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Chapter 1

Introduction

There are several reasons why studying the stability properties of non supersymmetric Anti-
de Sitter (AdS) spaces deserves special interest. First, AdS geometries naturally emerge in the
context of string theory compactifications, here including M-theory. General stability arguments
can be drawn in the presence of supersymmetry, but the question is non trivial and still open
for the non supersymmetric case. However, it has been recently conjectured by Ooguri and
Vafa [1] that all non supersymmetric AdS vacua supported by fluxes are actually unstable. It
is hard to find counterexamples to their conjecture, since whenever stability is proved at the
perturbative level, by excluding the presence of negative modes that violate the Breitenlohner-
Freedman bound in the spectrum, there may still exist non perturbative mechanisms leading to
instabilities. As a matter of fact, there have been many proposals of non supersymmetric AdS
vacua, but none of them has been demonstrated to be fully stable against any possible decay
mechanism.

Secondly, AdS provides the specific background of gravitational theories in the most basic but
also best understood examples of the AdS/CFT correspondence, a conjectured duality between
theories of quantum gravity in d + 1 dimensions and quantum field theories without gravity
living on the d dimensional boundary. This can be regarded as one of the finest achievements
of string theory in the last decade, with consequences possibly going far beyond string theory
itself, since on the one hand it allows to compute quantum effects in a strongly coupled field
theory using a classical gravitational theory, and on the other hand it allows to tackle hard
quantum gravity problems within a more standard quantum field theory framework. However,
the conjecture by Ooguri and Vafa seems to put into question the holographic interpretation of
non supersymmetric AdS backgrounds as far as ordinary theories of gravity, that is with a finite
number of massless fields, are concerned. In other words, even though conformal field theories
without supersymmetry are known to exist, they would not admit a holographic dual of this
type if the conjecture turned out to be true, thus providing a more fundamental reason to the
lack of explicit examples of non supersymmetric AdS holography which is usually attributed to
technical difficulties. This would have a big impact on applications of the correspondence where
the interesting models are those without supersymmetry, such as those to condensed matter.

At this point, it is natural to ask why such a radical sounding claim about non supersym-
metric AdS vacua being unstable should be true. In order to better appreciate the general ideas
behind it, let us take a step back and introduce the so-called swampland program that has
become fairly popular among the string theory community in recent years and still represents
an active area of research. At present, we regard string theory as the most promising unifying
framework where quantum theory and Einstein’s gravity can be reconciled. Furthermore, the
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2 CHAPTER 1. INTRODUCTION

remarkably rich web of dualities between the various string theories suggests that the underlying
theory is essentially unique. In sharp contrast, but not in contradiction, with this uniqueness
is the existence of a vast landscape of string vacua, labelled by different choices of the com-
pactification parameters and describing inequivalent physics, possibly very different from that
of our observed universe. This is sometimes referred to as the vacuum selection problem. Huge
numbers of order 10100, or even 10272000, have appeared in recent attempts to make estimates
on the statistics of string vacua. Does it mean that everything is possible in string theory? Or
equivalently, that any consistent looking effective field theory of quantum gravity admits a string
theory UV completion? It has been argued that the answer to both questions is no and that
not all of these effective field theories can be consistently completed in the UV. In this picture,
the string landscape is surrounded by an even vaster sea of consistent looking, but ultimately in-
consistent effective field theories which resist an embedding in string theory and are dubbed the
swampland. In other words, we should expect the UV imprint of quantum gravity to manifest
itself at low energies, whence additional contraints on effective field theories are assumed. Up to
now, a number of criteria have been proposed to distinguish the landscape from the swampland.
They are mainly motivated by black hole physics and supported by known examples from string
theory.

One such swampland criterion is the Weak Gravity Conjecture (WGC), which was first
formulated in [2] and is based on the observation that gravity must always be the weakest force.
The basic statement of the WGC postulates the existence of a light charged particle whose mass,
in appropriate units, is less or equal than its charge,

M ≤ Q. (1.1)

It is natural to generalize the WGC to extended objects charged under (p+ 1)-form potentials,
called p-branes. That is, there should exist branes whose tension (energy per unit volume) is
less or equal than their charge density. In appropriate units,

T ≤ Q. (1.2)

In the aforementioned paper by Ooguri and Vafa [1], a stronger version of the WGC is proposed,
where the WGC bound is saturated if and only if the theory is supersymmetric and the states
are BPS. In particular, the strict inequality holds in the non supersymmetric case. Here comes
the connection with AdS instabilities, that can be understood as follows. The standard way in
which AdS geometry is obtained in holography is to put a large number of branes next to each
other in string theory and then take a near horizon limit. If the branes are BPS, they can be
moved around and made closer to each other without any cost in energy, since the gravitational
attraction and the gauge repulsion exactly compensate each other. In the non supersymmetric
case, due to the stronger WGC there exist branes with tension lower than the charge. The gauge
repulsion wins over the gravitational attraction, so the branes repel and fly apart, let alone can
be made coincident! It is interesting to observe how the strict WGC bound enters in some earlier
descriptions of brane nucleation in AdS [3], [4]. In this process, the nucleated brane expands
and reaches the AdS boundary in a finite time, thus reducing the flux of the geometry.

Brane nucleation is an example of a non perturbative mechanism leading to AdS instabilities,
but not the only one. Indeed, it can be cast in the more general context of the semi-classical
decay of vacua. It can be described as mediated by an instanton, a solution of the Euclidean
equations of motion interpolating between the initial and final states. The subsequent evolution
can be obtained by the analytic continuation of the instanton and the leading approximation to
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the decay rate is simply given by e−S , where S is the instanton action. These are all distinctive
features of instanton methods, whose application in a field theory context was pioneered by
Coleman et al. in a series of papers from the 1970s, namely [5] and [6] for the general theory
of false vacuum decay in flat space and [7] for the inclusion of gravity. The simplest example
where vacuum decay can be seen at work is in that of a single scalar field φ in Minkowski space,
with a potential V (φ) exhibiting two relative minima at different energies. The lower minimum
φT corresponds the the unique ground state of the quantum theory and is called a true vacuum,
as opposed to the false vacuum sitting at the higher minimum φF , which should be regarded
as a metastable state. Suppose to start with a homogeneous configuration where the scalar
field is everywhere at φF . Due to quantum effects, a region of approximate true vacuum, a
bubble with some finite radius R, can form in the false vacuum background. Then the bubble
expands, converting the false vacuum into true. This picture can be not only quantitatively,
but also qualitatively different when gravity is included. Indeed, gravitational effects can make
the radius R of the bubble at nucleation larger or smaller, and accordingly the decay rate is
suppressed or enhanced. In particular, they can stabilize the false vacuum.

An interesting semi-classical decay mode is provided by Witten’s bubble of nothing, which
demonstrates the instability of the Kaluza-Klein vacuum M4 × S1 [8]. This space is known
to be perturbatively stable against small fluctuations, since there are no tachyonic negative
modes in the spectrum. Therefore, it is interesting to look for non perturbative instabilities.
In Witten’s analysis, an instanton is constructed by analytical continuation of the five dimen-
sional Schwarzschild metric, which displays the correct asymptotically flat behaviour at infinity.
Furthermore, the regularity of the solution requires the Schwarzschild radius to coincide with
the radius of the Kaluza-Klein circle R. The analytical continuation of the instanton back to
Minkowski space describes an expanding bubble. The difference with conventional vacuum de-
cay is that now there is litterally nothing inside the bubble. This is possible thanks to the fifth
compact direction, which plays a crucial role in the whole construction. Indeed, the Kaluza-
Klein circle shrinks to zero at the bubble, thus allowing the geometry to terminate smoothly.
However, there is a way to save the Kaluza-Klein vacuum, by including fermions in the theory
and choosing periodic boundary conditions for the fermions on the Kaluza-Klein circle. Since
a collapsing circle is the boundary of a disk, which only admits anti-periodic fermions, the in-
stanton cannot carry the same spin structure as the Kaluza-Klein vacuum and Witten’s decay
mode is forbidden. Interestingly enough, the periodic choice is exactly the one which is required
by supersymmetry.

We argue that generalizations of Witten’s bubble of nothing are worth studying in the context
of M-theory and string theory compactifications to AdS spaces. They should be regarded as
a natural decay mechanism, since in these compactifications there tipically appear non trivial
internal geometries, some subspace of which may collapse in analogy with the Kaluza-Klein circle
in Witten’s example. Therefore, generalized bubbles of nothing can describe new interesting
decay modes and thus provide further evidence to the conjecture by Ooguri and Vafa. In
the present work, we focus on M-theory and its low energy limit, which is eleven dimensional
supergravity. We discover that generalized bubble geometries can be remarkably rich and discuss
the new ingredients that can possibly come into play. An obvious one is related to the bosonic
field content of the theory, which includes a three-form gauge potential A3 with four-form field
strength F4 = dA3, as well as the metric. In fact, the presence of a four-form flux supporting
the vacuum geometry requires some care. We devote special attention to AdS compactifications
to four dimensions, of which two main classes are known: Freund-Rubin solutions, where the
four-form is taken to be proportional to the volume form of the external space, and Englert-
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type solutions, where an additional internal flux is turned on. Difficulties connected with fluxes
were already pointed out in an earlier attempt to construct generalized bubble geometries by
Young [9]. Her no-go argument applies whenever the four-form obeys the Freund-Rubin ansatz
and the internal space we want to collapse has the geometry of a N dimensional sphere. If we
assume that the geometry terminates smoothly at the bubble, a solution can only exist if N = 1,
that is a circle. There are at least two reasons why this result is worth discussing. Firstly, a
purely external flux is not the most general case, since the four-form can also have components
along the internal space, as in Englert solutions. Secondly, the internal geometry can be more
complicated, with only a subspace of the compact space, possibly fibered over the rest, that
collapses at the bubble. The key role played by a non trivial fibration structure is apparent in
the AdS5×CP3 vacuum geometry, which admits a decay mode mediated by an instanton where
a two dimensional sphere rather than a circle shrinks to zero size [10]. Here the flux is purely
internal and reorients itself at the bubble in such a way that it has no components along the
two dimensional collapsing fiber. To the best of our knowledge, this is the only example of an
M-theory bubble of nothing discussed in the literature. However, it is also quite peculiar since
there is no external flux supporting the vacuum geometry.

Here the most original part of our work begins. Motivated by the analysis of Polchinski et
al. who discuss a similar problem in the context of type IIB supergravity [11], we present a
general argument that seems to prevent smooth bubble geometries to exist in the presence of
external fluxes. It is known that both Freund-Rubin and Englert vacua admit a non zero Page
charge, which is defined as an integral over the seven dimensional internal manifold,∫

M7
(∗F4 +A3 ∧ F4) . (1.3)

This quantity is conserved, in the sense that it does not depend on the external coordinates.
Now, in a smooth bubble geometry the compact space can be seen as the boundary of an eight
dimensional manifold and we can use Stokes’ theorem,∫

M7=∂M8
(∗F4 +A3 ∧ F4) =

∫
M8

d (∗F4 +A3 ∧ F4) = 0, (1.4)

where in the last passage we have used the Maxwell equation for the four-form. In other words,
what this equation is telling us is that the Page charge of a smooth bubble geometry must be
zero! In particular, such geometry does not have the same boundary conditions as the vacuum,
whose Page charge is not zero. This is a serious obstruction indeed. However, a promising
way-out is provided by the introduction of M2-brane instantons wrapping the three-sphere in
AdS and smeared over some part of the internal space, which can account for the additional flux
we need.

As a final step in our exploration of non perturbative AdS instabilities, we focus on a con-
crete example where all of the ingredients we have introduced, namely the presence of both
external and internal fluxes, the possibility of higher dimensional spheres that are non trivially
fibered over some base in the internal space to collapse at the bubble and the need to introduce
M2-branes instantons, come into play. We consider a specific class of four dimensional AdS
compactifications where the seven dimensional internal space is a tri-Sasakian manifold. We
regard them as a natural candidate to study, since they are known to admit both Freund-Rubin
and Englert vacua. Moreover, tri-Sasakian spaces have the universal fibration structure of a
three dimensional sphere S3 over a four dimensional base, and one could ask whether the S3 can
collapse giving rise to a higher dimensional bubble of nothing. They also come equipped with
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a set of forms, the tri-Sasakian structure, that allows us to write a general ansatz for both the
metric and the four-form. We study the near-bubble behaviour of the field equations and verify
that a smooth solution which asymptotically matches the vacuum cannot exist, as expected from
our general argument based on Page charges. Finally, we discuss the inclusion of branes as a
possible way-out.

Outline The work is organized as follows. In Chapter 1, we introduce the swampland program
and describe the Weak Gravity Conjecture (WGC) as an example of an additional quantum
gravity constraint for an effective field theory to admit a consistent UV completion. We also
state the stronger WGC by Ooguri and Vafa and discuss its implications regarding the instability
of non supersymmetric AdS spaces. In Chapter 2, we first introduce instanton methods in
the simpler context of quantum mechanics and then present the theory of false vacuum decay.
Finally, we focus on Witten’s construction of the bubble of nothing and work it out in some detail.
In Chapter 3, we are ready to set up our analysis of non perturbative instabilities in the context
of M-theory compactifications. The main ingredients for the construction of a generalized bubble
of nothing are introduced and some known examples are discussed. We also present our general
argument based on Page charges. In Chapter 4, we turn to our concrete tri-Sasakian example.
In Chapter 5, we draw our conclusions and suggest some avenues for future work.
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Chapter 2

Motivation

In this Chapter, we motivate our interest in non supersymmetric AdS vacua, describing the
general context where the claim about their instability stems from and discussing some of its
implications. First, we introduce the concept of the swampland, that is the idea that the
landscape of string vacua should be thought as an island surrounded by a sea of consistent
looking, but ultimately unconsistent, low energy effective theories which cannot be completed in
the UV to a full quantum theory of gravity. Identifying the properties any effective field theory
of gravity should possess in order to admit a consistent UV completion then becomes a primary
task in the exploration of the swampland, which presently represents an active, if not exploding
area of research.

After that, we specialize to a specific swampland criterion which has attracted much attention
in the last decade and whose far-reaching consequences have been explored both in particle
physics and inflationary cosmology. The basic statement involves a bound on the mass of a
particle by its charge. For a pair of such particles, the gravitational attraction is won by the
repulsive force associated to the charge, whence the name of Weak Gravity Conjecture (WGC).
We present some of the original motivations for the conjecture, expecially those coming from
black hole physics, since the existence of these light charged particles is required in order for
extremal black holes to decay, and explain how it intertwines with other swampland criteria,
such as the absence of global symmetries in a consistent quantum theory of gravity.

Finally, we focus on a stronger version of the conjecture, where the WGC bound is allowed
to be saturated only by BPS states in a supersymmetric theory. This might seem quite an
innocuous extension of the WGC, but turns out to have dramatic consequences for the stability
properties of non supersymmetric AdS spaces. If true, this stronger conjecture would imply that
all non supersymmetric AdS geometries supported by fluxes are unstable, or equivalently that
non supersymmetric AdS/CFT holography belongs to the swampland. This might be seen as
follows. Holography is usually obtained by putting branes next to each other in string theory
and then taking the near horizon limit. If the branes are BPS, there is no problem in doing
this, since the repulsive force between the branes is exactly canceled out by the gravitational
attraction. If instead the branes are not supersymmetric, the repulsion wins over attraction
due to WGC and there is no way to prevent them from flying apart. This obstruction to non
supersymmetric AdS/CFT holography would be relevant for applications of the correspondence
to many areas of theoretical physics, as far as non supersymmetric models are concerned.

7
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2.1 The landscape and the swampland

In the string theory construction of low dimensional effective field theories there is a very large
number of choices to make, from the compactification manifold to background fluxes and branes.
This has led to the idea of an extremely vast landscape of string vacua, each leading to a different
would-be universe. How to pick the right one is then a relevant question, usually referred to as
the vacuum selection problem. Some counting techniques are discussed for example in [12] and
a nice overall picture of how many vacua string theory has, as well as a statistical description
of their properties can be found in [13]. For us, suffice it to say that an often quoted guess is of
order 10100. Even more astonishing is the estimate of [14] that the number of possible consistent
flux compactifications of F-theory to four dimensions is at least 10272000. Although it is not
known wheter all these compactifications are distinct or dual descriptions of the same theory,
such a wildly huge number of possibilities clearly suggests that the direct study of all string
vacua is a formidable task. Moreover, even if we were able to enumerate all the inequivalent
string constructions, a top-down mechanism to prefer one particular choice over another is still
missing. Of course, a bottom-up approach is possible: instead of starting from full string theory
and studying compactifications to four dimensions, one can study four dimensional effective
quantum field theories and try to couple them to gravity. We might naively expect that the string
landscape is so vast that all consistent looking effective field theories coupled to gravity can arise
in some way from a string theory compactification. If this assumption were correct, string theory
would lost most of its predictive power and would become pretty useless for phenomenological
applications. However, it was first argued in [15] that this is not the case, namely that not
all effective field theories can be coupled consistently to gravity with a UV completion, or
equivalently that not all of them can arise from a string theory compactification. The set of
these ultimately inconsistent theories is called the swampland, as opposed to the landscape.
Where lies the boundary between the two is not known yet, but a number of criteria have been
conjectured that allows one to exclude a theory from the landscape, thus rejecting it to the
swampland. Some finiteness properties, including finiteness of vevs of scalar fields, finiteness of
the number of fields and finiteness/restrictions on the rank of the gauge groups, were already
studied in [15], but since then other criteria have been proposed, such as those involving the
geometry of the moduli space in [16] and the various and inequivalent versions of the Weak
Gravity Conjecture, first formulated in [2], then sharpened in [1]. A recent review of swampland
criteria can also be found in [17]. As a final remark, it is worth observing that, altough general
proofs are missing, these criteria are all motivated by general arguments in quantum gravity,
coming in particular from black hole physics, and supported by non trivial realizations and
known examples in string theory.

2.2 The Weak Gravity Conjecture

The swampland criterion which is most relevant for us, providing the main motivation for this
thesis, is a sharpened version of the Weak Gravity Conjecture (WGC). This was first formulated
in [2] and involves the observation that gravity must always be the weakest force, promoting it
to a principle which is claimed to be satisfied in all consistent string theory compactifications
and therefore has to hold in any consistent effective field theory coupled to gravity.

Weak gauge couplings Before giving a more precise statement, it is convenient to introduce
the main ideas and discuss some of their implications. Following [2], we consider a four dimen-
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sional theory with gravity and a U(1) abelian gauge field with gauge coupling g = ge. The
electric WGC states that there exists a light charged particle with mass

me . gelMPl. (2.1)

For such particles, gravity is subdominant, since the gravitational attraction is overwhelmed by
the gauge repulsive force. An analogous bound should hold for magnetic monopoles,

mm . gmMPl ∼
1
ge
MPl. (2.2)

This magnetic WGC would have an interesting and rather unexpected consequence. Being
proportional to the energy stored in the magnetic field they generate, monopole masses behave
as probe of the UV cut off of the theory,

mm ∼
Λ
g2
e

. (2.3)

Therefore, the WGC bound on monopole masses tells us that for small ge there exists a prema-
turely low energy cut off where the theory breaks down,

Λ . geMPl. (2.4)

This is in contrast with the naive expectation that, as long as the U(1) Landau pole is above the
Planck scale, the effective theory breaks down near MPl when gravity becomes strongly coupled
and nothing seems to prevent taking ge as small as we want.

Black holes and global symmetries Part of the original motivation for the conjecture
comes from black hole physics. It is well known that black holes can decay emitting Hawking
radiation. When this radiation stops before the black hole has completely evaporated, we are
left with a remnant. It is easy to see that the existence of light charged particles whose mass is
constrained by the charge as in (2.1) is required to avoid problems involving remnants, allowing
extremal black holes to decay. Choosing units where the mass to charge ratio is unit for extremal
black holes, i.e. M = Q for extremal black holes, the WGC bound (2.1) for a particle of mass
m and charge q can be rephrased as m < q. Since the bound for having a charged black hole
solution is the Reissner-Nordström bound M > Q, extremal black holes can only decay into
particles whose mass is less than their charge, whose existence is guaranteed by the WGC. This
is schematically shown in Figure 2.1.

M = Q

m < q

M > Q

Figure 2.1: Decay of an extremal black hole.

Black hole physics also intertwines the WGC with other swampland criteria, such as the
absence of global symmetries in a consistent quantum theory of gravity [18]. Imagine sending
a particle charged under a global symmetry G inside a black hole. Then, all the information
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about this global symmetry is lost by the no hair theorem. When the black hole evaporates via
Hawking radiation, an equal number of positive an negative charged particle under G is emitted.
This process would violate charge conservation in G, since we started with a non zero charge
and after the black hole evaporation we are left with a non zero net charge. In order to overcome
this inconsistency, it has been conjectured that in a consistent quantum theory of gravity all
symmetries must be gauged. This is also true in all known examples from string theory, where
global symmetries arise from symmetries of the extra dimensions, which are gauged because
diffeomorphisms of the compact space are part of the gauge symmetry of gravity. A review of
these arguments can be found for example in [17]. However, in the limit of small gauge coupling,
gauge symmetries become physically indistinguishable from continuous global symmetries. This
is where the WGC comes into play, since the existence of the cut off Λ prevents this limit to be
taken. More explicitly, from (2.4) we see that, as the gauge coupling goes to zero, g → 0, the
cut off of the effective theory goes to zero as well, Λ → 0, so that this limit cannot be taken
smoothly.

The WGC bound As we have seen, the black hole motivation suggests to set the mass to
charge ratio equal to one for extremal black holes. Then, in appropriate units, the WGC bound
reads

m

q
≤ 1. (2.5)

However, in order to make a more precise statement, we still need to specify which states should
satisfy this bound. There are at least three natural possibilities we could think of, that is we
might require that the bound is satisfied by

I. the state of minimal charge;

II. the lightest charged particle;

III. the state with the smallest mass to charge ratio.

In order for the statement to be meaningful, such a state must be stable. This is not necessarily
the case for the state I. since, for instance, it could decay into lightest particles of higher charge.
These might form a stable bound state with the same charge of I. but the mass to charge
ratio might be larger than that of the individual particles and, in particular, it might be bigger
than one. Therefore, this possibility is certainly incorrect. Of course, the state II. is stable
and so is the state III., due to the triangle inequality. Therefore, both possibilities are worth
considering. The second one is clearly stronger and implies the third. In particular, it would
force the spectrum of the theory to contain a light charged particle. Otherwise, the bound could
in principle be satisfied also by a heavy particle with a large charge. As remarked by the author
of [2], the weaker statement would reduce the impact of the inequality on low energy physics,
but is the one to be supported by most of the evidence they provide.

We formulated the WGC bound for particle states, but it is natural to generalize it to
higher dimensional objects, such as p-branes. They are massive objects that extend in p spatial
dimensions, plus time and interact with the gravitational and gauge fields through the couplings

Sp−brane = T

∫
dp+1x

√
g +Q

∫
Ap+1, (2.6)

where the integrals are taken over the (p + 1)-dimensional world-volume of the brane and the
parameters T and Q are the tension and the charge of the brane, respectively. The first term
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tells us the familiar fact that the motion of a massive object in General Relativity is such to
minimize the world-volume swept and is a generalization of the integral over the world-line for
a massive particle. The second term is the coupling with a (p + 1)-form gauge potential and
generalizes the coupling of a charged particle to the electromagnetic field, which is the integral
of the one-form gauge potential on the world-line of the particle. Given a p-form Abelian gauge
field in D dimensions, the WGC postulates the existence of electrically and magnetically charged
p− 1 and D − p− 1 dimensional objects with tensions

Te ≤
(
g2

GN

) 1
2

and Tm ≤
( 1
g2GN

) 1
2
, (2.7)

where the gauge coupling g is the charge density with dimension of a mass to the power p+1−D
2 .

2.3 Sharpening the conjecture

As we have seen, the WGC in its simplest form states that, for a U(1) gauge theory coupled to
gravity, there always exists a particle of mass m and charge q satisfying the inequality

m

MPl
≤ q, (2.8)

where the Planck mass has been reintroduced. With the black hole motivation in mind, allowing
equality might seem unnatural. It should not be included from the requirement that extremal
black holes are able to decay, since they only emit particles which satisfy the strict inequal-
ity. Moreover, allowing the WGC bound to be saturated might be quite dangerous, as small
perturbations to the theory could tip the balance in the wrong direction and violate the WGC.

Supersymmetry and BPS states As already pointed out in the original work [2], the
reason for allowing equality comes from supersymmetry. We recall that the supersymmetry
algebra involves a set of 2N anti-commuting fermionic generators (QIα, Q̄Iα̇) with I = 1, . . . , N
and α, α̇ = 1, 2 which obey, among the others, the following anti-commutation relations{

QIα, Q
J
β̇

}
= εαβZ

IJ and
{
Q̄α̇I , Q̄

J
β̇

}
= εα̇β̇Z

IJ . (2.9)

The operators ZIJ are a linear combination of the Lorentz scalar generators Bl of an internal
symmetry group G and can be proved to be central charges, that is they span an invariant
abelian subalgebra of G and commute with all other generators. Central charges play a key role
in the construction of the massive representations of the supersymmetry algebra, as discussed
for example in [19]. The general result is a restriction on the relative magnitude of the mass of
a given irrep and the modulus of any central charge eigenvalue, called the BPS bound, which
looks like the WGC bound but in the wrong direction,

2m ≥ |Zr| , r = 1, . . . , N2 . (2.10)

According to the number of central charge eigenvalues saturating this bound, we can have
multiplets with different lenghts: long multiplets, when the bound isn’t saturated by any of
the eigenvalues, and short (or ultrashort) multiplets, also called BPS from the analogous Bogo-
mol’nyi–Prasad–Sommerfield bound for solitons, when the bound is saturated by some (or all) of
the eigenvalues. The presence of long multiplets should not worry, since the WGC doesn’t state
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that, for a given charge sector, all particles must have masses less than their charge, but rather
that there exists such a particle. Short multiplets are supersymmetry preserving, since they are
annihilated by the supersymmetry generators corresponding to the central charge eigenvalues
which saturate the bound, and turn out to be more protected against quantum corrections with
respect to long multiplets. Thus, the WGC bound can be saturated in a supersymmetric theory
with BPS states, with the solid BPS condition preventing the balance to be tipped in the wrong
direction.

A natural question to ask is how peculiar is the BPS case, or in other words if there are other
cases in which the WGC bound can be saturated. According to the authors of [1], the answer
must be negative. The observation that, if the WGC bound is saturated in a non supersymmetric
theory, there is no know mechanism analogous to the robustness of the BPS condition which
can protect the WGC from being violated when small corrections are taken into account, is
the starting point for them to argue for a stronger version of the WGC, where the inequality
is saturated if and only if the underlying theory is supersymmetric and the state in question is
BPS.

Instability of non supersymmetric AdS Combining this stronger version of the WGC
with the analysis of [4] that an AdS geometry supported by a flux is unstable in the presence
of branes which are charged under the flux and whose charges are less than their tensions, the
authors of [1] were led to the dramatic conclusion that all non supersymmetric AdS geometries
supported by fluxes must be unstable.

In order to explain how AdS instabilities can arise through brane nucleation, we are forced
to anticipate here some concepts and techniques, such as looking for solutions of the Euclidean
equations of motion with finite action and then analitically continue them to Lorentzian signature
with respect to a plane of symmetry of the metric, which might sound quite artificial but will
be thoroughly accounted for in Chapter 3. We will mainly follow [4], but it is worth mentioning
that similar ideas were already present in the earlier work of [3]. Let us consider an AdSD
geometry supported by a constant D-form field strenght. We write the Euclidean AdS metric
as

ds2 = L2
(
cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2

p

)
, (2.11)

where L is the AdS radius and dΩ2
p is the metric of the unit p-sphere. Then the Euclidean action

of a spherically symmetric p-brane located at radius ρ(τ) is from equation (2.6) given by

SE = TΩp−2

∫
dτ

sinhp−2 ρ

√
cosh2 ρ+

(
dρ

dτ

)2
− q sinhp−1 ρ

 , (2.12)

where T is the tension of the brane, q is the charge to tension ratio and Ωp−2 is the volume of
the unit (p− 2)-sphere. Since this action does not explicitly depend on τ , the Euclidean energy
is conserved, in particular it is zero for a spherically symmetric compact surface, yielding

cosh2 ρ√
cosh2 ρ+ ρ′2

− q sinh ρ = 0. (2.13)

The qualitative behaviour of the solutions to this equation crucially depends on the value of q.
In the BPS case, the forces balance so q = 1 and we don’t expect to have any instabilities. If
the theory is supersymmetric but the branes are non BPS, the BPS bound requires that q > 1
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and the Euclidean solution is
cosh ρ = sinh τmax

sinh τ , (2.14)

with tanh ρmax = q. Having infinite action, this solution cannot represent an instability. Con-
versely, in the case q > 1, which according to the stronger version of the WGC is not only
possible, but inevitable in a non supersymmetric theory, the solution is

cosh ρ = cosh τmax
cosh τ , (2.15)

with tanh ρmax = 1
q , which correspond to the radius of the brane at nucleation. This solution

has finite action

SE = 2TΩp−2
sinh ρmax

∫ ρmax

0
dρ

sinhp−2 ρ
√

sinh2 ρmax − sinh2 ρ

cosh ρ (2.16)

and can be analitically continued to the Lorentzian solution

cosh ρ = cosh ρmax
cos t , (2.17)

which describes the evolution of the brane after nucleation. In particular, from (2.17) we see
that the brane expands, reaching the boundary of AdS at ρ = ∞ at the finite time t = π

2 and
thus reducing the flux of the geometry.

The instability of non supersymmetric AdS geometries would imply that there cannot exist
non supersymmetric conformal field theories whose holographic duals have such gravity descrip-
tion. As argued in [1], due to the instantaneous nature of the decay, which is a distinctive feature
of AdS geometries with respect to, for example, flat or de Sitter space, the dual conformal field
theories could not exist even as a metastable state. This can be seen as follows. Recall that an
observer sitting at the boundary of AdS can get access to an infinite volume space within an
infinitesimal amount of time. Since the decay probability per unit volume associated to brane
nucleation is finite, the decay happens instantaneously when seen from the boundary. An alter-
native explanation relies on holography. The AdSp geometry can be obtained as the near horizon
limit of an extremal (p − 2)-brane. If the brane is non BPS, according to the stronger version
of the WGC, there exist branes with tension less than the charge. Then the extremal brane
can decay by emitting such other branes, with the decay rate becoming larger as we measure it
closer to the horizon. In the near horizon limit, the decay becomes instantaneous.
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Chapter 3

False vacuum decay

This Chapter deals with the theory of false vacuum decay, as originally developed by Coleman
et al. in a series of papers from the 1970s, namely [5] and [6] for the general theory in flat space
and [7] for the inclusion of gravity. This theory is of primary interest for us, since it provides a
possible non perturbative mechanism leading to instabilities, based on the existence of a specific
solution to the Euclidean equations of motion, dubbed the bounce, with finite action. In fact, it
paved the way to Witten’s analysis of the instability of the Kaluza-Klein vacuum in [8], which
represents the starting point for us towards an exploration into AdS instabilities of the same
kind.

The basic example where vacuum decay can be seen at work is that of a scalar field theory
in four dimensional Minkowski spacetime, described by the Lagrangian

L = 1
2∂

µφ∂µφ− V (φ), (3.1)

where the potential V (φ) has two relative minima with different energies, as shown in Figure 3.1.
The lower minimum φT corresponds to the unique ground state of the quantum theory and is

φ

V (φ)

φF

φT

Figure 3.1: A typical potential with a false vacuum.

called a true vacuum. The higher one φF is called a false vacuum because, though classically
stable, it is rendered unstable by quantum effects and can decay via a tunneling process. If
Figure 3.1 were the plot of the potential energy for a quantum mechanical particle in one
dimension, the barrier would be just a finite one. However, in the field theory context, barrier
penetration requires more care. Remember that V (φ) is an energy density, which must be

15
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integrated to give the potential energy,

U [φ] =
∫
d3x

[1
2(∇φ)2 + V (φ)

]
. (3.2)

To go from the false to the true vacuum through a series of spatially homogeneous configurations
would require traversing an infinite potential energy barrier and thus would have a vanishing
tunneling amplitude. Instead, the tunneling process takes the spatially homogeneous configura-
tion where the field is everywhere in the false vacuum to one with a region of approximate true
vacuum, a bubble, immersed in a false vacuum background. A nice picture for the enucleation
of a bubble comes from statistical mechanics. Imagine the boiling of a superheated fluid, where
thermodynamic fluctuations cause bubbles of the vapor phase to materialize in the fluid phase.
Bubbles can form large enough so that it is energetically favorable for them to grow, converting
the fluid to the vapor phase. Here quantum fluctuations replace thermodynamic ones, and the
false and true vacuum correspond to the fluid and vapor phase. Bubbles can form anywhere in
space, so the relevant quantity to be computed is the decay probability per unit time per unit
volume, which can be shown to be of the form

Γ
V

= Ae−
B
~ [1 +O(~)] , (3.3)

where the exponent B is given by the Euclidean action of the bounce.
The general formalism for the computation of the A and B coefficients developed by Coleman

et al. is based on instanton methods. Therefore, before addressing the field theory problem, it is
convenient to start reviewing these methods in the simpler context of quantummechanics. This is
what we do in the first part of this Chapter, where we describe instantons in quantum mechanics
and introduce the basic ideas, namely the concept of the bounce solution that is connected with
the decay of a metastable state. In particular, we derive an expression for the decay rate and
find that it is exponentially suppressed, with exponent given by the Euclidean action of the
bounce. Then, we explain how these methods can be generalized in a field theory context.
We discuss the interpretation of false vacuum decay as a tunneling process and describe the
evolution after tunneling, as directly obtained from the analytic continuation of the bounce. We
also introduce the thin-wall approximation, which defines a particularly simple regime to study
where the bubble nucleation picture becomes apparent. Then, we make another step forward to
include the effects of gravity. It turns out that the picture can be qualitatively different from
the flat case. Working in the thin-wall approximation we find that the radius of the bubble
at nucleation can be made larger or smaller by gravitational effects, and correspondingly the
nucleation of the bubble can be less or more likely, respectively. In particular, it can happen that
the radius of the bubble at nucleation is infinite, or equivalently the decay probability vanishes,
so that a metastable vacuum in flat space might be actually stable in the presence of gravity.
This concludes the general discussion and we can eventually turn to a concrete application,
namely Witten’s construction of a bubble of nothing as the bounce solution demonstrating the
instability of the Kaluza-Klein vacuum. This decay is somewhat peculiar, if not dramatic with
respect to the usual vacuum decay, as we will see.

3.1 Instantons and bounces in quantum mechanics

In this section, we provide some basic notions about instanton methods in quantum mechanics.
We will mainly follow [20] and [21], to which we also refer for the field theory generalization of



3.1. INSTANTONS AND BOUNCES IN QUANTUM MECHANICS 17

the following sections. By instantons, we here mean Euclidean, or imaginary time, solutions to
the equations of motion. Why should they be physically interesting? A heuristic motivation is
the following. Consider a quantum mechanical particle of unit mass moving in one dimension
with Hamiltonian

H = p2

2 + V (x). (3.4)

If the potential V (x) has a barrier and the energy E of the incident wave associated to the
particle is less than the value of the potential at the top of the barrier, as shown in Figure 3.2,
there is an exponentially suppressed but non vanishing probability of finding the particle at the
opposite side of the barrier. In the semi-classical approximation, the amplitude for transmission

x

V (x)

E

x1 x2

Figure 3.2: A potential barrier in one dimension. The classically forbidden region x1 < x < x2
is defined by the classical turning points, such that V (x1) = V (x2) = E.

through the barrier is proportional to e−
B
~ , where B is an integral given by the WKB formula,

B =
∫ x2

x1
dx
√

2 [V (x)− E], (3.5)

and the integration extremes x1 and x2 are the classical turning points at energy E. In the
classically forbidden region, the energy of the particle is less than its potential energy, as if its
kinetic energy was negative, the velocity being obtained as the derivative with respect to an
imaginary time.

According to the form of the potential, this very simple system can already exhibit some
distinctive features of instanton effects, namely the mixing of states that would be degenerate
in the absence of tunneling, which is connected with instantons, and the decay of a metastable
state, which is the case we are most interested in and is connected with bounces. Our basic tool
is the Euclidean path integral, which gives the probability amplitude of finding the particle in
xf at time T

2 , provided that it initially was in xi at time −T
2 , as a sum over all possible paths

connecting the initial and final states, each weighted by the exponential of minus the Euclidean
action,

〈xf |e−
HT
~ |xi〉 =

∫
Dx e−

SE
~ . (3.6)

The energy E0 of the lowest energy eigenstate can be extracted from the large T behaviour of
this matrix element. Indeed, expanding the left hand side in terms of energy eigenvalues and
taking the large T limit, only the E0 term survives in the sum,

〈xf |e−
HT
~ |xi〉 =

∑
n

e−
EnT

~ 〈xf |n〉 〈n |xi〉 →
T→∞

e−
E0T
~ 〈xf | 0〉 〈0 |xi〉 . (3.7)

A general procedure to evaluate (3.6) is the saddle point approximation, with the integral
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dominated by the stationary points of the Euclidean action,

δSE [x̄]
δx

= −d
2x̄

dτ2 + V ′′(x̄) = 0. (3.8)

Observe that this equation describes the motion of a particle in the inverted potential −V (x).
A generic path satisfying the boundary conditions x(−T

2 ) = xi and x(T2 ) = xf can be expanded
around a solution x̄ as

x(τ) = x̄(τ) +
∑
n

cnψn(τ), (3.9)

where the ψ’s are an orthonormal basis of functions vanishing at the boundary ψ(±T
2 ) = 0.

Thus, the integration measure can be written as

Dx =
∏
n

dcn√
2π
. (3.10)

It is convenient to take the ψ’s to be eigenfunctions of the second variational derivative of the
Euclidean action at x̄,

δ2SE [x̄]
δ2x

= −d
2ψn
dτ2 + V ′′(x̄)ψn = λnψn ≡ S′′E [x̄], (3.11)

where, for the moment, all the eigenvalues λn are assumed to be positive. Upon Gaussian
integration, the contribution to (3.6) from this stationary point reduces to

I =
∫ ∏

n

dcn√
2π
e−

SE [x̄]+ 1
2
∑

k
λkc

2
k

+...
~ = e−

SE [x̄]
~
(
detS′′E [x̄]

)− 1
2 [1 +O(~)] , (3.12)

where ellipses denote the higher order terms that we have neglected and the functional deter-
minant is the product of the eigenvalues

detS′′E [x̄] =
∏
n

λn. (3.13)

Finally, we are ready to specialize this general procedure to a couple of interesting cases.

The instanton The first case we discuss is the symmetric double-well potential of Figure 3.3a.

x

V (x)

−σ σ

(a)

x

−V (x)

−σ σ

(b)

Figure 3.3: A symmetric double-well potential with two degenerate minima.
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If the barrier were infinitely high, and hence impenetrable, energy eigenstates would be
confined to one side or the other and the two ground states, |L〉 and |R〉, would be degenerate,
with energy E0. With a finite barrier, the two lowest eigenstates are given by the symmetric
and antisymmetric linear combinations

|±〉 = 1√
2

(|L〉 ± |R〉), (3.14)

with energies
E± = E0 ∓

∆
2 . (3.15)

In order to compute the energy splitting, consider the matrix elements

〈±σ|e−
HT
~ |σ〉 =

∑
n

e−
EnT

~ 〈±σ|n〉 〈n|σ〉 →
T→∞

|〈σ|+〉|2 e−
E+T

~ ± |〈σ|−〉|2 e−
E−T

~ , (3.16)

where we have used 〈σ|±〉 = ±〈−σ|±〉. If the two lowest eigenstates are well separated from
the others, we also have |〈σ|+〉| = |〈σ|−〉| and, in the limit of large T ,

e
(E−−E+)T

~ = 〈σ|e
−HT~ |σ〉+ 〈−σ|e−

HT
~ |σ〉

〈σ|e−
HT
~ |σ〉 − 〈−σ|e−

HT
~ |σ〉

. (3.17)

Our general procedure tells us how to compute these matrix elements: it suffices to find the
stationary points of the Euclidean action, i.e. the solutions of the equations of motion (3.8)
in the inverted potential, which is shown in Figure 3.3b. For 〈σ|e−

HT
~ |σ〉, we have the trivial

constant solution x0(τ) = σ whose contribution is simply

I0 =
(
detS′′E [x0]

)− 1
2 , (3.18)

as the potential was chosen to vanish at the minima. For 〈−σ|e−
HT
~ |σ〉, we have a more inter-

esting solution x1(τ), where the particle starts at the top of the left hill at τ = −T
2 and moves

to the top of the right hill at time τ = T
2 . This solution is called an instanton and is sketched

in Figure 3.4 after taking T to ∞.

τ

x1(τ)

−σ

σ

Figure 3.4: An instanton centered in τ = 0.

According to (3.12), it should give a contribution

e−
SE [x1]

~
(
detS′′E [x1]

)− 1
2 . (3.19)
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However, there is a problem. The time derivative of the instanton,

ψ0(τ) = (SE [x1])−
1
2
dx1
dτ

, (3.20)

is an eigenfunction of zero eigenvalue, as it can be easily seen using the equations of motion,

d3x1
dτ3 + V ′′(x1)dx1

dτ
= d

dτ

(
−d

2x1
dτ2 + V ′(x1)

)
, (3.21)

and as should be expected from time translation invariance. Were we to integrate over the cor-
responding coefficient c0, we would end up with a divergent quantity. The solution is straight-
forward: we can integrate over the location of the center of the instanton τ1, instead. The
variations due to small changes of c0 and τ1 are easy to compare,

dx = dx1
dτ

dτ1 = ψ0dc0 ⇒ dc0 = (SE [x1])
1
2dτ1. (3.22)

Thus, the contribution of the instanton can be more appropriately written as

I1 = e−
SE [x1]

~
(
detS′′E [x0]

)− 1
2 KT, (3.23)

with

K =
(
SE [x1]

2π~

) 1
2
(

det′ S′′E [x1]
detS′′E [x0]

)− 1
2

, (3.24)

where det′ means that the zero mode must not be included in the determinant. Finally, there are
also approximate stationary points to be considered, configurations xn(τ) of n alternating and
well separated instantons and anti-instantons, with action SE [xn] = nSE [x1]. Upon integrating
over the n centers, ∫ T

2

−T2
dτ1

∫ T
2

τ1
dτ2 · · ·

∫ T
2

τn−1
dτn = Tn

n! (3.25)

their contribution is
In = e−n

SE [x1]
~

(
detS′′E [x0]

)− 1
2 KnT

n

n! . (3.26)

Summing over stationary and approximately stationary points, we find

〈σ|e−
HT
~ |σ〉 =

∑
even n

In =
(
detS′′E [x0]

)− 1
2 cosh

(
e−

SE [x1]
~ KT

)
,

〈−σ|e−
HT
~ |σ〉 =

∑
odd n

In =
(
detS′′E [x0]

)− 1
2 sinh

(
e−

SE [x1]
~ KT

)
,

(3.27)

which inserted into equation (3.17) give

∆ = E− − E+ = 2Ke−
SE [x1]

~ . (3.28)

Observe that perturbative corrections to the individual energies are much larger than the ex-
ponentially small instanton correction we have computed, but they don’t contribute to the
difference. Now, imagine to start at t = 0 with a wavefunction localized on the left-hand well,
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for example |Ψ(0)〉 = |L〉. Time evolution gives

|Ψ(t)〉 = 1√
2
e−i

E+t
~ (|+〉+ e−i

∆t
~ |−〉) = 1

2e
−iE+t

~
[
(1 + e−i

∆t
~ ) |L〉+ (1− e−i

∆t
~ ) |R〉

]
, (3.29)

so the system oscillates back and forth with a frequency ∆.

The bounce The second example we study is based on the quantum mechanical analog of
the potential of Figure 3.1. Imagine to modify it in such a way that the right-hand well with
the lower minimum is broader than the left-hand well with the local minimum. Without barrier
penetration, there would be a discrete spectrum of energy eigenstates on the left side of the
barrier, the lower of which we denote again |L〉, and a denser spectrum on the other side. With
barrier penetration restored, energy eigenstates are mixtures of left and right states, but the
contribution of the left states tends to zero as the width of the right-hand well increases. The
limiting case in which the width becomes infinite is shown in Figure 3.5a. If we started at
t = 0 with the wavefunction |Ψ(0)〉 = |L〉 and computed the time evolution |Ψ(t)〉, instead of
oscillation we would find that 〈L|Ψ(t)〉 vanishes exponentially with time. It is a metastable state
with a complex energy whose imaginary part is related to the decay rate by

ImE0 = −Γ
2 . (3.30)

As we will see later, this complex energy can be defined as the analytic continuation of the real
energy of the stable ground state of a potential where x = σ is a global minimum.

The matrix element to be computed is

〈σ|e−
HT
~ |σ〉 =

∑
n

e−
EnT

~ |〈σ|n〉|2 , (3.31)

from which we can extract the energy E0 of the metastable state. Just as before, we look for

x

V (x)

σ

(a)

x

−V (x)

σ b

(b)

Figure 3.5: The limiting case in which the width of the right-hand well becomes infinite.

solutions to the Euclidean equations of motion in the inverted potential, which is shown in
Figure 3.5b. Obviously, there is the trivial configuration x0(τ) = σ, whose contribution is

I0 =
(
detS′′E [x0]

)− 1
2 , (3.32)

as the potential vanishes at the minimum. A more interesting solution is the bounce, with the
particle starting at the top of the lowest hill at τ = −T

2 , bouncing off the classical turning point
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and coming back to the initial point at τ = +T
2 , as shown in Figure 3.6 after taking T to ∞.

As for the instanton, there is a zero mode which is proportional to the time derivative of the

τ

x1(τ)

b

σ

Figure 3.6: A bounce centered in τ = 0.

bounce. The solution is again to introduce a collective coordinate specifying the location of the
bounce and to integrate over it, obtaining

I1 = e−
SE [x1]

~
(
detS′′E [x0]

)− 1
2 KT, (3.33)

with

K =
(
SE [x1]

2π~

) 1
2
(

det′ S′′E [x1]
detS′′E [x0]

)− 1
2

, (3.34)

This expression for K is almost correct. Since the zero mode, being proportional to the time
derivative of the bounce, has a node located at the center of the bounce, a general property of
the one dimensional Schrödinger equation implies that there must exist a nodeless eigenfunction
corresponding to a lower eigenvalue, i.e. a negative eigenvalue which appears in the square root
of the determinant. Thus, non-perturbative corrections give an imaginary part to the energy
and the state is metastable. In order to obtain the correct expression for K, consider the set of
configurations x(τ) shown in Figure 3.7, which are parametrized by their maximum value c. In

τ

x(τ)

b

σ

Figure 3.7: A set of configurations parametrized by their maximum value c. The solid line
corresponds to the bounce of Figure 3.6, with c = b.

particular, c = σ corresponds to the constant solution x0(τ), which is clearly a local minimum
of the action since any small deviation gives a positive contribution both to the kinetic and the
potential term. As c increases, both of these terms increase until c = b, which is a maximum and
corresponds to the bounce, is reached. The situation is sketched in Figure 3.8. As we have seen,
problems arise in the integration over the coefficient of the negative mode, which is analogous
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c

SE(c)

σ b

Figure 3.8: The Euclidean action for a set of configurations such as those shown in Figure 3.7.

to
J =

∫ +∞

−∞

dc√
2π
e−

S(c)
~ . (3.35)

In order to make this integral convergent, we can deform the integration contour as shown in
Figure 3.9. Thus, we get an imaginary part which in the saddle point approximation is given by

Im J = Im
∫ b+i∞

b

dc√
2π
e−

[S(b)− 1
2S
′′(b)(c−b)2+... ]

~ = 1
2e
−S(b)

~
∣∣S′′(b)∣∣− 1

2 , (3.36)

where the factor 1
2 comes from integrating over half of the Gaussian function only. Thus, the

Re c

Im c

b

Figure 3.9: The contour of integration in the complex plane that makes the integral J in (3.35)
well-defined.

correct expression for K is

K = i

2

(
SE [x1]

2π~

) 1
2
∣∣∣∣∣det′ S′′E [x1]
detS′′E [x0]

∣∣∣∣∣
− 1

2

, (3.37)

Finally, there is the contribution coming from all possible multibounce solutions. For a con-
figuration of n well-separated bounces, upon integrating over the n centers, such contribution
is

In = e−n
SE [x1]

~
(
detS′′E [x0]

)− 1
2 KnT

n

n! . (3.38)

Finally, summing over all the stationary and approximately stationary points we obtain

〈σ|e−
HT
~ |σ〉 =

∑
n

In =
(
detS′′E [x0]

)− 1
2 exp

[
KTe−

SE [x1]
~

]
, (3.39)

and the energy of the metastable state can be extracted from the large T behaviour of this
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expression,
E0 = lim

T→∞

1
2T ln detS′′E [x0]−Ke−SE [x1], (3.40)

whose imaginary part is related to the decay rate through (3.30),

Γ = −2 ImE0 =
(
SE [x1]

2π~

) 1
2
∣∣∣∣∣det′ S′′E [x1]
detS′′E [x0]

∣∣∣∣∣
− 1

2

e−
SE [x1]

~ . (3.41)

As we have already observed before, non perturbative corrections are in general exponentially
suppressed with respect to perturbative ones. This would be true for the real part of E0, but the
non perturbative term we have computed is indeed the leading contribution to the imaginary
part.

3.2 The field theory approach

At this point, we are ready to go back to the scalar field theory setup introduced at the beginning
of the Chapter and use the results we have derived in the quantum mechanical context to
compute the decay rate. The first step is to look for a solution of the Euclidean equations of
motion φb(τ,x) of minimal action, the analog of the bounce, which in this case will be a field
configuration interpolating between the true and false vacua, φT and φF . Once we have found
such a solution, the answer is

Γ
V

= Ae−
B
~ (3.42)

where the tunneling exponent
B = SE [φb]− SE [φF ] (3.43)

is the difference between the Euclidean action of the bounce and that of the homogeneous false
vacuum φ = φF . We start from the Euclidean action,

SE =
∫
dτd3x

[
1
2

(
∂φ

∂τ

)2
+ 1

2 (∇φ)2 + V (φ)
]
, (3.44)

with field equation
∂2φ

∂τ2 +∇2φ = V ′(φ). (3.45)

Our boundary conditions are

lim
τ→±∞

φ(τ,x) = φF , lim
|x|→∞

φ(τ,x) = φF , (3.46)

where the first is a familiar one and the second comes from the requirement that the configu-
rations along the tunneling path all have finite potential energy, measured relative to the false
vacuum, so that the B coefficient is finite. Both the field equation and the boundary conditions
display an O(4) rotational symmetry in Euclidean space, so a natural guess is to assume the
O(4) invariant ansatz φ = φ(ρ), with ρ =

√
τ2 + x2. Thus the field equation reduces to

d2φ

dρ2 + 3
ρ

dφ

dρ
= V ′(φ), (3.47)

If ρ is interpreted as a time and φ(ρ) as a particle position, this equation describes the motion
of a particle in a potential −V (φ) subject to a decreasing in time viscous damping force. The
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boundary conditions become

lim
ρ→∞

φ = φF , lim
ρ→0

dφ

dρ
= 0, (3.48)

where the second one is needed to have a non singular solution at the origin, because of the
friction term. Under mild conditions on the potential V , it was shown in [22] that this guess
is right, namely that there always exists an O(4) invariant solution which moreover has strictly
lower action than any non O(4) invariant solution. Existence is something we should expect
from the nice undershoot-overshoot argument by Coleman [20]. From (3.48), we know that the
particle is released at rest at time zero. If it is released sufficiently far from φT , so that the
initial energy is lower than the value of the potential at φF , it obviously undershoots and will
never reach φF . Due to the presence of the friction term, overshoot requires a little more care.
Suppose to start very close to φT and stay there until the friction term has died out and we can
neglect it. Then energy is essentially conserved and the particle overshoots, passing φF at some
finite time. By continuity, we expect that the initial position φ∗ can be properly chosen in such
a way that the particle comes to rest at time infinity at φF .

Assuming O(4) symmetry, the tunneling exponent B in the decay rate can be written as

B = 2π2
∫ ∞

0
dρρ3

[
1
2

(
dφ

dρ

)2
+ V (φ)− V (φF )

]
. (3.49)

As for the pre-exponential factor A, the expression (3.41) obtained for a single degree of freedom
can be easily generalized to the field theory case. The main difference is now the presence of
three additional zero modes corresponding to spatial translations of the bounce, besides the
zero mode corresponding to translation in Euclidean time. Integrating over the four collective
coordinates, which describe the location of the center of the bounce in Euclidean space, gives
the volume factor V , which must be divided out to give the decay rate per unit volume. After
these modifications, (3.41) becomes

Γ = V

(
B

2π~

)2
∣∣∣∣∣det′ S′′E [φb]
detS′′E [φF ]

∣∣∣∣∣
− 1

2

e−
B
~ . (3.50)

The thin wall approximation An interesting limit case is when the two minima are nearly
degenerate, i.e. the energy difference between the true and false vacuum

ε = V (φF )− V (φT ) (3.51)

is small compared to the height of the barrier. To be concrete, let us take a symmetric potential
V0(φ), with minima at ±σ,

V ′0(±σ) = 0, V ′′0 (±σ) = µ2, (3.52)

and add a small term that breaks the symmetry,

V (φ) = V0(φ)− εφ+ σ

2σ . (3.53)

Actually, the minima φT and φF of this new potential differ from +σ and −σ by terms of order
ε, which we will ignore. From the mechanical analogy of the undershoot-overshoot argument,
we expect that, in order to avoid undershoot, the particle must start very close to φT and stay
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there until some very large time ρ ≈ R, when the damping force has become negligible. Then it
moves quickly through the valley and comes to rest at φF . The form of the solution is sketched
in Figure 3.10. Translating back to the field theory language, the bounce looks like a spherical

ρ

φb(ρ)

R

φT

φF

Figure 3.10: The bounce in the thin wall approximation.

bubble of critical radius R, with a thin wall separating the true vacuum inside from a background
of false vacuum outside. For ρ near R, we can neglect both the friction term in (3.47) and the
ε-dependent term in V , obtaining the soliton equation

d2φ

dρ2 = V ′0(φ). (3.54)

A solution φ0(ρ) for this equation is defined by

ρ =
∫ φ0

φT

dφ√
2 [V0(φ)− V0(φF )]

, (3.55)

with action

σ =
∫
dρ

[
1
2

(
dφ0
dρ

)2
+ V (φ)− V (φF )

]
=
∫ φT

φF

dφ
√

2 [V (φ)− V (φF )], (3.56)

which can be interpreted as the surface tension of the bubble. Thus, the thin wall approximate
description of the bounce is

φb(ρ) =


φT , ρ� R,

φ0(ρ−R), ρ ≈ R,
φF , ρ� R.

(3.57)

In order to compute the B exponent, which is given by equation (3.49), we can divide the integral
into three regions: the inside and outside of the bubble, where the field is a constant, and the
surface of the bubble, where we can replace ρ by R and V by V0. Thus, we obtain

B = −επ
2

2 R
4 + 2π2R3σ, (3.58)

where the first term is the volume energy coming from the inside of the bubble and the second
term is a surface energy. The critical radius R = R0 can be determined by imposing that the
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bounce is a stationary point,

dB

dR
= 2π2R2(−εR+ 3σ) = 0 ⇒ R0 = 3σ

ε
. (3.59)

This result allows us to verify the self-consistency of the thin wall approximation, justifying our
earlier neglect of the friction term in (3.47). Away from the wall, this term is negligible because
φ is approximately constant. At the wall, it is negligible because ρ is large or equivalently, from
equation (3.59), because ε is small. Finally, we can evaluate B at the stationary point, obtaining

B0 = 27π2σ4

2ε3 . (3.60)

Differentiating equation (3.59) with respect to R gives

d2B

dR2

∣∣∣∣∣
R0

= −18π2σ2

ε
< 0, (3.61)

which shows that R0 is a maximum of the action in the set of configurations described by (3.57)
and suggests the presence of a negative mode corresponding to variation of R. Differentiating
(3.47) with respect to ρ, we obtain

φ′′′ + 3
ρ
φ′′ − 3

s2φ
′ = d2V

dφ2 φ
′, (3.62)

or equivalently

S′′[φb]φ′ =
[
− d2

dρ2 −
3
ρ

d

dρ
+ d2V

dφ2

]
φ′ = − 3

ρ2φ
′. (3.63)

In the thin wall approximation, where φ′ is non negligible only for ρ ≈ R, we can safely replace
ρ by R in the right-hand side, thus obtaining a negative eigenvalue − 3

R2 .

Evolution of the bubble The bounce plays a double role. Not only its action determines
the nucleation rate, but its analytic continuation to Minkowski space gives the evolution of the
bubble after nucleation, without the need of further calculation. Making the substitution τ → it

in the O(4) invariant Euclidean bounce, gives the O(1, 3) invariant Minkowskian solution

φ(t,x) = φb(ρ =
√
|x|2 − t2), (3.64)

which of course is valid outside the light cone of the origin. Now the physical interpretation of
the bounce is clear. In the thin wall approximation, the bubble at nucleation has a thin wall of
radius R0 separating the true vacuum interior from the false vacuum exterior. Once the bubble
has formed, it begins to expand tracing out an hyperboloid in Minkowski space, which is shown
in Figure 3.11. The radius of the wall is given by

R(t) =
√
R2

0 + t2, (3.65)

and increases at a velocity

v = dR

dt
= t

R
=

√
1−

(
R0
R

)2
, (3.66)
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|x|

t

R

Figure 3.11: Evolution of the bubble in Minkowski space

which asimptotically approaches the speed of light. In particular, if R0 is a microscopic quantity,
this happens almost instantaneously. The energy carried by the wall of the expanding bubble is
obtained by Lorentz-boosting the surface tension of the wall at rest,

Ewall = 4πR2σ
1√

1− v2
= 4π

3 R3ε, (3.67)

which is exactly the gain in volume energy coming from the conversion of false vacuum to true.
Thus, in the thin wall approximation, all the released energy goes to accelerate the bubble wall.

Including finite temperature effects Our discussion here is based on the review of [21], but
more details can be found in the references therein. In the presence of a non zero temperature
T = 1

β , some modifications to the previously outlined picture of bubble nucleation are required.
Firstly, the zero temperature scalar field potential V (φ) is replaced by a finite temperature
effective potential Veff(φ, T ). Secondly, new instability mechanisms are available.

An example is provided by thermally assisted quantum tunneling, where instead of tunneling
directly from the false vacuum, the system is thermally excited to an higher energy state for
which the barrier penetration integral is smaller. Keeping track only of the exponential factors,
the thermally averaged decay rate is

Γtunn ∼
∫ Etop

EF

dEe−β(E−EF )e−B(E) ∼ e−β(E∗−EF )e−B(E∗), (3.68)

where E∗ minimizes the exponent. Minimization is achieved if the bounce solution φb is also
periodic in the Euclidean time τ with period β. Then, we have

Γtunn ∼ e−(S[φb]−S[φF ]), (3.69)

where integration in both actions is over a single period β.
Another example are purely thermal transitions, where the system is thermally excited di-

rectly to the top of the barrier without nedd of quantum tunneling at all,

Γtherm ∼ e−β(Etop−EF ). (3.70)

The two possibilities are shown in Figure 3.12.
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φ

V (φ)

φF

EF

Etunn

Etop

Figure 3.12: The two possible transitions at finite temperature.

3.3 Including gravity

Gravitational effects have been neglected so far, but they can be important when the energies
involved in the transition are close to the Planck scale or, even at lower energies, if the radius of
the bubble at nucleation is large enough to be sensitive to the curvature of spacetime. Moreover,
they can come into play in the evolution of the bubble after nucleation. The extension of the
theory of vacuum decay to include gravity is a non trivial matter. One possibility is to argue
from analogy, as was first done by Coleman and de Luccia in [7]. With gravitational effects
taken into account, the decay rate should still be related to a bounce solution φb,

Γ
V

= Ae−
B
~ , (3.71)

with
B = SE [φb]− SE [φF ], (3.72)

but the Euclidean action now includes also a gravitational contribution given by an Euclidean
Einstein-Hilbert term,

SE =
∫
d4x
√
g

[1
2g

ab∂aφ∂bφ+ V (φ)− 1
2kR

]
, (3.73)

where the metric gab has positive signature, g is the determinant of the metric and k = 8πG. It
is worth observing that now the absolute value of the potential matters: adding a constant to V
amounts to introducing a cosmological constant Λ. Thus, the nature of spacetime in the initial
false vacuum state depends on the value of the potential in the false vacuum,

ΛF =
√

3
kV (φF ) . (3.74)

Moreover, since V (φF ) 6= V (φT ), we expect to have different cosmological constants inside and
outside the bubble.

As we have seen, in flat space, i.e. when gravitational effects are negligible, the O(4) invariant
bounce has minimum action. Altough a corresponding result in curved space has not been
proved, it seems to be a reasonable assumption. If it turns out that there exists another solution
with lower action, then the estimate for the decay rate we are going to obtain is only a lower
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bound. The O(4) symmetry implies that the metric has the form

ds2 = dξ2 + ρ2(ξ)dΩ2
3, (3.75)

where dΩ2
3 is the metric of the three-sphere, with Ricci scalar

R = − 6
ρ2 (ρρ′′ + ρ′2 − 1), (3.76)

and φ = φ(ξ), with diagonal energy momentum tensor

Tµν = 2
√
g

∂
(√
gL
)

∂gµν
⇒

Tξξ = 1
2φ
′2 − V (φ),

Tij = −ρ2
(

1
2φ
′2 + V (φ)

)
δij , (i 6= ξ).

(3.77)

With this ansatz, the Klein Gordon equation for the scalar field in a curved background,

1
√
g
∂µ (√ggµν∂νφ) = dV

dφ
, (3.78)

becomes
φ′′ + 3ρ

′

ρ
φ′ = dV

dφ
. (3.79)

and the Einstein’s equations for the metric

Gµν = Rµν −
1
2Rgµν = kTµν (3.80)

have just one indipendent component, e.g. the ξξ-component,

ρ′2 = 1 + k

3ρ
2
(1

2φ
′2 − V (φ)

)
. (3.81)

Finally, the action is

SE = 2π2
∫
dξ

{
ρ3
[1

2φ
′2 + V (φ)

]
+ 3
k

(ρ2ρ′′ + ρρ′2 − ρ)
}
. (3.82)

Integrating by parts to eliminate the second derivative term and neglecting the surface contri-
bution, as we are only interested in the action difference between two solutions that agree at
infinity, we obtain

SE = 4π2
∫
dξ

{
ρ3
[1

2φ
′2 + V (φ)

]
− 3
k

(ρρ′2 + ρ)
}
, (3.83)

which using (3.81) becomes

SE = 4π2
∫
dξ ρ

(
ρ2V (φ)− 3

k

)
. (3.84)

The thin wall approximation The only difference between equation (3.79) and its counter-
part (3.47) in the flat case is the coefficient of the friction term, which is now proportional to ρ′

ρ

instead of 1
ρ . Since in the thin wall approximation this term is neglected anyway, the analog of
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equation (3.55) can still be used to implicitly define a solution,

ξ − ξ̄ =
∫ φ

φF−φT
2

dφ√
2 [V0(φ)− V0(φF )]

, (3.85)

where ξ̄ is an integration constant. Once we have φ, we can solve (3.81) to find ρ. Since this is
a first-order differential equation, we also need an integration constant, which can be chosen to
be the radius of curvature of the bubble wall,

ρ̄ = ρ(ξ̄). (3.86)

This can be determined by imposing that B is stationary. As in the flat case, we divide the
integration region in three parts. From equation (3.81) we have

dξ = dρ

(
1− k

3ρ
2V

)− 1
2
, (3.87)

so from the inside of the bubble we have

Binside = −12π2

k

∫ ρ̄

0
dρ ρ

{[
1− k

3ρ
2V (φT )

] 1
2
− (φT → φF )

}

= 12π2

k2

(
V (φT )−1

{[
1− k

3ρ
2V (φT )

] 3
2
− 1

}
− (φT → φF )

)
. (3.88)

In the wall, we can replace ρ with ρ̄ and V with V0, whence

Bwall = 4π2ρ̄3
∫
dξ [V0(φ)− V0(φF )] = 2π2ρ̄3σ. (3.89)

Outside the bubble, the bounce and the false vacuum agree and we don’t have any contribution,

Boutside = 0. (3.90)

Now we focus on two interesting cases. The first one is

V (φF ) = ε, V (φT ) = 0. (3.91)

Then we have a stationary point at

ρ̄ = 12σ
4ε+ 24πGσ2 = R0

1 +
(
R0

2ΛF

)2 , (3.92)

where R0 is the critical radius of the bubble in the flat case. Evaluating B at the stationary
point, we get

B = B0[
1 +

(
R0

2ΛF

)2
]2 , (3.93)

where B0 is the expression we get in the flat case. Thus, gravitation makes the critical radius
smaller and the nucleation of the bubble more likely. The second case is

V (φF ) = 0, V (φT ) = ε. (3.94)
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Then, the stationary point is
ρ̄ = R0

1−
(
R0

2ΛT

)2 , (3.95)

and at this point B is
B = B0[

1−
(
R0

2ΛT

)2
]2 . (3.96)

Now, the situation is just the opposite: gravitation makes the critical radius larger and the
nucleation of the bubble less likely. Indeed, if R0 = 2ΛT , or equivalently ε = 3

4kσ
2, the critical

radius diverges and the decay probability vanishes: gravitational effects have stabilized the false
vacuum.

If one expected that it was always possible to tunnel from a vacuum of higher energy to
another vacuum of lower energy, then this result might seem a bit surprising. However, it must
be remembered that the bounce does not describe tunneling from false vacuum to true vacuum,
but rather from false vacuum to a configuration with a bubble of true vacuum surrounded by a
false vacuum background. In the flat case, the energy of a bubble of radius ρ̄ at the time of its
materialization is

E = −4π
3 ερ̄+ 4πσρ̄2 = 4π

3 ερ̄2(R0 − ρ̄), (3.97)

and has to be zero from energy conservation. Without gravity, this is achieved by setting
ρ̄ = R0. With gravity included, a bubble that nucleates in Minkowski spacetime must also have
zero energy, since there is a conserved energy if the space is asymptotically flat. Thus, ρ̄ must
be bigger than R0 if the gravitational contribution to the energy is positive or smaller if it is
negative. In order to compute these corrections, there are two terms to be considered. The first
is the Newtonian potential energy of the bubble, which is

ENewton = − επρ̄
5

15Λ2
T

. (3.98)

The second is a correction to the volume of the bubble. From equation (3.87), the infinitesimal
volume element is

4πρ2dξ = 4πρ2dρ

(
1− 1

2
ρ2

Λ2
T

)
+O(G2), (3.99)

and upon integration we obtain

Egeom = 2περ̄5

5Λ2
T

. (3.100)

The sum of these two terms is positive,

Egrav = ENewton + Egeom = περ̄5

3Λ2
T

, (3.101)

so the bubble is larger in the presence of gravity than in its absence. More explicitly, the energy
of the bubble is the sum of a negative volume term and a positive surface term. In the flat
case, it is always possible to compensate these two terms by making the bubble large enough,
no matter how small ε is. This is no more true when gravity is included, because the negative
energy density inside the bubble distorts the geometry in such a way that the volume/surface
ratio is diminished and, if ε is small enough, no bubble, no matter how big, can have zero energy.
This result can also be seen as a consequence the peculiar feature of Anti-de Sitter spacetime
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that the volume enclosed by a two-sphere of radius R only grows as R2 at large radius, rather
than as R3, so the volume/surface ratio is bounded.

The Hawking Moss instanton The Coleman-de Luccia solution is not the only example
of an instanton of cosmological interest. It is at least worth mentioning that the existence of
another type of solution was pointed out by Hawking and Moss [23]. It is a homogeneous solution
where the scalar field sits at a local maximum of the potential φ = φtop and thus is more akin
to the high-temperature thermal production of a critical bubble than to a quantum tunneling
bounce. The critical radius can be computed as

ρ = Λtop sin
(

ξ

Λtop

)
, (3.102)

and the Euclidean action is
SHM = − 24π2

k2V (φtop) , (3.103)

leading to a tunneling exponent

BHM = SHM − S[φF ] = 24π2

k2

(
1

V (φF ) −
1
φtop

)
. (3.104)

3.4 Witten’s bubble of nothing

An interesting and highly non trivial application of instanton methods is Witten’s analysis of the
non-perturbative instability of the Kaluza-Klein vacuum in [8]. The original Kaluza-Klein theory
assumes for the ground state of pure gravity in 5 dimensions a product space M4 × S1, where
M4 is the four dimensional Minkowski spacetime and the compact space is a circle of radius
R. An analysis of the mass spectrum of the effective four-dimensional theory shows that there
aren’t any tachyonic modes, so this space is classically stable. The next step is to investigate the
possibility of a semiclassical instability, looking for a bounce solution of the Euclidean Einstein’s
equations of motion with the same asymptotic behaviour of the vacuum state and leading to
a negative mode in the functional determinant obtained by expanding the action around the
bounce.

Construction of the bounce The Euclidean Kaluza-Klein metric, obtained by analytical
continuation (i.e. sending t→ −iτ), is

ds2 = dτ2 + dx2 + dy2 + dz2 + dφ2, (3.105)

where φ is a periodic variable with period 2πR. Using polar coordinates in the four dimensional
Euclidean space, the metric becomes

ds2 = dr2 + r2dΩ2
3 + dφ2, (3.106)

where dΩ2
3 is the metric of the three-sphere. Being asymptotically flat, a good candidate for a

bounce solution is the five-dimensional Euclidean Schwarzschild metric,

ds2 =
(

1− α

r2

)−1
dr2 + r2dΩ2

3 +
(

1− α

r2

)
dφ2. (3.107)
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In order for this space to be non singular, it is easy to see that φ must be a periodic variable
with period 2π

√
α. Changing coordinate r =

√
α + λ2 and expanding near λ = 0, the two

pathological terms in the metric give(
1− α

r2

)−1
dr2 +

(
1− α

r2

)
dφ2 → 2

√
α

(
dλ2 + λ2

α
dφ2

)
. (3.108)

This expression is nothing but the metric of the plane in polar coordinates, provided that we
choose φ to be periodic with period 2π

√
α. Moreover, in order for this solution to asymptotically

approach the Kaluza-Klein vacuum described by the metric (3.105), where φ is a periodic variable
with period 2πR, we must set

√
α = R. Thus, the right expression for the bounce is

ds2 =
[
1−

(
R

r

)2
]−1

dr2 + r2dΩ2
3 +

[
1−

(
R

r

)2
]
dφ2, (3.109)

with r running from R to∞, because we had r =
√
α+λ2 with λ running from 0 to∞. Finally,

the presence of the negative mode can be argued from the analysis of [24] and is discussed in
the appendix of [8].

Interpretation of the bounce In order to understand what kind of space the Kaluza-
Klein vacuum decays into, we can study the analytical continuation of the Euclidean bounce to
Minkowski space. The metric of the three-sphere in equation (3.109) can be written as

dΩ2
3 = dθ2 + sin2 θdΩ2

2, (3.110)

where dΩ2
2 is the metric of the two-sphere and θ is related to the Euclidean time through

τ = r cos θ. Then, Wick-rotating with respect to the three dimensional surface τ = 0, i.e
replacing τ → it corresponds to Wick-rotating with respect to the surface θ = π

2 , i.e. replacing
θ → π

2 + iψ. Thus, we obtain

ds2 =
[
1−

(
R

r

)2
]−1

dr2 − r2dψ2 + cosh2 ψdΩ2
2 +

[
1−

(
R

r

)2
]
dφ2. (3.111)

For the moment, let us drop the factors inside the square brackets and focus on the two dimen-
sional space spanned by the variables r and ψ only,

ds2 = dr2 − r2dψ2. (3.112)

This is just the metric of the two dimensional Minkowski space in a weird coordinate system,

x = r coshψ, t = r sinhψ, (3.113)

which doesn’t cover the whole space, but only the exterior of the light cone x2 − t2 > 0, which
is called the Rindler wedge and is showed in Figure 3.13a. Thus, without the factors inside the
square brackets, the metric of equation (3.111) would exactly be the Kaluza-Klein metric, just in
a weird coordinate system which doesn’t cover the whole space. These factors are unimportant
at large r, so the metric asymptotically approaches the Kaluza-Klein metric, as it should be.
However, when these factors are included, the variable r runs from R to ∞, so that only the
exterior of the hyperboloid x2 − t2 > R2 can be described. With no compact dimensions, this
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Figure 3.13: The exterior of the light cone and of a hyperboloid in Minkowski space.

space would have a boundary, but this is no more true when the fifth dimension is taken into
account. The last term in equation (3.111) tells us that the radius of the Kaluza-Klein circle,

while equal to R asymptotically, is R
√

1−
(
R
r

)2
and shrinks to zero as r approaches R. Thus

there is no boundary and the space is both non singular and geodesically complete.
As we have seen, the conventional decay of a false vacuum is characterized by the nucleation

of a bubble of true vacuum, whose wall is expanding with time, converting false vacuum to
true. Here, the decay of the Kaluza-Klein vacuum is even more dramatic. Rather than a bubble
of true vacuum, from the point of view of un observer who is unable to detect the compact
dimension, there is bubble of nothing, a hole forming in the spacetime whose boundary, just as
the wall of the bubble, rapidly expands asymptotically approaching the speed of light,

r(t) =
√
R2 + t2. (3.114)

We can also compute the B coefficient in the decay rate for the Kaluza-Klein vacuum. We
consider the five dimensional Euclidean action

SE = − 1
32π2GR

∫
d5x
√
gR+ SGH , (3.115)

where the SGH is the Gibbons-Hawking boundary term needed to cancel second derivative terms
in the action and 2πRG is the gravitational constant in five dimensions. The bounce is Ricci
flat and the only contribution comes from the boundary term, yielding

B = πR2

4G . (3.116)

Including fermions Is there a way to save the Kaluza-Klein vacuum? As suggested by
Witten, stability can be achieved by introducing fermions. We start observing that an angle α
enters in the definition of fermions in a Kaluza-Klein theory,

ψ(x, φ) =
∑
n

ψn(x)ei(n−
α
2π ) φR , (3.117)

which can be arbitratily chosen as long as the lagrangian of the theory is invariant under
ψ → eiαψ. The value α = 0 (periodic boundary conditions) is trivially allowed, and so is
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α = π (anti-periodic boundary conditions), since ψ → −ψ is a symmetry of every Lorentz in-
variant Lagrangian. Moreover, in the presence of a U(1) symmetry, the value of α would be
completely arbitrary.

This ambiguity in the definition of fermions turns out to play a key role in the existence of
the bounce. As we have seen, a vacuum can only decay into a state with the same asymptotic
behaviour, which implies that, as soon as fermions are included in the theory, the bounce must
carry the same spin structure as the vacuum. However, since the bounce might differ from the
vacuum in topology and not just in geometry, this is not guaranteed to be the case. Such a
topological obstruction due to a topology changing bounce can be easily seen to arise in the decay
of the Kaluza-Klein vacuum. Around the Kaluza-Klein circle, fermions can be both periodic and
antiperiodic. It is worth observing that only the first possibility is admitted in a supersymmetric
context, since supersymmetry transforms periodic bosonic fields into periodic fermionic fields.
As for the bounce, the collapsing circle can be seen as the boundary of a disc. Since this space
is simply connected, its spin structure is unique and only anti-periodic fermions are admitted.
Combining these observations with the requirement that the spin structure of the vacuum and
that of the bounce must be the same, the conclusion is straightforward. If we choose α = π

for the Kaluza-Klein vacumm, the analysis of the previous paragraphs is perfectly valid and the
bounce still represents an instability. Conversely, if we choose α = 0 for the vacuum as required
by supersymmetry, and since only α = π is admitted for the bounce, the decay channel we have
described becomes forbidden and the supersymmetric Kaluza-Klein vacuum is safe.

Fermions also provide an interesting link with the positive energy theorem. According to the
general theory of vacuum decay, a false vacuum can only decay to a state with the same energy
and the same asymptotic behaviour at spatial infinity. Given these basic features, Minkowski
space is guaranteed to be stable against a semiclassical decay process by the positive energy
theorem, first proved by Schoen and Yau in [25] and [26] or, using an alternative argument
based on spinors, by Witten in [27]. The theorem states that all asymptotically flat solutions
of the Einstein’s equations have strictly positive energy, except for Minkowski spacetime itself
which has zero energy. An analogous statement is not valid for the Kaluza-Klein vacuum, an
explicit counterexample being given by the metric (3.109), which is both asymptotically flat and
has zero energy. This is possible because the bounce differs from the vacuum in topology, as
well as in geometry. Only periodic spinors can be used in the proof of [27], which fails in the
presence of antiperiodic spinors and thus cannot apply in our case [8].



Chapter 4

M-theory bubbles of nothing

In this Chapter, we study generalizations of Witten’s bubble of nothing as a possible non-
perturbative mechanism leading to instabilities in the context of non supersymmetric Anti-de
Sitter compactifications. The presence of such instabilities would provide further evidence for
the conjecture of [16] that all non-supersymmetric AdS geometries are unstable, especially in
those cases where stability has already been proven at the perturbative level. In principle, this
analysis could have been done in a generic string theory setup. However, in the present work
we focus on M-theory and its low energy limit, which is eleven dimensional supergravity.

The Chapter is structured as follows. We begin with some preliminary remarks to set out
our notation. First, we introduce the field content of eleven dimensional supergravity, that is
the metric gMN , a Majorana spinor ΨM and a three-form potential AMNP , with four-form field
strength F4 = dA3. We focus on the bosonic degrees of freedom and write down their equations
of motion in a background where the gravitino has been set to zero. Then we provide some
basic notions about compactifications à la Kaluza-Klein, namely the existence of solutions of
the equations of motion of the D = 11 theory in which the metric describes the product of a n
dimensional spacetime (typically n = 4, but other dimensions are also possible) times a D − n
compact space. After that, we are ready to embark on our exploration.

Our starting point are AdS compactifications to four dimensions, known as Freund-Rubin
solutions, where F4 is proportional to the volume form of the external space. As shown by a
no-go theorem due to Young [9], the presence of an external flux seems to prevent a simple
generalization of Witten’s bubble of nothing, where a higher dimensional sphere rather than a
circle shrinks to zero size. A general argument is provided which allows one to argue that, in
the presence of an external flux, the Einstein equations for the bubble can’t be solved unless the
dimension of the collapsing sphere that carries the instability is one, that is a circle. However,
there are at least a couple of aspects of this result that are worth discussing. First, a purely
external flux is not the most general case, since there also exist AdS compactifications to four
dimensions, known as Englert solutions, where an additional internal flux is turned on. Secondly,
it is not obvious how Young’s argument generalizes to more complicate bubble geometries where
the collapsing sphere does not correspond to the entire internal space, since the most interesting
case is when it is only a subspace of the internal space, possibly fibrated over the rest, that
shrinks to zero size.

The key role played by a non trivial fibration structure becomes evident in the AdS5 ×CP 3

geometry, where the CP 3 is realized as a fibration of S2 over a S4 base. Following [10], we will
construct a bubble of nothing where the S2 fiber rather than a circle shrinks to zero size, thus
evading the difficulties pointed out by Young. However, this example is in some ways peculiar,

37
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since there is no external flux supporting the geometry. Instead, the flux is purely internal and
reorients itself at the bubble in such a way that it evaporates from the fiber and the Einstein
equations can be solved.

External and internal form fluxes, non trivial fibration structures of the internal space and
higher dimensional collapsing spheres would suffice to render the bubble geometry quite elaborate
with respect to the original construction by Witten. However, there is still another element that
has to be brought in. Motivated by the analysis of [11] which deals with a similar problem
in the context of ten dimensional type IIB supergravity, we argue that the Page charge of
a bubble geometry must be zero. This poses a serious problem for the construction of the
bubble whenever the Page charge of the vacuum is different from zero, which is the case for
AdS compactifications of both the Freund-Rubin and Englert type, since two solutions with
different Page charges cannot coexist. As a possible way out, we propose to introduce M2
brane instantons as sources of additional flux in the bubble geometry which can account for the
mismatching with the vacuum. This completes the general scenario and we can eventually turn
to a concrete example.

4.1 Eleven dimensional supergravity

This section is not meant to be an exhaustive introduction to the topic but only a preliminary set
up of notation. In particular, spinors and supersymmetry will make only a passing appeareance,
since our focus is on supergravity solutions that are both bosonic and non supersymmetric. We
refer to [28] for a comprehensive introduction to supergravity theories and to [29] for a review
of Kaluza-Klein compactifications in the context of eleven dimensional supergravity.

An overview There are at least two reasons why eleven dimensional supergravity is important.
First, D = 11 is the maximum allowed spacetime dimension where a supergravity theory can be
consistently formulated, since any higher dimension would require the presence of fields of spin
higher than two. Secondly, it can be regarded as the low energy limit of a theory of extended
objects called M-theory, which is considered to be the master theory containing the various
string theories.

Let us spend a few lines on the higher spin consistency problem. We recall that the su-
persymmetry algebra contains spin 1

2 fermionic generators QI , I = 1, . . . ,N commuting with
translations but not with Lorentz generators. Therefore, instead of single particle states, in a
supersymmetric theory we deal with supermultiplets of particle states, with particles belonging
to the same supermultiplet having the same mass but different spin. In particular, the spin
range of the particles in a supermultiplet depends on the number of supersymmetry generators
N , which cannot be arbitrary large if the theory has not to contain particles of spin higher than
two. According to the dimension of the spinor representation of the Lorentz group and thus
on the spacetime dimension, we find for example that maximal supersymmetry corresponds to
N = 8 in D = 4 and N = 2 in D = 10. An equivalent but dimension independent statement
is that a theory with maximum spin two can accomodate no more than 32 supercharges, each
associated with some component of a spinor of the associated Lorentz group. In D = 11, a Ma-
jorana spinor has precisely 32 components, so that precisely N = 1 spinor worth of supercharges
is allowed.

This maximally supersymmetric eleven dimensional theory was constructed in 1978 by Crem-
mer, Julia and Scherk [30], but it was only in the mid-1990s that it entered the string theory
map in its own right, appearing as a part of the intricate web of dualities that relates the various
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ten dimensional superstring theories between each other [31]. In fact, two of the superstring
theories, namely the type IIA and the heterotic E8 × E8, can be seen to exhibit an eleventh
dimension at strong coupling. This suggested the existence of a unique underlying fundamental
theory, called M-theory, with eleven dimensional supergravity as its low energy limit. However,
despite the evidence of its existence is so compelling and the duality aspects are pretty well
understood, a precise formulation of M-theory is still lacking.

The field content We are now ready to introduce the field content of eleven dimensional
supergravity, whose structure, compared to other lower dimensional supergravity theories, is
relatively simple. Obviously, it must contain the gravitational field gMN , that is a graviton. It
transforms under the symmetric traceless tensor representation of SO(D−2), the little group of
a massless particle, and corresponds to (D−1)(D−2)

2 − 1 = 44 bosonic degrees of freedom. In the
vielbein formalism, which is needed in order to formulate gravity in the presence of fermions,
it is described by the vielbein field e M

A . Here M,N, . . . are curved indices, transforming non
trivially under general coordinate transformations, and A,B, . . . are flat indices, transforming
non trivially under Lorentz transformations. Then, we also have the gravitino field ΨM where, in
addition to the explicit vector index, an implicit spinor index is understood. For each value ofM ,
we have a 32 component Majorana spinor. If we properly take into account local symmetries, we
find that ΨM contains 128 real fermionic degrees of freedom. However, supersymmetry requires
that the theory must contain an equal number of bosonic and fermionic degrees of freedom, so
there are still 84 bosonic degrees of freedom missing. In D = 11, this is exactly the number of
states coming from a three-form gauge potential AMNP . Thus, the idea of Cremmer, Julia and
Scherk, who first formulated eleven dimensional supergravity in [30], was that the theory should
contain the metric tensor gMN , a three-form AMNP and the vector spinor ΨM .

The Lagrangian and the equations of motion The bosonic part of the action of eleven
dimensional supergravity (where the fermions have been set to zero, ΨM = 0) is given with
Minkowski signature by

S =
∫
d11x e

(1
4e

N
B e M

A R AB
MN − 1

48F
MNPQFMNPQ

+ 2
(12)4 ε

M1...M11FM1...M4FM5...M8AM9...M11

)
.

(4.1)

Here e = det e A
M , εM1...M11 is the Levi-Civita tensor with ε1...11 = e and FMNPQ = 4∂[MANPQ]

is a four-index anti-symmetric tensor field strenght satisfying the Bianchi identity,

∂[MFNPQR] = 0. (4.2)

In form notation, we have F4 = dA3 with dF4 = 0. The last term in the action is called a
Chern-Simon or topological term and can be rewritten in the form

SCS = −1
3

∫
F4 ∧ F4 ∧A3. (4.3)

Varying the action (4.1) with respect to e A
M and AMNP , we obtain the field equations, namely

the Einstein equation

RMN −
1
2gMNR = 1

3

(
F PQR
M FNPQR −

1
8gMNF

PQRSFPQRS

)
, (4.4)
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which is usually rewritten in the trace-reversed form

RMN = 1
3

(
F PQR
M FNPQR −

1
12gMNF

PQRSFPQRS

)
, (4.5)

and the Maxwell equation

∇MFMPQR = − 1
576ε

M1...M8PQRFM1M2M3M4FM5M6M7M8 , (4.6)

where ∇M is the covariant derivative. It can be usefully rewritten in the compact form

d ∗ F4 = −F4 ∧ F4, (4.7)

where ∗ means the Hodge dual.
We will be mainly interested in solutions of the Euclidean equations of motion. These are

obtained from the analytic continuation of the action, that is upon the substitution t→ −iτ in
(4.1). Then, it is easy to see that the Euclidean Einstein equation is formally identical to its
Minkowskian counterpart (4.4). Conversely, this is not true for the Euclidean Maxwell equation
where, due to the presence of the Chern-Simon term in the action, an extra i appears,

d ∗ F4 = −iF4 ∧ F4. (4.8)

The Kaluza-Klein recipe The idea of compactification dates back to 1920s, when Kaluza
[32] and Klein [33] proposed a way to unify the gravitational and electromagnetic interactions
by postulating a fifth extra dimension for spacetime. They showed how starting from a theory
of pure gravity in five dimensions and compactifying it on a circle, a four dimensional Einstein-
Maxwell-scalar theory is obtained. This was the first example of dimensional reduction as a
mechanism to recover lower dimensional physics from a higher dimensional theory and, altough
there have been many advances and developments since then, the procedure still bears their
names.

Before getting into AdS compactifications in D = 11 supergravity, it is useful to outline
which are the main steps in the procedure, without too much entering into technical details.
For concreteness, and for the sake of our four dimensional world, we now refer to dimensional
reduction to four dimensions, but in general the dimension of the compactified theory can be
different than four.

• The starting point is a D dimensional theory of gravity gMN plus matter fields, which we
collectively denote as Φ, with action

S =
∫
dDz

1
4
√
−gR+ . . . . (4.9)

• The next step is to look for a spontaneous compactification, that is a stable ground state
solution 〈gMN 〉 and 〈Φ〉 of the field equations such that the metric 〈gMN 〉 describes a (pos-
sibly warped) product space M4 ×MD−4, where M4 is a maximally symmetric spacetime
with coordinates xµ and MD−4 is an internal compact space with coordinates ym. The
requirement of compactness of the internal space guarantees the discreteness of the four
dimensional spectrum.

• The spectrum of the four dimensional theory is to be found by considering fluctuations of
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the fields about their ground state values,gMN = 〈gMN 〉+ hMN ,

Φ = 〈Φ〉+ φ,
(4.10)

inserting them into the equations of motion and keeping only linear terms. Then each
fluctuation generically denoted as φmn...µν... is decomposed as a sum of terms of the form

ϕµν...(x)Y mn...(y), (4.11)

where Y mn...(y) are eigenfunctions of the mass operator M2 coming from the kinetic term
acting on the internal space,

M2Y(n) = m2
nY(n). (4.12)

In the end, we obtain a four dimensional effective theory with an infinite tower of massive
states with masses mn quantized in units of a fundamental mass m ∼ R−1, where R is some
characteristic lenght of the compact space, plus a finite number of massless states, including the
graviton, corresponding to the zero modes in (4.12).

A vacuum solution is said to be perturbatively stable if all states in the tower have positive
energy. In Minkowski spacetime, this is equivalent to say that there are no negative modes
(tachyons) in the spectrum, that is m2

n ≥ 0 for each n. However, the question is more subtle
for Anti-de Sitter spacetime where, because of the coupling to the curvature, mass is rather an
ambiguous concept. The curvature gives indeed a positive contribution to the energy of a field
propagating in AdS and masses can be negative, provided that they are not too negative,

m2
n ≥ m2

BF . (4.13)

The lower bound, first found by Breitenlohner and Freedman in [34] and [35], is given by

m2
BF = − D

2

4L2 , (4.14)

where L is the radius of the D dimensional Anti-de Sitter spacetime. A derivation of their result
can be found in the following section.

4.2 Anti-de Sitter geometry

In this section, we provide some basic notions about the geometry of Anti-de Sitter spaces.
First, we introduce some of the most commonly used coordinate systems, such as the embedding
coordinates, the global coordinates and the Poincaré coordinates. We also describe the Eu-
clideanization of the AdS geometry, that is the analytic continuation of the metric to Euclidean
signature. For this part we refer for example to [36]. Then we move on to derive some standard
stability properties of AdS spaces, namely the stabilizing role played by supersymmetry and the
Breitenlohner-Freedman bound on the mass of a scalar field propagating in AdS. Our discussion
mainly follows the review of [29], as well as some of the original articles.

Some AdS coordinates As it is well known, Anti-de Sitter spacetime is the maximally
symmetric solution of the Einstein equations with negative cosmological constant. From the D
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dimensional Einstein-Hilbert action

S = 1
2k2

∫
dDx
√
−g(R− Λ), (4.15)

we derive the Einstein equation

Rµν −
1
2gµνR = −Λ

2 gµν , (4.16)

yielding for the Ricci scalar R = D
D−2Λ. Therefore, the Ricci tensor is proportional to the metric,

Rµν = Λ
D − 2gµν . (4.17)

This relation defines an Einstein space. If we also require that

Rµνρσ = Λ
(D − 1)(D − 2) (gµρgνσ − gµσgντ ) , (4.18)

the space is said to be maximally symmetric.

A convenient way to describe theD dimensional Anti-de Sitter space is through its embedding
in a (D+ 1) dimensional flat ambient space of appropriate signature, namely as the hyperboloid
in R2,D−1 defined by the quadratic equation

ηabx
axb = −(x0)2 +

D−1∑
i=1

(xi)2 − (xD)2 = L2, (4.19)

with the metric induced by the ambient space,

ds2 = −(dx0)2 +
D−1∑
i=1

(dxi)2 − (dxD)2. (4.20)

Here L is the AdS radius related to the cosmological constant via

1
L2 = − Λ

(D − 1)(D − 2) . (4.21)

The easiest way to identify the symmetries of AdS is to observe that both (4.19) and (4.20) are
invariant under linear coordinate transformations of the form x′a = Ma

bx
b, provided that the

matrix Ma
b belongs to SO(2, D− 1). So the isometry group of AdSD is also SO(2, D− 1), with

generators
Lab = xa

∂

∂xb
− xb ∂

∂xa
, (4.22)

satisfying the SO(2, D − 1) algebra[
Lab, Lcd

]
= ηbcLad + ηadLbc − ηacLbd − ηbdLac. (4.23)

Any two points on the hyperboloid (4.19) are related by a transformation of the isometry group,
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which means that the space is homogeneous. A set of coordinates is given by

x0 = L cosh ρ cos τ,

xi = L sinh ρx̂i, with
D−1∑
i=1

x̂2
i = 1,

xD = L cosh ρ sin τ.

(4.24)

In these coordinates the metric reads

ds2 = L2
(
− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2

D−2

)
, (4.25)

where dΩ2
n is the metric of the unit n-sphere. Here ρ ∈ R+ and τ ∈ [0, 2π]. These coordinates

are called global since they cover the hyperboloid defined by (4.19) exactly once. In order to
avoid time-like closed curves, we can take the universal cover where τ ∈ R. Another set of
coordinates, which do not cover the whole spacetime but only the so-called Poincaré patch, is
given by

x0 = 1
2u(1 + u2(L2 + y2 − t2)),

xi = Luyi, i = 1, . . . , D − 2,

xD−1 = 1
2u(1− u2(L2 − y2 + t2)),

xD = Lut

(4.26)

Here u > 0 and yµ = (t,y) is a Lorentz vector. Then metric takes the form

ds2 = L2
(
du2

u2 + u2dyµdyµ

)
, (4.27)

describing a foliation of D − 1 dimensional Minkowski spacetime over u, whence the name
Poincaré coordinates. The warp factor u2 means that an observer living on a Minkowski slice
measures all lengths rescaled by a factor of u according to its position in the u direction. The
plane u =∞ is referred as the AdS conformal boundary, since the conformally equivalent metric
ds2

u2 has boundary R1,D−2 at u =∞. The plane u = 0 is a Killing horizon, with null Killing vector
∂
∂t . It is a coordinate singularity, since there is no difficulty in extending the metric beyond the
horizon, for example using global coordinates. Redefining u = 1

z , here is another common form
of the metric in Poincaré coordinates,

ds2 = L2
(
dz2 + dyµdyµ

z2

)
. (4.28)

Here the conformal boundary is at z = 0 and the Killing horizon at z =∞.

Euclidean AdS In this Chapter, we will be mainly concerned with the Euclidean continuation
of the metric, that is we send xD → −ixD in (4.19) and τ → −iτ , t → −it in each set of
coordinates (4.24), (4.26). Then the Euclidean metric is

ds2
E = L2

(
cosh2 ρdτ2

E + dρ2 + sinh2 ρdΩ2
D−2

)
= L2

[
du2

u2 + u2
(
dt2E + dy2

)]
. (4.29)
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Here the u = 0 plane is the Euclidean flat space RD−1 and the u = 0 plane shrinks to a point. It
can be convenient to compactify the boundary RD−1 to SD−1 by adding the point u = 0. Then
the Euclidean AdSD looks like a D dimensional ball in RD.

Setting L = 1 and using the freedom of coordinate redefinition by fixing the coefficient near
dr2 to be 1, we can also write the metric in the form

ds2
E = dr2 + sinh2 rdΩ2

D−1, (4.30)

which is the one we will most often use in the rest of the Chapter.

Supersymmetry and positive energy We now discuss an important implication of AdS su-
persymmetry. Withouth entering into technical details and focusing on the four dimensional case
for simplicity, we simply state that, in a supergravity theory, the SO(2, 3) symmetry group can be
enhanced to the larger OSp(4|N) group, by including N spinorial generators QA (A = 1, . . . , N)
and the N(N−1)

2 generators TAB of SO(N) which rotates the QA into themselves. We can define
Killing vectors Kab

µ (x) associated to the SO(2, 3) generators Lab, satisfying

∇(µK
ab
ν) = 0. (4.31)

We can also define Killing spinors εA(x) associated to the spinorial generators QA, satisfying

D̃µε
A = 0, (4.32)

where D̃µ = Dµ +mγµγ5 is a covariant derivative. In the presence of a Killing spinor, that is of
an unbroken supersymmetry, a nice algebraic argument can be used to prove the positivity of
energy and, thus, AdS stability. Prior to this, however, we must pause a moment on what we
mean by both energy and stability.

A possible definition of energy in asymptotically AdS spacetimes parallels the ADM (Arnowitt-
Deser-Misner) definition of energy in asymptotically flat spacetimes based on Hamiltonian for-
malism [37] and was first discussed by Abbott and Deser in [38]. There it is shown how to
each generator Lab we can associate a surface integral that can be thought as a generalization
of momentum or angular momentum. In particular, the time translation generator L04 can be
interpreted as the total energy. More explicitly, let us consider a theory of gravity gµν(x) coupled
to scalar fields φi(x), since they are the only non zero fields that are admitted in a maximally
symmetric background configuration. Then the equations of motion are

Rµν −
1
2gµνR = 2Tµν , (4.33)

where

Tµν = −∂µφi∂νφi + 1
2gµν

[
∂σφ

i∂σφi − 2V (φ)
]
, (4.34a)

�φi = − ∂V
∂φi

. (4.34b)

We consider background solutions where gµν(x) = ḡµν(x) is the AdS metric and the scalar
fields are constant, φi(x) = φ̄i. From equation (4.34b) we see that we are at a critical point
of the scalar potential. Moreover, equation (4.34a) tells us that the cosmological constant is
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Λ = 2V (φ̄). Then we consider fluctuations around the background values,

gµν(x) = ḡµν + hµν(x), φi(x) = φ̄i + si(x). (4.35)

Substituting into equation (4.33) yields

R̃µν −
1
2 ḡµνR̃− Λhµν = 2

(
Jµν + Tµν + 1

2Λḡµν
)
, (4.36)

where the tilde means that only terms that are linear in hµν are retained and Jµν contains terms
of higher order in hµν . The important point is that the left-hand side of this equation obeys the
Bianchi identity, whence the conservation law

∇µ
(
Jµν + Tµν + 1

2Λḡµν
)

= 0. (4.37)

Finally, the Abbott-Deser conserved energy functional is given by

E =
∫
d3x

√
−ḡ

(
J0ν + T 0ν + 1

2Λḡ0ν
)
Kν , (4.38)

with Kν being the global time-like Killing vector associated to time translations. We will refer
to it as the Killing energy. A configuration is stable if the associated functional is positive for
fluctuations vanishing sufficiently fast at spatial infinity, so that the integral converges. Abbott
and Deser showed that this is the case if the matrix

Vij = ∂2V

∂φi∂φj
. (4.39)

has positive eigenvalues, that is φ(x) = φ̄i is a local minimum of the potential. However, in
[34] and [35] Breitenlohner and Freedaman were able to prove that this can also happen for
maximum or saddle points, and even when the potential is unbounded from below, provided
that the eigenvalues are not too negative. We will come back to their result in a moment.

Now we are ready to provide the algebraic argument. We consider the anti-commutation
relation for the spinorial supersymmetry generators,{

QA, Q̄B
}

= 2δABγabLab + TAB, (4.40)

where
γab =

(
γab −γa
γb 0

)
, γab = γ[aγb]. (4.41)

Multiplying by γ0 and taking the trace yield

L04 = TrQ2 ≥ 0, (4.42)

so the Killing energy is positive. A more direct proof remaining at the classical level can be
found in [39] and the connection with the quantum theory is discussed in [40].

The Breitenlohner-Freedman bound As we have anticipated, a scalar field with a negative
mass in AdSD does not necessarily lead to any instabilities, provided that the mass is not too
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negative and satisfies the Breitenlohner-Freedman bound m2 > m2
BF , with

m2
BF = −(D − 1)2

4L2 . (4.43)

Following [41], we now provide a nice derivation of their result based on a Schrödinger formalism.
Let us consider the Klein-Gordon equation for a massive scalar

1
√
g
∂µ [√ggµν∂νφ(z, t,y)] = m2φ(z, t,y), (4.44)

in the Poincaré patch of AdSD+1 described by the metric (4.28), that is(
∂2
z − ∂2

t + ∂2
i −

D

z
∂z −

m2L2

z2

)
φ(z, t,y) = 0. (4.45)

Assuming the spacetime dependence φ(z, t,y) = φ̃(z)eik·y, with momentum k2 = −ω2 + k2, this
equation becomes

φ̃′′(z)− D

z
φ̃′(z)−

(
m2L2

z2 + k2
)
φ̃ = 0. (4.46)

We would like to rewrite it as a Schrödinger equation. In order to do so, we have to get rid of
the disturbing first derivative term. So we write φ̃(z) = B(z)ψ(z), yielding

Bψ′′ +
(

2B′ − D

z
B

)
ψ′ +

[
B′′ − D

z
B′ −B

(
m2L2

z2 + k2
)]

= 0. (4.47)

The term multiplying ψ′ can be made to vanish if

B′

B
= D

2z ⇒ B = cz
D
2 , (4.48)

where we set the integration constant c = 1. Then equation (4.47) becomes

− ψ′′ +
[
k2 + 1

z2

(
m2L2 + D(D − 2)

4

)]
ψ = ω2ψ, (4.49)

which can be interpreted as a Schrödinger equation with potential V (z) given by the quantity in
square brackets and energy ω2. In particular, negative energy amounts to imaginary ω, whence
a solution that is exponentially growing in time. This is the kind of instability we are looking
for.

However, the connection between this Schrödinger equation and the AdS Klein-Gordon equa-
tion (4.45) requires a further inspection. It can be shown that the condition of conservation for
the AdS Killing energy associated to the time translation Killing vector ∂t, corresponding to a
vanishing energy flux out of the AdS conformal boundary at z = 0, is equivalent to the con-
dition of Hermiticity for the Schrödinger operator in (4.49). Moreover, the conserved energy
for a scalar field configuration in AdS is also finite if the Schrödinger wavefunction ψ(z) has
finite norm. Therefore, the problem of finding an instability of the AdS equation (4.45) has
been translated into the problem of finding normalizable negative energy states on which the
Schrödinger operator in (4.49) is Hermitian. Now that our quantum mechanical problem is
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well-posed, we can set k = 0 and rewrite (4.49) as

− ψ′′ + α

z2ψ = −β2ψ, (4.50)

where α =
(
m2L2 + D(D−2)

4

)
and negative energy means that β is real. We recognize it as a

Bessel equation,

ψ′′ −
(
β2 +

ν2 − 1
4

z2

)
ψ = 0, (4.51)

with ν = 1
2
√

1 + 4α. The solutions to this equation can be written in terms of Hankel functions,

ψ(z) =
√
z
[
C1H

(1)
ν (iβz) + C2H

(2)
ν (iβz)

]
, (4.52)

with the large z asymptotic behaviour

H(1)
ν (iβz) ∼ 2

iβz
cosh(βz), H(2)

ν (iβz) ∼ −i 2
iβz

sinh(βz). (4.53)

In order for the solution to vanish as z →∞, we must take the linear combination

ψ(z) = C
√
z
[
H(1)
ν (iβz) + iH(2)

ν (iβz)
]
. (4.54)

As for the small z behaviour, we must distinguish between real or imaginary ν, that is α > −1
4

or α < −1
4 . For real ν, and as z → 0, this expression becomes

ψ(z) = C
√
z

[ 1
Γ(ν + 1)

(
iβz

2

)ν
− iΓ(ν)

π

( 2
iβz

)ν]
. (4.55)

Imposing the Hermiticity condition (which corresponds to an appropriate boundary condition
in the AdS picture, as we have already discussed) on two solutions (4.55) with different energies
β1, β2, we obtain (

β2
β1

)ν
+
(
β1
β2

)ν
= 0, (4.56)

which cannot be solved for any values of β1, β2 real. Thus, there can never be a negative energy
solution satisfying the Hermiticity condition, which translated back into the AdS language means
that no instabilities can arise, provided that α > −1

4 . The situation is different for imaginary ν.
In this case, the small z limit gives

ψ(z) ∼
√
z cos

[
(Im ν) ln

(
zβ

2

)
+ δ

]
, (4.57)

where δ is a ν-dependent phase and the Hermiticity condition can be solved. Recalling the
definition of α, this result is exactly what we would have expected from the Breitenlohner-
Freedman bound (4.43).

4.3 Young’s no-go argument

In this section, we introduce AdS compactifications of eleven dimensional supergravity to four
dimensions, of which two main classes are known: Freund-Rubin solutions, in which the only
non zero components of the four-form lie in spacetime, and Englert-type solutions, in which the
four-form is also non zero when its indices all lie in the internal space. With the exception of the
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round seven-sphere, Freund-Rubin solutions can preserve or not supersymmetry, according to
the orientation of the internal manifold. Englert solutions do not preserve any supersymmetry.
They can be obtained from a supersymmetric solution by switching on a four-form that is
constructed as a bilinear of a Killing spinor and flipping the orientation. Then we comment on
the failure of the earlier attempt of [9] to generalize Witten’s original construction of a bubble
of nothing, prodiving a general argument which seems to prevent higher dimensional spheres to
collapse in the presence of a non zero flux in the bubble geometry.

The Freund-Rubin ansatz A simple class of solutions to eleven dimensional supergravity
was found by Freund and Rubin in [42]. They describe ground state configurations of the form
AdS4 ×M7, where AdS4 is the four dimensional Anti-de Sitter spacetime and M7 is a compact
seven dimensional Einstein space. As the authors emphasize, the dimension four for spacetime
is not ad hoc, but it is a consequence of the field equations through the presence of a four-
form, which in turn is dictated by supersymmetry. Indeed, the fact that the correct spacetime
dimension was an output, rather than an input, was regarded as an attractive feature of the
theory. The presence of an external four-form flux is also interesting for us, since it can be
shown to represent an obstruction to the construction of a bounce geometry, that is a bubble of
nothing, as it will become clear in the following.

To begin, we observe that the requirement of maximal spacetime simmetry implies that the
v.e.v. of any fermion field should vanish, so we set (from now on, we will omit the angle brackets
which denoted a ground state in the previous section)

ΨM = 0, (4.58)

and focus on the bosonic equations (4.5) and (4.6) for gMN and AMNP . Then, we assume
a spontaneous compactification for the eleven dimensional space where the metric describes a
direct product M11 = M4 ×M7, that is

gMN (x, y) =
(
gµν(x) 0

0 gmn(y)

)
, (4.59)

where gµν(x) is the metric of the four dimensional spacetimeM4 with coordinates xµ and gmn(y)
is the metric of the seven dimensional internal space M7 with coordinates ym. We also set

Fµνρσ = Fµνρσ(x), Fmnpq = Fmnpq(y), (4.60a)
Fµnpq = Fµνpq = Fµνρq = 0. (4.60b)

Here the y-independence of Fµνρσ and the x-independence of Fmnpq are a consequence of the
Bianchi identity (4.2), together with (4.60b). Then, the ansatz of Freund and Rubin is to set

Fµνρσ = ξεµνρσ, Fmnpq = 0, (4.61)

with ξ a real constant. Equivalently, the four-form is set proportional to the volume form of the
external space,

F4 = ξ vol4 . (4.62)

With this ansatz, the Bianchi identity and the Maxwell equation are trivially satisfied and the
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Einstein equations yield the product of two Einstein spaces,

Rµν = −4
3ξ

2gµν , (4.63a)

Rmn = 2
3ξ

2gmn. (4.63b)

The maximally simmetric solution to (4.63) is AdS4, since the curvature is negative. Moreover,
having positive curvature and Euclidean signature, M7 is automatically compact.

Skew-whiffing An interesting feature of Freund-Rubin vacua is skew-whiffing, i.e. orientation
reversal of M7. Since the four-form appears quadratically in the Einstein equations, for each
Freund-Rubin solution (4.61), with ξ 6= 0, we can obtain another solution by a reversal of
orientation ofM7, for example by sending e a

m to −e a
m , or equivalently by keeping the orientation

fixed but inserting a minus sign in front of ξ in (4.61). With the exception of the round seven-
sphere, where both orientations admit maximal supersymmetry, it can be shown that at most one
orientation can be compatible with supersymmetry. From the general argument of section 4.2,
we already know that supersymmetric solutions are automatically stable. What about their non
supersymmetric skew-whiffed counterparts? It is maybe a bit surprising to find that they are
also perturbatively stable, since the stability properties of Freund-Rubin vacua can be shown
to be insensitive to orientation at the perturbative level. Therefore, it is meaningful to look for
non perturbative instabilities in a Freund-Rubin setup.

Of course these statements require a bit of explanation, which we now provide. To begin, we
review the criterion of unbroken supersymmetry in the effective four dimensional theory, since
it is also relevant to construct Englert-type solutions. We recall from (4.58) that fermions have
been set to zero. Therefore, for a supersymmetric vacuum we require that they stay zero under
a supersymmetry transformation, that is

δΨM = D̃Mε = 0, (4.64)

where the supercovariant derivative D̃M takes the remarkably simple structure

D̃µ = Dµ + ξ

3γµγ5, D̃m = Dm + ξ

6Γm. (4.65)

Here, γµ = e α
µ γα and Γm = e a

m Γa, with

{γα, γβ} = −2ηαβ, {Γa,Γb} = −2δab. (4.66)

To solve equation (4.64), we look for solutions of the form ε(x, y) = ε(x)η(y), where ε(x) is an
anticommuting four component spinor in D = 4 and η(y) a commuting eight component spinor
in D = 7. They must satisfy

D̃µε(x) = 0, D̃mη(y) = 0. (4.67)

Since AdS admits the maximum number as far as spacetime is concerned, the number N of
unbroken generators is given by the number of Killing spinors onM7, i.e. the number of solutions
to

D̃mη =
(
∂m −

1
4ω

ab
m Γab −

ξ

6e
a
m Γa

)
η = 0. (4.68)

We are now ready to state the skew-whiffing theorem. Let η± be Killing spinors for two Freund-
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Rubin vacua related by skew-whiffing,(
Dm ∓

ξ

6Γm
)
η± = 0. (4.69)

Then the scalar field defined by φ ≡ η̄+η− satisfies

�φ = −7
9ξ

2φ, (4.70)

yielding

Emn = ∇m∇nφ+ ξ2

9 gmnφ = 0. (4.71)

This is the equation for conformal Killing vectors ∇mφ on M7, which is known to have solutions
only for the round seven-sphere. This argument would fail if φ = 0, but it is not difficult to show
that this cannot be the case. Therefore, there can exist at most one orientation that preserves
supersymmetry.

The second ingredient we need is the necessary and sufficient condition for a Freund-Rubin
solution to be perturbatively stable. We state it without derivation and refer to [43] for details.
There, an analysis of the spectrum of the four dimensional theory reveals that classical instabil-
ities can only arise from the scalar sector. Moreover, the criterion for stability can be expressed
as a certain bound on the spectrum of the Lichnerowicz operator on M7,

∆L ≥
ξ2

3 , (4.72)

where ξ is the Freund-Rubin parameter appearing in (4.61). What is interesting about this
result is that ξ appears quadratically in the bound. Thus, it is not affected by an orientation
reversal, that is by sending ξ to −ξ. In particular, the general stability argument in the presence
of supersymmetry which we discussed in section 4.2 can be used to argue that Freund-Rubin
solutions with an unbroken supersymmetry satisfy (4.72). But then, this is also true for the
corresponding skew-whiffed solution, which is not supersymmetric but still turns out to be
perturbatively stable.

Englert solutions In the Freund-Rubin ansatz, the four-form is taken to have legs in the
external space only. This assumption can be relaxed, allowing for a non vanishing internal flux,

F4 = F e4 + F i4, (4.73)

where the first and second terms live in the external and internal space, respectively. Solutions
of this kind were first discovered by Englert in [44]. In components, we set

Fµνρσ = 2
3ξεµνρσ, Fmnpq 6= 0, (4.74)

where a numerical factor in front of ξ is introduced for convenience. Then, the Maxwell equation
(4.7) reads

d ∗ F i4 = d ∗7 F i4 ∧ vol4 = −2F i4 ∧ F e4 = −2
3ξF

i
4 ∧ vol4, (4.75)

yielding
d ∗7 F i4 = −1

3ξF
i
4. (4.76)
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Equivalently, in components,

∇mFmnpq = 1
18ξε

npqrstuFrstu. (4.77)

The Einstein equation (4.5) splits into

Rµν = 1
3

(
−16

9 ξ
2 − 1

12F
mnpqFmnpq

)
gµν , (4.78)

Rmn = 1
3

(
F pqr
m Fnpqr −

1
12gmnF

pqrsFpqrs + 8
9ξ

2gmn

)
. (4.79)

The requirement of maximal spacetime symmetry Rµν = Λgµν implies that FmnpqFmnpq is a
(positive) constant, leading to Λ < 0, i.e. Anti-de Sitter spacetime.

A possible way to construct the internal flux is to start from a Freund-Rubin solution ad-
mitting at least one Killing spinor η, which satisfies equation (4.68). Then we set

Amnp = cη̄Γmnpη, (4.80)

where c is a real constant. Using the Killing spinor equation (4.68), we can check that the field
strenght Fmnpq = 4∂[mAnpq] satisfies

∇mFmnpq = − 1
18ξε

npqrstuFrstu. (4.81)

Were it not for the sign difference, this would be a good candidate for a solution of the Maxwell
equation (4.77). However, this can be easily remedied by skew-whiffing, sending ξ in −ξ in
(4.74). Normalizing η̄η = 1 and using the Fierz identity, we can also compute

F pqr
m Fnpqr = 128

3 c2ξ2gmn. (4.82)

Since the Killing spinor equation (4.68) requires that the metric onM7 satisfies equation (4.63b),
we find that this construction solves the Einstein equations (4.78) with

Rµν = −10
9 ξ

2gµν , (4.83a)

Rmn = 2
3ξ

2gmn, (4.83b)

provided that c = 1
4 .

We conclude with some remarks on what is known about the stability properties of these so-
lutions [45]. Some, but not all of them, have been proven to be classically unstable. For example,
Englert solutions constructed from supersymmetric solutions are unstable if the supersymmetric
solution preserves two or more supersymmetries [46]. In addition, the Englert solution using the
squashed S7 was demonstrated to be unstable in [47], while a subset of the solutions supported
by the N(k, l) coset manifolds have also shown to be unstable [46], [48].

The no-go argument It was shown in [9] that the presence of a four-form flux prevents a
simple generalization of Witten’s bubble of nothing where a higher dimensional sphere rather
than a circle shrinks to zero size. The argument works as follows.

For convenience, let us go back for a moment to Witten’s original construction as discussed
in Chapter 3. There we wrote the Euclidean continuation of the M4 × S1 Kaluza-Klein metric
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as
ds2 = dr2 + r2dΩ2

3 + dψ2, (4.84)

where r is the radial coordinate, running from 0 to∞, dΩ2
3 is the metric of the three-sphere and

ψ is the coordinate of the Kaluza-Klein circle of radius R. Then we showed that there exists
another non singular and geodesically complete solution of the Euclidean Einstein equations with
the same asymptotic behaviour. Such a solution is the Euclidean five dimensional Schwarzschild
metric,

ds2 = dr2

1−
(
R
r

)2 + r2dΩ2
3 +

(
1−

(
R

r

)2
)
dψ2, (4.85)

where now r runs from R to ∞.

In a higher dimensional theory, the Kaluza-Klein circle is replaced by a compact space, which
for example can be taken to be an N -sphere. The Euclidean M4 × SN metric can be written as

ds2 = dr2 + r2dΩ2
3 +

N∑
i=1

R2

f2
s

(dyi)2, (4.86)

with

fs = 1 + 1
4

N∑
i=1

(yi)2, (4.87)

and where yi are the stereographic coordinates on the N-sphere. In order to find another solution
with the same asymptotic behaviour of (4.86), a generalization of (4.85) could be considered,

ds2 = dr2 + f(r)dΩ2
3 + h(r)

N∑
i=1

R2

f2
s

(dyi)2, (4.88)

where the coefficient in front of dr2 can be set to one by coordinate redefinition. Suppose that
the N -sphere collapses at some finite radius r = r0, where f(r) stays constants. In order for the
geometry to terminate smoothly, we require that h(r) ∼ (r − r0)2 as r → r0. However, such a
solution for the metric is forbidden if the four-form is taken to be proportional to the volume
form of the external space, as in the Freund-Rubin ansatz. Allowing an r-dependence for the
Freund-Rubin parameter ξ = ξ(r) in (4.62), we set

F4 = ξ(r) vol4 . (4.89)

Thus, the Bianchi identity is trivially satisfied and from the Maxwell equation

d(∗F4) = ξ′(r)dr ∧ volN +ξ(r)d (volN ) =
(
ξ′(r) + ξ(r)Nh

′(r)
2h(r)

)
dr ∧ volN = 0, (4.90)

the function ξ(r) is determined up to an integration constant,

ξ(r) = c

h(r)
N
2
. (4.91)

However, this solution cannot solve the Einstein equations, as can be easily seen by examining
the behaviour at the bubble. It suffices to consider the trace of the Einstein equation,

R = 1
36F

PQRSFPQRS . (4.92)
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Using the ansatz (4.88) for the metric and (4.89) for the four-form, we obtain

− 3N
2
f ′h′

fh
+ 6
f
− 3f ′′

f
+ N(N − 3)

4
h′2

h2 + N(N − 1)
h

− Nh′′

h
= 2

3
c2

1
hN

. (4.93)

We now take the limit r → r0. The curvature contribution from the left hand side of this equation
is of order 1

(r−r0)2 but the flux contribution from the right hand side, which is quadratic in the
four form and thus proportional to ξ(r)2 = c2

h(r)N , is of order 1
(r−r0)2N . If N > 1, there is no way

in which the divergence coming from the flux contribution can be compensated. Therefore, a
solution can only exist if N = 1, which is a circle.

4.4 Re-orienting the flux

Spontaneous compactification can occur in more dimensions than just four. An example is
given by compactifications to five spacetime dimensions of the form AdS5 × K6, where the
six dimensional compact space K6 is a Kähler manifold [49]. This means that there exists a
covariantly conserved complex structure ω n

m satisfying

ω n
m ω p

n = −δpm, ∇mω p
n = 0. (4.94)

The corresponding Kähler form ωmn is obtained by lowering the upper index and satisfies

dω = 0, 1
6ω ∧ ω ∧ ω 6= 0. (4.95)

In the ground state, the metric gMN is assumed to take the direct product form, where gµν is
the metric on AdS5 and gmn is the metric on K6. The ansatz for the four form is

F = c

2ω ∧ ω, (4.96)

where c is a real constant. Substituting (4.96) into the Einstein equation, we find that the Ricci
tensors of the external and internal space respectively satisfy

Rµν = −2c2gµν , Rmn = 2c2gmn. (4.97)

In order for the radius of AdS to be normalized to unit, we must choose c =
√

2. Thus we have
a solution where the eleven dimensional spacetime is the product of five dimensional Anti-de
Sitter spacetime and a six dimensional positive Kähler-Einstein manifold. Some examples of
such manifolds are CP 3, CP 2 × S2, S2 × S2 × S2. All these solutions break supersymmetry, as
follows from the general analysis of [50], but AdS5×CP 3 is the only example of this type that is
known to be stable at the perturbative level [51], so it is interesting to look for non perturbative
instabilities. This was recently done in [10], where an explicit instanton solution is found with a
S2 instead of a circle shrinking to zero size. This is possible thanks to the non trivial fibration
structure of CP 3, which can be realized as an S2 fibration over an S4 base. Following [10], we
now review the construction of the instanton.

Introducing two arbitrary functions h(r) and g(r) that control the size of the S2 fiber and
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the S4 base as we vary the AdS radial coordinate r, we define the vielbein for the CP 3 as

e1 = g
1
2 (r)dµ,

ei = g
1
2 (r)
2 sinµ Σi−1 for i = 2, 3, 4,

e5 = h
1
2 (r) (dθ −A1 sinφ+A2 cosφ) ,

e6 = h
1
2 (r) sin θ (dφ− cot θ (A1 cosφ+A2 sinφ) +A3) ,

(4.98)

where
Σ1 = cos γ dα+ sin γ sinαdβ,
Σ2 = − sin γ dα+ cos γ sinαdβ,
Σ3 = dγ + cosαdβ,

Ai = cos
(
µ

2

)2
Σi.

(4.99)

For the round CP 3, g(r) = h(r) = 1
2 .We also take the vielbein for the Euclidean AdS to be,

e7 = dr,

e8 = f
1
2 (r)dx1,

e9 = f
1
2 (r) sin x1dx2,

e10 = f
1
2 (r) sin x1 sin x2dx3,

e11 = f
1
2 (r) sin x1 sin x2 sin x3dx4.

(4.100)

Then the Euclidean metric can be written as

ds2 = g(r)
(
dµ2 + 1

4 sin2 µ
3∑
i=1

Σ2
i

)
+ h(r) (dθ −A1 sinφ+A2 cosφ)2

+ h(r) sin2 θ [dφ− cot θ (A1 cosφ+A2 sinφ) +A3]2 + dr2 + f(r)dΩ2
4,

(4.101)

where dΩ2
4 is the metric of the unit four-sphere. The next step is to write an ansatz for the

four-form, using the SU(3)-structure of the squashed CP 3.

SU(3)-structure of CP 3 In order to introduce the language of G-structures, and in particular
of SU(3)-structures, we now recall some basic theory of fiber bundles. Our discussion will mainly
follow [52]. Given a smooth manifold M of dimension d, a bundle E with base M and fiber
F is a manifold itself, equipped with a smooth projection π to the base and locally looking
like a product of the base with the fiber. Such description is called a local trivialization and
is valid only locally, that is on a patch Uα of M . Furthermore, there are transition functions
tαβ, describing how the fiber transforms between two intersecting patches Uα and Uβ, so that
globally we have not, in general, a trivial product. They must satisfy the consistency conditions

tαβtβα = 1, (4.102)

and on the triple overlap Uα ∩ Uβ ∩ Uγ ,

tαβtβγ = tαγ , (4.103)
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which give them the properties of a group, called the structure group. The bundles of interest
of us are the tangent bundle TM , with fiber in each point p ∈ M the tangent space TpM , and
the associated frame bundle FM , with fiber in p the set of ordered bases of TpM . We now
consider two patches Uα and Uβ with local trivializations (p, ea) and (p, e′a), respectively. Here
ea = eia

∂
∂xi

for a = 1, . . . , d is a set of d indipendent vectors forming a base of the tangent space,
that is a local frame. On the overlap of these patches we have the relation

e′ia = ∂x′i

∂xj
eja, (4.104)

which can also be written in terms of transitions functions as the action from the right of the
structure group, which in this case is the group GL(d,R) of invertible d× d real matrices,

e′ia = eib (tβα)ba . (4.105)

Then M is said to have a G-structure with G ⊂ GL(d,R) if it is possible to reduce the frame
bundle such that it has structure group G. Whether this is possible depends on the topological
properties of the manifold itself.

A G-structure can be conveniently defined as follows. Suppose to have a set of globally
defined, non-degenerate G-invariant tensors. Being globally defined, they can be made to take
exactly the same form in all patches by appropriately choosing the frames ea in each patch.
Then, only those transition functions that leave these objects invariant are allowed and the
structure group reduces to G. An extreme example is the case where one is able to find a global
section of FM . Then the only transition function that preserves this form is the identity and
the structure group is trivial. An interesting intermediate case is that of coset spaces G/H,
which is also the one that is relevant for us.

In fact, different realizations of CP 3 as a coset space are associated to different SU(3)-
structures. A convenient one is CP 3 = Sp(2)

S(U(2)×U(1) , which is homogeneous and can be used even
after we change the relative sizes of the base S4 and the fiber S2. The associated SU(3)-structure
is given by a real two-form J and a complex three-form Ω,

J = − sin θ cosφ
(
e12 + e34

)
− sin θ sinφ

(
e13 + e42

)
− cos θ

(
e14 + e23

)
+ e56,

Re Ω = cos θ cosφ
(
e126 + e346

)
+ cos θ sinφ

(
e136 + e426

)
+ sinφ

(
e125 + e345

)
− cosφ

(
e135 + e425

)
− sin θ

(
e146 + e236

)
,

Im Ω = − cos θ cosφ
(
e125 + e345

)
− cos θ sinφ

(
e135 + e425

)
+ sinφ

(
e126 + e346

)
− cosφ

(
e136 + e426

)
+ sin θ

(
e145 + e235

)
,

where e12 = e1 ∧ e2 etc. They satisfy the compatibility condition

J ∧ Re Ω = 0, J ∧ Im Ω = 0. (4.106)

The action of the external derivative d6 and the Hodge star ∗6 of the CP 3 is given by

d6J = 3
2W1 Im Ω,

d6 Im Ω = 0,
d6 Re Ω =W1J ∧ J +W2 ∧ J,

∗6
(
J ∧ e56

)
= J − e56,

∗6 (J ∧ J) = 2J,
∗6Ω = iΩ.

(4.107)
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Here W1 and W2 are torsion classes of the SU(3)-structure,

W1 = 2
3
g + h

gh
1
2
,

W2 = 2h− g
gh

1
2

(2
3J − 2e56

)
.

(4.108)

Then it is straightforward to generalize these relations to the whole eleven dimensional space,
as

d
(
J − e56

)
= 1
h

1
2

Im Ω + g′

g

(
J − e56

)
∧ e7,

d
(
e56
)

= h
1
2

g
Im Ω + h′

h
e567,

dRe Ω = 2h
1
2

g
J ∧ J − 22h− g

gh
1
2
J ∧ e56 −

(
g′

g
+ h′

2h

)
Re Ω ∧ e7,

d Im Ω = −
(
g′

g
+ h′

2h

)
Im Ω ∧ e7,

(4.109)

and

∗
(
J ∧ e56

)
=
(
J − e56

)
∧ e7 8 9 10 11, ∗ (J ∧ J) = 2J ∧ e7 8 9 10 11,

∗
(
e7 ∧ Re Ω

)
= Im Ω ∧ e8 9 10 11, ∗

(
e7 ∧ Im Ω

)
= −Re Ω ∧ e8 9 10 11.

(4.110)

Ansatz for the four form Now we can use the SU(3)-structure forms to write an ansatz for
the four form,

F4 = ξ1(r)J ∧ J + ξ2(r)J ∧ e56 + d (ξ3(r) Im Ω) + d (ξ4(r) Re Ω) + ξ5(r)e8 9 10 11. (4.111)

Using (4.109), the Bianchi identity gives

dF4 =
(
ξ′5 + 2ξ5

f ′

f

)
e7 8 9 10 11 +

(
ξ′1 + 2ξ1

g′

g

)
J ∧ J ∧ e7

+
[
−2ξ1

(
g′

g
− h′

h

)
+ ξ′2 + ξ2

(
g′

g
− h′

h

)]
J ∧ e567 = 0.

(4.112)

The three coefficients must vanish separately, yielding

ξ1(r) = c1
g2(r) , ξ2(r) = −2 c1

g2(r) + c2
g(r)h(r) , ξ5(r) = c5

f2(r) . (4.113)

In order to impose the Maxwell equation (4.7), the differentials in (4.111) have to be explicited,

F4 = a1(r)J ∧ J + a2(r)J ∧ e56 + a3(r) Im Ω ∧ e7 + a4(r) Re Ω ∧ e7 + ξ5(r)e8 9 10 11, (4.114)
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where
a1(r) = ξ1(r) + 2ξ4(r)

√
h(r)
g(r) ,

a2(r) = ξ2(r)− 2ξ4(r)2h(r)− g(r)
g(r)

√
h(r)

,

a3(r) = −
[
ξ′3(r)− ξ3(r)

(
g′(r)
g(r) + h′(r)

2h(r)

)]
,

a4(r) = −
[
ξ′4(r)− ξ4(r)

(
g′(r)
g(r) + h′(r)

2h(r)

)]
.

(4.115)

The Hodge dual can be easily computed using (4.110),

∗F4 =
[
(2a1 + a2)

(
J − e56

)
∧ e7 + 2a1e

567 + a3 Re Ω− a4 Im Ω
]
∧ e8 9 10 11 + ξ5e

1234567 (4.116)

and upon differentiation becomes

d ∗ F4 =
{
a3

2
√
h

g
J ∧ J + 2a3

g − 2h
g
√
h
J ∧ e56 −

[
a′3 + a3

(2f ′

f
+ g′

g
+ h′

2h

)]
Re Ω ∧ e7

+
[

2a1 + a2√
h

+ 2a1

√
h

g
+ a′4 + a4

(2f ′

f
+ g′

g
+ h′

2h

)]
Re Ω ∧ e7

}
∧ e8 9 10 11.

(4.117)

The wedge product is

F4 ∧ F4 = ξ5(r)
(
a1(r)J ∧ J + a2(r)J ∧ e56 + a3(r) Im Ω ∧ e7 + a4(r) Re Ω ∧ e7

)
∧ e8 9 10 11.

(4.118)
Inserting (4.117) and (4.118) into (4.7), observing that the various coefficients must vanish
separately and using the previous results in (4.113), one finds a system of four equations,

ξ5a1 − a3
2
√
h

g
= 0,

ξ5a2 + 2a3
2h− g
g
√
h

= 0,

−ξ5a3 + (2a1 + a2) 1√
h

+ 2a1

√
h

g
− a′4 − a4

(
g′

g
+ h′

2h + 2f
′

f

)
= 0,

−ξ5a4 + a′3 + a3

(
g′

g
+ h′

2h + 2f
′

f

)
= 0,

(4.119)

which is solved by

c1 = c2, ξ3(r) = c3

g(r)
√
h(r)

, ξ4(r) = − c1

2g(r)
√
h(r)

, (4.120)

which does not allow for a bubble of nothing solution, and

ξ3(r) = c3

g(r)
√
h(r)

, ξ4(r) = − ξ(r)
4
√

2g(r)
√
h(r)

, ξ5 = 0, (4.121)
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where c3 can be set to zero without loss of generality because it gives no contribution to the
four form and the function ξ(r) satisfies the differential equation

ξ′′ + 2f ′ξ′

f
−

4h
(
ξ − 2

√
2c1
)

g2 −
2
(
ξ − 2

√
2c2
)

h
= 0. (4.122)

We still have to impose that the ansatz obeys the boundary conditions of the vacuum. We
observe that the Kähler form of the round CP 3 can be expressed in terms of the SU(3)-structure
forms as

ω = 2e56 − J, (4.123)

which inserted in (4.96) with c =
√

2 gives

F4 = 1√
2

(
J ∧ J − 4J ∧ e56

)
. (4.124)

Then, in order for (4.111) to converge to (4.124) as r → ∞, we must set c1 = 3
4
√

2 , c2 = 0
and ξ(∞) = 1. With this choice, equation (4.122) becomes

ξ′′ + 2f ′ξ′

f
−

4h
(
ξ − 3

2

)
g2 − 2ξ

h
= 0 (4.125)

and the four-form can be written as1

F4 = 3
4
√

2g2(r)
J ∧ J − 3

2
√

2g2(r)
J ∧ e56 − d

(
ξ(r)

4
√

2g(r)
√
h(r)

Re Ω
)
. (4.126)

Finally the Einstein equations are

−g
′′

2g −
f ′g′

fg
− g′h′

2gh −
g′2

2g2 −
h

g2 + 3
g
− ξ′2

24g2h
− ξ2

12g2h2 −
2
(
ξ − 3

2

)2

3g4 = 0, (4.127a)

−h
′′

2h −
f ′h′

fh
− g′h′

gh
+ h

g2 + 1
h
− ξ′2

24g2h
− ξ2

3g2h2 +

(
ξ − 3

2

)2

3g4 = 0, (4.127b)

−f
′′

2f −
f ′g′

fg
− f ′h′

2fh −
f ′2

2f2 + 3
f

+ ξ′2

12g2h
+ ξ2

6g2h2 +

(
ξ − 3

2

)2

3g4 = 0 (4.127c)

8f ′g′

fg
+ 4f ′h′

fh
+ 3f ′2

f2 + h′2

2h2 + 4g′h′

gh
+ 3g′2

g2 + 2h
g2 +

− ξ′2

4g2h
+ ξ2

2g2h2 +

(
ξ − 3

2

)2

g4 − 12
g
− 2
h
− 12

f
= 0.

(4.127d)

Due to the Bianchi identities, only three out of these four equations are independent. As
a consistency check, it is easy to verify that the Maxwell equation (4.125) and the Einstein
equations (4.127) are solved by the AdS5 × CP 3 vacuum,

f(r) = sinh2(r), g(r) = h(r) = 1
2 , ξ(r) = 1. (4.128)

1Our expression for the four-form differs from that in equation (15) of [10] by a factor 24, which would lead
to an overall coefficient in front of the flux contribution in the Einstein equations. However, since our Einstein
equations are exactly the same as theirs, this is probably just a typo.
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Near-bubble expansion We now look for a solution where the S2 fiber shrinks to zero size
at some finite AdS radius r = r0. That is, we assume the following expansions at the bubble,

ξ(r) = ξ0 + ξ1(r − r0) + ξ2(r − r0)2 + . . . ,

f(r) = f0 + f1(r − r0) + f2(r − r0)2 + . . . ,

g(r) = g0 + g1(r − r0) + g2(r − r0)2 + . . . ,

h(r) = h2(r − r0)2 + h3(r − r0)3 + . . . .

(4.129)

Plugging into the field equations, we find that ξ0 = ξ1 = ξ3 = 0, f1 = g1 = 0, h2 = 1, h3 = 0 so
that the correct expansions are

ξ(r) = ξ2(r − r0)2 +O((r − r0)4),
f(r) = f0 +O((r − r0)2),
g(r) = g0 +O((r − r0)2),
h(r) = (r − r0)2 +O((r − r0)4).

(4.130)

Here some comments are in order. We observe that the smoothness condition h2 = 1 is implied
by the field equations, rather than being imposed as an additional boundary condition as in
Witten’s example. Moreover, the fact that ξ0 = ξ1 = 0 allows for a nice interpetation in terms
of flux conservation: in order for the S2 fiber to collapse ar r = r0, the four-form must reorient
itself at the bubble in such a way that it does not have components on the S2. This can be seen
as follows. It is convenient to rewrite the expression (4.126) for the four-form as

1
3
√

2
F4 =

4
(

3
2 − ξ

)
g2 e1234 − 2ξ

gh
J ∧ e56 + ξ′

gh
1
2

Re Ω ∧ dr. (4.131)

Since J and Re Ω are proportional to the same powers of h which appear in the denominators,
the last two terms in the right-hand side of this expression can be made vanish precisely by
setting ξ = ξ′ = 0 at the bubble. In such a way, only the first term, which is proportional
to the volume form of the S4 base, survives and flux conservation is preserved. The fact that
both functions ξ and h vanish at the bubble is crucial to evade Young’s argument. In general,
if a N dimensional sphere of radius h

1
2 (r) in the internal space is supported by a flux, the

flux contribution to the Einstein equations is at most proportional to 1
hN (r) . If the sphere has

to collapse at the bubble, smoothness implies that h(r) ∼ (r − r0)2 and such term cannot be
compensated by the curvature contribution, which is of order 1

(r−r0)2 , unless N = 1. Looking
for example at the Einstein equation (4.127b) for h, we see that the presence of a flux term with
two powers of h at the denominator is not pathological, since this term is proportional to ξ2

h2

and the function ξ(r)→ 0 as h(r)→ 0. Therefore this equation can be satisfied even if N = 2.
A solution with this behaviour can indeed be found by a combination of algebraic relations

and numerical integration. We refer to the original article [10] for further details.

4.5 M2-brane instantons

In this section, a new ingredient to the construction of the bounce is introduced. As we have
already pointed out, the usual Kaluza-Klein bubble has the remarkable feature that the geometry
is smooth at the radius r0 where the Kaluza-Klein circle pinches off. As described in Chapter
2, this has to be imposed as a boundary condition in Witten’s original construction and is
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achieved by setting the analog of the Schwarzschild radius of the five dimensional Euclidean
bounce equal to the radius of the Kaluza-Klein circle. This is also true in the CP 3 example of
section 4.4, where a smoothness condition for the collapsing 2-sphere, namely h(r) ∼ (r − r0)2

at the bubble, turns out to be implied by the Einstein equations. However, in the presence of a
non vanishing flux supporting the geometry it can happen that the requirement of smoothness
has to be relaxed. This was first argued for an AdS×S5/Zk geometry in [11], using an argument
based on the flux quantization condition. There it is shown that the geometry cannot terminate
smoothly, since there must be brane instantons wrapping the bubble and accounting for the
singularity.

Motivated by the analysis of [11], it is worth examining how p-branes can enter in the game.
We start with a working definition of p-branes as massive extended objects which are charged
under gauge potentials and with a derivation of the charge quantization condition. Then, we
explain how this condition can introduce a complication in the geometry of the bounce, both for
Freund-Rubin solutions, where only an external flux is present, and Englert solutions, where an
additional internal flux is turned on. Allowing the presence of singularities, if somewhat unex-
pected, turns out to enrich the structure of the bounce, possibly giving rise to more complicated
dynamics. In particular, Young’s no go theorem might need to be reconsiderd in this light.

p-branes and flux quantization Antisymmetric tensor fields in string and M-theory are
naturally described as differential forms. Let us consider in D dimensions a (p+ 1)-form gauge
potential, denoted as Ap+1, with gauge transformations

Ap+1 → Ap+1 + dΛp, (4.132)

with Λp a (p+ 1)-form gauge parameter. Then the field strength tensor Fp+2 = dAp+1 is gauge
invariant. The objects electrically charged under Ap+1 are called p-branes. They are extended
objects with p spatial dimensions sweeping out a p+ 1 dimensional world-volume Wp+1 as they
evolve in time. The electric coupling is expressed as the integral of the gauge potential on the
world-volume of the brane

Se = Q

∫
Wp+1

Ap+1 (4.133)

and generalizes the coupling of a charged particle with the electromagnetic field, expressed as
the integral of the one form electromagnetic gauge potential A1 on the world-line W1 of the
particle,

Se = Q

∫
W1

A1. (4.134)

In D dimensions we can also define the dual field strength as the Hodge dual FD−p−2 = ∗Fp+2.
Then the dual gauge potential is defined locally as FD−p−2 = dAD−p−3. A p-brane is said to be
electrically charged under Ap+1 and magnetically charged under AD−p−3, and vice versa for a
(D − p− 4)-brane.

Using Gauss’ theorem, we can measure the electric charge carried by a p-brane by the flux
on a sphere surrounding the source in the transverse (D − p− 1) dimensional space,

Qe =
∫
SD−p−2

∗Fp+2, (4.135)

and analogously for the magnetic charge,

Qm =
∫
Sp+2

Fp+2. (4.136)
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These numbers are integers by a general flux quantization condition, as follows from a standard
argument which can be found for example in [53]. This quantization is simple to understand:
the (suitably normalized) flux through a cycle surrounding the branes is the number of enclosed
branes, which is an integer.

At this point, it is useful to remark that it is also possible to have solutions with no brane
sources and still non trivial fluxes, an example being given by the Freund-Rubin solutions de-
scribed in section 4.3. However, we will eventually show that, as soon as we try to deform
the Freund-Rubin vacuum geometry at some finite radius to construct a bubble solution, brane
sources are needed for this deformation to be consistent.

The AdS5× S5/Zk example In order to understand how the flux quantization condition can
enter in the construction of the bounce, we refer to the analysis of [11] and work out the relevant
aspects in some detail. The first observation is that AdS × S5/Zk can be realized as a fibration
of S1 over CP 2, with Euclidean metric

ds2 = dr2

1 + r2

R2

+ r2dΩ2
4 +R2

[
ds2

CP 2 + (dχ+ Λ)2
]
, (4.137)

where the coordinate χ of the fiber has periodicity 2π
k due to the Zk orbifolding and Λ encloses

the fibration structure. If we want the S1 fiber to play the role of the Kaluza-Klein circle in
Witten’s original construction, we can consider for the bounce a metric of the form

ds2 = ρ(r)dr2 + f(r)dΩ2
4 + g(r)ds2

CP 2 + h(r) (dχ+ Λ)2 , (4.138)

which asymptotically matches with (4.137) and with h(r) going to zero at a finite radius r0
where the other functions are still non zero. Moreover, in order for the geometry to terminate
smoothly, we should require that h(r) vanish quadratically. However, the following argument
shows that this cannot be the case. The five dimensional internal manifold supports a non zero
five form flux,

1
(2π)3α′2

∫
S5/Zk

F5 = 2πN
k

, (4.139)

where we must include a factor 1
α′2 for dimensional reasons (the string scale α′ = l2s is a lenght2

and F5 is a lenght4, so the left-hand side is dimensionless) and a factor 1
(2π)d−1 , with d the

dimensions of the integral, in order for the flux to be quantized in integer units. Since in the
bounce geometry the collapsing circle is the boundary of a disk, the internal manifold can be
seen as the boundary of a six dimensional manifold M6 and we can use Stokes’ theorem and the
Bianchi identity to argue that ∫

S5/Zk
F5 =

∫
M6

dF5 = 0, (4.140)

which is in conflict with equation (4.139). In other words, what the flux quantization condition
is telling us is that the geometry cannot be smooth at the bubble. The way out proposed in
[11] is that the solution has D3-brane instantons wrapped on the S4 at r = r0 and smeared on
the CP 2. In particular, this implies that some metric functions must be singular at the bubble,
with the singularities of smeared D3-branes. More details can be found in Appendix ??.
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Page charge and brane instantons In our M-theory setup, the relevant objects which can
possibly appear are M2 and M5-branes, since only the four form F4 and its dual, defined as

F7 = ∗F4 +A3 ∧ F4, (4.141)

are present. By duality, we mean that the Maxwell equation for F4 corresponds to the Bianchi
identity for F7. Moreover, since we are concerned with Euclidean solutions, they will enter as
M2-brane instantons, that is extended objects with three spatial dimensions, rather than two
spatial dimensions, plus time.

Let AdS4×M7 be a compactification of the Freund-Rubin type, with external flux F4 = dA3.
For example, we can take A3 = ζ(r) volS3 , with the function ζ chosen such that F4 = dA3 is
proportional to the volume of AdS4. Then A3 ∧ F4 = 0 and F7 = ∗F4. We have a non zero flux
on the seven dimensional internal manifold,

1
(2π)5α′2

∫
M7
∗F4 = N. (4.142)

Now suppose to deform the vacuum geometry in such a way that there is a bubble of arbitrary
dimension at some finite radius r = r0 in AdS. Provided that the bubble is smooth, the internal
manifold can be seen as the boundary of an eight dimensional manifold, M7 = ∂M8 and we can
use Stokes’ theorem, ∫

M7
∗F4 =

∫
M8

d ∗ F4 = 0. (4.143)

Comparing with (4.142), we conclude that the bounce solution does not satisfy the AdS4 ×M7
boundary conditions set by flux quantization, unless one adds an extra source of flux. In analogy
with the argument of [11], a solution is to have M2-brane instantons wrapping the S3 at r = r0
and smeared over some part of the internal space.

We expect that this argument still applies when an additional internal flux is turned on,
as in Englert solutions. That is, F4 = F e4 + F i4, with F e4 = dAe3 and F i4 = dAi3. The Maxwell
equations in Euclidean signature yield

d(∗F e4 + iAi3 ∧ F i4) = 0, (4.144a)
d(∗F i4 + iAe3 ∧ F i4 + iAi3 ∧ F e4 ) = 0. (4.144b)

Focusing on the first one, we can argue exactly as before. There is a non zero flux on the internal
seven dimensional manifold,

1
(2π)5α′2

∫
M7

(∗F e4 + iAi3 ∧ F i4) = N, (4.145)

but, in the presence of a smooth bubble of arbitrary dimension in the bounce geometry,M7 = ∂M8
and Stokes’theorem implies that this flux is zero,∫

M7
(∗F e4 + iAi3 ∧ F i4) =

∫
M8

d(∗F e4 + iAi3 ∧ F i4) = 0. (4.146)

Therefore, in order to account for the flux we need, we have to introduce M2-brane instantons.

What about the other equation? We don’t expect this term to give rise to a further compli-
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cation. The reason is the following. Suppose to integrate equation (4.144b),∫ (
∗F i4 +Ae3 ∧ F i4 +Ai3 ∧ F e4

)
. (4.147)

Then Stokes’ theorem and Maxwell equations tell us that this integral is zero, but no flux
quantization condition can enter this time, since we are integrating over vol4, that is over
the external space, which is non compact and therefore has trivial cohomology group. We
will eventually check that this is the case in the explicit example of Chapter 5 where, even
forgetting about non compactness of the external space, the internal geometry will not contain
any homologically non trivial cycle allowing for quantization.

We can also rephrase the flux quantization argument in the language of Page charges. It was
first observed by Page in [54] that when the D = 11 spacetime has the M4 ×M7 topology, the
integral

P = 1
π4

∫
M7

(∗F4 +A3 ∧ F4) (4.148)

gives a conserved charge P which is independent of the point x of spacetime. This is non zero
both in the case of Freund-Rubin and Englert solutions. However, as we have seen, Stokes’
theorem tells us that the Page charge of a smooth bubble of arbitrary dimension must be zero.
Therefore a smooth bubble geometry cannot have the same asymptotic behaviour of the vacuum,
which is the basic requirement for an acceptable bounce solution.

To conclude, it is interesting to compare this result with Young’s no-go theorem, which was
discussed in section 4.3. According to our argument based on Page charges, it seems that the
case n = 1, that is a collapsing circle, is not admitted as a bounce solution as long as the
geometry is smooth. Notice that this statement goes beyond Young’s no-go argument. It also
suggests a possible way-out, which is the inclusion of brane instantons as additional sources of
flux in the bubble geometry. This possibility is further investigated in the following Chapter.
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Chapter 5

A tri-Sasakian bubble geometry?

At this point, we have all the technical machinery we need to attack a concrete example. This
is provided by a class of AdS compactifications on tri-Sasakian manifolds, which are a natural
candidate to study for several reasons. Firstly, they are known to admit both Freund-Rubin and
Englert vacua. Secondly, the tri-Sasakian geometry allows us to single out three Kaluza-Klein
directions in the internal manifold, corresponding to the three-sphere S3 that is fibered over a
four dimensional base in the universal tri-Sasakian structure, and one could ask whether the S3

can shrinks to zero at some finite value of the AdS radius, giving rise to a higher dimensional
bubble of nothing. Thirdly, although from our general discussion in Chapter 4 some certainly
are, is not known if all Englert solutions supported by an internal tri-Sasakian manifold are
classically unstable.

The Chapter is structured as follows. To begin, we introduce the tri-Sasakian structure,
a set of differential forms which can always be defined on tri-Sasakian manifolds and will be
used as building blocks in making an ansatz for the four-form. We also write down the metric,
introducing some arbitrary functions f(r), g(r) and h(r) which are the analog of those defined in
section 4.4. Then we impose the Bianchi identity and the Maxwell equation on the ansatz, ending
up with two differential equations for two arbitrary functions α(r) and γ(r) which are the analog
of the function ξ(r) defined in section 4.4. As a preliminary step towards the construction of a
bounce solution, we focus on the two Maxwell equations plus the trace of the Einstein equation
and study their near-bubble expansion. What we find is that a solution of these equations
which is both smooth and obeys the boundary conditions of the Englert vacuum does not exist.
However, this was only to be expected from our analysis of section 4.5, since a smooth bubble
solution and the Englert vacuum have different Page charges, so they cannot coexist. Finally
we discuss the introduction of M2-branes in the bubble geometry as a possible way-out.

Tri-Sasakian geometry Following [55], we provide here some basic notions about tri-Sasakian
manifolds. Let us start with some definitions. A Sasaki-Einstein manifold is a Riemannian
manifold (M, g) of dimension 2n + 1 such that its cone is Calabi-Yau, that is it has reduced
holonomy SU(n+1). An equivalent characterization is that it carries a Sasaki-Einstein structure
(ξ, η, J,Ω), where ξ is a unit Killing vector, η the dual one-form given by η(Y ) = g(ξ, Y ), J a
real two-form and Ω a complex n-form. They satisfy

dη = 2J, dΩ = (n+ 1)iη ∧ Ω,
J ∧ Ω = 0, ιξJ = ιξΩ = 0.

(5.1)

65
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A tri-Sasakian manifold is a Riemannian manifold of dimension 4m + 3, with m ≥ 1, such
that its cone is hyper-Kähler. In particular, since all Calabi-Yau manifolds are hyper-Kähler,
a tri-Sasakian manifold is also a Sasaki-Einstein manifold, while the converse is not true. An
equivalent characterization, which is more useful for us, is that a tri-Sasakian manifold admits
three Killing vectors ξI (I = 1, 2, 3), generating the so(3) algebra,[

ξI , ξJ ,=
]

2εIJKξK , (5.2)

and each making it Sasakian, with the dual forms ηI , defined by ιξIηJ = δIJ , satisfying

dηI = 2JI − εIJKηJ ∧ ηK , (5.3)

with ιξIJJ = 0. From this equation, it follows that

dJI = 2εIJKJJ ∧ ηK . (5.4)

The vectors ξI define a three dimensional foliation, where the leaves are either SU(2) or SO(3)
and the space of leaves is a quaternionic Kähler manifold (or orbifold), with the three almost
complex structures given by g−1JI . The unit tri-Sasakian metric is

ds2
3S = ds2

QK + η2
1 + η2

2 + η2
3. (5.5)

If m = 1, which is the relevant case for us, we also have

JI ∧ JJ = 2δIJ volQK , (5.6)

and the tri-Sasakian volume form is given by

vol3S = volQK ∧η1 ∧ η2 ∧ η3 = 1
2J

1 ∧ J1 ∧ η1 ∧ η2 ∧ η3. (5.7)

Our ansatz Now we are ready to engage into the construction of the bounce. In doing so,
we have two different but equivalent possibilities. One is to solve the equations of motion in
Lorentzian signature and make the substitution t → −iτ only at the end. The other is to
solve the equations directly written in Euclidean signature. We choose the second one, where
Euclidean signature is assumed from the beginning. The Euclidean metric is taken to be

ds2
11 = dr2 + f(r)dΩ2

3 + g(r)ds2
QK + h(r)

(
η2

1 + η2
2 + η2

3

)
, (5.8)

where dΩ2
3 is the metric of the unit three-sphere and f(r), g(r), h(r) are arbitrary functions of

the AdS radius. Then the vielbein can be defined as

e1234 = 1
2g

2(r)J1 ∧ J1, e5 = h
1
2 (r) η1, e6 = h

1
2 (r) η2,

e7 = h
1
2 (r) η3, e8 = dr, e9 10 11 = f

3
2 (r) volS3 ,

(5.9)

and the volume form of the eleven dimensional space is

vol11 = g2h
3
2 vol3S ∧ vol4, (5.10)
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where
vol4 = dr ∧ volS3 . (5.11)

Our ansatz for the four form is F4 = F e4 + F i4, with the external and internal fluxes given by

F e4 = ξ(r) vol4, (5.12a)

F i4 = α(r)J1 ∧ J1 + β(r)εIJKdr ∧ ηI ∧ ηJ ∧ ηK

+ γ(r)εIJKJI ∧ ηJ ∧ ηK + δ(r)dr ∧ JI ∧ ηI ,
(5.12b)

where ξ(r), α(r), β(r), γ(r), δ(r) are arbitrary functions of the AdS radius. In particular,
equation (5.12b) is the most general ansatz that can be written in terms of the tri-Sasakian
structure (ηI , JI). The next step is to write down the Bianchi identity and the Maxwell equation
for the ansatz. This is straightforward, since the set (ηI , JI) is closed under the action of wedge
product, Hodge star and exterior derivative, which are all the operations we need to perform.
We will use the differentials

dηI = 2JI − εIJKηJ ∧ ηK , dJI = 2εIJKJJ ∧ ηK . (5.13)

As for the Hodge star, we have

∗7
(
J1 ∧ J1

)
= 2h

3
2

g2 η1 ∧ η2 ∧ η3, ∗7
(
η1 ∧ η2 ∧ η3

)
= g2

2h
3
2
J1 ∧ J1,

∗7
(
JI ∧ ηI

)
= h

1
2

2 εIJKJI ∧ ηJ ∧ ηK , ∗7
(
JI ∧ ηJ ∧ ηK

)
= 1
h

1
2
JI ∧ εJKMηM .

(5.14)

From the Bianchi identity, we have dF i4 = 0. We compute the differentials

εIJKd
(
ηI ∧ ηJ ∧ ηK

)
= 6εIJKJI ∧ ηJ ∧ ηK

εIJKd
(
JI ∧ ηJ ∧ ηK

)
= 0

d
(
JI ∧ ηI

)
= 6J1 ∧ J1 + εIJKJI ∧ ηJ ∧ ηK .

(5.15)

Whence,

dF i4 = (α′ − 6δ)α′dr ∧ J1 ∧ J1 + (−6β + γ′ − δ)dr ∧ εIJKJI ∧ ηJ ∧ ηK . (5.16)

In order for this expression to vanish, we have

δ = α′

6 , β = γ′

6 −
α′

36 . (5.17)

The Maxwell equation (4.8) splits into

d ∗ F e4 = −iF i4 ∧ F i4, (5.18a)
d ∗ F i4 = −2iF e4 ∧ F i4. (5.18b)

We can easily compute

∗F e4 = ξg2h
3
2 vol3S , d ∗ F e4 =

(
ξg2h

3
2
)′
dr ∧ vol3S ,

F i4 ∧ F i4 = 24(αβ + γδ)dr ∧ vol3S .
(5.19)
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Then equation (5.18a) yields (
ξg2h

3
2
)′

= i(α
2

3 − 4αγ)′, (5.20)

which is trivial to integrate,

ξ = i

g2h
3
2

(
α2

3 − 4αγ + c

)
. (5.21)

The integration constant c is fixed by the boundary conditions at r →∞ to be c = 3k. Here k is
an arbitrary positive parameter that appears in the Englert vacuum. Since k always factorizes
in the equations, it is not relevant for our discussion and we are free to set k = 1. We also
compute

∗F i4 = 2αh
3
2

g2 η1 ∧ η2 ∧ η3 ∧ vol4−
3βg2

h
3
2
J1 ∧ J1 ∧ e9 10 11

+ 2γ
h

1
2
JI ∧ ηI ∧ vol4−

δh
1
2

2 εIJKJI ∧ ηJ ∧ ηK ∧ e9 10 11,

d ∗ F i4 =
[
−
(

3β g
2

h
3
2

)′
− 9βf ′

2f
g2

h
3
2

+ 12γ
h

1
2

]
J1 ∧ J1 ∧ vol4

+

2αh
3
2

g2 + 2γ
h

1
2
−
(
δh

1
2

2

)′
− 3f ′δh

1
2

4f

 εIJKJI ∧ ηJ ∧ ηK ∧ vol4,

F e4 ∧ F i4 =
(
αξJ1 ∧ J1 + γξεIJKJI ∧ ηJ ∧ ηK

)
∧ vol4 .

(5.22)

Then equation (5.18b) yields

−
(

3β g
2

h
3
2

)′
− 9βf ′

2f
g2

h
3
2

+ 12γ
h

1
2

+ 2iαξ = 0,

2αh
3
2

g2 + 2γ
h

1
2
−
(
δh

1
2

2

)′
− 3f ′δh

1
2

4f + 2iγξ = 0,
(5.23)

which substituting β, δ and ξ from equations (5.17) and (5.21) become

2αh
3
2

g2 + 2γ
h

1
2

+ 2γ
(
−9− α2 + 12αγ

)
3g2h

3
2

− h
1
2 f ′α′

8f − h′α′

24h
1
2
− h

1
2α′′

12 = 0 (5.24a)

12γ
h

1
2

+ 2α
(
−9− α2 + 12αγ

)
3g2h

3
2

+ g2f ′ (α′ − 6γ′)
8fh

3
2

+ gg′ (α′ − 6γ′)
6h

3
2

−g
2h′ (α′ − 6γ′)

8h
5
2

+ g2 (α′′ − 6γ′′)
12h

3
2

= 0
(5.24b)

Now we turn to the trace of the Einstein equation, which in our conventions is

R = 1
36F

PQRSFPQRS . (5.25)

The Ricci scalar for the metric (5.8) can be computed from the expression given in [55] for the
Weyl-rescaled metric

ds2
11 = e2φds2

4 + e2Uds2
QK + e2V

(
η2

1 + η2
2 + η2

3

)
, (5.26)
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where in our notation g = e2U , h = e2V and φ = −2U − 3
2V , that is

R = e−2φR4 +R7−4e−2φgµν∂µU∂νU−3e−2φgµν∂µV ∂νV −2e−2φ∇2φ−2e−2φgµν∂µφ∂νφ, (5.27)

with
R7 = 48e−2U + 6e−2V − 12e−4U+2V . (5.28)

If we now define
ds̃2

4 = e2φds2
4, (5.29)

the Weyl-rescaled four dimensional Ricci tensor is given by

R̃4 = e−2φ
(
R4 − 6∇2φ− 6gµν∂µφ∂νφ

)
, (5.30)

whence

R = R̃4 +R7 − 4g̃µν∂µU∂νU − 3g̃µν∂µV ∂νV + 4e−2φ∇2φ+ 4g̃µν∂µφ∂νφ. (5.31)

Here

∇2φ = 1
g4
∂µ (√g4g

µν∂νφ) = e4φ
√
g̃4
∂µ
(
e−2φ√g̃4g̃

µν∂νφ
)

= e2φ∇̃2φ− 2e2φg̃µν∂µφ∂νφ. (5.32)

Given the four dimensional metric ds̃2
4 = dr2 + fdΩ2

3 and using U ′ = g′

2g , V
′ = h′

2h , we find

R = R̃4 +R7 −
g′2

g2 − 6g
′h′

gh
− 6f

′g′

fg
− 9

2
f ′h′

fh
− 4g

′′

g
− 3h

′′

h
, (5.33)

with
R̃4 = 6− 3f ′′

f
, R7 = 48

g
+ 6
h
− 12h

g2 . (5.34)

As for the contribution of the four-form, we have

F4 ∧ ∗F4 = 1
24F

PQRSFPQRS =
(
ξ2 + 4α2

g4 + 36β2

h3 + 24γ2

g2h2 + 6δ2

g2h

)
vol11 . (5.35)

Substituting once again β, δ and ξ from equations (5.17) and (5.21), the trace of the Einstein
equation is given by

6− 3f ′′

f
+ 48

g
+ 6
h
− 12h

g2 −
g′2

g2 − 6g
′h′

gh
− 6f

′g′

fg
− 9

2
f ′h′

fh
− 4g

′′

g
− 3h

′′

h

−8α2

3g4 −
16γ2

g2h2 + 2
(
9 + α2 − 12αγ

)2
27g4h3 − α′2

9g2h
− (α′ − 6γ′)2

54h3 = 0.
(5.36)

As a consistency check, it is easy to verify that these equations (where we have reintroduced
the parameter k) are solved by the following known solutions [55], here given in Euclidean
signature:

1. N = 3 supersymmetric tri-Sasakian solution (k > 0) and skew-whiffing (k < 0):

g = h = |k|
1
3 , f = L2 sinh2

(
r

L

)
, Λ = − 6

L2 = − 24
|k|

1
3
,

α = β = γ = δ = 0, ξ = 3i sgn (k) |k|−
1
6 ;

(5.37)
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2. N = 1 supersymmetric squashed solution (k > 0) and skew-whiffing (k < 0):

g = 5
( |k|

15

) 1
3
, h =

( |k|
15

) 1
3
, f = L2 sinh2

(
r

L

)
, Λ = −216

5

( 3
25 |k|

) 1
3
,

α = β = δ = γ = 0, ξ = − sgn (k) 9
5

( 15
|k|

) 1
6

;
(5.38)

3. Englert solution corresponding to solution 2 (k > 0):

g = 5
(4k

75

) 1
3

h =
(4k

75

) 1
3

f = L2 sinh2
(
r

L

)
Λ = − 18

k
1
3

(6
5

) 1
3
,

α = ±(3k)
1
2 , β = δ = 0, γ = ±(3k)

1
2

5 , ξ = 3i
(2

5

) 2
3
(3
k

) 1
6
.

(5.39)

Near-bubble expansion From the Maxwell equations plus the trace of the Einstein equation
we found a system of three differential equations in five unknown functions, which we now
reproduce for further reference,

2αh
3
2

g2 + 2γ
h

1
2

+ 2γ
(
−9− α2 + 12αγ

)
3g2h

3
2

− h
1
2 f ′α′

8f − h′α′

24h
1
2
− h

1
2α′′

12 = 0 (5.40a)

12γ
h

1
2

+ 2α
(
−9− α2 + 12αγ

)
3g2h

3
2

+ g2f ′ (α′ − 6γ′)
8fh

3
2

+ gg′ (α′ − 6γ′)
6h

3
2

+

−g
2h′ (α′ − 6γ′)

8h
5
2

+ g2 (α′′ − 6γ′′)
12h

3
2

= 0
(5.40b)

6− 3f ′′

f
+ 48

g
+ 6
h
− 12h

g2 −
g′2

g2 − 6g
′h′

gh
− 6f

′g′

fg
− 9

2
f ′h′

fh
− 4g

′′

g
− 3h

′′

h
+

−8α2

3g4 −
16γ2

g2h2 + 2
(
9 + α2 − 12αγ

)2
27g4h3 − α′2

9g2h
− (α′ − 6γ′)2

54h3 = 0
(5.40c)

Let r0 be the radius of the bubble where the geometry pinches off. We also define r̃ = r− r0,
so that the near-bubble limit corresponds to taking r̃ → 0. What about the boundary conditions
at r̃ = 0? In order for the geometry to terminate smoothly, we must require that h(r) ∼ r̃2. So,
from the geometry side we have the following expansions at the bubble,

g(r) = g0 + g1r̃ + g2r̃
2 + . . . ,

h(r) = r̃2 + h3r̃
3 + h4r̃

4 + . . . ,

f(r) = f0 + f1r̃ + f2r̃
2 + . . . .

(5.41)

As for the four form coefficients in equation (5.12b), from the CP 3 example we learnt that the
flux must re-orient itself at the bubble in such a way that it has no legs along the collapsing
fiber and we expect to have vanishing β, γ and δ at the bubble. How fast these functions should
go to zero is a priori not obvious, so for the moment we simply assume

α(r) = α0 + α1r̃ + α2r̃
2 + . . . ,

γ(r) = γ0 + γ1r̃ + γ2r̃
2 + . . . .

(5.42)

Now the idea is to plug these expansions in (5.40), isolate the divergent terms and try to set
them to zero by appropriately choosing the expansion coefficients. The divergences are at most
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cubic in (5.40a), quartic in (5.40b) and of the sixth order in (5.40c), whence thirteen conditions
on the expansions coefficients come,

m3
r3 + m2

r2 + m1
r

+O(1) = 0 (5.43a)
n4
r4 + n3

r3 + n2
r2 + n1

r
+O(1) = 0 (5.43b)

t6
r6 + t5

r5 + t4
r4 + t3

r3 + t2
r2 + t1

r
+O(1) = 0. (5.43c)

Here the ordering of the three equations is the same as in (5.40). To begin, we observe that

n4 = −1
4g

2
0 (α1 − 6γ1) != 0 ⇒ γ1 = α1

6 . (5.44)

Next, we have

m3 = −2γ0
(
9 + α2

0 − 12α0γ0
)

3g2
0

!= 0 ⇒ γ0 = 0 or γ0 = 9 + α2
0

12α0
. (5.45)

whence there are two possibilities to consider. The first one, γ0 = 0, is easy to exclude, since it
would imply

t6 = 2
(
9 + α2

0
)2

27g4
0

, (5.46)

which cannot be set to zero. As for γ0 = 9+α2
0

12α0
, a similar conclusion holds. We find that

m2 = −
(
9 + a2

0
)2
a1

18α2
0g

2
0

!= 0 ⇒ α1 = 0. (5.47)

Then, t6 = t5 = 0, automatically. Moreover,

n3 = −1
3g

2
0 (α2 − 6γ2) != 0 ⇒ γ2 = α2

6 , (5.48)

implying that

t4 =
(
9 + α2

0
)2

9g2
0α

2
0

, (5.49)

which cannot be set to zero. Therefore, there is no choice of the expansion coefficients such that
the divergences cancel out. It is worth observing that problems are encountered when dealing
with a term proportional to

(
9 + a2

0
)2, which cannot be set to zero. Here the choice of the

integration constant c in equation (5.21) is crucial, since for arbitrary c this term would have
been

(
3c+ a2

0
)2 which can be set to zero. In other words, what our analysis is telling us is that

there cannot exist a solution of (5.40) which is both smooth and has c = 3. Unfortunately, the
value of c = 3 is set by the boundary condition of the Englert vacuum and there is nothing we
can do about it. However, this is something we should have expected from our argument in
section 4.5 based on Page charges.

Let us go back for a moment to the integral in equation (4.145) and evaluate it in our concrete
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tri-Sasakian example, where

Ai3 = α

6 J
I ∧ ηI + 1

6

(
γ − α

6

)
εIJKηI ∧ ηJ ∧ ηK , (5.50a)

Ae3 = ζe9 10 11, with ξ =
(
ζ + ln f

3
2
)′
. (5.50b)

Upon differentiation, these are the right expressions to reproduce our ansatz (5.12b) for the
four-form. Then we have

∗ F e4 + iAi3 ∧ F i4 =
[
ξg2h

3
2 + i

(
4αγ + α2

3

)]
vol3S . (5.51)

We observe that the quantity into square brackets is exactly the integration constant c defined
in equation (5.21). This is not surprising, since it comes from integrating a total derivative
coming from that part of Maxwell equation which is proportional to dr ∧ vol3S , that is the
same as computing the integral in (4.145). In other words, c is a Page charge, whose value is
c = 3 for the Englert vacuum. Therefore, the impossibity to found a solution in our near-bubble
expansion beacuse of the value of c can be conveniently rephrased as the non existence of a
smooth solution with the same Page charge as the vacuum, as argued in section 4.5.

We can also check what happens to the integral in equation (4.147). We have to integrate

∗F i4 +Ae3 ∧ F i4 +Ai3 ∧ F e4 =
[(
αζ − 3βg2

h
3
2

)
J1 ∧ J1 ∧+

(
−δh

1
2

2 + γζ

)
εIJKJI ∧ ηJ ∧ ηK

]
e9 10 11

+
{[

2αh
3
2

g2 + ξ

(
γ − α

6

)
− ζβ

]
η1 ∧ η2 ∧ η3 +

( 2γ
h

1
2

+ αξ

6 + ζδ

)
JI ∧ ηI

}
∧ vol4,

(5.52)

which is not zero. In fact, it is only its derivative that vanishes. However, no quantization
condition can arise this time since there is no non trivial cycle in the internal manifold allowing
for quantization and, as already discussed in section 4.5, no further complication come from this
term.

Including branes As suggested in section 4.5, one possible way-out is that the bubble ge-
ometry is not smooth, but has the singularity of M2-brane instantons wrapping the S3 in AdS4
and smeared over the quaternionic Kähler subspace of the internal manifold. To begin, it is
convenient to rewrite the ansatz (5.8) for the metric as

ds2
11 = ρ(r)dr2 + f(r)dΩ2

3 + g(r)ds2
QK + h(r)

(
η2

1 + η2
2 + η2

3

)
. (5.53)

where we have introduced an arbitrary function ρ(r). Then, the equations in (5.40) have to be
modified. However, running through our calculations again, it is easy to see how the function ρ
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enters and the result is

2αh
3
2 ρ

1
2

g2 + 2γρ
1
2

h
1
2

+ 2γ
(
−9− α2 + 12αγ

)
ρ

1
2

3g2h
3
2

− h
1
2 f ′α′

8fρ
1
2
− h′α′

24h
1
2 ρ

1
2

+

+h
1
2α′ρ′

24ρ
3
2
− h

1
2α′′

12ρ1
2

= 0
(5.54a)

12γρ
1
2

h
1
2

+ 2α
(
−9− α2 + 12αγ

)
ρ

1
2

3g2h
3
2

+ g2f ′ (α′ − 6γ′)
8fh

3
2 ρ

1
2

+ gg′ (α′ − 6γ′)
6h

3
2 ρ

1
2

+

−g
2h′ (α′ − 6γ′)

8h
5
2 ρ

1
2

− g2 (α′ − 6γ′) ρ′

24h
3
2 ρ

3
2

+ g2 (α′′ − 6γ′′)
12h

3
2 ρ

1
2

= 0
(5.54b)

6
f

+ 3f ′ρ′

2fρ2 −
3f ′′

fρ
+ 48

g
+ 6
h
− 12h

g2 −
g′2

g2ρ
− 6g′h′

ghρ
− 6f ′g′

fgρ
+ 2g′ρ′

gρ2 −
4g′′

gρ
− 3h′′

hρ
+

−9
2
f ′h′

fhρ
+ 3h′ρ′

2hρ2 −
8α2

3g4 −
16γ2

g2h2 + 2
(
9 + α2 − 12αγ

)2
27g4h3 − α′2

9g2hρ
− (α′ − 6γ′)2

54h3ρ
= 0

. (5.54c)

The smooth near-bubble expansions in (5.41) and (5.42) have also to be modified. In order to
make a reasonable ansatz, we start recalling the flat brane result from Appendix A. There it is
shown that a flat M2-brane solution can be written in the form

ds2 = H(r)−
2
3ds2
‖ +H(r)

1
3ds2
⊥, (5.55a)

F4 = dH−1(r) ∧ vol‖, (5.55b)

where ds2
‖ and ds2

⊥ are the metric on the parallel and transverse directions to the brane, re-
spectively. Here we consider M2-brane instantons wrapping the S3 in AdS and smeared over
the four dimensional base of the tri-Sasakian manifold. If we stay very close to the branes, we
expect the effects of curvature to be negligible, so that we can treat the branes as being in a
locally flat spacetime and use the result above. Then the geometry in the near brane regime,
labelled "M2", is

ρM2 ∼ H(r)
1
3 , fM2 ∼ H(r)−

2
3 ,

gM2 ∼ H(r)
1
3 , hM2 ∼ H(r)

1
3 ,

(5.56)

with the harmonic function H(r) given by

H(r) = 1 + α

r2 , (5.57)

since there are only four transverse directions, due to the smearing. However, since we are not
in flat space, we expect to have corrections to the behaviour displayed in (5.56) and assume the
following expansions at the bubble,

ρ(r) = 1
r̃

2
3

(
ρ0 + ρ1r

2 + ρ2r
2 + . . .

)
, f(r) = r̃

4
3
(
f0 + f1r̃ + f2r̃

2 + . . .
)
,

g(r) = 1
r̃

2
3

(
g0 + g1r̃ + g2r̃

2 + . . .
)
, h(r) = 1

r̃
2
3

(
ρ0r̃

2 + h3r̃
3 + h4r̃

4 + . . .
)
,

α(r) = α0 + α1r̃ + α2r̃
2 + . . . , γ(r) = γ0 + γ1r̃ + γ2r̃

2 + . . . .

(5.58)

Now we can proceed as before, plugging the expansions (5.58) into each of the three equations
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in (5.54). We obtain

m1
r

+O(1) = 0 (5.59a)
n4
r4 + n3

r3 + n2
r2 + n1

r
+O(1) = 0 (5.59b)

t 10
3

r
10
3

+
t 7

3

r
7
3

+
t 4

3

r
4
3

+
t 1

3

r
1
3

+O(1) = 0. (5.59c)

The situation looks somewhat better than before, and indeed a solution is easy to find. If we
choose for example γ0 = 0, γ1,2,3,4 = α1,2,3,4

6 all of the coefficients of the divergent terms in
(5.59) cancel out except for t 4

3
and t 1

3
. However, they can also be set to zero, for example by

appropriately choosing f0 and f1.

Having passed this preliminary check, we are encouraged to write down the full set of the
Einstein equations and see if they can be solved. To begin, let us compute the right-hand side
of (4.5), that is the energy-momentum tensor of the four-form. The term where the indices of
the four-form are all contracted has already been computed in (5.35), so we focus on the matrix
F 2
AB = F CDE

A FBCDE with two free indices. Using the properties of the three almost complex
structures JI , namely JIab JIbc = −δac and JIabJIab = 4δIJ , with a, b labeling the directions
1, 2, 3, 4, we are spared to give an explicit coordinate parametrization to the vielbein, at least
for the moment. Let us define for example

H4 = JI ∧ e58 ⇒ HABCD = 12J[ABδ
5
Cδ

8
D]. (5.60)

Then the relevant contractions to compute are

HABC8 = 3J[ABδ
5
C] ⇒ H8ABCH

ABC
8 = 9J[ABδ

5
C]J

ABδC5 = 3JabJab = 12, (5.61)

those where both indices of J are contracted, and

HaBCD = 6Ja[Bδ
5
Cδ

8
D] ⇒ HaCDEH

bCDE = 36Ja[Cδ
5
Dδ

8
E]J

bCδD5 δ
E
8 = 6JacJbc = 6δba, (5.62)

where one single index of J is contracted. Then, we have a diagonal matrix with four indipendent
components,

F 2
11 = 24α

2

g4 + 72 γ2

g2h2 + 18 δ2

g2hρ

F 2
55 = 216 β

2

h3ρ
+ 96 γ2

g2h2 + 12 δ2

g2hρ

F 2
88 = 6ξ

2

ρ
+ 216β

2

h3 + 36 δ2

g2hρ

F 2
99 = 6ξ

2

ρ
.

(5.63)

The needed Ricci tensor can be computed by modeling the tri-Sasakian geometry on coset
manifolds, see [55] for details. We eventually find that it is also diagonal, with only independent
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components

R11 = 12
g
− 6h
g2 −

g′2

2g2ρ
− 3g′h′

4gρ −
3f ′g′

4fgρ + g′ρ′

4gρ2 −
g′′

2gρ,

R55 = 2
h

+ 4h
g2 −

h′2

4h2ρ
− 3f ′h′

4fhρ −
g′h′

ghρ
+ h′ρ′

4hρ2 + h′ρ′

4hρ2 −
h′′

2hρ,

R88 = 3f ′2

4f2ρ
+ g′2

g2ρ
+ 3h′2

4h2ρ
+ 3f ′ρ′

4fρ2 + g′ρ′

gρ2 + 3h′ρ′

4hρ2 −
3f ′′

2fρ −
2g′′

gρ
− 3h′′

2hρ,

R99 = 2
f
− f ′2

4f2ρ
− f ′g′

fgρ
− 3f ′h′

4fhρ + f ′ρ′

4fρ2 −
f ′′

2fρ.

(5.64)

Then the four Einstein equations are

12
g
− 6h
g2 −

g′2

2g2ρ
− 3g′h′

4gρ −
3f ′g′

4fgρ + g′ρ′

4gρ2 −
g′′

2gρ

−16α2

3g4 −
8γ2

g2h2 −
α′2

18g2hρ
+

2
(
3 + α2

3 − 4αγ
)2

3g4h3 +
24
(
−α′

36 + γ′

6

)2

h3ρ
= 0,

(5.65a)

2
h

+ 4h
g2 −

h′2

4h2ρ
− 3f ′h′

4fhρ −
g′h′

ghρ
+ h′ρ′

4hρ2 + h′ρ′

4hρ2 −
h′′

2hρ

8α2

3g4 −
16γ2

g2h2 +
2
(
3 + α2

3 − 4αγ
)2

3g4h3 −
48
(
−α′

36 + γ′

6

)2

h3ρ
= 0,

(5.65b)

3f ′2

4f2ρ
+ g′2

g2ρ
+ 3h′2

4h2ρ
+ 3f ′ρ′

4fρ2 + g′ρ′

gρ2 + 3h′ρ′

4hρ2 −
3f ′′

2fρ −
2g′′

gρ
− 3h′′

2hρ

8α2

3g4 + 16γ2

g2h2 −
2α′2

9g2hρ
−

4
(
3 + α2

3 − 4αγ
)2

3g4h3 −
48
(
−α′

36 + γ′

6

)2

h3ρ
= 0,

(5.65c)

2
f
− f ′2

4f2ρ
− f ′g′

fgρ
− 3f ′h′

4fhρ + f ′ρ′

4fρ2 −
f ′′

2fρ

8α2

3g4 + 16γ2

g2h2 −
α′2

9g2hρ
−

4
(
3 + α2

3 − 4αγ
)2

3g4h3 +
24
(
−α′

36 + γ′

6

)2

h3ρ
= 0.

(5.65d)

Now we plug in the expansions (5.58) and try to solve them at least at O(1). We observe that
the choice

γ1 = α1
6 , (5.66)

which is required by the Maxwell equations, is sufficient to cancel the divergences at leading and
next-to-leading order in the Einstein equations. Then problems come. Subtracting (5.65c) from
(5.65d), we obtain, at first non trivial order,

2
f0

+ 2 (α2 − 6γ2)2

9h3
2ρ0

, (5.67)

which is the sum of two positive terms and cannot be set to zero!
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Chapter 6

Conclusions

In this final Chapter, we summarize what we have learnt about generalized bubbles of nothing
as a possible non perturbative mechanism leading to instabilities in M-theory compactifications
to AdS spaces. We will put emphasis on the most interesting aspects of our general discussion
in Chapter 4 and also make some comments on the concrete tri-Sasakian example of Chapter 5.

Higher dimensional bubbles of nothing seem to be a natural mechanism to consider, since
compactifications tipically involve non trivial internal spaces, a subspace of which may collapse
in analogy with the Kaluza-Klein circle of Witten’s original construction. The most serious ob-
struction to the existence of such solutions seems to come from the presence of fluxes supporting
the vacuum geometry. Various aspects regarding flux conservation were already discussed in [9],
[10] and [11]. Moreover, we manage to provide a general no-go argument based on flux quanti-
zation which applies to four dimensional AdS compactifications of both the Freund-Rubin and
the Englert type. It forbids the existence of smooth bubble geometries with the same boundary
conditions as the vacuum, since the Page charge of these vacua is always non zero but it would
vanish for a smooth bubble. A promising way-out is provided by the inclusion of M2-brane
instantons, wrapping the S3 in AdS and possibly smeared over some part of the internal space,
which might account for the additional flux we need.

All of these aspects turn out to be relevant in our attempt to construct a tri-Sasakian bubble
geometry, where the three-dimensional fiber should play the role of the Kaluza-Klein circle in
Witten’s example. We verify that a smooth bubble cannot exist, as expected from our argument
based on Page charges. Then we consider the inclusion of M2-branes in the bubble geometry
and set up a perturbative expansion of the field equations in the near-brane regime, where
we should be able to use the flat brane result. The leading order divergences indeed cancel,
but an obstruction is found at the level of the Einstein equations, which may be interpreted
geometrically as the impossibility to compensate the contribution of the flux with that of the
Ricci tensor, since they both have the same sign. However, this is not our final word about it
since, unless we are able to get a deeper understanding of this geometric obstruction, we cannot
still exclude that a more general ansatz for the bubble solution could work and, in that case, a
numerical analysis might be worth doing.
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Appendix A

Brane solutions in supergravity

String theories contain p-branes as non-perturbative states, whose tension (mass per unit world-
volume) is proportional to inverse powers of the string coupling gs, while the string oscillation
modes in the perturbative spectrum have masses independent of gs. As explained in section 4.5,
a p-brane in D dimensions couples electrically to a (p + 1)-form and magnetically to the dual
(D − p − 3)-form. Therefore, the allowed values of p can be simply determined by inspection
of the bosonic field content of the theory. From what we know about non perturbative states
in quantum field theory, it should be possible to construct them as collective excitations of the
spacetime fields, described by classical solutions of the spacetime equations of motion. Since
we don’t have a spacetime action for the full string theory, the strategy is to look for solutions
of the classical equations of motion of its low energy approximation, that is supergravity. In
this Appendix, we provide some basic notions about brane solutions in supergravity theories,
focusing on D3-branes in D = 10 type IIB and M2-branes in D = 11 supergravity, which are
the cases of interest for us in Chapter 4 and 5. We will mainly follow [56].

The backreacted brane geometry Let us consider a low energy effective action of the form

S = 1
2k2

d

∫
dDx
√
−g

(
R− 1

2g
MN∂Mφ∂Nφ−

1
2(p+ 2)!e

apφF 2
p+2

)
, (A.1)

where we have dropped the Chern-Simons term. Here F 2
p+2 = FM0...Mp+1F

M0...Mp+1 ≡ F 2. For
string theory, D = 10 and 2k2

10 = (2π)7α′4g2
s = 1

2π l
8
sg

2
s . The parameter ap controls the dilaton

coupling, taking the values a0 = −1 for the NS-NS two-form and ap = 3−p
2 with ap+ap′ = 0 and

p+ p′ = 6 for the R-R sector. Dropping the dilaton and setting D = 11, p = 2 and ap = 0 give
the action of eleven dimensional supergravity. The Planck lenght is defined by 2k2

11 = 1
2π (2πlP )9.

The equations of motion derived from this action are

�φ = ap
2(p+ 2)!e

apφF 2,

∇M
(
eapφFMM1...Mp+1

)
= 0,

RMN = 1
2∂Mφ∂Nφ+ eapφ

2(p+ 1)!

(
F 2
MN −

p+ 1
(D − 2)(p+ 2)gMNF

2
)
,

(A.2)

where F 2
MN = FMM1...Mp+1F

M1...Mp+1
N . We observe that for p = 3 the action (A.1) is not valid

since F 2
5 = 0 for self-dual F5. However, the correct equations are obtained if we multiply the

F 2 term in (A.1) by a factor 1
2 and impose the self-duality condition separately.

To begin, let us discuss the symmetries of the solutions we are interested in. We denote by
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n = p+ 1 the dimension of the world-sheet of a p-brane and ñ = p̃+ 1 = D− n− 2 = D− p− 3
the dimension of the world-sheet of the dual object. Our solutions should be Poincaré invariant
in the n directions along the brane and rotation invariant in the D − n directions transverse to
the brane, thus exhibiting a SO(1, n−1)×SO(D−n) symmetry. We can conveniently split the
spacetime coordinates as xM = (xµ, ym), with µ = 0, . . . , n− 1 and m = 1, . . . , D−n. Then the
most general ansatz for the metric and dilaton of a p-brane sitting at y = 0 that is compatible
with the symmetries is

ds2 = e2A(r)ηµνdx
µdxν + e2B(r)δmndy

mdyn,

eφ = eφ(r),
(A.3)

where r = (δmnymyn)
1
2 is the radial distance from the brane. A reasonable boundary condition

is that this metric is asympotically flat i.e. it reduces to Minkowski spacetime as r →∞, since
we expect the deformation of spacetime due to the presence of the brane to vanish far from
the brane. We also require that φ → 0 in this limit. As for the gauge field, we have the two
possibilities

F el
p+2 = Pe ∗

(
e−apφ volSD−p−2

)
, Fmag

p+2 = Pm volSp+2 , (A.4)

where volSn is the volume form of the unit n-sphere. They couple electrically with a p-brane
and magnetically with a p̃-brane, respectively. Inserting the ansatz (A.3) and (A.4) into the
equations of motion (A.2) gives a system of coupled non linear ordinary differential equations
for A(r), B(r) and φ(r). However, imposing the condition

nA+ ñB = 0, (A.5)

leads to considerable semplifications. This relation follows from the requirement that the solution
preserves half of the supercharges, whence the brane is called a 1

2 -BPS state, and from the flat
space boundary condition. Then the solution can be expressed in terms of a single harmonic
function H(r) as

ds2 = H−
ñ

D−2 (r)dxµdxνηµν +H
n

D−2 (r)
(
dr2 + r2dΩD−n−1

)
,

eφ = H
ap
2ζ , with ζ =

+1 electric brane
−1 magnetic brane,

F el
p+2 = dH−1(r) ∧ volR1,p and Fmag

p+2 = Nαn volSp+2 , N ∈ Z.

(A.6)

The sign in front of the field strenght is arbitrary and distinguishes brane from opposite-charged
anti-branes. We observe that the solution for F el is of the form F = dA and could have been
obtained with the ansatz Ael

µ0...µp = −εµ0...µp

(
eC(r) − 1

)
leading to eC = H−1. As for H(r),

it is the Green function of the transverse Laplace operator, that is the solution of the Laplace
equation in the space transverse to the brane with source given by a δ function localized at the
origin,

�H(r) = −NαñΩñ+1δ
(ñ+2)(y), (A.7)

where Ωn is the volume of the n-sphere. The solution of this equation depends on the dimension
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of the transverse space as

H(r) =


−α |y| if ñ = −1,
−α ln r if ñ = 0,
1 + Nα

rñ
if ñ > 0.

(A.8)

Here N is an integer corresponding to the number of coincident branes and α is the only
integration constant which is left after imposing the boundary conditions gMN → ηMN and
φ→ 0 when r →∞. It can be related to the tension τp of the brane via

α = 2k2
Dτp

ñΩñ+1
. (A.9)

From (A.8) we observe that the solutions with ñ = −1 and ñ = −1 diverge as r → ∞ and
deserve special treatment.

The electric and magnetic charge densities of an electric p-brane and a magnetic p̃-brane are

Nqe = (−1)p√
2kD

∫
Sñ+1

eapφ ∗ F el
p+2 =

√
2kDτpN, (A.10a)

Nqm = 1√
2kD

∫
Sn+1

eapφFmag
p+2 =

√
2kDτpN, (A.10b)

and using the Dirac quantization condition we find a relation between the tensions of an electric
p-brane and its magnetic dual,

τpτp̃ = πn

k2
D

, n ∈ Z. (A.11)

From the two equations in (A.10) we see that, in appropriate units, the brane tension is equal
to the (electric or magnetic) charge. These branes are called extremal and saturate the BPS
bound, as implied by the BPS condition (A.5). One important consequence of this equality is the
zero-force condition. Usually, when we put two massive charged objects at a certain distance,
they will attract or repulse themselves by a combination of gravitational and gauge interactions
but, if the BPS bound is saturated, the gravitational attraction is exactly compensated by
the gauge repulsion. Therefore extremal branes do not exert force on each other and can be
separated or moved around in spacetime with no cost in energy. The zero-force condition allows
us to generalize the harmonic function in (A.8) for ñ > 0, which corresponds to a stack of N
coincident p-branes sitting at y = 0, to

H(r) = 1 +
N∑
i=1

α

|y− yi|ñ
, (A.12)

which describes N branes sitting at the points y = yi. We can verify the stability of this
configuration by putting a probe brane into the background given by (A.12) at the transverse
position Y m(ξ). In static gauge Xµ(ξ) = ξµ the action of this probe brane is

− τp
∫
Wp+1

dp+1ξ

(
e−

apΦ
2

√
−det (e2Aηµν + e2B∂µY m∂νY nδmn)−H−1

)
, (A.13)

yielding the potential
V = τp

(
e−

apΦ
2 +(p+1)A

)
= 0, (A.14)
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which is zero from (A.6).
For our reference in section 4.5, we now specialize (A.6) to the two cases of interest for us,

which are D3-branes in D = 10 type IIB and M2-branes in D = 11 supergravity. In order
to reproduce the correct results, we have to introduce the concept of smearing [57]. This is
a common technique in brane engineering, which allows one to construct new brane solutions
from old. Using a delta function source gives a solution which preserves some set of translational
symmetries (in the directions parallel to the brane) and breaks another set (in the directions
transverse to the brane). However, a solution can be obtained that preserves more translational
symmetries by using a more symmetric source, e.g. one supported on a line, on a plane or on
a higher dimensional surface. Thus, smeared branes can be imagined as an array of branes
in which a large number of unsmeared basic branes are placed in the spacetime with a small
spacing between themselves. The metric in (A.6) distinguishes between wrapped and localized
directions spanning the parallel and transverse space to the brane, respectively. We can also
introduce some smeared directions in the transverse space, that is we take a p-brane and smear it
uniformly along some directions in the transverse space. Then the metric is still given by (A.6),
but the harmonic function H(r) is different, since instead of ñ in (A.8) we take ñ minus the
number of smeared directions. In section 4.5 and Chapter 5, we considered bubble geometries
for

• AdS5 × S5/Zk, with D3-branes wrapping the S4 in AdS5 and smeared over the CP2. In
this case, due to the smearing there are effectively only two transverse directions, given by
the radial direction r in AdS5 and the internal Kaluza-Klein direction corresponding to the
collapsing S1. Then the relevant harmonic function is the Green function of the Laplace
equation in two dimensions, whence the dependence on r is logarithmic. As discussed in
[11], in the near-brane regime (here labelled as "D3") we can treat the source as being in a
locally flat spacetime and we expect the various functions appearing in the metric (4.138)
to take the form

ρD3(r) ∼ H
1
2 (r), fD3(r) ∼ H−

1
2 (r),

gD3(r) ∼ H
1
2 (r), hD3(r) ∼ r̃2H

1
2 (r),

(A.15)

with H(r) from (A.8) given by
H(r) = − ln r. (A.16)

• AdS4×M3S , with M2-branes wrapping the S3 in AdS4 and smeared over the quaternionic
Kähler subspace of the tri-Sasakian internal manifold. Due to the smearing, we have only
four transverse directions, corresponding to the radial distance r in AdS4 and the three
dimensional collapsing subspace in the internal manifold. Then the relevant harmonic
function is the Green function of the Laplace equation in four dimensions, that is

H(r) = 1 + α

r2 , (A.17)

where we have included the number of branes in the definition of α. Then it is reasonable
to assume for the various functions appearing in the metric (5.53) the following near-brane
behaviour (whence the labelling "M2"),

ρM2(r) ∼ H
1
3 (r), fM2(r) ∼ H−

2
3 (r),

gM2(r) ∼ H
1
3 (r), hM2(r) ∼ r̃2H

1
3 (r),

(A.18)



Appendix B

Anti-de Sitter from near-horizon
limits

In this Appendix, we explain how Anti-de Sitter space naturally emerges in the near-horizon
limit of certain configuration of branes, which is relevant for our discussion in Chapter 2. This
property is familiar from the Reissner-Nordström metric that describes the spacetime outside an
extremal charged black hole, whose near-horizon region looks like AdS2 × S2. The observation
that an analogous result holds for brane metrics played a role in Maldacena’s original argument
for the statement of the AdS/CFT correspondence in [58] and clarify our discussion in Chapter 2.

The Reissner-Nordström black hole To begin, we briefly describe how Anti-de Sitter space
appears in the near-horizon limit of the Reissner-Nordström metric for an extremal black hole.
This is a standard result which can be found for example in [59]. Setting the Newton’s constant
G = 1, the Reissner-Nordström metric in four dimensions is given by

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
2, f(r) = 1− 2M

r
+ Q2

r2 , (B.1)

with M and Q the mass and electric charge of the black hole, respectively. If M < Q, the
metric coefficient f(r) is always positive and the true curvature singularity at r = 0 is a naked
singularity, thus violating the cosmic censorship conjecture. If instead M > Q, f(r) is pos-
itive at large r and small r and negative in the intermediate region inside the two zeros at
r = r± = M +

√
M2 −Q2, which describe event horizons. The near-horizon geometry can be

shown to be approximately Rindler × S2. Finally, in the extremal case M = Q the inner and
outer horizons collapse into a single horizon located at r = M . In order to study the near-horizon
geometry, we define new coordinates

r = Q

(
1 + λ

z

)
, t = QT

λ
, (B.2)

where λ is an arbitrary parameter. Plugging into the metric (B.1) and taking the limit λ → 0
with all the coordinates held fixed, which describes the near-horizon region since r → Q in this
limit, yield

ds2 = Q2

z2

(
dz2 − dT 2

)
+Q2dΩ2

2. (B.3)

This metric is nothing but AdS2 × S2 in the Poincaré coordinates (4.28). It is worth observing
that in the subextremal case the approximate Rindler×S2 near-horizon geometry does not solve
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by itself the Einstein-Maxwell equations, while the AdS2 × S2 geometry actually does.

The AdS/CFT correspondence We now argue that a similar result holds for brane metrics
and explain why this is important in the context of the AdS/CFT correspondence, where string
theory and M-theory on certain supergravity geometries that include AdS factors are conjectured
to be equivalent to certain conformally invariant quantum field theories. Even though we won’t
be able to enter into technical details, since it would go beyond the scope of this thesis, it is useful
to present here at least the basic ideas, since they allow us to somewhat broader the picture
outlined at the end of Chapter 2. In particular, we present Maldacena’s original AdS5 × S5

example and also discuss some explicit realizations in M-theory.
Following [36], we now provide some generalities about the correspondence. To begin, we

observe that there are two apparently very different ways of realizing theories with O(2, D) sim-
metry, namely comformal field theories in D dimensions and gravitational theories in AdSD+1.
Since they live in spacetimes with different dimensions, it might sound weird that they can be
related. However, the holographic idea that the number of degrees of freedom of a region of
spacetime grows with the area, rather than the volume, is not a novelty when dealing with
gravity. For example, it is well known from the Bekenstein-Hawking formula that the entropy
of a black hole is proportional to the area of the horizon.

In order to set a correspondence between the two theories, we need the following ingredients:

• on the gravity side, we have bulk fields in D+1 dimensions whose interactions are described
by an effective action (for example, that of a supergravity theory) with AdSD+1 vacuum,
SAdS ;

• on the gauge side, we have boundary fields in D dimensions with Lagrangian LCFT , the
CFT spectrum being specified by a complete set of primary operators.

The idea is to identify the off shell background fields h(x) introduced as sources to compute
the correlation functions of the CFT operators with the boundary values of on shell bulk fields
ĥ(x, xD+1), as schematically shown in Figure B.1. More explicitly, let O be a CFT operator.

ĥ(x, xD+1)

CFT

AdSD+1

h(x)

Figure B.1: Formulation of the correspondence in the Euclidean picture of AdS.

In order to compute correlation functions, we consctruct the functional generator of connected
correlation functions of O as

eW (h) = 〈e
∫
hO〉CFT , (B.4)

where h(x) is a background field. Then,

〈O . . . O〉 = δnW

δhn
. (B.5)

To each source configuration we can associate a unique bulk field configuration

h(z)→ ĥ(x, xD+1), (B.6)
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by demanding that ĥ solves the D + 1 dimensional equations of motion and obeys appropriate
boundary conditions. Then, the prescription for the correspondence is

eW (h) = eSAdS(ĥ), (B.7)

that is we can obtain the CFT functional generator W (h), depending on the arbitrary (off shell)
configuration h(x), by evaluating (on shell) the D+ 1 dimensional action on the solution of the
equations of motion ĥ(x, xD+1) that reduces to h(x) at the boundary. Since the knowledge of
W (h) completely determines the CFT, equation (B.7) states the required equivalence between
the CFT and the gravitational theory. However, we have not explained how to determine the
field h that couples to the operator O. This can often been done using symmetries, since they
must have the same O(2, D) quantum numbers. In particular, global symmetries in the CFT
correspond to gauge symmetries in AdS.

Some explicit realizations The first, and still best understood, realization of the AdS/CFT
correspondence is Maldacena’s original conjecture in [58] that the N = 4 super Yang-Mills
(SYM) theory with gauge group U(N) is dual to the type IIB string background AdS5 × S5.
The statement was motivated by the observation that the two theories can be obtained by the
same decoupling limit α′ → 0 performed on the world-volume theory and on the back-reacted
metric in spacetime, respectively. On the gauge side, N = 4 SYM can be realized on the world-
volume of a stack of N parallel D3-branes, which interact with the bulk fields that live in D = 10
Type IIB string theory. However, in the limit α′ → 0, these interactions can be turned off and
the brane theory decouples from the bulk, thus reducing to N = 4 SYM. Moreover, in order to
keep all physical quantities finite, the appropriate limit to perform is

α′ → 0,

gs = g2
YM

4π fixed,

N fixed,

φi = ri
α′

fixed.

(B.8)

That is, we are zooming on the region where the branes sit.
On the gravity side, as we have discussed in Appendix A, a D3-brane can be seen as a

solution of the equations of motion of type IIB supergravity. From (A.6), the back-reacted
brane geometry is

ds2 = H−
1
2 (r)ηµνdxµdxν +H

1
2 (r)

(
dr2 + r2dΩ5

)
, (B.9)

with the harmonic function H(r) given by

H(r) = 1 + g2
YMNα

′2

r4 = 1 + g2
YMN

α′2φ4 . (B.10)

Taking the limit (B.8), we obtain

ds2 = α′
[
R2dφ

2

φ2 + φ2

R2 (dx)2 +R2
]

(B.11)

Perturbative quantum field theory is a good description only when the AdS radius L is small,
while supergravity is a good approximation only when L is large, so the two different regimes
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of validity don’t overlap.
In the case of a flat M2-brane, an analogous near-horizon limit produces AdS4 × S7. It is

conjectured that M-theory on AdS4 × S7 with N units of flux on the S7 is dual to N = 8 SYM
with gauge group SU(N) in three dimensions. It is easy to verify that the symmetries on the
two sides match: the SO(2, 3) × SO(8) isometries of AdS4 × S7 correspond to the conformal
invariance and the R-symmetry of the dual theory. An interesting generalization is to replace
the flat space transverse to the brane with a cone over a base X,

dr2 + r2ds2(X). (B.12)

Apart from the special case when X is the round sphere, these spaces have a conical singularity
at r = 0. Then this construction can be interpreted as N coincident M2-branes sitting at the
conical singularity. By taking a near-horizon limit, one finds that it is now AdS4 ×X and this
provides a rich class of new AdS/CFT examples.
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