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Abstract

Natural language processing (NLP) offers powerful tools, such as text sugges-
tions to help users be more efficient or classifiers that categorize documents
by their content. These tools are usually powered by machine learning (ML)
models that are trained using textual data, such as emails, chats, or medical
records, which frequently contain sensitive data or personally identifiable in-
formation. Thus, it is important for companies working in this field to assess
the risk of customer data leakage and potential privacy breaches. This assess-
ment is also required to proactively comply with data protection laws, such as
the General Data Protection Regulation (GDPR), which enforces the need for
privacy and demands protection against data breaches.

This thesis analyzes some of the major privacy threats that have emerged
in recent research work from using ML models in the NLP domain. Particular
attention is placed on text representation models, which convert texts into nu-
merical vectors. The objective is to assess whether sensitive information can
be inferred simply by accessing vector representations (“embeddings”) of texts.
For this purpose, we first review different text representation approaches, rang-
ing from classical models to more recent ones based on deep learning. We then
implement a recently proposed inversion attack and test it against the repre-
sentation produced by the various models to analyze what type of information
can be leaked and under which conditions recovery is possible.

Empirical results show that vectors that encode texts can reveal an aston-
ishing amount of sensitive information, potentially compromising user privacy.
For example, proper names can be recovered from vectors produced even by
the most recent state-of-the-art deep learning models.





Sommario

Le tecnologie collegate al natural language processing (NLP) offrono potenti
strumenti per l’analisi testuale, ad esempio suggeritori automatici per aiutare
gli utenti ad essere più efficienti o classificatori che categorizzano i documenti
in base al loro contenuto. Questi strumenti sono solitamente alimentati da
modelli di machine learning (ML) addestrati su dati testuali come e-mail, chat
o cartelle cliniche che spesso possono contenere dati sensibili o informazioni di
identificazione personale. Per le aziende che operano in questo settore è quindi
importante valutare il rischio di esposizione dei dati dei clienti e di conseguenti
potenziali violazioni della privacy. Questa valutazione è necessaria anche per
conformarsi in modo proattivo alle leggi sulla protezione dei dati, come il
regolamento generale sulla protezione dei dati (GDPR), che impone il rispetto
della privacy e la protezione contro le violazioni dei dati.

Questa tesi analizza alcune delle principali minacce alla privacy, emerse
in recenti lavori di ricerca, derivanti dall’uso di modelli ML in ambito NLP.
Particolare attenzione viene posta sui modelli di rappresentazione del testo,
che vengono utilizzati per convertire i testi in vettori numerici. L’obiettivo
è valutare se le informazioni sensibili possono essere dedotte semplicemente
accedendo alle rappresentazioni vettoriali dei testi (“embedding”). A questo
scopo, passiamo prima in rassegna diversi modelli di rappresentazione del testo,
dai quelli classici a quelli più recenti basati sul deep learning. Successivamente,
implementiamo un attacco di inversione recentemente proposto e applicato
contro le rappresentazioni prodotte dai vari modelli, al fine di analizzare quale
tipo di informazione può essere trapelata e in quali condizioni è possibile il
recupero.

I risultati empirici mostrano che i vettori che codificano i testi possono
rivelare una quantità sorprendente di informazioni, compromettendo poten-
zialmente la privacy degli utenti. Ad esempio, nomi propri possono essere
recuperati da vettori prodotti anche dai più recenti modelli all’avanguardia
basati sul deep learning.
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Chapter 1

Introduction

1.1 Background and Motivation

In the digital world in which we live, data have been defined as «the new oil» of the
21st century [1]: data, such as oil, are an unrefined resource that, when processed,
can be transformed into a valuable asset. For companies working in the digital
economy, data can be turned into a profitable resource, for example, by producing
products tailored to their customers’ needs. Subsequently, this can lead to satisfied
customers and increased retention. For users, the insights generated from their data
can be used to improve their productivity or the efficiency of their digital processes.
Under the previous analogy, processed data can be viewed as combustible powering
machine learning (ML) and deep learning (DL) models, which are capable of learning
general underlying patterns from data to solve a plethora of different tasks spanning
various domains.

In particular, this thesis focuses on ML and DL models applied to solving natural
language processing tasks. Natural language processing (NLP) [2] is a subfield of
linguistics and artificial intelligence (AI) that aims to provide machines with the
ability to understand and derive meaning from text. In particular, NLP combines
hand-crafted algorithms and statistical models. The statistical models, which can be
implemented through machine learning or deep learning, allow machines to capture
the hidden structure of language and understand its semantics.

NLP breaks down language understanding into several different tasks. Some of
these tasks include text classification to categorize text according to some attribute
(e.g., topic, sentiment); text similarity to determine how similar texts are; part of
speech tagging to label each word in a text according to its role in the speech; text
generation to generate fluent natural language, and many more. Many applications
employ some of these tasks: document classification, machine translation, virtual
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2 Chapter 1. Introduction

assistants, and search engines.
However, the data used to train these ML models often contain sensitive or pri-

vate information. For example, text data used to train ML models in NLP can be
represented by financial documents, email or chat messages, and medical records.
These types of data naturally include sensitive attributes, such as personally identi-
fiable information (PII), which could be used to identify and potentially cause harm
to a specific individual.

Privacy is the right of individuals to control to what extent information about
them is disclosed to others [3]. Many countries recognize privacy as a fundamental
right, so they have established appropriate protection laws to safeguard it. For exam-
ple, in the European Union (EU), the General Data Protection Regulation (GDPR)
defines the EU’s rules for collecting and handling personal data. In particular, the
GDPR establishes the conditions and cases under which data about individuals can
be collected and processed; it requires data protection policies, transparency with
data owners, and technical and organizational measures to mitigate security risks.
Any individual or organization who handles personal data in the EU must comply
with the GDPR, and penalties are applied in the event of non-compliance with the
legal terms of the GDPR.

The GDPR does not explicitly address AI, ML, and DL. However, many pro-
visions in the GDPR are related and challenge how personal data are processed in
these rapidly adopted frameworks [4]. For example, the GDPR requires performing
an impact assessment to ensure that the rights and freedoms of data owners are
not at risk when using new technologies to process personal data (Article 35(1),
General Data Protection Regulation, 2018). Consequently, companies that use or
want to adopt these frameworks must assess the risk of customer data leakage and
potential privacy breaches derived from such frameworks.

1.2 Objective

This thesis work was carried out during an internship at Siav. Siav is an Italian soft-
ware company specialized in document management software and digital processes.
Siav operates in the enterprise content management (ECM) industry and some of
the services it offers include electronic document management, electronic invoicing,
and digital preservation. The objective of this thesis is two-fold and was defined
together with Siav’s research and development department.

First, we analyze the main threats to privacy documented in the literature that
arise from using ML models to solve NLP tasks. These include: (1) the possibility of
determining whether a particular individual with their data was part of the training
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set of an ML model [5], [6]; (2) the extraction of text sequence segments appearing
in the training data and that could potentially contain personally identifiable in-
formation [7], [8]; (3) the extraction of information from vectors encoding texts [9],
[10].

The second objective, directly related to the previous one, is to empirically assess
to what degree information can be extracted from vectors encoding texts. There-
fore, we consider different text representation models that map raw texts into vec-
tors of features. In particular, the analysis includes classical methods such as bag-
of-words [11], latent semantic analysis [12], and Doc2Vec [13], up to more recent
DL-based models such as Sentence-BERT [14]. We compare these models in a docu-
ment classification task that represents a possible service provided by the company.
To assess what type of information can be inferred by accessing the vector repre-
sentations of texts, we implement an inversion attack against the representations
produced by such models.

The scenario of interest that motivated the study is the following. A customer
turns to a company that provides ML-based NLP services, such as document classi-
fication. The ML models are trained on the private data of the customer. To achieve
privacy, the customer does not want to send their raw texts; rather, they prefer to
produce vectorized representations of such texts and send them to the company. For
this purpose, the company provides its customers with a text vectorization model,
which should allow for building an accurate downstream model while the customer
maintains their privacy. Figure 1.1 depicts the scenario considered. In particular,
the customer locally produces vectorized representations of the raw texts, which are
then sent to the company that produces the tailor-made model for the customer. An
inversion attack is applied to the produced vectors to assess the risk of information
leakage from vectorized representations. The inversion model is implemented as an
ML model that infers the words appearing in the plaintext by simply accessing its
vectorized representation. The output of the inversion model is a “bag of words”
meaning that the order in which the words appear is not considered. It should be
noted that even a combination of common words linked to a particular individual
may constitute a privacy breach.

Empirical results show that classical models leak most of the information, while
more advanced ones leak a reduced, but still considerable, amount of information,
potentially compromising user privacy. For example, we show that more than 40%
of the words1 appearing in the raw text of a representation produced by Sentence-

1Stop words (i.e., words appearing with high frequency and expected to carry little information)
and single character words were not considered.
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Figure 1.1: The scenario of interest. The customer locally produces vectorized
representations of their private texts, which are then sent to the company that trains
the downstream model. An inversion attack that aims to recover words by accessing
the vectors is carried out against vectors produced by various representation models.

BERT can be reliably recovered. In addition, we show that full names can be
retrieved from the vectors produced by Sentence-BERT. The results suggest that,
despite some vectorizations limiting the amount of information that can be recov-
ered, the analyzed strategy does not protect user privacy and appropriate mitigations
are required.

1.3 Content Organization

The content of this thesis is organized as follows.

• Chapter 2 provides an overview of the encoding models chosen for the inversion
attack. In particular, the models described are bag-of-words with and without
feature hashing, latent semantic analysis, Doc2Vec, and Sentence-BERT.

• Chapter 3 describes some of the privacy-related risks found in the literature
that arise from using ML models to solve NLP tasks. These include the fact
that neural networks tend to memorize rare and unique details of the training
data. Consequences of neural networks memorizing their training data include
the extraction of training sequences from generative models, and the infer-
ence of whether a particular individual with their data was part of the model
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training dataset using the so-called membership-inference attacks. Moreover,
additional techniques are described to extract information from vectors that
encode texts. Finally, the chapter also provides a high-level overview of differ-
ential privacy, a mathematically rigorous and sound approach for guaranteeing
privacy in data analysis.

• Chapter 4 outlines the experimental methodology followed to validate the text
representation models considered and to analyze the information leaked by
the vectors such models produce. In particular, the models are validated
using a classification benchmark that compares the considered models in a
downstream classification task. The inversion attack, which, by accessing only
the vectorized text representation, aims to recover the words appearing in the
plaintext, is described in detail.

• Chapter 5 reports the experimental results obtained following the methodology
outlined in Chapter 4. These include the results of the classification benchmark
and the inversion results on the vectors encoding texts. In particular, the
inversion results report the performance when inverting the vectorization of
sentences and paragraphs, the accuracy in recovering names from vectors,
and the scalability of the proposed approach related to the amount of data
available.

• Chapter 6 reports the concluding remarks.





Chapter 2

Text Representation Models

Text analysis requires methods to encode any sequence of words, ranging from short
sentences and paragraphs all the way up to long and structured documents, into a
fixed-size vector of numerical features, which can then be fed to some downstream
model to perform the analysis (e.g., text classification, document similarity, search
query).

Over the years, many methods, with an increased degree of complexity that
enabled state-of-the-art performance on such downstream tasks, were proposed to
perform the encoding from raw text to numerical features. Nevertheless, sometimes
simpler models, such as the bag-of-words, can stand their ground against more com-
plex and fancy models depending on the task at hand and other external limitations
(e.g., low memory footprint, no access to GPU accelerated computing); therefore, it
is essential to know the trade-offs each model offers and choose accordingly for the
given application.

This chapter provides an overview of the encoding models chosen for the analysis
using a downstream classification task and the inversion attack described in Chap-
ter 4. In particular, in Section 2.1 the simple yet effective bag-of-words model with
its variants is reviewed; in Section 2.2, Doc2Vec, a shallow neural network model
that paved the way to more advanced encoder-decoder models, is described; finally,
in Section 2.3, the Sentence-BERT model, based on the deep architecture BERT, is
described.

This chapter is far from including all the possible ways in which a sequence of
words can be encoded into a fixed-length vector, as this is beyond the scope of
this work. For a more comprehensive survey of the topic, the reader is invited to
explore [15].

7



8 Chapter 2. Text Representation Models

2.1 Bag of Words Models

The classical and most straightforward approach to represent a document is by
means of a bag of words [11]: Given a vocabulary V , a document d is represented
with a frequency vector of dimension |V|, where each word w ∈ V is associated
with a unique index i ∈ [0, |V| − 1] in the vector. In this representation, documents
are described only by the words they contain, and the information carried by the
relative positioning of words is completely disregarded.

There exist different variations of this simple idea. For example, instead of
considering a vector of word counts, binary entries can be used to encode only the
presence or absence of words while ignoring their frequencies. Another variation
consists in counting short n-length word sequences instead of only words, which
yields the so-called bag of n-grams, which tries to capture some ordering information
lost with the simple bag-of-words (for n = 1, the bag of n-grams is bag-of-words).
However, such a variation has the disadvantage of an increased dimensionality over
the simpler model, which explodes as n becomes larger (in practice, n = 2, 3).

|V| usually ranges from tens to hundreds of thousands, while documents typically
have tens or hundreds of distinct words, and therefore the bag-of-words represen-
tation is inherently sparse. A possible way to compress such a representation is
through latent semantic analysis (LSA), which is discussed in Section 2.1.2. In
short, LSA is a technique that analyzes the relationship between documents and
the words contained in them to find the underlying relationship between terms and
concepts.

Assuming that each w ∈ V is encoded with a one-hot encoding, the vector
resulting from the bag-of-words representation of a document d can be viewed as the
sum of the one-hot vectors of each word appearing in d. This idea can be extended
from one-hot vectors to word embeddings (e.g., those produced by Word2Vec, which
is described in Section 2.2.1) — dense representation of words in which semantically
related words are close in the vector space — to produce a document embedding as
the centroid (usually preferred over summing) of its words’ embeddings.

It is worth spending a few words regarding the choice of vocabulary since some
of the same considerations can be applied to other representation models (e.g.,
Doc2Vec). Given a dataset of documents, V can be built considering all the distinct
words appearing in the corpus’s training split. If the model is used to represent
other documents that contain words that did not appear in the training split, such
words will be ignored in the representation. This is not a problem if the training
split is large and varied and contains a rich set of words. However, in the training
split, many uninteresting words may appear: for example, the so-called stop words
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(i.e., words that appear with high frequency and therefore do not carry much infor-
mation) or words that are orthogonal to the downstream task the representation is
used for, such as diseases names or proper names in an e-mail classification setting.
In the latter case, if this type of information is leaked by the representation model
and an attacker can infer with a non-negligible degree of confidence that John Doe
suffers from a given disease, this may represent a severe privacy threat. Therefore,
the first line of defense against this kind of information leak could be not including
such words in the vocabulary. Although this strategy seems simple, it is flawed
because it cannot prevent all forms of privacy leakage.

In building the vocabulary, some parameters can be tuned: for example, all words
whose document frequency exceeds a given threshold are deemed corpus-specific stop
words and not included in the vocabulary, or on the other side of the spectrum, if
a word appears only in less than a given number of documents, it can be ignored.
Additionally, a hard threshold on the number of words in the vocabulary can be set to
limit the representation dimensionality and consequently the complexity (measured
in terms of parameters) of the downstream model that uses the representation.

The discrete bag-of-words model is usually complemented with the technique
known as the term frequency-inverse document frequency (tf-idf) [11]. This method
consists in reweighting the term frequencies tf(t, d) of the bag-of-words represen-
tation (i.e., the number of times each word, or n-gram of words, appears in the
document d) by the inverse document frequency

idf(t) = log
N

df(t)
(2.1)

where N is the total number of documents in the training split of the corpus and
df(t) is the number of such documents that contain the term t. This reweighting
aims to reduce the importance of words appearing very often and hence expected to
carry little meaningful information about the document’s actual content.

2.1.1 Hashing Trick

When dealing with large datasets, the simple bag-of-words model described above
may become inefficient since it must store in-memory mappings between the tokens
(e.g., words, n-grams of words or characters, etc.) and the corresponding integer
indices, and the larger the corpus, the larger the vocabulary will grow.

A possible solution is the so-called hashing trick [11]. Instead of keeping the
mappings between the tokens and the indices, the index of a given token t is de-
termined from the hash of the token itself using i = H(t) mod Nf , where H(·) is
the hash function of choice and Nf is the number of features that determines the
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dimensionality of the representation.
Since the hash function may map different, unrelated tokens to the same vector

position, it is important to choose Nf appropriately: it should neither be too small so
that many collisions occur nor too large, which, in turn, would make the document
representation unnecessarily large. Additionally, it is possible to choose a signed
hash function, and the sign of the token hash determines the sign of the value
stored at the computed index so that collisions are likely to cancel out rather than
accumulating errors.

Other than the low memory footprint and the increased speed, a side effect of
this stateless1 technique is that no vocabulary is built, and the mappings from token
to index cannot be easily inverted.

2.1.2 Latent Semantic Analysis

With the bag-of-words model, a collection of documents D can be represented by a
|D|× |V| document-term matrix C where each row represents a document and each
column represents a term. As previously observed, this matrix can be very large,
with tens or hundreds of thousands of rows and columns.

The singular value decomposition (SVD) from the linear algebra toolbox comes in
handy when trying to obtain a low-rank approximation of such large matrices. The
low-rank approximation of the document-term matrix obtained using SVD is known
as latent semantic analysis2 (LSA) [12], [16] because it transforms the document-
term matrix into a “semantic space” of lower dimensionality.

Mathematically speaking, to obtain a low-rank approximation Ck of rank at
most k of the document-term matrix C with rank r ≤ min{|D|, |V|} minimizing

the Frobenius norm of the error ϵ = ||Ck − C||F =
√︂∑︁|D|

i=1

∑︁|V|
j=1(Ck,ij − Cij)2, the

following procedure should be followed:

1. Using the SVD, factor C as the product of three matrices: C = UΣV ⊺. Σ is
a r × r diagonal matrix whose values, called singular values and ordered in
non-increasing order, are the square of the eigenvalues of the real, symmetric
matrix CC⊺ (or equivalently of C⊺C). U and V are rectangular matrices of
dimension |D|× r and |V| × r respectively, whose columns are orthogonal and
normalized to unit length3.

1The hashing vectorization model is stateless in the sense that once H(·) and Nf are defined,
no other additional information is required to compute the representation.

2In the field of information retrieval LSA is also known as latent semantic indexing (LSI).
3What has been described is sometimes called reduced or truncated SVD. In normal SVD, Σ

is a |D| × |V| matrix where all the entries outside the r × r sub-matrix’s diagonal are zeros; U is
a |D| × |D| matrix whose columns, called left-singular vectors, are the eigenvectors of CC⊺; V is a
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2. Obtain Σk by replacing by zeros the r − k smallest singular values on Σ’s
diagonal and Uk, Vk by omitting the rightmost r − k columns that would be
multiplied by zeros.

3. Compute the rank-k approximation of C as C ≈ Ck = UkΣkV
⊺
k .

This procedure yields the matrix of rank k with the lowest possible Frobenius
error ϵ, which is equal to the largest singular value set to zero: thus, the larger k,
the smaller the error of the approximation.

The low-rank approximation of C yields a new representation C ′ = UkΣk for
each document in a k-dimensional space defined by the k principal eigenvectors
(corresponding to the largest eigenvalues) of CC⊺. CC⊺ is a |V| × |V| matrix whose
(i, j) entries measure the co-occurrence, in the collection of documents associated
with the document-term matrix C, between the terms i and j.

To map a new collection of documents with the document-term matrix C̄ in this
new representation, it suffices to compute C̄

′
= C̄Vk.

In addition to compressing the representation provided by the bag-of-words, LSA
should deal better with the phenomena of synonymy (different words with the same
meaning, e.g., “car” and “automobile”) and polysemy (words with multiple meanings,
e.g., “bank” of the river and “bank” the institution).

2.2 Neural Network Based Embeddings

In the bag-of-words representation, the semantics of the words are not taken into
account since words are treated as indices in a vocabulary. For example, using the
one-hot encoding, the words “guitar”, “violin”, and “pizza” are all equally distant.

Algorithms based on neural networks and trained on large amounts of unstruc-
tured text were proposed to overcome this limitation and learn lower dimensional
word representations (compared to one-hot encoding), which also encode the seman-
tics of the words.

Word2Vec [17] is a prime example of these neural network based word representa-
tion models that embed words in a low-dimensional continuous vector space in which
words with similar meanings (based on context, i.e., nearby words) are close to each
other while words with different meanings are far apart. Such representations allow
one to perform linear operations like v(“king”)−v(“man”)+v(“woman”) ≈ v(“queen”)
where v(·) is the neural embedding produced by Word2Vec.

|V| × |V| matrix whose columns, called right-singular vectors, are the eigenvectors of C⊺C. From
the structure of Σ, it is clear that there is an equivalence between the two decompositions.
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Paragraph vector [13], also known as Doc2Vec, was subsequently proposed as an
extension of Word2Vec to learn the embeddings of words sequences irrespective of
the granularity of the sequences themselves, which can equally be n-gram of words,
sentences, paragraphs, or documents.

Since many of the building blocks Doc2Vec builds upon are based on Word2Vec,
Section 2.2.1 provides a brief overview of Word2Vec, while Section 2.2.2 describes
the Doc2Vec model.

2.2.1 Word2Vec

Word2Vec [17] is a neural network based approach to learning high-quality word
embeddings that capture the semantics of words.

The Word2Vec word embeddings are learned by training a 1-hidden-layer neural
network on the synthetic task of predicting a context word wO given the input word
wI . In the neural network, the one-hot encoding of wI is projected into a hidden
representation vwI

, which is then used in the output layer to predict the probability
distribution of context words according to the softmax operation:

P (wO|wI) =
exp(v′⊺wO

vwI
)∑︁

w∈V exp(v
′⊺
wvwI

)
(2.2)

where vw and v′w are the hidden and output vector representations of the word w in
the vocabulary V4.

After training, the hidden representation vw, into which each word is projected,
is used as the word’s embedding.

The learning objective is formulated as the maximization of logP (wO|wI). How-
ever, such a formulation is impractical, as this would make the computation of
∇ logP (wO|wI) Ω(|V|) due to the denominator in Equation 2.2.

The authors introduced the negative sampling technique [18] which approximates
logP (wO|wI), making the computation feasible even for large vocabularies since only
a subset of weights is updated at each back-propagation step.

More in detail, with negative sampling, the learning objective is to maximize
the similarity between wI and wO, measured in terms of the dot product, while

4That is to say vw is the i-th column in the first weight matrix (one-hot to hidden neurons
projection) and v′w is the i-th row in the second weight matrix (mapping from hidden neurons to
distribution in R|V|) where i is the index of the word w.
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minimizing the dot product of wI and randomly sampled negative words:

logP (wO|wI) ≈ log σ(v′
⊺
wO

vwI
) +

k∑︂
i=1

Ewi∼Pn(w)

[︁
log σ(v′

⊺
wi
vwI

)
]︁

(2.3)

where σ(·) is the sigmoid function, k is the number of negative samples, and Pn(w)

is the noise distribution.

The authors found that the unigram distribution raised to the 3/4rd power, i.e.,
c(wi)

3/4∑︁
w∈V c(w)3/4

where c(w) is the count of the word w, in which the most frequent words
are more likely to be sampled as negative words, is the most effective choice for the
noise distribution.

From Equation 2.3, it can be seen that with negative sampling, the task becomes
to distinguish the target word wO from k randomly sampled noise words using logistic
regression.

An additional improvement to speed up training and improve the quality of the
learned vectors for rare words [18] consists in subsampling frequent words (e.g.,
“the”, “a”, “in”) that are usually less informative than rarer words. Each word wi is
discarded from the training set according to the probability:

P (wi) = 1−

√︄
t

c(wi)

where c(wi) is the count of word wi and t is a hyperparameter: words whose fre-
quency exceeds t are aggressively subsampled.

There exist two variants of Word2Vec: skip-gram and continuous bag-of-words
(cbow) which differ in the role assumed by wI and wO.

In skip-gram, wI is the central word in a window of words that slides along the
training text, while wO is a context word surrounding wI and within the window.
In cbow, wI consists of multiple context words within the sliding window that are
summed (or averaged) together via vector addition and are used to predict the
central word of the window wO. The number of context words on the left and right
of the central word is the window size hyperparameter. Figure 2.1 illustrates the
difference between the two models.

Word2Vec is built on the distributional hypothesis of linguistics, according to
which words that are used and occur in the same contexts tend to bear similar
meanings. This can be seen from the fact that the training objective in Word2Vec
is to learn word representations that are useful for predicting the surrounding words
in a sentence. Therefore, if two different words (e.g., “car” and “automobile”) tend to
appear in similar contexts (i.e., with similar surrounding words), the representation
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(a) Skip-gram Word2Vec. (b) Continuous bag-of-words Word2Vec.

Figure 2.1: Word2Vec model architectures [17]. Word2Vec embeddings are learned
by training a neural network to predict a context word given an input word.

learned by Word2Vec for the two words will be close in the vector space since they
both must produce a similar distribution of context words.

2.2.2 Doc2Vec

Paragraph Vector [13], later popularized with the name Doc2Vec, was introduced
as a natural extension of Word2Vec to encode variable-length pieces of text, such as
sentences and documents [19], into fixed-length feature representations.

Similarly to Word2Vec, it is an unsupervised framework that learns continuous
vector representations by being trained on the synthetic task of predicting words in
a text and comes in two variants: distributed memory (dm) and distributed bag-of-
words (dbow) which are depicted in Figure 2.2.

(a) Distributed memory. (b) Distributed bag-of-words.

Figure 2.2: Doc2Vec model architectures [13]. Doc2Vec embeddings are learned by
training a network to predict words given the vector of a text, called the paragraph
vector.
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In Doc2Vec, each variable-length text is mapped to a unique vector called the
paragraph vector, represented by a column in the matrix D, which is used to perform
the prediction task; similarly, each word is represented by a column in the matrix
W .

In dm-Doc2Vec, the paragraph vector is concatenated with a fixed-length context
of words sampled from a sliding window over the text to predict a single word
following the context. The paragraph vector is shared among all contexts generated
from the same text, while the matrix of word embeddings W is shared among all
texts. Therefore, the paragraph vector acts as a memory that encodes what is
missing from the current context (or the topic of the text). The architecture of
dm-Doc2Vec (Figure 2.2a) is reminiscent of that of cbow-Word2Vec (Figure 2.1b)
with the difference in the added information carried by the paragraph vector and
the order of the words in the context, which is taken into account since the words
are concatenated5.

Dbow-Doc2Vec (Figure 2.2b) is the simpler model, which, despite the name,
resembles skip-gram Word2Vec (Figure 2.1a): the context words are ignored and,
given only the paragraph vector, the model is trained to predict words randomly
sampled from the text.

Both the improvements proposed for Word2Vec, negative sampling, and frequent
word subsampling described in Section 2.2.1 are also applied in Doc2Vec.

Paragraph and word vectors are trained using stochastic gradient descent (SGD).
After the training is completed, the resulting paragraph vectors in D can be used
as embeddings of the training documents.

To infer the embedding of a new, unseen document, an inference stage is required:
the paragraph vector for the new document is randomly initialized, and while keeping
all the parameters of the network fixed (e.g., word vectors W and logistic regression
parameters), the weights of the new paragraph vector are optimized to map the new
embedding in the same space the training documents’ embeddings lie.

It is worth noting that the number of epochs and the learning rate during training
and the inference stage need not be the same. Sometimes, a larger number of epochs
or a smaller learning rate in the inference stage may yield better representations. It
is also important to note that, given the inherent randomness of the inference stage,
if the same document is encoded multiple times, the embeddings returned will not
be exactly the same each time but will still be close in the embedding space.

Although the authors claim that dm-Doc2Vec is the better model, producing

5In the original paper [13] the authors experiment with concatenation; however, averaging,
which loses the ordering information, is also possible.
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text representations that achieved higher performance when used in a sentiment
analysis classification setting, others were unable to replicate the same results and
found that the simpler dbow-Doc2Vec produces better representations [20].

The recipe for improving the dbow model, introduced by the Gensim library [21],
is to, instead of randomly initializing the word vectors (logistic regression param-
eters), simultaneously learn them in a skip-gram fashion6: for each text example,
both the paragraph vector of the whole text and the word vectors over each sliding
context window are trained. A possible motivation for this is that it places both the
dbow paragraph and word vectors into the same space.

2.3 Transformer Based Language Models

In recent years, a new paradigm has emerged based on building large language
models with millions of learnable parameters that are trained with unsupervised
objectives on massive datasets. Once these large language models are trained, they
are able to capture complex language patterns and can be used to generate fluent,
natural language or transfer their knowledge to various downstream tasks to achieve
state-of-the-art performance. Some examples of such language models include Ope-
nAI’s GPT-3 [22] and Google’s BERT [23].

In particular, pre-trained BERT can be used as a text features extractor to en-
code sentences (or, more generally, pieces of text) into dense vector representations.
However, in [14], it was found that the model does not produce quality embed-
dings without proper fine-tuning. Therefore, sentence-BERT [14] was introduced
to overcome this limitation and adapt BERT to produce semantically meaningful
embeddings that, for instance, can be used to perform text similarity search queries.

After a brief detour in Section 2.3.1 reviewing language modeling, Section 2.3.2
overviews the BERT model, while Section 2.3.3 describes Sentence-BERT.

2.3.1 Language Modeling

Language models (LMs) are an important building block in many NLP tasks. Dif-
ferent unsupervised objectives exist to train these models depending on the exact
architecture of the LM. A common approach is next-step prediction [8] which builds
a generative model based on the underlying distribution of tokens (e.g., words) in

6Alternatively, pre-trained Word2Vec word embeddings can be used [20].
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the training corpus

P (x1, x2, . . . , xn) =
n∏︂

i=1

P (xi|x1, . . . , xi−1) (2.4)

where xi for i = 1, . . . , n is a sequence of tokens from the vocabulary V .
LM based on neural networks estimate this distribution with fΘ(xi|x1, . . . , xi−1)

which indicates the likelihood of the token xi when the neural network f with
parameters Θ is provided the prefix x1, . . . , xi−1. In particular, in this setup, the
training objective is to maximize the log-probability in Equation 2.4 of the training
dataset. This translates into minimizing the following loss function:

L(Θ) = − log
n∏︂

i=1

fΘ(xi|x1, . . . , xi−1) (2.5)

over each sample (e.g., sentences, documents) in the training dataset.
These language models, trained with the next-step prediction objective, are usu-

ally called autoregressive LMs. A trained autoregressive LM can be used to gener-
ate new text: by feeding some context x1, . . . , xi (potentially empty) and iteratively
sampling x̄i+i ∼ fΘ(xi+i|x1, . . . , xi) and feeding back x̄i+i into the model to sample
x̄i+2 ∼ fΘ(xi+2|x1, . . . , xi, x̄i+i) until a stopping criterion is reached.

While recurrent neural networks (RNNs) used to be a popular choice for building
neural-based LMs, the most recent LMs are based on the Transformer [24]: a deep
architecture with millions of parameters that requires a huge corpus to be trained
effectively.

An example of a state-of-the-art autoregressive LM is the OpenAI GPT-3 model,
which is trained on data scraped from the Web and can generate fluent natural
language. On the other hand, Google BERT is a different language model known
as masked LM, as will be detailed in Section 2.3.2.

2.3.2 BERT

BERT (Bidirectional Encoder Representations from Transformers) [23] is a deep
learning model that falls in the paradigm of building a powerful LM by pre-training
on a huge corpus and then transferring the acquired knowledge to various down-
stream tasks (e.g., text classification, question answering, sentence tagging, sentence-
pair regression) by fine-tuning the entire model with minimal architectural modifica-
tions. This paradigm allowed for many breakthroughs in the NLP field, enabling to
reach state-of-the-art performances in an array of natural language understanding
tasks: when BERT was first published, it improved previous results on eleven NLP
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tasks.

BERT is based on the Transformer encoder architecture [24], a deep learning
model which allows the processing of sequential data, such as texts, in parallel,
without a predefined order (e.g., left to right) as it happens in RNNs.

The Transformer encoder (Figure 2.3) consists of two sub-layers: a multi-headed
self-attention layer followed by a feed-forward neural network.

Figure 2.3: The Transformer
encoder architecture [24].

The input of the encoder is a sequence of dense
vector representations. For each element in the se-
quence, the self-attention layer produces a new in-
termediate representation by accessing all input se-
quence elements but only attending on those that
matter to encode the current element. The weights
that govern what elements the encoder should at-
tend to while processing a given sequence element
are learned during the training process.

The self-attention mechanism is multi-headed be-
cause, for each item in the sequence, it produces A

different representations (corresponding to the atten-
tion heads) focusing at different positions in the in-
put sequence. The representations of the different
heads are then combined in a “summary” representation.

Finally, the representations are passed as input to the feed-forward neural net-
work that applies the same computations to all sequence elements, producing a
sequence of hidden representations, each with H units corresponding to the encoder
output.

BERT uses a stack of L Transformer encoders (Figure 2.4).

Figure 2.4: The BERT model archi-
tecture [23].

The input sequence, which may equally
be a single sentence or a pair of sen-
tences separated by the [SEP] token, is pre-
appended with the special classification to-
ken [CLS] and tokenized into smaller units
(words or sub-words) according to a pre-
pared vocabulary.

Each token is mapped to its embedding,
which is augmented by summing it with the
segment and positional embedding. The seg-
ment embedding indicates to which sentence
each token belongs, while position embed-
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ding, which follows a specific pattern, encodes the position of each token in the
sentence. The resulting embedding Ei for each token i in the input sequence is then
propagated through the Transformer encoder stack, producing the hidden vector
Ti ∈ RH .

BERT uses WordPiece embeddings with a vocabulary of 30k tokens so that
unknown words are split into sub-words. Additionally, every character appears as
a sub-word in the vocabulary: this allows BERT to tokenize any unknown word
into multiple known sub-words, including single characters if needed, avoiding the
problem of out-of-vocabulary words (OOV)7.

BERT comes in two variants: BERTBASE (L = 12, H = 768, A = 12) and
BERTLARGE (L = 24, H = 1024, A = 16) which have, respectively, 110M and 340M
total parameters.

Figure 2.5: Pre-training and fine-tuning of BERT [23]. First, BERT is pre-trained
on a large corpus with two sub-tasks: masked language modeling and next sentence
prediction. Once BERT is pre-trained, the knowledge acquired can be extended on
various downstream tasks by fully fine-tuning the model.

From the above description, it is clear that BERT is not a traditional language
model since it produces representations conditioning on both left and right contexts
across all layers. Due to this bi-directionality, a different pre-training strategy was
required, given that bidirectional conditioning in a multi-layer setting would allow
each word to see itself indirectly, making the prediction trivial. BERT is therefore
pre-trained on two tasks (left part of Figure 2.5): masked language modeling (MLM)
and next sentence prediction (NSP).

The objective of MLM is to randomly mask a fraction of the input tokens and
then predict those masked tokens by feeding the corresponding hidden vectors into
a softmax layer over the vocabulary (as in standard LM). More in detail, 15% of

7Even though BERT uses WordPiece embeddings, the vocabulary still contains the [UNK] token.
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the token positions are selected at random. Each selected position has its token
replaced with [MASK] 80% of the times, a random token 10% of the times, or is left
unchanged. The hidden representation Ti produced for each selected position i is
used to predict the original token with cross-entropy loss.

The objective of NSP is to predict whether two sentences have a logical, sequen-
tial connection or their combination is simply random. This pre-training objective
helps the model understand the relationship between two sentences, which is not
captured by language modeling and is especially beneficial in some downstream
tasks (e.g., question answering). Each pre-training example consists of a pair of
sentences A and B with B the actual next sentence 50% of the time and a random
sentence the other half of the time. The prediction is performed using the hidden
representation C of the [CLS] token.

Once the model is pre-trained on a large corpus8, its knowledge can be trans-
ferred to many downstream tasks with minimal changes to the architecture and by
fine-tuning the model end-to-end (right part of Figure 2.5). For example, in a classi-
fication scenario (e.g., classify whether an incoming e-mail is spam or not), the input
consists of the text (e-mail corpus) as sentence A (and empty sentence B) while at
the output, the hidden representation of the [CLS] token, or the mean pooling over
the last layer’s hidden representations, is fed into an output layer for classification.

Pre-trained BERT can also be used to extract word embeddings: the last hidden
representation Ti (or the concatenation of the hidden representations of the highest
layers) produced for each input token i can be used as a feature representation for a
downstream task. The authors apply this strategy with a named entity recognition
task (NER), achieving performances not too far from fine-tuning the entire model.
The word embeddings thus obtained are called contextualized because the word
embedding varies according to the meaning of the sentence in which the word occurs.
For example, the embedding for the word “bank” will encode different information
when produced from the two sentences: “I went to the bank to withdraw some
money” and “While fishing, I sat on the bank of the river”. Similarly, sentence
embedding can be produced by performing a mean pooling operation on the hidden
representations of the last hidden layer or by taking C as a summary representation
of the entire sentence.

8The original BERT was pre-trained on the combination of the English Wikipedia and the
BoookCorpus, an extensive collection of 11k books.
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2.3.3 Sentence-BERT

Sentence-BERT [14] was proposed as an extension of BERT to derive semantically
meaningful sentence embeddings so that semantically similar sentences are assigned
to close representations in the vector space.

In particular, the authors of Sentence-BERT found that the representations pro-
duced by pre-trained BERT for the [CLS] token or by element-wise mean pooling
over the last layer’s representations do not lend themselves to be compared using
similarity measures like the cosine similarity, defined as:

sim(u, v) =
u⊺v

∥u∥2∥v∥2
(2.6)

where u and v represent the embeddings of the sentences and ∥ · ∥2 their ℓ2 norm.
Another limitation of BERT is that to solve sentence-pair tasks, it uses a cross-

encoder that takes as input both sentences. This may become inefficient for various
sentence-pair tasks due to the many possible input combinations. For example,
finding the pair of sentences with the highest similarity in a collection of n = 10k
sentences would require n(n−1)/2 ≈ 50M inference computations instead of only n if
the produced embeddings could be effectively compared using a similarity measure.

To overcome these limitations, Sentence-BERT adapts the BERT architecture,
using siamese and triplet network structures with tied weights, and fine-tunes it
to produce quality embeddings. This unlocks the possibility of using rich BERT
embeddings for tasks such as semantic similarly search and clustering.

(a) Classification objective (b) Regression objective

Figure 2.6: Sentence-BERT siamese architectures [14]. Sentence-BERT uses siamese
architectures to fine-tune BERT to produce quality embeddings. The exact archi-
tecture depends on the training data available.

The structure of the network and the objective function depending on the avail-
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able training data:

• Classification objective function (Figure 2.6a): the sentence embeddings u and
v are concatenated with their element-wise difference |u− v| and the resulting
vector is fed into a softmax classification layer. The weights are optimized
according to the cross-entropy loss.
This architecture can be used for fine-tuning with a natural language inference
(NLI) dataset, which for each pair of sentences assigns a label that determines
whether the second sentence is an entailment, contradiction, or neutral with
respect to the first one.

• Regression objective function (Figure 2.6b): the cosine similarity between the
two sentence embeddings u and v is computed, and the weights are optimized
according to the mean squared error (MSE) loss.
This architecture can be used for fine-tuning with a semantic textual similarity
(STS) dataset, a collection of sentences annotated with a score that denotes
how semantically similar the two sentences are.

• Triplet objective function: the network is optimized so that the distance be-
tween an anchor sentence a and a positive sentence p is smaller than the
distance between a and a negative sentence n. Mathematically, the following
function is minimized:

max (∥sa − sp∥ − ∥sa − sn∥+ ϵ, 0)

where sx is the embedding of the sentence x, ∥ · ∥ a distance metric and ϵ a
margin.

In [14] the authors find that by fine-tuning BERT with the classification objec-
tive function on the combination of the Standford NLI (SNLI) and Multi-Genre NLI
(MultiNLI) datasets, the Spearman rank correlation coefficient between the cosine
similarity of the sentence embeddings and the gold labels for various STS datasets
significantly improved over other sentence embedding techniques (InferSent and Uni-
versal Sentence Encoder). Instead, only taking the [CLS] token or the element-wise
mean pooling without the described fine-tuning procedure achieved results lower
than the simple averaging of word embeddings (GloVe embeddings).

Furthermore, they evaluated the embeddings produced by the fine-tuned model
using SentEval [25], a toolkit used to assess the quality of text embeddings by feeding
them into a logistic regression classifier trained on various tasks (e.g., sentiment
analysis). In this scenario, even though the improvement is not as significant as that
registered when the embeddings are used to compute similarities, they still achieved
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a decent performance gain with respect to the [CLS] token or the element-wise
mean pooling. A possible explanation for why pre-trained BERT embeddings yield
such poor performance when used with similarity measures is that the similarity
measures treat all dimensions equally. In contrast, when the embeddings are used
with a logistic classifier, the dimensions are weighted appropriately. Furthermore, in
both situations, they found that the mean pooling over the hidden representations
consistently achieved better performance than taking the hidden representation of
the [CLS] token.





Chapter 3

Major Privacy Risks in ML Models
for NLP

Machine learning models are generally trained on users’ private data, such as text
messages, emails, and medical records. However, despite being trained on poten-
tially sensitive information, such models can be released publicly, allowing anyone to
interact with them. For example, Google’s Smart Compose [26], a deployed RNN-
based LM used for text completion, is trained on millions of users’ email messages.
Gmail users use Smart Compose to compose their emails; therefore, anyone with a
Google account can interact with the model trained on private email messages.

However, making public models trained on sensitive data for anyone to query
raises security and privacy concerns. Recent research work showed that this is indeed
the case. For example, neural networks, on which most state-of-the-art models are
based, were shown to memorize unique and rare secrets from their training data (see
Section 3.1). This, in turn, opens the door to many privacy breaches, some of which
are explored in this chapter.

Possible consequences of neural networks memorizing their training data include
the extraction of training data sequences from generative models such as LMs (see
Section 3.2) and the inference of whether a particular individual with their data was
part of the model training dataset using the so-called membership inference attacks
(see Section 3.3). Other possible attacks analyzed in the literature and on which the
experimental part of this thesis focuses include ways to extract information from
vectors that encode texts (see Section 3.4).

Techniques to mitigate these and other privacy risks are an active research fron-
tier. A promising technique that is being studied and implemented is differential
privacy (see Section 3.5), which is a mathematically rigorous and sound approach
to guaranteeing data privacy.

25
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As recent events have shown, memorization in neural networks with all its con-
sequences is not just an academic problem. For example, in June 2021, GitHub
released Copilot1, a code completion tool powered by a GPT-type LM called Ope-
nAI Codex [27] and trained on the source code publicly available on GitHub. By
simply asking Copilot to write the code to solve a fast inverse square root, it repro-
duced verbatim the code lines from the Quake III implementation and the (incorrect)
copyright license [28].

This chapter discusses prominent forms of privacy leakage that have emerged
in recent years when using ML models to solve NLP tasks. However, it is not
a comprehensive study but rather an introductory treatment that motivates this
study and covers (from a high level) a possible route to mitigate such information
leakage.

3.1 Memorization in Neural Networks

Machine learning models should learn to generalize the underlying patterns of their
training data: models need not memorize any of their training data but should be
able to extract knowledge from them. The acquired knowledge can then be used to
perform tasks (e.g., text generation and text classification) on newly unseen data
while still achieving performance close to that achieved on training data2. However,
learning must involve some form of memorization [7]. For example, spelling in
character-level LMs or what features (e.g., the words in a text) signal whether a
sample belongs to a given class in a classification task.

The problem arises in the case of unintended memorization, when the model may
expose out-of-distribution training data, such as the number of John Doe’s credit
card, which are unrelated to the learning task at hand and do not improve the overall
accuracy of the model. If unintended memorization occurs, an attacker can exploit
it to infer the membership of a data sample to the model training data, and this
can represent a serious privacy breach in case the training data contain sensitive or
private information.

To highlight the privacy implications of unintended memorization, consider the
following motivating example. A text composition assistant uses a generative model
for sentence completion. If the model was trained on users’ data that happened to
contain rare but sensitive information, the model should never reveal such informa-
tion to the users interacting with the composition assistant. For example, if a user’s

1https://github.com/features/copilot/
2When a model achieves performance similar between training and held out data is usually said

not to overfit its training data as the generalization error is small.

https://github.com/features/copilot/
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text with the prefix “my credit card number is...” appeared in the training data, the
model should never predict the exact credit card number of the user.

Unfortunately, Carlini et al. [7] showed that neural networks do memorize their
training data. Toward this end, they proposed a testing methodology to quantify to
what extent such unintentional memorization occurs in generative sequence models.
Furthermore, they showed that, unless appropriate care is taken, with well-crafted
attacks, in some cases it is possible to extract such secrets even if they have been seen
only once or a few times during training. Section 3.1.1 describes the methodology
proposed in [7] to quantify unintended memorization, while Section 3.1.2 summarizes
some of [7] key findings.

3.1.1 Revealing Memorization in Generative Models

Carlini et al. [7] devised a pragmatic approach to quantitatively assess the risk that
generative sequence models unintentionally memorize unique or rare training data
sequences.

The procedure consists of the following three steps:

1. Injecting into the training dataset random sequences called canaries3. The
canaries act as artificial secrets the model should not reveal.

2. Training the model using the augmented dataset.

3. Assessing to what degree the model memorized the canaries using a metric
called exposure.

The canaries have a known fixed format that specifies how they are formed by
sampling random values r from a space R. For example, a possible canary format
could be s = “the random number is □□□□□□□” with R the space of digits from
0 to 9. Using the same notation as the authors, s[r] denotes the format s with
values filled in from randomness r and s[r̂] denotes the canary selected by sampling
a random value r̂ uniformly at random from R. For example, a possible instantiated
canary with the specified format could be s[r̂] = “the random number is 2022568”

To define the exposure metric, the definitions of log-perplexity [7], [8] and rank [7]
are required.

3The name is reminiscent of “canary in a coal mine”. Miners used to bring canaries with them
because dangerous gases would kill the canaries and alert the miners that they must leave the
tunnels.
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Definition 3.1.1 (Log-perplexity). Given a generative sequence model fΘ with
parameters Θ, the log-perplexity of the sequence x = x1, . . . , xn is

PΘ(x) = − log2 P (x1, . . . , xn|fΘ)

=
n∑︂

i=1

− log2 fΘ(xi|x1, . . . , xi−1)

The log-perplexity is inversely proportional to the likelihood of the data sequence
x1, . . . , xn assigned by the generative sequence model fΘ. Intuitively, perplexity
measures how surprised the model is to see a given sequence. That is, if the per-
plexity is high, it means that the model is surprised by the sequence, whereas a
low perplexity indicates that the sequence is likely a common, non-surprising se-
quence. For example, we would expect a trained LM to have a lower perplexity for
the natural sequence “Mary had a little lamb” with respect to four random words
“correct horse battery staple”. This would generally be the case even if the latter
nonsense sequence appeared in the training dataset while the former did not. This
is because LMs are generally able to capture the true underlying distribution of
natural language. Therefore, the log-perplexity measure alone to detect unintended
memorization is ill-suited.

On the other hand, comparing the log-perplexity of the inserted canary s[r̂], on
which the model was trained, and all other non-selected canaries with the same
format not seen during training can be used to assess unintended memorization. In
particular, the exposure metric uses this relative approach by using the rank of a
canary.

The rank of a specific instantiated canary is defined as its index in the list of
all possible canaries ordered according to their empirical perplexity assigned by the
model. In mathematical terms, we can define the rank as follows.

Definition 3.1.2 (Rank). Given a generative sequence model with parameters Θ,
the rank of a canary s[r] is

rankΘ(s[r]) = |{ r′ ∈ R | PΘ(s[r]
′) ≤ PΘ(s[r]) }|

Despite being directly linked to the memorization of a canary, the rank does not
necessarily relate to the probability of a sequence generated using a greedy or beam
search of the most likely suffixes [7]. However, as shown in [7], using more advanced
Dijkstra-based search methods or a long enough prefix allows one to recover the
top-ranked canaries.

The rank requires one to compute the log-perplexity of all possible canaries,
making it a computationally expensive measure. For this reason, [7] introduced the
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exposure: a quantity based on the rank but which can be efficiently approximated.
In particular, exposure measures how access to the model improves guesses about

a secret such as that represented by an insert canary. In other words, exposure
encodes the increase in information about an inserted canary gained by accessing
the model. The paper provides a nice derivation of the exposure metric as the
reduction in the guessing entropy4 of s[r] when the model fΘ is available for query.
Formally, exposure is defined as follows.

Definition 3.1.3 (Exposure). Given a canary s[r], a generative sequence model fΘ
with parameters Θ, and randomness space R, the exposure of s[r] is

exposureΘ(s[r]) = log2 |R| − log2 rankΘ(s[r])

The exposure is a non-negative real value that ranges between 0 and log2 |R|,
and thus its magnitude depends on the size of the search space R. In particular,
the maximum value is achieved by the highest ranking and, therefore, most likely
canary, while the minimum value is achieved by the least likely one. Therefore, if
the inserted canary registers a high exposure, it indicates that the model memorized
it quite extensively. In contrast, a low exposure would indicate that the inserted
canary is just as likely as any other canary that could have been inserted.

3.1.2 Exposure-Based Testing in Practice

Here are summarized the most interesting findings of [7]. In particular, following the
exposure-based testing methodology described in Section 3.1.1, it has been shown
that the degree to which neural network based generative models are susceptible to
unintended memorization may greatly vary from one model to another.

In [7], the exposure-based testing methodology is applied to Smart Compose,
a word-level LM trained on the personal emails of millions of users and actively
used by Gmail users for text completion. Smart Compose is an LSTM-based RNN
with millions of parameters and trained on billions of word sequences utilizing a
vocabulary of tens of thousands of words. To apply the testing procedure to Smart
Compose, [7] used canaries of 5 and 7 randomly selected words, with the first two
and last two words being known context. By inserting the canaries from 1 to 10k
times in the training data, with both formats, the observed exposure signal was too
feeble to allow for discovery using the extraction algorithm proposed in [7].

In addition to LMs, [7] applied the exposure-based testing to a neural machine

4The guessing entropy is defined as the expected number of guesses required in an optimal
strategy to determine the value of a discrete random variable.
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translation model from the TensorFlow model repository, which, given as input
a sequence of words in English, outputs the corresponding sequence of words in
Vietnamese. The canary used had the format “My social security number is □□□−
□□−□□□” and was inserted into a training set of 100k pairs of sentences. Using
an adaptation of the exposure metric for this task, [7] found that after just four
canary insertions, the canary becomes completely memorized (i.e., the canary has
maximum exposure) and can be easily extracted.

Another important finding of [7] is that memorization is part of learning, as it
begins to occur during the first epoch of training (see Figure 3.1a). Moreover, the
exposure increases until the minimum validation loss is reached, and after that, it
no longer increases (see Figure 3.1b). Therefore, exposure increases when the model
is learning and stops to increase when the model is not learning, suggesting that
unintended memorization must be a necessary underlying component of training.

(a) Exposure of a single canary inserted at
the start of the training set and shuffling
disabled.

(b) Relation between exposure and valida-
tion loss during training of a model with
limited training data to quickly overfit.

Figure 3.1: Unintended memorization during training [7]. Unintended memorization
begins to occur during the first epochs of training and happens when the model is
learning (i.e., the validation loss is decreasing).

In addition to assessing unintended memorization using the testing methodology
based on artificially inserting canaries, [7] also studies unintended memorization with
naturally occurring secrets already present in the training dataset. In particular, the
Enron email dataset, consisting of 500k emails exchanged between the employees
of the Enron Corporation, was used to extract secrets without inserting canaries.
They partitioned emails by sender and trained a character-level LSTM-based LM for
users who have sent at least a secret. Then, using their exposure-based extraction
algorithm, [7] successfully extracted three secrets corresponding to two credit card
numbers and one social security number.
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3.1.3 Prevent Unintended Memorization

After establishing that unintended memorization occurs in neural networks, [7] also
evaluates potential defenses against such memorization. In detail, three possible de-
fenses were analyzed: regularization techniques, text sanitization, and differentially
private SGD.

It was empirically shown that regularization approaches, such as weight decay,
dropout, batch normalization, and quantization, do not mitigate the problem as no
sensible reduction in exposure was observed. However, [7] found that the choice
of architecture and hyperparameters affects memorization to some extent. Conse-
quently, exposure can be used to make an informed decision when designing a model.
For example, it could be another objective guiding the hyperparameter optimization
by not only searching for the best performing model but also for the one that less
exposes artificially inserted secrets. Or it can signal that specific mitigations are
required if the model is trained on sensitive data.

Regarding sanitization, which is based on removing potentially sensitive text
segments, [7] concludes that it cannot guarantee the removal of all secrets occurring
in the training data. For example, [7] failed to remove all secrets by using an al-
gorithm that compared the perplexities of two models trained on non-overlapping
subsets of training data and removed the sentences for which the two models dis-
agreed. However, sanitization, for example, based on the removal of blacklisted
terms and patterns, is a best practice that should always be employed before pro-
cessing sensitive or private data.

Differentially private SGD, which will be covered in Section 3.5.1, was found to
eliminate memorization completely. However, it also comes with a price in terms of
performance reduction, training time, and difficult application.

On a concluding note, it is important to note that exposure represents a lower
bound to the actual amount of memorization that occurs in the model. On the
other hand, differential privacy provides a rigorous upper bound guarantee of how
much memorization could, in theory, occur. With exposure and differential privacy,
the actual amount of memorization can thus be bounded from below and above.
However, [7] empirically observed that applying differential privacy even with weak
guarantees (which in theory would be meaningless) kills the exposure signal com-
pletely, making memorization not observable with the methodology they propose,
suggesting that both bounds are probably loose.
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3.2 Training Data Extraction from Language

Models

In generative models (e.g., autoregressive LM), an attacker with access to the model
can generate data and predict the membership of such data to the model training set.
This is a form of the well-studied membership inference attack (MIA) (Section 3.3)
applied to generative models. In particular, as we have seen (Section 3.1.2), it has
been established that neural networks tend to memorize rare details of their training
data. Therefore, if a generative model discloses some rare, sensitive information
about an individual (or organization), this indeed represents a major privacy breach.

Carlini et al. [8] continued their effort to assess memorization in neural networks.
In particular, they attack the autoregressive LM GPT-2 to extract individual train-
ing sequences by simply accessing the model in a black-box fashion. They focus on
GPT-2 as it is a state-of-the-art public model trained on a large amount of data
from the public Internet, which, however, was never released by OpenAI.

Figure 3.2 reports an example of a rare training sequence successfully recovered
from GPT-2 that contains the redacted personally identifiable information of an
individual (full name, physical address, email address, etc.).

Figure 3.2: Training data extraction from a language model [8]. With black-box
access to GPT-2, [8] managed to successfully extract memorized rare sequences
from the training data. The extracted sequences included personally identifiable
information of different individuals and long sequences with high entropy (UUIDs,
hash codes, etc.).

The attack pipeline to extract memorized sequences proposed by [8] is quite
straightforward:
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1. Generate many sequences.

2. Infer the membership of the generated sequences to find possible sequences
that belonged to the training data.

In [8] different strategies were used to generate candidate sequences. For exam-
ple, after initializing the LM with a start-of-sentence token, they repeatedly sampled
tokens with top-k strategy5. However, this simple strategy was observed to produce
the same or similar sentences repeatedly, as it favors sequences that are probable
from start to end.

To generate a more diverse set of sentences, [8] used two other strategies. One
based on a temperature parameter6 that decays over time from a high value to one:
this ensures that, at the start of the sentence, the model explores a more diverse
set of prefixes, and as the prediction progresses, it follows more high-confidence
paths (i.e., those suffixed for which the model assigns higher probabilities). The last
strategy consisted in prompting the model with short prefixes (of 5 to 10 tokens)
scraped from the Web, as it is the same source as GPT-2 training data.

A basic approach to infer the membership of the generated sequences to the
training data and to identify potentially memorized pieces of text is to use the
perplexity measure (Definition 3.1.1). However, it was observed that many non-
memorized sequences, such as sequences with repeated substrings (e.g., “I love you.
I love you...”), were assigned low perplexity (i.e., high likelihood), so using just
perplexity was considered ill-suited, as it provides many false positives.

To filter out uninteresting yet low-perplexity sequences, [8] used a relative ap-
proach that compares the perplexity of the model with that assigned by a second
model since this second model will likely also assign low perplexity to these unin-
teresting sequences. Therefore, only those sequences for which the original model
assigns unexpectedly high likelihood compared to a second model are considered.
For example, they use this approach by using the ratio of the perplexity assigned by
the largest GPT-2 XL model (1.5B parameters) with its smaller siblings: medium
(345M) and small (117M). In addition, they also used the ratio between the GPT-2
perplexity and the zlib entropy (i.e., the number of bits of entropy when the se-
quence is compressed with zlib) and the ratio between the perplexities assigned by
the model on the original sequence and its lowercase version.

5The top-k sampling strategy consists in setting all but the k largest probabilities to zero. The
probabilities are then renormalized, to sum up to one before sampling.

6The temperature parameter T is used to rescale the vector z of raw non-normalized predictions
(i.e., logits) before applying the softmax operation, that is softmax(z/T ). This rescale, for T > 1,
has the effect of flattening the probability distribution, making the model less confident about its
prediction.
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After generating 600k (256 tokens long) sequences following the three generation
strategies briefly described above, they selected 1.8k potentially memorized sam-
ples using the different membership inference metrics7. Then, with the help of the
OpenAI researchers that trained GPT-2 and have access to its training data, they
manually verified that of the 1.8k selected sequences, 604 were memorized sequences
from the training data.

They recovered a wide and diverse set of memorized sequences, including per-
sonally identifiable information (names, addresses, phone numbers, etc.) of people
appearing in only a few documents8, URLs resolving to live Web pages, snippets of
source code, high entropy sequences9 (UUIDs, hashes, random IDs, etc.), but also
content that has been since removed from the Web.

Using a training document containing multiple Reddit URLs appearing a varying
number of times, [8] carried out an interesting experiment to correlate memorization
with model size and insertion frequency. In particular, in the single training doc-
ument, the most frequent URL appeared 359 times, while the least frequent URL
appeared 8 times.

They provided the initial part of each URL, without the last part consisting of a
6-character ID and the title of the post, to the model and generated 10k extensions
with top-k sampling. Then they checked whether the URLs emitted by the model
appeared in the training document.

They found that GPT-2 XL emitted all URLs that appeared at least 33 times;
GPT-2 medium emitted some URLs that appeared at least 56 times; GPT-2 small
did not emit any of the URLs with this strategy. However, when the model was
provided with a longer context (the 6-character ID) and beam search was used
instead of top-k sampling, GPT-2 medium emitted most (all but one) of the URLs
that appeared at least 35 times, while GPT-2 small emitted the most common URL
that appeared 359 times.

These results are very informative, and a clear trend can be observed. As the
model gets bigger and, as such has more capacity, the amount of memorized data
increases. This result raises more concerns about data privacy, as the trend is to
produce larger and larger models. Moreover, even if overfitting may be the cause of
other privacy leakages, it is undoubtedly not the case for the state-of-the-art GPT-2
family of models, as these models are trained (by extremely competent researchers)

7They only selected 1.8k sequences because they were limited by the amount of work they could
do to manually verify whether each of the selected sentences appeared in the training set.

8For example, they recovered the usernames of six users participating in an IRC conversation
that appeared in just one training sample.

9For example, they recovered a sequence of 87 alphanumeric characters that appeared 10 times
in only a single training document.
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on massive datasets.

3.3 Membership Inference Attacks Against

Classification Models

A byproduct of ML models memorizing their training data is that they can leak
information about the individual data records on which they were trained. In par-
ticular, a key observation is that ML models behave differently on data on which
they were trained versus data they see for the first time [5]. For example, in a
classification task, a given model will generally have greater confidence in a sample
seen during training compared to a sample seen for the first time while deployed. A
prominent example of this behavior is when a model overfits its training data. This
observation can be used to carry out what is called a membership inference attack.

The membership inference attack (MIA) [5], [6] is a type of attack in which an
attacker has access to a model and wants to determine whether a given data sample
was part of the training data. The access to the target model can be a simple gray-
box access, i.e., the model outputs the prediction vector with the probability for each
class. Figure 3.3 illustrates the membership inference attack against a classification
model.

Figure 3.3: Membership inference attack against a classification model [5]. The
attacker queries the target model with a target sample and obtains the prediction
vector, which contains for each class the probability that the sample belongs to that
class. The target sample and the prediction vector are passed to the attack model,
which infers whether the target sample was in the training set of the target model.

As a motivating example of MIA aimed at undermining user privacy, imagine
that a model, used to determine the correct dose of a certain drug for some disease,
is trained on the clinical logs of patients subjected to the disease. The attacker has
the clinical record of John Doe and wants to determine if it was used to train the
model, to discover whether John Doe has the associated disease.
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From the definition of the MIA and the above example, we see that MIA repre-
sents a privacy threat if all the following conditions are met:

• The attacker has access to the trained model;

• The attacker has access to data that may have been used in the training of
the model;

• The discovery by the attacker that some data were used in training represents
a privacy threat for the data owner.

If one of the above conditions is not met, we can conclude that MIA does not
represent a concrete privacy threat.

As mentioned above, the main intuition behind MIA is that models tend to
behave differently on their training data compared to novel data not seen during
training. The attack model aims to learn to distinguish this discrepancy in behavior
between the target model train and test data. To achieve this goal, the attacker does
not use the target model, but they are required to access some shadow data, that
is, disjoint data10 drawn from the same underlying distribution of the target model
training data. The shadow data are divided into train and test splits, and the train
split is used to train various shadow models that may have partially overlapped
training datasets. The shadow models should have similar architectures and be
trained analogously to the target model so that the target model and the shadow
models behave similarly. The attack model learns to distinguish between behaviors
using these shadow models. In particular, the attack model is trained to discriminate
between the data samples being in and out of the target model training data using
the predictions the shadow models produce on their shadow train and test data, as
shown in Figure 3.4.

To be more precise, the attack model consists of multiple attack models, one for
each output class of the target model, trained as described. This is done because,
depending on the true class of the input sample, the target model produces different
distributions over its output classes. Therefore, an attack model for each class will
generally achieve higher accuracy.

What has been described is the adversarial use of ML models to carry out an
MIA as described in [5], where they focus on MIA against target models trained by
ML-as-a-Service providers (e.g., Google Vertex AI, Microsoft Azure, Amazon ML).

In the literature, different variations of this attack have been proposed. For
example, [6] focuses on NLP classification models using sample-level (as the one just

10Disjoint shadow data is the worst case for the attacker. MIA will perform even better if the
attacker access shadow data that overlap with the target model training data.
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Figure 3.4: Training of a membership inference attack model [5]. The predictions
produced by the shadow models on the train shadow data (labeled with in) and on
the disjoint test shadow data (labeled with out) are used to train the attack model.
The attack model learns to discriminate the behavior of the shadow models on their
training data with respect to their testing data.

described) and user-level membership inference attacks. However, unlike sample-
level MIA, which aims to infer the membership of a single sample, user-level MIA
seeks to infer the membership of user data by combining multiple samples from
the same user and, therefore, can be more accurate. In particular, to implement
a sample-level MIA, [6] employs a simple threshold-based strategy that we briefly
describe here.

Let MΘ be the target model trained on the training dataset D containing C

classes and denote by Dc its subset limited to samples from class c ∈ {0, . . . , C−1}.
Given a labeled sample (x, y), MΘ maps the features vector x into a vector of
probabilities p = MΘ(x) ∈ RC .

Moreover, let D̄∪D̄′ (D̄∩D̄′
= ∅) be the shadow data from the same distribution

of D, where D̄ is used to train a shadow model MΘ̄ and D̄′ is not used in training
MΘ̄.

Let F : RC+1 → R be the function that, given the prediction vector of proba-
bilities p ∈ RC and the ground truth label c ∈ {0, . . . , C − 1}, computes a feature
that can be used to discriminate between a member and non-member samples of
the training data. Different features can be used. For example, some of the features
used in [6] are:

• Confidence of the model
F (p, c) = p[c]
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• Rank of the correct label

F (p, c) = |{ i | p[i] ≥ p[c] }|

• Modified entropy

F (p, c) = −(1− p[c]) log p[c]−
∑︂
i ̸=c

p[i] log p[i]

For each class c ∈ {0, . . . , C − 1}, the discriminating features for the samples in
D̄c and D̄′

c are computed using the function G(x, y) := F (MΘ̄(x), y). In particular,
the set of features Fc for the (member) samples in D̄c is computed as

Fc = {G(x, y) | (x, y) ∈ D̄c}

Similarly, the set of features F ′
c for the (non-member) samples in D̄′

c is computed as

F ′
c = {G(x′, y′) | (x′, y′) ∈ D̄′

c}

The threshold of class c is calculated to best separate the features of shadow members
and non-members, that is

τc = argmax
τ∈R

⎛⎝∑︂
f∈Fc

1[f ≥ τ ] +
∑︂
f ′∈F ′

c

1[f ′ < τ ]

⎞⎠
Finally, given the target data sample (xt, yt), the threshold value τyt associated

with the class yt is used to infer whether the sample was a member of the target
model training data D according to

1[F (MΘ(xt), yt) ≥ τyt ]

Despite its simplicity, this threshold-based MIA can be quite effective and per-
form as well as more sophisticated ones based on neural networks [6].

A user may contribute with multiple samples to the target model training data,
and the attacker can use such samples to determine the membership of the user’s
data to the training set. In [6], different strategies are applied to carry out this user-
level MIA. For example, building upon the above threshold-based MIA, a straightfor-
ward and effective extension could be to determine the membership of each sample
in the target user’s data (using the class-wise thresholds τc obtained as before) and
infer if the user data were part of training by majority voting over each sample’s
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estimated membership. An alternative and more involved approach would consist
in generating a vector of aggregate metrics (e.g., average, variance, minimum, max-
imum) over the discriminating features of all the user’s samples labeled with the
corresponding membership (i.e., in or out the training shadow data) and fitting a
classifier (e.g., logistic regressor) to estimate the membership. However, this last
approach does not exploit the susceptibility of each class, as different classes can
experience different generalization errors, and such errors strongly correlate with
MIA success.

3.4 Attacks Against Embedding Models

Embedding models are, in general, functions that map raw inputs — such as texts,
nodes in a network, or geographic locations — to dense vectors of numbers. Embed-
dings are usually used in conjunction with transfer learning, in which large amounts
of unlabeled data are used to train embedding models, and the representations they
produce can be later transferred to various downstream tasks. Transfer learning
is especially useful when the labeled data for the downstream task are limited or
difficult to collect.

In the NLP domain, it has recently been shown [9], [10] that text embeddings
can leak sensitive information about the inputs in addition to encoding the generic
semantics of input texts.

Song and Raghunathan [9] proposed and studied a taxonomy of attacks against
sentence embeddings illustrated in Figure 3.5. In particular, they identify three
types of attacks.

• In embedding inversion, the attacker aims to reconstruct the words in the input
text given its embedding.

• In attribute inference, the attacker aims to infer sensitive attributes, such as
the authorship of the text, from the embedding.

• In membership inference, the attacker wishes to infer if a particular context
appears in the training data of the embedding model. The definition of context
depends on the embedding model: for word embeddings, the context is a sliding
window of words, while for sentence embeddings, the context is a pair (or more)
of sentences. Membership inference is directly related to the memorization that
occurs during model training.

Note that membership inference concerns training data privacy, whereas embed-
ding inversion and attribute inference concern inference-time input privacy.
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Figure 3.5: Taxonomy of attacks against embeddings [9]. Given the embedding
Φ(x∗) of a sensitive input text x∗ produced using the model Φ(·), an attacker may
attempt to: (1) invert the embedding to find the words appearing in x∗, (2) infer
sensitive attributes of x∗, (3) infer if x∗ and a possible context x′ has been used for
training Φ(·), i.e., membership inference attack.

Given the nature of embedding models, which are usually trained on large
amounts of publicly available corpora, inversion and attribute inference are more
interesting attacks and are therefore covered in the following sections.

Pan et al. [10] empirically confirmed the leakage of sensitive information when
using embedding models. In particular, they proposed two classes of attacks against
embeddings from different state-of-the-art pre-trained LM, including BERT and
GPT-2. In pattern reconstruction attack, the attacker knows the underlying format
of the text (e.g., genome sequence) and uses this knowledge to infer some sensi-
tive information from the embedding. In keyword inference, the attacker aims to
establish whether some keyword appears in a text by accessing the corresponding
embedding (e.g., what part of the body is mentioned in the embedding of a medical
description).

However, since [9] is broader in scope, for example, by not making strong assump-
tions about the structure of the text, here we focus on the main results provided
there. In particular, Section 3.4.1 explains the white-box sentence embeddings in-
version attack, Section 3.4.1 provides an example of sensitive attribute inference
from sentence embeddings, and finally, Section 3.4.3 explains adversarial training as
possible mitigation applied to limit inversion and attribute inference attacks.

3.4.1 Sentence Embeddings Inversion

In [9], two variants of the inversion attack against sentence embeddings are proposed.
In the white-box variant, the attacker has access to the model and its internal
weights, whereas, in the black-box one, the attacker can only query the embedding
model without accessing its weights. Since Chapter 4 focuses on a variation directly
derived from the black-box proposed in [9], here we just briefly describe the white-
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box variant.

The idea behind embedding inversion is to find the sequence of words (which
make up a sentence) whose embedding has the minimum ℓ2 distance from the target
embedding Φ(x∗) of a text x∗ computed by the embedding model Φ(·).

A naive approach to the inversion task would be to enumerate all possible word
sequences and query the embedding model to produce the corresponding vectors
to find the sequence that has the minimum distance. However, given a vocabulary
V and sentence length L, the space of all possible combinations has cardinality
|V|L. Consequently, this brute-force approach would be computationally infeasible
for values of L that are not trivially small.

The discrete space of word combinations can be relaxed to a continuous space.
That is, each position in the input sentence can be assigned a probability vector
over V , reporting for each word the probability of appearing at that position.

More precisely, using continuous relaxation, each word position i = 1, . . . , L in
the sentence is assigned a vector zi ∈ R|V|, and all the zi vectors are grouped into
the matrix

Z =

⎡⎢⎢⎣
z⊺1
...
z⊺L

⎤⎥⎥⎦ ∈ RL×|V|

Correspondingly, the soft words at each position i are computed as

v̂i = V ⊺ · softmax(zi/T ) ∈ Rd

where V ∈ R|V|×d is the matrix of word embeddings11 with an embedding for each
row, and T is the temperature hyperparameter. The sequence of all the soft words,
grouped into the matrix

relaxed(Z, T ) =

⎡⎢⎢⎣
v̂⊺1
...
v̂⊺L

⎤⎥⎥⎦ ∈ RL×d

The embedding model Φ(·) is then used to compute the corresponding sentence em-
bedding. The inversion problem can then be expressed as the following minimization
problem

min
Z
∥Φ(relaxed(Z, T ))− Φ(x∗) ∥22 (3.1)

11A sentence embedding model, as a first step, usually maps a sequence of words into a sequence
of word vectors using a word embedding matrix. The word embedding matrix is, therefore an
internal weight matrix accessible in a white-box setting.
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which can be solved using gradient-based optimization methods since each operation
is continuous, and gradients can be computed with back-propagation thanks to
access to the internal weights. Finally, the text is obtained by selecting the most
probable word at each position as

x̂ = {wi | i = argmax zj}Lj=1

The relaxation approach of Equation 3.1 was empirically observed to have good
performance when used against embeddings produced by a dual-encoder12 sentence
embedding model implemented with an LSTM or three stacked Transformer encoder
layers. However, it yielded very poor performance when used against the embedding
produced by mean pooling over the last hidden representations of a deep pre-trained
LM, such as BERT or ALBERT. A possible explanation is that the embedding
produced after many processing layers is more abstract. Therefore, semantically
similar sentences are assigned to very close points in the embedding space, making
the inversion much harder.

To mitigate the above problem, a model M (e.g., least squares regressor) can
be trained, using auxiliary data, to map the output embedding to a lower-layer
representation. In particular, the lowest possible representation considered in [9] is
the average of the embeddings (from V ) of the words appearing in the sentence.
Then, by defining the vector z ∈ R|V|

≥0 that contains the contribution of each word
to the average, the white-box inversion attack can be expressed as the following
minimization problem

min
z
∥V ⊺ · z −M(Φ(x∗)) ∥22 + λ∥z∥1 (3.2)

where, again, V is the matrix of word embeddings, while λ represents the constraint
to induce a sparse vector z. The optimization problem can be solved with projected
gradient descent, which, after each descent step, sets zj to 0 if zj < 0 [9]. Finally,
the recovered words are obtained by selecting those with a coefficient zj not smaller
than a sparsity threshold hyperparameter τ as

x̂ = {wi | zi ≥ τ}|V|i=1

Using the relaxed inversion approach of Equation 3.1, [9] managed to recover
around 57% of the words from the embeddings produced by an LSTM-based dual-

12The dual-encoder model is trained on pair of sentences in context (e.g., question and answer)
using the contrastive learning framework.
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encoder and 36% using the Transformer based one. However, as mentioned above,
when used against the embeddings obtained from BERT and ALBERT models,
performance decreased drastically: only less than 1% and around 3% recovered
words from the BERT and ALBERT representations, respectively.

With the sparse coding formulation of Equation 3.2, performance improved
across the board with around 60%, 63%, 50%, and 62% recovered words from the
LSTM, Transformer, BERT, ALBERT, respectively. Furthermore, it was observed
that using data from a different domain to train M has little impact on overall
performance (53%, 57%, 45%, 60%).

3.4.2 Sensitive Attribute Inference

Quality embeddings can capture rich semantic information about the input data.
In particular, embeddings may be much more informative than the raw input itself,
and this is mainly the reason they work very well in practice. Consequently, when
embeddings are produced on users’ data, such as their watch history or personal
messages, embeddings may naturally encode personal information about the users
themselves.

The fact that embeddings can encode such rich information can be exploited by
an attacker who intends to reveal sensitive attributes that might not even appear in
or be easy to infer from the raw input. In this setup, the attacker must have access
to a (realistically limited) dataset of embeddings labeled with the corresponding
sensitive attribute. This dataset can then be used to train a simple classifier that
assigns the attribute to the given embedding.

To demonstrate that this information leak is possible in practice and represents
a concrete threat, [9] considers the scenario in which the sensitive attribute is the
author of a text. Therefore, the attacker’s objective is to de-anonymize the author
by just accessing the embedding of a text. Toward this purpose, different embedding
models were analyzed in [9]: the LSTM and Transfomer dual-encoder models used
in the inversion attack (Section 3.4.1), Skip-thought and InferSent. The results of
authorship inference for the said models, including a baseline model (TextCNN),
trained on the raw sentences rather than the embeddings, from [9] are reported in
Figure 3.6.

Interestingly, with only a few labeled examples per author (e.g., Ns = 10), the
top-5 accuracy in classifying authors is relatively high and naturally increases with
more examples. Another interesting finding of [9] is that the nature of the train-
ing objective of the embedding model strongly influences the leakage of authorship
information.

In particular, the dual-encoder models (LSTM and Transfomer based) trained
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Figure 3.6: Results of authorship inference from embeddings [9]. The left figure
reports the top-5 accuracy in classifying |S| = 100 authors as a function of the
number of labeled examples per author. The right figure reports the top-5 accuracy
as a function of the number of authors |S| when the attacker has Ns = 50 labeled
examples per author.

using a contrastive learning objective are the ones that leak the most this kind of
information. On the other hand, Skip-thought, which is trained in an unsupervised
fashion to generate the context given a sentence, and InferSent, which is trained on
supervised tasks, are less prone to this leak. Moreover, as mentioned earlier, all the
embeddings capture more information than the raw input, since TextCNN is the
least performing model across all settings.

A possible explanation for why the contrasting learning framework favors this
type of leakage is that embeddings are learned to be close to data that appear
in context in the training set and far from negative samples. In particular, in
unsupervised frameworks, the training data of the embedding model are assigned
to latent classes. In [9], the embedding models are trained on sentences from the
BookCorpus dataset13. Therefore, given that all the sentences in context come from
the same author, it is reasonable to assume that a possible latent class learned by
the model could be the author of the book from which the sentence is taken. Thus,
even a simple classifier with a few training examples can easily learn to discriminate
between embeddings generated from texts by different authors.

13Additionally, the sentences used to assess the authorship inference accuracy are taken from
held out data from the same BookCorpus dataset. This is undoubtedly the best-case scenario for
the attacker, as the authors are also present in the training of the embedding models.
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3.4.3 A Possible Mitigation: Adversarial Training

A possible first line of defense against inference-time attacks, such as embedding
inversion and attribute inference, is adversarial training. In adversarial training,
a model is jointly trained to optimize a primary objective and, simultaneously, to
minimize the utility of some simulated adversary A. For example, in [9], adversarial
training is applied to the dual-encoder sentence embedding model to mitigate both
inversion and attribute inference.

In the case of inversion, A is trained to infer the set of words W(x) in x given
Φ(x), while Φ is trained to maximize the similarity of sentences in context. There-
fore, given a pair of sentences in context (xa, xb) and a set of negative sentences
Xneg, the learning objective becomes the following minimax optimization problem

min
Φ

max
A
− logPΦ(xb|xa,Xneg)⏞ ⏟⏟ ⏞

primary objective

+λ logPA(W(xb)|Φ(xb))⏞ ⏟⏟ ⏞
leaked information

(3.3)

in which the term λ controls the trade-off between learning a model producing
good representations and a model that leaks the least amount of information to
an adversary. In particular, a possible choice of the loss to optimize logPA in
Equation 3.3 is

LA = −
∑︂
w∈V

yw log(ŷw) + (1− yw) log(1− ŷw)

where yw = 1[w ∈ W(x)] and ŷw = P (yw|Φ(x)) is the probability, estimated by the
simulated adversary, that the word yw appears in x.

To mitigate attribute inference, Equation 3.3 can be adapted by substituting
PA(W(xb)|Φ(xb)) with PA(s|Φ(xb)).

In [9], the use of adversarial training is especially beneficial for the attribute in-
ference attack since the attacker’s performance drops consistently while the perfor-
mance on different downstream benchmarks stays competitive. On the other hand,
against inversion, depending on the model used, the downstream performance may
drop noticeably. At the same time, the attacker can, in any case, still recover a
decent amount of words from the embeddings.

Adversarial training only mitigates the attack to some extent. It may also happen
that novel, more performing attacks get devised, and a model trained with this
strategy may not be as robust. Moreover, it does not provide any formal provable
guarantee such as those offered by differentially private mechanisms.
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3.5 Differential Privacy

In data analysis, many attempts have been made to define privacy in a practical
way [29]. A naive approach to data privacy is anonymization, which consists in
removing identifying information from data (e.g., the person’s name from a med-
ical record). However, this approach may be insufficient to protect privacy: the
nonremoved information can still be used in linkage attacks to identify a person
by using other available sources of information. Multiple successful linkage attacks
have been performed on anonymized datasets. For example, researchers managed
to de-anonymize the Netflix Prize dataset containing the anonymous movie rat-
ings of its subscribers by linking the information with the Internet Movie Database
(IMDb) [30].

Another approach to privacy that aims to limit linkage attacks is k-anonymity.
A dataset is said to be k-anonymous if for any record associated with a person in
the dataset, there are at least k − 1 other records indistinguishable from it. Still,
k-anonymity has its shortcomings because it requires a large enough dataset and a
small number of features for each record.

The modern approach to privacy is represented by differential privacy (DP) [31],
[29], [32] which provides a formal provable privacy guarantee that applies to data
analysis algorithms.

The intuitive idea behind privacy, as provided by DP, is that if a person decides
to participate in a dataset, they are assured that their data will have a negligible
impact on them in the future. To give a concrete example, assume that John Doe
is asked if his data can be included in the training set of a machine learning model
that computes the life insurance cost. Unfortunately, John suffers from some health
condition that makes his life insurance cost higher. DP aims to guarantee that the
inclusion of John Doe’s information in the dataset will not affect him in the future
by revealing his health conditions to someone.

According to the Fundamental Law of Information Recovery [31], with enough
queries, the information contained in a dataset can be fully recovered, destroying
any form of privacy. DP attempts to limit the amount of such leaked information
when answering queries. In particular, DP is based on the concept of randomized
responses.

Randomized responses add randomization when answering a query to provide
plausible deniability. For example, in a survey asking students if they cheated during
an exam, students could use a coin flip to decide whether to respond honestly or
not. From the aggregate responses, it is still possible to obtain an estimate of the
students who cheated. Still, at the same time, students have plausible deniability:
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the answer they gave may or may not be the correct one, and thus they keep their
privacy.

The probability of a correct response (50% in the example just described) con-
trols the privacy protection provided: a smaller probability will yield noisier results
while providing more privacy, whereas higher probabilities will provide less privacy
protection but more accurate responses. In other words, the probability of a correct
response controls the trade-off between the utility perceived by the questioner and
the privacy preserved by the questioned.

DP offers protection against a very strong threat model [33]: it is robust against
powerful adversaries, even when they have unbounded computation and access to
arbitrary side knowledge; it does not rely on obscurity so that the algorithms can
be revealed publicly. Finally, DP gives a rigorous way to quantify the amount of
privacy that a mechanism provides.

The formal definition of differential privacy states the following.

Definition 3.5.1 (Differential Privacy). Let ϵ > 0, δ ∈ [0, 1], and M : X → Y
a randomized algorithm. M is (ϵ, δ)-differentialy private if for any two datasets
D,D′ ⊂ X that differ in one element, it holds

∀Y ⊂ Y , P [M(D) ∈ Y ] ≤ exp(ϵ) · P [M(D′) ∈ Y ] + δ

Notice that if we set δ = 014, we can express the condition in Definition 3.5.1 as

∀Y ⊂ Y , log P [M(D) ∈ Y ]

P [M(D′) ∈ Y ]
≤ ϵ

Intuitively, the definition of DP requires that, given two datasets D, D′ that differ
by only one element (i.e., adjacent datasets), and a mechanism M(·) that operates
on such datasets, the results of M(D) and M(D′) are almost indistinguishable for
every choice of D and D′.

Due to the randomized nature of the mechanism M(·), there exists a distribution
over its possible outputs. In particular, Definition 3.5.1 requires that the divergence
between the distributions over the mechanism output when applied to two adjacent
datasets, is upper bounded by ϵ. The probability that this upper bound holds
is controlled by the δ parameter: for δ = 0, the upper bound must always hold.
Figure 3.7 illustrates this intuitive idea in the case where the two datasets differ on
John Doe’s data.

The strength of this guarantee is controlled by the parameters ϵ and δ. ϵ bounds

14This corresponds to a stricter definition of differential privacy used in the literature.
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how much the two output distributions of the mechanism can differ when two adja-
cent datasets are provided, and δ is a small probability that allows rare violations
of this bound. The privacy guarantee becomes stronger as both parameters become
smaller: to obtain meaningful privacy, ϵ should be a small constant (e.g., ϵ = 4)
while δ should be smaller than 1/|D|.

Figure 3.7: Intuition of a differentially private mechanism. If the mechanism is
differentially private, the distributions over the mechanism outputs have a small
divergence, and John’s data is protected.

The mechanism M can be any operation that returns an output that depends on
the information contained in the input dataset. For example, it could be an aggre-
gate statistic (e.g., the number of students who passed the exam) or an algorithm
that operates on the dataset (e.g., the training algorithm of a machine learning
model).

DP mechanisms satisfy two essential properties: post-processing and composi-
tion. The post-processing property states that any function applied to the output of
a DP mechanism will still result in a DP mechanism. According to the composition
property, the composition of multiple DP mechanisms results in the overall mecha-
nism being DP but with an increased privacy loss that depends on the guarantees
provided by each composed mechanism.

A common approach to obtain a differentially private mechanism from a de-
terministic function f : X → Y is by adding controlled noise calibrated to the
sensitivity Sf of the function, defined as

Sf = max
D,D′
∥f(D)− f(D′)∥
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where D, D′ are adjacent datasets and ∥ · ∥ is either ℓ1 or ℓ2 norm.

For example, the Gaussian mechanism is defined as

M(D) = f(D) +N (0, S2
f · σ2)

where Sf is computed using the ℓ2 norm and N (0, S2
f ·σ2) is the normal distribution

with zero mean and standard deviation Sfσ. Roughly speaking, the larger σ, the
more privacy-preserving the mechanism is.

3.5.1 Differentially Private Training of Neural Networks

As we have seen, neural networks tend to memorize their training data. Therefore,
differential privacy can be used to build private and confidential models when trained
on sensitive data. For example, companies such as Google [34] and Microsoft [35]
are actively using DP to provide privacy to their customers. Some examples of
DP applied to commercially deployed ML models include text completion assistants
used in Microsoft Word, Outlook and Google Gboard.

The learning algorithm that maps a training dataset D = {(xi, yi)}Ni=1 to a vector
of weights of the neural network Θ ∈ Y = Rp can be made differentially private
by using the Gaussian mechanism. In particular, the Gaussian mechanism can
be applied to the classical non-private stochastic gradient descent (SGD) learning
algorithm.

SGD, at each iteration, step t, samples a batch of examples Bt from the training
dataset D and optimizes the weights Θ according to the update rule

Θ(t+1) = Θ(t) − ηt
1

|Bt|
∑︂
i∈Bt

∇ℓ(Θ(t)) (3.4)

where ηt is the step size at iteration t and ℓ(·) is the sample loss function.

Two changes are required to obtain differentially private SGD [36], [37] or DP-
SGD in short: (1) The gradients of each batch sample must be clipped to a maximum
ℓ2 norm of C and (2) Gaussian noise, with a standard deviation proportional to C,
must be added to the average value of the clipped gradients. Intuitively, these
changes are required to limit the influence of any particular sample on the weights
updates. Therefore, a trusted party that trains the model on a private dataset using
DP-SGD can publicly release the model (weights).

By defining the clipping function clipC : v ∈ Rp ↦→ v ·min
{︂
1, C

∥v∥2

}︂
∈ Rp, the
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update rule of DP-SGD can be written as

Θ(t+1) = Θ(t) − ηt

{︄
1

|Bt|
∑︂
i∈Bt

1

C
clipC

[︁
∇ℓ(Θ(t))

]︁
+

σC

|Bt|
ξ

}︄
(3.5)

where ξ ∼ N (0, Ip) is a standard multivariate Gaussian random variable and σ is
the standard deviation of the added noise [33].

The theoretical guarantees, defined by (ϵ, δ), provided by DP-SGD, are deter-
mined by the standard deviation σ, the batch size, and the number of total iterations.
More in detail, each weight update leaks some information, and the overall privacy
loss will increase at each step. In addition, using a larger batch size also increases
privacy loss. To compensate for this loss, increasing the amount of added noise is
possible. However, in practice, it is customary to fix some privacy budget (ϵ, δ), and
the parameters that affect total privacy loss are determined as a consequence.

Moreover, the modifications brought by DP-SGD can create very different dy-
namics, making carefully chosen hyperparameter configurations and regularization
settings for SGD unsuitable for its DP version.

The most popular deep learning frameworks include an implementation of DP-
SGD or similar DP-based privatization techniques applied to other optimization
techniques such as Adam. For example, Google released TensorFlow Privacy15, and
Meta AI released Opacus for PyTorch16.

Unfortunately, there are some disadvantages to applying DP-SGD. The most
obvious is a general decrease in the accuracy achieved by the model. This is because,
as mentioned, gradients are clipped, and noise is added. Still, at the same time, the
maximum number of update steps is limited by the privacy budget (ϵ, δ) defined a
priori.

A possible approach to mitigate the reduction in accuracy could be to pre-train
the model with public data and then use parameter-efficient fine-tuning strategies
on the private data with DP-SGD [38]. However, no one-size-fits-all approach works
for all tasks [39].

Moreover, even though DP-SGD assures the privacy (under the defined budget)
of a single sample, a user may contribute to the training data with multiple sam-
ples [8], thus making the user’s privacy not guaranteed under the same budget. For
example, the credit card number of (the careless) John Doe may appear multiple
times in the training data of an LM. Therefore, adaptations may be required. How-
ever, particular care must be taken when dealing with differential privacy to avoid

15https://www.tensorflow.org/responsible_ai/privacy/
16https://opacus.ai/

https://www.tensorflow.org/responsible_ai/privacy/
https://opacus.ai/
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claiming that a mechanism is DP when it is not due to an error in a proof [40].

3.5.2 Differentially Private Text Representations

There is a multitude of other definitions and applications of differential privacy.
What was described above falls under the umbrella of centralized DP, where there
is a trusted party (e.g., who trains the ML model using DP-SGD) that accesses
the sensitive data. Another flavor of DP is local DP, where the user applies a
differentially private mechanism directly to their data. The aggregator that accesses
the data is not trusted and can only access the anonymized data. For example, DP
can be applied to obfuscate private information directly from text embeddings [41],
or it can be used to directly sanitize text of sensitive information [42]. These or
similar strategies could be considered as countermeasures to mitigate the leakage of
information from vectorized texts as analyzed in Chapter 4.





Chapter 4

Experimental Methodology

This chapter describes the experimental methodology followed to validate the text
representation models reviewed in Chapter 2 and to analyze the information leaked
by the vectors such models produce. In particular, Section 4.1 provides the ap-
proach followed for the head-to-head comparison of the models in a downstream
classification task; Section 4.2 describes the inversion attack mounted against the
various models considered; finally, Section 4.3 outlines the methodology followed to
implement the attack described in Section 4.2.

4.1 Benchmark Text Representation Models

This section describes the approach followed to compare the various representation
models described in Chapter 2 using a downstream classification task. The objective
is to ensure that the models considered in the information leakage attack described
in Section 4.2 are effective and work as intended. Furthermore, the results of this
benchmark can be used to relate the effectiveness of each representation in the
downstream task with the amount of information that an attacker can recover from
the representations.

4.1.1 Classification Dataset

The dataset used to perform the benchmark is a collection of news taken from an
Italian newspaper, each labeled with its category (e.g., Politics, Culture, Sport).
Therefore, the models used to produce the vectorized representation of texts for the
classification task are fitted or trained on Italian texts. In particular, the Sentence-
BERT model fine-tunes a BERT model pre-trained on an Italian corpus.

The dataset, which consists of around 150k news and ten possible labels, is not

53
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entirely used. Given the unbalanced nature of the dataset and the simplicity of the
downstream models considered, only eight possible classes with 2000 samples per
class are used, resulting in a total of 16k samples balanced across eight classes. We
made this decision because the objective is not to train the best model to categorize
news articles by their content or to assess the maximum performance achievable
in this task when a large dataset is available. Instead, it is necessary to establish
whether the considered models produce good representations and to define a hierar-
chy among such models based on their performance when used in the same scenario
and under the same conditions.

Moreover, machine learning models are data-driven: generally, the more sam-
ples are used for training, the better performing will be the final model, while also
enabling the use of more complex models with a larger number of parameters. There-
fore, it is probably more interesting to assess how these representation models behave
when used in the more challenging scenario of a smaller training dataset and simple
linear classification models.

The news, regardless of the representation model used, are all lowercased. If
multiple white space characters (e.g., tabs, new lines, multiple spaces) appear, those
are replaced with a single space character.

Two other sub-datasets are obtained from the considered news dataset: one used
to classify the news using only the title and another using the first three to five
sentences (including the title). Finally, to evaluate the representation models, the
dataset is partitioned in a stratified fashion, producing similarly distributed classes
between the splits, into a training dataset (70%) and a test dataset (30%): the same
train and test splits are used across all tests.

4.1.2 Text Representation Models Considered

We considered the following models for mapping texts into vectors used in the down-
stream classification model.

1. Bag-of-words + tf-idf. The classical bag-of-words model with tf-idf reweighting
described in Section 2.1 is taken as a reference point. The implementation used
is that provided by the TfidfVectorizer class from the scikit-learn library [43].
Language-specific stop words (e.g., “ad”, “in”, “per”) are removed using the NLTK
library [44], while corpus-specific stop words are removed by setting the terms’
maximum document frequency to 50% and considering up to 218 ≈ 262k features
corresponding to the most frequent words of at least two characters. The resulting
vectors are normalized to unitary ℓ2 norm.

2. Hashing trick. The hashing trick detailed in Section 2.1.1 is used as a stateless
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approach to the bag-of-words method, which does not store the word-to-index map-
pings. The implementation is provided by the HashingVectorizer class from the
scikit-learn library. Similarly to the classical bag-of-words, language-specific stop
words are ignored (no corpus-specific stop words are removed), up to 218 features
are considered (represented by words of at least two characters), and the resulting
vectors are normalized to unitary ℓ2 norm. In addition, the hash function used is
signed, so collisions are likely to cancel out rather than accumulate errors.

3. Latent semantic analysis. The document-term matrices produced by the bag-of-
words and hashing vectorizers are reduced to a lower dimensional representation of
1000 features using the LSA procedure described in Section 2.1.2. The number of
dimensions was arbitrary: [12] suggests values in the low hundreds when LSA is used
for similarity searches, but a larger number will probably retain more information
while still significantly reducing the dimensionality. The TruncatedSVD class from
scikit-learn, which employs a randomized algorithm to solve the SVD problem, is
used to perform the dimensionality reduction. Similarly to the non-reduced variants,
the representations produced by LSA are normalized to the unitary ℓ2 norm.

4. Doc2Vec. The distributed bag-of-words (dbow) Doc2Vec model, described in
Section 2.2.2, is trained on the entirety of the Italian Wikipedia [45] using the
Gensim library [21]. Given that the setting is similar to [20] apart from using the
Italian Wikipedia instead of the English one, the same hyperparameters are used:
vector size of 300 units, a window size of 15 words, sub-sample threshold of 10−5,
five negative samples and 20 epochs. The improvement to the dbow model provided
by Gensim, consisting in jointly learning the word vectors in a skip-gram fashion,
is enabled. The learning rate is left at the default value, which starts at 2.5 · 10−2

and decreases linearly to 10−4. Finally, the inference stage to obtain the vector
representation for unseen texts uses the same parameters (i.e., epochs and learning
rate) as the training stage.

5. Sentence-BERT. A pre-trained BERTBASE model [46] is fine-tuned following the
Sentence-BERT method detailed in Section 2.3.3, using the SentenceTransformers
library [14]. The considered BERT model is pre-trained on an Italian corpus of 81GB
comprising the Italian Wikipedia, machine-translated web pages, and the Italian
portion of the Common Crawl corpus. The BERT sentence embeddings are obtained
by average pooling the last layer’s hidden representations. Fine-tuning is performed
using the regression objective function (Figure 2.6b) on the STSbenchmark (STSb)
dataset translated into Italian [47]. The STSb dataset consists of 8628 sentence
pairs split into the train (5749), dev (1500), and test (1379) sets and labeled with
a semantic similarity score ∈ [0, 5]. The similarity score has been rescaled to [0, 1]
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to compute the loss as the MSE between the label and the cosine similarity of the
embeddings. Similarly to [14], the model is fine-tuned for four epochs using a batch
size of 16, Adam optimizer with a learning rate of 2 · 10−5 and a linear learning rate
warm-up over 10% of the training data. Every 500 optimization steps, the model is
evaluated using the dev split, and if the performance improves, the model is saved.

Additionally, for the bag-of-words model and its variants, the performance is
evaluated in two different scenarios:

• In-domain. The representation model is trained using the training split on
which the downstream model is trained. This means that the bag-of-words
model’s vocabulary contains only the words that appear exclusively in the
training split. However, if the hashing trick is employed, no vocabulary is
used, and no difference can be observed.

• Cross-domain. Similarly to how Doc2Vec1 and Sentence-BERT were trained,
the representation model is learned from an external corpus, and the model is
intended to be used as an “off-the-shelf” model to encode texts from different
domains. This means that the vocabulary contains a richer set of words from
domains that do not necessarily coincide with the domain of the downstream
task. Furthermore, LSA finds a reduced space of concepts more general than
the one it would obtain from the training set. This may represent a limitation
of LSA in the cross-domain scenario: useful concepts for the downstream task
may be replaced (in the reduced representation) by concepts orthogonal to the
domain of the task at hand, bounding the final classification performance. A
random sample of 500k articles from Wikipedia was used to learn the models
in this setting.

In Figure 4.1, a 2D visualization of the vectorized test news obtained using t-
SNE is provided for the reduced hash (in the cross-domain setting), Doc2Vec, and
Sentence-BERT models.

4.1.3 Evaluation Methodology

To assess the effectiveness of the text representation models, the vector representa-
tion they provide is used as input to a linear model that classifies the news articles
according to their topic.

1Doc2Vec could have also been analyzed in the in-domain scenario by training the paragraph
vectors directly on the samples from the training set. However, in this analysis, we limited ourselves
to Doc2Vec in the cross-domain scenario.
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(a) Reduced hashing (b) Doc2Vec

(c) Sentence-BERT

Figure 4.1: 2D visualization of the text representations using different models

For each of the different classes, the performance achieved by the classification
model is measured using the class-specific F1 score defined as the harmonic mean of
the precision and recall measures:

pre =
tp

tp + fp
rec =

tp

tp + fn
(4.1)

F1 =
2

pre−1 + rec−1
=

tp

tp + 1
2
(fp + fn)

(4.2)

where tp stands for true positives and represents the number of correctly classified
samples for the given class, fp stands for false positives and represents the number of
samples wrongly assigned to the given class, and fn which stands for false negatives
and represents the number of samples from the given class which have been wrongly
assigned to a different class. The Macro-F1 score, obtained by averaging the F1

scores of all classes, is taken as an aggregate measure of the performance achieved
by the classifier.

The SGDClassifier class from scikit-learn is used. SGDClassifier implements
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multiple regularized linear classifiers optimized via SGD training. The linear model
used and other hyperparameters are selected by performing an exhaustive search
over a grid of values, and the performance is evaluated in a cross-validated fashion:
the training data is split into k = 5 folds, and the model is trained k times leaving
out each time a different fold and finally the performance for a hyperparameters
configuration is obtained by averaging the performance obtained in each of the k

left out folds. Grid search with cross-validation functionality is provided by the
GridSearchCV class from scikit-learn.

More in detail, the following hyperparameters are optimized: loss ∈ {hinge, cross-
entropy}2, regularization penalty ∈ {ℓ1, ℓ2, elastic-net} with the latter being a linear
combination of the first two, the regularization constant α = 10−i for i ∈ 1, . . . , 5

which also controls the learning rate lr at step t according to lr = 1/[α(t+ t0)] and
finally the number of epochs without an improvement in performance in a validation
split (obtained from the training data) before stopping training ∈ {5, 10, 20, 30}.

4.2 Text Representations Inversion Attack

This section describes the inversion attack implemented and mounted against the
text representations produced by some of the models analyzed in Section 4.1.2.
By only accessing the vectorized text representation, the inversion attack aims to
recover the words appearing in the plaintext. The attack model is designed to be as
universal as possible to be easily adapted to any text representation with minimal
to no modifications. However, this design principle probably comes at the cost
of limiting the attack’s maximum achievable performance: a well-crafted attack
that targets a particular representation model or accesses more information with
respect to the analyzed attack could potentially achieve higher performance and
hence represent a greater privacy threat. Therefore, the inversion results obtained
using the proposed attack should be taken as a lower bound for the information that
can be recovered from a vectorized text representation produced by the considered
models.

Section 4.2.1 describes the setting that motivated the analysis, and Section 4.2.2
defines the information available to the attacker while introducing the notation used.
Then, Section 4.2.3 describes the architecture and functioning of the inversion attack
model.

2Hinge loss results in a linear SVM, while cross-entropy in a logistic regression model.
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4.2.1 Motivation and Setup

The scenario of interest that motivated the study is the following. A customer, called
A, turns to the company C that provides ML-based NLP services. The ML models
are trained on the customer’s private data. However, A — in an attempt to achieve
confidentiality of its data — does not want to send its documents as plaintexts but
prefers to produce the vectorized representations of such documents and send them
to C. For this purpose, C provides its customers with a text vectorization model
Ψ(·).

The goal of A is to maintain the confidentiality of its data and obtain a quality
model (i.e., with good performance) from C. On the other hand, C aims to satisfy
the client by producing a quality downstream model from the client’s vectorized
representations computed using a simple and fast vectorization model Ψ(·), assum-
ing that the performance delta compared to more complex vectorization models is
negligible.

In the described setup, the role of the attacker can be assumed by different
entities:

1. C itself: from A’s point of view, the possibility that C may be able to recover
any information from the vectorized representations may represent a potential
risk, even if C itself is not interested in performing any attack.

2. An external entity to C (e.g., another customer) called B. In this case, B does
not have direct access to the vectorized representations if a security measure is
in place to avoid their leak; therefore, no attack should be possible. However,
exclusively relying on other security measures may represent a risk considering
that the security provided by a complex system is only as strong as the security
provided by its weakest component, which is usually a human. Assume, for
example, that C ensures A that A’s private data are under no circumstances
revealed to B. For this purpose, C has a security mechanism to prevent this
leakage. However, the employee of C who manages security decides to leak
the vectorized representations. B can now carry out the attack even if C uses
a cutting-edge security mechanism. On a side note, a vectorized representa-
tion that prevents as much information leakage as possible would act as an
additional line of defense in the case of data leakage.

Furthermore, assuming that C provides the same downstream model to multiple
clients, a secure representation of texts could allow C to jointly train a model using
data from various clients. However, this scenario opens up new challenges, such
as potential training data memorization, which can make the model susceptible to
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training data extraction (Section 3.2) or membership inference attacks (Section 3.3).
Therefore, this scenario should be adequately addressed, for example, using differ-
entially private mechanisms (Section 3.5) in a federated learning setup [48].

4.2.2 Threat Model

In the scenario of interest, the attacker, other than the text representations they
wish to invert Dtarget = {(Ψ(x∗

i ))}i, where x∗
i is the unknown plaintext and Ψ(·)

is the model producing the representations, is only required to have access to a
dataset of plaintext to vectorized representation mappings Dtrain = {(xi,Ψ(xi))}i.
The attacker then uses Dtrain to train the attack model A, as will be described in
Section 4.2.3.
Dtrain could be obtained by the attacker in different ways. For example, the

attacker could build Dtrain if they happen to gain query access to the model Ψ(·)
computing the representations: this may happen either if the attacker is C since it
is the one providing Ψ(·), or B if Ψ(·) is (reasonably) the same among all customers
or it is a publicly available model. Another scenario, although unlikely, is that Dtrain

is somehow leaked by C or another customer.
Furthermore, Dtrain could come from the same distribution (Din

train) as Dtarget or
from a different distribution (Dcross

train). For example, assuming that the attacker wants
to invert vectorized emails using Ψ(·) and exchanged by A’s employees, the former
case would occur if the attacker has access to a dataset of emails from A, while the
latter case would occur if the dataset is obtained from a different domain (e.g., data
scraped from the Web).

The inversion attack A is formulated as a learning problem that is consequently
implemented by means of an ML model. Given the vectorized representation Ψ(x∗)

of an unknown plaintext x∗, A is trained to predict the unordered set of words
W(x∗) appearing in x∗ from the attacker’s vocabulary Vattack. Namely, given Ψ(x∗) ∈
Dtarget:

A : Ψ(x∗) ↦→ W(x∗) ⊆ Vattack (4.3)

The attacker vocabulary Vattack may, in principle, be any collection of words.
However, recovering uninteresting language-specific stop words may not be of inter-
est to the attacker. At the same time, recovering rare words can become challenging
and possibly not feasible. However, it should be noted that even a combination of
common words, if linked to a particular individual or organization (e.g., words that
reveal the business strategy of a company), may constitute a privacy breach.

The attacker need not know exactly what Ψ(·) is nor be able to access its pa-
rameters. With this limited information available to the attacker, A falls into the
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black-box attack category. As previously observed, this attack was chosen to be
easily applicable to any text vectorization technique. An attack that accesses the
parameters of Ψ(·) in a white-box fashion or which exploits some additional infor-
mation (e.g., the exact nature of Ψ(·)) could theoretically be more performing and
hence represent a greater threat to privacy.

4.2.3 Attack Model

The text representations inversion attack A introduced in Section 4.2.2 is imple-
mented as a slight variation of the black-box sentence embedding inversion attack
proposed in [9]3.

Differently from [9]: (1) the attack is carried out against multiple text represen-
tation models not limited to deep learning embedding models; (2) A has no access
to the vocabulary used by the representation model Ψ(·); (3) A is applied to the
representation of longer texts (i.e., paragraphs) and not just sentences; (4) Uninter-
esting stop words (and punctuation) and are considered in Vattack and therefore not
returned by A.

As mentioned previously, A is implemented as an ML model that, given the
vectorized representation Ψ(x), learns to predict the unordered set of wordsW(x) ⊆
Vattack appearing in the plaintext x. As discussed in [9] this task can be approached in
two ways: as a multi-label classification problem where the words appearing in x are
predicted simultaneously and independently from one another, or as a set prediction
problem in which words in x are predicted sequentially while conditioning at each
step on the set of previously predicted words. The latter approach was found to
yield much better performance (similar to the white-box attack) and is consequently
implemented by A.

To tackle the inversion attack as a set prediction problem, an RNN is trained
to predict the next word in the set W(x) by conditioning on the text vectoriza-
tion Ψ(x) and the set of currently predicted words. At each step t = 1, . . . , L the
network outputs a distribution over the words in Vattack and the word at step t is
greedy sampled from such distribution (i.e., the word with the highest probability
is selected). The final set of recovered wordsWrec(x) is obtained as the union of the
words predicted at each of the L steps.

Given a single (Ψ(x),W(x)) training mapping, the network with parameters Θ

3The white-box sentence embedding inversion attack proposed in [9] was described in Sec-
tion 3.4.1.
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is optimized by minimizing the following sample loss:

L(Θ) =
L∑︂

t=1

1

|Wt|
∑︂
w∈Wt

− logP (w|Ψ(x),W<t; Θ) (4.4)

where Wt is the set of words in the plaintext x left to predict at step t, W<t is the
set of words in x predicted up to step t− 1. Note that W0 = W(x), W<1 = ∅, and
Wrec(x) =W<L+1.

As can be easily observed from Equation 4.4, the sample loss for a training map-
ping (Ψ(x),W(x)) results from the summation of the average negative log-likelihoods
of the words left to predict at each prediction step. Therefore, by minimizing the loss
function, the attack model is trained to assign high likelihoods (and, accordingly, to
sample) the words that appear in W(x).

Figure 4.2: Architecture of the text representations inversion attack model. First,
the vectorized representation Ψ(x) of a text x is projected into a compressed rep-
resentation u1. Then, the model uses an RNN implemented with an LSTM cell to
predict sequentially the words appearing in x. In particular, the first input to the
RNN is u1, while the subsequent input is the embedding learned by the model and
corresponding to the word predicted at the previous step.

The learned embedding of each predicted word is fed back into the LSTM to
perform the consequent prediction step.

The architecture of the attack model A— consisting of a linear layer with weight
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matrix W1, an RNN implemented using an LSTM cell, and a matrix W2 of word
embeddings — is depicted in Figure 4.2. The parameters Θ learned during training
are the linear layer weights W1, the LSTM cell weight matrices and initial states
(c0, h0), and the entire matrix of word embeddings W2.

The linear layer is used to project the vectorized text representation of arbitrary
length Ψ(x) into a network-specific representation u1 of H units, which corresponds
to the initial input of the LSTM cell. The idea is to map the representations pro-
duced by Ψ(·), which may have an arbitrary length (even extremely large) and
different normalization techniques applied (e.g., ℓ1 or ℓ2), into a vector space that
makes it comparable to the internal states and word embeddings used by the net-
work. No activation function is used on the output of the linear layer.

The LSTM cell is a computing unit that controls the information that propagates
over time in the RNN by selectively adding or removing information to the internal
state represented by the cell state and hidden state vectors. LSTMs were introduced
to better deal with the vanishing gradient problem common in RNNs, which makes
it difficult to deal with long-term sequential dependencies.

At each time step t, the LSTM cell takes in input the current input ut, the
previous step cell state ct−1 and the hidden state ht−1, and outputs the new internal
state ct, ht. While the cell state ct and the hidden state ht are required to have the
same dimension, the input ut does not need to have the same number of dimensions.
For ease of development, as will become clear later, in our implementation, the
internal states ct and ht, and the input ut share the same number of dimensions H.

The word embedding matrix is a |Vattack| ×H matrix that stores for each word
in the vocabulary Vattack the corresponding embedding learned by the model. On a
side note, this matrix can be simply viewed as a weight matrix of a linear classifica-
tion layer with H input features and |Vattack| possible output classes. The name is
used to highlight the difference with the previous linear layer and also to suggest a
possible improvement not analyzed in this work: instead of starting from a random
initialization of Θ, a better initialization of the weights to speed up training and
possibly improve performance could consist of using pre-trained word embeddings
(e.g., Word2Vec) as rows in the word embedding matrix W2 and accordingly change
the value of H.

Algorithm 1 reports the pseudocode with the steps required to perform a for-
ward pass through the network and correspondingly compute the loss according to
Equation 4.4 for a single training mapping (Ψ(x),W(x)). Note that the training
procedure uses the same pseudocode, with the difference of considering an appro-
priately sized batch instead of a single mapping. On the other hand, the inference
procedure to recover the wordsWrec(x

∗) from the vectorization Ψ(x∗) of an unknown
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plaintext x∗ uses the same steps apart from the loss computation, which is omitted.

Algorithm 1: Forward pass with loss computation through the text rep-
resentations inversion attack model.
Input : vectorized text Ψ(x), set of words in the plaintext W(x) ⊆ Vattack

Output: recovered words Wrec(x) from Ψ(x), sample loss L
1 L ← 0, W0 ←W(x), W<1 ← ∅ // loss, words left, words predicted
2 Compute initial input u1 ← W1Ψ(x)
3 done← False // Set to True when [EOS] token is predicted
4 t← 1
5 while not done and t ≤ L do
6 Compute internal states ct, ht ← LSTM(ut, ct−1, ht−1)
7 Compute similarities logits← W2ht

8 Predict a word j = argmaxi logits[i]
9 Set next input ut+1 ← W2[j] // Select j-th row of matrix W2

10 Wt ←Wt−1 \ {j}
11 W<t+1 ←W<t ∪ {j}
12 Compute probabilities probs← softmax(logits)
13 L ← L− 1

|Wt|
∑︁

i∈Wt
log probs[i]

14 if j is the index of [EOS] then
15 done← True
16 t← t+ 1

17 Wrec(x)←W<L+1

18 return Wrec(x), L

Although the steps in Algorithm 1 are quite straightforward, it is worth making
a few observations.

In order to predict the word at step t, the word embedding matrix W2 is multi-
plied to the right by the hidden representation ht produced by the LSTM cell (line 7).
This matrix multiplication corresponds to computing the dot product between the
rows of W2, which are word embeddings, and ht. The dot product between embed-
dings can be used as a measure of similarity between the objects they represent4.
Therefore, each position i ∈ [0, |Vattack| − 1] of the resulting column vector contains
a value measuring the similarity between the word in Vattack corresponding to the
index i and the hidden state ht. The resulting vector, called logits5 since it is a
vector of non-normalized predictions (our similarity values), is used to sample the
word at the given step (line 8).

4On a side note, the dot product of two vectorized text representations with unitary ℓ2 norm is
equal to their cosine similarity as defined in Equation 2.6.

5In the ML field, logits generally refers to a vector of non-normalized predictions produced by
a classification model, which is then passed to a normalization function. For example, if the model
solves a classification problem, the logits vector is typically normalized to a vector of probabilities,
with one value per class, using the softmax function [49]



4.3. Inversion Attack Implementation 65

Once the word is predicted, the corresponding word embedding is selected by
extracting the associated row from the matrix W2 (line 9). This embedding is then
used as the next LSTM input ut+1. Now it should be clear why both the internal
states (ct and ht), the LSTM input ut, and the internal word embeddings all share the
same number of units H. These observations motivated the distinction introduced
earlier between W1 and W2.

In order to compute the loss according to Equation 4.4, at each prediction step t

the probability distribution over the words in Vattack is computed using the softmax
normalization function (line 12). More in detail, the probability P (w|Ψ(x),W<t; Θ)

for the word w ∈ Vattack assigned to the index i is computed as follows:

probs[i] =
exp(logits[i])∑︁|Vattack|−1

j=0 exp(logits[j])
(4.5)

As a final note, not mentioned earlier, notice that the prediction stops, and
consequently, the loss does not decrease as soon as the model predicts the end-of-
sequence token [EOS].

4.3 Inversion Attack Implementation

This section describes the procedure followed to train and evaluate the inversion
model A. In particular, Figure 4.3 sketches the various steps followed when A is
trained on a dataset Din

train from the same domain of the target text vectorizations
Dtarget used to evaluate the inversion performance achieved by A (Figure 4.3a) and
when A is trained on a dataset Dcross

train from a different domain compared to Dtarget

(Figure 4.3b).
Section 4.3.1 describes the procedure followed to generate the in-domain, cross-

domain, and test datasets; Section 4.3.2 describes the evaluation metrics used to
assess the performance achieved by A; and finally, Section 4.3.3 details the hyper-
parameter tuning and training procedures followed to optimize the parameters Θ of
A.

4.3.1 Datasets Generation

As mentioned in Section 4.2.2, the in-domain analysis setup exemplifies the scenario
in which the attacker managed to access a dataset of plaintexts and their vectoriza-
tions computed by Ψ(·) and aim to invert the vectorized representation of some other
unknown plaintexts from the same distribution of the known plaintexts. Therefore,
known and unknown plaintexts will have a similar structure, vocabulary, and topics
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(a) In-domain scenario. (b) Cross-domain scenario.

Figure 4.3: Training and evaluation pipeline for the text representations inversion
attack model. Figure a illustrates the pipeline using in-domain training data while
Figure b using cross-domain training data. Notice that the attack vocabularies
are different in the two scenarios because they are generated from different data.
However, the test sets are still the same.

covered. On the other hand, the cross-domain analysis setup represents the more
likely scenario in which the attacker cannot access similar plaintexts to those they
wish to recover but instead use a dataset from a different distribution for training
the inversion model A. An example of in-domain data could be emails exchanged
by the employees of a company’s business unit. In contrast, the corresponding
cross-domain data could be texts scraped from the Web.

Since we would like to compare how the inversion model performs in the two
scenarios (Section 5.2.1 and Section 5.2.2), the same test set is used to evaluate
the performance in both cases, as can be observed in Figure 4.3. Furthermore,
in this analysis, we tried to replicate the two scenarios exclusively using publicly
available data from the Web. In particular, in the experiments, the in-domain,
cross-domain, and test datasets are generated from a collection of news articles
from the same Italian newspaper used in Section 4.1. The procedure followed to
generate Din

train, Dcross
train, and Dtarget, depicted in Figure 4.4 and partially (steps 1a and

1b) in Figure 4.3, is now described.

Each news article labeled with class C was selected to isolate a particular domain
from the newspaper dataset. Articles labeleld with class C were used to generate
the in-domain train data and the test data used to evaluate performance in both the
in-domain and cross-domain scenarios; any other news article with a label different
from C was used to generate the cross-domain train data (step 1 of Figure 4.4). We
chose C = Economy because it provided a sufficient number of articles (21179) to
generate enough samples to effectively train A and evaluate its performance in the
two scenarios while distinguishing itself sufficiently from all other classes: Politics
(20410), Sport (18988), Entertainment (11679), Arts (8630), Health (5881), School
(930), and Science (89). News articles without a specific domain, namely those
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Figure 4.4: In-domain and cross-domain datasets generation strategy. Newspaper
articles with category C = Economy are selected to generate in-domain data. All
the other articles (e.g., Entertainment, Sport, Health) make up the cross-domain
train data. The articles are then tokenized in sentences, which are grouped into
paragraphs. The in-domain paragraphs are split into in-domain train data and test
data.

labeled with class General (32500) and World (29645), were not considered in the
cross-domain dataset, as they are too generic and tend to overlap excessively with
C6.

One may argue that using the same underlying dataset to produce both in-
domain and cross-domain data may yield two datasets that are still too similar to
each other. However, it is also true that in the cross-domain scenario, if the attacker
has access to Ψ(·), they could generate an arbitrary large dataset (by scraping the
Web), which may happen to include samples with a domain similar to the target
plaintexts. Additionally, suppose the attacker knows the nature of the underlying
target plaintexts. In that case, they could carefully produce their cross-domain train
dataset by scraping or artificially generating texts that match as much as possible
the underlying domain. However, the dataset generation was performed in such a
way, mainly for simplicity and lack of better alternatives: no dataset analogous to
the Enron email dataset (which could have been used as in-domain data) exists for
the Italian language.

The texts of the news articles are tokenized into sentences using the NLTK

6On a side note, from Figure 4.1, which reports the 2D visualization of the vectorized repre-
sentation for a subset of articles (600 randomly drawn samples per class not including School and
Science), it can be observed how General and World effectively overlap with the others, while all
other classes are mostly represented by well-separated clusters.
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library [44] (step 2 of Figure 4.4). The sentences are then lowercased, and if multiple
white space characters (e.g., tabs, new lines, multiple spaces) appear, those are
substituted with a single space character. Only those sentences with a number of
words (of at least two characters) ranging between 8 and 40 are kept in the sentence
dataset. The sentences from the same article, satisfying the length requirements,
are aggregated into artificial paragraphs of at least 128 words and up to 168 words
(minimum length of a paragraph plus the maximum length of a sentence): each
paragraph is in a one-to-many relationship with its sentences. This was done to
investigate how encoding longer pieces of text instead of individual sentences affects
the performance of the inversion attack (Section 5.2.2).

The in-domain paragraphs dataset (i.e., generated from C articles) is split into
a train dataset (166377 sentences) and a test dataset (71398 sentences) (step 3 of
Figure 4.4). Note that, despite the partitioning being performed at the paragraph
level, in the in-domain scenario, some sentences from a given news article may go into
the training dataset. In contrast, the remaining sentences from other paragraphs of
the same article may go into the test dataset. All sentences from news articles with
a category different from C (849692 sentences) constitute the cross-domain train
dataset. How performance scales with the number of in-domain training samples
available to the attacker is analyzed in Section 5.2.4.

Once the in-domain train, the cross-domain train and the test datasets are gen-
erated, Din(cross)

train and Dtarget can be constructed. In particular, the train and target
datasets for the cross-domain scenario are defined as

Dcross
train =

{︄
(Ψ(xi),W(xi))

⃓⃓⃓⃓
⃓ xi train cross-domain plaintext

W(xi) ⊆ Vcross
attack

}︄

Dtarget =

{︄
(Ψ(xi),W(xi))

⃓⃓⃓⃓
⃓ xi test plaintext

W(xi) ⊆ V in
attack

}︄

and the corresponding in-domain variants are analogous (see Figure 4.3). More in
detail, such datasets are generated by:

(a) Computing the vectorized representations by querying the model Ψ(·) (step
1a of Figure 4.3). In the experiments, the following six vectorization models,
used in Section 4.1.2, are considered: cross-domain bag-of-words with tf-idf
reweighting and hashing vectorizer with their LSA reduced versions, Doc2Vec
and Sentence-BERT.

(b) Building the vocabulary Vattack considering from the training sentences the 20k
most frequent words of at least two characters not in the NLTK list of language-
specific stop words (step 1b of Figure 4.3). Note that since in the two scenarios
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the training datasets are different, the corresponding vocabularies V in
attack and

Vcross
attack will not be the same. However, when comparing performance in the two

scenarios (other than the same test sentences), it makes sense to use V in
attack

in both cases, as it may contain sensitive words that do not appear in the
cross-domain training dataset and therefore in Vcross

attack.

4.3.2 Inversion Performance Evaluation

The inversion model A is evaluated on Dtarget. Performance is measured in terms of
precision (percentage of correctly recovered words), recall (percentage of recovered
words), and their harmonic mean expressed by the F1 score (Equation 4.2).

Adapting the precision and recall definitions from Equation 4.1 — where true
positives indicate correctly recovered words from Ψ(x), false positives indicate re-
covered words which do not appear in x, and false negatives indicate words in x not
recovered from Ψ(x) — it results:

pre =
|Wc(x)|
|Wrec(x)|

rec =
|Wc(x)|
|W(x)|

(4.6)

where Wc(x) = Wrec(x) ∩ W(x) is the set of correctly recovered words. As an
aggregate measure of performance, the mean values of pre, rec, and F1 across all
samples in Dtarget are considered.

The above performance metrics treat all words equally. However, recovering
words that appear with high frequency and carry less information is a less chal-
lenging task (and alarming from a security perspective) than recovering words that
appear with a lower frequency (e.g., proper names). For this reason, as additional
performance metrics, a generalization of the precision and recall metrics of Equa-
tion 4.6 are considered. More in detail, each word w ∈ Vattack is assigned a weight
αw inversely proportional to its frequency in Dtarget, and precision and recall are
obtained as:

prew =

∑︁
w∈Wc(x)

αw∑︁
w∈Wrec(x)

αw

recw =

∑︁
w∈Wc(x)

αw∑︁
w∈W(x) αw

(4.7)

Correspondingly, Fw
1 is obtained by computing the F1 score of prew and recw. Ob-

serve that if αw = 1 ∀ w ∈ Vattack, prew and recw correspond to pre and rec.
The weights are computed similarly to the idf factors (Equation 2.1) in the tf-idf

reweighting of the bag-of-words representation model (Section 2.1):

αw = log
|Dtarget|+ 1

c(w) + 1
(4.8)

where c(w) is the number of plaintexts in Dtarget that contain w. The +1 at the
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numerator and the denominator represents an additional (fictitious) sample in Dtarget

that contains all the words in Vattack and is done to avoid divisions by zero, since
some words in Vattack could potentially never appear in Dtarget.

4.3.3 Inversion Model Training

The inversion modelA was implemented using the PyTorch framework [50]. Amazon
SageMaker, a fully managed ML service that provides the tools and infrastructure
to train and deploy ML models [51], was used to optimize the hyperparameters and
train A. In particular, the high-level interfaces offered by the SageMaker Python
SDK library [52] were used to work with the PyTorch framework using the Sage-
Maker tools. Each training job was run on an ml.g4dn.xlarge SageMaker instance
powered by an Nvidia Tesla T4 GPU.

Regardless of the model Ψ(·) that produces the vectorizations, the same number
H of internal units ofA was used for all models. Apart from treating all vectorization
models equally, the rationale behind this decision is that, even though the vectorized
representation dimensionality dramatically differs from one model to another, all the
models encode a similar amount of information contained in the plaintext. How the
model encodes such information, either by simply counting the words appearing in
the plaintext or by obtaining an abstract representation after many processing layers,
should not greatly vary the information content carried by the final representation.

The inversion model A was trained on Dtrain. The number of prediction steps L
was determined by computing the mean value of words to recover |W(x)| over each
sample in Dtrain.

The training procedure iterates over the training data, using batches of B samples
for a maximum of 100 epochs7. Training stops if no loss improvement is observed
after a patience of 10 epochs on a validation split (10%) set aside from Dtrain. The
model parameters Θ are optimized using Adam with learning rate γ. The parameters
Θ are saved whenever A achieves a new performance maximum, as measured by the
average F1 score over all samples in the same validation split used for early stopping.

Weight decay and dropout are used to regularize training and avoid overfitting
the training data. Weight decay is used to penalize, proportionally to the factor
λ, large values of ∥Θ∥2. On the other hand, dropout, which consists of randomly
dropping some units to avoid a portion of them becoming much more influential
than others, is applied before every LSTM input ut with probability p.

7Even though the maximum number of epochs was set to 100, the execution time for each
training job was limited to a maximum of 12 hours. This external limitation had an effect only
when the inversion model was trained against some of the representation models in the cross-domain
setting due to a large amount of training data available.
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The hyperparameters for A (H) and for the training procedure (B, γ, λ, p) were
optimized using a Bayesian search.

As it explores possible hyperparameter configurations, Bayesian search keeps
track of previous evaluation outcomes returned by an objective function that mea-
sures the quality of the ML model when trained on a particular configuration. Such
outcomes are used to build a probabilistic model that maps possible hyperparameter
configurations to the score assigned by the objective function (regression-like prob-
lem). The Bayesian search then uses the probabilistic function to make informed
guesses about which parameter combinations are likely to maximize the objective
function and yield quality ML models.

The efficient way Bayesian search explores the hyperparameter landscape should
(theoretically) enable it to find: (1) good configurations in fewer trials with respect
to naively sampling configurations via a random search and (2) better configurations
if the hyperparameter space is too large for an exhaustive grid search, requiring one
to limit the search over a smaller space.

Hyperparameter optimization was performed only on the inversion model A
trained to invert the embeddings produced by Sentence-BERT in the in-domain
scenario. The choice was arbitrary, but the reasoning is that it represents the most
challenging setup: text representations produced by a deep model, while the at-
tacker has a limited amount of data to train A, possibly leading to overfitting. The
objective function used to evaluate the hyperparameter configuration was the mean
F1 score over all samples in a validation split set aside (20%) from the training data
Din

train.
Despite the training procedure running for a maximum of 100 epochs (with early

stopping), during hyperparameter tuning, each training job was run for a maximum
of 30 epochs, eventually early stopped by the Bayesian optimizer. This choice was
made assuming that given an upper bound to the computational time (and cost),
it is probably better to test more hyperparameter configurations for fewer epochs
than to test fewer configurations for more epochs. Additionally, if a hyperparameter
configuration is good at the start of training, it should still be, even if training
continues over the initial 30 epochs.

More in detail, the hyperparameters were tuned in the following ranges: number
of internal units H ∈ {384, 512, 768}, batch size B ∈ {64, 128, 256}, learning rate
γ ∈ [10−4, 10−2], weight decay factor λ ∈ [10−5, 10−2], probability of dropout p ∈
{10%, 20%, 30%}.

After 32 trials, the optimal parameters found and, consequently, used in all the
following training jobs were H = 512, B = 64, γ = 4 · 10−4, λ = 10−4, p = 20%.





Chapter 5

Results

This chapter covers the results of the empirical analyses performed. In particular,
Section 5.1 reports the results of the classification benchmark described in Sec-
tion 4.1, whereas Section 5.2 reports the inversion results on the vectorized text
representations obtained using the attack model described in Section 4.2 and imple-
mented as outlined in Section 4.3.

5.1 Classification Benchmark Results

The classification performance obtained for the various representation models de-
scribed in Section 4.1.2, using the news articles datasets described in Section 4.1.1
and the methodology detailed in Section 4.1.3, is reported in Table 5.1. In par-
ticular, performance is measured using the Macro-F1 score, and, when considered,
the difference in performance between the in-domain and cross-domain scenarios is
reported.

Unsurprisingly, the deep model Sentence-BERT outperforms all the other models
considered in the cross-domain scenario. However, the improvement is evident only
when the news titles are used. At the same time, it is much smaller when the
first few sentences or the entire text (eventually truncated to the maximum number
of WordPiece tokens accepted by BERT) are used to perform the classification.
Quantitatively, the relative improvement over the reference bag-of-words + tf-idf
with news titles is 7.13% and decreases to 0.51% and 0.42% with the first sentences
or the entire text, respectively.

Although Doc2Vec has the edge over the reference model when used with titles,
the latter outperforms Doc2Vec with the other two datasets. However, it should
be noted that, as described in Section 4.1.2, the hyperparameters of the Doc2Vec
inference stage were not optimized; therefore, the performance with Doc2Vec could
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Model
In-domain Cross-domain

Titles Sentences Text Titles Sentences Text

Bag-of-words + tf-idf 72.13 82.27 85.23 72.59 82.35 84.67
Hashing 71.22 81.08 84.21 71.22 81.08 84.21
Reduced bag-of-words 68.24 81.36 83.90 63.62 77.63 82.71
Reduced hashing 68.33 80.81 84.31 62.23 77.19 82.24
Doc2Vec - - - 74.64 81.43 83.13
Sentence-BERT - - - 77.77 82.77 85.03

Table 5.1: Text classification benchmark results. Performance is measured in terms
of Macro-F1 score when classifying news articles according to the title, the first
sentences, and the entire text. In the in-domain setting, the vectorizer is learned
from the training split the classifier is trained on. In the cross-domain setting, the
vectorizer is learned from an external corpus.

be potentially improved.
Although the hashing vectorizer, compared to bag-of-words, is prone to collision

errors, the performances achieved by the former are not too far off from the latter.
Quantitatively, the relative decrease in performance is -1.89% with titles, -1.54%
with the first sentences, and -0.54% with the entire text.

The reduced representations obtained with LSA significantly decrease the perfor-
mance achieved by the classification model. Especially in the cross-domain scenario,
this reduction in performance is quite evident when used with titles and the first
few sentences, suggesting that LSA is probably not well suited in such a setting of
short texts with cross-domain representation.

In two out of three datasets, the reference bag-of-words model in the cross-
domain scenario outperforms the same model in the in-domain scenario. Moreover,
in this classification scenario, the simple bag-of-words model managed to remain
competitive when compared to a deep representation model (except when used on
very short texts, i.e., titles), demonstrating that when used in a classification setting,
even though it is very simple, it can still manage to achieve good performance.

5.2 Inversion Results

This section reports the inversion results on the vectorized text representations ob-
tained using the attack model A described in Section 4.2 and following the method-
ology outlined in Section 4.3. It is important to note that, given the nature of the
attack considered, the results reported here should be taken as a lower bound for
the information that can be recovered from a vectorized text representation.

Section 5.2.1 reports the results of the inversion when A is trained to infer words
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(which appear in the plaintext) from the vectorized representation of sentences;
Section 5.2.2 covers the case when A is extended to invert the encoding of longer
pieces of text; Section 5.2.3 investigates whether or not it is possible to recover
proper names form Sentence-BERT embeddings; finally, Section 5.2.4 analyzes how
the inversion performance achieved by A scales with the number of training samples
available.

5.2.1 Vectorized Sentences Inversion

The first analysis performed consists of inverting vectorized representations of single
sentences obtained as described in Section 4.3.1. The inversion model A is trained,
as described in Section 4.3.3, to invert the sentence representations produced by the
following vectorization models: bag-of-words with tf-idf reweighting, hashing-based
bag-of-words, and their reduced versions using LSA, Doc2Vec, and Sentence-BERT.

Even though the inversion model A stops the prediction whenever the [EOS]

token is predicted (see Algorithm 1), the loss in Equation 4.4 does not directly pe-
nalize the model if it predicts more words than there are in the plaintext. To directly
instruct the model to predict the [EOS] token and consequently stop the prediction
to avoid increasing the number of false positives, the [EOS] token can be included in
the target set of words W ⊆ Vattack. However, as analyzed in Appendix A.1, doing
so yields a model A that has a lower number of false positives but a much higher
number of false negatives, leading to high precision but low recall and consequently
a low F1 score. Without the inclusion of the [EOS] token, the model predicts it
sometimes, but the final predictions usually contain several false positives. How-
ever, the resulting precision and recall are more balanced due to the lower number
of false negatives, resulting in a higher F1 score. Therefore, this section reports the
results obtained when A was trained without including the [EOS] token in the set
of words to predict.

To compare the performance between in-domain and cross-domain scenarios, the
same test dataset Dtarget, as described in Section 4.3.1, is used. Furthermore, when
computing the performance metrics in the cross-domain scenario, only the words in
V in

attack ∩ Vcross
attack are considered.

Table 5.2 reports the aggregate inversion performance on the test dataset Dtarget

in both the analyzed scenarios and using the metrics described in Section 4.3.2.
For completeness, Appendix A.2 reports the cross-domain performance using all the
words in Vcross

attack.
The results of Table 5.2 confirm that the more complex the vectorization model

Ψ(·) is, the less information can be recovered byA from the representation produced.
As expected, simple word counting, performed by bag-of-words or hashing-based
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Model pre rec F1 prew recw Fw
1

In
-d

om
ai

n
Bag-of-words + tf-idf 94.37 87.05 89.05 94.27 84.73 87.34
Hashing 94.72 87.27 89.33 94.15 84.86 87.21
Reduced bag-of-words 62.00 61.80 59.40 57.99 55.20 53.48
Reduced hashing 59.25 58.31 56.42 55.42 51.79 50.67
Doc2Vec 49.51 55.10 49.56 54.23 55.65 52.55
Sentence-BERT 41.53 45.47 41.36 41.55 42.04 39.58

C
ro

ss
-d

om
ai

n Bag-of-words + tf-idf 90.31 83.79 85.20 91.85 80.74 84.10
Hashing 91.81 83.89 86.15 92.52 80.77 84.49
Reduced bag-of-words 74.20 67.52 68.78 71.78 61.37 63.70
Reduced hashing 71.13 65.12 65.97 68.56 58.91 60.79
Doc2Vec 52.72 54.84 51.21 57.05 55.44 53.90
Sentence-BERT 41.14 41.77 39.53 41.27 38.17 37.50

Table 5.2: Inversion results of vectorized sentences. Performance for in-domain and
cross-domain scenarios is measured on the same test set. The performance metrics
are precision, recall, F1 score, and their generalized weighted variants. For each
metric, the reported values correspond to the average value of all samples in the test
set.

bag-of-words, leaks considerable information. With LSA on the bag-of-words rep-
resentations, the amount of information recovered by A decreases while still being
relatively high. However, it should be noted that, as reported in Section 5.1, when
using LSA, the utility registered in the downstream task also decreases by a fair
amount.

Notice that with feature hashing, the performance achieved in in-domain and
cross-domain scenarios is slightly higher than that achieved with classical bag-of-
words. However, when both representations are reduced using LSA, the situation
is reversed, with A achieving higher performance on the reduced classical bag-of-
words. This can be explained by the fact that when using feature hashing, the
vectorization is not limited to a fixed vocabulary, as with classical bag-of-words.
Therefore, if the plaintext has words that do not appear in the vocabulary of the
vectorization model Ψ(·), those will not contribute to the final vector representation.
Instead, with feature hashing, all words not excluded a priori (e.g., stop words) will
contribute, possibly by colliding with other words, to the final vector representation,
and assuming that unrelated words collide, A can guess the exact word using the
context represented by the other words predicted. On the other hand, collisions of
unrelated words caused by feature hashing make it difficult for LSA to map word
co-occurrences to concepts. Therefore, information may get lost in the reduction,
and consequently, A can recover a smaller amount of information.

Neural network based representations reduce the amount of information that A
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manages to recover. In particular, the representations produced by the deep model
Sentence-BERT leak less information compared to the shallow model Doc2Vec. This
can be explained by the fact that Doc2Vec encodes a text as a vector by optimizing
the vector to be used to recover words that appear in the plaintext. In contrast,
the multiple processing layers in the BERT architecture probably map plaintexts
to high-level representations that encode the semantics of the plaintext rather than
the words appearing in it. Nevertheless, the amount of information A recovers from
Sentence-BERT embeddings is still quite impressive.

The performance achieved when A is trained using in-domain data instead of a
large pool of cross-domain data is higher with bag-of-words, hashing-based bag-of-
words, and Sentence-BERT. However, with LSA and Doc2Vec, the performance is
higher using a large amount of cross-domain data, suggesting that the bottleneck is
caused by the smaller amount of data available in the in-domain scenario.

On a further note, the inversion performance measured by the weighted vari-
ants of precision, recall, and F1 score is slightly lower than that measured by the
unweighted counterparts, the only outlier being Doc2Vec. This means that A man-
ages to recover both words that appear with high frequency in Dtarget as well as
those words that are rarer. However, it is possible that with more than 20k words
in Vattack, the weighted metrics would have told a different story.

Surprisingly, A recovers from Doc2Vec vectors rarer words more reliably than
those that appear more frequently in Dtarget, suggesting that the vector representa-
tion produced by Doc2Vec better encodes uncommon words rather than common
ones.

To relate the performance metric values reported in Table 5.2 with the actual
output of A, Table 5.3 reports eight examples of Sentence-BERT embedding in-
versions which have been selected from randomly drawn samples from Dtarget and
performed by A trained with in-domain data. In particular, Table 5.3 reports the
plaintext x provided to the model Ψ(·) (Sentence-BERT in this case) and the output
Wrec(x) of A when the vector Ψ(x) is provided. Note that, as previously observed,
this is the output of A in the most challenging setting when it achieves the lowest
performance.

On a side note, notice that in the examples provided in Table 5.3, the number
of predicted words ranges between 8 and 12 with several false positives (represented
by words not in bold).

5.2.2 Vectorized Paragraphs Inversion

The experiments documented in Section 5.2.1 focus on the inversion of single sen-
tences with a number of words (of at least two characters) between 8 and 40. There-
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Plaintext Inversion model prediction

l’ispezione si è conclusa con la richiesta
alla compagnia irlandese di versare
all’inps contributi per poco meno di
dieci milioni di euro.

appena, compagnia, conclusa, dieci,
euro, inps, ispezione, milioni,
poco, utile, versare

certo, ci piacerebbe fare sempre di più
ma per riuscirci c’è bisogno di
favorevoli condizioni a contorno.

assai, bisogno, certo, condizioni,
fare, farlo, possibile, pur, risultati,
risultato, sempre

per l’autobrennero l’allungamento
risulterebbe addirittura di 20 anni, con
3 miliardi di lavori.

allungamento, allungato, almeno,
anni, anno, circa, concessione, lavori,
miliardi, oltre, quasi, raddoppio

ciò che non cambia invece è che
montepaschi potrebbe avere
prospettive mediocri, perché opera in
un’economia quasi immobile.

appare, azienda, cambierà, ciò,
comunque, dimensioni, invece,
montepaschi, potrebbe, può,
risorse, situazione

ai fini del raggiungimento dei requisiti,
nel rispetto dei limiti minimi di età e
contribuzione, contano anche le
frazioni d’anno.

anno, biennio, contano,
contribuzione, età, incremento,
limite, limiti, minimo,
raggiungimento, requisiti

l’indice mib, maglia nera in europa, ha
perso quasi il 5% (-4,3%) affossato
dalle vendite sulle banche.

banche, borsa, europa, indice,
italiane, mib, perso, piazza, quasi,
vendite

esselunga, bernardo caprotti ritira la
querela ai danni del figlio giuseppe.

bernardo, caprotti, confronti,
denuncia, esposto, esselunga,
giuseppe, risparmio

la commissione ue, però, ha dei dubbi
sul percorso immaginato.

avere, commissione, dubbi, errore,
però, piano, progetto, può, ue

Table 5.3: Inversion examples of Sentence-BERT sentence embeddings. The first
column reports the text provided to the Sentence-BERT model. The second column
reports the words (sorted alphabetically) inferred by A with the correctly predicted
ones highlighted.

fore, it is interesting to analyze how the inversion performance changes when A is
provided with the encoding of a longer piece of text instead of a single sentence.

To analyze how the inversion modelA performs when provided with the encoding
of a text comprising multiple sentences, the inversion models trained against the
various vectorization models from Section 5.2.1, are applied to the vectorizations
of the artificial test paragraphs with 128 to 168 words, constructed as described in
Section 4.3.1.

In addition to using the trained models from Section 5.2.1, some inversion models
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were trained ad hoc to invert paragraphs. In particular, in the in-domain scenario,
A was trained to invert the representations of paragraphs produced by hashing-
based bag-of-words and Sentence-BERT, which are, respectively, the worst and best
performing models in terms of information leaked according to the results of Sec-
tion 5.2.1. In the cross-domain scenario, only Sentence-BERT paragraph represen-
tations were used to train A.

Table 5.4 reports the aggregate inversion performance, measured by precision,
recall, and F1 score (described in Section 4.3.2), on the paragraphs test dataset
Dtarget in both the in-domain and cross-domain scenarios. In particular, Table 5.4
reports the inversion performance when A is provided with the encoding of the
entire paragraph and when it is provided with the encoding of each sentence in the
paragraph.

Notice that the test set used to obtain the inversion results of a paragraph by
accessing the individual sentence encodings (sentences column) in Table 5.4 is the
same as the one used to obtain the vectorized sentences inversion results reported
in Table 5.2. The slightly different values of precision, recall, and F1 score between
the two tables are because each word appearing in a plaintext (either a sentence
or a paragraph) gets only counted once, even if it appears multiple times in the
plaintext.

Table 5.5 reports an example of an artificial paragraph encoded with Sentence-
BERT and inverted by A trained to invert paragraphs using in-domain data.

From Table 5.4, we can observe that even though the inversion performance de-
creases for all models, a non-negligible amount of information can still be recovered.

In the in-domain scenario, when A is trained ad hoc on vectorized paragraphs, it
achieves lower performance with respect to the cross-domain in the same setting (i.e.,
trained on vectorized paragraphs). This can be explained by the smaller amount of
training data, as the training sentences are grouped to form training paragraphs.

Moreover, when A is trained with vectorized paragraphs, it performs better in
inverting vectorized paragraphs, but it performs worse when inverting vectorized
sentences. In particular, in the case of Sentence-BERT, much lower performance.

5.2.3 Name Recovery from Sentence-BERT Embeddings

In the previous sections, we established that information can be recovered from a
vector of numbers representing a text and that the amount of such information
depends on the vectorization model used. In particular, Sentence-BERT was shown
to be the model — likely due to its deep architecture — least susceptible to such
information leakage, even though a non-negligible amount of information can still
be recovered from the representations it produces.
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Model
Paragraphs Sentences

pre rec F1 pre rec F1

In
-d

om
ai

n

Bag-of-words + tf-idf 39.50 32.62 35.56 95.09 81.44 87.38
Hashing 38.71 32.19 34.98 95.35 81.56 87.55
Hashing∗ 52.09 54.34 53.01 94.89 72.07 81.66
Reduced bag-of-words 38.30 23.92 29.28 62.62 58.76 60.09
Reduced hashing 38.59 22.19 28.00 59.67 55.07 56.77
Doc2Vec 28.88 16.07 20.51 53.53 52.26 52.41
Sentence-BERT 29.76 18.67 22.83 44.06 41.69 42.42
Sentence-BERT∗ 28.57 20.96 24.01 27.62 24.31 25.60

C
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om
ai

n

Bag-of-words + tf-idf 36.34 27.46 31.12 91.98 84.45 87.67
Hashing 36.92 27.78 31.50 93.29 84.52 88.34
Reduced bag-of-words 37.77 27.36 31.57 74.95 67.54 70.64
Reduced hashing 36.43 23.97 28.78 71.48 64.67 67.48
Doc2Vec 28.52 14.41 19.01 56.39 54.63 55.01
Sentence-BERT 24.35 15.78 19.06 43.89 39.95 41.42
Sentence-BERT∗ 29.02 20.94 24.16 30.56 29.29 29.63

∗ the inversion model was trained on vectorized paragraphs instead of sentences

Table 5.4: Inversion results of vectorized paragraphs. Performance for in-domain
and cross-domain scenarios is measured on the same test set. The performance
metrics are precision, recall, and F1 score. For each metric, the reported values
correspond to the average value of all samples in the test set. The paragraphs
column reports the inversion performance when A is provided with the encoding
of the entire paragraph. The sentences column reports the performance when A is
provided with the encoding of each sentence in the paragraph.

A natural question is whether, given Sentence-BERT embeddings, it is possible
to recover the names of people appearing in the corresponding plaintexts. If so, this
would allow one to link the recovered information with the given person’s name.
In this section, we show that it is possible to recover names from Sentence-BERT
embeddings, and even when the names are placed outside their usual context, the
recovery is still viable.

Here, we focus on people’s names because they are a simple example of sensitive
information easily obtainable from the newspaper dataset. However, it goes without
saying that the results obtained can be generalized to any other type of words
occurring in Vattack.

A list of sentences containing the name of any person in a given set was extracted
from the test dataset Dtarget (71398 sentences). Since, as described in Section 4.3.1,
Dtarget was generated from Economy news articles that naturally intersect with the
Politics domain, the set of commonly occurring names selected for the analysis are
Renzi (679 sentences), Draghi (529 sentences), Padoan (288 sentences), Berlusconi
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Plaintext Inversion model prediction

mondadori compra rcs libri «passaggio storico per
l’editoria». nel consiglio della nuova rizzoli che sarà
una spa, siederanno gian arturo ferrari, presidente,
antonio porro, oddone pozzi, enrico selva coddè e
paolo mieli, per quest’ultimo un riconoscimento del
suo ruolo di presidente di rcs libri. come previsto
dagli accordi siglati nell’ottobre scorso, il perimetro
dell’acquisizione perfezionata ieri che comprende le
partecipazioni e la titolarità di tutti i marchi. sulla
base di specifiche clausole del contratto, il prezzo
potrà essere soggetto ad aggiustamenti per un
massimo di 5 milioni. c’è poi un «earn-out» in
favore di rcs sino a 2,5 milioni, vincolo condizionato
al conseguimento nel 2017 di determinati risultati.
quanto alla squadra, selva coddè, amministratore
delegato area trade di mondadori libri, guiderà la
stessa divisione in rizzoli libri; antonio porro,
amministratore delegato area educational, guiderà
anche educational e internazionale illustrati di
rizzoli.

accordo,
amministrazione,
andrea, anni, azioni, casa,
circa, consiglio,
delegato, dettagli,
direttore, due, editore,
editrice, esclusiva, essere,
euro, fino, libri,
mediagroup, milioni,
mondadori, nuovi,
offerta, parte,
partecipazione, patto, poi,
potrebbe, potrà,
presidente, prevede,
previsto, rcs, rispetto,
rizzoli, sera, soci,
solferino, stati, stesso,
sviluppo, valorizzazione,
via

Table 5.5: Inversion example of a Sentence-BERT paragraph embedding. The first
column reports the artificial paragraph provided to the Sentence-BERT model. The
second column reports the words (sorted alphabetically) inferred by A with the
correctly predicted ones highlighted.

(287 sentences).

From all test sentences that contain the four selected names, new sentences are
generated by substituting the original name with each of the other three names. For
example, from the sentence “draghi: «il mandato delle banche centrali va visto in
modo ampio»”, the sentences “name: «il mandato delle banche centrali va visto in
modo ampio»” for name ∈ {renzi, padoan, berlusconi} are generated.

Substitution is performed on the last name and, when it appears, on the first
name. Sentence-BERT is then used to obtain the embeddings of the sentences
generated as described.

The inversion model A trained to invert Sentence-BERT embeddings using the
cross-domain data Vcross

attack from Section 5.2.1 is used to infer the words appearing in
the sentences1.

Table 5.6 reports for each name along the columns, the fraction of times A

1The cross-domain model is used because Vcross
attack also contains names from other domains. This

fact is used in the following experiment.
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correctly predicts the name2 when it is replaced with one of the names along the
rows. In particular, the values along the diagonal correspond to the accuracy of the
prediction when the original sentences are used. In Table 5.6 it is also reported the
number of sentences from Dcross

train (849692 sentences) each name occurs in.
It is interesting to observe that although Berlusconi is the most common name

in Dcross
train, it is the one for which A achieves the lowest accuracy. Furthermore, when

Renzi replaces Draghi, A is more accurate than when the sentences with Draghi are
left unchanged.

From

To Samples Berlusconi Draghi Padoan Renzi

Berlusconi 17116 77.27 82.23 72.57 72.37
Draghi 287 68.33 81.29 81.94 77.64
Padoan 353 60.14 78.45 88.54 76.12
Renzi 15575 74.83 82.42 82.64 83.01

Table 5.6: Accuracies in the recovery of the last name from sentence-BERT embed-
dings with in-domain substitutions. For each name along the columns, it is reported
the fraction of times A correctly recovers the last name when it is substituted with
a name along the rows. Samples is the number of training examples (≈ 850k) that
contain that name.

The same experiment was repeated by substituting the previous four names with
names from other domains such as Sport (e.g., Pellegrini), Arts (e.g., Pirandello),
and Entertainment (e.g., Ligabue).

Similarly to before, Table 5.7 reports for each name along the columns, the
fraction of times A correctly predicts the name when it is replaced with one of the
names along the rows.

It is interesting to see how, regardless of the original sentence (i.e., the one
containing one of the four names), the accuracy achieved by A when predicting the
substituted name is very similar between the four original sentences.

These results suggest that name recovery from Sentence-BERT embedding is
possible. The inversion does not only rely on the context represented by the other
words appearing with the name, as we have seen that when the name is placed in a
context, it usually does not belong to (e.g., Balotelli and European Central Bank),
the name can still be recovered. Of course, the context may help A correctly recover
words: for example, if the European Central Bank is mentioned, Draghi is a good
guess of another possible word. This is the strength of A that uses its predictions

2Despite the substitution is performed on the full name, Table 5.6 reports the accuracies only
for the last name.
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From

To Samples Berlusconi Draghi Padoan Renzi

Balotelli 1325 39.50 45.75 43.06 48.78
Benigni 295 29.18 32.89 30.90 35.71
Bocelli 92 5.69 7.18 7.99 11.63
Celentano 288 22.42 23.44 20.14 25.92
Fognini 232 17.08 20.79 18.40 26.53
Gallinari 129 4.27 4.54 5.21 8.57
Ligabue 122 13.52 14.37 19.44 20.61
Mancini 1212 21.71 30.81 25.69 30.82
Pellegrini 516 35.23 44.61 48.96 41.84
Pirandello 95 11.74 14.93 14.93 16.33

Table 5.7: Accuracies in the recovery of the last name from sentence-BERT em-
beddings with cross-domain substitutions. For each name along the columns, it is
reported the fraction of times A correctly recovers the last name when it is substi-
tuted with a name along the rows. Samples is the number of training examples (≈
850k) that contain that name.

to bias its subsequent guesses.

5.2.4 Performance Scaling with the Amount of Training

Data

It is interesting to analyze how the performance scales with the number of in-domain
data available to the attacker. For this reason, the inversion model A was trained to
invert vectorized sentences with a varying number of training examples. The same
hyperparameter configuration, found as described in 4.3.3, was used. The model
was probably more prone to overfit, given the reduced training data. It is very
likely that, with a hyperparameter search for each training size, more performance
could have been squeezed out of the inversion model. However, here we want to
observe just the performance trend. In addition, to counterbalance the reduction in
available training data, the number of epochs doubled from 100 to 200.

Figure 5.1 reports the inversion performance scaling for the hashing-based bag-
of-words and Sentence-BERT embeddings, which were observed to be on opposite
sides of the performance spectrum in Section 3.4.1.
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(a) Hashing-based bag-of-words.
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(b) Sentence-BERT.

Figure 5.1: Inversion performance scaling with the amount of training data. The
inversion model is trained with a varying number of vectorized in-domain sentences.



Chapter 6

Conclusion

In this work, we examined an array of strategies for encoding text into vectors of
features. Furthermore, we analyzed the amount of information an attacker can re-
trieve from these vectors by implementing a black-box inversion attack that only
accesses the numerical vectors. The inversion attack was designed to be as universal
as possible to be easily adapted to the various encoding strategies considered. De-
spite the attack model using a limited amount of information, the empirical results
showed that a considerable amount of data can be reliably recovered even from the
more advanced deep learning text representation models.

One of the objectives was to determine whether a partitioning approach con-
sisting of locally computing the vectorizations of customers’ text and training the
downstream model on the cloud could protect the customer’s privacy. Although this
strategy appeared effective on the surface, the empirical results highlight the need
for techniques specifically developed to address privacy leakage from vectorized text
representations. For example, a possible approach worth exploring is anonymizing
the vectors encoding texts via local differential privacy, as proposed in [41]. The
inversion attack analyzed could then be used to investigate how possible mitigations
affect privacy leakage other than the performance on the downstream task. For this
purpose, Section 6.1 describes some of the improvements that could be applied to
the attack model implemented in this work.

6.1 Inversion Attack Potential Improvements

In light of the results obtained and some observations mentioned in Chapter 4, here
we list some potential improvements not analyzed in this work that could potentially
improve the inversion attack analyzed.

• Use pre-trained word embeddings in place of randomly initialized ones in the
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word embedding matrix W2 (see Figure 4.2) to speed up the training of the
attack model A.

Moreover, suppose that we loosen the black-box access requirement. In that
case, it is also possible for some models (e.g., Sentence-BERT or Doc2Vec) to
use as attack model vocabulary Vattack the vectorization model vocabulary V .
Consequently, it is possible to initialize the word embedding matrix W2 with
the word embeddings used by the vectorization model.

• Change the loss in Equation 4.4 to better reward the attack model A whenever
it correctly guesses words that occur with low frequency in the training dataset.
For example, by weighting the estimated probabilities byA in a manner similar
to that performed in Section 4.3.2 to appropriately weight the words in the
generalized precision and recall metrics.

It is possible that with this kind of modification, adding the [EOS] token to
the target set of words would make the model predict fewer false positives.
However, in Appendix A.1 it is shown that just adding the [EOS] token to
the set of words to predict reduces the false positive predictions but also (with
loss in Equation 4.4) increases the number of false negatives, leading to poor
performance overall.

• As the cross-domain inversion model accesses a larger pool of training data, it
could be interesting to investigate how its inversion performance changes when
the number of words in Vattack increases beyond the 20k words considered here.



Appendix A

Additional Inversion Results

A.1 End-of-Sequence Token Included in the Set of

Words to Predict

In Section 4.2.3, it was shown that the inversion model A stops the prediction
whenever the [EOS] token is predicted (see Algorithm 1). The set prediction loss
of Equation 4.4 does not penalize the model if it predicts more words than there
are in the plaintext. Therefore, A rarely stops the prediction by predicting [EOS]

before reaching the maximum number of prediction steps defined a priori. This
consequently leads to many false positives (i.e., predicted words that do not appear
in the plaintext).

It is possible to include the [EOS] token in the target set of words to predict
W ⊆ Vattack. Doing so guides A to predict the [EOS] token and consequently stops
the prediction to avoid increasing the number of false positives.

The inversion model A was trained with this modification using in-domain data
to invert vectorized sentences produced by Sentence-BERT. The resulting precision,
recall, and F1 score averaged across all samples in the test set Dtarget are 64.05%,
18.75%, 27.20% respectively. For comparison, without the inclusion of [EOS] token,
the measured precision, recall and F1 score were 41.53%, 45.47%, 41.36% respectively
(see Table 5.2).

Table A.1 reports the same eight examples as Table 5.3 of Sentence-BERT
embedding inversions from Dtarget using A trained as just described. In particu-
lar, Table A.1 reports the plaintext x provided to the model Ψ(·) and the output
Wrec(x) \ {[EOS]} of A when the vector Ψ(x) is provided.

As can be observed from the performance metrics and the inversion examples,
this strategy yields a model A that has a lower number of false positives but a much
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higher number of false negatives, leading to increased precision but low recall, and
consequently a low F1 score.

Plaintext Inversion model prediction

l’ispezione si è conclusa con la richiesta
alla compagnia irlandese di versare
all’inps contributi per poco meno di
dieci milioni di euro.

compagnia, euro, ispezione,
milioni, poco, versare

certo, ci piacerebbe fare sempre di più
ma per riuscirci c’è bisogno di
favorevoli condizioni a contorno.

fare

per l’autobrennero l’allungamento
risulterebbe addirittura di 20 anni, con
3 miliardi di lavori.

allungamento, anni, quasi

ciò che non cambia invece è che
montepaschi potrebbe avere
prospettive mediocri, perché opera in
un’economia quasi immobile.

ai fini del raggiungimento dei requisiti,
nel rispetto dei limiti minimi di età e
contribuzione, contano anche le
frazioni d’anno.

limite, requisiti

l’indice mib, maglia nera in europa, ha
perso quasi il 5% (-4,3%) affossato
dalle vendite sulle banche.

banche, europa, indice, perso,
quasi

esselunga, bernardo caprotti ritira la
querela ai danni del figlio giuseppe.

bernardo, caprotti, esselunga

la commissione ue, però, ha dei dubbi
sul percorso immaginato.

commissione, dubbi, però, progetto,
ue

Table A.1: Inversion examples of Sentence-BERT with EOS token included. The
first column reports the text provided to the Sentence-BERT model. The second col-
umn reports the words inferred by A (excluding the EOS token) when the Sentence-
BERT vector is provided. The predicted words are sorted alphabetically and the
correctly predicted ones are highlighted.

A.2 Cross-domain Vectorized Sentences Inversion

In Section 5.2.1 the test dataset Dtarget generated as described in Section 4.3.1 was
used to compare the inversion performance in the in-domain and cross-domain sce-
narios. That is, each vectorized text Ψ(x) in the test dataset was assigned the set
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of words to predict W(x) ⊆ V in
attack. Therefore, if a word from Vcross

attack \ V in
attack ap-

peared in x, it was not taken into account in the performance measures reported in
the cross-domain section of Table 5.2. For completeness, here we report the perfor-
mance in the cross-domain scenario using D′

target where the set of words to predict
W(x) ⊆ Vcross

attack is assigned to each vectorized text Ψ(x) in the test dataset. In detail,
D′

target is defined as

D′
target =

{︄
(Ψ(xi),W(xi))

⃓⃓⃓⃓
⃓ xi test plaintext

W(xi) ⊆ Vcross
attack

}︄

Table A.2 reports the aggregate inversion performance on the test dataset D′
target

in the cross-domain scenario using the metrics described in Section 4.3.2.

Model pre rec F1 prew recw Fw
1

Bag-of-words + tf-idf 91.05 89.36 88.31 89.90 88.05 86.41
Hashing 92.56 89.44 89.34 91.76 88.04 87.77
Reduced bag-of-words 74.38 71.45 70.91 70.70 66.22 65.66
Reduced hashing 71.34 68.91 68.02 67.65 63.56 62.72
Doc2Vec 53.25 58.21 52.97 57.38 60.01 56.26
Sentence-BERT 41.34 44.04 40.65 41.35 40.96 38.90

Table A.2: Inversion results of vectorized sentences in the cross-domain scenario.
The performance metrics are precision, recall, F1 score, and their generalized
weighted variants. For each metric, the reported values correspond to the aver-
age value of all samples in the test set.
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