal sets (see
Section 2 of Chapter 3), but with some further considerations which are the subject
of Section 3 of the same Chapter. In particular a crucial role will be played by the
Steiner symmetrization, in fact we will prove that the subset of RN that (at parity
of “volume”) minimizes its “perimeter” must be (equivalent to) a rotation of its
Steiner symmetrization with respect to an arbitrary hyperplane, hence must be
symmetrical with respect to every hyperplane passing through its barycenter.
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Chapter 1: Prelimiary Results and Notation

The role of this chapter is to briefly, but precisely, introduce all the fundamental
notions necessary to understand the various concepts that will be introduced in the
sequel.

Section 1.1 will present some basic definitions, properties and theorems of
measures as well as the definition of integral in a general measure space and of a
vector-valued measure on a measurable space.

In Section 1.2 we will discuss some elementary properties of the convolution of
two functions, which will be used later on when giving De Giorgi’s definition of
perimeter of a set.

Lastly, in Section 1.3, it will be presented the notion of Hausdorff measure and
it will be stated and proved the Gauss Green’s Theorem.

1.1. Basic Measure and Integration Theory

Definition 1.1: Let X be a nonempty set and M be a σ-algebra of subsets of X.
A function µ : M → [0,∞] is said to be a (positive) measure on X if the following
properties are satisfied:

(i) µ(∅) = 0.
(ii) Given a sequence of elements of M , (Mn)n≥1, such that Mm ∩Mn = ∅ for

each m ̸= n, we have µ (
∑∞

n=1 Mn) =
∑∞

n=1 µ(Mn).
In this case we will call (X,M ) a measurable space, (X,M , µ) a measure space.

Definition 1.2: Given a topological space (X, τ) we define the Borel σ-algebra of
(X, τ) as the σ-algebra generated from τ . This σ-algebra will be denoted as BX

and its elements will be called Borel sets of X.

Definition 1.3: A Borel measure on (X, τ) is a measure µ : M → [0,∞] such that
BX ⊆ M . Moreover, if µ : M → [0,∞] is a Borel measure on (X, τ), µ is said to
be: inner regular if, for each B ∈ BX we have

µ(B) = sup {µ(K) : K ⊆ B,K is compact} . (1)

Definition 1.4: Let µ : M → [0,∞] be Borel measure on X. µ is said to be a
Radon measure if

(i) µ is inner-regular.
(ii) For each K compact set µ(K) is finite.

Definition 1.5: The Lebesgue measure on RN , namely LN (or simply L), is the

1
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unique Borel measure such that

LN

(
m⋃

n=1

(
N∏

i=1
]a(i)

n , b(i)
n ]
))

:=
m∑

n=1

(
N∏

i=1
b(i)

n − a(i)
n

)
. (2)

Where the union in (2) is disjointed.

Let us now proceed with the construction of the integral on a general measure
space.

Definition 1.6: Let (X,M ) be a measurable space. A function f : X → R is
said to be a M -measurable function (or simply a measurable function, if M is
understood) if for every Borel set of R we have that f−1(B) is a element of M .

Definition 1.7: Let (X,M ) be a measurable space and E be a measurable set.
We define the characteristic function of E as the map χE : X → {0, 1} defined by
the position

χE(x) :=
{

1, if x ∈ E,

0, if x ̸∈ E.
(3)

Definition 1.8: Let (X,M ) be a measurable space. A function φ : X → R is said
to be a M -simple function (or simple function, if M is understood) if φ is a finite
linear combination of characteristic functions.

Obviously any characteristic function is measurable, and since sum of to mea-
surable function and multiplication of a measurable function by a scalar (and
multiplication of two measurable functions and the inverse of a never null measur-
able function) is still a measurable function, we have that any simple function is
measurable. Furthermore, if (φn)n≥1 is a sequence of measurable functions, then
supn φn, infn φn, lim supn→∞ φn, lim infn→∞ φn and, if there exists, limn→∞ φn

are measurable functions.
It is easy to see that any M -simple function φ can be written as linear combina-

tion of a finite number of characteristic functions of sets E1, ... , Em with Ei∩Ej = ∅
if i ̸= j. In the sequel, when we write

φ =
m∑

n=1
ciχEn

(4)

we always intend that Ei ∩ Ej = ∅ if i ̸= j.

Definition 1.9: Let (X,M , µ) be a measure space and φ a simple function as in
(4). We define the integral of φ on the set X with respect to µ as∫

X

φdµ :=
m∑

n=1
ciµ(Ei) (5)

If Y ⊆ X is a measurable subset of X, then we define the integral of φ on the set Y
with respect to µ as the integral on the set X with respect to µ of the function φχY .

We can now define the integral for nonnegative measurable functions.

Definition 1.10: If (X,M , µ) is a measure space and f : X → [0,∞] is a measur-
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able function. We define the integral of f on the set X with respect to µ as∫
X

f dµ := sup
{∫

X

φdµ : 0 ≤ φ ≤ f, with φ M -simple function
}
. (6)

Analogously as the previous definition, if Y ⊆ X is measurable, the integral of f on
Y with respect to µ is the integral of fχY on X with respect to µ.

Finally we can give the definition of integral in the general case.

Definition 1.11: If (X,M , µ) is a measure space and f : X → R is a measurable
function such that the integral on X with respect to µ of either f+ or f−is finite,
where f+ := max{f, 0} and f− := max{−f, 0}, then we define∫

X

f dµ :=
∫

X

f+ dµ−
∫

X

f− dµ. (7)

Given Y ⊆ X measurable, the definition of the integral of f on Y with respect to µ
is analogous as in the case of f nonnegative.

Definition 1.12: Let (X,M , µ) be a measure space and f, g be two measurable
function. We say that f is µ-almost everywhere (or a.e. ) equal to g and we write
f

a.e.= g if there exists N ∈ M such that µ(N) = 0 and f ≡ g on N c. Let now ∼ be
the equivalence relation on M defined by

f ∼ g : ⇐⇒ f
a.e.= g, (8)

then we denote as M′ the quotient of M with respect to ∼.

Definition 1.13: Given a measure space (X,M , µ), let p ∈ [1,∞[. We define ∥·∥p

and Lp(X,M , µ) respectively as

∥f∥p :=
∫

X

|f | dµ, f ∈ M, Lp(X,M , µ) := {[f ]∼ ∈ M′ : ∥f∥p < ∞} . (9)

We also define ∥ · ∥∞ and L∞(X,M , µ) as

∥f∥∞ := inf {a ≥ 0 : µ {x ∈ X : |f(x)| > a} = 0} , (10)
L∞(X,M , µ) := {[f ]∼ ∈ M′ : ∥f∥∞ < ∞} (11)

With abuse of notation we will always write f ∈ Lp(X,M , µ) instead of [f ]∼ ∈
Lp(X,M , µ), for p ∈ [1,∞]. If (X,M , µ) = (RN ,BRN ,LN ), we will always write
Lp(RN ), or even Lp, instead of Lp(RN ,BRN ,LN ).

Let us now introduce a first generalization of a measure.

Definition 1.14: Let (X,M ) be a measurable space. A function µ : M → [−∞,∞]
is said to be real-valued measure on X if the following conditions are satisfied:

(i) µ(∅) = 0.
(ii) Given a sequence of elements of M , (Mn)n≥1, such that Mm ∩Mn = ∅ for

each m ̸= n, we have µ (
∑∞

n=1 Mn) =
∑∞

n=1 µ(Mn).

In the sequel, in order to clarify when we are referring to measures and when to
real-valued measures we will say “(positive) measure” instead of simply “measure”.

Theorem 1.1: Let (X,M ) be a measurable space and µ a real-valued measure.
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Then there exist two unique (positive) measures µ+, µ− : M → [0,∞] such that
µ = µ+−µ− and there exist E,F ∈ M such that E∩F = ∅, E∪F = X, µ+(E) = 0
and µ−(F ) = 0.

Proof. See [7, p. 87]

Definition 1.15: With the notation used in Theorem 1.1 we say that |µ| := µ++µ−

is the total variation of the real-valued measure µ. Moreover we say that a real-
valued measure µ is a Radon measure if its total variation |µ| is a (positive) Radon
measure.

Definition 1.16: Let (X,M ) be a measurable space and let N ∈ N with N ≥ 2.
A function µ = (µ(1), ... , µ(N)) : M → RN is said to be a vector-valued measure on
X if µ(i) is a real-valued measure. A vector-valued measure µ is said to be a Radon
measure if each of its components is a Radon measure. Finally, when we write |µ|
we intend the (positive) Radon measure on B(X) defined by the position

|µ|(B) := sup

∑
j≥1

|µ(Ej)| : Ej ∈ B(X), E =
⋃
j≥1

Ej , Ei ∩ Ej = ∅

 . (12)

|µ| is said to be “total variation of µ” and, given B ∈ B(X), we say that |µ|(B) is
the “total variation of µ in B”.

In Section 1 of Chatper 2 we will see that if f : RN → R is a function of bounded
variation (we will define what that means in the same section), then there is a
naturally associated vector-valued Radon measure µF = (µ(1)

F , ... , µ
(N)
F ) such that

we have ∫
RN

f ∇ · g dLN =
∫
RN

g· dµF

(
:=

N∑
n=1

∫
RN

gi dµ
(i)
F

)
(13)

for each g = (g1, ... gN ) ∈ C1
c (RN ;RN ).

1.2. Convolution

Definition 2.1: Let f, g be two real-valued measurable functions defined on RN .
If both f and g are positive, or both f and g are elements of L1(RN ), we define the
real-valued function f ∗ g by

f ∗ g(x) :=
∫
RN

f(y)g(x− y) dL(y). (14)

The function f ∗ g we be called convolution product (or convolution) of f and g.

In what follows, we shall need the fact that if f is a measurable function on RN ,
then the function K(x, y) := f(x− y) is a measurable function on RN × RN . We
have K = f ◦ s, where s(x, y) := x − y; since s is continuous, K is a measurable
function if f is measurable.

Some basic properties of the convolution of two functions are the following.

Proposition 2.1: Let f, g and h be real-valued measurable functions defined on
RN . Assuming that all the convolution involved are defined, it holds:
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(i) f ∗ g = g ∗ f .
(ii) (f ∗ g) ∗ h = f ∗ (g ∗ h).

(iii) Let z ∈ RN . If we define the function τz(x) := x − z for all x ∈ RN , then
(f ◦ τz) ∗ g = f ∗ (g ◦ τz) = (f ∗ g) ◦ τz.

(iv) Supp(f ∗ g) ⊆ {z + y ∈ RN : z ∈ Supp(f), y ∈ Supp(g)}

Proof. See [7, p. 240].

Let us now see some more properties which link convolution product and Lp

spaces on RN .

Theorem 2.1: Let p ∈ [1,∞], f ∈ L1(RN ) and g ∈ Lp(RN ). Then

(i) f ∗ g(x) is defined for almost every x ∈ RN .
(ii) f ∗ g ∈ Lp(RN ).

(iii) ∥f ∗ g∥p ≤ ∥f∥1∥g∥p.

Proof. Since, by definition of convolution and (i) of Proposition 2.1, we have

f ∗ g(x) =
∫
RN

f(y)g(x− y) dL(y), (15)

it suffices to prove that the map

y 7→ f(y)g(x− y) (16)

is a L1(RN ) function, for almost every x ∈ RN .

If 1 ≤ p < ∞ then let φ : RN → [0,∞] be defined as follows

φ(x) :=
∫
RN

|f(y)g(x− y)| dL(y). (17)

Then we have, using Minkowsky inequality,

∥φ∥p =
(∫

x∈RN

|φ(x)|p dL(x)
) 1

p

≤
∫
RN

(∫
RN

|f(y)|p|g(x− y)|p dL(x)
) 1

p

dL(y)

=
∫
RN

|f(y)|∥g∥p dL(y)

= ∥f∥1∥g∥p < ∞.

(18)

Therefore φ is a Lp(RN ) function. From known properties of Lq(RN ) spaces, we
have that |φ(x)| < ∞ for almost every x ∈ RN . Since

|f ∗ g(x)| =
∣∣∣∣∫

RN

f(y)g(x− y) dL(y)
∣∣∣∣ ≤ φ(x) (19)



6 CHAPTER 1. PRELIMIARY RESULTS AND NOTATION

for every x ∈ RN , (i) is proven. Finally

∥f ∗ g∥p =
(∫

RN

|f ∗ g(x)|p dL(x)
) 1

p

≤
(∫

RN

|f ∗ g(x)|p dL(x)
) 1

p

= ∥φ∥p,

(20)

hence, from (18) and (20), (ii) and (iii) follow.
If p = ∞, then it suffices to recall the Hölder inequality.

One of the most remarkable properties of convolution is that, citing [7], “f ∗ g
is at least as smooth as either f or g”, because formally we have

∂α(f ∗ g)(x) = ∂α

∫
RN

f(x− y)g(y)) dL(y)

=
∫
RN

∂αf(x− y)g(y) dL(y)

= (∂αf) ∗ g,

(21)

and similarly ∂α(f ∗ g) = f ∗ (∂αg), where α = (α1, ... , αN ) and ∂α := ∂|α|

∂x
α1
1 ···∂x

αN
N

.
To make this more precise, one only needs to impose conditions on f and g so that
differentiation under the integral sign is legitimate. One such result is the following.

Proposition 2.2: If f ∈ Ck(RN ), g ∈ L1(RN ) and ∂αf is bounded for |α| < k,
then f ∗ g ∈ Ck and (21) holds.

Proof. See [7, p. 242].

The following theorem underlines many of the important application of convo-
lution on RN , in particular it is what will allow us to give De Giorgi’s definition
of perimeter of set in Chapter 2. We firstly introduce some notation: if φ is any
function on RN and t > 0, we set

φt(x) := 1
tN
φ
(x
t

)
(22)

we observe that if φ ∈ L1(RN ), then the integral of φt on RN with respect to L
is independent t (one can easily see that by applying the theorem of change of
variables in RN ). Moreover, the “mass” of φt becomes concentrated at the origin
as t → 0+.

Theorem 2.2: Suppose φ ∈ L1(RN ) and
∫
RN φdL = a, then:

(i) If f ∈ Lp, with 1 ≤ p < ∞, then f ∗ φt → af in Lp(RN ) as t → 0+.
(ii) If f is bounded and uniformly continuous, then f ∗ φt → af uniformly as

t → 0+.
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Proof. (i) Setting y = tz, we get

f ∗ φt(x) − af(x) =
∫
RN

(f(x− y) − f(x))φt(y) dL(y)

=
∫
RN

(f(x− tz) − f(x))φ(z) dL(z)

=
∫
RN

(f ◦ τtz(x) − f(x))φ(z) dL(z),

(23)

where τtz(x) := x− tz. Applying Minkowsky inequality we get

∥f ∗ φt − af∥p ≤
∫
RN

∥f ◦ τtz − f∥p|φ(z)| dL(z). (24)

Now, ∥f ◦ τtz − f∥p is bounded by 2∥f∥p and tends to 0 as t → 0+ for each z ∈ RN ,
therefore the proof follows from the dominated convergence theorem.

(ii) The proof is exactly the same, with ∥·∥p replaced with ∥ · ∥∞. The estimate
of ∥f ∗ φt − af∥∞ is obvious, and ∥f ◦ τtz − f∥∞ → 0 as t → 0+ by the uniform
continuity of f .

1.3. Hausdorff Measures and Gauss Green’s Theorem

In this section, when we say that E is a subset of RN we always mean that E is a
Borel subset of RN . Let us now introduce some terminology and definitions.

Definition 3.1: Let N, k ∈ N, with N ≥ 2 and 1 ≤ k ≤ N−1. A bounded open set
A ⊆ Rk and a function f = (f (1), ... , f (N)) ∈ C1(Rk;RN ) define a k-dimensional
parametrized surface f(A) in RN , provided f is injective on A with Jf(x) > 0 for
every x ∈ A. Here Jf(x) denotes

Jf(x) :=
√

det(∇f(x)T ∇f(x)), (25)

where ∇f(x) is the matrix (ai,j) such that ai,j = ∂
∂xj

f (i) for each i ∈ {1, ... , N},
j ∈ {1, ... , k} and ∇f(x)T indicates the transposed of ∇f(x).

Definition 3.2: The k-dimensional area of f(A) is defined as

k-dimensional area of f(A) :=
∫

A

Jf(x) dLk(x). (26)

In the study of geometric variational problems we need to extend this definition
of k-dimensional area to more general sets than k-dimensional C1-images. Hausdorff
measures are introduced to this end. To avoid the use of parametrizations the
definition is based on a converging procedure.

Definition 3.3: Given N, k ∈ N, δ > 0, the k-dimensional Hausdorff measure of
step δ of a set E ⊆ RN is defined as

Hk
δ (E) := inf

{ ∞∑
i=1

ωk

2k
diam(Fi)k : E ⊆

∞⋃
i=1

Fi, diam(Fi) < δ

}
, (27)
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where

ωk :=
√
πk

Γ(1 + k/2) , (28)

where Γ :]0,∞[→ [1,∞[ is Euler’s Gamma function. The k-dimensional Hausdorff
measure of E is then

Hk(E) := sup
{

Hk
δ (E) : δ ∈]0,∞[

}
= lim

δ→0+
Hk

δ (E). (29)

One can easily prove that Hk is in fact a measure Radon measure, is translation-
invariant and it satisfies Hk(λE) = λkHk(E), for each λ > 0. Moreover, it can (less
easily) be proven that Hk(f(A)) agrees with the classical notion of a k-dimensional
parameterized surface f(A) as defined in Definition 3.2. We can also extend the
definition of k-dimensional Hausdorff measure as follows.

Definition 3.4: Given s ∈ [0,∞[, the s-dimensional Hausdorff measures Hs
δ and

Hs are defined by simply replacing k with s in Definition 3.3.

Lastly, one can prove that, if s = k ∈ N, then the k-dimensional Hausdorff
measure coincides with the k-dimensional Lebesgue measure, that is Hk(E) = Lk(E),
for each E ∈ B(Rk). Since the proof of this fact is not relevant to the scope of this
thesis, we will simply invite the reader to see [9].

Let us now introduce the following notation: as usual we will denote by x the
general point of RN and by x′ the general point of RN−1; with a little abuse of
notation we will write x = (x′, xN ); if F : RN−1 → R and G : RN → R are functions,
then we will use F (x′) and G(x′, xN ) instead of F (x1, ... , xN−1) and G(x1, ... , xN )
respectively; if Φ : RN−1 → R is a function, and ∇Φ is its gradient then we write
(∇Φ)2 instead of ( ∂

∂x1
Φ)2 + · · · +( ∂

∂xN−1
Φ)2; finally, we define the cylinder of center

x ∈ RN and radius r > 0, as

C (x, r) := {y ∈ RN : |y′ − x′| < r, |yN − xN | < r}, (30)

and the N − 1-dimensional disc of center x′ and radius r > 0,

D(x′, r) := {y′ ∈ RN−1 : |y′ − x′| < r}. (31)

Definition 3.5: Let E be an open subset of RN and let k ∈ N ∪ {∞}, k ≥ 1. We
say that E has Ck-boundary (or smooth boundary, if k = ∞) if for every x ∈ ∂E
there exist r > 0 and ψ ∈ Ck(B(x, r)), where B(x, r) denotes the open ball of RN

centered in x with radius r, with ∇ψ(y) ̸= 0 for every y ∈ B(x, r) and

B(x, r) ∩ E = {y ∈ B(x, r) : ψ(y) < 0} , (32)
B(x, r) ∩ ∂E = {y ∈ B(x, r) : ψ(y) = 0} . (33)

The outer unit normal νE to E is then defined locally as

νE(y) := ∇ψ(y)
|∇ψ(y)| , ∀y ∈ B(x, r) ∩ ∂E. (34)

Definition 3.6: Given f : RN−1 → R and G ⊆ RN−1, we define the graph of f
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over G as

G (f ;G) :=
{
x ∈ RN : xN = f(x′), x′ ∈ G

}
, (35)

and we set for brevity G (f) := G (f,RN−1).

We are now stating a fundamental result for proving the Gauss-Green theorem.

Lemma 3.1: If f : RN−1 → R is a Lipschitz function, then for every subset G of
RN−1,

HN−1 (G (f,G)) =
∫

G

√
1 + (∇f)2

dLN−1. (36)

In fact HN−1
|G (f) is a Radon measure on RN and∫

G (f)
φdHN−1 =

∫
RN−1

φ(x′, f(x′))
√

1 + (∇f(x′))2
dLN−1(x′), (37)

for every φ ∈ C0
c (RN ).

Proof. See [9, p. 89].

We observe that if E is an open set of RN with C1-boundary, then the restriction
of the N − 1-dimensional Hausdorff measure to the boundary of E, namely HN−1

|∂E ,
is a Radon measure on RN . Indeed, by the implicit function theorem, if x ∈ ∂E and
r > 0 is the same as in Definition 3.5, then there exist s > 0 and f ∈ C1(D(x′, s))
such that C (x, s) ⊆ B(x, r) and, up to rotation,

C (x, s) ∩ E = {y ∈ RN : yN > f(x′)}, (38)
C (x, s) ∩ ∂E = {y ∈ C (x, s) : yN = f(x′)}. (39)

Hence

HN−1
|C (x,s)∩∂E = HN−1

|G (f,D(x′,s)) , (40)

where the right-hand side defines a measure on RN by Lemma 3.1. Starting from
these considerations it is easily seen that HN−1

|∂E is a Radon measure on RN . Let us
also notice that, having expressed C (x, s) ∩ E as the epigraph of f over D(x′, s),
by the chain rule we infer the following formula for the outer unit normal νE of E:

νE(x) = (∇f(x′),−1)√
1 + (∇f(x′))2

, (41)

for every x ∈ C (x, s) ∩ ∂E.
We can finally state the Gauss-Green theorem. We want to specify that, in

the last part of the proof, we will use a standard argument based on partitions of
unity. Since in this thesis we have not defined them, and neither we have stated
nor proved their properties, we invite the reader to see [8].

Theorem 3.1 (Gauss-Green theorem): If E is an open subset of RN with
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C1-boundary, then ∫
E

∇φdLN =
∫

∂E

φνE dHN−1, (42)

for every φ ∈ C1
c (RN ). Equivalently it holds true∫

E

∇ · g dLN =
∫

∂E

g · νE dHN−1, (43)

for every g ∈ C1
c (RN ;RN ).

Proof. The equivalence between the two statements is obvious.

Given x̃ ∈ ∂E, up to rotation, we may consider r, s > 0 and f as in the previous
observations. We claim that∫

E

∇φdLN =
∫

∂E

φνE dHN−1, ∀φ ∈ C1
c (C (x̃, s)). (44)

Indeed, given φ ∈ C1
c (C (x̃, s)) and δ > 0, we define the Lipschitz function Fδ :

C (x, s) → R by setting

Fδ(x) :=


1, if xN > f(x′) + δ,

0, if xN < f(x′) − δ,
xN −f(x′)+δ

2δ , if |f(x′) − xN | < δ.

(45)

Since Fδ → χC (x,s) in L1(C (x̃, s)) as δ → 0+, using the fact that a Lipschitz
function admits weak gradient, we have∫

E

∇φdLN =
∫

E∩C (x̃,s)
∇φdLN

= lim
δ→0+

∫
C (x̃,s)

Fδ∇φdLN

= − lim
δ→0+

∫
C (x̃,s)

φ∇Fδ dLN .

(46)

Let us now set

Φδ := {x ∈ C (x̃, s) : |xN − f(x′)| < δ} , (47)

And notice that Φδ = {x ∈ C (x̃, s) : ∇Fδ(x) ̸= 0}, with

∇Fδ(x) = 1
2δ (−∇f(x′), 1) , ∀x ∈ Φδ. (48)

By Fubini’s theorem we have∫
C (x̃,s)

φ∇FδdLN =
∫

Φδ

φ(x)∇Fδ(x) dLN (x)

=
∫

D(x̃′,s)
(−∇f(x′), 1)

(
1
2δ

∫
[f(x′)−δ,f(x′)+δ]

φ(x′, t) dL(t)
)
dLN−1(x′).

(49)
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By continuity, for every x′ ∈ D(x̃′, s),

lim
δ→0+

1
2δ

∫
[f(x′)−δ,f(x′)+δ]

φ(x′, t) dL(t) = φ(x′, f(x′)). (50)

Finally, by dominated convergence, (41) and Lemma 3.1

− lim
δ→0+

∫
C (x̃,s)

φ∇FδdLN = −
∫

D(x̃′,s)
φ(x′, f(x′)) (−∇f(x′), 1) dLN−1(x′)

=
∫

D(x̃′,s)
φ(x′, f(x′))νE(x′, f(x′))

√
1 + (∇f(x′))2

dLN−1(x′)

=
∫

C (x̃,s)∩∂E

φνE dHN−1

=
∫

∂E

φνE dHN−1.

(51)

From (46), (51) and arbitrariness of φ ∈ C1
c (C (x̃, s)), (44) follows.

Let now φ ∈ C1
c (RN ) be give, and let A be an open subset of RN such that

Supp(φ) ∩ ∂E ⊆ A. (52)

By compactness, and thanks to what we have already proved, there exist finitely
many points x1, ... , xM ∈ A∩∂E and finitely many open ballsB(x1, s1), ... , B(xM , sM ) ⊆
A such that, for every ζ ∈ C1

c (B(xk, sk)), with 1 ≤ k ≤ M ,

Supp(φ) ∩ ∂E ⊆
M⋃

k=1
B(xk, sk),

∫
E

∇(φζ) dLN =
∫

∂E

(ζφ)νE dHN−1. (53)

We now consider ζ1, ... , ζM with ζk ∈ C 1
c (B(xk, sk); [0, 1]) and

M∑
k=1

ζk(x) = 1, ∀z ∈ A. (54)

By known facts about partitions of unity, we can construct ζ0 ∈ C1
c (E; [0, 1]) such

that
M∑

k=0
ζk(x) = 1, ∀x ∈ E ∪A. (55)

Since ζ0φ ∈ C1
c (E), we have

0 =
∫
RN

∇(ζ0φ) dLN =
∫

E

∇(ζ0φ) dLN . (56)
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Hence, from (44), the last of (53) (54), (55) and (56), we obtain∫
E

∇φdLN =
M∑

k=0

∫
E

∇(ζkφ) dLN

=
M∑

k=1

∫
∂E

(ζkφ)νE dHN−1

=
∫

∂E

φνE dHN−1,

(57)

therefore the theorem is proved.



Chapter 2: BV Functions and Perimeter of Sets

In this chapter we begin by giving the definition of a function of bounded variation
defined in RN and a characterization of those; then we will discuss about the
definition of the perimeter of a given Borel set. In particular we will use the notion
of BV functions in order to give two distinct definitions: Caccioppoli’s definition
and one given from De Giorgi. We will also see how these are equivalent, but the
latter allows to establish various hidden results concerning the notion of perimeter
of a set.

In the following, by “a subset” we always mean “a Borel subset with orientable
boundary”, and by “a function” we always mean “a Borel measurable function”.
Furthermore, when we write “g ∈ C1

c (RN )” we mean that g is infinitesimal, together
with its first order derivatives, of order not smaller than |x|−(N+1) as |x| → ∞;
analogously, writing “g ∈ C1

c (RN ;RN )” means that g = (g(1), ... , g(N)) with g ∈
C1

c (RN ); on the other hand, if E is a bounded subset of RN , then C1
c (E) is the

space of real valued functions g having compact support in E; analogously, writing
“g ∈ C1

c (E;RN )”, with E bounded, means that g = (g(1), ... , g(N)) with g ∈ C1
c (E).

2.1. BV Funtions of Several Variables

Definition 1.1: Let U ⊆ RN be an open set and f ∈ L1(U). We say that f has
bounded variation in U if

V (f, U) := sup
{∫

U

f ∇ · g dLN : g ∈ C1
c (U ;RN ), |g(x)| ≤ 1,∀x ∈ U

}
< ∞ (1)

And we say that V (f, U) is the total variation of f in U . We write BV (U) to denote
the space of functions of bounded variation in U .

Definition 1.2: Let U ⊆ RN be an open set and f ∈ L1
loc(U). We say that f has

locally bounded variation in U if for each open set V ⊂ U ,

V (f, V ) := sup
{∫

V

f ∇ · g dLN : g ∈ C1
c (V ;RN ), |g(x)| ≤ 1,∀x ∈ V

}
< ∞. (2)

And we say that V (f, U) is the total variation of f in V . We write BVloc(U) to
denote the space of functions of locally bounded variation in U .

From now on U will denote an open set of RN and B(U) will denote the Borel
σ-algebra of U .

Theorem 1.1: Let f : U → R be a funtion. Then f ∈ BV (U) if and only if there

13
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exists a (unique) finite vector-valued Radon measure µf = (µ(1)
f , ... , µ

(N)
f ) on B(U)

such that ∫
U

f ∇g dLN = −
∫

U

g dµf (3)

for all g ∈ C1
c (U).

Proof. See [6, 168].

Furthermore one can prove, using the Riesz’s Representation theorem for mea-
sures that |µf | is a finite (positive) Radon measure and that |µf |(U) coincide with
the total variation of f in U , that is

|µf |(U) = sup
{∫

U

f ∇ · g dLN : g ∈ C1
c (U ;RN ), |g(x)| ≤ 1,∀x ∈ U

}
= V (f, U).

(4)

2.2. Definition(s) for Perimeter of Sets

In this section we give two definitions for the (N − 1)-dimensional measure of the
oriented boundary of a Borel subset E od RN .

We recall that in what follows, when we say that E is a subset of RN , then we
will always mean that E ∈ B(RN ) and ∂E will always be orientable; by χE we
denote the characteristic function of E, that is the function defined on RN defined
by x 7→ 1 if x ∈ E and x 7→ 0 if x ̸∈ E; also, as in the previous section, U will
always denote an open set of RN .

First we give the Caccioppoli’s (and most common in the textbooks) definition
of perimeter, which will be called “C-perimeter”, in order to distinguish it form the
De Giorgi’s one, simply denoted as “perimeter”. At the end of the section we will
show the equivalence between the two definitions and the reason why we will adopt
the latter rather than the first one.

Definition 2.1: Let E ⊆ RN . The C-perimeter of E in U is defined as

P (C)(E,U) := V (χE , U)

= sup
{∫

E

∇ · g dLN : g ∈ C1
c (U ;RN ), |g(x)| ≤ 1,∀x ∈ U

} (5)

If P (C)(E,U) < ∞ we say that E has finite C-perimeter in U . If U = RN we
write P (C)(E) instead of P (C)(E,RN ) and, if P (C)(E) < ∞, E is said to have finite
C-perimeter.

One can easily observe that if E ⊂ RN has finite C-perimeter and C1-class
(piecewise) and oriented boundary, then, by the Gauss-Green’s theorem (see Section
3 of Chapter 3) we have, for each g ∈ C1

c (RN ;RN ) with |g(x)| ≤ 1 for every x ∈ RN ,∫
E

∇ · g dLN =
∫

∂E

g · νe dHN−1, (6)

where νe : ∂E → RN indicates the outward-pointing normal vector field for each
point of ∂E. Since E has finite perimeter, then the member on the left-hand side of
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(6) is finite, then every integral is well defined and, by Cauchy-Schwarz inequality
(v · w ≤ |x||y|) we get∫

E

∇ · g dLN ≤
∫

∂E

1 dHN−1 = HN−1(∂E). (7)

On the other hand, if ψ = νe, the inequality in (7) becomes an equality. By well
known theorems on the density, it follows that for every ε > 0 we can choose
gε ∈ C1

c (RN ;RN ) such that |gε(x)| ≤ 1 for each x ∈ RN and∣∣∣∣∫
∂E

gε· dHN−1 −
∫

∂E

ψ · νe dHN−1
∣∣∣∣ < ε, (8)

therefore ∣∣∣∣∫
∂E

gε· dHN−1 − HN−1(∂E)
∣∣∣∣ < ε. (9)

This proves that the just-given definition of C-perimeter of E coincides with the
N − 1 dimensional measure of its boundary: exactly what its reasonable to expect
from a “perimeter”.

Let’s now give De Griogi’s definition and analytical expression of the perimeter
of a set in RN . First and foremost, for any bounded function f : RN → R and
λ > 0, we define Wλf : RN → R by

Wλf(x) := 1
π

N
2

∫
RN

e−|ξ|2
f(x+ λξ) dLN (ξ). (10)

From (10), by the dominated convergence theorem, we get

lim
λ→0+

Wλf(x) = f(x) , ∀x ∈ RN . (11)

Then, by the theorem on the change of variables, one can easily see that

Wλf(x) = 1
π

N
2

∫
RN

e− |x−ξ|2

λ2

λN
f(ξ) dLN (ξ)

= 1
π

N
2

∫
RN

γλ(x− ξ)f(ξ)) dLN (ξ)

= 1
π

N
2
γλ ∗ f(x),

(12)

Where γ(η) := e−|η|2 and, if ψ : RN → R is a function, then as in Section 2 of
Chapter 1, ψλ is defined by the position x 7→ 1

λN ψ(x/λ). From what we have
already proven in Chapter 1, noticing that

∫
RN γ dLN = π

N
2 , we deduce that∫

RN

|Wλf | dLN ≤
∫
RN

|f | dLN , (13)

lim
λ→0+

∫
RN

|Wλf | dLN =
∫
RN

|f | dLN . (14)
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Moreover, if E ⊆ RN is a bounded set, then

lim
λ→0+

∫
E

|Wλf − f | dLN = 0 (15)

In other words Wλf is to be thought as a C∞(RN ) approximation of f which
is bounded, as well as its derivatives of any order. If f is continuous, bounded,
differentiable with its first order partial derivatives, then

∂

∂xi
Wλf = Wλ

∂

∂xi
f, i = 1, ... , N (16)

Furthermore its easy to prove that the function λ 7→
∫
RN |∇WλχE | dLN is

monotonic. We are now ready to give the following.

Definition 2.2: Let E ⊆ RN . The perimeter of E is defined as

P (E) := lim
λ→0+

∫
RN

| ∇WλχE | dLN . (17)

We will say that E has finite perimeter if P (E) < ∞.

Definition 2.3: Given a Radon measure µ(λ) depending on a parameter λ, we will
say that µ(λ) weakly converges to a Radon measure µ for λ → λ0, if the equality

lim
λ→λ0

∫
RN

g dµ(λ) =
∫
RN

g dµ (18)

holds for any g ∈ C0
c (RN ). In that case we will write µ(λ) ⇀ µ, for λ → λ0.

The theorem that follows will demonstrate the equivalence between Definition
2.1 and Definition 2.2. In order to prove such theorem we need some auxiliary result

Lemma 2.1: Any sequence (µn)n≥1 of vector-valued Radon measures which have
equibounded total variation, admits a subsequence that weakly converges to a vector-
valued Radon measure µ of bounded total variation.

Proof. See [5, p. 61].

With this lemma we can prove

Theorem 2.1: Given E ⊆ RN , if the perimeter P (E) of E is finite then there
exists a (unique) vector-valued Radon measure µ = (µ(1), ... , µ(N)) of finite total
variation such that ∫

RN

χE ∇g dLN =
∫
RN

g dµ (19)

for every g ∈ C1
c (RN ).

Viceversa, if there exists a vector-valued Radon measure µ of finite total variation
such that (19) holds for every g ∈ C1

c (RN ), then P (E) is finite and

P (E) = |µ|(RN ). (20)

Proof. ( =⇒ ) Let us pick an arbitrary infinitesimal sequence (λn)n≥1 with λn > 0
for every n ≥ 1 and consider the sequence of vector-valued set functions (µn)n≥1
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defined by

µn(B) := −
∫

B

∇WλnχE dLN , ∀B ⊆ B(RN ),∀n ≥ 1. (21)

By definition of P (E), and from (13), we know that

|µn|(B) ≤
∫
RN

| ∇WλnχE | dLN ≤ P (E) , ∀B ∈ B(RN ),∀n ≥ 1, (22)

Therefore (µn)n≥1 is a sequence of vector-valued Radon measures which have
equibounded total variation. Therefore there exist a subsequence (µnk

)k≥1 of
(µn)n≥1 and a vector-valued Radon measure µ of bounded total variation such that
µnk

⇀ µ. Hence we get

lim sup
n→∞

∫
RN

d|µn| ≥
∫
RN

d|µ|. (23)

Thus, as all the measures in (µn)n≥1 have total variation not larger than P (E), it
follows

|µ|(RN ) ≤ P (E). (24)

Let us now pick an arbitrary function g ∈ C1
c (RN ;RN ). We have∫

RN

g dµ = lim
k→∞

∫
RN

g dµnk
. (25)

Since χE is a bounded function, by the definition of the operator Wλ, it follows that
the sequence (Wλn

χE)n≥1 is bounded; recalling (15) and the fact that λn → 0+ as
n → ∞, we have

lim
k→∞

∫
RN

(
Wλnk

χE

)
∇g dLN =

∫
RN

χE ∇g dLN . (26)

On the other hand, form (21) it follows, performing integration by parts,∫
RN

(
Wλnk

χE

)
∇g dLN = −

∫
RN

g∇Wλnk
χE dLN =

∫
RN

g dµnk
. (27)

Finally, form (25), (26) and (27) it follows that∫
RN

χE ∇g dLN =
∫
RN

g dµ, (28)

therefore the proof of ( =⇒ ) is complete.

( ⇐= ) Since clearly

∇xe
− |x−ξ|2

λ2 = − ∇ξe
− |x−ξ|2

λ2 , (29)

where ∇x and ∇ξ denote the gradients with respect to x and ξ respectively, we
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have

| ∇WλχE(ξ)| = 1
π

N
2 λN

∣∣∣∣∫
RN

(
∇ξe

− |x−ξ|2

λ2

)
χE(x) dLN (x)

∣∣∣∣
= 1
π

N
2 λN

∣∣∣∣∫
RN

(
∇xe

− |x−ξ|2

λ2

)
χE(x) dLN (x)

∣∣∣∣
= 1
π

N
2 λN

∣∣∣∣∫
RN

e− |x−ξ|2

λ2 dµ(x)
∣∣∣∣ ≤ 1

π
N
2 λN

∫
RN

e− |x−ξ|2

λ2 d|µ(x)|.

(30)

From (30) it follows∫
RN

| ∇WλχE(ξ)| dLN (ξ) ≤ 1
π

N
2 λN

∫
RN

(∫
RN

e− |x−ξ|2

λ2 d|µ(x)|
)
dLN (ξ)

= 1
π

N
2 λN

∫
RN

(∫
RN

e− |x−ξ|2

λ2 dLN (ξ)
)
dµ(x)|

=
∫
RN

d|µ(x)| = |µ|(RN ),

(31)

and therefore, by definition of P (E), we have

P (E) ≤ |µ|(RN ). (32)

Hence P (E) is finite and the inequality (24) holds. From (24) and (32) we deduce
(20). The proof of the theorem is complete.

From Theorem 1.1 and Theorem 2.1 we deduce the previously announced
equivalence of the two definitions. The main reason why we decide to adopt the De
Giorgi’s definition is because it provides an analytical expression of the perimeter of
a set E through a limit of a volume integral contaning a parameter. In particular
the analytical expression of the perimeter allows to obtain, in a rather simple way,
some fundamental results which seem not easy to get starting from the Caccioppoli’s
definition. Perhaps the most important one, that will we more precisely described
in Chapter 3, is the following: the perimeter of E is the lower limit of the perimeter
of the poliedral domains approximating E.



Chapter 3: Isoperimetric Property of the
Hypersphere

In this Chapter we will prove the isoperimetric property of the hypersphere in
arbitrary dimension, that is: if C is an hypersphere on RN , then for every A ∈
B(RN ) satisfying the condition LN (C) = LN (A), we have that P (C) ≤ P (A). In
particular we have P (C) = P (A) if and only if A is (equivalent to) a hypersphere.

The theorem will be proved to be a consequence of the results of Section 1 of
this Chapter, where the notion of perimeter is as defined in Section 2 of Chapter 2.

Throughout this Chapter when we mention a set in RN and a function defined
on RN , we always mean a Borel set of RN and a Borel-measurable function.
Furthermore, when we write “g ∈ C1

c (RN )” we mean that g is infinitesimal, together
with its first order derivatives, of order not smaller than |x|−(N+1) as |x| → ∞;
analogously, writing “g ∈ C1

c (RN ;RN )” means that g = (g(1), ... , g(N)) with g ∈
C1

c (RN ); on the other hand, if E is a bounded subset of RN , then C1
c (E) is the

space of the real valued functions g having compact support in E; analogously,
writing “g ∈ C1

c (E;RN )”, with E bounded, means that g = (g(1), ... , g(N)) with
g ∈ C1

c (E). We denote by Σ the metric space whose elements are the subsets of RN

and the distance between two subsets E1, E2 of RN is given by LN (E1 △ E2), where
E1 △ E2 is the symmetric difference between E1 and E2; therefore, if (En)n≥1 is a
sequence of subsets of RN , whenever we say that En converges to a set E ⊆ RN , we
mean that for every ε > 0 there exists Nε ∈ N such that for every n ≥ Nε we have
LN (E △ En) < ε. Two sets E1, E2 are said to be equivalent if LN (E1 △ E2) = 0.

3.1. Sets of Finite Perimeter

Definition 1.1: Given a set E ⊆ RN we define the Gauss-Green function (or
measure) corresponding to the set E the unique vector-valued Borel measure µE

such that ∫
E

∇g dLN =
∫
RN

g dµE (1)

for every g ∈ C1
c (RN ;RN ) and with total variation on RN equal to the perimeter

of E, that is

P (E) = |µE |(RN )
(

=:
∫
RN

d|µE |
)

(2)

The existence (and uniqueness) of such µE is assured by Theorem 2.1 of Chapter
2.

19
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Lemma 1.1: Given a sequence (En)n≥1 of subsets of RN converging to a set
E ⊆ RN , we have

(i) lim infn→∞ P (En) ≥ P (E).
(ii) if (P (En))n≥1 is bounded, the sequence of the Gauss-Green functions (µEn

)n≥1
corresponding to the sets (En)n≥1 weakly converges to the Gauss-Green func-
tion µE corresponding to E.

Proof. By definition of distance between subsets, from the relation

lim
n→∞

En = E, (3)

we get

lim
n→∞

∫
En△E

dLN = lim
n→∞

∫
RN

|χEn
− χE | dLN = 0. (4)

Therefore, recalling the definition of the operator Wλ, we have

lim
n→∞

∇WλχEn(x) = ∇WλχE(x) (5)

at any point x ∈ RN and for any value of λ > 0. From (5) it follows, recalling the
definition of perimeter of a set, Fatou’s lemma and the properties of Wλ seen in
Chapter 2,

lim inf
n→∞

P (En) ≥ lim inf
n→∞

∫
RN

| ∇WλχEn | dLN

≥
∫
RN

lim
n→∞

| ∇WλχEn
| dLN

=
∫
RN

| ∇WλχE | dLN

(6)

for any positive value of λ. Passing to the limit as λ → 0 we obtain (i).

From (i) one can see that if (P (En))n≥1 is bounded, then P (E) is finite. In this
case, by Theorem 2.1 of Chapter 2, if we denote by M the supremum of (P (En))n≥1,
we have

|µE |(RN ) ≤ M , |µEn
|(RN ) = P (En) ≤ M , ∀n ≥ 1. (7)

Given g ∈ C0
c (RN ;RN ) and ε > 0 we can find gε ∈ C1

c (RN ;RN ) such that

∥gε − g∥∞ < ε. (8)

By Theorem 2.1 of Chapter 2, recalling (4),

lim
n→∞

∫
RN

gε dµEn
= lim

n→∞

∫
RN

χEn
∇gε dLN

=
∫
RN

χE ∇gε dLN

=
∫
RN

gε dµE .

(9)
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Therefore, taking into account (7), (8) and (9), we get

lim sup
n→∞

∣∣∣∣∫
RN

g dµE −
∫
RN

g dµEn

∣∣∣∣ < 2Mε. (10)

Since ε is arbitrary, it follows

lim
n→∞

∣∣∣∣∫
RN

g dµE −
∫
RN

g dµEn

∣∣∣∣ = 0. (11)

This proves (ii) and concludes.

Theorem 1.1: Let (En)n≥1 be a sequence of subsets of RN having equi-bounded
perimeter and converging to a set E satisfying

lim
n→∞

P (En) = P (E). (12)

Let µE be the Gauss-Green function corresponding to E and µEn the Gauss-Green
function corresponding to En for each n ≥ 1. Let us denote, as usual, |µE | and
|µEn

| the total variation of µE and µEn
for n ≥ 1 respectively. Then

lim
n→∞

|µEn |(B) = |µE |(B) (13)

for any set B ⊆ RN such that |µE |(∂B) = 0.

Proof. Given a set B such that |µE |(∂B) = 0 and a number ε > 0, from known
theorems we can find a function g = (g(1), ... , g(N)) ∈ C0

c (RN ;RN ) satisfying the
following conditions:

|g(x)| ≤ 1 ∀x ∈ B; |g(x)| = 0 ∀x ̸∈ B;
∫
RN

g· dµE ≥ |µE |(B) − ε. (14)

On the other and, by Lemma 1.1, we have

lim
n→∞

∫
RN

g· dµEn
=
∫
RN

g· dµE . (15)

Hence, since by |g(x)| = 0 for x ̸∈ B and by the very definition of |µEn
| it follows∫

RN

g· dµEn
≤ |µEn

|(B), (16)

we have

lim inf
n→∞

|µEn
|(B) ≥ |µE |(B) − ε. (17)

As ε is arbitrary, (17) can be replaced by

lim inf
n→∞

|µEn
|(B) ≥ |µE |(B). (18)

Since ∂Bc = ∂B, by replacing B with Bc in (18) we also get

lim inf
n→∞

|µEn
|(Bc) ≥ |µE |(Bc). (19)
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From the additivity of |µE | and |µEn
|, using (12), we get

lim
n→∞

(|µEn |(B) + |µEn |(Bc)) = lim
n→∞

|µEn |(RN ) = lim
n→∞

P (En)

= P (E) = |µE |(RN ) = |µE |(B) + |µE |(Bc).
(20)

From (18), (19) and (20), (13) follows.

Given E, B and |µE | as usual, we can intuitively interpret |µE |(B) as the
“perimeter of E in B”; indeed, for E with C1 boundary |µE |(B) = HN−1(∂E ∩B).
With this interpretation one can see easily the idea behind both the previous and
the following theorem.

Theorem 1.2: Given two finite perimeter subsets E, F of RN , let µE and µF be
their Gauss-Green functions, respectively. Let A be an open subsets of RN satisfying
the condition

E ∩A = F ∩A. (21)

Then for any B ⊆ A we have

µE(B) = µF (B). (22)

Proof. Let g be a function in C1
c (A). By (21) and the definition of Gauss-Green

functions we have∫
RN

g dµE =
∫

E

∇g dLN =
∫

F

∇g dLN =
∫
RN

g dµF . (23)

The equalities in (23) hold for every g ∈ C1
c (A). By known theorems on linear

approximation of functions, it follows that the first term equals the last also under
the assumption that g is a bounded function identically 0 on Ac, in particular g
can be the characteristic function of B and therefore the theorem is proved.

We now give, without proving it, the following.

Theorem 1.3: Given a subset E of RN (with N ≥ 2), one of the following
inequalities is always satisfied

(i) (LN (E))N−1 ≤ (P (E))N .
(ii) (LN (Ec))N−1 ≤ (P (E))N .

Proof. See [5, p. 68:70]

In particular, from Theorem 1.3, it follows that if E has finite perimeter, then
either E or Ec has finite measure.

3.2. Approximation by Polygonal Domains

Definition 2.1: A domain Π ⊆ RN will be called polygonal domain if ∂Π is
contained in the union of a finite number of hyperplane of RN . We will denote by
Pol(RN ) (or simply Pol) the set of polygonal domains on RN .

If N = 2 then the polygonal domains will be polygons, if N = 3 they will be the
polyhedra. If we now consider Pol as a subset of the space Σ, it is clear that it is
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dense in Σ and, by Lemma 1.1, we have, given an arbitrary set E ⊆ RN ,

lim inf
Pol∋Π→E

P (Π) ≥ P (E). (24)

The following result is more precise than the one given in (24).

Theorem 2.1: Let E be a subset of RN (with N ≥ 2). Then P (E) equals the lower
limit of the polygonal domains Π approximating E, that is we have

lim inf
Pol∋Π→E

P (Π) = P (E). (25)

Proof. If P (E) is infinite, from (24) we can conclude. On the other hand, if P (E)
is finite, by Theorem 1.3, it follows that either E or Ec has finite measure. Without
loss of generality we can suppose LN (E) to be finite; in this case χE is an integrable
function and therefore, by the properties of the operator Wλ we have

lim
λ→0+

∫
RN

|WλχE − χE | dLN = 0. (26)

Hence, given ε > 0 we can certainly find λ > 0 such that∫
RN

|WλχE − χE | dLN < ε. (27)

By the definition of Wλ, the function | ∇WλχE | turns out to be bounded in RN

and therefore its supremum, denoted by M , is finite. Given η such that 0 < η < 1
4 ,

let us consider the set L defined by

L := {x ∈ RN : WλχE(x) > η}. (28)

We will now prove that L is a bounded subset of RN . For any ρ > 0 we define the
set Iρ(L) as

Iρ(L) := {x ∈ RN : dist(x, L) < ρ}. (29)

Let us set ρ̄ := η
2M . Clearly L is contained in Iρ̄(L) and, since

∥ ∇WλχE∥∞ < M, (30)

at any point x ∈ Iρ̄(L) we have

WλχE(x) ≥ η −Mρ̄ = η − Mη

2M = η

2 . (31)

From (31) we deduce

η

2LN (Iρ̄(L)) ≤
∫

Iρ̄(L)
|WλχE | dLN ≤

∫
RN

|WλχE | dLN < ∞. (32)

Since χE is integrable and (27) holds, we deduce that LN (Iρ̄(L)) is finite and
therefore L is bounded; hence we can always find a number α sufficiently large such
that, if Tα denotes the domain

Tα := {x = (x(1), ... , x(N)) ∈ RN : |x(i)| ≤ α, ∀i = 1, ... , N}, (33)
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the following formulas are all satisfied:∫
T c

α

χE dLN < ε, (34)

WλχE(x) < η, ∀x ∈ T c
α. (35)

In the space RN+1, whose generic point is denoted by (x(1), ... , x(N), y) =: (x, y),
let us consider the regular hypersurface Γ1 defined by the equation

y = WλχE(x), x ∈ Tα. (36)

Since WλχE is a C1 class function, we can certainly approximate the hypersurface
Γ1 with a hypersurface Γ2 which is contained in the union of a finite number of
hyperplanes and its represented by the equations{

y = g(x),
x ∈ Tα

(37)

where g is a continuous function satisfying the following conditions

0 < g(x) −WλχE(x) < η, ∀x ∈ Tα, (38)∫
Tα

|g −WλχE | dLN < ε, (39)∫
Tα

| ∇g| dLN <

∫
Tα

| ∇WλχE | dLN + η ( ≤ P (E) + η ). (40)

Since clearly WλχE is always nonnegative, by (38) the function g will be always
positive, and therefore the set D defined by

D := {(x, y) ∈ RN+1 : 0 ≤ y ≤ g(x)} (41)

will be a polygonal domain of RN+1. Taking into account (35) and (38), we see
that g(x) < 2η for any x ∈ ∂Tα. It follows that for any real number θ ≥ 2η, the
hyperplane y = θ intersects ∂D only at points belonging to Γ2. Let us denote by
ρ(θ) the (N − 1)-dimensional measure of the section of Γ2 with the hyperplanw
y = θ and let us indicate by Γ∗

2 the portion of Γ2 contained in the half space y ≥ 2η.
Using elemetary theorems on the measure of the sections of a set (theorems that
we can certainly apply to the hypersurface Γ∗

2 which, bein contained in Γ2, is in
turn contained in the union of a finite number of hyperplanes) we will have∫

Γ∗
2

|ny| dHN =
∫

[2η,∞[
ρ(θ) dL(θ), (42)

where |ny| indicates the length of the orthogonal projection of the unit normal
vector to the hypersurface y = θ. Recalling that Γ2 has equations (37), we have∫

Γ∗
2

|vy| dHN ≤
∫

Γ2

|vy| dHN =
∫

Tα

| ∇g(x)| dLN (x). (43)
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From (40), (42) and (43) it follows∫
[2η,∞[

ρ(θ) dL(θ) < P (E) + η (44)

and therefore we have ∫
[2η,1−η]

ρ(θ) dL(θ) < P (E) + η. (45)

Let us now consider, for any θ ≥ 2η, the section of the domain D with the hyperplane
y = θ, which will be denoted by Π(θ). If we identify the hyperplane y = θ with the
space RN and therefore the generic point (x, θ) of such hyperplane with the point
x, we find that, for almost every value of θ, the set Π(θ) is a poligonal domain,
provided it is nonempty. Clearly, we have{

g(x) ≥ θ, for x ∈ Π(θ)
g(x) < θ, for x ̸∈ Π(θ).

(46)

Since, for θ ≥ 2η, the hyperplane y = θ intersects ∂D only at points belonging to
Γ2, for almost every value of θ between 2η and 1 − η (since we assumed η < 1

4 these
are an interval) the perimeter P (Π(θ)) equals ρ(θ). Therefore there exists, by (45),
a value θ̄ between 2η and 1 − η, such that

P (Π(θ̄)) = ρ(θ̄) < P (E) + η

1 − 3η , (47)

being also Π(θ) a polygonal domain of RN . On the other hand, by (46) we have{
g(x) − χE(x) = g(x) ≥ θ̄ > 2η > η, for x ∈ Π(θ̄)\(E ∩ Π(θ̄))
χE(x) − g(x) = 1 − g(x) ≥ 1 − θ̄ > η, for x ∈ (E ∩ Tα)\(E ∩ Π(θ̄)),

(48)

while, from (27) and (39), it follows∫
Tα

|g − χE | dLN ≤
∫

Tα

|g −WλχE | dLN +
∫

Tα

|WλχE − χE | dLN < 2ε. (49)

Hence, from (48) and (49), we get

LN ((E ∩ Tα) △ Π(θ)) < 2ε
η
. (50)

Since by (34)

LN (E\(Tα ∩ E)) < ε (51)

we finally deduce

LN (E △ Π(θ)) < ε+ 2ε
η
. (52)
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Since the two numbers ε and η are arbitrary, formulas (47) and (52) ensure that

lim inf
Pol∋Π→E

P (Π) ≤ P (E). (53)

Therefore, recalling (24) we obtain (25) and the proof of the theorem is complete.

3.3. De Giorgi’s Theorem

(⋆) Theorem (Isoperimetric Property of the Hypersphere): Let C be a
hypersphere on RN (with N ≥ 2), for every A ∈ B(RN ) satisfying the condition

LN (C) = LN (A), (54)

the following isoperimetric relation holds

P (C) ≤ P (A). (55)

In particular in (55) we have the equality if and only if A is (equivalent to) a
hypersphere.

In order to prove (⋆) we need the following results.
Let us recall the notation used in Section 3 of Chapter 1, that will make easier

to state and prove the next theorem: as usual we will denote by x the general point
of RN and by x′ the general point of RN−1; with a little abuse of notation we will
write x = (x′, xN ); if F : RN−1 → R and G : RN → R are functions, then we will
use F (x′) and G(x′, xN ) instead of F (x1, ... , xN−1) and G(x1, ... , xN ) respectively.
Finally, if Φ : RN−1 → R is a function, and ∇Φ is its gradient then we write (∇Φ)2

instead of ( ∂
∂x1

Φ)2 + · · · + ( ∂
∂xN−1

Φ)2.

Theorem 3.1: If k is a real number and f : T ⊆ RN−1 → R (N ≥ 2) is a function
defined on a bounded and connected domain T of RN−1 which is uniformly Lipschitz
continuous and f(x′) > k for every x′ ∈ RN−1, then the domain D ⊆ RN defined by

D := {(x′, xN ) ∈ RN : x′ ∈ T, k ≤ xN ≤ f(x′)} (56)

has finite perimeter. Moreover, if H is a set contained in (T\∂T ), H∗ is the subset
of RN defined by

H∗ := {(x′, xN ) ∈ RN : x′ ∈ H,xN = f(x′)}, (57)

and |µD| is the Gauss-Green function corresponding to the set D, we have

|µD|(H∗) =
∫

H

√
1 + (∇f)2 dLN−1. (58)

Proof. From Theorem 2.1 follows that D can be approximated by a sequence
(Dn)n≥1 of polygonal domains, such that Dn is defined by

Dn := {x ∈ RN : x′ ∈ T, k ≤ xN ≤ fn(x′)}, ∀n ≥ 1, (59)

and where the functions fn are continuous in T , fn(x′) > k for each x′ ∈ T , for
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n ≥ 1, and satisfy the relations

fn → f uniformly, (60)

lim
n→∞

∫
T

∣∣∣∣ ∂∂xh
fn − ∂

∂xh
f

∣∣∣∣ dLN−1 = 0, h = 1, ... , N − 1. (61)

Recalling that the perimeter of a polygonal domain coincides with the (N − 1)-
dimensional measure of its boundary and taking into account (60) and (61), its easy
to see that (P (Dn))n≥1 is bounded. Indeed we have

P (Dn) = LN−1(T ) +
∫

∂T

(fn − k) dLN−2 +
∫

T

√
1 + (∇fn)2 dLN−1. (62)

Therefore, by Lemma 1.1, also D has finite perimeter. Let us now consider a
C1-class function g : RN → R such that g(x′, xN ) = 0 for every x′ ∈ ∂T . Since∫

Dn

∂

∂xN
g(x) dLN (x)

=
∫

T

(∫
R

∂

∂xN
g(x′, xN )χ[k,fn(x′)](xN ) dL(xN )

)
dLN−1(x′)

=
∫

T

(g(x′, fn(x′)) − g(x′, k)) dLN−1(x′)

(63)

and ∫
Dn

∂

∂xh
g(x) dLN (x) =

∫
∂Dn

gν(h)
e dHN−1

=
∫

T

g(x′, fn(x′)) ∂

∂xh
fn(x′) dLN−1(x′),

(64)

for h = 1, ... , N − 1. Passing to the limit as n → ∞ in (63) and (64), we get∫
RN

∂

∂xN
g(x)χD(x) dLN (x) =

∫
T

(g(x′, fn(x′)) − g(x′, k)) dLN−1(x′) (65)∫
RN

∂

∂xh
g(x)χD(x) dLN (x) =

∫
T

g(x′, f(x′)) ∂

∂xh
f(x′) dLN−1(x′), (66)

for h = 1, ... , N − 1. Therefore, if we denote by µD = (µ(1)
D , ... , µ

(N)
D ) the Gauss-

Green function corresponding to D, by V a subset of H, by V ∗ the set

V ∗ := {x ∈ RN : x′ ∈ V, xN = f(x′)}, (67)

from (65) and (66) we deduce, taking into account the arbitrariness of g and the
definition of the Gauss-Green function,

µ
(N)
D (V ∗) =

∫
V

dLN−1(x′) (68)

µ
(h)
D (V ∗) =

∫
V

∂

∂xh
f(x′) dLN−1(x′), (69)

for i = 1, ... , N . Recalling the definition the function of total variation of µD,
namely |µD|, the formula is valid (58) for every V ⊆ H. This suffices to prove the
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theorem.

In what follows we will prove a theorem on symmetric normal sets with respect
to a hyperplane which, together with Theorem 2.1, has a crucial role in the proof
of the isoperimetric property of the hypersphere stated in (⋆). We begin with the
definition of “normal sets with respect to a hyperplane”.

Definition 3.1: Given a set E ⊆ RN (with N ≥ 2) and a hyperplane I of RN , we
will say that E is pointwise normal with respect to I if, given any orthogonal line
to I, the intersection of such a line with E is either a segment, or a point, or the
empty set. We will say that E is normal in mean (or simply normal) with respect
to I, if E is equivalent to a pointwise normal set.

Before proving the previously announced theorem on symmetric normal sets, it
will be useful the following lemma.

Lemma 3.1: Let α and γ be two Radon measures defined on B(RN ) with finite
total variation. If

α(B) · (γ(B) − α(B)) ≥ 0 (70)

for any set B ⊆ RN , then it also holds

2|γ|(B)(|γ|(B) − |α|(B)) ≥ (|γ − α|(B))2 (71)

for any set B ⊆ RN .

Proof. From (70) it follows

|α(B)|2 − γ(B) · α(B) ≤ 0, (72)

therefore we get

|α(B)|2 + |γ(B) − α(B)|2 = 2(|α(B)|2 − γ(B) · α(B)) + |γ(B)|2 ≤ |γ(B)|2. (73)

Let us define the functions φ and ψ as follows

φ := dγ

d|γ|
, ψ := dα

d|γ|
, (74)

that is

γ(B) =
∫

B

φd|γ|, α(B) =
∫

B

ψ d|γ| (75)

for any set B ⊆ RN . Form (73), and known theorems on differentiation of Radon
measures, we have

|φ(x)| = 1, 1 − |ψ(x)|2 = |φ(x)|2 − |ψ(x)|2 ≥ |φ− ψ|2, |ψ(x)| ≤ 1 (76)

for any x ∈ RN , also

|α|(B) =
∫

B

|ψ| d|γ|, |γ − α|(B) =
∫

B

|φ− ψ| d|γ|. (77)
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From (76) it follows

2(|γ|(B) − |α|(B)) = 2
∫

B

(1 − |ψ|) d|γ|

≥
∫

B

(1 − |ψ|2) d|γ|

≥
∫

B

|φ− ψ|2 d|γ|,

(78)

and by Schwarz inequality we have(∫
B

|φ− ψ|2 d|γ|
)∫

B

d|γ| ≥
(∫

B

|φ− ψ| d|γ|
)2

= (|γ − α|(B))2. (79)

Recalling the definition of |γ|(B), form (78) and (79) we get (71).

We are now ready for proving the stated theorem concerning symmetric normal
sets with respect to a hyperplane. We recall the notation given before Theorem 3.1.

Theorem 3.2: Let E be a subsets of RN (with N ≥ 2) having finite perimeter
and finite measure. For any point y := (y1, ... , yN−1) ∈ RN−1 we denote by
f(y) := f(y1, ... , yN−1) the linear measure of the intersection of E with the line
R(y) of RN (whose generic point will be denoted by x) having equations x′ = y. Let
L be the set defined by

L := {(x′, xN ) ∈ RN : −f(x′) < 2xN < f(x′)}. (80)

Then

P (L) ≤ P (E). (81)

If equality holds in (81), then E is normal with respect to the hyperplane xN = 0 and,
denoting by |µE | and by |µL| the sets function of total variation of the Gauss-Green
functions corresponding to E and L respectively, we have, for any M ⊆ RN−1,

|µE |(M × R) = |µL|(M × R). (82)

Proof. By Theorem 2.1 there exists a sequence (En)n≥1 of polygonal domains
satisfying the conditions

lim
n→∞

LN (En △ E) = 0, lim
n→∞

P (En) = P (E). (83)

Moreover, we can suppose that, for any integer n ≥ 1, the normal to the boundary
of En is never parallel to the hyperplane xN = 0. This is surely possible since, if
for some value of n this assumption is not satisfied, it can always be achieved by
performing an arbitrarily small rotation of the domain En.

Let us introduce the following notation: Dn is the polygonal domain of the space
RN−1 consisting of all the points y such that R(y) has nonempty intersetion with
En, fn(y) is the linear measure of the intersection, and Ln is the polygonal domain
of RN defined by

Ln := {(x′, xN ) ∈ RN : x′ ∈ Dn,−fn(x′) ≤ 2xN ≤ fn(x′)}. (84)

Taking into account the first condition in (31) and the definition of L and Ln, one
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can immediately verify that

lim
n→∞

LN (Ln △ L) = 0. (85)

Let us now fix a value of the index n and let us denote by µEn
:= (µ(1)

En
, ... , µ

(N)
En

) the
Gauss-Green function corresponding to En, by µLn

:= (µ(1)
Ln
, ... , µ

(N)
Ln

) the Gauss-
Green function corresponding to Ln, by |µEn

| the total variation function of µEn

and by |µLn
| the total variation function of µLn

. In addition, for any set M ⊆ RN−1,
let γ := (γ(1), ... , γ(N)), where γ(h)(M) is the total variation of µ(h)

En
(M × R), and

α := (α(1), ... , α(N)), where α(h)(M) is the total variation of µ(h)
Ln

(M × R).
In order to obtain some properties of the functions αn and γn, which will be

useful in the sequel, let us begin by observing that, since En is a polygonal domain
of RN and since the normal to ∂En is never parallel to the hyperplane xN = 0, fn

is continuous in Dn, fn(ξ) = 0 for any ξ ∈ ∂Dn and Dn can be decomposed in a
finite number of polygonal domains G1, ... , Gm having the properties:

a) For any positive integer k ≤ m, the number of points where the line R(y)
intersects ∂En is constant with respect to y in the interior of Gk.

b) Denoting by p(k) such a number (which is even and ≥ 2) and letting gk,1(y), ...
,gk,p(k)(y) be the N -th coordinate of the p(k) points belonging to R(y) ∩ ∂En

(considered in increasing order), the functions gk,1, ... , gk,p(k) are Liptschitz
contnuous in the interior of Gk.

Using properties a), b) and recalling the definition of fn, one can immediatly
see the following inequalities∣∣∣∣ ∂∂yh

fn(y)
∣∣∣∣ ≤

p(k)∑
l=1

∣∣∣∣ ∂∂yh
gk,l(y)

∣∣∣∣ , for y ∈ Gk\∂Gk, h = 1, ... , N − 1 (86)

holds. Recalling that if P is a polygonal domain in RN and µP := (µ(1)
P , ... , µ

(N)
P )

is the Gauss-Green function corresponding to P , then

µ
(h)
P (B) =

∫
B∩∂P

C(h) dHN−1, for h = 1, ... , N, (87)

where C(h) is the cosine formed by the outer normal to ∂P with the xh-th axis;
and taking into account the fact that the (outer) normal to ∂En is never parallel
to the hyperplane xN = 0, we find the following expressions for the functions
α(h), γ(h), |µEn

| and |µLn
|:

γ(h)(M) =
m∑

k=1

∫
M∩Gk

p(k)∑
l=1

∣∣∣∣ ∂∂yh
gk,l

∣∣∣∣ dLN−1 for h = 1, ... , N − 1, (88)

α(h)(M) =
m∑

k=1

∫
M∩Gk

∣∣∣∣ ∂∂yh
fn

∣∣∣∣ dLN−1 for h = 1, ... , N − 1, (89)

γ(N) =
m∑

k=1
p(k)LN−1(M ∩Gk), α(N) =

m∑
k=1

2LN−1(M ∩Gk), (90)
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|µEn |(M × R) =
m∑

k=1

∫
M∩Gk

p(k)∑
l=1

√
1 + (∇gk,l)2 dLN−1 (91)

|µLn
|(M × R) =

m∑
k=1

∫
M∩Gk

√
4 + (∇fn)2 dLN−1. (92)

If we denote (as usual) |α| and |γ| as the total variation functions of the vector-valued
Radon measures α and γ respectively, from (88), (90) and (91) it follows

|µEn
|(M × R) ≥ |γ|(M), (93)

and from (89), (90) and (92) it follows

|µLn
|(M × R) = |α|(M). (94)

From (86), (88), (89) and (90) we deduce the relations

0 ≤ α(h)(M) ≤ γ(h)(M) for h = 1, ... , N, M ⊆ RN−1, (95)

and we see that, denoting by Hn the set of all the points y ∈ RN−1 such that the
line R(y) meets ∂En at more than two points, we always have

0 ≤ α(N)(M) ≤ γ(N)(M) − 2LN−1(Hn ∩M). (96)

From (95) we deduce the relation

α(M) · (γ(M) − α(M)) =
N∑

h=1
α(h)(M)(γ(h)(M) − α(h)(M)) ≥ 0, (97)

while from (96) it follows

|γ − α|(M) ≥ |γ(M) − α(M)| ≥ 2LN−1(Hn ∩M). (98)

From Lemma 3.1, (93), (94) and (97) we have

|µEn
|(M × R) ≥ |µLn

|(M × R) (99)

and, recalling (98),

|µEn
|(M × R) (|µEn

|(M × R) − |µLn
|(M × R)) ≥ 2

(
LN−1(Hn ∩M)

)2
. (100)

In particular, if M = RN−1, from the definition of perimeter, inequalities (99) and
(100) become

P (En) = |µEn |(RN ) ≥ P (Ln) = |µLn |(RN ) = P (Ln) (101)

P (En)(P (En) − P (Ln)) ≥ 2
(
LN−1(Hn)

)2
. (102)

From (101), passing to the limit as n → ∞ and taking (83), (85) and Lemma 1.1
into account, inequality (81) follows. Moreover, from (102) we see that, in order



32 CHAPTER 3. ISOPERIMETRIC PROPERTY OF THE HYPERSPHERE

that equality holds in (81), the following relations must be simultaneously satisfied:

lim
n→∞

LN−1(Hn) = 0, lim
n→∞

P (Ln) = P (L). (103)

Recalling the definition of Hn, from (83) and the first of (103) we see that E must
be normal with respect to the hyperplane xN = 0. On the other hand, from (83),
(85) and the first of (103) we deduce, recalling also Theorem 1.1,

lim
n→∞

|µEn
|(M × R) = |µE |(M × R), lim

n→∞
|µLn

|(M × R) = |µL|(M × R), (104)

for any set M ⊆ RN−1 which satisfies the conditions:

|µE |(∂(M × R)) = 0, |µL|(∂(M × R)) = 0. (105)

Therefore, recalling (99),

|µE |(M × R) ≥ |µL|(M × R). (106)

Since (106) is valid for any M ⊆ RN−1 satisfying (105), it is also verified for any
M ⊆ RN−1.

On the other hand, if equality holds in (81), by Lemma 1.1, we get

|µE |(RN ) = |µL|(RN ), (107)

and therefore, by additivity of the functions |µE |, |µL|, inequality in (106) can be
identically verified only if (82) is satisfied.

We are finally ready to prove (⋆)

Proof of (⋆). Let C be a hypersphere of RN and A a subset of RN with

LN (C) = LN (A). (108)

In view of Theorem 2.1, in order to prove that

P (C) ≤ P (A) (109)

it is enough to show that, given an arbitrary polygonal domain Π of finite measure,
and a hypersphere satisfying the condition

LN (C) = LN (Π), (110)

it results

P (C) ≤ P (Π). (111)

To this aim let us observe that, as a polygonal domain Π has finite measure, it is
necessarily bounded and therefore there exists a hypersphere C∗ centered at the
origin of the coordinates and of radius large enough which contains Π. If we denote
by Γ the class

Γ :=
{
B ⊆ RN : LN (B) = LN (Π), P (B) ≤ P (Π), B ⊆ C∗} , (112)

from Lemma 1.1 and the fact that given a bounded set L and a positive number
l, the class of all subsets of L having perimeter less or equal to l is compact in
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(
B(RN ),LN (· △ ·)

)
(see [4]), it follows that the functional P (·) has a minimizer in

the class Γ. Let us indicate by E one of these sets of minimal perimeter, and let us
compare it with the set L, defined starting from the set E and whose construction
is described in Theorem 3.2. It is easy to realize that L still belongs to the class Γ
and therefore, taking into account the minimality of E and Theorem 3.2 we get

P (L) = P (E). (113)

From (113), using again Theorem 3.2, we deduce that E is normal with respect to
the hyperplane xN = 0. On the other hand, the minimality property of E is still
valid for any set obtained by rotating E around the origin, hence E is normal with
respect to any hyperplane of RN , that is E is (equivalent to) a convex set.

Since perimeters of two equivalent sets coincide, we can also suppose E is a
convex which can be represented as

E :=
{

(x′, xN ) ∈ RN : f1(x′) ≤ xN ≤ f2(x′), x′ ∈ D
}
, (114)

where, by well known properties of convex sets, D is a convex domain of RN−1, and
f1, f2 are two functions defined in D, which are uniformly Lipshitz continuous in
any connected set T ⊆ D\∂D.

If E is represented by (114), the set L constructed via the procedure in Theorem
3.2 will be represented as

L :=
{

(x′, xN ) ∈ RN : 2|xN | < f2(x′) − f1(x′), x′ ∈ D
}
. (115)

Let us denote by |µE | and |µL| the total variations of the Gauss-Green functions
corresponding to E and L respectively. Let T ⊆ D\∂D be a connected subset, and
let M ⊆ T\∂T ; by Theorem 1.1 and Theorem 3.1, we have

|µE |(M × R) =
∫

M

(√
1 + (∇f1)2 +

√
1 + (∇f2)2

)
dLN−1, (116)

|µL|(M × R) =
∫

M

√
4 + (∇(f2 − f1))2

dLN−1. (117)

From Theorem 3.2 and using (113) it follows

|µE |(M × R) = |µL|(M × R). (118)

Equalities in (116), (117) and (118) can be simultaneously satisfied only if at almost
every point of M we have

∂

∂y1
f1 + ∂

∂y1
f2 = ... = ∂

∂yN−1
f1 + ∂

∂yN−1
f2 = 0. (119)

From arbitrariness of T and M , formula (119) are then satisfied at almost every
point of the convex domain D and therefore the sum f1 + f2 is constant in D, that
is the domain E is symmetric with respect to the hyperplane xN = 0.

Taking into account once again that the minimality property of E holds for
any set obtained from E through a rotation around the origin, we conclude that
E is normal and symmetric with respect to all hyperplanes passing through the
barycenter, and therefore E is a hypersphere. As E has minimal perimeter in the
class Γ and since Π belongs to Γ, (111) is proved.
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From (111), as we have already observed, (109) follows. To prove that if the
equality holds in (109) then A is (equivalent to) a hypersphere, it is enough to
observe that, in this case, A has minimal perimeter in the class of all sets having
the same measure of C and hence the argument considered above for E can be
repeated for A.
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