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Abstract

Compact objects, black holes, white dwarfs and neutron stars, are the end-

points of the evolution of stars with different initial masses. The existence

of stars made essentially of neutrons was first hypothesized in the 1930’s

when it was realized that gravitational contraction could be balanced by the

pressure of degenerate fermions obeying the Pauli principle. Neutron stars,

with mass of 1-2 solar masses and radius of 10-20 km, are the densest known

objects in the present universe. They were no more than a theoretical cu-

riosity until 1967, when Hewish and Bell discovered the first radiopulsar.

Since then our understanding of neutron stars and of their observational

manifestations moved steadily on. However, many key questions in neutron

star astrophysics are still unanswered. In this work I study the reprocess-

ing of thermal radiation by an atmosphere which surrounds the star and

which is key in shaping the emergent spectrum. This bears directly to the

measure of fundamental neutron star properties. Goal of the thesis is to

review the radiative transfer in a medium and apply it to model neutron

star atmospheres in both radiative and hydrostatic equilibrium.
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Introduction

Neutron Stars (NSs) are the most compact objects in the universe endowed

with a surface. They represent an ideal laboratory to understand the physics

in extreme condition, which can not be reproduced. NSs are born very hot

and then progressively cool down emitting neutrinos and thermal radiation.

For some 105 yr their surface temperature is about a million K and they

shine as soft X-ray sources. Observations of their surface emission are key,

since they provide direct information on the physical conditions of the star

surface layers (effective temperature, chemical composition and surface grav-

ity) and, even more important, they allow for a direct measurement of the

star radius. A physically model for the surface emission is key in order to

correctly interpret X-ray data. In the past it was assumed that the star

surface emits blackbody radiation. However, starting from the late 1980’s,

the role of a thin gaseous atmosphere in reprocessing the outgoing radiation

was realized. This work focuses on unmagnetized atmosphere models with

the aim of computing the emergent spectrum. The role of different chem-

ical compositions, from hydrogen to heavy elements, is examined, together

with the effects produced on the spectrum by different stellar parameters.

The resulting spectra are compared with the blackbody distribution, with

particular attention on the different behaviour between that a light-element

atmosphere can produce with respect to an heavy-element one.

The method used to solve the radiative transfer is based on an iterative

scheme starting from an approximated temperature profile. The procedure

is divided into two parts: in the first one the calculation of the atmospheric

structure is performed while in the second one the radiative transfer is com-

puted using the Schwarzschild-Milne relation. To complete an iteration, a

correction of the temperature through the Lucy-Unsöld formula is applied.

A new iteration starts computing the structure and the flux again until the

1
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correction is minimal. The implementation of the model has been written

in Fortran 95.



Chapter 1

Neutron Stars

Neutron Stars are the most compact objects known in the universe and

matter can reach supra-nuclear densities in their interior. They have typical

masses M ∼ M� and radii R ∼ 10 km. Neutron stars have a strong surface

gravity g ∼ GM/R2 ∼ 2 × 1014 cm s−2 and their average mass density is

ρ̄ = 3M/(4πR3) ∼ 7×1014 g cm−3 ∼ (2−3)ρ0 where ρ0 ∼ 2.8×1014 g cm−3,

the normal nuclear density, is the mass density of nucleons in heavy atomic

nuclei. They are endowed with strong magnetic fields which usually range

between 108−1015 G and their rotational period varies from 10−3 to 10 s.

The theoretical prediction of the existence of NSs was made in 1934 by

W. Baade and F. Zwicky (see Baade & Zwicky, 1934) who analyzed the

observations of supernova explosions. They hypothesized that “supernovae

represent the transitions from ordinary stars to neutron stars, which in their

final stages consist of extremely closely packed neutrons”. The observational

confirmation occurred in the 1960’s by J. Bell and A. Hewish (see Hewish et

al., 1968); since that moment studies about NSs significantly grew up. This

chapter summarizes briefly the NS main features.

1.1 Structure

The NS interior can be divided into several regions as shown in Figure

1.1. The outer crust is characterized by the absence of free neutrons. Its

boundary lies at ρ ' ρnd (see Shapiro & Teukolsky, 1983) which is the

neutron drip density, i.e. the density beyond which atomic nuclei decay

with the emission of a neutron. According to the current estimates ρnd ∼

3
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Figure 1.1: Schematic structure of a neutron star (see Lim et al., 2017).

4× 1011 g cm−3. Its matter is supposed to consist of ions and electrons and

its thickness should be few hundred meters. A very thin surface layer, up to

few meters in hot stars, contains a non-degenerate, almost ideal gas. The

density increases going deeper in the star, where the beta capture process

enriches nuclei with neutrons. At the base of the outer crust neutrons start

to drip out of the nuclei producing a free neutron gas. The inner crust may

be about one kilometer thick, with a density varying from ρnd to ρ ∼ 0.5 ρ0.

It is believed to be composed by electrons, free neutrons and neutron-rich

atomic nuclei (Haensel, Potekhin & Yakovlev, 2007). The fraction of free

neutrons increases with the growing of density. The nuclei disappear at the

interface between crust and core. The outer core can extend up to several

kilometers inside the star. It consists of a mixture between free neutrons,

protons and electrons. Its density varies approximately between 0.5 ρ0 and

2 ρ0. Finally, the central part of the star is the inner core, where the

density is greater than 2 ρ0 and it is supposed to reach a value of 10−15 ρ0

at the star center. The composition of the super-dense matter remains

uncertain. Several hypotheses are made, such as the presence of hyperons,
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the pion/kaon condensates; it has been also supposed that the matter can

consist of deconfined quarks (Haensel, Potekhin & Yakovlev, 2007).

1.1.1 Atmosphere

It is believed that the NS surface may be covered by a geometrically thin

atmospheric layer. Its thickness can be easily obtained from a trivial

calculation. Considering a non relativistic ideal gas and integrating the

hydrostatic equilibrium equation dP/dr = ρ g, the scale height turns out to

be

h =
kB Ts
Amp g

∼ 10−1 cm ,

where ρ is the mass density in the atmosphere, kB is the Boltzmann con-

stant, Ts is the surface temperature, A is the mass number of the nuclei

that compose the atmosphere and mp is the proton mass. Since the ratio

h/R between the atmosphere scale height and the star radius is very small,

one can safely neglect the curvature of the atmospheric layer when radia-

tive transfer calculations are performed. The atmosphere can have different

chemical compositions. The outer layers of a neutron star can consist of iron

since this is the most abundant element remaining after the supernova event

that gave birth to a NS. However, the outer envelopes of an isolated neutron

star may also contain light elements like hydrogen and helium which comes

from the outer layers of the progenitor star, ejected during the supernova

event. The same occurs if matter is accreted from the surface layers of a

companion star in a binary. Because of the rapid separation of ions in the

strong NS gravitational field, an accreted atmosphere can consist entirely of

hydrogen. If the accretion occurs at the early stages of the NS life, when the

temperature is of the order of 107 K, the hydrogen would be burnt in ther-

monuclear reactions, leaving the atmosphere composed mainly by helium.

In turn, some helium may be burned to form carbon.

The properties of surface emission from NS are determined by the radia-

tive transfer in their atmosphere. Studying the emergent spectra, which

can substantially differ from the Planck spectrum, it is possible to infer the

surface effective temperature, the chemical composition of the atmosphere,

the surface gravity and the magnetic field. NS atmospheres are different

from those of normal stars due to the strong gravity and the huge magnetic

field. While the former is important for all NSs, it is not so for the latter.
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If the atmosphere is completely ionized, the importance of the magnetic ef-

fects depends on how large the electron cyclotron energy, hνB = heB/mec

is with respect to thermal energy kBT . The magnetic field can be neglect

when hνB � kBT and hence

B � (me c/h e) kB T ∼ 109(T/106K) G. (1.1)

If a substantial fraction of bound atoms is present, the electron cyclotron

energy has to be compared to the binding energy. Thus the magnetic effects

are determined by the ratio hνB/Z
2Ry ∼ (B/109 )Z−2 where Z is the atomic

number and 1 Ry = 13.6 eV is the Rydberg energy. Z2Ry is the total binding

energy of the atom. The magnetic effects can be neglected when the ratio

. 1.

1.2 Neutron Star classification

NSs observed up to now in the universe can be classified into different types,

according to the features they exhibit. NSs are usually represented in a P -Ṗ

diagram (see Figure 1.2), by measuring their rotational periods P and time

derivatives Ṗ , which measure their spin-down rate (see Kaspi, 2010). From

P and Ṗ it is possible to derive the characteristic age and the spin-down

magnetic field intensity of each source. Typically the NS magnetic field has

a dipolar form, which, written in spherical coordinates, is

B (r) =
1

2
Bp

R3
NS

r3

(
cos θ er +

sin θ

2
eθ

)
, (1.2)

where Bp is the magnetic field at the poles. Considering a reference system

in such a way that the angular velocity of the NS, Ω, is parallel to the z-axis,

the magnetic moment is given by

m =
1

2
BR3 (sinα cos Ωt, sinα sin Ωt, cosα) , (1.3)

where α is the angle between the angular velocity and the magnetic moment.

According to the Larmor’s formula, a magnetic dipole in fast rotation emits
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Figure 1.2: The rotational period derivative is plotted against period for
radio PSRs (black dots), RRATs (green crosses), XDINSs (blue triangles)
and magnetars (red squares). Dashed lines correspond to lines at constant
characteristic age and inferred surface dipole magnetic field strenght.
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electron magnetic radiation, with power

Ė = − 2

3 c3
‖m̈‖2

= − 1

6 c3
B2R6Ω4 sin2 α . (1.4)

By equating the rotational energy loss rate Ė = IΩΩ̇ with the emitted power

(1.4) one obtains

Ω̇

Ω3
= −B

2R6 sin2 α

6Ic3
. (1.5)

Then, by integrating the last equation over time (from the NS birth t0 to

the present time t) and considering B, R, α and I constant in time, the

characteristic age is obtained

t = −1

2

Ω

Ω̇
, (1.6)

where t is supposed to be much larger than t0. The previous formula can

be re-written as a function of P and Ṗ as

t =
1

2

P

Ṗ
. (1.7)

From equation (1.5) it is possible to derive the expression of the magnetic

field as a function of P and Ṗ

B =

(
3 I c3

2π2R6 sin2 α
PṖ

)1/2

(1.8)

and inserting typical values of the quantities (R ∼ 106 cm, I ∼ 1045 g cm2

and sinα ' 1 for simplicity) the expression of B turns out to be

B ≈ 3.2× 1019
√
PṖ G . (1.9)

This values are reported in the diagram through the constant age and the

constant magnetic field lines. The P -Ṗ diagram plays a similar role of the

Hertzsprung-Russel diagram for ordinary stars in characterising the different

NS classes. The black dots in Figure 1.2 represent Radio Pulsars (PSRs),

which pulse regularly and predictably across the EM spectrum though gen-

erally are the most observable in the radio band. A particular subclass of

pulsars are the so-called millisecond pulsars (placed on the bottom-left
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corner in figure 1.2), which exhibit spin periods typically . 20 ms and very

small spin-down rates. Their magnetic fields are . 1010 G. It is believed

that these rapidly-rotating NSs have been spun up through the accretion

of matter from a companion star, so that millisecond pulsars are expected

to be old, recycled PSRs. As the observation techniques became more ad-

vanced, it has been possible to observe NS sources with emission peaked in

the X-rays, usually radio quiet and with an X-ray luminosity exceeding the

rotational energy loss rate. Moreover, no companion stars or accretion disks

around these objects have been observed, so that they cannot be powered

by accretion as in the case of PSRs. For these reasons they were classified

as Isolated Neutron Stars (INSs), a class that contains Magnetars, X-ray

Dim Isolated Neutron Stars (XDINSs), Rotating Radio Transients (RRATs)

and Central Compact Objects (CCOs). Magnetars are the most peculiar

objects among INSs, observationally identified with Anomalous X-ray Pul-

sars (AXPs) and Soft Gamma-ray Repeaters (SGRs). From their values of

P (2÷ 12 s) and Ṗ (10−13 ÷ 10−10 s/s) it is possible to infer magnetic field

intensities of the order of B ∼ 1014 ÷ 1015 G, the strongest ever detected

in the universe. Alongside their persistent X-ray emission (with luminosity

LX ∼ 1033 ÷ 1036 erg/s), their most distinctive observational manifestation

is the occurrence of giant/intermediate flares and short bursts, which also

led to their discovery (see Turolla, Zane & Watts, 2015, for a review). Also

the XDINSs show spin periods longer than the normal PSRs (P ∼ 1÷10 s)

and from the values of P and Ṗ quite strong magnetic fields can be inferred

(∼ 1013 G). As for magnetars, they are observed to be radio quiet sources

but do not show bursting activity. Since their characteristic ages turn out

to be large (1÷ 4 Myr), they are believed to be old magnetars. Since 2001,

exactly seven XDINSs have been detected and they are called “Magnificent

Seven”. The name of RRATs follows their peculiar emission, which con-

trary of PSRs show a quite irregular emission activity . This does not mean

that they do not have a periodic emission but it means that a high number of

nullings occur (see Burke, 2013). They are situated in unremarkable regions

of the P -Ṗ diagram (Figure 1.2). The radio quiet NSs include also CCOs

(see De Luca, 2007). They are located at the center of their supernova rem-

nant, so they are believed to be young objects. Moreover, the values of P

and Ṗ lead to very low magnetic fields, ∼ 1010 G, the lowest values inferred

for INSs. For this reason they were believed to be anti-magnetars.



10 CHAPTER 1. NEUTRON STARS



Chapter 2

Radiative transfer

Radiative transfer is a branch of physics which studies the propagation of

radiation through a medium. Inside a star the radiation is produced by ther-

monuclear reactions, it travels through the interiors of the star where phe-

nomena such as absorption, emission and scattering occur. Once reached the

photosphere, radiation can travel freely or interact with interstellar medium.

Radiative transfer is crucial to understand some properties of stellar astro-

physics. In this thesis the interactions of radiation with matter in a neutron

star atmosphere, where the emergent spectrum is formed, will be studied.

The transfer equation and its consequences are the topics of this chapter.

2.1 The specific intensity, its moments and the

transfer equation

The fundamental quantity that describes a radiation field is called specific

intensity and it is defined as

Iν =
dE

dΩdνdtdA
, (2.1)

i.e. the energy which crosses an infinitesimal area dA, per unit of time dt,

solid angle dΩ and frequency dν. Starting from the definition (2.1) it is

possible to derive the following quantities:

- mean intensity given by Jν = (4π)−1
∫
IνdΩ;

- monochromatic flux, i.e. the energy passing through an area dA,

in a time interval dt and in a frequency range dν, given by Fν =

11
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∫
Iν cos θdΩ where θ is the angle between the direction of the ray and

the normal to the surface;

- momentum flux given by pν =
∫
Iν cos2 θdΩ/c, where c is the speed of

light.

For the purposes of the following discussion, the moments of specific intensity

are introduced:

Hν =
1

2

∫ 1

−1
Iν cos θd cos θ (2.2)

Kν =
1

2

∫ 1

−1
Iν cos2 θd cos θ , (2.3)

which are related to the energy flux and the momentum flux through con-

stant factors, i.e. Hν = (4π)−1 Fν and Kν = c (4π)−1 pν .

The transfer equation describes how radiation can change when it travels

inside a medium. In general, time variation of the radiation field proper-

ties are described by the convective derivative and depends on the emission,

absorption and scattering properties of the medium. The transfer equation

can be easily derived from Boltzmann equation whose expression for a gas

consisting of photons is

Df

Dt
= −Cout + Cin , (2.4)

where f = f (r,n, ν, t) is the distribution function, i.e. the number of pho-

tons that are in the infinitesimal volume d3x and that have momenta in-

cluded in d3p, D/Dt = ∂/∂t + v · ∇ is the convective derivative, Cin and

Cout are the rates at which photons leave and enter the infinitesimal phase

space volume d3xd3p. From the distribution function it is possible to derive

an expression for the specific intensity. The photon number density fd3p

can be re-expressed in terms of frequency

fd3p = f(h/c)3ν2dνdΩ (2.5)

using the relation p = (h/c)ν where h is the Planck constant. The number

of photons which cross an infinitesimal area dA in the time dt is given by the

previous expression multiplied by c. The energy which cross an infinitesimal
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area dA turns out to be

dE =
h4ν3

c2
fdνdΩdtdA (2.6)

and, comparing this result with equation (2.1), one obtains the relation

between the specific intensity and the distribution function

Iν =
h4ν3

c2
f . (2.7)

Inserting equation (2.7) in equation (2.4), the transfer equation turns out

to be (see Mihalas, 1978, for further details)

1

c

D

Dt
Iν (n, r, t) = ην (n, r, t)− αν (n, r, t) Iν (n, r, t) , (2.8)

where ην = ηemsν + ηsν is the total emission coefficient, given by the sum be-

tween true emission and scattering emission, and αν = αabsν +αsν is the total

absorption coefficient, given by the sum of true absorption and scattering

contributions. Actually the dependence on time can be neglected. In fact,

if a region has a scale length L, photons have a time scale evolution of the

order of tp = L/c, while the matter contained in the region evolve with a

time scale tm = L/v, where v is the typical velocity of the matter. In most

situations v � c, then radiation (photons) changes instantly with respect to

the matter. Hence, equation (2.8) becomes

dIν
ds

= ην − ανIν (2.9)

where s is the coordinate along the direction of the ray. Defining the in-

finitesimal optical depth dτν = −αν ds, equation (2.9) can be written in the

alternative form
dIν
dτν

= Iν − Sν , (2.10)

where Sν = ην/αν is the source function. Its formal solution can be easily

obtained,

Iν (τν) = Iν (τ1) e
−(τ1−τν) +

∫ τ1

τν

dτ ′νSν
(
τ ′ν
)
e−(τ

′
ν−τν) , (2.11)
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z

dz ds

θ

Figure 2.1: Geometry in the case of plane-parallel media. The direction of
the ray is identified by ds and θ is the angle between the direction of the
radiation and the z-axis.

where (τ1, Iν (τ1)) is the initial condition. Solving the transfer equation

requires to specify of boundary conditions. Stellar atmospheres have an

open boundary at one side, where it is possible to impose that there is not

incident radiation at the outer layer (this is not the case of binary systems),

but on the other side the atmosphere is so optically thick that it can be

imagined to extend up to infinity. In this case the requirement is

lim
τν→∞

Iν (τν) e−τν = 0 . (2.12)

When this condition is imposed, one talks about a semi-infinite atmosphere.

Applying the boundary condition (2.11), the solution of equation (2.12)

turns out to be

Iν (τν) =

∫ ∞
τν

dτ ′νSν
(
τ ′ν
)
e−(τ

′
ν−τν) (2.13)

where τ1 is replaced with infinity.

2.2 Plane parallel approximation

One talks about plane-parallel approximation when the material proprieties

such as the temperature, density, pressure and others depend on a single

spacial coordinate. In astrophysics this is a valid assumption in case of
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Figure 2.2: Theoretical prediction of behaviour of the monochromatic flux as
a function of the photon energy in the Rosseland approximation. The tem-
perature profile is T (τR) ' Te (τR + 2/3)1/4 and the absorption coefficient is
calculated considering only bremsstrahlung (see Rybicki & Lightman, 2008).

stellar atmospheres. In this situation, the transfer equation (2.9) becomes

µ

αν

∂Iν
∂z

= Sν − Iν (2.14)

or, written as a function of the optical depth,

µ
∂Iν
∂τν

= Iν − Sν , (2.15)

where dτν = −ανdz is the infinitesimal monochromatic optical depth, ds =

µdz and µ = cos θ is the cosine of the angle between the normal to the

surface and the direction of radiation, as shown in Figure 2.1. It is useful to

re-arrange the previous equation in the following form:

Iν = Sν −
µ

αν

∂Iν
∂z

. (2.16)

If matter and photons are very close to local thermodynamic equilibrium

(LTE) which occurs at large optical depths, the intensity changes slowly

with the optical depth. Because the system is very close to the equilibrium,

a reasonable zero-order approximation is to neglect the derivative, so that
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I
(0)
ν ' S(0)

ν ' Bν (T ). At the first order the intensity is obtained by replacing

the terms at the right-hand side of (2.16) with their zero-order values:

I(1)ν ' Bν (T )− µ

αν

∂Bν
∂T

dT

d z
. (2.17)

Then, using the previous expression, the monochromatic flux turns out to

be

Fν (z) = −4π

3

1

αν

∂Bν
∂T

dT

d z
(2.18)

and the total flux, which is obtained by integrating the monochromatic flux

over the frequencies,

F (z) = −16σSB
3αR

T 3 dT

dz
, (2.19)

where σSB is the Stefan-Boltzmann constant and αR is the Rosseland mean

absorption coefficient, such that

α−1R =

∫∞
0 dνα−1ν

∂Bν
∂T∫∞

0 dν
∂Bν
∂T

. (2.20)

Equation (2.19) is called Rosseland approximation for the energy flux and

it shows that radiative energy transport deep in a star is of the same nature

as heat conduction, with effective heat conductivity equal to 16σSBT
3/3αR.

In can be verified that, although this result is derived in plane-parallel ap-

proximation, it holds in general.

2.3 The Schwarzschild-Milne equations

In the case of a medium with plane-parallel (or cylindrical) symmetry, it

is possible to obtain the expressions of the mean intensity and flux. These

relations are called Schwarzschild-Milne equations. Using the boundary con-

dition of a semi-infinite atmosphere (2.15), the formal solution of equation

(2.12) is

Iν (τν) =
1

µ

∫ ∞
τν

dτ ′νSν
(
τ ′ν
)
e
− (τ ′ν−τν)

µ . (2.21)
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Using the previous expression, the mean intensity becomes

Jν (τν) =
1

2

∫ 1

−1
Iν (τν , µ) dµ

=
1

2

[∫ 1

0
dµ

∫ ∞
τν

Sν (t) e
− t−τν

µ
dt

µ

+

∫ 0

−1
dµ

∫ τν

0
Sν (t) e

− τν−t−µ
dt

−µ

]
. (2.22)

Performing a substitution w = ±1/µ the previous equation turns out to be

Jν (τν) =
1

2

∫ 1

−1
Iν (τν , µ) dµ

=
1

2

[∫ 1

0
dµ

∫ ∞
τν

Sν (t) e
− t−τν

µ
dt

µ

+

∫ 0

−1
dµ

∫ τν

0
Sν (t) e

− τν−t−µ
dt

−µ

]
. (2.23)

Equation (2.23) can be written in a simpler form

Jν (τν) =
1

2

∫ ∞
0

Sν (t) E1|t− τν | dt , (2.24)

where E1(x) =
∫∞
1 e−x tdt/t is the first exponential integral. In general, for

any positive integer n, the n-th exponential integral is defined as

En (x) =

∫ ∞
1

t−n e−x t dt (2.25)

or in an equivalent form

En (x) = xn−1
∫ ∞
x

t−n e−t dt . (2.26)

Equation (2.24) was first discovered by Schwarzschild (see Schwarzschild,

1914).
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The flux can be derived similarly

Fν (τν) = 2π

∫ 1

−1
Iν (τν , µ) µdµ

= 2π

[∫ 1

0
dµ

∫ ∞
τν

Sν (t) e
− t−τν

µ dt

+

∫ 0

−1
dµ

∫ τν

0
Sν (t) e

− τν−t
µ dt

]
, (2.27)

and, as in the case of the mean intensity, the final expression is

Fν (τν) = 2π

[∫ ∞
τν

dt Sν (t)E2 (t− τν)−
∫ τν

0
dt Sν (t) E2 (τν − t)

]
. (2.28)

It is important to stress that the formal solution of the transfer equation

is indeed only formal and its simplicity is illusory. In general the source

function contains scattering terms which include the mean intensity in their

expressions. Therefore it is clear that the source function, which is required

to compute the radiation field, depends itself on the radiation field. One of

the possible way to find solutions to the transfer problem is to make some

assumptions, compute the results and use a correction procedure. This is

the approach that has been used in this thesis.

2.4 The polarized transfer equations

Strong magnetic fields can alter the properties of the medium in which pho-

tons propagate. In particular, photons are expected to be linearly polarized

in two normal modes, the ordinary and the extraordinary ones, in which their

electric field oscillates either parallel or perpendicular to the k̂ B plane, with

k̂ the photon propagation direction and B the star magnetic field. In this

case, to solve the radiative transfer equation is convenient to introduce the

polarization matrix (see Mészáros, 1992)

ραβ ∝

(
〈ExEx〉 〈ExEy〉
〈EyEx〉 〈EyEy〉

)
, (2.29)

where Ex, Ey are the photon electric field along two orthogonal arbitrary

directions in the plane orthogonal k̂. If the refractive index of the medium,

n, is close to unity, then the transfer equation can be written in the form
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(see Gnedin & Pavlov, 1974)(
k̂ · ∇

)
ραβ = −1

2

∑
γ

(
Tαγργβ + ραγT

†
γβ

)
+ Sαβ, (2.30)

where Tαβ is the transfer matrix, in which the hermitian and the anti-

hermitian part describe respectively the absorption of radiation and the

transition from one polarization state to the other and Sαβ is a source

term which describes the scattering emission and the emission mechanisms

(Mészáros, 1992). Sαβ includes also an integral term depending on ραβ. The

basis vector used to describe ραβ and Tαβ are an arbitrary set of ex, ey and

ez. It is possible to find the eigenvectors of Tαβ, ej, of components eα j , and

their eigenvalues, Tj , with j = 1, 2. The index j describes normal modes:

j = 1 corresponds to the extraordinary wave while j = 2 the ordinary one.

The real and the imaginary part of Tj describe the absorption coefficient

αj and refractive index ω nj/c for the j-th wave, respectively. The transfer

equation, expressed in the normal wave representation, turns out to be(
k̂ · ∇

)
Rjk = −gjkRjk + Sjk . (2.31)

Here

gjk =
Tj + T †

k

2
=
αj + αk

2
+ iω

nj − nk
c

(2.32)

Sjk = (ejα)−1 Sαβ

(
e†kβ

)−1
(2.33)

Rjk = (ejα)−1 ραβ

(
e†kβ

)−1
(2.34)

are respectively the transfer matrix, the source term and the density matrix

in the normal wave representation. The diagonal elements of the density

matrix represent the intensities of the normal waves, Rii = Ii. The source

matrix can depend on Rij (Mészáros, 1992) and therefore equation (2.31)

represents a set of four coupled equations. The formal solution of equation

(2.31) is

Rjk (z) = Rjk (z0) exp

[
−
∫ z

z0

gjk
(
z′
)
dz′
]

+

∫ z

z0

Sjk (z1) exp

[
−
∫ z

z1

gjk
(
z′
)
dz′
]
dz′ , (2.35)
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where z is the coordinate along the direction of the wave k̂ and z0 is sthe

lower limit of the integration integral. In the right-hand side of equation

(2.35), the exponential in the second term gives a significant contribution

when the real part of the exponent is smaller than 1. If Im
(∫ z

z1
gjk (z′) dz′

)
�

Re
(∫ z

z1
gjk (z′) dz′

)
or, for a homogeneous medium, ω (nj − nk) /c� (αj + αk) /2,

the integral for j 6= k is suppressed with respect to that for j = k because of

the rapidly oscillating factor. For circular polarization modes, this condition

is called large Faraday depolarization. In this case, equation (2.31) can be

written as (
k̂ · ∇

)
Rjk = −gjkRjk + Sjjδjk , (2.36)

where the non-diagonal elements of the above equation are damped out over

a distance ∼ 2/(αj + αk). Then, equation (2.36) becomes(
k̂ · ∇

)
Ijν (k) =ρκabsj (k)

Bν
2
− ρκtotj (k) Iν (k)

+ ρ
∑
j=1,2

∫
dΩ′

dκs
(
k′i → kj

)
dΩ

Iiν
(
k′
)
, (2.37)

where κabsj is the absorption opacity, dκs/dΩ is the differential opacity

for scattering from mode i in direction k′ to mode j in direction k and

κtotj = κabsj + κsj is the total opacity (see Ho & Lai, 2001). In plane-parallel

approximation, equation (2.37) becomes

µ
∂Ijν (k)

∂τ
=
κtotj (k)

κs0
Ijν (k)−

κabsj (k)

κs0

Bν
2

− 1

κs0

∑
i=1,2

∫
dΩ′

dκs
(
k′i → kj

)
dΩ

Iiν
(
k′
)
, (2.38)

where µ = k̂ · ẑ = cos θ, dτ = −ρks0dz is the infinitesimal Thomson opti-

cal depth, κs0 = σTne/ρ is the Thomson scattering opacity and σT is the

Thomson cross section. In order to solve the radiative transfer equation, it

is convenient to introduce the symmetric and the anti-symmetric part of the
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specific intensity Iν with respect to µ

ijν (k) =
1

2

[
Ijν (k) + Ijν (−k)

]
(2.39)

f jν (k) =
1

2

[
Ijν (k)− Ijν (−k)

]
, (2.40)

where µ ≥ 0. From equation (2.38), it is possible to write the radiative

transfer equation in terms of ijν and f jν

f jν (k) = µ
∂ijν (k)

∂τν
(2.41)

µ2
∂2ijν (k)

∂τ2ν
= ijν (k)−

κabsj (k)

ktotj (k)

Bν
2

− 2

κtotj (k)

∑
i=1,2

∫
µ≥0

dΩ′
dκs (k′i → kj)

dΩ
iiν
(
k′
)
. (2.42)

The reflection symmetry of the opacity is used to derive the above equations

(see Ho & Lai, 2001). The boundary conditions for (2.42) are (see Mihalas,

1978)

µ
∂ijν
∂τν

= ijν at τν = 0 (2.43)

µ
∂ijν
∂τν

+ ijν =
1

2

(
µ
∂Bν
∂τν

+Bν

)
at τν →∞ . (2.44)

The integration of equation (2.37) over the solid angle gives

∇ · Fj
ν (k) =ρ

∫
dΩκabsj (k)

Bν
2
− ρ

∫
dΩκtotj (k) Ijν (k)

− ρ
∑
i=1,2

∫
dΩ

∫
dΩ′

dκs (k′i → kj)

dΩ
Iiν
(
k′
)

(2.45)

In order to derive the radiative transfer equations in diffusion approximation,

it is convenient to get a formula for the energy flux. Multiplying equation

(2.37) by a factor −k/ρκtotj (k) and integrating over the solid angle, one

obtains

Fj
ν = −

∫
dΩ

1

ρκtotj (k)
k (k · ∇) Ijν (k) , (2.46)

exploiting the reflection symmetry. In the diffusion limit the specific in-

tensity is approximated as Ijν ' (c/4π)
[
ujν + (3/c) k · Fj

ν

]
, where ujν =
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(4π/c)J jν . Using the fact that ∇ujν =
(
∂ujν/∂z

)
ez and that the opacity

depends on µB = k̂ · B̂ = cos θB, equation (2.46) becomes

Fj
ν ∼ −c

∂ujν
∂z

(
l
‖
j cos ΘBB̂ + l⊥j sin ΘBB̂⊥

)
, (2.47)

where B̂⊥ is a unit vector perpendicular to be B which lies on the plane of

B̂ and ez, ΘB is the angle between ez and B, l
‖
j and l⊥j are the angle-average

mean free path parallel and perpendicular respectively to the magnetic field

l
‖
j =

∫ 1

0
dµB

µ2B
ρκtotj (µB)

(2.48)

l⊥j =

∫ 1

0
dµB

1− µ2B
ρκtotj (µB)

. (2.49)

Along ez the average mean free path is

lj = l
‖
j cos2 ΘB + l⊥j sin2 ΘB (2.50)

and the specific flux is

F jν,z ∼ −c lj
∂ujν
∂z

. (2.51)

From equation (2.45), it is possible to obtain the two radiation transport

equations in the diffusion approximation inserting the approximated formula

for intensity and the energy flux

∂

∂τ

(
lj
l0

∂ujν
∂τ

)
=
Kabs
j

κs

(
ujν −

uPν
2

)
+
Ks

21

κs
(
ujν − u3−jν

)
, (2.52)

where uPν = (4π/c)Bν is the blackbody energy density, l0 = (neσT )−1 is the

mean free path before a Thomson scattering occurs and

Kabs
j =

1

4π

∫
dΩκabsj (k) (2.53)

Ktot
j =

1

4π

∫
dΩκtotj (k) (2.54)

Ks
ij =

1

4π

∫
dΩκsij (k) . (2.55)
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The boundary conditions are

lj
l0

∂ujν
∂τ

=
ujν
2

at τ = 0 (2.56)

∂ujν
∂τ

+ ujν =
1

2

(
∂uPν
∂τ

+ uPν

)
at τ →∞ . (2.57)
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Chapter 3

Neutron Star atmosphere

model

Thermal radiation from the NS surface provides important information

about these compact objects. Observations of the thermal surface emis-

sion from NSs allow the direct measurement of fundamental NS properties,

such as their effective temperatures, their atmospheric abundances and their

surface gravity. The first NS atmosphere model involving realistic opacities

was developed by Romani (1987) using atomic data from Los Alamos Opac-

ity Library (Huebner et al., 1977). Following works, such as Rajagopal &

Romani (1996), Zavlin et al. (1996) or Gänsicke et al. (2002), include dif-

ferent atomic data released from OPAL (Iglesias & Rogers, 1992) or OP

project (Seaton et al., 1994).

The atmosphere model is built under the following assumptions.

Assumption 1 : plane-parallel geometry. In the case of NSs, the at-

mosphere scale height, h . 10 cm, is very small compared to the radius,

R ∼ 10 km, hence the curvature is negligible.

Assumption 2 : hydrostatic equilibrium.

Assumption 3 : radiative equilibrium. The atmosphere does not contain

sources of energy.

Assumption 4 : local thermal equilibrium (LTE).

This chapter is divided into three main topics. In section 3.1 the impli-

cation of radiative equilibrium is discussed. In section 3.2 and 3.3 the grey

atmosphere and the Lucy-Unsöld correction procedure, which are necessary

for the construction of the atmosphere model, are introduced. In section 3.4

25
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the full theoretical model is presented.

3.1 Radiative equilibrium

Energy can be trasported either though the radiative channel or through

the convective one. When the energy is transported only by the radiative

mode, one talks about radiative equilibrium. Analogously when energy is

transferred only by convective mode, one talks about convective equilibrium.

The radiative equilibrium has as a consequence that the total energy flux is

constant. In order to show this result, one can integrate equation (2.8) over

the solid angle, obtaining

4π

c

∂Jν (r, t)

∂t
+∇ · Fν (r, t)

=

∫
4π

[ην (r,n, t)− αν (r,n, t) Iν (r,n, t)] dΩ . (3.1)

The integration of equation (3.1) over the frequencies gives the energy equa-

tion for a radiation field

∂ER (r, t)

∂t
+∇ · F (r, t)

=

∫ ∞
0

∫
4π

[ην (r,n, t)− αν (r,n, t) Iν (r,n, t)] dΩ dν , (3.2)

where ER is the radiation energy density. The previous equation has a simple

physical interpretation: the time rate of change of radiation energy is equal

to the difference between the total energy emitted and absorbed by the

medium. If the emission and absorption coefficients are angle independent,

then equation (3.2) becomes

∂ER (r, t)

∂t
+∇ · F (r, t) = 4π

∫ ∞
0

[ην (r, t)− αν (r, t) Jν (r,n, t)] dν . (3.3)

Assuming that the total emission and absorption coefficients are angle-

independent implies:∫ ∞
0

dν

∫
4π
dΩαν (r) Iν (r) = 4π

∫ ∞
0

dν αν (r) Jν (r) (3.4)∫ ∞
0

dν

∫
4π
dΩ ην (r) = 4π

∫ ∞
0

dν αν (r) Sν (r) , (3.5)
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where in equation (3.5) the expression of the source function Sν = ην/αν

was used. The radiative equilibrium means that the total energy emitted is

equal to the total energy absorbed in a given volume dV and in the time dt;

thus at each depth in the atmosphere

4π

∫ ∞
0

dν ην (r) = 4π

∫ ∞
0

dν αν (r) Jν (r) (3.6)

4π

∫ ∞
0

dν [ην (r)− αν (r) Jν (r)] = 0 (3.7)

4π

∫ ∞
0

dν αν (r) [Sν (r)− Jν (r)] = 0 . (3.8)

Inserting equation (3.7) in the expression (3.3), the implication of radiative

equilibrium yields

∇ · F = 0 , (3.9)

if the radiation field is time-independent. Equation (3.9) means that the

total flux is constant.

Due to its invariance, the total flux can be used as a parameter that de-

scribes the atmosphere. An equivalent quantity often employed is the effec-

tive temperature Teff , i.e. the temperature of the atmosphere if radiation

were planckian

F = Feff =

∫ ∞
0

dν Fν = σSBT
4
eff . (3.10)

3.2 Grey Atmosphere

In a grey atmosphere the monochromatic opacity kν = αν/ρ and the emis-

sivity εν = ην/ρ of the material that composes the atmosphere are assumed

to be independent on the frequency:, i.e. kν = k and εν = ε. The stan-

dard planar (assumption 1 ) equation of transfer (2.14) integrated over the

frequencies gives

µ
∂I

∂τ
= I − S . (3.11)

In the following the quantities without the subscript ν indicate frequency-

integrated quantities, e.g. I =
∫
dνIν and S =

∫
dνSν . From the assumption

3, equation (3.8) implies the equality between the source function and the
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mean intensity. Therefore equation (3.11) becomes

µ
∂I

∂τ
= I − J , (3.12)

the formal solution of which is

J (τ) =
1

2

∫ ∞
0

dt J (t)E1 (|t− τ |) . (3.13)

Kirchhoff’s theorem ensures that S = B if the atmosphere is in LTE (as-

sumption 4 ) . This implies

J (τ) = S (τ) = B (τ) =
σSB T (τ)4

π
. (3.14)

Integrating equation (3.11) over µ yields

dH

dτ
= J − S , (3.15)

where H is the first moment of the specific intensity, defined in (2.2). From

assumption 3, one knows that the total flux, i.e. the first moment of the

intensity, is constant at each depth in the atmosphere. From equation (3.15)

one finds the same result. Moreover multiplying equation (3.11) by an extra

factor µ and integrating over µ gives a differential equation for the second

moment of the specific intensity K (defined in equation 2.3)

dK

dτ
= H . (3.16)

Upon integration, the previous expression yields

K = H τ + C = H (τ + q) , (3.17)

where C is a constant of integration and q = C/H. In general q is a function

of τ and it is called Hopf function. If the specific intensity is isotropic the flux

of momentum can be written in terms of the mean intensity, p = (4π/3c) J .

From p = (4π/c)K it is possible to obtain a relation between K and the

Planck’s law

K =
1

3
J =

1

3
B . (3.18)
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By substituting equation (3.18) in equation (3.17) one obtains

B =
3

4π
Feff (τ + q) (3.19)

and it is possible to derive the temperature profile using the relations

B =
σSB T (τ)4

π
, Feff = σSB T

4
eff . (3.20)

Therefore the temperature profile is given by

T (τ)4 =
3

4
T 4
eff (τ + q) . (3.21)

Then using the formal solution (2.21), the specific intensity at τ = 0 turns

out to be

I (τ = 0, µ) =
3

4π
Feff (µ+ q) , (3.22)

where the source function S has been replaced with B using the equation

(3.19). Using the definition of flux, the previous result gives

Feff = 2π

∫ 1

−1
I (τ = 0, µ) µdµ

= Feff

(
1

2
+

3

4
q

)
(3.23)

and solving this equation the value of q can be found

q =
2

3
. (3.24)

Finally, the temperature profile of a grey atmosphere is given by

T (τ)4 =
3

4
T 4
eff

(
τ +

2

3

)
. (3.25)

The behaviour of T as a function of the optical depth is shown in Figure 3.1.

At small values of τ the temperature is almost constant while at high values

it goes as τ1/4. Assumption 3, radiative equilibrium, sets boundaries to the

effective temperature. In fact if the effective temperature is sufficiently high,

then chemical elements that compose the atmosphere would be burnt and

then there would be another source of energy, e.g. in the case of hydrogen

atmosphere at log Teff [K] = 6.5 (blue line in Figure 3.25), hydrogen would
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Figure 3.1: Temperature profile as a function of the optical depth for differ-
ent values of the effective temperature Teff .

be burnt at a temperature ∼ 107 K, which is reached at τ ∼ 100.

3.3 The correction procedure

One of the methods used to solve the transfer equation is through an it-

erative scheme, which implies the construction of a correction procedure.

One makes a first initial guess, then computes the results through which the

corrections are re-calculated. The results are re-computed and so on until

convergence, which occurs when radiative equilibrium is reached. In this

thesis the solution of the transfer equation starts from the approximation

of a grey atmosphere which is clearly incorrect because the atmosphere is

non-grey. This approximation involves the temperature profile, so the cor-

rection procedure has to be written for the temperature. In this section two

procedures will be presented: the Unsöld procedure and the Lucy-Unsöld

procedure. The first one considers the opacity and the emissivity of the ma-

terial as independent from the frequency (grey case) while the second one is

a generalization to the non-grey case.
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3.3.1 The Unsöld procedure

The basic idea is to start from an initial estimate of the source function

S (τ) = B (τ), for which the radiative equilibrium is not satisfied, and to

derive a perturbation equation for ∆B (τ) from which the perturbation equa-

tion for the temperature can be computed. If the flux is calculated from the

initial guess B (τ), it will not be exactly constant but it will rather depend

on the optical depth, unless B (τ) is the exact solution to the problem. In

general the solution of equation (3.16) is

K (τ) =

∫ τ

0
H
(
τ ′
)
dτ ′ + C , (3.26)

where C = K (0) is the integration constant. Considering the relation

J (τ) = 3K (τ) and taking C in such a way that 3C = J (0) = 2H (0),

it is possible to obtain an equation for the mean intensity

J (τ) = 3

∫ τ

0
H
(
τ ′
)
dτ ′ + 2H (0) , (3.27)

which can be inserted in the following equation

B (τ) = J (τ)− dH (τ)

dτ
(3.28)

obtaining

B (τ) = 3

∫ τ

0
H
(
τ ′
)
dτ ′ + 2H (0)− dH (τ)

dτ
. (3.29)

Then, introducing the correction to the source function ∆B (τ), if the flux

computed from the new source function B (τ) + ∆B (τ) is constant one gets

B (τ) + ∆B (τ) = 3

∫ τ

0
Heff dτ

′ + 2Heff . (3.30)

Subtracting (3.29) from (3.30) the correction ∆B (τ) is given by

∆B (τ) = 3

∫ τ

0
∆H

(
τ ′
)
dτ ′ + 2∆H (τ)− d∆H (τ)

dτ
, (3.31)

where ∆H (τ) = Heff −H (τ). Equation (3.31) can be written as a pertur-

bation equation for the temperature profile with the help of the following
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relations

∆B (τ) =
4σSB
π

T (τ)3 ∆T (τ) , (3.32)

H (τ) =
1

4π
F (τ) . (3.33)

In this way the perturbation equation for the temperature profile turns out

to be

∆T (τ) =
1

16σSB T (τ)3

[
3

∫ τ

0
∆F

(
τ ′
)
dτ ′

+ 2 ∆F (0)− d∆F (τ)

dτ

]
, (3.34)

where ∆F (τ) = Feff − F (τ).

3.3.2 The Lucy-Unsöld procedure

The procedure presented in the previous section can be generalized to the

case in which the opacity and the emissivity depend on the frequency. The

correction procedure which follows from this consideration is called Lucy-

Unsöld procedure. The equation, obtained by dividing equation (2.9) by the

Rosseland mean opacity κR = αR/ρ, is

µ
dIν
dτR

=
κν
κR

(Iν −Bν) , (3.35)

where τR is the Rosseland mean optical depth and dτR = −αRdz. The

integration over µ gives

dHν

dτR
=
κν
κR

Jν −
κν
κR

Bν . (3.36)

Integrating the previous expression over the frequencies, one obtains

B =
κJ
κP

J − κR
κP

dH

dτR
. (3.37)

Here

κJ (τR) =

∫∞
0 dνJν (τR) κν (τR)

J (τR)
(3.38)
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is the absorption mean opacity and

κP (τR) =

∫∞
0 dνBν (τR) κν (τR)

B (τR)
(3.39)

is the Planck mean opacity. Integrating equation (3.35), multiplied by an

extra factor µ, over µ gives a differential equation for Kν

dKν

dτR
=
κν
κR

Hν . (3.40)

Upon a further integration over frequencies, one gets

dK (τR)

dτR
=
κF
κR

H (τR) , (3.41)

where

κF (τR) =

∫∞
0 dνFν (τν)κν (τR)

F (τR)
. (3.42)

is the flux mean opacity. Solving equation (3.41) yields

K (τR) =

∫ τR

0

κF (τ ′)

κR (τ ′)
H
(
τ ′
)
dτ ′ + C . (3.43)

From the relation J = 3K and the replacement of C with 3C = J (0) =

2H (0), equation (3.37) becomes

B (τR) =
κJ (τR)

κP (τR)

[
3

∫ τR

0

κF (τ ′)

κR (τ ′)
H
(
τ ′
)
dτ ′

+ 2H (0)

]
− κR (τR)

κP (τR)

dH (τR)

dτR
. (3.44)

Following the same scheme presented in the previous subsection, the equa-

tion for the temperature correction can be obtained from equation (3.44),

∆T (τR) =
1

16σR T (τR)3

{
κJ (τR)

κP (τR)

[
3

∫ τR

0

κF (τ ′)

κR (τ ′)
∆F

(
τ ′
)
dτ ′

+ 2∆F (0)

]
− κR (τR)

κP (τR)

d∆F (τ)

dτR

}
. (3.45)
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3.4 Theoretical model for the atmosphere

The following model is valid when the magnetic effects can be neglected,

which occurs at B . 109
(
T/106 K

)
G as calculated in chapter 1. The

independent variable is the Rosseland optical depth, τR. Calculations of

the atmospheric model can be divided into two parts. In the first one the

structure of the atmosphere is calculated solving the equation of hydrostatic

equilibrium with respect to τR. In the second one the transfer equation

is solved. The calculation starts from the temperature profile of a grey

atmosphere (equation 3.25) which is corrected through the Lucy-Unsöld

procedure. The compositions used are pure hydrogen, pure helium, pure

carbon, pure oxygen and pure iron. The expression for the opacity has

been chosen depending on whether the atmospheric medium is completely

ionized or not. In order to disentangle between these two different cases,

it is necessary to compare typical particle energy (which coincides with the

thermal energy) kB Teff with the total binding energy Eb = Z2 13.6 eV (see

Zavlin et al., 1996). If one considers hydrogen, then kBTeff � 13.6 eV

for all the effective temperatures considered in this thesis (log Teff [K] =

5.5÷ 6.25). If the atmosphere is composed by helium, then it is completely

ionized only for effective temperatures higher than log Teff [K] = 5.75. In

the cases of pure carbon, pure oxygen and pure iron the atmosphere can

not be considered completely ionized. For a completely ionized atmosphere,

the interactions between photon and matter are governed by the free-free

process, for which the monochromatic free-free opacity is (see Rybicki &

Lightman, 2008, for further details)

κffν = 3× 108T−1/2Z2neni
ρ

ν−3
(

1− e−hν/kBT
)
ḡff cm2 g−1 (3.46)

and the Rosseland opacity is

κffR = 1.7× 10−25 T−7/2 Z2neni
ρ

ḡR cm2 g−1 , (3.47)

where Z is the atomic number, ne is the electron density, ni is the ionic

density, ρ is the mass density of the atmosphere, ḡff and ḡR are the Gaunt

factors. Also scattering effects need to be taken into account. The electron

scattering opacity is κs = σT ne/ρ ∼ 0.1 cm2g−1 where σT is the Thomson

cross section. At energies close to the maximum of the blackbody, the
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absorptive opacity is ∼ 103−105 cm2 g−1, so that scattering is negligible

and scattering effects in the monochromatic opacity can be treated as a

perturbation approximated as (see Romani, 1987)

κν = κffν +

(
κffν

κffν + κs

)1/2

κs , (3.48)

where the term (κffν /(κffν +κs))
1/2 corresponds to the number of scatterings

before the photon is absorbed (see Rybicki & Lightman, 2008). For a par-

tially ionized atmosphere it is necessary to take into account bound-bound

and bound-free processes. The OP project takes these effects into account

for the opacity computation (see Seaton et al., 1994).

Atmospheric structure

The equation of state used in this work is that for a perfect gas, P =

(ne + ni) kBT , where P is the pressure. For a typical NS atmosphere, the

density is at most of the order of 10 g cm−3 (see Zavlin et al., 1996) which

implies that the considered gas is non degenerate. For the energies consid-

ered (up to 10 keV), the gas is non relativistic, ρ = mene + mini ' mini

: in fact the electron rest energy is 511 keV, which is much bigger than

the thermal energy kBT . The structure of the atmosphere is obtained by

integrating the hydrostatic equilibrium equation

dP (τR)

dτR
=

g

kR (T (τR) , ρ (τR))
(3.49)

starting from the surface, where P (τR = 0) = 0. In the case of a completely

ionized atmosphere it is possible to solve equation (3.49) analytically when

the temperature profile corresponds to the grey temperature. Using the

expression of density, the perfect gas relation and ne = Z ni the expression

for the Rosseland opacity can be re-written as

κR (τR) = 1.7× 10−25
Z3 P (τR)

Amp kB T (τR)9/2 (Z + 1)
ḡR . (3.50)
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Using equation (3.49) and (3.25), equation (3.49) becomes

dP

dτR
=
g Amp kB T

9/2
eff (Z + 1)

2.3× 10−25 Z3 ḡR

(
τR +

2

3

)9/8

P (τR)
. (3.51)

Equation (3.51) can be solved for separation of variables, giving

P (τR) =

√√√√g Amp kB T
9/2
eff (Z + 1)

2.5× 10−25 Z3 ḡR

[(
τR +

2

3

)17/8

−
(

2

3

)17/8
]
. (3.52)

If the atmosphere is not completely ionized or if the temperature profile does

not follow the grey temperature then equation (3.49) has to be solved using

a numerical method. Once determined the pressure with respect to τR then

ne (τR) and ni (τR) are known.

Radiation transfer

The emergent spectra are computed using the Schwarzschild-Milne equation

Fν (τν) = 2π

[∫ ∞
τν

dt Sν (t)E2 (t− τν)−
∫ τν

0
dt Sν (t) E2 (τν − t)

]
, (3.53)

where, due to the assumption of LTE (assumption 4 ), Sν (t) = Bν (T (τR (t))).

The monochromatic optical depth is computed as a function of the Rosse-

land optical depth τR solving the differential equation

dτν
dτR

=
kν (τR)

kR (τR)
, (3.54)

which has been obtained by the ratio between dτν = −ρkνdz and dτR =

−ρkRdz. The integration of equation (3.53) over the frequencies gives the

total flux F (τR) which in radiative equilibrium should be constant at Feff =

σSBT
4
eff . The departures from constancy ∆F = Feff − F (τR) are used to

estimate the correction to the temperature using the Lucy-Unsöld procedure

(equation 3.45).

The new temperature is used to re-compute the atmospheric structure, the

flux and the corrections. This procedure is iterated until the radiative equi-

librium is reached.
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3.5 The effects of magnetic field

For the sake of completeness, here the effects of magnetic effects are taken

into account. However, in the next chapter only the model implementation

in the presence of weak magnetic fields will be discussed. The substantial

difference with respect to the non-magnetic atmosphere model is the fact

that the magnetic field makes the medium anisotropic. This implies that

the radiative transfer should be solved through two equations, for the or-

dinary and the extraordinary photons. The total flux, which in radiative

equilibrium has to be equal to σSB T
4
eff , is obtained by the integration of

equation (2.51)

F ' −c
∫
dν

(
l1
∂u1ν
∂τ

+ l2
∂u2ν
∂τ

)
neσT = σSBT

4
eff . (3.55)

As in non-magnetic case, the theoretical model can be divided into two

parts: (i) solution of the atmospheric structure; (ii) solution of the transfer

equations. In this case the independent variable is the Thomson optical

depth τ .

The structure of the atmosphere and therefore the numerical densities can be

computed by merging the equation of state of an ideal gas, P = (ne+ni)kBT ,

and the hydrostatic equilibrium condition:

dP

dz
= ρg =⇒ dP

dτ
=
mp g

σT
, (3.56)

whose solution is P = mp g τ/σT .

To solve the radiative transfer, the following equation is used

∂

∂τ

(
lj
l0

∂ujν
∂τ

)
=
Kabs
j

κs

(
ujν −

uPν
2

)
+
Ks

21

κs
(
ujν − u3−jν

)
(3.57)

and it is derived in section 2.4. The monochromatic flux is computed through

the formula

F jν,z ∼ −c lj
∂ujν
∂z

. (3.58)

which integrated over frequencies gives the total flux. The procedure to solve

the transfer equation is iterative. Starting from the approximation of grey

temperature (equation (3.25)), the correction temperature can be obtained
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through the equation (see Shibanov et al., 1992)

∆T = − f

df/dT
; f =

∫
dν
∑
j

κj

(
Jj −

1

2
Bν

)
. (3.59)

The iterative process terminates when radiative equilibrium is reached.



Chapter 4

Numerical simulations

In the following chapter the numerical implementation of the atmosphere

model described in section 4.4 is discussed. In the first section the imple-

mentation of the code is exposed, while the simulation results are discussed

in the following ones.

4.1 The code

In order to simulate the properties of radiation emitted from a NS and

reprocessed in its atmospheric layer, a Fortran 95 code has been developed.

To obtain the emergent flux it is necessary to compute the opacities which

are related to the quantities of the atmosphere medium, i.e. its electron

numerical density and temperature. The expressions of the opacities depend

on the complete or partial ionization of the atmosphere, discussed in details

in section 3.4. In the fully ionized case the opacity is given by

κν = κffν +

(
κffν

κffν + κs

)1/2

κs , (4.1)

while in the other case the opacity is taken from the OP project. As it will

be explained in the following, the second case sets numerical boundaries on

the independent variables, which are the Rosseland optical depth and the

photon energy. For this reason, in the following, the treatment and the code

is divided in full and partial ionized atmosphere.

39
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4.1.1 Fully ionized atmosphere

The independent variables considered in the code are:

- the Rosseland optical depth τR, defined over a discrete grid composed

by Nτ = 100 logarithmically spaced points between 10−3 and 500;

- the photon energy (written in units of kBTeff ), defined over a discrete

grid composed by NE = 80 logarithmically spaced points between 0.1

and 50.

The structure of the atmosphere is solved by imposing the hydrostatic equi-

librium condition:
dP

dτR
=

g

κR (τR)
. (4.2)

The numerical simulation starts from an approximate grey atmosphere with

a temperature profile T (τR) = Teff [3/4 (τR + 2/3)]1/4 and equation (4.2)

is analytically solved (the solution is reported in equation 3.52). When the

correction of the temperature is applied, the numerical solution is performed

using a Runge-Kutta-Merson method, which requires as input the initial

condition (τR1 , P (τR1)), where τR1 = 0.001 is the first value of the grid, and

the relative accuracy (set to 10−3); the output of the routine is the value of

the pressure at the desired τR. A reasonable initial condition, P (τR1) is the

value of the pressure computed in the grey approximation.

To solve the radiative transfer, it is necessary to compute the value of the

monochromatic optical depth τν as a function of τR, through the solution of

equation
dτν (τR)

dτR
=
κν (τR)

κR (τR)
. (4.3)

Also this equation is numerically solved through the Runge-Kutta-Merson

routine with initial condition τν(τR1) = 0 for each value of energy and the

relative accuracy is chosen as 0.001. Once determined the monochromatic

optical depth, it is possible to solve the expression for the energy flux:

Fν (τν) = 2π

[∫ ∞
τν

dtBν (T (τR (t)))E2 (t− τν)

−
∫ τν

0
dtBν (T (τR (t))) E2 (τν − t)

]
. (4.4)
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The integrals of equation (4.4) are numerically solved through the Romberg

integration method, which requires as input the integrating function and

the upper and lower bounds. The upper bound of the first integral is set to

τν + 20 because the contributions to the integral for values of |t − τν | ≥ 20

are negligible. For the same reason the lower bound of the second integral

is chosen as the maximum value between τν − 20 and 0. The computation

of the total flux F (τR) =
∫
dνFν (τν) is performed through the Piecewise

Cubic Hermite Interpolant Package (PCHIP, see Fritsch, 2015, and reference

therein) which allows the integral calculation with discrete values. Then, the

temperature correction procedure can be computed through the total flux

expression

∆T (τRi) =
1

16σR T (τRi)
3

{
3

∫ τRi

τR1

κF (τ ′)

κR (τ ′)
∆F

(
τ ′
)
dτ ′

+ 2∆F (τR1)− κR (τRi)

κP (τRi)

d∆F (τRi)

dτRi

}
, (4.5)

where the Planck and flux opacities are defined respectively in equation

(3.39) and (3.42). The quantities κP , κF and the integral in equation (4.5)

are computed exploiting the PCHIP code. The corrected temperature al-

lows to iterate the procedure to solve the atmospheric structure and to

re-compute the fluxes until radiative equilibrium is reached. In numeri-

cal simulations the convergence occurs when the relative maximum error,

max [∆F (τRi)] /Feff , is ∼ 1%. Figure 4.1 shows the convergence of the

iterative procedure with respect to the number of iteration in the case of a

hydrogen atmosphere at log Teff [K] = 6. The first iteration (red line) has

a relative average error,
∑

∆F (τRi) /NτFeff , of ∼ 20% with a maximum

of 30%. The last iteration (light-blue line), when radiative equilibrium is

reached, has an average error . 5‰ with a maximum error ∼ 1%.

4.1.2 Partially ionized atmosphere

In this case, the monochromatic opacities are taken from the OP project, as

consequence, the independent variables are subjected to numerical bound-

aries. These monochromatic opacities rely on different energy ranges at

different temperatures T and electronic numerical densities ne. This implies

that at a fixed energy it is not guaranteed the existence of the corresponding
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Figure 4.1: Total flux as a function of the optical depth for different it-
erations. This plot shows the convergence of the iterative procedure with
respect to the number of iterations. The first iteration (red line) has a rela-
tive average error ∼ 20% with a maximum of 30% while the second iteration
(green line) has an average error ∼ 7% with a maximum of ∼ 20%. The sev-
enth iteration (blue line) is affected by a definitive lower error: its maximum
error is ∼ 3%. The last iteration (light blue line), at which convergence is
reached, has an average error . 5‰ and a maximum error which is lower
than 1%.
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opacity κν for all combinations of T and ne ( i.e. for all τR); therefore, from

the relation (4.3), neither τν can be computed for all the values of τR and

vice versa. The above consideration introduces problems in the numerical

integration of equation (4.4) where τν is the integration variable on which

τR (τν) depends. If the energy range is such that τν exists for all energies

and for all τRi , the numerical integration can be computed without any type

of complication.

To find the energy range which satisfies this constraint it is necessary to

proceed in the following way. The energy range over which the OP project

monochromatic opacities exist spans from 0.1 and 20 in units of kBT (τR).

As a consequence the energy range is monotonically increasing with τR, be-

ing temperature monotonically increasing with respect to τR. The desired

energy range is then obtained by considering the intersection between the

energy ranges associated to the minimum and the maximum value of the

Rosseland optical depth grid. The resulting energy range is sampled in 80

energy points logarithmically spaced. The Rosseland optical depth is defined

over a discrete grid composed by 100 points, also logarithmically spaced, be-

tween 10−3 and 50.

In order to solve equation (4.2) the initial value of the pressure P (τR1)

needs to be computed in a different way with respect to the fully ionized

case. Since the interval 0− τR1 is small, the derivative of the pressure, given

by equation (4.2), is considered as constant (see Gänsicke et al., 2002). In

this way the initial condition is P
(
τR1 = 10−3

)
= g/κR (τR1) τR1 . The other

numerical computations are the same of the fully ionized case.

4.2 Simulation results

In the following the results of the atmosphere model for hydrogen, helium,

carbon, oxygen and iron compositions are presented and discussed. The

model is applied at different effective temperatures, log Teff [K] = 5.5, 5.75,

6 and 6.25 for a surface gravity g14 = g/(1014 cm s−2) = 2.43 (see Zavlin et

al., 1996). Then, the comparisons between different chemical compositions

and different surface gravities are shown. The aim is to highlight how the

chemical composition and the surface gravity influence the behaviour of the

NS emergent spectrum.
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Figure 4.2: Emergent spectra for a hydrogen atmosphere at different ef-
fective temperatures (numbers labelling the curves give log Teff [K]). The
blackbody spectra are also shown for comparison (blue lines).

4.2.1 Hydrogen atmosphere

As already mentioned, a hydrogen NS atmosphere is completely ionized

at all the effective temperatures considered. Figure 4.2 shows the emer-

gent spectra at different effective temperatures. It can be noted that the

spectra differ substantially from the blackbody spectrum (blue line) at the

corresponding temperature, especially at high energies where the simulated

spectra are harder than the corresponding blackbody spectra. At low en-

ergies the flux have the same slope of the blackbody (Rayleigh-Jeans tail)

but with lower values. The monochromatic opacity, shown in Figure 4.3,

has a decreasing behaviour with the photon energy, with a difference of

∼ 6 orders of magnitude between the values assumed at low energies (0.01

keV) and at high energies (1 keV). This is essentially explained by the fact

that free-free opacity follows the Kramers’ law, kν ∼ ν−3. According to the

behaviour reported in Figure 4.3 one can expect that high-energy photons

will escape the atmosphere more easily than low-energy ones, which instead

remain trapped.
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4.2.2 Helium atmosphere

In Figure 4.4 the simulated spectra of a helium atmosphere at different

effective temperatures are shown, compared with the corresponding black-

body distributions. As in the case of the hydrogen atmosphere, a hard

excess appears with respect to the blackbody at high photon energies and

the spectra follow the Rayleigh-Jeans behaviour at low energies. Similarly,

the behaviour of the spectra can be explained observing the monochromatic

opacities, which are shown in Figure 4.6 (right panel). The spectra in Fig-

ure 4.4 are simulated in the complete ionization hyphothesis at all the ef-

fective temperatures, although it is not correct for temperatures lower than

log Teff [K] = 6. Figure 4.5 shows a comparison between the simulated spec-

tra with a complete ionization (green lines) and a partial ionization (red

lines) at effective temperatures log Teff [K] = 5.5 and 5.75. The main differ-

ence between the two cases is the absorption feature that occurs in the partial

ionized atmosphere at around 30 eV. In particular for log Teff [K] = 5.5, the

latter can be understood looking at the opacity represented in Figure 4.6

(left panel). At around 30 eV the opacity suddenly increases and there-

fore a greater number of photons at those energies remain trapped in the

atmosphere.

At large optical depths, the Rosseland approximation

Fν (z) = −4π

3

1

αν

∂Bν
∂T

dT

d z
(4.6)

is valid. Figure 4.7 shows how well the numerical simulation reproduces

the theoretical prediction for a hydrogen atmosphere (left panel) and for a

helium atmosphere (right panel) at log Teff [K] = 6.

4.2.3 Carbon, oxygen and iron atmosphere

For carbon, oxygen and iron compositions the atmosphere can not be treated

as completely ionized at the effective temperatures considered. In Figure

4.8 the simulated emergent spectra for a carbon atmosphere are shown.

The way in which the spectrum changes is different at different effective

temperatures. This is due to the fact that the monochromatic opacity has

a different profile at different temperatures as shown in Figure 4.9. The

flux behaviour can be explained observing the corresponding opacity, e.g.
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Figure 4.4: Same as in Fig. 4.2 for a completely ionized He atmosphere.
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Figure 4.5: Emergent spectra of a helium atmosphere at log Teff [K] =
5.5, 5.75. The red lines refer to models computed with the OP opacity and
the green ones to those computed with the free-free opacity.
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Figure 4.6: Monochromatic opacity plotted as a function of the photon
energy for helium. The left panel shows the OP monochromatic opacity at
log Teff [K] = 5.5 for which the helium is partially ionized while the right
panel shows the monochromatic opacity at log Teff [K] = 6 when helium is
completely ionized.
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Figure 4.7: Monochromatic flux plotted as a function of the photon energy
at high τR. In the left panel the atmospheres is composed by hydrogen
while in the right panel by helium. In both cases the effective temperature
is 106 K.
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Figure 4.8: Same as in Fig. 4.2 for a carbon atmosphere.
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Figure 4.9: Monochromatic opacity plotted as a function of the photon
energy for carbon. The left panel shows the opacity at log Teff [K] = 5.5
and the right panel at log Teff [K] = 6.

the simulated emergent spectrum at log Teff [K] = 5.5 shows an excess with

respect to the blackbody in the energy range of logE[keV] between −0.8 and

−0.6 while at logE[keV] ∼ −0.5 the flux suddenly falls down. Observing

the left panel of Figure 4.9 in the energy range logE[keV] between −0.8 and

−0.6 the monochromatic opacity decreases, thus a larger number of photons

can escape. At energies logE[keV] ∼ −0.5 the opacity rapidly increases,

therefore a lower number of photons can emerge. The same argument can

be applied for the flux at log Teff [K] = 6 observing the corresponding opacity

(right panel of Figure 4.9).

In Figure 4.10 the simulated emergent spectra for an oxygen atmosphere,

compared with the corresponding blackbody distributions, are shown. As

in the case of the carbon atmosphere, the behaviour of the flux can be

understood observing the corresponding opacities which are shown in Figure

4.11 at effective temperatures log Teff [K] = 5.5 and 6.

Figure 4.12 shows the simulated flux for an iron atmosphere. Except for the

flux at log Teff [K] = 5.5, the other fluxes of oxygen and iron atmospheres

follow closer the blackbody spectra.

Figure 4.13 shows the monochromatic opacity for iron taken from the OP

project file (left panel) and the monochromatic opacity used in the code

(right panel). For heavy elements one can expect that there are a lot of

absorption features. However this behaviour is not found in the simulated

spectra because the opacities used in the code are binned in 200 energy

points while they are binned in 104 points in the OP project files, showing
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Figure 4.10: Same as in Fig. 4.2 for an oxygen atmosphere.
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Figure 4.11: Monochromatic opacity plotted as a function of photon energy
for oxygen. The left panel shows the opacity at log Teff [K] = 5.5 and the
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Figure 4.12: Same as in Fig. 4.2 for an iron atmosphere.

more spectral features.

Figure 4.14 shows the emergent spectra for different chemical compositions

at two effective temperatures log Teff [K] = 5.5 (left panel) and 6 (right

panel). It can be noticed that the behaviour of the emergent spectra de-

pend strongly on chemical composition. The chemical composition affects

the monochromatic opacity. For light elements, where the atmosphere can

be considered completely ionized, the monochromatic free-free opacity fol-

lows the Kramers’ law (κν ∼ ν−3) at high energies which implies that a

great number of photons can emerge. For heavy elements, to compute the

monochromatic opacity, one needs to take into account, not only the free-

free term, but also the bound-free and the bound-bound terms (see Figure

4.9 and 4.13). This causes the opacity to have a more irregular shape but,

on average, it is flatter than the free-free one, which in turns means that the

spectrum follows a blackbody more closely (see Zavlin et al., 1996).

Figure 4.15 shows the simulated spectra for hydrogen (left panel) and iron

(right panel) at effective temperature log Teff [K] = 6, at different surface

gravities g14 = 1.18 (red line), 1.59 (green line) and 2.43 (blue line). The

spectra are almost the same, therefore the atmosphere model developed
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Figure 4.13: Monochromatic opacity plotted as a function of photon en-
ergy for an iron atmosphere at log Teff [K] = 6. The left panel shows the
monochromatic opacity with 104 energy points while the right panel shows
the monochromatic opacity with 200 points, used by the code.
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Figure 4.14: Emergent spectra for different chemical compositions. The left
panel shows the spectra computed at log Teff [K] = 5.5 while the right panel
at log Teff [K] = 6. The red lines correspond to an hydrogen atmosphere, the
green lines to a helium atmosphere, the blue lines to a carbon atmosphere,
the purple lines to an oxygen atmosphere and the black lines to an iron
atmosphere.
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Figure 4.15: Simulated spectra for hydrogen (left panel) and iron (right
panel) atmospheres for different values of the surface gravity: g14 = 1.18 (red
lines), 1.59 (green lines) and 2.53 (blue lines). The effective temperature is
set at 106 K.

seems to be independent from the surface gravity.
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Chapter 5

Conclusions

In this thesis the re-procession of NS surface radiation by a thin atmospheric

layer is studied. From the analysis of the spectra, it is possible to infer some

NS parameters, e.g. the effective temperature, the chemical composition of

the atmosphere and the surface gravity, therefore the ratio between mass

and radius.

The performed numerical simulations are based on a NS with low magnetic

field, B . 109 G, for which magnetic effects can be neglected.

The method used to solve the radiative transfer is based on an iterative

scheme starting from an approximated temperature profile. The procedure

is divided into two parts: in the first one the calculation of the atmospheric

structure is performed while in the second one the radiative transfer is com-

puted using the Schwarzschild-Milne relation. To complete an iteration, a

correction of the temperature through the Lucy-Unsöld formula is applied; a

new iteration starts computing the structure and the flux again, until the ra-

diative equilibrium is reached. In the code considered, this condition occurs

when the relative maximum error, max [∆F (τRi)] /Feff , is ∼ 1%. Figure

4.1 shows the convergence of the iterative procedure. At large Rosseland

optical depths, where Rosseland approximation holds, it is possible to test

the accordance between numerical simulation and the theoretical prediction

as shown in Figure 4.7.

Different ranges for the effective temperature (log Teff [K] = 5.5, 5.75, 6,

6.26) and the surface gravity (g14 = 1.18, 1.59, 2.43) have been explored,

while the atmosphere compositions considered have been hydrogen, helium,

carbon, oxygen and iron.

55
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It is possible to compare how the emergent spectrum changes when one of

the three parameters is not fixed.

Taking the surface gravity and the chemical composition fixed but varying

the effective temperature, one notes that, for light elements, e.g. hydrogen

and helium, the emergent spectrum does not change in its trend but only in

intensity. Comparing the simulated spectra with correspondent blackbody

distributions, it is possible to observe a hard excess at high photon ener-

gies as shown in Figures 4.2 and 4.4. For heavier elements the form of the

spectrum depends hardly on the effective temperature; in these cases the

simulated spectra follow closer the blackbody distributions with the pres-

ence of spectral features as shown in Figures 4.8, 4.10 and 4.12.

At different surface gravities the spectra remains almost the same, this shows

the independence of the model on the surface gravity values.

For different chemical compositions but at fixed g and Teff the spectra

change considerably, because of the bound-free and the bound-bound in-

teractions. The behaviour of the spectrum depends substantially on the

opacity: for light elements, for which the atmosphere is fully ionized, the in-

teractions are free-free and the opacity follows the Kramers’ law (κν ∼ ν−3),
producing the excesses in the spectra at high energies; for heavier elements,

the bound-free and the bound-bound interactions cause, as expected, the

opacity to have a more irregular shape but, on average, it is flatter than the

free-free one, which in turns means that the spectrum follows a blackbody

more closely.

This thesis is far from being a complete and exhaustive work on the NS

atmosphere. One of the possible improvements is to consider a more sophis-

ticated equations of state, e.g. solving the equation of ionization equilibrium.

Here the treatment about strongly magnetized atmospheres is discussed only

from a theoretical point of view, but future works will include the numerical

implementation.
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Schwarzschild, K., 1914, Über Diffusion und Absorption in der Sonnenat-
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