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Introduction

Directed probabilistic models have become an important component of ma-

chine learning. Very often, data can be modeled with the help of latent

variables, of which we are interested in computing the posterior distribution

using Bayes’ theorem. However, for most interesting models, this computa-

tion is intractable: we need to resort to approximate inference techniques.

In this vein, we will focus primarily on a method called variational inference

(VI), which we will equivalently refer to as variational Bayes (VB).

Variational Bayes is to optimally approximate the posterior density p(·)
with a manageable density belonging to the q(·) family. This is done by

minimizing the Kullback-Leibler divergence kl(q || p) (Kullback & Leibler,

1951), or more easily by maximizing a lower bound on the log likelihood,

which provides a surrogate target more amenable to optimization. Compared

with Markov chain Monte Carlo (MCMC) sampling methods, which are the

leading paradigm of Bayesian statistics, variational inference provides an

approach that is better suited to large data and complex models.

From a historical perspective, variational inference originated from ideas

of neural networks (Hinton & Van Camp, 1993; Peterson, 1987) and sta-

tistical mechanics (Parisi, 1988). After that, there was a flurry of works

that derived variational inference for models conditionally in the exponen-

tial family, as reviewed by (Jordan et al., 1999; Wainwright et al., 2008).

Modern research on variational inference focuses on developing fast, auto-

mated algorithms for applying VI to massive data and nonconjugate models

(Kucukelbir et al., 2017; Ranganath et al., 2014). Particular attention has

been paid to the so-called deep generative models (Kingma & Welling, 2014;

Rezende et al., 2014), which exploit hierarchical architectures to simulate
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from the data generative process.

These models benefit from recent advances in deep learning, which is

discovering layered representations of high-dimensional data with multiple

levels of abstraction (Bengio et al., 2013). In this context, we distinguish

methods such as convolutional neural networks, which are extremely suc-

cessful in computer vision tasks, and autoencoders, which allow to learn

useful features about data.

The aim of this thesis is to show how variational inference can be com-

bined with the representational power of deep learning to arrive at varia-

tional autoencoders (VAEs) (Kingma & Welling, 2014), models that learn to

generate new realistic data. VAEs are powerful but difficult-to-master meth-

ods, since they blend knowledge from variational Bayes and neural networks.

We bridge this gap by untangling all the components inside the "black-box".

The work is organized as follows. Chapter 1 presents the basic ideas of

variational inference with the Gaussian mixture model (GMM) example.

With reference to this, we compare the Bayesian estimation with the max-

imum likelihood EM (expectation-maximization) algorithm, and then we

apply VB for clustering natural images according to their color profiles.

In Chapter 2 we see how the Bayesian GMM example is a special case

of VB applied to conditionally conjugate exponential family models, and

we compare it with a corrispondent collapsed Gibbs sampler. Next we show

how, within this family, stochastic variational inference (SVI) scales to large

data. Finally, black box variational inference (BBVI) methods are discussed,

which allow VI to be applied to a broad range of nonconjugate models.

Chapter 3 describes the theory and practicalities behind neural networks,

ranging from their structure, to optimization methods and up to regular-

ization strategies. Convolutional neural networks are presented, along with

autoencoders, which represent a nonlinear extension of PCA (principal com-

ponent analysis).

Lastly, Chapter 4 illustrates the example of variational autoencoders,

which combine ideas from all the previous chapters. VAEs are applied to

images of handwritten digits and celebrity faces.



Chapter 1

Variational Inference

Approximating difficult-to-compute probability densities is a central prob-

lem of modern statistics. This is particularly relevant within the Bayesian

framework, where inference is founded on evaluation of the posterior distri-

bution, which is intractable for many models. Let x = (x1, . . . , xN) be a set

of observed variables and z = (z1, . . . , zK) be a set of latent variables. The

inference problem amounts to computing the posterior density p(z|x), which

can be obtained by applying the Bayes’ theorem

p(z|x) = p(x|z) p(z)
p(x)

, (1.1)

where p(x|z) is the likelihood of the data, p(z) is the prior density of z and

the denominator is calculated by marginalizing out the latent variables as

p(x) =

∫
p(x|z) p(z) dz. (1.2)

The latter is known as marginal likelihood and it is usually called evidence

in the computer science literature.

In many situations of practical interest, the evaluation of p(x) is either

not possible through closed-form analytical solutions or it requires expo-

nential time. Therefore, in such situations, we need to rely on approxima-

tion schemes, which fall broadly into two classes, according to whether they

are stochastic or deterministic. As for stochastic techniques, Markov chain
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Monte Carlo (MCMC) sampling methods have revolutionized the Bayesian

approach, in which they still remain the leading paradigm. MCMC methods

first construct an ergodic Markov chain on z whose stationary distribution

is the posterior density p(z|x). Then, it is possible to sample from the chain,

approximating the posterior with an empirical estimate constructed from

the collected samples. Given infinite computational resources, MCMC tech-

niques provide guarantees of producing (asymptotically) exact samples from

the target density (Robert & Casella, 2004); the approximation arises from

the use of a finite amount of processor time.

The downside of these methods is that they tend to be computationally

demanding in problems where datasets are large or models are very com-

plex. In these settings, variational approximations are a better alternative

to MCMC, since they provide an inferential approach that is faster and

easier to scale up to massive data. Specifically, variational approximations

constitute a deterministic approach based on analytical approximations to

the posterior distribution. However, these techniques are limited in their ap-

proximation accuracy, as opposed to MCMC, which can be made arbitrar-

ily accurate by increasing the Monte Carlo sample size. Summing up, the

strengths and weaknesses of variational approximations are complementary

to those of sampling methods.

From now on, we will focus on a family of variational approximation tech-

niques called variational inference or variational Bayes, which has its roots

in variational calculus, a branch of mathematics which studies small changes

in functionals. The latter are a mapping from an input function to the corre-

sponding outcome, e.g. the entropy H(p), which takes a probability distribu-

tion p(x) as the input and returns the quantity H (p) = −
∫
p(x) log p(x) dx.

Variational calculus is concerned with the problem of optimizing a functional

over a class of functions on which that functional depends. Although there is

nothing instrinsically approximate about this method, variational inference

lends itself to finding approximate solutions, restricting the class of functions

in a way that we present in the next section.
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1.1 The density transform approach

The density transform approach (Ormerod & Wand, 2010) involves approx-

imation of posterior densities p(z|x) by other distributions q(z) for which

inference is more tractable. The key idea is to solve this problem with op-

timization, restricting q(·) to belong to a family of tractable densities. For-

mally, let Q be a family of densities over the latent variables z, whose

single member is denoted with q(z) and called variational density. The goal

of variational Bayes is to find the density q∗(z) that minimizes a particu-

lar functional, the Kullback-Leibler (kl) divergence between the variational

density q(z) and the true posterior density p(z|x):

kl (q(z) ||p(z|x)) =
∫
q(z) log

{
q(z)

p(z|x)

}
dz (1.3)

q∗(z) = argmin
q(z)∈Q

kl (q(z) ||p(z|x)) . (1.4)

The kl divergence is an information-theoretical measure of proximity be-

tween two densities. It is asymmetric, that is kl (q ||p) 6= kl (p ||q), nonneg-

ative and it is minimized when q(·) = p(·).
Variational inference thus turns the inference problem into an optimiza-

tion problem, the complexity of which depends on the family of approximate

densities Q chosen. However, the objective in (1.3) is not computable be-

cause it requires the evaluation of the true posterior p(z|x). Let us see how

the optimization problem can be rewritten in an alternative feasible form.

1.1.1 The evidence lower bound

The logarithm of the marginal likelihood satisfies

log p(x) = log p(x)

∫
q(z) dz =

∫
q(z) log p(x) dz

=

∫
q(z) log

{
p(x, z)/q(z)

p(z|x)/q(z)

}
dz

=

∫
q(z) log

{
p(x, z)

q(z)

}
dz +

∫
q(z) log

{
q(z)

p(z|x)

}
dz.

(1.5)
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So far we have assumed that z is a continuous random variable; the discrete

case has a similar treatment, but with summations rather than integrals.

Nevertheless, defining the evidence lower bound (elbo) as

elbo(q) =

∫
q(z) log

{
p(x, z)

q(z)

}
dz , (1.6)

we can rewrite equation (1.5) in the following alternative form

log p(x) = elbo(q) + kl (q(z) ||p(z|x)) . (1.7)

Since kl(·) ≥ 0, from equation (1.7) it follows immediately that, consistent

with the name, the elbo lower-bounds the log-marginal likelihood, that is

log p(x) ≥ elbo(q) for any q(z).

Therefore, according to result (1.7), it is clear that maximizing the lower

bound elbo(q) is equivalent to minimizing the Kullback-Leibler divergence

kl (q ||p), which was the optimization problem of interest, as equation (1.4)

shows. The essence of the density transform variational approach is thus

approximation of the posterior density p(z|x) by a q(z) for which elbo(q)

is more tractable than p(x). In order to achieve tractability, we restrict q(z)

to a more convenient class of densities and then maximize elbo(q) over

that class: the complexity of the family Q determines the complexity of the

optimization. Therefore, the goal of variational inference is to choose Q to

be flexible enough to capture a density close to the true posterior, but simple

enough for efficient optimization.

Two common restrictions for the q density are:

(a) q(z) =
∏M

i=1 qi(zi), for some partition {z1, . . . , zM} of z;

(b) q(·) is a member of a parametric family of distributions.

In the case of (a), the factorization is the only assumption being made and

in principle each factor can take on any distribution. Thus (a) is a nonpara-

metric restriction, known as mean field variational Bayes (MFVB), since it

has roots in the framework of physics called mean field theory (Parisi, 1988).

Instead restriction (b), when q(·) is assumed to be multivariate Gaussian,

yields the Gaussian variational Bayes (GVB).
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1.1.2 Mean field variational Bayes

Focusing on the mean field factorization, it is possible to rewrite the lower

bound as

elbo(q) =

∫ M∏

i=1

qi(zi)

{
log p(x, z)−

M∑

i=1

log qi(zi)

}
d z1 . . . d zM

=

∫
q1(z1)

{∫ (
log p(x, z) q2(z2) . . . qM(zM)

)
d z2 . . . d zM

}
d z1

−
∫
q1(z1) log q1(z1) d z1 + const ,

(1.8)

where const contains terms not involving q1(z1). Define the new joint density

p̃(x, z1) by the relation

log p̃(x, z1) =

∫
log p(x, z) q2(z2) . . . qM(zM) d z2 . . . d zM + const. (1.9)

Then the lower bound is equal to

elbo(q) =

∫
q1(z1) log

{
p̃(x, z1)

q1(z1)

}
d z1 + const. (1.10)

Recognizing that equation (1.10) is the negative Kullback-Leibler divergence

between q1(z1) and p̃(x, z1), which is maximized when q1(z1) = p̃(x, z1), we

have that

q∗1(z1) = argmax
q1(z1)∈Q

elbo(q) = p̃(z1|x) ≡
p̃(x, z1)∫
p̃(x, z1) d z1

∝ exp

{∫
log p(x, z) q2(z2) . . . qM(zM) d z2 . . . d zM

}

= exp {E−z1 [log p(x, z)]} ,

(1.11)

where E−z1 denotes expectation with respect to the density
∏

j 6=1 qj(zj).

Repeating the same argument leads to the general expression for the optimal

densities

q∗i (zi) ∝ exp {E−zi
[log p(x, z)]}, i = 1, . . . ,M. (1.12)

It is easily shown that a equivalent expression for the optimal q∗i (zi) is

q∗i (zi) ∝ exp {E−zi
[log p (zi | z−i,x)]}, i = 1, . . . ,M. (1.13)
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Algorithm 1: Coordinate ascent variational inference (CAVI)

Initialize: Variational factors q∗i (zi)

while elbo has not converged do

for i ∈ {1, . . . ,M} do

q∗i (zi)←
exp{E−zi

[log p(zi | z−i,x)]}∫
exp{E−zi

[log p(zi | z−i,x)]} d zi

end

Compute elbo(q∗)

end

return q∗(z) =
∏M

i=1 q
∗
i (zi)

Result (1.13) suggests an iterative procedure (see Algorithm 1) to solve

for the optimal variational densities q∗i (zi) that is known as coordinate as-

cent variational inference (CAVI) (Ghahramani & Beal, 2001). CAVI cycles

through the variational factors and replaces each of them in turn, climbing

the ELBO: it can be shown that convergence to at least local optima is

guaranteed (see e.g. Titterington & Wang, 2006).

We will see that if conditionally conjugate priors are used, then the q∗i

belong to recognizable density families and the q∗i updates reduce to up-

dating parameters in the q∗i family. Moreover, equation (1.13) reveals that

CAVI is closely related to Gibbs sampling (Geman & Geman, 1984). Indeed,

the distributions p(zi | z−i,x) are known as full conditionals in the MCMC

literature: the Gibbs sampler maintains a realization of the latent variables

and iteratively samples from the full conditional of each variable. CAVI only

requires the exponentiated expectation of the log-full conditionals.

Finally, it should be emphasized that the choice of the specific factoriza-

tion is a crucial aspect of mean field variational Bayes.

Example 1. Suppose that the density p (z|x) = p (z1, z2, z3 |x) has to be

approximated. Possible factorizations for q(z) are

q(z1) q(z2) q(z3), q(z1, z2) q(z3), q(z1) q(z2, z3), q(z1, z3) q(z2).

If there is strong correlation between any of the components of z, choosing

the first mean field full factorization, will result in a weak approximation.
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Useful insights about conditional independence properties of the distri-

bution of interest can be highlighted by expressing it as a particular type

of probabilistic graphical model, the Directed Acyclic Graph (DAG). These

kind of graphs are also known as Bayesian networks (Jordan, 1999), since

they are especially helpful tools in Bayesian inference. A graph comprises

nodes connected by links ; in a DAG each node represents a random variable

(or group of random variables) and the links express directed probabilistic

relationships between these variables.

Example 2. Let z = (z1, z2, z3, z4) be latent variables. Consider a joint

density p(x, z) with the following decomposition

p(x, z) = p(x|z2, z3, z4) p(z4|z3) p(z2|z1) p(z1) p(z3). (1.14)

The DAG provides a simple visualization of the probabilistic structure:

x

z2z1

z4

z3

Figure 1.1: DAG describing the joint density (1.14).

Note that the observed variable x is denoted by shading the corresponding

node and that the conditional distributions are depicted as directed links

starting from the nodes of the conditioning variables. We say for example

that node x is the child of node z3 and symmetrically z3 is the parent of x,

with z2 and z4 called the co-parents of z3.

That being said, representations such as the one in Figure 1.1 can be

exploited to define the notion of Markov blankets. In a DAG, the Markov

blanket of the node zi is the set of its parents, children and co-parents; this

concept is strictly connected to the properties of mean field variational Bayes

approximations. Indeed, CAVI can be seen as a message passing algorithm,

which means that during updates, considering the full conditional of a vari-

able zi, it is possible to drop all the variables that are not in its Markov

blanket. See (Winn & Bishop, 2005) for further discussion.
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1.2 A complete example: mixture of Gaussians

We now illustrate a full example involving the Gaussian mixture model,

which provides many insights into the practical application of variational

methods. First, we present the expectation-maximization (EM) algorithm to

find (local) maximum likelihood estimates for this model. Then, we show

how, adopting the variation inference framework, a Bayesian treatment ele-

gantly solves some of the difficulties associated with the maximum likelihood

approach.

The Gaussian mixture model is a linear superposition of Gaussian com-

ponents, whose aim is to provide a richer class of densities models than the

single Gaussian. Indeed a Gaussian mixture model is a universal approx-

imator of densities, in the sense that almost any smooth density can be

approximated to arbitrary accuracy by a mixture of Gaussians with enough

components (Plataniotis & Hatzinakos, 2000).

Hence, consider a data set X = {x1, . . . ,xN}, where the generic observa-

tion xn is a D-dimensional vector. Following (Bishop, 2006), the Gaussian

mixture density can be written in the form

p(xn) =
K∑

k=1

πkN (xn|µk,Σk) , (1.15)

where each (multivariate) Gaussian N (xn|µk,Σk) constitutes a component

of the mixture and has its own mean µk and covariance Σk. The parameters

πk are known as mixing coefficients and satisfies the requirements to be

probabilities, namely 0 ≤ πk ≤ 1 together with
∑K

k=1 πk = 1.

The Gaussian mixture can be expressed in terms of discrete latent vari-

ables, which are interpreted as defining assignments of data points to specific

components of the mixture. Let us denote the (unknown) latent variables

by Z = {z1, . . . , zN}, where each generic zn is a K-dimensional random

variable, that defines which is the true component that generated the cor-

responding observation xn. Thus, zn has a 1-of-K representation in which

a particular element znk is equal to 1 and all other elements are equal to 0,

satisfying znk ∈ {0, 1} and
∑K

k=1 znk = 1.
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We have that the marginal distribution over zn is specified in terms of

the mixing coefficients πk , as

p(znk = 1) = πk. (1.16)

Since Z is an array of 1-of-K representations, the marginal distribution over

Z is a categorical (Appendix A) and can be written down in the form

p(Z) =
N∏

n=1

Cat(zn|π) =
N∏

n=1

K∏

k=1

πznk

k . (1.17)

Similarly, the conditional distribution of xn given a particular value for zn

is a Gaussian

p(xn|znk = 1) = N (xn|µk,Σk) (1.18)

and the conditional distribution of X given Z can be thus written as

p(X|Z) =
N∏

n=1

K∏

k=1

N (xn|µk,Σk)
znk . (1.19)

A quantity that will play an important role is the conditional probability

of zn given xn, which can be defined using Bayes’ theorem

γ(znk) ≡ p(znk = 1|xn) =
p(znk = 1) p(xn|znk = 1)

∑K
j=1 p(znj = 1) p(xn|znj = 1)

=
πkN (xn|µk,Σk)∑K
j=1 πj N (xn|µj,Σj)

.

(1.20)

The quantity γ(znk) is viewed as the responsibility that component k takes

for explaining the observation xn. We shall view πk as the prior probability

of znk = 1 and γ(znk) as the corresponding posterior probabilty once we

have observed xn.

Finally, we can express the Gaussian mixture model as the directed

acyclic graph shown in Figure 1.2. The surrounding box labeled with N

is called plate and indicates that there are N i.i.d observations (nodes) with

corresponding latent variables. This example provides a good illustration of

the distinction between latent variables and parameters. Variables like zn,

which are inside the plate, are regarded as latent variables since the number
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of such variables grows with the size of the dataset. Contrarily, variables

like µ are considered parameters, because they are fixed in number indepen-

dently of the size of the dataset. This distinction is important within the

maximum likelihood approach, whereas from a Bayesian perspective there

is really no fundamental difference between them.

xn Σµ

znπ

N

Figure 1.2: Graphical representation of the Gaussian mixture model for a set

of N i.i.d observations xn with corresponding latent variables zn.

From formula (1.15) it follows that the log likelihood of the model is:

log p(X|µ,Σ,π) =
N∑

n=1

log

{ K∑

j=1

πkN (xn|µk,Σk)

}
. (1.21)

The maximization of this function turns out to be problematic because of the

presence of the summation inside the logarithm, which no longer acts directly

on the Gaussian. As a result, setting the derivative of the log likelihood to

zero, we do not obtain a closed form solution. In the next section, we try to

solve this problem by replacing this difficult maximization with a series of

easier maximizations, which is the key idea behind the EM algorithm.

1.2.1 Maximum likelihood EM algorithm

In general terms, consider a joint distribution p(X,Z|ϑ) over observed vari-

ables X and latent variables Z, governed by parameters ϑ. The goal of

the expectation-maximization (EM) algorithm (Dempster et al., 1977) is to

maximize the likelihood function p(X|ϑ) with respect to ϑ.1 The algorithm

1In general the EM algorithm can also be used to find MAP (maximum a posteri-

ori) solutions for Bayesian models in which a prior p(ϑ) is defined over the parameters.

However, in this chapter we refer only to the maximum likelihood approach.
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involves the following steps

1. Choose an initial setting for the parameters ϑ̂(0).

2. E step: compute Q (ϑ, ϑ̂(j);X) = E
ϑ̂(j)

[log p(X,Z|ϑ)] , where the ex-

pectation is taken with respect to the distribution p(Z|X, ϑ̂(j)).

3. M step: obtain ϑ̂(j+1) = argmaxϑQ (ϑ, ϑ̂(j);X).

4. Check for convergence of either the log likelihood or the parameter

values. If the convergence criterion is not satisfied, return to step 2.

Therefore, EM algorithm iteratevely alternates between expectation and

maximization steps: it can be proved (Neal & Hinton, 2000) that each cycle

increase the log likelihood function (unless it is already at a local maximum).

Returning to the Gaussian mixture model, we can now suppose that the

latent variables Z are observed. Augmenting the data, from (1.17) and (1.19)

the log likelihood for the complete dataset {X,Z} takes the form

log p(X,Z|µ,Σ,π) =
N∑

n=1

K∑

k=1

znk {log πk + logN (xn|µk,Σk)}. (1.22)

Comparison with the incomplete log likelihood (1.21) shows that now the

logarithm acts directly on the Gaussian distribution, which leads to a sim-

pler maximization. However, in practice the values for the latent variables

are unknown. Thus, as seen in the general EM algorithm, we need to con-

sider the expectation of the complete log likelihood, with respect to the

posterior distribution of the latent variables. Using (1.17), (1.19) and the

Bayes’ theorem, this posterior distribution takes the form

p(Z|X,µ,Σ,π) ∝
N∏

n=1

K∏

k=1

[πkN (xn|µk,Σk)]
znk . (1.23)

The expected value of the indicator variable znk under this posterior distri-

bution is then given by

E [znk] =

∑
znk

znk [πkN (xn|µk,Σk)]
znk

∑
znj

[πj N (xn|µj,Σj)]
znj

=
πkN (xn|µk,Σk)∑K
j=1 πj N (xn|µj,Σj)

= γ(znk),

(1.24)
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which is just (1.20), the responsibility of component k for observation xn.

Using this last result, it is therefore possible to obtain the expected value of

the complete log likelihood (E step) as

EZ [log p(X,Z|µ,Σ,π)] =
N∑

n=1

K∑

k=1

γ(znk) {log πk + logN (xn|µk,Σk)}.

(1.25)

The M step then involves the maximization of the quantity (1.25) with

respect to the parameters µk, Σk and πk, given the responsibilities’ values

γ(znk). Starting by maximizing with respect to µk, we obtain the equation

0 = −
N∑

n=1

πkN (xn|µk,Σk)∑
j πj N (xn|µj,Σj)︸ ︷︷ ︸

γ(znk)

Σ
−1
k (xn − µk) . (1.26)

Multiplying by Σk (which we assume to be nonsingular) and rearranging we

obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn , (1.27)

where we have defined

Nk =
N∑

n=1

γ(znk) , (1.28)

which can be viewed as the effective number of points assigned to cluster k.

Repeating a similar reasoning with respect to Σk gives

Σk =
1

Nk

N∑

n=1

γ(znk) (xn − µk)(xn − µk)
T . (1.29)

Note that, for the k-th Gaussian component, both the mean µk and the

covariance Σk are obtained by taking a weighted mean (covariance) of all

points in the dataset, in which the weighting factor for observation xn is the

responsibilty γ(znk).

Finally, we can maximize (1.25) with respect to πk using the Lagrange

multiplier

EZ [log p(X,Z|µ,Σ,π)] + λ

(
K∑

k=1

πk − 1

)
, (1.30)

whose maximization gives the equation

0 =
N∑

n=1

N (xn|µk,Σk)∑
j πj N (xn|µj,Σj)

+ λ. (1.31)
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Algorithm 2: EM for the Gaussian mixture model

Initialize: µk, Σk, πk

while log likelihood or parameters have not converged do

E step: γ(znk) =
πk N (xn|µk,Σk)∑
j πj N (xn|µj ,Σj)

M step: Nk =
∑N

n=1 γ(znk)

µk ← 1
Nk

∑N
n=1 γ(znk)xn

Σk ← 1
Nk

∑N
n=1 γ(znk) (xn − µk)(xn − µk)

T

πk ← Nk

N

Evaluate log p(X|µ,Σ,π)
end

return γ(znk), µk, Σk, πk

Multiplying (1.30) by πk and summing over k using
∑

k πk = 1, we obtain

λ = −N . Using this to eliminate λ and rearranging, we find

πk =
Nk

N
, (1.32)

which means that the k-th mixing coefficient can be interpreted as the ef-

fective proportion of data points assigned to cluster k.

Thus, the results we derived suggest an iterative scheme for the EM algo-

rithm, in order to find (local) maximum likelihood solutions. As Algorithm 2

shows, the E step evaluate the posterior probabilities (responsibilities) by re-

sult (1.20); while the M step re-estimates the means, covariances and mixing

coefficients using the results (1.27), (1.29) and (1.32).

However, there is a notable problem associated with the maximum like-

lihood approach applied to Gaussian mixture models, due to the presence of

singularities. Without loss of generality, consider the case where the covari-

ances matrices of the components take the simplified form Σk = σ2
k I, with

I identity matrix. Now suppose that the j-th component of the mixture has

its mean µj exactly equal to one observation, that is µj = xn for some n.

Then this observation will contribute to the likelihood with the term

N (xn|xn, σ
2
k I) =

1

(2π)1/2 σj
. (1.33)
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Considering the limit σj → 0, we observe that the term (1.33) and the corre-

sponding likelihood go to infinity. That arises whenever one of the Gaussian

components ’collapses’ onto a specific observation and in the general case,

it leads to a singular covariance matrix, hence the name.

An illustration is provided in Figure 1.3, which shows that one component

of the mixture has finite variance and assigns probability to all the obser-

vations, while the ’spiky’ component shrinks onto one specific data point.

This is an example of the overfitting that can occur in a maximum likelihood

framework.

x

p(x)

Figure 1.3: Singularity issue in a Gaussian mixture model. The red curve is the

mixture density fitted through the maximum likelihood approach,

while the black points are the true observations drawn from a

single Gaussian. Source: (Bishop, 2006)

1.2.2 Variational Bayesian estimation

We now add a Bayesian flavor to the Gaussian mixture model by applying

the variational inference machinery developed in Section 1.1. It will be shown

how this Bayesian treatment elegantly solves some difficulties related to the

maximum likelihood approach.

Consider again the N × D observed data set X and the corresponding

N ×K matrix of latent variables Z. The specification of the mixture model

is the same as discussed above, but with the addition of prior information

about the parameters. Therefore, the conditional distribution of Z given the
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mixing coefficients π is a categorical, that is

p(Z|π) =
N∏

n=1

Cat(zn|π) =
N∏

n=1

K∏

k=1

πznk

k . (1.34)

In the same way, the conditional distribution of the observations, given the

latent variables and the component parameters, takes the Gaussian form

p(X|Z,µ,Λ) =
N∏

n=1

K∏

k=1

N (xn|µk,Λ
−1
k ) znk , (1.35)

where the model is parametrized with the precision matrices {Λk} because

this will simplify the mathematics.

According to (Bishop, 2006), priors over the parameters µ, Λ and π are

chosen to be conditionally conjugate distributions (Gelman et al., 2013).

Specifically, the prior on the mixing weights π is a Dirichlet distribution

p(π) = Dir(π|α0) = C(α0)
K∏

k=1

π α0−1
k , (1.36)

where C(α0) is the Dirichlet normalization costant defined by (A.6) in Ap-

pendix A. The hyperparameter α0 can be interpreted as the prior number of

observations associated with each component of the mixture. By symmetry,

the same α0 has been chosen for each of the components.

As for the other two parameters, the conditionally conjugate prior is

an independent Gaussian-Wishart distribution, which governs the unknown

mean and precision of each Gaussian component, such that

p(µ,Λ) = p(µ|Λ) p(Λ)

=
K∏

k=1

N
(
µk|m0, (β0 Λk)

−1
)
W (Λk|W0, ν0) ,

(1.37)

where W(·) stands for the Wishart distribution, defined in Appendix A.

At this point, it is possible to express the complete model through the

following decomposition of the joint distribution

p(X,Z,π,µ,Λ) = p(X|Z,µ,Λ) p(Z|π) p(π) p(µ|Λ) p(Λ), (1.38)

which corresponds to the graphical representation provided in Figure 1.4.

Observe that there is a link from Λ to µ because, according to (1.37), the

variance of the prior over µ depends on Λ.
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xn

znπ

µ

Λ

N

Figure 1.4: Directed acyclic graph representation of the Bayesian Gaussian

mixture model for a set of N i.i.d observations xn with corre-

sponding latent variables zn.

Following (Bishop, 2006), consider now an approximation to the in-

tractable posterior p(Z|X,π,µ,Λ), given by the variational distribution that

factorizes between the latent variables and the parameters

q(Z,π,µ,Λ) = q(Z) q(π,µ,Λ). (1.39)

It should be emphasized that this is the only assumption we make in order

to achieve a tractable solution; the functional form of the factors will then

specified automatically by the optimization. Using the general result (1.12)

and absorbing into the constant all the terms of the joint density (1.38) that

do not depend on Z, the optimal q(Z) has the form

log q∗(Z) = Eπ [log p(Z|π)] + Eµ,Λ [log p(X|Z,µ,Λ)] + const. (1.40)

Substituting for the conditional distributions (1.34) and (1.35), we obtain

log q∗(Z) =
N∑

n=1

K∑

k=1

znk log ρnk + const, (1.41)

where we have defined

log ρnk = E [log πk]−
D

2
log 2π +

1

2
E [log |Λk| ]

− 1

2
Eµk,Λk

[(xn − µk)
T
Λk(xn − µk)].

(1.42)

Exponentiating both sides of (1.41) gives

q∗(Z) ∝
N∏

n=1

K∏

k=1

ρ znk

nk , (1.43)
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which can be normalized in the following way:

q∗(Z) =
N∏

n=1

K∏

k=1

r znk

nk , rnk =
ρnk∑K
j=1 ρnj

. (1.44)

Recognize that q∗(Z) takes the same distribution as p(Z|π), that is categor-

ical, with E[znk] = rnk , where by construction rnk ≥ 0 and
∑K

k=1 rnk = 1.

Thus, rnk is the responsibility that component k takes for explaining ob-

servation xn. It is convenient to define the following three statistics of the

dataset calculated with respect to the responsibilities:

Nk =
N∑

n=1

rnk (1.45)

xk =
1

Nk

N∑

n=1

rnk xn (1.46)

Sk =
1

Nk

N∑

n=1

rnk (xn − xk)(xn − xk)
T , (1.47)

analogous to quantities (1.27) , (1.28) and (1.29) seen for the EM algorithm.

Consider now the other factor q(π,µ,Λ). Again using the general result

(1.12) and the joint density (1.38), the optimal solution is given by:

log q∗(π,µ,Λ) = log p(π) +
K∑

k=1

log p(µk,Λk) + EZ[log p(Z)]

+
K∑

k=1

N∑

n=1

E[znk] logN
(
xn|µk,Λ

−1
k

)
+ const.

(1.48)

Note that the right-hand side comprises terms involving only π together

with a sum over k of terms involving only µk and Λk, which leads to the

further factorization

q(π,µ,Λ) = q(π)
K∏

k=1

q(µk,Λk). (1.49)

It should be emphasized that the latter is known as induced factorizaton,

since it arises from the interaction between the assumed factorization and

the conditional indipendence properties of the true distribution shown in

Figure 1.4.
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Focusing on the terms of (1.48) that depend on π, it follows that

log q∗(π) = (α0 − 1)
K∑

k=1

log πk +
K∑

k=1

N∑

n=1

rnk log πk + const, (1.50)

where we used the fact that E[znk] = rnk. We recognize the distribution to

be the same of the conjugate prior, that is a Dirichlet

q∗(π) = Dir(π|α), (1.51)

where α has components αk given by

αk = α0 +Nk. (1.52)

Finally, we can obtain the optimal variational posterior distribution for

µk and Λk using the chain rule q∗(µk,Λk) = q∗(µk|Λk) q
∗(Λk). As expected

from looking at the conjugate prior (1.37), the result is a Gaussian-Wishart

distribution

q∗(µk,Λk) = N
(
µk|mk, (βk Λk)

−1
)
W (Λk|Wk, νk) , (1.53)

where posterior hyperparameters are defined by the conjugacy property

(A.24) such that

βk = β0 +Nk (1.54)

mk =
1

βk
(β0m0 +Nkxk) (1.55)

W−1
k = W−1

0 +NkSk +
β0Nk

β0 +Nk

(xk −m0) (xk −m0)
T (1.56)

νk = ν0 +Nk. (1.57)

Note that the optimal variational densities (1.51) and (1.53) depend on the

statistics Nk , xk and Sk, which requires the expectations of the latent vari-

ables E[znk] = rnk , that are the responsibilities. These are obtained by nor-

malizing the quantities ρnk in (1.42), which in turn involve expectations with

respect to the variational distributions of the parameters. The evaluation of

these three expectations gives

Eµk,Λk

[
(xn − µk)

T
Λk(xn − µk)

]
= Dβ−1

k + νk(xn −mk)
TWk(xn −mk)

(1.58)
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log π̃k ≡ E[log πk] = ψ(αk)− ψ(α̂) (1.59)

log Λ̃k ≡ E [log|Λk|] =
D∑

i=1

ψ

(
νk + 1− i

2

)
+D log 2 + log |Wk|, (1.60)

where we have introduced definitions of log π̃k and log Λ̃k. Result (1.58)

follows from (A.20), while results (1.59) and (1.60) are properties of the

Dirichlet and Wishart distributions respectively listed in (A.10) and (A.32).

Substituting the three previous expectations into (1.42) and normalizing,

the responsibilities are such that

rnk ∝ π̃k Λ̃k exp

{
− D

2βk
− νk

2
(xn −mk)

TWk(xn −mk)

}
. (1.61)

Therefore, it is clear that the optimal solutions for q∗(Z) and q∗(π,µ,Λ)

are coupled and must be determined iteratively. The fact that we are deal-

ing with a model in which each full conditional is in the exponential family,

ensures that the variational factors take the same distributions as the cor-

responding conjugate priors. For this reason, the variational updates reduce

to updating parameters in the distributions of interest.

In this way, CAVI implicates cycling between two stages analogous to

the E and M steps of the maximum likelihood EM algorithm, as shown in

Algorithm 3. In the variational equivalent of the E step, we evaluate the

responsibilities (1.61) by means of the expectations (1.58), (1.59), (1.60).

Then in the ensuing variational equivalent of the M step, fixed these re-

sponsibilities, we first compute the statistics (1.45), (1.46), (1.47) and then

update the variational parameters (1.52), (1.54), (1.55), (1.56), (1.57).

It is also possible to evaluate the expected values of the mixing coefficients

in the posterior distribution that, using the Dirichlet mean, are given by

E[πk|X] =
α0 +Nk

Kα0 +N
. (1.62)

Consider a component k that takes practically no responsibility for explain-

ing the data points, which means rnk ' 0 and thus Nk ' 0. Then, if the prior

over the mixing coefficients is broad so that α0 → 0, we have E[πk|X] → 0

and that component plays no role in the model. If on the other hand the

prior imposes a tight constraint so that α0 →∞, then E[πk|X]→ 1/K.
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Algorithm 3: CAVI for the Bayesian Gaussian mixture model

Initialize: αk, βk,mk,W
−1
k , νk

while elbo has not converged do

Optimize q(Z):

rnk ∝ π̃k Λ̃k exp

{
− D

2βk
− νk

2 (xn −mk)
T

Wk (xn −mk)

}

Optimize q(π,µ,Λ):

αk ← α0 +Nk

βk ← β0 +Nk

mk ← 1
βk

(β0m0 +Nkxk)

W
−1
k ←W

−1
0 +NkSk +

β0Nk

β0+Nk
(xk −m0) (xk −m0)

T

νk ← ν0 +Nk

Evaluate elbo(q)

end

return rnk, αk, βk,mk,W
−1
k , νk

At this point, in order to carry out Algorithm 3, we only need the eval-

uation of the lower bound. From definition (1.6) it can be written as

elbo(q) =
∑

Z

∫ ∫ ∫
q(Z,π,µ,Λ) log

{
p(X,Z,π,µ,Λ)

q(Z,π,µ,Λ)

}
dπ dµ dΛ

= E[log p(X|Z,π,µ,Λ)] + E[log p(Z,π,µ,Λ)]− E[log q(Z,π,µ,Λ)]

= E[log p(X|Z,π,µ,Λ)]− kl (q(Z,π,µ,Λ) || p(Z,π,µ,Λ)) ,

(1.63)

where all expectations are taken with respect to q(Z,π,µ,Λ). The first term

of (1.63) is an expected likelihood, while the second term is the negative

divergence between the variational density and the prior, which acts as a

regularizer. In this way, the variational objective mirrors the balance in a

Bayesian model between fit and complexity, in which complexity of the model

arises from components whose variational parameters are pushed away from

their prior values.
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The lower bound can be further developed to give

elbo(q) = E[log p(X|Z,µ,Λ)] + E[log p(Z|π)] + E[log p(π)] + E[log p(µ,Λ)]

− E[log q(Z)]− E[log q(π)]− E[log q(µ,Λ)].

(1.64)

These terms are calculated to give

E[log p(X|Z,µ,Λ)] =
N∑

n=1

K∑

k=1

E[znk] E[logN
(
xn|µk,Λ

−1
k

)
]

=
1

2

N∑

n=1

K∑

k=1

rnk
{
−D log 2π + log Λ̃k −Dβ−1

k − νk(xn −mk)
TWk(xn −mk)

}

(A.18)
=

1

2

K∑

k=1

Nk

{
log Λ̃k −Dβ−1

k − νk Tr (SkWk)

− νk(xk −mk)
TWk(xk −mk)−D log 2π

}
(1.65)

E[log p(Z|π)] =
N∑

n=1

K∑

k=1

rnk log π̃k (1.66)

E[log p(π)] = logC(α0) + (α0 − 1)
K∑

k=1

log π̃k (1.67)

E[log p(µ,Λ)] =
1

2

K∑

k=1

{
D log

(
β0
2π

)
+ log Λ̃k −

Dβ0
βk

− β0 νk (mk −m0)
TWk(mk −m0)

}
+K logB(W0, ν0)

+
(ν0 −D − 1)

2

K∑

k=1

log Λ̃k −
1

2

K∑

k=1

νk Tr (W
−1
0 Wk) (1.68)

E[log q(Z)] =
N∑

n=1

K∑

k=1

rnk log rnk (1.69)

E[log q(π)] =
K∑

k=1

(αk − 1) log π̃k + logC(α) (1.70)

E[log q(µ,Λ)] =
K∑

k=1

{
1

2
log Λ̃k +

D

2
log

(
βk
2π

)
− D

2
−H[Λk]

}
, (1.71)

where C(α) and B(W, ν) are normalization constants of the Dirichlet and

Wishart distributions respectively defined in (A.6) and (A.30), while H[Λk]

is the entropy of the Wishart given by (A.33).
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In many circumstances it is also useful to evaluate the posterior predictive

density for a new observation x̂, which is

p(x̂|X) =
∑

ẑ

∫ ∫ ∫
p(x̂|ẑ,µ,Λ) p(ẑ|π) p(π,µ,Λ|X) dπ dµ dΛ, (1.72)

where ẑ is the latent variable associated with x̂ and p(π,µ,Λ|X) the (un-

known) true posterior distribution of the parameters. According to (Bishop,

2006) and using result (A.26), an approximation of the predictive density is

given by a mixture of (multivariate) Student’s t-distributions

p(x̂|X) ' 1

α̂

K∑

k=1

αk St(x̂ |mk,Lk, νk + 1−D), Lk =
(νk + 1−D)βk

(1 + βk)
Wk

(1.73)

where α̂ =
∑K

k=1 αk and the k-th component has mean mk, precision Lk and

νk + 1 − D degrees of freedom. Clearly, when the size N of the dataset is

large, the predictive distribution reduces to a mixture of Gaussians.

1.2.3 Simulation studies

We now demonstrate the Gaussian mixture model in action by means of

two simulations studies. The first one illustrates the variational Bayesian

estimation and the second one compares it with the EM algorithm.

Firstly, we generate a synthetic dataset by simulating two-dimensional

observations from K = 3 different Gaussians with fixed means and covari-

ances. These data are shown in Figure 1.5, where each observation is colored

according to its true cluster assignment, that is the actual Gaussian which

generated it. The subplots illustrate the evolution of the variational densi-

ties for the mixture components, as the CAVI algorithm progresses, from

random initialization until convergence.

The corresponding progression of the ELBO is plotted in Figure 1.6. We

observe that the curve develops "elbows", which occur because the ELBO

is generally a non-convex objective function. Indeed CAVI only guarantees

convergence to a local optimum, which can be sensitive to initialization.

For this experiment the responsibilities are randomly initialized, but it is

common practice to initialize them through the K-means algorithm.
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Figure 1.5: Variational Bayesian Gaussian mixture model applied to a syn-

thetic dataset. The ellipses denote the two-standard deviations

density contours for each of the mixture components, as the CAVI

algorithm progresses.
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Figure 1.6: Progression of the evidence lower bound for the CAVI algorithm

in Figure 1.5

.
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In the second simulation study, we generate a toy dataset composed of

K = 2 clusters, obtained by simulating two-dimensional observations from

two Gaussians with different means and covariances. The purpose of the

experiment is to compare the variational Bayesian estimation and the max-

imum likelihood EM algorithm in fitting a Gaussian mixture model. Both

methods have access to K = 4 mixture components, number that does not

match the true generative distribution of the dataset. Results are shown in

Figure 1.7.
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EM Gaussian Mixture

−8 −6 −4 −2 0 2 4
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Variational Bayesian Gaussian Mixture

Figure 1.7: Comparison between EM and CAVI algorithms in fitting a Gaus-

sian mixture model with K=4 components to a synthetic dataset.

Each data point is colored according to the mixture component

that maximizes the responsibility rnk for that specific observa-

tion. The ellipses denote the 2σ variational contours; components

to which no observation is assigned are not plotted.
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Observe that the EM algorithm model uses all four input components making

unnecessary splits, because it is trying to fit a number of components that

is greater than the actual one. On the other hand, the variational Bayesian

model is able to limit itself by assigning observations to only two of the

components. Indeed, as we have seen from equation (1.62), this method has

a natural tendency to set some mixture weights values close to zero.2 This

allows the model to adapt its effective number of components automatically

starting from a provided upper bound.

In general, as seen in Algorithm 3, CAVI reflects the same steps as the

maximum likelihood EM algorithm with the addition of prior information.

In fact, when the dataset size N → ∞, the prior effect vanishes and the

variational Bayesian approach converges to the maximum likelihood EM al-

gorithm. Therefore, for finite-size datasets, the variational method addition-

ally involves only computations concerning the extra prior parameterization,

which makes inference slightly slower.

However, the Bayesian approach has substantial advantages over the

maximum likelihood one. First of all, the Bayesian treatment allows to re-

move the singularities that often arise in maximum likelihood solutions. This

is possible because appropriate priors induce regularization, at the cost of

introducing some subtle biases to the model. Moreover, there is no overfit-

ting if one chooses a number K of components too large: the Dirichlet prior

over π automatically encourages a sparse posterior mixing weight vector.

A slower alternative to adapt an effective number of components is to fit

multiple models considering several values of K and then select the number

of components that maximizes the ELBO (or the predictive density 1.73).

However, the mixture of Gaussians presents the so-called label switching

problem: permuting cluster labels induces K! symmetric posterior modes.

The issue is also known as unidentifiability (Casella & Berger, 2002). That

does not affect a suitable variational Bayesian model because reaching one

of the K! modes leads to a solution that is equivalent to the others K!− 1.

2Variational hyperparameters values used for this experiment are

α0 = 1/K = 0.25, β0 = 1, m0 = 0, W0 = I2, ν0 = D = 2.
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Nevertheless, if we want to compare different values of K, we must take this

multimodality into consideration. A valid approximate solution is to add

a term logK! onto the lower bound when used for model comparison and

averaging (Bishop, 2006).

1.2.4 Image analysis

Finally, the variational Bayesian Gaussian mixture can be applied to a

dataset of images. We work with the STL-10 dataset http://cs.stanford.edu/

~acoates/stl10 (Coates et al., 2011), which contains 100 000 unlabeled im-

ages and 13 000 labeled images from 10 classes.

Inspired by (Blei et al., 2017), we consider the task of grouping images

according to their color profiles. The approach followed is based on comput-

ing the color histograms of the images, which represent the distribution of

pixel intensities for red, green and blue color channels. Figure 1.8 shows the

RGB color histograms for a sample image, where the pixel intensities are

divided into 64 equal bins for each channel.

The counts of the three histograms are concatened to provide a D = 192

dimensional representation of each image, regardless of its resolution (in this

case 96 × 96 pixels). We use these data to fit a Bayesian Gaussian mixture

with K = 30 clusters via CAVI, randomly selecting N = 10 000 unlabeled

images from STL-10. Figure 1.9 shows images with similar color profiles

representing four selected clusters. Each image is assigned to the cluster

that maximize its responsibility: the images displayed are the nine with the

highest responsibility within the specific cluster.
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Figure 1.8: RGB color histograms for a sample image from STL-10 dataset;

each histogram is constructed from the same 64 bins of the pixel

intensities (range 0-255). The image is characterized by red and

green hues, as shown by the histograms.
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(a) Light blue (b) Green and brown

(c) White grey (d) Dark

Figure 1.9: Most representative images from four selected clusters. Each im-

age is assigned to its most likely mixture component. Namings of

the clusters are subjective since we are performing unsupervised

learning.



Chapter 2

Beyond Vanilla Variational Inference

Classical variational inference presented so far has limitations when it comes

to modern applications, that involve large datasets and complex models. In

order to tackle big datasets, we first derive the general CAVI algorithm in the

case of conditionally conjugate exponential family models and then we show

an extension that scales up VI to massive data in this setting. Further novel

methods are finally addressed in order to make VI generically applicable to

non-conjugate models.

2.1 CAVI for conditionally conjugate models

To begin with, we are interested in a class of models called conditionally

conjugate models, which involve latent variables that are local to a data point

and latent variables that are global to the entire dataset (usually regarded as

parameters). Let x = x1:N be the N observations, z = z1:N the corresponding

local latent variables and ϑ the global latent variables. The generic joint

distribution of a conditionally conjugate model factorizes into a global term

and a product of local terms:

p(x, z,ϑ) = p(ϑ)
N∏

n=1

p(xn, zn|ϑ). (2.1)

The graphical model is illustrated in Figure 2.1. Observe that each observa-

tion xn and each local variable zn are, given ϑ, conditionally independent of
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all the other observations x−n and local variables z−n.

ϑ

zn xn

N

Figure 2.1: Graphical representation of a conditionally conjugate model with

observations x1:N , local latent variables z1:N and global latent

variables ϑ. The distribution of each data point xn only depends

on its local variable zn and the global parameters ϑ.

Standard Bayesian models fall into this class. An example is the Bayesian

mixture of Gaussians, where the global variables are the parameters π,µ,Λ

associated to the mixture components and the n-th local variable zn is the

hidden cluster assignment for the observation xn. Working within this family

of models allows us to derive a closed-form CAVI algorithm in a general

manner (Blei et al., 2017).

The underlying assumption is that the joint density of (xn, zn) given ϑ

has an exponential family form

p(xn, zn|ϑ) = h(xn, zn) exp{η(ϑ)T t(xn, zn)− a`(ϑ)}, (2.2)

where η(·) is the natural parameter, t(·) the sufficient statistic, h(·) the base

measure and a(·) the log-normalizer.1 We can thus write the complete like-

lihood function as

L(ϑ;x, z) =
N∏

n=1

h(xn, zn) exp

{
η(ϑ)T

N∑

n=1

t(xn, zn)−N a`(ϑ)

}
. (2.3)

The prior on the global variables is assumed to be closed under sampling

(Bernardo & Smith, 2000):

p(ϑ) = exp{ ζT [ η(ϑ),−a`(ϑ)]− ag(ζ)}, (2.4)

that is the conjugate prior with hyperparameters ζ = [ ζ1, ζ2 ]
T .2

1the subscript ` indicates that we refer to local variables
2the subscript g stands for "global variables"
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At this point, the conjugacy leads the full conditional of the global variables

to be in the same family of the corresponding prior, namely

p(ϑ|x, z) = exp{ ζ̂ T [ η(ϑ),−a`(ϑ)]− ag(ζ̂)}, with (2.5)

ζ̂ =

[
ζ1 +

N∑

n=1

t(xn, zn), ζ2 +N

]T
. (2.6)

Consider now the full conditionals of the local variables. From Figure 2.1

we have seen that zn is conditionally independent, given ϑ and xn, of the

other local variables z−n and observations x−n. Then, as a property of (2.2),

it follows that the full conditional of zn has an exponential family form

p(zn|xn,ϑ) = h(zn) exp{η(ϑ, xn)T zn − a`(η(ϑ, xn))}. (2.7)

With the probabilistic structure just described, we can now obtain the

general CAVI algorithm for what we call conditionally conjugate exponential

family models. Consider the mean field approximation

q(z,ϑ) = q(ϑ|λ)
N∏

n=1

q(zn|φn). (2.8)

Contrary to what was done in the previous chapter, we make the parameters

explicit in the variational distributions. The global variational parameter λ

indexes the posterior approximation on ϑ, while the local variational param-

eters φn govern the approximations of the respective local variables zn.

With result (2.7), the coordinate update of equation (1.13) for the local

hidden variable zn becomes

q∗(zn|φn) ∝ exp {Eλ [log p(zn|xn,ϑ)]}

= exp{log h(zn) + Eλ [η(ϑ, xn)]
T zn − Eλ [a`(η(ϑ, xn))]}

∝ h(zn) exp{Eλ [η(ϑ, xn)]T zn}.

(2.9)

This optimal variational factor takes on the same exponential family form as

its corresponding full conditional. Consequently, the local variational update

simply consists of setting φn equal to the expected natural parameter of its

full conditional,

φn = Eλ [η(ϑ, xn)] . (2.10)
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The same reasoning leads to the global variational updates

λ =

[
ζ1 +

N∑

n=1

Eφn
[t(xn, zn)], ζ2 +N

]T
, (2.11)

which is obtained taking the expectation of (2.6).

CAVI iterates between local updates of each local variational parameter

(2.10) and global updates of the global variational parameters (2.11). To

assess convergence, it is possible to compute the general form of the ELBO.

By means of equation (1.6):

elbo(λ,φ) = Eλ,φ [log p(x, z,ϑ)]− Eλ,φ [log q(z,ϑ)]

= Eφ[ζ̂]
T Eλ[ η(ϑ),−a`(ϑ)]− λT Eλ[ η(ϑ),−a`(ϑ)]

+ ag(λ)−
N∑

n=1

φT
n Eφn

[zn] + a`(φn) + const,

(2.12)

where we used equation (2.5) together with the optimal densities forms de-

rived from (2.8); the constant absorbs all terms that do not depend on the

variational parameters.

2.1.1 GMM example and comparison to Gibbs sampling

Algorithm 3 for the Bayesian Gaussian mixture model is an instance of the

procedure described. In fact, relying on notation and formulas of Section 1.2,

we can write down the joint density of (xn, zn) given ϑ = (π,µ,Λ)T as

p(xn, zn|π,µ,Λ) = exp

{
K∑

k=1

znk
{
log πk + logN

(
xn|µk,Λ

−1
k

)}
}

∝ exp

{ K∑

k=1

znk

(
log πk +

1

2
log|Λk| −

1

2
µT

k Λk µk

− 1

2
Tr (xT

n Λk xn) + Tr (µT
k Λk xn)

)}

= exp

{ K∑

k=1

znk

(
log πk +

1

2
log|Λk| −

1

2
µT

k Λk µk

− 1

2
xn xT

n Λk + xnµ
T
k Λk

)}
.

(2.13)
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We recognize this distribution to be in the form (2.2), with a`(ϑ) = 0,

η(ϑ) =




log πk

−1
2
µT

k Λk µk

1
2
log|Λk|
µT

kΛk

−1
2
vec(Λk)




t(xn, zn) =




znk

znk

znk

znk xn

znk vec(xnx
T
n )




for k = 1, . . . , K,

(2.14)

where the vec(·) operator simply stacks the columns of the argument matrix

on top of each other.

The conjugate prior over the parameters ϑ can then be written as

p(π,µ,Λ) = C(α0)
K∏

k=1

π α0−1
k N

(
µk|m0, (β0 Λk)

−1
)
W (Λk|W0, ν0)

∝ exp

{ K∑

k=1

[
(α0 − 1) log πk +

(ν0 −D − 1)

2
log|Λk|+

1

2
log|Λk|

− 1

2
Tr (W−1

0 Λk)−
1

2
β0 Tr

(
(µk −m0)

T
Λk (µk −m0)

)]}

= exp

{ K∑

k=1

[
(α0 − 1) log πk +

(ν0 −D)

2
log|Λk|

− 1

2
Tr
(
Λk

(
β0 (µk −m0) (µk −m0)

T + W−1
0

))]}

= exp

{ K∑

k=1

[
(α0 − 1) log πk +

(ν0 −D)

2
log|Λk| −

1

2
β0µ

T
k Λk µk

+ β0 m0µ
T
k Λk −

1

2

(
β0 m0 mT

0 + W−1
0

)
Λk

]}
.

(2.15)

We recognize this density to have the same form as (2.4), where

ζ =




α0 − 1

β0

ν0 −D
β0 m0

vec(β0 m0 mT
0 + W−1

0 )




η(ϑ) =




log πk

−1
2
µT

k Λk µk

1
2
log|Λk|
µT

kΛk

−1
2
vec(Λk)




k=1,...,K

(2.16)
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At this point the conjugacy between (2.13) and (2.15) allows us to derive

the global variational updates as

λ = Eφ[ζ̂] = ζ +
N∑

n=1

Eφn
[t(xn, zn)]. (2.17)

By substituting, we obtain




αk − 1 = α0 − 1 +
∑N

n=1 E[znk]

βk = β0 +
∑N

n=1 E[znk]

νk −D = ν0 −D +
∑N

n=1 E[znk]

βk mk = β0 m0 +
∑N

n=1 E[znk]xn

vec(βk mk mT
k + W−1

k ) = vec(β0 m0 mT
0 + W−1

0 ) +
∑N

n=1 E[znk] vec(xn xT
n )

Defining Nk, xk, Sk as in equations (1.45), (1.46), (1.47) gives




αk = α0 +Nk

βk = β0 +Nk

νk = ν0 +Nk

mk =
1
βk

(β0m0 +Nkxk)

W−1
k = W−1

0 +NkSk +
β0Nk

β0+Nk
(xk −m0) (xk −m0)

T

that are the same global variational updates obtained for Algorithm 3 in the

previous chapter. The algebraic steps required to compute the last update

can be found in (Murphy, 2007).

Instead, as for local variational updates, we can express the full condi-

tional of the local latent variable zn in the form (2.7) as follows:

p(znk = 1 |xn, z−n,x−n,π,µ,Λ) = p(znk = 1 |xn, πk,µk,Λk)

∝ p(znk = 1 | πk) p(xn |µk,Λk) =
[
πkN (xn |µk,Λ

−1
k )
]znk

= exp

{
znk

[
log πk + logN (xn |µk,Λ

−1
k )
]}

∝ exp

{[
log πk +

1

2
log |Λk| −

1

2
(xn − µk)

T
Λk(xn − µk)

]
znk

}

∝ exp{ η(ϑ,xn)
T znk }, with

(2.18)

η(ϑ,xn) = log πk +
1

2
log |Λk| −

1

2
(xn − µk)

T
Λk(xn − µk). (2.19)
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Since we have seen that each local variational update takes the form φnk =

Eλ [η(ϑ, xn)] , we arrive at the same result as in formula (1.61) for the respon-

sibilities’ updates. We thus derived CAVI algorithm for the Bayesian GMM

as a special case of conditionally conjugate exponential family models.

We now want to compare CAVI for this example to a corresponding

(collapsed) Gibbs sampler. Taking advantage of the work already done, it is

straightforward to derive the full conditionals that define Gibbs sampling.

Specifically, the full conditionals for the hidden variables are categorical

p(znk = 1 |xn, z−n,x−n,π,µ,Λ) ∝
[
πkN (xn |µk,Λ

−1
k )
]znk . (2.20)

Similarly to (1.51), the full conditional of the mixing coefficients is

p(π|Z) = Dir
(
π | {α0 + Ñk}Kk=1

)
, (2.21)

where Ñk is the number of hidden variables that fall within the cluster k

Ñk =
N∑

n=1

znk. (2.22)

For the precisions full conditionals, we can exploit the conjugacy between

the Wishart prior and the normal (1.35) with known means, to obtain

p(Λk|µk,X,Z) =W (Λk|Vµk
, νk) , (2.23)

V−1
µk

= W−1
0 +

N∑

n=1

znk (xn − µk)(xn − µk)
T , νk = ν0 + Ñk. (2.24)

However, in practice we can directly sample the (µk,Λk) block from

p(µk,Λk|X,Z) = N
(
µk|mk, (βk Λk)

−1
)
W (Λk|Wk, νk) , (2.25)

βk = β0 + Ñk (2.26)

mk =
1

βk

(
β0 m0 + Ñk x̃k

)
(2.27)

W−1
k = W−1

0 + Ñk S̃k +
β0 Ñk

β0 + Ñk

(x̃k −m0) (x̃k −m0)
T (2.28)

νk = ν0 + Ñk (2.29)

x̃k =
1

Ñk

N∑

n=1

znk xn (2.30)

S̃k =
1

Ñk

N∑

n=1

znk (xn − x̃k)(xn − x̃k)
T . (2.31)



2.1 CAVI for conditionally conjugate models 38

We thus presented a Gibbs sampler for the Bayesian GMM that consists of

iteratively drawing from (2.20), (2.21) and (2.25).

As an aside, Gibbs sampling for mixture models is affected by what

we called label switching problem: the posterior distribution is invariant to

switching component labels.3 Consequently, it is often inappropriate to com-

pute posterior means just taking a Monte Carlo average of the samples, be-

cause what one sample considers the parameters for cluster 1 may be what

another sample considers the parameters for cluster 2. Common strategies to

deal with this issue are imposing identifiability constraints on the parameter

space (valid only in the one-dimensional case) or post-processing the output

to relabel the components through a permutation that minimizes some loss

function (Stephens, 2000).

In the specific case of the mixture model, it is possible to integrate out the

model parameters ϑ and just sample the hidden variables z. This is called a

collapsed Gibbs sampler (J. S. Liu, 1994) and it tends to be more efficient,

intuitively because it samples in a lower dimensional space. More specifically,

marginalizing ϑ parameters from the joint distribution of (z,ϑ) reduces the

variance of the samples. The process is called Rao-Blackwellization (Casella

& Robert, 1996) as a result of the following theorem:

Theorem 1 (Rao-Blackwell). Let z and ϑ be dependent random variables,

and f(z,ϑ) be some scalar function. Then

Varz,ϑ [f(z,ϑ)] = Varz [Eϑ [f(z,ϑ)|z ]] + Ez [Varϑ [f(z,ϑ)|z ]]

≥ Varz [Eϑ [f(z,ϑ)|z ]] .
(2.32)

The theorem guarantees that the variance of the estimate obtained by

analytically integrating out ϑ will never be higher than the variance of a

direct Monte Carlo estimate. Therefore, when analytically possible, it is

worth collapsing Gibbs sampling because it leads to faster convergence of

the Markov chain to the stationary distribution, even if it is usually more

costly per iteration than the standard one.

3We have seen that this problem does not affect the variational algorithm, which locks

on to only one of the symmetric posterior modes.
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Returning to the GMM example we can integrate out the model parame-

ters π, µ and Λ, and only sample the local hidden variables Z. Following

(Murphy, 2023), we can write the full conditional

p(znk = 1 |X, z−n, α0,γ0) ∝ p(znk = 1 | z−n, α0,��γ0 ) p(X | znk = 1, z−n,��α0 ,γ0)

∝ p(znk = 1 | z−n, α0) p(xn | znk = 1,x−n, z−n,γ0) p(x−n|����znk = 1 , z−n,γ0)

∝ p(znk = 1 | z−n, α0) p(xn | znk = 1,x−n, z−n,γ0),

(2.33)

where γ0 = (β0,m0,W0, ν0) are the Normal-Wishart hyperparameters; we

crossed out the variables according to the Markov blankets.

The first term of (2.33) arises by integrating out the mixing weights π.

Indeed we have

p(znk = 1 | z−n, α0) =
p(znk = 1, z−n|α0)

p(z−n|α0)
=

p(Z|α0)

p(z−n|α0)
, (2.34)

p(Z|α0) =

∫

π

p(Z|π) p(π|α0) dπ. (2.35)

We can substitute (1.34) and (1.36) inside the integral to give

p(Z|α0) =

∫

π

K∏

k=1

π Ñk

k C(α0)
K∏

k=1

π α0−1
k dπ = C(α0)

∫

π

K∏

k=1

π Ñk+α0−1
k dπ

(A.6)
=

Γ(Kα0)

Γ(α0)K

∏K
k=1 Γ(Ñk + α0)

Γ(Kα0 +N)

=
Γ(Kα0)

Γ(Kα0 +N)

K∏

k=1

Γ(Ñk + α0)

Γ(α0)
.

(2.36)

From here we can obtain the term (2.34) as

p(znk = 1 | z−n, α0) =

= �����Γ(Kα0)

Γ(Kα0 +N)

K∏

k=1

Γ(Ñk + α0)
H
H

HH
Γ(α0)

/
�����Γ(Kα0)

Γ(Kα0 +N − 1)

K∏

k=1

Γ(Ñk + α0)
H
H
HH

Γ(α0)

=
Γ(Kα0 +N − 1)

Γ(Kα0 +N)

Γ(Ñk + α0)

Γ(Ñk + α0)
=

Ñk + α0

N +Kα0 − 1
,

(2.37)

where we have defined Ñk =
∑

j 6=n zjk, which is equal to Ñk−1 when znk = 1,

and we have used the property Γ(x+ 1) = xΓ(x).
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For the second term of (2.33) we have that

p(xn | znk = 1,x−n, z−n,γ0) = p(xn | Dk,−n,γ0), (2.38)

where Dk,−n = {xj : zjk = 1, j 6= n}. Consequently (2.38) is the posterior

predictive density for xn given all the assignments and all the data except

xn. It can be obtained by marginalizing out µk and Λk :

p(xn | Dk,−n,γ0) =
p(Dk|γ0)
p(Dk,−n|γ0)

, (2.39)

p(Dk|γ0) =
∫

µk

∫

Λk

p(Dk|µk,Λk) p(µk,Λk|γ0) dµk dΛk. (2.40)

We note that, as a consequence of result (A.26), this posterior predictive

distribution is a Student’s t with mean mk, covariance (1+βk)
(νk+1−D)βk

W−1
k and

νk+1−D degrees of freedom.4 These quantities are obtained from statistics

of the data and the cluster assignments, exactly as illustrated for standard

Gibbs sampling. We just have to consider the fact that here we want to

calculate the predictive density for observation xn while leaving xn out.

Algorithm 4 illustrates the steps of a collapsed Gibbs sampler for the

Gaussian mixture model. Each iteration resamples the indices of the obser-

vations without replacement: the random order helps to improve the mix-

ing time of the Markov chain. The predictive densities (2.38) are efficiently

updated by caching t(xn, zn): the sufficient statistics (2.14) associated with

each cluster. Specifically, when we are at observation xn, we remove t(xn, zn)

statistics from its current cluster kold and then compute the posterior pre-

dictive of xn for each cluster. Once we have sampled a new cluster knew, we

add t(xn, zn) to this new cluster.

We can now apply this collapsed Gibbs sampler to the simulated data in

Figure 1.5 (N = 1500) and compare it to CAVI. We generate an additional

1500 observations from the original distribution to be used as held-out data

to test the predictive performance of the two methods. Results of the com-

parison are shown in Figure 2.2. The two algorithms reach the same average

log predictive density (1.73) on the test set, with CAVI having a shorter

4This mirrors the variational case (1.73)
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Algorithm 4: Collapsed Gibbs sampling for the Bayesian GMM

for R iterations do

for each n = 1 : N in random order do

Remove sufficient statistics t(xn, zn) from old cluster kold

for each k = 1 : K do

Compute p(xn | Dk,−n,γ0)

Compute p(znk = 1 | · ) ∝ (Ñk + α0) p(xn | Dk,−n,γ0)

end

Sample knew with probabilities p(znk = 1 | · ) k=1,...,K

Add sufficient statistics t(xn, zn) to new cluster knew

end

end

execution time.5 For CAVI algorithm, we declare convergence once the change

in the average log predictive density falls below some small threshold (here

1e−5), whereas for collapsed Gibbs sampling assessing convergence is more

questionable. A good impression of convergence is given by the trace plots

of the parameters or of the log-likelihood (we are using fairly diffuse priors);

while a formal approach may for example be the diagnostic proposed by

(Raftery & Lewis, 1992).

Table 2.1 also shows the means and the covariances of the posterior

predictive distribution for the two methods: both algorithms return similar

values. Note that for collapsed Gibbs sampling these quantities depend only

on the data X and the latent variables Z, therefore it is sufficient to sample

Z without the need to simulate the parameters π,µ and Λ.

Lastly, we also want to conduct the comparison with a larger dataset.

Specifically, we consider again the STL-10 data histograms, but this time

sampling N = 30 000 images to serve as training set and another 30 000 as

test set. We fit a BGMM with K = 30 clusters to training data using both

5The experiments were run on a computer with macOS 12.1 (21C52) operating system,

8-Core Apple M1 CPU @ 3.2GHz and 8 GB of RAM. Python implementations of the

algorithms were made as similar as possible.



2.1 CAVI for conditionally conjugate models 42

0.00 0.02 0.04

Seconds

−4.10

−4.00

−3.90

−3.80

−3.70

−3.60
−3.53

L
o
g

p
re

d
ic

ti
v
e

d
en

si
ty

CAVI

0 10 20

Seconds

−4.10

−4.00

−3.90

−3.80

−3.70

−3.60
−3.53

Gibbs

Figure 2.2: Evolution of the average log predictive density on the held-out

simulated data, as a function of running time. CAVI (left) and

collapsed Gibbs sampling (right).

Table 2.1: Comparison of CAVI and collapsed Gibbs sampling with regard to

the means and the covariances of the posterior predictive distribu-

tion. For Gibbs sampling these values are the posterior means over

200 iterations, 50 of which used as burn-in; the output of the chain

was first processed manually to deal with label switching.

Quantity CAVI Gibbs

mT
1 1.96773 −3.03318 1.94143 −2.99780

mT
2 −1.97734 2.04785 −1.96910 −2.03304

mT
3 −0.01767 1.09557 −0.02267 1.09766

L−1
1

1.07630 −0.09140
−0.09140 1.09184

1.08883 −0.10636
−0.10636 1.11176

L−1
2

0.82661 0.03071

0.03071 0.45330

0.81461 0.03124

0.03124 0.45069

L−1
3

0.53616 −0.22738
−0.22738 0.67211

0.52680 −0.21960
−0.21960 0.65287
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Figure 2.3: Predictive performance comparison between CAVI and collapsed

Gibbs on STL-10 data histograms; running time is on the log scale.

Both algorithms are initialized through k-means; Gibbs sampling

is so costly that it only does two iterations over the entire dataset.

CAVI and a collapsed Gibbs sampler; as in the previous chapter variational

hyperparameters used are α0 = 1/K, β0 = 1, m0 = 0192 ,W0 = I192 and

ν0 = D = 192, reflecting the absence of specific prior information.

As Figure 2.3 explains, Gibbs sampling reaches a slightly better predic-

tive density at the cost of an exaggeratedly higher execution time. In fact,

Gibbs sampling takes about 4.5 hours against the 4 minutes of CAVI. This

happens because the sampler requires looping through the dataset by car-

rying out expensive operations for each individual data point. We have thus

shown how MCMC methods can start to become untenable as the size of

the data becomes larger. One can also try to compare variational inference

with a Hamiltonian Monte Carlo-based sampler (Hoffman & Gelman, 2014).

Nevertheless, we now see how variational inference for large data can be

further speeded up and improved thanks to stochastic optimization.

2.2 Stochastic variational inference

Modern applications often require analyzing complicated data in terms of

many data points, many dimensions and structure (e.g. images, videos, text,

links). In this scenario CAVI is inefficient because, at each iteration, it needs
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to perform some local computations for each data point and then aggre-

gate them in order to re-estimate the global structure. As the dataset size

grows, this process becomes computationally more expensive per iteration

and wasteful, if we expect that we can learn something about the global

hidden structure from only a subset of the data. This can apply to image

histograms color profiles.

The key idea behind scalable VI approaches is stochastic gradient-based

optimization, which climbs the ELBO objective function by following noisy

estimates of its gradient. This is the case with stochastic variational inference

(SVI) (Hoffman et al., 2013), which repeatedly (a) subsamples one or more

data points from the dataset; (b) optimizes the local variational parame-

ters of the subsample; (c) updates the current global variational parameters.

These steps are straightforward and cheap to achieve for conditionally conju-

gate exponential family models, since it is possible to express the ELBO (and

thus its gradient) as a sum of terms that can be computed independently.

2.2.1 SVI for conditionally conjugate models

Within this class of models, we can apply SVI and scale up inference to

massive data by taking advantage of the idea of natural gradient, without

the need for additional mathematical derivations other than those of CAVI.

The natural gradient (Amari, 1998) incorporates the information geometry

of the parameter space, adjusting the direction of the standard gradient by

scaling it by a Riemannian metric.

In fact, the traditional Euclidean gradient metric does not convey a mean-

ingful notion of distance between distributions parameters. Conversely, the

natural gradient expresses the steepest ascent direction in the statistical

manifold where local distance is defined by KL divergence.

More importantly, the natural gradient of the ELBO is easier to compute

than the standard one for conditionally conjugate exponential models. This

is due to the fact that the natural gradient is defined by pre-multiplying the

standard gradient with the inverse Fisher information matrix (Amari, 1998).
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Formally, focusing on the global variational parameters λ, we can write the

lower bound (2.12) in the form

elbo(λ) = Eφ[ζ̂]
T Eλ [t(ϑ)]− λT Eλ [t(ϑ)] + ag(λ) + const, (2.41)

where the constant has absorbed all terms that do not depend on λ and

t(ϑ) = [ η(ϑ),−a`(ϑ)] are the sufficient statistics of the variational distri-

bution on ϑ. Indeed, the latter has an exponential family form

q(ϑ|λ) = h(ϑ) exp{λT t(ϑ)− ag(λ)}. (2.42)

From the properties of exponential families, it follows that the expecta-

tion of the sufficient statistics is the gradient of the log normalizer: Eλ [t(ϑ)] =

∇λ ag(λ). We can use this identity to derive the traditional Euclidean gra-

dient of the ELBO as a function of λ,

∇λ elbo = ∇2
λag(λ) (Eφ[ζ̂]− λ). (2.43)

Since in exponential families it also holds that the Fisher information is equal

to ∇2
λ ag(λ), we can easily obtain the natural gradient g(λ). Pre-multiplying

(2.43) by the inverse Fisher information, we have

g(λ) = Eφ[ζ̂]− λ. (2.44)

Note that setting this gradient equal to zero, leads to the global variational

updates (2.11).

At this point, we can use the natural gradient of the ELBO inside a

gradient ascent algorithm for the global variational parameters (Blei et al.,

2017). Namely, at iteration t we have

λt = λt−1 + ρt g(λt−1), (2.45)

where ρt is the step size or learning rate. Substituting for (2.44) reveals a

particular structure for the updates,

λt = (1− ρt)λt−1 + ρt Eφ[ζ̂]. (2.46)

However this gradient-based optimization of the global variational param-

eters has the same cost of corrispondent CAVI updates, since it requires

iterating through all data points.
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The key idea behind SVI is stochastic optimization (Robbins & Monro,

1951), which has enabled modern machine learning. Stochastic optimization

algorithms replace the gradient of the objective function with cheaper noisy

estimates to reach the optimum. Convergence to at least local optima is

guaranteed, as long as the gradient estimates are unbiased and the step size

sequence satisfies the Robbins-Monro conditions:

∞∑

t=1

ρt =∞,
∞∑

t=1

ρ2t <∞. (2.47)

These ensure that every point in the parameter space can be reached, while

the learning rate decreases quickly enough to guarantee convergence.

Returning to variational inference, the natural gradient of the ELBO is

g(λ) = ζ +

[ N∑

n=1

Eφ∗

n
[t(xn, zn)], N

]T
− λ, (2.48)

where φ∗
n highlights that we are considering the optimized local variational

parameters (2.10). We can construct a noisy natural gradient by sampling

an index j from the data and pretending to replicate the corresponding data

point N times, which means

ĝ(λ) = ζ +N

[
Eφ∗

j
[t(xj, zj)], 1

]T
− λ. (2.49)

The noisy natural gradient ĝ(λ) is unbiased, E[ ĝ(λ)] = g(λ), and cheap

to compute, as it only depends on optimized local parameters of one sampled

data point. Therefore, this is a valid estimate to plug into equation (2.45)

to give

λt = (1− ρt)λt−1 + ρt λ̂, where

λ̂ = ζ +N

[
Eφ∗

j
[t(xj, zj)], 1

]T
.

(2.50)

The full SVI algorithm is presented in Algorithm 5. At each iteration

we update the global variational parameters as a weighted average of the

previous setting and the estimate we would obtain replicating the sampled

data point N times. Algorithm 6 describes the BGMM example. It should

be emphasized that implementing SVI does not require new mathematical

derivations beyond those needed for CAVI algorithm.
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Algorithm 5: SVI for conditionally conjugate models

Initialize: Variational global parameters λ

Schedule the step size sequence ρt appropriately

while not converged do

Sample a data point xj uniformly from the dataset.

Optimize its local variational parameters:

φ∗
j = Eλ [η(ϑ, xj)]

Compute the intermediate global parameters as though xj were

replicated N times:

λ̂ = ζ +N

[
Eφ∗

j
[t(xj, zj)], 1

]T

Update the current global variational parameters:

λt = (1− ρt)λt−1 + ρt λ̂

end

Algorithm 6: SVI for the Bayesian Gaussian mixture model

Initialize: λ = [αk, βk, vec(mk), vec(W−1
k ), νk ]k=1,...,K . Schedule ρt

while not converged do

Sample a data point xj uniformly from the dataset.

Optimize its local variational parameters:

rjk ∝ π̃k Λ̃k exp

{
− D

2βk
− νk

2
(xj −mk)

T Wk (xj −mk)

}

Compute the intermediate λ̂ defined by

αk ← α0 +N · rjk
βk ← β0 +N · rjk
mk ← 1

βk
(β0m0 +N · rjk xj)

W−1
k ←W−1

0 + β0m0m
T
0 − βkmkm

T
k +N · rjk xj x

T
j

νk ← ν0 +N · rjk

Update the current global variational parameters:

λt = (1− ρt)λt−1 + ρt λ̂

end
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A common choice for the step size sequence that satisfies conditions (2.47)

is, at iteration t,

ρt = (t+ ω)−δ, (2.51)

where the forgetting rate δ ∈ (0.5, 1] controls how quickly old information

decays and ω ≥ 0 down-weights early iterations (Hoffman et al., 2013).

Following noisy but fast-to-compute natural gradients with an appropriate

step size, SVI algorithm converges to a local optimum of the ELBO.

We have therefore seen how, within conditionally conjugate exponential

models, SVI is appropriate for scaling up to massiva data, especially when

these do not fit in memory. The method can be further made more efficient

with the help of distributed optimization and cluster computing, though

in principle it is designed to run on a single machine. Moreover, the noise

introduced by the gradient estimates makes the stochastic variational al-

gorithm more likely to circumvent shallow local optima of the objective in

which the deterministic version gets stuck (see Bottou, 1991 and the link

with simulated annealing).

A remarkable demonstration of the usefulness of SVI lies in topic models,

probabilistic models of text used to uncover the hidden thematic structure

in a collection of documents. Topic models assume that the words of each

document arise from a mixture of the latent topics; the topics are shared

across a collection, but each document mixes them with its own proportions.

(Hoffman et al., 2013) applied posterior inference by using a conditionally

conjugate topic model, Latent Dirichlet Allocation (Blei et al., 2003), with

3.8 million Wikipedia documents, an analysis that would not have been pos-

sible without SVI.

2.2.2 Mini-batching and adaptive learning rate

From a practical point of view, estimating the gradients with only one ran-

dom data point, may often lead to a very noisy optimization process that

oscillate far from a equilibrium. A solution to address that is sampling a

minibatch of B data points at each iteration (usually without replacement).
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The batch size B trades off between achieving a relative speedy convergence

and injecting enough randomness to each gradient estimate. Generally, a

well-tuned batch size helps the stochastic algorithm to escape from poor

local optima/saddle points and to amortize the computational expenses as-

sociated to global variational updates.

The SVI algorithm is easily extended to minibatches by considering that

a stochastic estimate of the ELBO can be obtained as a sum of terms ap-

propriately rescaled:

ẽlbo(λ,φ) = Eλ,φ [log p(θ)− log q(θ|λ)] +

N

B

B∑

b=1

Eλ,φ [log p(xjb |zjb ,ϑ) + log p(zjb |ϑ)− log q(zjb |φjb)],
(2.52)

where jb are the indices of the data points sampled in the minibatch con-

sidered. Similarly, the global variational parameters updates are obtained

by first optimizing the local parameters of the minibatch φ∗
jb
, b = 1, . . . , B,

and then computing the intermediate values

λ̂ = ζ +
N

B

[ B∑

b=1

Eφ∗

jb
[t(xjb , zjb)], B

]T
, (2.53)

that have been rescaled appropriately.

Another trick that helps the algorithm converge faster and to better ap-

proximations is learning rate adaptation. In fact, SVI is sensitive to learning

rate scheduling: with a sequence that decays too quickly the algorithm ad-

vances languidly; with a sequence that decreases too slowly it makes erratic

and unreliable progress. To address this, we rely on a method that auto-

matically adapts the step size to the sampled data. We follow the approach

of (Ranganath et al., 2013) who proposed a tailor-made adaptive learning

rate for SVI, which requires no hand-tuning and uses computations already

made within the SVI algorithm.

The method aims to estimate the learning rate ρt+1 that minimizes the

expected error between the stochastic update λt+1 (2.50) and the coordinate

update λ∗
t+1 (2.11). The squared norm of the error is

J(ρt+1) = (λt+1 − λ∗
t+1)

T (λt+1 − λ∗
t+1). (2.54)
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The latter is a random variable because λt+1 depends on the intermediate

parameters λ̂, calculated with a random minibatch.

Let gt be the stochastic natural gradient (2.49) as a function of λt, then

by minimizing EB[J(ρt+1)|λt] it can be proved (Ranganath et al., 2013)

that the optimal adaptive learning rate is

ρ∗t+1 =
EB[gt]

TEB[gt]

EB[gTt gt]
, (2.55)

where the subscript B indicates that the expectation is taken with respect to

a specific minibatch. The adaptive learning rate shrinks when the variance

of the noisy gradient is large and grows when the square of the expected

noisy gradient is large, indicating that the algorithm is far from a optima.

These expectations are approximated with exponential moving averages

across iterations. Let gt and ht be respectively the moving averages for E[gt]

and E[gTt gt]. These values are updated as

gt = (1− τ−1
t )gt−1 + τ−1

t gt

ht = (1− τ−1
t )ht−1 + τ−1

t gTt gt,
(2.56)

where τt is the window size of the exponential moving averages. Substitut-

ing these estimates into equation (2.55), the adaptive learning rate can be

approximated with

ρ∗t+1 ≈
gTt gt
ht

. (2.57)

Since the moving averages are less reliable after large steps, the window size

can be updated as

τt+1 = τt (1− ρ∗t+1) + 1. (2.58)

By keeping the necessary quantities in memory and carrying out the up-

dates described above, we can thus adapt the learning rate at each iteration,

in which a new minibatch is sampled. The authors suggest to initialize the

moving averages through Monte Carlo estimates obtained by forming noisy

gradients on several samples and to inizialize the memory size as the Monte

Carlo sample size used. In this way we only need to specify an initial memory

size τ0 and we can make use of a learning-rate-free SVI algorithm.
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We implemented the methods presented and performed some experi-

ments. We considered again the STL-10 data histograms but this time using

all the unlabeled images, of which N = 90 000 were sampled to serve as

training set and the remaining 10 000 as held-out set. The rest of the setting

was the same as the previous sections.

Figure 2.4 compares SVI and CAVI for these data: the plot on the left-

hand side shows the evolution of the stochastic ELBO (2.52); the plot on the

right-hand side illustrates the average of the stochastic ELBO in each epoch,

which is one complete pass through all the training data. For CAVI the two

plots represent the same thing and the ELBO is guaranteed to improve with

each step (the proof is similar to EM algorithm), for SVI this is not the case.

From Figure 2.4(a) we see that SVI with the best Robbins-Monro learn-

ing rate (2.51) (δ = 0.9, ω = 1) climbs the ELBO with noise and converges

faster than CAVI, but achieving a slightly worse optimum, as shown in Figure

2.4(b). Whereas, using the adaptive learning rate, the stochastic variational

algorithm reaches a higher lower bound than the batch algorithm (that is

CAVI). This is due to the fact that, by subsampling a minibatch at each it-

eration and using a suitable step size, the stochastic algorithm explores the

parametric space more widely and it is more likely to find new and better

maxima in the non-convex optimization problem.

Figure 2.5 shows the behaviour of the two learning rate types: the adap-

tive learning rate roughly follows the shape of the best Robbins-Monro de-

cay rate, but automatically adapts to the sampled data. Maintaining the

adaptive step size, we also tested the sensitivity of the stochastic variational

algorithm to the batch sizes: results are illustrated in Table 2.2. Larger batch

sizes are preferred in terms of predictive performance, however there is not

a big difference between B = 512 and B = 1024, therefore 512 is a suitable

value for batch size.

Finally, we also tried varying the number of clusters: Table 2.3 shows

the average log predictive densities obtained for different values of K. We

found that K = 30 leads to the best performance, however for this purpose

hierarchical Dirichlet process (HDP) mixture models (Teh et al., 2006) often
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Figure 2.4: Lower bound trajectories for CAVI and SVI as a function of run-

ning time (log scale). SVI uses a batch size B = 512: for the RM

step size we use δ = 0.9, ω = 1; for the adaptive learning rate we

set τ0 = 500. All algorithms start from the same k-means initial-

ization (not plotted); convergence is declared when the (average)

ELBO changes below a small threshold or decreases for three con-

secutive epochs. Different initializations yield similar results.
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Figure 2.5: Path of the adaptive learning rate and of the best Robbins-Monro

decay rate, as a function of execution time (on the log scale). The

same training procedures as above are used. The adaptive learning

rate seems too low at first, but then it adapts appropriately to the

data.
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achieve the best results. These are Bayesian nonparametric models that allow

to extend mixtures to infinitely countable numbers of components. We did

not explore this class of models in the thesis.

Table 2.2: Log predictive densities on held-out data for different batch sizes B.

We show means and standard errors over 5 different initializations.

The initial τ0 are set according to the batch size.

Log predictive Batch size

density 64 128 256 512 1024

Mean −984.70 −962.26 −945.00 −921.10 −919.03
Std.error (6.335) (6.310) (0.884) (0.969) (0.962)

Table 2.3: Log predictive densities on held-out data for different numbers of

mixture components K. We show means and standard errors over

5 different initializations. The adaptive learning rate and a batch

size B = 512 are used.

Log predictive Number of clusters

density 10 20 30 40 50

Mean −962.12 −925.44 −920.87 −927.93 −925.48
Std.error (2.739) (1.512) (1.053) (1.611) (2.099)

2.3 Black box variational inference

We have shown how to develop scalable variational inference for conditionally

conjugate models, where each full conditional is in the exponential family

and we can obtain closed-form variational updates. Some models fall into

this class, including Bayesian mixtures of exponential families, hierarchical

linear and probit regression models, factorial models, hidden Markov models

and mixed-membership models (e.g. Latent Dirichlet Allocation).
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For generic models outside this class, however, it is not possible to directly

attain an analytic solution: the required expectations for mean field VB

become intractable. A simple example is Bayesian logistic regression:

yn |xn,ϑ ∼ Bern(σ(ϑTxn)), ϑ ∼ N (µ0,Σ0), (2.59)

where yn is the binary response, xn the covariates, ϑ the regression coef-

ficients and σ(·) the logistic function. The problem is that we cannot ana-

lytically compute the expectation in the lower bound and in the variational

updates. This characterizes the so-called nonconjugate models, for exam-

ple Bayesian generalized regression models, deep exponential families (Ran-

ganath et al., 2015), deep latent Gaussian models (Rezende et al., 2014),

Bayesian neural networks (Neal, 1996), and many others.

To cope with nonconjugate models, researchers have developed model-

specific variational methods. In particular, (Jaakkola & Jordan, 2000) pro-

posed a tangent quadratic bound tailored to logistic regression; while (Wang

& Blei, 2013) developed generic variational algorithms that use Laplace ap-

proximations and the delta method, but require model-specific calculations.

Deriving these algorithms when developing and exploring new models, how-

ever, is challenging work. Tedious model-based derivations and implementa-

tion hinder us from quickly investigating and refining a range of models.

To address that, (Ranganath et al., 2014) came up with an approach

called black box variational inference (BBVI), which can be applied with

little effort to a broad class of generic models and arbitrary variational fam-

ilies. The goal is to make VI algorithms more automatic and easy-to-use.

Operationally, the key idea behind the method is to express the gradient of

the ELBO as an expectation and obtain Monte Carlo estimates of it for use

in stochastic optimization.

In effect, the generic variational objective has the form

elbo(ψ) = Eq[log p(x, z)− log q(z|ψ)], (2.60)

where the expectation is taken with respect to the variational distribution

q(z|ψ) with free variational parameters ψ. Here we have to pick a convenient
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fixed-form for q (whether mean field factorized or not), in contrast to what

we saw in previous conditionally conjugate examples, where the functional

form of the variational factors was specified directly by the optimization.

Depending on how the gradient of (2.60) is rewritten as an expectation

w.r.t. the variational distribution, there are two main BBVI strategies: the

score gradient (Ranganath et al., 2014) and the reparameterization gradient

(Kingma & Welling, 2014).

2.3.1 Score gradient

To define the score estimator, we write the gradient of the ELBO as follows,

∇ψ elbo = ∇ψ
∫ (

log p(x, z)− log q(z|ψ)
)
q(z|ψ) dz

=

∫
∇ψ
[(
log p(x, z)− log q(z|ψ)

)
q(z|ψ)

]
dz

=

∫
∇ψ
[
log p(x, z)− log q(z|ψ)

]
q(z|ψ) dz

+

∫
∇ψ q(z|ψ)

(
log p(x, z)− log q(z|ψ)

)
dz

= −Eq[∇ψ log q(z|ψ)] +
∫
∇ψ q(z|ψ)

(
log p(x, z)− log q(z|ψ)

)
dz.

(2.61)

We have exchanged derivatives with integrals via the dominated convergence

theorem and used the fact that ∇ψ log p(x, z) = 0.

The quantity ∇ψ log q(z|ψ) is known as score function and has expecta-

tion equal to zero:

Eq[∇ψ log q(z|ψ)] = Eq

[∇ψ q(z|ψ)
q(z|ψ)

]
=

∫
∇ψ q(z|ψ) dz

= ∇ψ
∫
q(z|ψ) dz = ∇ψ 1 = 0,

(2.62)

which cancels the first term in equation (2.61). The second term is simplified

by using again the log derivative trick ∇ψ q(z|ψ) = q(z|ψ)∇ψ log q(z|ψ),
to give the score (or reinforce) gradient:

∇ψ elbo = Eq

[
∇ψ log q(z|ψ)

(
log p(x, z)− log q(z|ψ)

)]
. (2.63)

This allows to compute noisy but unbiased gradients of the ELBO using
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Monte Carlo samples from the variational distribution, as

̂∇ψ elbo =
1

S

S∑

s=1

∇ψ log q(zs|ψ)
(
log p(x, zs)− log q(zs|ψ)

)
,

where zs ∼ q(z|ψ).
(2.64)

Note that sampling from q(z|ψ) and evaluating the variational distribu-

tion together with its score function do not involve the model p(·) : these

functions can be build up in a library for common variational distributions

and reused for many models. In this way the gradients satisfy a black box

criteria, since the only model-specific operation required of the practitioner

is computing the log of the joint distribution p(x, zs). For this reason, the

BBVI score method can be quickly applied to a vast range of nonconjugate

models for which the joint distribution is evaluable, and plays in VI the role

that Metropolis-Hastings algorithm plays in MCMC.

The Monte Carlo estimates (2.64) can then be used in a stochastic op-

timization routine to optimize the variational parameters ψ and thus the

ELBO. The method can take advantage of adaptive learning rates (such as

Adam that will be illustrated in Subsection 3.1.5), and of data subsampling

(mini-batching) seen for SVI. The latter leads to what is called a doubly

stochastic variational approximation (Titsias & Lázaro-Gredilla, 2014), as it

involves sampling from both the variational distribution and the dataset.

Nevertheless, in practice, the variance of the score gradient estimator is

large, and that would require very small step sizes leading to slow conver-

gence. Thererore, we need to rely on methods that reduce this variance, such

as control variates (Ross, 2022). Suppose that we want to estimate Eq[f(z)]

via Monte Carlo by computing an empirical mean of samples from q. Then

the function f(z) can be replaced with

f̂(z) = f(z)− a (h(z)− Eq[h(z)]). (2.65)

This is called a control variate, a family of functions indexed by the coefficient

a and where h is a baseline function. It is easy to see that f̂(z) is an unbiased

estimator, Eq[f̂(z)] = Eq[f(z)] , with variance

Var[f̂(z)] = Var[f(z)] + a2 Var[h(z)]− 2aCov[f(z), h(z)]. (2.66)
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By setting the derivative of Var[f̂(z)] w.r.t. a equal to 0, we obtain that the

optimal value of a that minimizes the variance is

a∗ =
Cov[f(z), h(z)]

Var[h(z)]
. (2.67)

Substituting this value into equation (2.66) gives

Var[f̂(z)] = Var[f(z)]−Cov[f(z), h(z)] 2

Var[h(z)]
=
(
1−Corr[f(z), h(z)] 2

)
Var[f(z)].

(2.68)

As a consequence, the more correlated the functions f and h, the greater

the variance reduction.

Returning to BBVI, we want to choose a control variate that preserves

our goal of inference without model-specific computations. A good solution

is choosing h to be the score function ∇ψ log q(z|ψ), which is already needed

and has expectation zero. In this way, the control variate for the m-th entry

of the gradient is defined by

fm(z) = ∇ψm
log q(z|ψ)

(
log p(x, z)− log q(z|ψ)

)
,

hm(z) = ∇ψm
log q(z|ψ),

a∗m = Cov[fm(z), hm(z)] /Var[hm(z)].

(2.69)

The variance and covariances necessary for a∗m are estimated on a small

number of samples from q, to give the estimated scalings âm. Thus, it is

possible to obtain the Monte Carlo estimates of the gradients as

̂∇ψm
elbo =

1

S

S∑

s=1

∇ψm
log q(zs|ψ)

(
log p(x, zs)−log q(zs|ψ)−âm

)
. (2.70)

Finally, the whole score-gradient BBVI algorithm with control variates

is presented in Algorithm 7, which can be easily adjusted to subsample

minibatches. One might also use different variance reduction tecniques, like

Rao-Blackwellization or importance sampling (Ruiz et al., 2016).

The BBVI approach is strongly motivated by the idea of probabilistic

programming, which allows a user to write down a probability model as a

computer program that generates data and then compile it into an efficient

inference executable, with systems such as Stan (Carpenter et al., 2017),

PyMC3 (Salvatier et al., 2016), and Edward (Tran et al., 2016).
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Algorithm 7: Score gradient BBVI with control variates

Initialize: Variational parameters ψ. Schedule ρt appropriately

while not converged do

Draw S samples from the variational distribution:

z[s] ∼ q(z|ψ), s = 1, . . . , S

for each m = 1 :M do

for each s = 1 : S do

fm[s] = ∇ψm
log q(z[s] |ψ)

(
log p(x, z[s])− log q(z[s] |ψ)

)

hm[s] = ∇ψm
log q(z[s] |ψ)

end

Estimate âm = Ĉov[fm, hm] / V̂ar[hm] from a few samples

Compute the noisy gradient ĝm = 1
S

∑S
s=1 fm[s]− âm hm[s]

end

Update the current variational parameters:

ψ(t) = ψ(t−1) + ρt ĝ

end

2.3.2 Reparameterization gradient

An alternative way to obtain a low-variance gradient estimator is the repa-

rameterization trick (Kingma & Welling, 2014). It assumes that:

(i) log p(x, z) and log q(z|ψ) are differentiable with respect to z;

(ii) we can sample z ∼ q(z|ψ) by first sampling a noise term ε ∼ v(ε)

independent of ψ, and then transforming it to z using a deterministic

and differentiable function z = r(ε,ψ). For example, if z ∼ N (µ, σ2)

then z = r(ε,ψ) = µ+ σε, with ε ∼ N (0, 1).

This allows us to rewrite the variational objective as an expectation with

respect to v(ε), namely

elbo(ψ) = Eq(z|ψ)[log p(x, z)− log q(z|ψ)]

= Ev(ε)[log p(x, r(ε,ψ))− log q(r(ε,ψ))].
(2.71)
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At this point, since v(ε) is independent of ψ, we can push the gradient

of the ELBO inside the expectation and use the chain rule to obtain

∇ψ elbo = Ev(ε)

[
∇z

(
log p(x, z)− log q(z|ψ)

)
∇ψ r(ε,ψ)−∇ψ log q(z|ψ)

]
,

where z = r(ε,ψ).

(2.72)

The last term vanishes since the score function has zero expectation, and

∇ψ elbo = Ev(ε)

[
[∇z(log p(x, z)− log q(z|ψ))∇ψ r(ε,ψ)] z=r(ε,ψ)

]
, (2.73)

which is known as reparameterization or pathwise gradient. The corrispon-

dent Monte Carlo estimates are used in a stochastic optimization as Algo-

rithm 8 illustrates.

Note that unlike the previous BBVI method, the reparameterization ap-

proach works only for differentiable models with continuous latent variables;

however, this is bypassed for models such as mixture models where dis-

crete latent variables can be marginalized out. Since it requires calculating

∇z log p(x, z), the reparameterization estimator is therefore more computa-

tionally expensive than the score estimator, but often has lower variance,

intuitively because it uses more information from the log posterior. This is

theoretically proven by (Xu et al., 2019) in certain cases, while (Kucukelbir

et al., 2017) show empirically that in their settings the reparametrization

gradient estimator exhibits much lower variance than the score estimator

with control variates.

Reparametrization BBVI is made attractive by automatic differentiation

techniques, which allow to compute derivatives in an algorithmic manner

using frameworks such as autograd, TensorFlow and Theano. In our case this

is especially useful for evaluating the gradient of the log joint model w.r.t.

the latent variables and fits with the ideas of probabilistic programming and

automated VI.

In this context, the most commonly used approximations for q(z|ψ)
are Gaussian distributions. The standard option is to posit a parametric
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Algorithm 8: Reparameterization gradient BBVI

Initialize: Variational parameters ψ. Schedule ρt appropriately

while not converged do

Draw S samples from the auxiliary distribution:

εs ∼ v(ε), s = 1, . . . , S

Compute the noisy gradient:

ĝ = 1
S

∑S
s=1∇z

[
log p(x, r(εs,ψ))− log q(r(εs,ψ))

]
∇ψ r(εs,ψ)

Update the current variational parameters:

ψ(t) = ψ(t−1) + ρt ĝ

end

fully-factorized mean field Gaussian approximation

q(z|ψ) =
m∏

j=1

N (zj |µj, σ
2
j ). (2.74)

This family is flexible and efficient, but its assumptions do not allow it to

capture posterior correlations between latent variables (Blei et al., 2017).

An extension is full-rank Gaussian variational Bayes (GVB), namely

q(z|ψ) = N (z |µ,Σ), (2.75)

with the covariance matrix represented using its Cholesky decomposition

Σ = LLT , where L is a lower triangular matrix. We can sample z ∼
N (z |µ,Σ) using a location-scale transformation, z = r(ε,ψ) = µ + Lε

with ε ∼ N (0, Im), in order to define the reparameterization gradient to be

calculated with the help of autodifferentiation.

The full-rank GVB comes at a computational cost, but leads to a more ac-

curate posterior approximation, generalizing the mean field Gaussian family.

In fact, the off-diagonal terms in Σ enable to capture posterior correlations

across latent variables.

In high dimensions, an efficient alternative to the Cholesky decomposition

is the factor decomposition

Σ = BBT + C2, (2.76)
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where B is the factor loading matrix of size m × f , where f � m is the

number of factors, m is the dimensionality of z, and C = diag(c1, ..., cm).

This low-rank GVB with factor covariance structure (Ong et al., 2018) is

useful when m is large, as the number of variational parameters reduces from

m+m(m+ 1)/2 in the full-rank case to (f + 2)m.

An approach towards more expressive variational posteriors, which go be-

yond Gaussian approximations, will be mentioned in Chapter 4. As an aside,

note that throughout the thesis we focus only on optimizing the kl(q || p)
divergence. However, optimizing alternative measures opens up other vari-

ational approximation methods, such as expectation propagation (Minka,

2001), which is based on the reverse Kullback-Leibler divergence kl(p || q).
To wrap up the discussion on reparameterization BBVI, there is the ap-

proach proposed by (Kucukelbir et al., 2017), automatic differentiation vari-

ational inference (ADVI). It first automatically transforms the joint density

of the model so that the latent variables z live in the real coordinate space,

and then posits a Gaussian variational approximation without constraints

to apply GVB with the reparameterization trick.

Reparameterization gradients will be seen in action in Chapter 4, since

they are, along with amortized inference, the key idea behind variational

autoencoders, the arrival point of this thesis.

2.3.3 Amortized inference

The term amortized inference refers to reusing past inferences to support

future computations, mirroring human probabilistic reasoning (Gershman

& Goodman, 2014).

Consider a hierarchical model where each data point xn is associated

with a local latent variable zn, which is assumed to be governed by its own

free variational parameters ψn. As Figure 2.6(a) illustrates, standard BBVI

requires freely optimizing the parameters ψn for each data point, which is

computationally expensive. The idea behind amortized variational inference

is to learn a function ψn = fφ(xn) to predict ψn from the input xn. In this

way, as Figure 2.6(b) shows, the local variational parameters are replaced by
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a function of xn whose parameters φ are shared across all data points, i.e.

inference is amortized (C. Zhang et al., 2018). At this point, one can obtain

fast estimates of local parameters on future data by feeding them into the

function fφ, without having to run other optimizations.

xn

znψn ϑ

N

(a) BBVI

xn

znφ ϑ

N

(b) Amortized BBVI

Figure 2.6: Graphical representation of a hierarchical model with mean field

variational approximations, standard and amortized respectively.

Dashed lines denote variational approximations and ϑ are the

global variables (parameters) of the model.

The function fφ is usually chosen to be a deep neural network and is

called inference network or recognition network. To this extent, amortized

VI with inference networks combines probabilistic modeling with the power

of deep learning (C. Zhang et al., 2018). Examples of that are deep Gaussian

processes (Damianou & Lawrence, 2013) and deep latent Gaussian models

(DLGMs) (Rezende et al., 2014), which lead to variational autoencoders

(VAEs) (Kingma & Welling, 2014).

The idea of amortization will then be taken up again in Chapter 4, but

in order to better understand what follows, we first need to illustrate some

concepts about the theory of neural networks.



Chapter 3

Artificial Neural Networks

Artificial neural networks, simply called neural networks in machine learning

parlance, are a class of computational systems inspired by the biological

neural networks that constitute human brains. In more detail, a neural net is

a network model consisting of interconnected units or nodes called (artificial)

neurons, which transmit information signals to one another, loosely modeling

the neurons in a biological brain. Depending on the typologies of neurons and

how they are connected, there are different types of neural networks. In this

chapter we will focus on feedforward neural networks and then specifically

on convolutional neural networks and autoencoders.

3.1 Deep feedforward neural networks

Feedforward neural networks (FFNNs), also known as multilayer percep-

trons (MLPs), are the quintessential deep learning models (Goodfellow et

al., 2016). The goal of a FFNN is to approximate an arbitrary function

f ∗ through a hierarchical composition of nonlinear functions. Operationally,

this hierarchical structure is expressed as a network where the nodes (called

units or neurons) are organized in layers and connected by edges, each of

which is associated with a parameter that is called weight. The name feed-

forward comes from the fact that in this network the information flows in

only one direction, from the input nodes, through the hidden layers and to
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the output nodes ; the connections between nodes do not form cycles, which

instead characterize recurrent neural networks, not presented in this thesis.

The layered structure of a FFNN is best captured with a directed acyclic

graph (DAG) representation, as illustrated by Figure 3.1.
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Figure 3.1: Structure of a deep feedforward neural network with three hidden

layers; the yellow nodes represent the intercepts or bias units.

Referring to the latter, we then want to define the mathematical formu-

lation of multilayer perceptrons. Adapting from (Efron & Hastie, 2016), we

introduce a element-wise notation, defining:

• L : number of layers in the network, which has one input layer, L− 2

hidden layers and one output layer;

• p` : number of nodes in the `-th layer (excluding the bias unit);

• a
(`)
j : value of the j-th node in the `-th layer, with the i-th input unit

being defined as a
(1)
i = xi , and the k-th output unit as a

(L)
k = ŷk ;

• w
(`)
ji : weight associated with the connection between node i in layer `

and node j in layer `+ 1;

• b
(`)
j : bias associated with node j in layer `+ 1.
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With this notation in hand, the relation between the layer ` and the layer

`+ 1 is defined as

z
(`+1)
j = b

(`)
j +

p∑̀

i=1

w
(`)
ji a

(`)
i ,

a
(`+1)
j = g(`+1)(z

(`+1)
j ),

(3.1)

that is a linear combination of the nodes in the previous layer transformed

by a usually nonlinear function g(`+1)(·), which is the activation function for

the (`+ 1)-th layer.

This formulation can be made more streamlined by adopting a vector

notation. We define:

• a(`) =
[
a
(`)
1 a

(`)
2 · · · a

(`)
p`

]T
;

• W(`) =
[
w

(`)
1 w

(`)
2 · · · w

(`)
p`

]
, with w

(`)
i =

[
w

(`)
1i w

(`)
2i · · · w

(`)
p`+1i

]T
;

• b(`) =
[
b
(`)
1 b

(`)
2 · · · b

(`)
p`+1

]T
;

• W =
[
W(1) W(2) · · · W(L−1)

]
;

• b =
[
b(1) b(2) · · · b(L−1)

]
.

At this point, the relation between two generic layers can be expressed in

the compact form

z(`+1) = W(`)a(`) + b(`),

a(`+1) = g(`+1)(z(`+1)),
(3.2)

where the activation function g(`+1)(·) is applied to the vector z(`+1) in an

element-wise fashion. Consequently, given an input x and the parameters

θ = {W,b}, the network aims to approximate an unknown function f ∗(x)

through the chain relation,

ŷ = f(x;θ) = g(L)(W(L−1)g(L−1)(· · ·W(2)g(2)(W(1)x))), (3.3)

in which the bias terms are omitted for simplicity. We have that the neural

network is generally defined deep if the number of hidden layers is greater

than or equal to 3.
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3.1.1 Non-linearities

Regarding the activation functions g(·), we notice that if only linear functions

are used, then the model (3.3) is equivalent to a linear model. For this

reason, in order to approximate complex relations f ∗(x), the same nonlinear

activation functions are commonly used for the hidden layers, while for the

output layer the transformation g(L)(·) is chosen according to the problem of

interest. If we are facing a quantitative regression problem, the single output

node is the result of a linear transformation ŷ = z(L); on the other hand, if

we are in a classification context with K classes, the activation function for

the output layer is typically the softmax function

g(L)(z
(L)
k ) =

e z
(L)
k

∑K
j=1 e

z
(L)
j

. (3.4)

With regard to activation functions for hidden layers, in the early days of

neural networks common choices were the sigmoid function or the hyperbolic

tangent, which are presented in Table 3.1. However, as Figure 3.2 (left)

illustrates, the sigmoid function saturates at 1 for large positive inputs and

at 0 for large negative inputs. The same happens to the tanh function, which

has a similar shape but horizontal asymptotes ±1. Consequently, as can be

seen from Figure 3.2 (right), the gradients of both functions become small

and tend to zero as |z| increases, being in general always smaller than one.

This makes it problematic to estimate parameters θ via backpropagation,

which, as will become clear later, exploits the chain rule to compute the

gradient of the output w.r.t. θ(`), by recursively multiplying the activation

functions gradients and intermediate quantities related to higher layers. If

the gradients of the activation functions take on small values, it will then

result in the gradient signal from higher layers being unable to propagate

back to earlier layers, especially for very deep neural networks. This is known

as vanishing gradient problem (Bengio et al., 1994), and leads to infinitesimal

parameter updates, making the gradient-based learning process difficult.

One solution to this issue is to use rectified linear unit (ReLU), the acti-

vation function recommended for deep networks, defined in Table 3.1.
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Table 3.1: Most popular activation functions for neural networks. Formally,

ReLU and leaky ReLU are not differentiable at 0, but by convention

their gradients are set respectively equal to 0 and α when z = 0.

Name Definition Range Gradient

Sigmoid σ(z) = (1 + e−z)−1 [0, 1] σ(z) (1− σ(z))
Hyperbolic tangent tanh(z) = 2σ(2z)− 1 [−1, 1] 1− tanh2(z)

Rectified linear unit ReLU(z) = max(0, z) [0,∞] 1{z>0}

Leaky ReLU max(0, z) + αmin(0, z) [−∞,∞] 1{z>0} + α1{z≤0}
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Figure 3.2: Plots of the most used activation functions (left) and their gradi-

ents (right); we set α = 0.1 for leaky ReLU.

As Figure 3.2 (left) shows, ReLU (Glorot et al., 2011) is a non-saturating ac-

tivation function, which introduces non-linearity through a piecewise linear

transformation. In practice, (Krizhevsky et al., 2012) have shown empiri-

cally that using the rectifier activation function leads to better convergence

performance. In fact, ReLU has the following major advantages:

• it reduces the likelihood of gradient vanishing. The function activates

only those hidden units with z > 0, to which correspond gradients that

have constant value 1 (Table 3.1), and can thus be propagated back

to earlier layers without becoming increasingly small. In contrast, the
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remaining hidden units (with z ≤ 0) become exactly equal to 0, and

thus have zero gradients that are not backpropagated (Figure 3.3).

• It is computationally efficient, as it only requires comparing whether

a number is positive, and the gradient is equal to 0 or 1.

• The rectifier function allows the network to obtain sparse represen-

tations, since about 50% of the hidden neurons return real zeros and

are therefore inactive, as shown by Figure 3.3. We will often see that

sparse representations are more beneficial than dense ones for a num-

ber of reasons, including the fact that they are prone to disentangle

the underlying factors of variation in the data.

Figure 3.3: Sparsity in a network with ReLU activations. Active neurons are

transformed linearly; the non-linearity in the network arises from

the path selection (combination) associated with individual neu-

rons being active or not (Glorot et al., 2011).

Nevertheless, ReLU neurons can end up in a state in which they are

always inactive and output zero for all inputs. In this situation, the neuron is

unlikely to recover, since no gradients flow backward through it, and "dies",

being not able to discriminate between inputs. This is known as dying ReLU

problem. One attempt to solve this issue is to use the leaky ReLU activation

function, which assigns a small positive slope for z ≤ 0, usually α = 0.01

(Maas et al., 2013).
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3.1.2 Why deep representations

FFNNs are generally referred to as universal approximators, in the sense

that a multilayer perceptron with one hidden layer can approximate any

continuous function to an arbitrary level of accuracy, given enough hidden

units. This is stated in the universal approximation theorem enunciated by

(Cybenko, 1989). Unfortunately, in the worst-case scenario, an exponential

number of hidden units may be necessary in order to represent a function.

This can be easily seen in the binary case: the number of all possible Boolean

functions on vectors υ ∈ {0, 1}n is 22
n

, and in general representing one such

function requires 2n bits with O(2n) degrees of freedom (Goodfellow et al.,

2016). Therefore, a shallow network with only one hidden layer is sufficient

to memorize any function, but the layer may be exaggeratedly wide and

generalize poorly to new data.

However, many arguments, both empirical (e.g. Goodfellow et al., 2014)

and theoretical (e.g. Montufar et al., 2014), have shown that using very deep

neural networks feasibly reduces the number of units-per-layer required to

learn a function, and leads to better generalization for a variety of tasks.

The reason is that higher layers can leverage the features learned by earlier

layers, allowing the network to discover hierarchical representations of high-

dimensional data with multiple levels of abstraction.

Consider, for example, a face image, which arrives in the form of an

array of pixel values. As illustrated by Figure 3.4, the first hidden layer of

the network typically learns to detect edges at various orientations. Then,

the second hidden layer can compose these edges to detect primitive shapes,

here eyes, noses, ears, etc. The third hidden layer can assemble the previous

representations to identify more complex shapes and objects, in this case

particular types of faces.

In general, subsequent layers gradually learn to extract more abstract

level features that are invariant to irrelevant variations in the data, and can

be used to discriminate with respect to the problem of interest, which for

this example may be facial recognition or some type of classification.
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→ Hidden layer 1 → Hidden layer 2 → Hidden layer 3 →

Low-level features Mid-level features High-level features

Figure 3.4: Visualizations of features learned by a convolutional neural net,

a specific type of FFNN suitable for images; each box represents

one specific hidden unit (Lee et al., 2011). Incidentally, it was

ascertained that these features resemble those observed in areas

V1 and V2 of the visual cortex.

As stated by (LeCun et al., 2015), the crucial aspect of deep learning is

that these features are not hand-designed by engineers, but they are auto-

matically discovered by the algorithm from the raw data. This approach is

known as representation learning (Bengio et al., 2013), and aims to disentan-

gle the underlying factors of variation in the data, which in face images may

be pose, illumination, identity, facial expression. Deep learning methods are

a natural way to accomplish this goal by obtaining abstract representations

as a composition of simpler concepts. This makes deep neural networks the

state-of-the-art models in a variety of problems, such as speech recognition,

image recognition and natural language processing.

3.1.3 Backpropagation

Suppose we are in a supervised learning setting, which means we have access

to a labeled training set
{
(xi, yi)

n
i=1

}
, where xi = (xi1, . . . , xi p1) are the input

variables and yi is the response variable, which represents noisy examples of

the unknown function we want to learn, namely yi ≈ f ∗(xi). The nature of

the label yi is quantitative for a regression problem, while it is qualitative

with K modalities in a classification context.
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We are therefore interested in understanding how the parameters θ of

the neural network are estimated in such a way as to minimize a certain

loss function L(θ). The process first involves flowing the input x through

the various layers of the network to produce the output ŷ = f(x;θ): this is

known as forward propagation. Next, the backpropagation algorithm allows

to compute the gradients ∇θL(θ) by propagating the information backward

in the network. These gradients can then be exploited in a gradient-based

optimization algorithm to update the parameters.

A common choice of loss function for regression problems is the mean

squared error (MSE):

L(θ) =
1

n

n∑

i=1

Li =
1

n

n∑

i=1

(
yi − f(xi;θ)

)2
. (3.5)

In contrast, for classification problems one generally uses the cross-entropy,

that is the negative log-likelihood of the multinomial distribution,

L(θ) =
1

n

n∑

i=1

Li = −
1

n

n∑

i=1

K∑

k=1

yik log fk(xi;θ), (3.6)

where yik = 1 if the i-th response belongs to the class k, and 0 otherwise.

Our goal is to find the parameters θ (formed by the weights W and the

biases b) that minimize the loss function L(θ). This is done through the

training procedure we outlined in broad strokes earlier, in which the crucial

step is the backpropagation algorithm, or backprop (Rumelhart et al., 1986).

In fact, the latter makes it possible to efficiently compute the derivatives of

the loss function w.r.t. the parameters by recursively applying the chain rule

for differentiation.

Suppose we have forward propagated a single input xi to obtain f(xi;θ),

having stored underway all the intermediate quantities a(`) and z(`) for the

hidden layers. Denoting by Li the contribution of the i-th example to the

loss function, we can define the delta terms

δ(l) =
∂Li

∂ z(`)
, (3.7)

which measure the responsibility of each node for the error in predicting the

yi response (Efron & Hastie, 2016).
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Applying the chain rule, we can calculate the quantities δ(L) for the output

layer as

δ(L) =
∂Li

∂ z(L)
=

∂Li

∂f(xi;θ)

∂f(xi;θ)

∂ z(L)

=
∂Li

∂f(xi;θ)
� ġ(L)(z(L)),

(3.8)

where ġ(L)(z(L)) indicates the first derivative of g(L)(z(L)) and the symbol

� denotes the element-wise product operator (or Hadamard product). The

first term ∂Li/∂f(xi;θ) is, for example, equal to 2 (yi−f(xi;θ)) when using

MSE in a regression problem.

Proceeding backward recursively, we can obtain the deltas for the generic

layer ` as

δ(`) =
∂Li

∂ z(`)
=

∂Li

∂ z(`+1)

∂ z(`+1)

∂ a(`)

∂ a(`)

∂ z(`)

= δ(`+1) ∂ z(`+1)

∂ a(`)

∂ a(`)

∂ z(`)

=
(
(W(`))Tδ(`+1)

)
� ġ(`)(z(`)).

(3.9)

With these results it is possible to compute the derivatives of the loss func-

tion with respect to the parameters, namely

∂Li

∂W(`)
=

∂Li

∂ z(`+1)

∂ z(`+1)

∂W(`)
= δ(`+1)(a(`))T , (3.10)

∂Li

∂ b(`)
=

∂Li

∂ z(`+1)

∂ z(`+1)

∂ b(`)
= δ(`+1). (3.11)

In practice, the calculation is done by automatic differentiation express-

ing the differentiable components that characterize the neural network as a

computation graph (Baydin et al., 2018).

3.1.4 Stochastic gradient descent

The derivatives (3.10) and (3.11) can therefore be used in a gradient de-

scent optimization algorithm to iteratively find the parameter values that

minimize the loss function. Define

∇θ(`) = 1

n

n∑

i=1

∂Li

∂ θ(`)
(3.12)
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to be the average gradient of an iteration over all the training examples.

Then, the updates for the parameters θ, consisting of W and b, are

θ(`) ← θ(`) − η∇θ(`), (3.13)

where η ∈ (0, 1) is the learning rate.

In practice, for the same reasons explained in Section 2.2, it is convenient

to solve our non-convex optimization problem by stochastic gradient descent

(SGD). This involves updating the parameters each time we process a new

training sample, as illustrated by Algorithm 9. Each parameter is usually

randomly initialized via the Xavier initialization,

θ ∼ N
(
0,

2

p1 + pL

)
, p1 num of inputs and pL num of outputs, (3.14)

so as to break the symmetry in the network that would occur if all weights

were initialized to zero. In addition, for numerical reasons, it is good practice

to standardize the input variables so that they have zero mean and unit

variance: this helps to accelerate convergence.

The approach presented in Algorithm 9 can be easily extended to mini-

batches by appropriately rescaling the gradient (3.12) as seen in the previ-

ous chapter. In effect, mini-batch gradient descent is the go-to algorithm for

training large datasets, as it allows us to: (i) take advantage of vectorization

to efficiently perform computations on B data points; (ii) process multiple

minibatches in parallel on different machines.

The batch size B, as well as the neural network architecture (number of

layers, number of hidden units, activation functions), should be chosen in

such a way as to minimize the prediction error on a validation set, so as to

trade-off bias and variance.

3.1.5 Adaptive moment estimation

An extension that accelerates stochastic gradient descent is the method of

momentum, which aims to move faster in the right direction leading to the

minimum of the loss function, just like a ball rolling downhill. This is ac-

complished by smoothing the gradient through an exponentially weighted
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Algorithm 9: Parameter estimation in a neural network

Initialize: parameters θ = {W,b}
while not converged do

for i = 1 : n do

Perform forward propagation of xi, obtaining the quantities

a(`), z(`) for ` = 2, . . . , L

For the output layer, set

δ(L) = ∂Li

∂f(xi;θ)
� ġ(L)(z(L))

For the hidden layers ` = L− 1, . . . , 2, set

δ(`) =
(
(W(`))Tδ(`+1)

)
� ġ(`)(z(`))

Compute the gradient

∇θ(`) =




∇W(`) = δ(`+1)(a(`))T

∇b(`) = δ(`+1)

Update the current parameters

θ(`) ← θ(`) − η∇θ(`)
end

end

moving average, which is accumulated by the algorithm so as to avoid un-

necessary oscillations. Defining θt the generic scalar parameter of θ at iter-

ation t, and introducing the variable vt that plays the role of velocity, the

implementation is as follows:

vt = β1 vt−1 +∇θt
θt = θt−1 − ηt vt,

(3.15)

where the constant β1 ∈ [0, 1) is typically set to 0.9. For β1 = 0, we return

back to standard SGD.

Another algorithm that improves SGD is RMSProp (Root Mean Square

Propagation) (Tieleman & Hinton, 2012), which adapts the learning rate

according to the frequency of each parameter. The idea is to first calculate
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an exponentially weighted moving average of the past squared gradients as

st = β2st−1 + (1− β2)(∇θt)2, (3.16)

and then scale the learning rate by the square root of this moving average,

to obtain the update

θt = θt−1 −
η√
st + ε

∇θt. (3.17)

The small scalar ε (usually 10−8) prevents division by zero, while β2 is typi-

cally set to 0.9. RMSProp is an adaptive learning rate algorithm; the overall

step size η still need to be chosen, but the results are less sensitive to this

choice.

Combining momentum and RMSProp we obtain what is the most widely

used optimization algorithm for deep networks, namely Adam (Kingma &

Ba, 2014), which stands for "adaptive moment estimation" as it is based on

adaptive estimates of lower-order moments. Define the moving averages

vt = β1 vt−1 + (1− β1)∇θt
st = β2 + (1− β2)(∇θt)2.

(3.18)

Since if we initialize v0 = s0 = 0 the initial estimates are biased toward small

values, it is appropriate to use the following bias-corrected moments:

ṽt =
vt

1− β t
1

s̃t =
st

1− β t
2

. (3.19)

At this point the update becomes:

θt = θt−1 −
η√
s̃t + ε

ṽt, (3.20)

where the recommended values for the constants are β1 = 0.9, β2 = 0.999

and ε = 10−8, while a good default value for the overall learning rate is

η = 0.001. The algorithm is fairly robust to this choices, albeit sometimes η

needs to be tuned.

Empirical results of (Kingma & Ba, 2014) show that Adam works well in

practice and compares favorably to other optimization algorithms, without

needing to costly store the Hessian as in second-order methods.
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An additional technique that generally allows to improve optimization

is batch normalization (Ioffe & Szegedy, 2015). It is a method of adaptive

reparameterization that standardizes the hidden units in order to speed up

learning of mini-batch gradient descent. More specifically, in any layer `

(omitted), the pre-activation vector z{m} for data point m is transformed,

by exploiting broadcasting, as follows:

ẑ
{m} =

z{m} − µb√
σ2

b + ε
,

µb =
1

B

∑

z∈b

z,

σ2
b =

1

B

∑

z∈b

(z− µb)
2,

(3.21)

where b is the minibatch of cardinality B containing data point m, µb is

the mean of z in that minibatch and σ2
b the corresponding variance, with ε

very small constant. In order to maintain the expressive power of the neural

network, the vector ẑ
{m} is further transformed to give:1

z̃
{m} = γ � ẑ

{m} + δ, (3.22)

where δ and γ are learnable location and scale parameters of the considered

layer, which are in addition to the other model parameters. Since the trans-

formation (3.22) is differentiable, we can back-propagate the gradient w.r.t.

δ and γ in order to optimize these parameters, for example via Adam.

The reasons why batch normalization works well in practice are still un-

der debate, but intuitively this is because it makes the distribution of every

layer more stable with respect to variations in its inputs; allowing us to use

higher learning rates and be less careful about weight initialization. In ad-

dition, since the noise introduced into the transformations by the minibatch

statistics forces the learning process to be more robust, batchnorm has also

a slight regularization effect.

1Forcing the pre-activations to take on a unit Gaussian distribution could constrain

the outputs of the activation functions to the linear regime of the non-linearities (think

about sigmoid function) and limit the flexibility of the neural network.
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3.1.6 Regularization strategies

In fact, deep neural networks are highly parameterized and complex models

that easily run the risk of the so-called overfitting phenomenon, which occurs

when the model follows too closely local characteristics of the training data

that are not replicated on new data. For this reason, the selection of a

good model should not be based solely on the training data, but should

aim to minimize the prediction error on a validation dataset not used for

fitting. In other words, we need to find a trade-off between bias and variance:

the variance of the model increases as the number of parameters grows,

because the model tends to chase fluctuations in the data; conversely, the

bias decreases as model complexity increases.

Regularization strategies aim to prevent overfitting (i.e. reduce variance)

by introducing some modification in the training algorithm, in a way that

allows the model to best generalize to new data sets. Specifically, in a deep

learning context, we almost always find that the best model, in terms of

prediction error on the validation dataset, is a large neural network that has

been heavily regularized (Goodfellow et al., 2016). In this direction, we first

focus on the following forms of regularization:

• early stopping;

• L2 regularization;

• dropout.

Early stopping is the simplest regularization strategy: it consists of stop-

ping the training process when the minimum error on the validation set is

reached. Indeed, for models with sufficient representational power we usu-

ally have that the training error gradually decreases over time, while the

validation set error begins to rise from a certain epoch, giving life to an

asymmetric U-shaped curve. Thus, by progressively storing a copy of the

best parameters until the validation error increases consistently, we can ob-

tain the model that predicts best on the validation set, and hopefully also on

an additional set of unseen data known as the test set. This means that we
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can prevent overfitting at the same time as training, without having to tune

regularization parameters (or if one wants, having to tune only the number

of epochs). Therefore, early stopping is an ad-hoc heuristic, but it works

effectively in practice, provided an appropriate stopping criterion.

Another way to avoid overfitting are penalization methods, which con-

strain the model to be more regular by artificially shrinking its parameters

toward zero, in order to reduce its variability by accepting some bias. This

is done minimizing the regularized loss function defined as:

L̃(θ) = L(θ) + λΩ(W), (3.23)

where λ ≥ 0 is a regularization parameter that weights the contribution of

Ω(W), a norm penalty term that measures the complexity of the model. The

parameter λ should be chosen so as to minimize the validation error, with

larger values of λ corresponding to a bigger regularization effect. As can be

seen, the bias parameters are not penalized.

The most common penalty for neural nets is the squared Frobenius norm,

Ω(W) =
1

2
‖W‖2F =

1

2

L−1∑

`=1

p∑̀

i=1

p`+1∑

j=1

(
w

(`)
ji

)2
, (3.24)

which is known as weight decay and gives rise to the so-called L2 regular-

ization, related to ridge regression. Assuming that the network has no bias

parameters, the regularized loss function becomes

L̃(W ) = L(W ) +
λ

2

L−1∑

`=1

p∑̀

i=1

p`+1∑

j=1

(
w

(`)
ji

)2
, (3.25)

with the corresponding gradient that has generic element equal to

∂L̃

∂w
(`)
ji

=
∂L

∂w
(`)
ji

+ λw
(`)
ji . (3.26)

At this point, in minimizing (3.25), the generic update takes the form:

w
(`)
ji = w

(`)
ji − η

(
λw

(`)
ji +

∂L

∂w
(`)
ji

)

= (1− ηλ)w(`)
ji − η

∂L

∂w
(`)
ji

.

(3.27)

which shrinks the ordinary update because of the factor 1− ηλ.
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Interestingly, it can be proved (Bishop, 2006) that the estimation with weight

decay penalty is equivalent to the MAP (maximum a posteriori) estimation

of a Bayesian neural network, with independent priors on the weights of the

type w
(`)
ji ∼ N (0, 1/λ). Instead, a different penalty term is the L1 norm,

that is the sum of the absolute values of the weights, which encourages some

weights to be exactly equal to zero.

To conclude, we present a powerful regularization method called dropout

(Srivastava et al., 2014). It consists of randomly omitting nodes from the

neural network at each iteration (sample) of the training process, as illus-

trated by Figure 3.5. Each node is kept in the network with a probability

p that can vary across layers: it is typically 0.8 for input units and 0.5 for

hidden units, but can be tuned using a validation set.

(a) Standard neural net (b) After applying dropout

Figure 3.5: Illustration of dropout regularization. (a) Standard neural network

with two hidden layers. (b) Example of a thinned net obtained

after applying dropout with p = 0.5 to the net on the left; crossed

units have been dropped out (Srivastava et al., 2014).

In practice, dropout is widely used because it drastically reduces overfit-

ting and improves the test performance of the networks in an elegant and

inexpensive way. Intuitively, the reason why this technique works well is that

it prevents complex, but brittle, co-adaptations of the network units. In sim-

ple terms, each unit learns to work without relying on the presence of other

specific units. This resembles the idea behind a random forest (Breiman,
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2001), which is a bagged ensemble of decision trees.

Formally, the generic weight going out the `-th layer, in a neural net

with dropout, is equal to w
(`)
ji ε

(`)
i , where ε

(`)
i ∼ Bernoulli(p). As a result,

the weights starting from a unit that has been dropped out are set to zero

and their gradient is not back-propagated in the network. This multiplicative

noise that characterizes dropout improves the robustness of neural networks;

the same thing happens, in a much slighter way, with batch normalization.

At test time, we usually turn dropout off to make deterministic predic-

tions. To ensure that the expected input activation to a unit at test time

is roughly the same as it was at train time, even though a p percentage of

input units is randomly missing on average, we have to multiply the weights

by the probability p before making predictions. Another way to achieve the

same goal is to divide the post-activation units’ values by p during training,

which is known as inverted dropout.

However, we can also use dropout at test time by averaging multiple

networks that share parameters. This is called Monte Carlo dropout (Gal &

Ghahramani, 2016), and is based on the following predictive distribution:

p(y∗|x∗,x,y) ≈ 1

S

S∑

s=1

p(y∗|x∗,Ŵ{s}, b̂), (3.28)

where Ŵ{s} are the estimated weights where some network units are dropped

out based on a sampled Bernoulli noise vector.

In fact, (Gal & Ghahramani, 2016) showed that deep neural networks

with dropout can be viewed as a variational approximation to the proba-

bilistic deep Gaussian process (DGP) model (Damianou & Lawrence, 2013).

Specifically, for each DGP layer `, consider the parameters {W`}L−1
`=1 and

{b`}L−1
`=1 that mimic those of FFNNs, but this time they are random arrays

with standard multivariate normal priors. Define the variational distribution

q(W,b) =
L−1∏

`=1

q(W`) q(b`). (3.29)

Each q(W`) factorizes into Gaussian mixtures with two components, i.e.:

q(W`) =

d∏̀

j=1

q(w
(`)
j ), q(w

(`)
j ) = pN (m

(`)
j , σ2Id`+1

) + (1− p)N (0, σ2Id`+1
),

(3.30)
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where d` stands for dimension of the `-th layer, m
(`)
j is a (d`+1)-dimensional

mean vector, σ2 is a scalar variance and p mimics the dropout probability.

For q(b`) we posit a simple multivariate Gaussian N (m
(`)
0 , σ2Id`+1

).

We have that the variational approximation can be reparameterized in

terms of Bernoulli and standard Gaussian distributions to obtain a stochastic

version of the ELBO, which for σ2 → 0 is mathematically equivalent to

the objective function that neural nets with dropout aim to minimize. This

implies that, in practice, Monte Carlo dropout can perform S stochastic

forward propagations of a new input x∗ by randomly dropping out nodes

each time, to obtain S empirical samples {y∗
1, . . . ,y

∗
S} from an approximate

predictive distribution. These samples can then be averaged to obtain a final

prediction of which we also have a measure of uncertainty.

What has just been described goes in the direction of Bayesian deep learn-

ing, which aims to infer the full posterior distribution over the model param-

eters, in contrast to the traditional approach that is only interested in point

estimates leading to accurate predictions. Representing uncertainty is actu-

ally important in deep learning to provide the practitioner with a measure of

model confidence, which is not offered by traditional neural nets. To address

this, Bayesian neural networks were introduced, which offer a probabilis-

tic interpretation of models and encourage regularization (MacKay, 1992).

Specifically, (Neal, 1996) proposed inferring these networks with MCMC

methods, while (Graves, 2011) used fully-factorized Gaussian SVI, but these

techniques have often proven to be computationally prohibitive or inaccurate

in practice. For this reason, the probabilistic perspective of neural networks

is still an active research topic (see Murphy, 2023, §17 for good insights).

3.2 Convolutional neural networks

In this section, we illustrate convolutional neural networks (CNNs) (LeCun

et al., 1989), a specialized type of FFNNs for processing data with a grid-like

topology: for example a colored image X ∈ RH×W×C , which is composed of

two-dimensional grids of H ×W pixel intensities in the C = 3 RGB color



3.2 Convolutional neural networks 82

Figure 3.6: 2d convolution; image taken from (A. Zhang et al., 2021).

channels. CNNs are extremely effective in computer vision applications of

image classification and object detection, as they allow spatial information in

the array data to be taken into account and require fewer parameters than

fully connected architectures. They are based on replacing weight matrix

multiplication with a convolution operation.

3.2.1 Convolution

In this context, convolution is a kind of linear operation that consists of

"sliding" a weight matrix over the image array and add up the results. More

formally, in a two-dimensional case, let X be the input matrix of size xh×xw
and W be a weight matrix of size fh× fw called filter or kernel. The output

of a convolution, Z = W ~ X, is called a feature map and is such that:2

zi,j = [W ~ X](i, j) =

fh−1∑

u=0

fw−1∑

v=0

wu,v xi+u,j+v . (3.31)

This can best be visualized with Figure 3.6.

Essentially, we can think the filter to detect a certain feature from the

input image: the convolution applies the filter to local patches of the image

and outputs a high value where the feature is detected. Indeed, in image data,

local groups of pixels are often highly correlated, forming special motifs to

be discovered.

According to (Goodfellow et al., 2016), convolution leverages three im-

portant ideas to improve neural networks: sparse interactions, parameter

sharing and equivariant representations.

2To be precise, the operation we are defining is cross-correlation, but it is commonly

called convolution in deep learning.
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First, CNNs have sparse connections as, in the hidden layers, each output

depends only on a restricted set of local inputs called the receptive field. In

contrast, fully-connected FFNNs are dense since each output neuron can in-

teract with all the input neurons of the previous layer. The sparsity of CNNs

is induced by replacing weight matrices multiplications with convolution op-

erations defined by kernels, which are smaller than the inputs and thus are

characterized by fewer parameters than dense FFNNs.3 This improves the

statistical efficiency of the model.

Second, parameter sharing refers to the fact that a CNN shares the same

parameters of a kernel across different locations of an input; unlike a tra-

ditional neural network, which uses each weight only once. The motivation

behind parameter sharing is the property of natural images whereby the local

statistics of an image are stationary. Accordingly, a feature detector (filter)

that is useful in one part of the image is probably useful also in other parts

of the image. This helps to dramatically reduce the number of parameters

in the network and its memory requirements.

Finally, a property of the convolution operation caused by parameter

sharing is translational equivariance. From a theoretical standpoint, a func-

tion is equivariant if a change in the input causes the output to change in

the same way. In terms of convolution, this means that if a pattern in the

input shifts location, its representation will translate the same amount in

the output.

So far, we have considered a convolution that applies a fh×fw filter to an

input of size xh×xw to produce an output of size (xh−fh+1)×(xw−fw+1),

as can be verified in Figure 3.6. This is called a valid convolution, since it

only uses valid input data. We can use an additional technique called zero

padding, which adds a border of 0s to the input, as shown by Figure 3.7(a).

3The number of parameters of a fully-connected FFNN is computationally prohibitive

for image data, since it is equal to (H ×W × C)×D, where D is the number of hidden

units. Consider for example a standard image of dimension 227× 227× 3, then fitting a

network with two hidden layers of 10 neurons already requires estimating about 15 million

parameters.
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Figure 3.7: Illustration of padding and stride in 2d convolutions. (a) We con-

volve a 5× 7 input using zero padding with a 3× 3 filter to get a

5× 7 output (the dark border is formed by pixels equal to zero).

(b) As at left, but with strides of 2. Adapted from (Géron, 2017).

Zero padding the input allows us to (i) control the filter size and the output

size independently; (ii) give more importance to the input pixels in the cor-

ners. In particular, when enough zero-padding is added to keep the output

size equal to the input size, we obtain the so-called same convolution.

Another trick of the trade is to downsample the output by skipping over

some intermediate positions of the filter. This is illustrated in Figure 3.7(b),

where we slide the filter with a stride s = 2. The purpose is to reduce

the computational burden of convolution, but also to limit the redundancy

between neighboring outputs.

In general, when we add zero padding on each side of size ph and pw, and

we use a stride sh for the height and a stride sw for the width, the size of

the output is:
⌊
xh + 2ph − fh + sh

sh

⌋
×
⌊
xw + 2pw − fw + sw

sw

⌋
, (3.32)

with b·c the floor function. The formula can be double-checked in Figure 3.7.

In practice, we have to deal with inputs with multiple channels (think

about RGB images). Moreover, we want to detect many kinds of features by

using multiple filters. These two issues are considered by defining a filter bank

W, which is a 4d tensor, where W:,:,c,d is the kernel to detect feature type d

in input channel c. At this point, the definition of convolution operation can
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Figure 3.8: Convolution with 3 input channels and 2 output channels. Each

2d convolution uses a 3× 3 kernel and a stride 1 without padding

(bias is omitted), so that the 6×6 input gets mapped to the 4×4

output (Murphy, 2023).

be extended so that the d-th output feature map is obtained by summing

the two-dimensional convolutions over the C input channels, namely:

zi,j,d = bd +

fh−1∑

u=0

fw−1∑

v=0

C−1∑

c=0

xsi+u,sj+v,cwu,v,c,d , (3.33)

where bd is the bias term and s the stride. This is best illustrated by Figure

3.8. Software implementations usually work in minibatch mode, thus the

feature maps are represented by means of a four-dimensional tensor with

the last axis indexing the minibatch examples.

3.2.2 Pooling

The output of a convolution is generally passed through a non-linearity such

as ReLU in an element-wise fashion, retaining information about the loca-

tion of the input in the representation, a property known as translational

equivariance. In some cases, however, we want to have invariance with re-

spect to small translations of the input. For example, when classifying an

image, we may want to recognize whether an object of interest is present

in the image, regardless of its exact location. In other situations, preserving

the location of features may be more crucial.
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Figure 3.9: 2d max pooling with a 2× 2 filter (A. Zhang et al., 2021).

The pooling operation aims to make the representations of a CNN trans-

lationally invariant to location, by coarse-graining the feature maps within

local neighborhoods. For example, max pooling subsamples a feature map by

calculating its maximum value within local patches, as shown by Figure 3.9;

another option is average pooling, which performs the same process but com-

puting the average. The same considerations about padding and stride also

apply here. When dealing with multiple channels, we apply pooling to each

feature channel independently: note that pooling does not require learning

any parameters.

Putting everything together, as illustrated by Figure 3.10, a typical CNN

is composed of alternating convolutional layers with ReLU activation and

pooling layers, followed by a final fully-connected classification layer at the

end. Backpropagation takes place in a manner similar to that described for

traditional neural networks: in practice, using frameworks such as TensorFlow

and PyTorch, we only need to specify the forward propagation structure,

then the framework takes care of computing the gradient automatically.

Again, the key aspect is that the convolutional filters do not have to be

hand-designed, but are learned naturally by a general-purpose procedure,

detecting features that gradually refer to larger areas of the image, such as

those visualized in Figure 3.4.

As previously announced, deep convolutional networks have been shown

to work tremendously well in computer vision tasks. A big motive behind

this success is the use of GPUs (graphics processing units) during training:

these were originally developed to speed up image rendering for video games,

but later became beneficial for performing the tensor operations underlying
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Figure 3.10: A simple CNN for image classification. Picture taken from

https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53 .

deep CNNs, accelerating their training (Murphy, 2022). This idea, along

with the introduction of ReLU after convolutional layers and dropout in

dense layers, characterized the creation of AlexNet (Krizhevsky et al., 2012),

a CNN architecture that marked a breakthrough in deep learning by almost

halving the error rate on ImageNet, a benchmark dataset containing million

of images from 1000 classes.

Another main reason behind the success of deep CNNs is precisely the

availability of large labeled datasets, which serve as fuel for models with

thousands of parameters and put more pressure on them to generalize well

preventing overfitting. However, we do not always have all the labeled data

we wish to solve a given problem. One solution to this is to retrieve the

parameters pre-trained on a separate data-rich task and then fine-tune them

on our data-poor problem. This approach is called transfer learning as it

transfers knowledge across similar vision tasks. Another approach is dataset

augmentation, which is a regularization technique that randomly distorts

input images in order to create additional fake training examples.

3.3 Autoencoders

Supervised learning, however, is not the only paradigm for learning represen-

tations: there is also unsupervised learning, which aims to discover patterns



3.3 Autoencoders 88

x1

x2

x3

x4

x5

Input

Layer

Latent

Representation

x̂1

x̂2

x̂3

x̂4

x̂5

Output

Layer

Figure 3.11: A simple autoencoder with one hidden layer.

from unlabeled data. In this context, an important model is the autoen-

coder, a particular type of neural network that attemps to reconstuct its

inputs learning useful representations of data in its latent space. Specifi-

cally, this model is composed of two parts: an encoder function h = fe(x)

that maps inputs into a latent space (code), and a decoder that produces a

reconstruction x̂ = fd(h). This is illustrated by Figure 3.11.

3.3.1 Undercomplete autoencoders

We can think an autoencoder as a nonlinear extension of principal compo-

nent analysis (PCA), which is a dimensionality reduction technique that

projects the inputs x ∈ Rdx into a low dimensional subspace h ∈ Rdh , char-

acterized by the dh orthogonal directions of greatest variation in the data.

In particular, PCA learns a linear transformation h = WTx, to be mapped

back to the original space as x̂ = Wh, in a way that reduces the information

loss with respect to the reconstruction error L(W) = ‖x− x̂‖22.
Similarly, an autoencoder involves the nonlinear mappings h = fe(x) and

x̂ = fd(h), which are implemented by a neural network with parameters θ

that is trained to minimize the reconstruction error L(θ) =
∥∥x−fd

(
fe(x)

)∥∥2
2
.

The latter can also be equal to the cross-entropy loss (3.6), depending on

the type of inputs.
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(a) Original images (b) Reconstructions

Figure 3.12: Results of applying a shallow autoencoder to MNIST data. (a)

Some original test digits. (b) Corresponding reconstruction im-

ages by the autoencoder.

To provide a practical example, we applied a simple autoencoder to the

MNIST dataset http://yann.lecun.com/exdb/mnist/. This is a collection of

images of handwritten digits, of which some test samples are shown in Figure

3.12(a). We flattened each 28×28 training image to obtain a 784 dimensional

input vector xn consisting of values scaled to the [0, 1] range. Then, we

fitted a fully-connected autoencoder with one hidden layer of 50 units, ReLU

activation for the hidden layer and sigmoid function for the output layer. In

particular, the neural network is trained with stochastic gradient descent in

order to minimize the binary cross-entropy loss L(θ) = − 1
N

∑N
i=1{xi ·log x̂i+

(1 − xi) · log(1 − x̂i)}. We used Adam with learning rate η = 0.001, batch

size B = 16 and 20 epochs to obtain some reconstruction results showed in

Figure 3.12(b).

We can also consider architectures with much more hidden neurons, how-

ever, we should keep in mind that the ultimate goal is not learning how to

copy the input to the output exactly. Think again of a shallow autoencoder

(with one hidden layer). If the number of hidden neurons dh is greater than or

equal to the number of inputs dx, the autoencoder easily learns the identity

function fd(fe(x)) = x with zero reconstruction error, without discovering

useful latent properties of the data. For this reason, we should somehow

constrain the autoencoder not to learn the trivial identity function.
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One way is to use a compressed representation with dh < dx hidden

neurons, reducing the dimensionality with a powerful nonlinear extension

of PCA that learns the most salient features of the data. This is known as

undercomplete autoencoder, and is the type we have considered so far in the

example, characterized by the bottleneck of Figure 3.11. It can be extended

to CNN autoencoders, where the encoder performs a convolution and the

deconvolution, to form a hourglass structure that forces the network to learn

a useful representation of the data.

3.3.2 Regularized autoencoders

Nevertheless, interesting features can also be learned using an overcomplete

autoencoder with dh >> dx on which some form of regularization is imposed.

This leads to the so-called regularized autoencoders, of which we review the

three best-known types: sparse autoencoders, denoising autoencoders and

contractive autoencoders.

Sparse autoencoders (Ng, 2011) limit the reconstruction ability of the

network by adding a sparsity penalty Ω(h) to the output h of the hidden

unit activations. One possibility for this penalty may be the L1 norm, which

encourages some units to be exactly equal to zero, but more typically a form

of Kullback-Leibler divergence is used. Specifically, let hj be the average

output of the hidden unit j over a minibatch, then the penalty is based on

the divergence kl(ρ ||hj), where ρ is a constant to which we want the hj to

be close (typically ρ = 0.05). For example, for two Bernoulli distributions

with means ρ and hj, we have kl(ρ ||hj) = ρ log ρ

hj
+ (1− ρ) log 1−ρ

1−hj
.

Putting it all together, a sparse autoencoder is trained to minimize the loss

LSAE(θ) = L(θ) + λ

dh∑

j=1

kl(ρ ||hj), (3.34)

where, as usual, λ is a regularization parameter. This training objective

constrains the hidden units’ values and makes the autoencoder discover in-

teresting structure in the data.

Another type are denoising autoencoders (DAEs) (Vincent et al., 2008),

which learn to reconstruct a clean version of an artificially corrupted input.



3.3 Autoencoders 91

This is done by modifying the training objective as:

LDAE(θ) = Ec(x̃|x)

[
L(θ;x, x̃)

]
, (3.35)

where Ec(x̃|x)[·] averages over examples x̃ drawn from a corruption process

c(x̃|x). In practice, (3.35) is optimized from stochastic gradients obtained by

adding some form of noise to the inputs. DAEs are especially successful at

reconstructing corrupted images, since the training procedure teaches them

to optimally undo the effect of corruption.

Finally, we have contractive autoencoders (CAEs) (Rifai et al., 2011),

which aim to reduce the number of effective degrees of freedom of the repre-

sentation by shrinking the derivative of the encoder around any input. Thus,

the objective function becomes:

LCAE(θ) = L(θ) + λ ‖J(x)‖2F , (3.36)

where the penalty term is the Frobenius norm of J(x) = ∂fe
∂x

(x), the Ja-

cobian of the encoder, which can be calculated analytically. In contrast to

DAEs, this objective has the effect of penalizing the sensitivity of the learned

features to small input variations, rather than the sensitivity of the recon-

struction (Bengio et al., 2013). However, a possible issue is that the repre-

sentation is encouraged to be robust only to infinitesimal input variations.

This is solved by penalizing also higher order derivatives (Rifai et al., 2011).

These autoencoders are proven to be successful at learning to represent

manifolds, low-dimensional regions where the data density concentrates that

are embedded in the original higher-dimensional input space (see Bengio et

al., 2013 for further details). More generally, in a first deep learning era, it

was believed that the autoencoders we presented were also crucial in a su-

pervised learning context. In particular, the modus operandi for deep neural

nets was greedy layerwise unsupervised pre-training, which consisted of stack-

ing the features learned by sequential autoencoders and then fine-tuning the

model on the data with backprop. With the advent of large collections of

labeled data, the unsupervised pre-training phase proved to be no longer nec-

essary. Nevertheless, autoencoders remain important tools for applications

such as semantic hashing, image processing and anomaly detection.



Chapter 4

Variational Autoencoders

In this chapter, we bring together all the work done previously to illustrate

variational autoencoders (VAEs). These models were introduced indepen-

dently by two research groups (Kingma & Welling, 2014; Rezende et al.,

2014), and can be thought of as a probabilistic version of autoencoders. In

fact, VAEs and standard autoencoders share similiarities in architectures,

but they are built with a different statistical formulation and for different

purposes. As an autoencoder extracts embeddings of the input space, a VAE

is a generative model that not just reconstructs original instances, but also

learns to generalize beyond the training examples already seen, producing

realistic-looking synthetic data.

4.1 Probabilistic formulation

We start by describing the probabilistic framework. We consider the data x

to come from the following generative process:

z ∼ pϑ(z), (4.1)

x | z ∼ p
(
x | fϑ(z)

)
, (4.2)

where z are latent variables and fϑ(z) is a deep neural network. Therefore,

the generative process is to first sample some values z from the prior distri-

bution pϑ(z) and then generate x from the conditional distribution pϑ(x|z).
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Figure 4.1: Directed acyclic graph representation of amortized inference in a

VAE. Dashed lines indicate the variational approximation qφ(z|x),
solid lines denote the generative model pϑ(x, z) = pϑ(x|z) pϑ(z).
The variational parameters φ are optimized jointly with the gen-

erative parameters ϑ.

The prior pϑ(z) and the likelihood pϑ(x|z) are assumed to be member of

parametric families of distributions.

However, when we observe some data x, we know neither the underlying

latent variables z nor the true generative parameters ϑ. Thus, we are inter-

ested in performing posterior inference by computing the density pϑ(z|x),
which, as usual, is intractable due to the marginal likelihood

pϑ(x) =

∫
pϑ(x|z) pϑ(z) dz. (4.3)

For this reason, we need to resort to variational inference, also because we

hypothesize to be in a machine learning context where dataset are too large

for MCMC methods.

Specifically, VAEs are based on amortized inference, which was discussed

in Subsection 2.3.3. As illustrated by Figure 4.1, this method amortizes the

inference computations by using a shared variational approximation qφ(z|x)
to the posterior pϑ(z|x), so that the number of variational parameters does

not grow with the size of the data. In particular, the variational approxima-

tion is called recognition (inference) family and has the form qφ
(
z|fφ(x)

)
,

where fφ(x) is chosen to be a neural network as well.

VAEs consists of combining the recognition family qφ(z|x) and the gener-

ative model pϑ(x, z) = pϑ(x|z) pϑ(z), with the two components that support

each other during the joint optimization of the parameters φ and ϑ. The
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recognition family provides the generative model with an approximation of

its posterior; reversely, the second allows to learn useful representations of

the data. To this extent, the recognition family can be viewed as approxi-

mately making the inverse path of the generative model.1

This idea was first proposed in the Helmholtz machine (Dayan et al.,

1995), which used a wake-sleep algorithm to infer latent variables in a fashion

similar to the EM algorithm. However, unlike VAEs, this method did not

optimize a single objective function.

x-space

z-space

Encoder: qφ(z|x) Decoder: pθ(x|z)

Prior distribution: pθ(z)

Dataset: D

Figure 4.2: A VAE learns stochastic mappings between an observed x-space

with complicated distribution, and a latent z-space with sim-

ple prior distribution (spherical in this case). Image taken from

(Kingma & Welling, 2019).

1The approximation qφ(z|x) is often called "recognition model" in the literature, but

we preferred to avoid this term to make precise the separation between inference and

modeling from a statistical perspective.
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Figure 4.3: Schematic illustration of a VAE (Murphy, 2023).

The connection with autoencoders becomes clear when looking at Figures

4.2 and 4.3. A variational autoencoder is therefore composed of (Kingma &

Welling, 2014):

(i) a probabilistic encoder qφ(z|x) which, given an input x, produces a

distribution over all the possible values of the latent variables z;

(ii) a probabilistic decoder pϑ(x|z) which, given a z (with prior pϑ(z)),

produces a distribution over the possible values of x.

In its most common setting, the generative model pϑ(x, z) = pϑ(x|z) pϑ(z)
that composes a VAE is a deep latent Gaussian model (Rezende et al., 2014),

with standard multivariate normal prior

pϑ(z) = N (z |0, I), (4.4)

and Gaussian likelihood

pϑ(x|z) =
N∏

n=1

N
(
xn |µ, diag(σ2)

)
. (4.5)

The means and the variances in the likelihood derive from the outputs µ

and logσ of the decoding neural network fϑ(z). An alternative for binary

observations is to use the Bernoulli likelihood.

In a similar way, the recognition family is often defined to be:

qφ(z|x) = N
(
z |µ, diag(σ2)

)
, (4.6)

where µ and logσ are outputs of the encoding neural network fφ(x). Under

this assumption, a VAE architecture is constructed as shown in Figure 4.4.

We see that an input x is encoded into the means µ and the standard

deviations σ of a three-dimensional Gaussian approximation qφ(z|x), from
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Figure 4.4: Illustration of a simple VAE that employs a Gaussian recognition

family qφ(z|x) with means µ and standard deviations σ.

which a vector z of latent variables is sampled. Subsequently, this sample z

is decoded into the reconstruction x̂.

The image gives us an even better understanding of the difference be-

tween a VAE and a standard autoencoder: while the second embeds inputs

into point estimates of latent variables, the first embeds inputs into a dis-

tribution of latent variables. This is the reason why VAEs are able to gen-

erate novel data instances by just decoding random samples from the prior

z ∼ N (0, I).

The training objective used is the evidence lower bound (ELBO) which,

adapting the formulas of Section 1.1, is defined as:

elbo(ϑ,φ;x) = Eqφ(z|x) [log pϑ(x, z)− log qφ(z|x)] (4.7)

= log pϑ(x)− kl (qφ(z|x) ||pϑ(z|x)) (4.8)

≤ log pϑ(x). (4.9)

According to Equation (4.10), the maximization of the ELBO concurrently

optimizes the two aspects we care about (Kingma & Welling, 2019): (i) it

approximately maximizes the marginal likelihood pϑ(x), improving the gen-

erative model; (ii) it minimizes the KL divergence between the recognition

family qφ(z|x) and the true posterior pϑ(z|x), improving the variational ap-

proximation. This is a crucial consideration since it allows to define a training



4.2 The reparameterization trick 97

scheme for VAEs that jointly optimizes the variational parameters φ and the

generative parameters ϑ.

In addition, we can rewrite the ELBO as:

elbo(ϑ,φ;x) = Eqφ(z|x)[− log qφ(z|x) + log pϑ(x, z)]

= Eqφ(z|x)

[
− log

(
qφ(z|x)
pϑ(z)

pϑ(z)

)
+ log pϑ(x, z)

]

= Eqφ(z|x) [log pϑ(x|z)]− kl (qφ(z|x) ||pϑ(z)) .

(4.10)

The last line of the objective function can be interpreted as the expected log

likelihood plus a regularizer. The first term is the negative expectation of the

reconstruction error, while the second term encourages variational densities

close to the prior.

Therefore, unlike the autoencoders seen in Section 3.3, VAEs are trained

to optimally decode random latent realizations into sensible outputs. The

KL divergence from the prior encourages the latent space to be organized

smoothly.

4.2 The reparameterization trick

We now discuss how to compute the ELBO and its gradient by means of

the reparameterization trick introduced in Subsection 2.3.2. We have that

unbiased gradients of the ELBO w.r.t. the generative parameters ϑ are easily

obtained as Monte Carlo estimates:

∇ϑ elbo(x) = ∇ϑ Eqφ(z|x)[log pϑ(x, z)− log qφ(z|x)]

= Eqφ(z|x)[∇ϑ(log pϑ(x, z)− log qφ(z|x))]

' 1

S

S∑

s=1

∇ϑ log pϑ(x, zs), where zs ∼ qφ(z|x).

(4.11)

Unbiased gradients of the ELBO w.r.t. the variational parameters φ are

more difficult to obtain since the expectation is taken w.r.t. a distribution

indexed by φ. Namely, we have

∇φ elbo(x) = ∇φ Eqφ(z|x)[log pϑ(x, z)− log qφ(z|x)]

6= Eqφ(z|x)[∇φ(log pϑ(x, z)− log qφ(z|x))].
(4.12)
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Assuming to have continuous latent variables z, we can use a change of

variables to compute ELBO’s reparameterization gradients that, as discussed

in Subsection 2.3.2, exhibit reduced variance. This reparameterization trick

expresses the random variable z ∼ qφ(z|x) as a differentiable (deterministic)

transformation g of a noise variable ε, i.e.:

z = g(φ,x, ε), with ε ∼ p(ε), (4.13)

where the auxiliary distribution p(ε) is independent of φ and x.

In this way, we can rewrite the gradients as expectations w.r.t. the noise

distribution p(ε) and compute them through Monte Carlo estimates. Defin-

ing the function f(z) = log pϑ(x, z)− log qφ(z|x), we have:

∇Eqφ(z|x)[f(z)] = ∇E p(ε)[f(z)|z=g(φ,x,ε)] = E p(ε)[∇f(z)|z=g(φ,x,ε)]

' 1

S

S∑

s=1

∇f(zs), where zs = g(φ,x, εs), εs ∼ p(ε).
(4.14)

This allows us to "externalize" the randomness in the latent variables and

backpropagate the gradients through the z nodes, as is well explained by

Figure 4.5.

Thus, we can use frameworks like TensorFlow and PyTorch to express a

VAE as a computation graph, and automatically compute noisy but unbiased

gradients of the ELBO through stochastic backpropagation. These noisy

gradients are then passed to a stochastic optimization method like Adam:

Algorithm 10 summarizes how the parameters are learned in a VAE. Since

it involves sampling both noise values ε ∼ p(ε) and minibatches of data, this

is a doubly stochastic algorithm.

In this vein, given a minibatchM = {x(b)}Bb=1 of B data points randomly

drawn from the full dataset with N observations, and S samples ε(b,s) ∼
p(ε), s = 1, . . . , S, for every data point x(b) in the minibatch, from Equation

(4.10) we can construct the ELBO for a single data point as:

ẽlbo(ϑ,φ;x(b)) = −kl

(
qφ(z|x(b)) ||pϑ(z)

)
+

1

S

S∑

s=1

log pϑ(x
(b)|z(b,s)),

where z(b,s) = g(φ,x(b), ε(b,s)).

(4.15)
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z

xφ xφ ε

z = g(φ,x,ε)

Original form Reparameterized form

f f

~ qφ(z|x)

~ p(ε)

Backprop

∇φ f

∇z f

: Deterministic node

: Random node

: Evaluation of f

: Differentiation of f

Figure 4.5: Illustration of how the reparameterization trick allows to compute

gradients of the objective f w.r.t to the variational parameters φ.

On the left, the computation graph in its original form shows

that the gradients cannot be directly backpropagated because it

is not possible to differentiate w.r.t. the sampling operation z ∼
qφ(z|x). As shown by the graph on the right, we can "move"

the stochasticity into a noise source ε by reparameterizing z with

a deterministic and differentiable transformation z = g(φ,x, ε).

This allows the gradients to flow backward through the z nodes

(Kingma & Welling, 2019).

Equation (4.15) holds since the KL divergence can be often computed in

closed form (e.g. for two Gaussian distributions, as we will see in an example).

Things can be easily extended to whole minibatches, in a way that provides

a stochastic approximation of the ELBO over the entire dataset, that is:

elbo(ϑ,φ;x) ' N

B

B∑

b=1

ẽlbo(ϑ,φ;x(b)). (4.16)

As usual, this quantity is used to monitor the training progress of the

model.
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Algorithm 10: Parameter estimation in a variational autoencoder

Initialize: variational parameters φ, generative parameters ϑ

while not converged do

Sample a minibatchM = {x(b)}Bb=1 of B random data points

Sample S noise vectors ε(b,s) for each data point in the minibatch

Compute z(b,s) = g(φ,x(b), ε(b,s)), for b = 1, . . . , B, s = 1, . . . , S

Compute the noisy gradients of the ELBO:

ĝϑ = N
B

∑B
b=1

{
1
S

∑S
s=1∇ϑ log pϑ(x(b), z(b,s))

}

ĝφ = N
B

∑B
b=1

{
1
S

∑S
s=1∇φ

(
log pϑ(x

(b), z(b,s))−log qφ(z(b,s)|x(b))
)}

Update ϑ and φ using stochastic gradient descent

end

Regarding the recognition family, the log density log qφ(z|x) is computed

by using the change of variables formula,

log qφ(z|x) = log p(ε)− log |det(∂z/∂ε)|, (4.17)

where ∂z/∂ε is the Jacobian

∂z

∂ε
=




∂z1
∂ε1

. . . ∂z1
∂εj

...
. . .

...

∂zj
∂ε1

. . .
∂zj
∂εj


 . (4.18)

The most common choice for the probabilistic encoder is a factorized

Gaussian:

qφ(z|x) = N
(
z |µ, diag(σ2)

)
=
∏

j

N (zj |µj, σ
2
j ). (4.19)

In this case, the reparameterization has the form:

z = µ+ σ � ε, ε ∼ N (0, I), (4.20)

where µ and logσ are outputs of the encoding neural network. We can

compute the Jacobian of the transformation as

∂z

∂ε
= diag(σ), (4.21)

whose determinant is equal to the product of the diagonal terms σj.



4.3 A simple VAE 101

The factorized Gaussian can be extended to a Gaussian with full covari-

ance:

qφ(z|x) = N (z |µ,Σ). (4.22)

Following (Kingma & Welling, 2019), a reparameterization is:

z = µ+ Lε, ε ∼ N (0, I), (4.23)

where L is a lower (or upper) triangular matrix with non-zero entries on the

diagonal, which defines the Cholesky decomposition Σ = LLT of the covari-

ance. The Jacobian of the transformation is ∂z
∂ε

= L. Since L is a triangular

matrix, its determinant is the product of its main diagonal elements, thus

log |det(∂z/∂ε)| =
∑

j

log |Ljj|. (4.24)

One way to construct a matrix L with the desired properties (triangu-

larity and non-zero entries on the diagonal) is to define it as follows:

L = M� L′ + diag(σ), (µ, logσ,L′) = fφ(x), (4.25)

where fφ(x) is the encoding network and M is a masking matrix with zeros

on and above the diagonal, and ones below the diagonal. With this construc-

tion, L is triangular with diagonal entries given by σ, thus we have

log |det(∂z/∂ε)| =
∑

j

σj. (4.26)

More generally, we can replace µ+Lε with a chain of differentiable and

nonlinear transformations: as long as the Jacobian of each step is triangular,

the log determinant remains simple to compute. This is the basic idea behind

inverse autoregressive flows, which allows to construct more flexible varia-

tional approximations that go beyond Gaussian posteriors. See (Kingma &

Welling, 2019) for further details.

4.3 A simple VAE

To fix the ideas, we now propose a simple example of a VAE composed of a

shallow encoder and a shallow decoder. Keep in mind Figure 4.4 during the

construction.
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Let the prior over the latent variables be the isotropic multivariate Gaus-

sian pϑ(z) = N (z |0, I). We assume pϑ(x|z) to be the Bernoulli likelihood

for the D−dimensional binary data x. Thus, we have:

log pϑ(x|z) =
D∑

d=1

xd · log x̂d + (1− xd) · log(1− x̂d),

where x̂ = sigmoid(W5 · relu(W4 z + b4) + b5),

(4.27)

with the generative parameters ϑ = {W4,b4,W5,b5} that are the weights

and the biases of the one-hidden-layer decoding neural network.

We assume the variational approximation qφ(z|x) to be Gaussian with

diagonal covariance, namely:

log qφ(z|x(i)) = logN
(
z |µ(i), diag(σ2(i))

)
, where

µ(i) = W2 h + b2,

logσ(i) = W3 h + b3,

h = relu(W1 x(i) + b1),

(4.28)

with x(i) a random data point and φ = {W1,b1,W2,b2,W3,b3} the varia-

tional parameters, i.e. the weights and the biases of the one-hidden-layer en-

coder. As previosly explained, we sample from the encoder z(i,s) ∼ qφ(z|x(i))

using the reparameterization trick z(i,s) = g(φ,x(i), ε(i,s)) = µ(i)+σ(i)�ε(i,s),
where ε(i,s) ∼ N (0, I).

Since both the prior pϑ(z) and the posterior approximation qφ(z|x(i))

are Gaussian, the KL divergence that defines the objective (4.15) can be

integrated analytically. Let J be the dimensionality of the latent space z,

and let µ
(i)
j and σ

(i)
j respectively denote the j-th element of the mean and

of the standard deviation at data point i. Then, taking from (Kingma &

Welling, 2014), we have:

∫
qφ(z|x(i)) log p(z) dz = −J

2
log 2π − 1

2

J∑

j=1

(
(µ

(i)
j )2 + (σ

(i)
j )2

)
, and

∫
qφ(z|x(i)) log qφ(z|x(i)) dz = −J

2
log 2π − 1

2

J∑

j=1

(
1 + log(σ

(i)
j )2

)
.

(4.29)
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We can compute the KL divergence as:

−kl

(
qφ(z|x(b)) ||pϑ(z)

)
=

∫
qφ(z|x(i))(log p(z)− log qφ(z|x(i))) dz

=
1

2

J∑

j=1

(
1 + log(σ

(i)
j )2 − (µ

(i)
j )2 − (σ

(i)
j )2

)
.

(4.30)

Thus, the ELBO estimator for data point i becomes equal to:

1

2

J∑

j=1

(
1 + log(σ

(i)
j )2 − (µ

(i)
j )2 − (σ

(i)
j )2

)
+

1

S

S∑

s=1

log pϑ(x
(i)|z(i,s)),

where z(i,s) = µ(i) + σ(i) � ε(i,s), ε(i,s) ∼ N (0, I).

(4.31)

4.3.1 Application to MNIST

We applied the VAE just presented to the MNIST dataset by using PyTorch.

Most of the pixels in the scaled images are 0 or 1, so it is reasonable to assume

approximately a Bernoulli distribution.

We employed 400 neurons in the hidden layer for both the encoder and

the decoder, initially choosing a two-dimensional latent space. After initializ-

ing the parameters via Xavier initialization, we trained the VAE with Adam

optimization (learning rate η = 0.001) for 20 epochs, using minibatches of

size B = 100 and S = 1 noise samples per datapoint.

Figure 4.6 shows the manifold learned by the model, which is a projection

of the high-dimensional data into the two-dimensional latent space. The

latent space is organized smoothly: this allows us to generate novel sensible

images and interpolate between two existing digits. Moreover, the kind of

nonlinear probabilistic PCA carried out by the VAE the factors of variation

in the data and learn meaningful representations.

Figure 4.7(a) shows some random digits generated by the model. With

the same training setting, we also tried increasing the dimensionality of the

latent space to 20 units, obtaining some generative results reported in 4.7(b).

We observe that increasing the number of units in the latent space produces

higher-quality digits, designed in an original style.

One usually use deeper generative models: all the considerations and the

practicalities of the previous chapter apply.
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Figure 4.6: Visualization of the data manifold learned by a VAE with two-

dimensional latent space. Since the prior of the latent space is

Gaussian, we produced latent values z by passing an equispaced

grid of coordinates on the unit square through the inverse CDF

(cumulative distribution function) of a Gaussian. For each of

these values z, we plotted the corresponding image generated by

pϑ(x|z).

(a) 2-D latent space (b) 20-D latent space

Figure 4.7: Random samples generated by two VAEs trained on MNIST with

different dimensionalities of latent space.
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4.4 Convolutional VAE: application to celebrity faces

To conclude, we apply a convolutional VAE to the CelebFaces Attributes

dataset https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html (Z. Liu et al.,

2015). It is often abbreviated as "CelebA", and contains a variety of images

of celebrity faces, as shown by some random samples in Figure 4.8.

According to (Murphy, 2023), we considered the following architecture.

The encoder is formed by convolutional layers, which have the following pro-

gression in the number of hidden channels: (32, 64, 128, 256, 512), and the

following progression in terms of spatial size: (32, 16, 8, 4, 2). Each convolu-

tional layer is followed by a ReLU activation and by a batch normalization

layer, there are not pooling layers.

The last 2× 2× 512 convolutional layer is flattened and passed through

a linear layer to compute the means and the diagonal variances from which

to sample the latent vector z, which has dimensionality 256. We therefore

uses a factorized Gaussian as variational approximation. The structure of the

decoder exactly mirrors that of the encoder, this time with deconvolutional

layers. The Gaussian likelihood is employed within the ELBO computation.

That being said, we trained the convolutional VAE for 5 epochs with

Adam optimization and batch size 256. We took advantage of the software

implementation of (Murphy, 2023). Some celebrity faces generated by the

model are shown in Figure 4.9: they appear a little blurry, but all in all

realistic-looking.
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Figure 4.8: Random test images from the CelebA dataset.

Figure 4.9: Random images generated by a convolutional VAE trained on

CelebA.



Conclusion

In this thesis, we focused on recent developments in variational inference.

We saw how these methods can be married with ideas from deep learning to

give life to the example of variational autoencoders, models that learn how

to sample from complicated data distributions. Along the way, we provided

parallels with other statistical methods.

After describing the foundations of variational Bayes, we showed how

these techniques can be innovated in order to cope with large datasets and

complex models. Stochastic optimization allows variational inference to scale

up to massive data, while score and reparameterization gradients render VI

applicable with little effort to a broad class of models.

Secondly, we discussed the aspects that characterize neural networks. In

this context, we presented various types of autoencoders, which are used to

extract useful features of data. Finally, we saw with practical applications

how variational autoencoders are able to generate new sensible data. This

is possible because a VAE is a probabilistic version of an autoencoder that

embeds inputs into a distribution of latent variables.

We introduced only fairly basic types of variational autoencoders, how-

ever there is a boundless world behind these methods, which has more than

900 papers about them (Murphy, 2023).



Appendix A

Probability distributions

Categorical

The categorical distribution is a discrete distribution that describes the pos-

sible results of a random variable x that can take on one of K possible

categories, with the probability of each category separately specified. De-

note π = (π1, . . . , πK), where πk is the probability of the k-th category,

k ∈ {1, . . . , K} with
∑K

k=1 πk = 1. Then we have that the probability mass

function f is

p(x = k |π) = πk, k ∈ {1, . . . , K}. (A.1)

In this thesis, we adopt another formulation by considering the sample space

to be the set of 1-of-K encoded random vectors x. This means x is K-

dimensional and has exactly one element with the value 1, while the others

have the value 0: the particular element having the value 1 indicates which

category has been chosen. Thus, the probability mass function is given by

Cat(x|π) =
K∏

k=1

πxk

k . (A.2)

It holds

E[x] = π. (A.3)

This distribution is the most general one over a K-way event: any other
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discrete distribution is a special case. The categorical is the generalization

of the Bernoulli distribution for a categorical random variable, i.e. for a

discrete variable with more than two possible outcomes. On the other hand,

the categorical is a special case of the multinomial distribution, in that it

gives the probabilities of potential outcomes of a single drawing rather than

multiple drawings. The conjugate prior of the categorical distribution is the

Dirichlet distribution.

Dirichlet

The Dirichlet is a continuous multivariate distribution over K random vari-

ables 0 ≤ πk ≤ 1, where k = 1, . . . , K, subject to the constraints

0 ≤ πk ≤ 1,
K∑

k=1

πk = 1. (A.4)

Denoting π = (π1, . . . , πK) and α = (α1, . . . , αK),

Dir(π|α) = C(α)
K∏

k=1

παk−1
k , (A.5)

where the normalization constant is

C(α) =
Γ(α̂)

Γ(α1) · · ·Γ(αK)
, α̂ =

K∑

k=1

αk (A.6)

Γ(·) is the Gamma function, such that

Γ(a) =

∫ ∞

0

xa−1 e−x dx, (A.7)

with its logarithmic derivative

ψ(a) ≡ d

da
log Γ(a) (A.8)

known as the digamma function. The parameters αk are subject to the con-

straint αk ≥ 0 in order to ensure that the distribution can be normalized.

Thus we have that

E[πk] =
αk

α̂
(A.9)

E[log πk] = ψ(αk)− ψ(α̂). (A.10)
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The entropy is given by

H[π] = −
K∑

k=1

(αk − 1) {ψ(αk)− ψ(α̂)} − logC(α) (A.11)

The Dirichlet forms the conjugate prior for the categorical and the multi-

nomial distributions, representing a generalization of the Beta distribution.

Suppose that X = (x1, . . . ,xN) are i.i.d observations from a categorical

distribution over K classes, where for each K-dimensional vector xn, the

element xnk is 1 if the observation n belongs to class k and 0 otherwise.

p(X|π) =
N∏

n=1

Cat(xn|π), (A.12)

where π = (π1, . . . , πK) is the probability vector, which is assumed a priori

to follow a Dirichlet distribution with hyperparameters α = (α1, . . . , αK)

p(π) = Dir(π|α). (A.13)

Then the posterior distribution of the parameters π is a Dirichlet

p(π|X) = Dir (π |α+ (N1, . . . , NK)) , (A.14)

where Nk is the number of observations in category k

Nk =
N∑

n=1

xnk. (A.15)

Intuitively, the hyperparametersα can be interpreted as pseudocounts, which

represent the prior number of observations in each category.

(Multivariate) Gaussian

The multivariate Gaussian is a continuous distribution over a D-dimensional

random vector x ∈ RD. The distribution is governed by a mean vector

µ ∈ RD and a covariance matrix Σ ∈ SD×D
++ which must be symmetric and

positive definite.

N (x|µ,Σ) =
1

(2π)D/2 |Σ|1/2
exp

{
− 1

2
(x− µ)T Σ

−1 (x− µ)
}

(A.16)
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with

E[x] = µ, Cov(x) = Σ. (A.17)

Considering a vector c ∈ RD and a symmetric matrix A ∈ SD×D, it holds

the following result for the expectation of the quadratic form

E
[
(c− x)TA(c− x)

]
= (c− µ)TA(c− µ) + Tr (AΣ). (A.18)

The inverse of the covariance matrix Λ = Σ
−1 is the precision matrix,

which is also symmetric and positive definite. The conjugate prior for µ is

the Gaussian, the conjugate prior for Λ is the Wishart, and the conjugate

prior for (µ,Λ) is the Gaussian-Wishart.

Gaussian-Wishart

The Gaussian-Wishart distribution comprises the product of a Gaussian

distribution for µ, whose precision is proportional to Λ, and a Wishart

distribution over Λ.

p(µ,Λ |µ0, β,W, ν) = N
(
µ |µ0, (βΛ)−1

)
W (Λ|W, ν) (A.19)

For the particular case of a scalar x, this is equivalent to the Gaussian-

Gamma distribution.

It holds the following result for the expectation of the quadratic form

Eµ,Λ
[
(x− µ)TΛ(x− µ)

]
= Dβ−1 + ν (x− µ0)

TW(x− µ0), (A.20)

which can be proved using (A.18), the cyclic property of the trace and the

linearity of the trace operator.

The Gaussian-Wishart is the conjugate prior distribution for a multivariate

Gaussian in which both the mean µ and the precision Λ are unknown, and is

also called the Normal-Wishart distribution. Consider the Gaussian-Wishart

conjugate prior with hyperparameters µ0, β0,W0, ν0

p(µ,Λ) = p(µ|Λ) p(Λ) = N
(
µ |µ0, (β0Λ)−1

)
W (Λ|W0, ν0) . (A.21)
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Suppose that X = (x1, . . . ,xN) are i.i.d observations from a multivariate

Gaussian distribution with mean µ ∈ RD and precision matrix Λ ∈ SD×D
++ .

The likelihood is

p(X |µ,Λ) =
N∏

n=1

N
(
xn |µ,Λ−1

)
. (A.22)

Then the posterior distribution of the parameters (µ,Λ) is a Gaussian-

Wishart

p(µ,Λ |X) = N
(
µ |µN , (βNΛ)−1

)
W (Λ|WN , νN) (A.23)

where

βN = β0 +N

µN =
1

βN
(β0µ0 +Nx)

W−1
N = W−1

0 +
N∑

i=1

(xi − x) (xi − x)T +
β0N

β0 +N
(x− µ0) (x− µ0)

T

νN = ν0 +N,

(A.24)

defined with x = 1
N

∑N
n=1 xn the sample mean.

Moreover, it is possible to define the posterior predictive distribution for a

new observation x̂ by means of

p(x̂ |X) =

∫ ∫
p(x̂ |µ,Λ,X) p(µ,Λ |X) dµ dΛ. (A.25)

Integrating out the variables µ and Λ gives that the posterior predictive

distribution is a multivariate Student’s t with mean µN , precision LN and

νN + 1−D degrees of freedom, i.e.

p(x̂ |X) = St (x̂ |µN ,LN , νN + 1−D) , (A.26)

where LN =
(νN + 1−D)βN

(1 + βN)
WN
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(Multivariate) Student’s t

The Student’s t-distribution for a D-dimensional random vector x corre-

sponds to marginalizing out the precision matrix of a multivariate Gaussian

with respect to a conjugate Wishart prior. It can therefore be viewed as

an infinite mixture of (multivariate) Gaussians having the same mean but

different covariance matrices, and takes the form

St(x|µ,Λ, ν) = Γ(ν/2 +D/2)

Γ(ν/2)

|Λ|1/2
(νπ)D/2

[
1 +

∆
2

ν

]−ν/2−D/2

(A.27)

E[x] = µ for ν > 1

Cov(x) =
ν

ν − 2
Λ

−1 for ν > 2

(A.28)

where ν > 0 are the degrees of freedom of the distribution and ∆
2 is the

squared Mahalanobis distance defined by ∆
2 = (x− µ)TΛ(x− µ).

In the limit ν → ∞, the t-distribution reduces to a Gaussian with mean

µ and precision Λ. Student’s t-distribution provides a generalization of the

Gaussian whose maximum likelihood estimates are robust to outliers.

Wishart

The Wishart distribution is the conjugate prior for the precision matrix of

a multivariate Gaussian.

W(Λ|W, ν) = B(W, ν) |Λ|(ν−D−1)/2 exp

(
−1

2
Tr (W−1

Λ)

)
, (A.29)

The normalization constant is defined by

B(W, ν) ≡ |W|−ν/2

(
2 ν D/2 πD (D−1)/4

D∏

i=1

Γ

(
ν + 1− i

2

))−1

(A.30)

Then we have that

E[Λ] = νW (A.31)

E[log|Λ|] =
D∑

i=1

ψ

(
ν + 1− i

2

)
+D log 2 + log|W| (A.32)
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and the entropy is given by

H[Λ] = − logB(W, ν)− (ν −D − 1)

2
E[log|Λ|] + νD

2
(A.33)

where W is a D×D symmetric, positive definite matrix, Γ(·) is the Gamma

function and ψ(·) is the digamma function defined by (A.8). The parameter ν

is called the number of degrees of freedom of the distribution and is restricted

to ν ≥ D − 1 to ensure that the Gamma function in the normalization

factor is well-defined. In one dimension, the Wishart reduces to the Gamma

distribution with parameters α = ν/2 and β = 1/2W .



Appendix B

Python code

B.1 CAVI algorithm for the BGMM

import numpy as np

import scipy

from scipy.special import psi, gammaln, multigammaln, logsumexp

import matplotlib.pyplot as plt

import timeit

import random

from sklearn import cluster

class CAVI_bgmm:

def __init__(

self, data, num_components,

init_method = "random", seed = random.seed()

):

self.data = data

self.N = data.shape[0]

self.D = data.shape[1]

self.K = num_components
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self.clock_start = timeit.default_timer()

# Priors hyperparameters

self.alpha0 = 1/self.K

self.beta0 = 1

self.m0 = np.zeros(self.D)

self.W0 = np.eye(self.D)

self.nu0 = self.D

# Variational parameters initialization

if init_method == "random":

# responsibilities are initialized uniformly at random

resp = np.random.rand(self.N,self.K)

resp /= resp.sum(axis=1)[:,np.newaxis]

self.log_resp = np.log(resp)

elif init_method == "kmeans":

# responsibilities are initialized using K-means

epsilon = 1e-6

resp = np.zeros((self.N,self.K)) + epsilon

label = (cluster.KMeans(n_clusters=self.K, n_init=1,

random_state=seed).fit(self.data).labels_)

resp[np.arange(self.N), label] = 1-epsilon*(self.K-1)

self.log_resp = np.log(resp)

self._compute_resp_statistics()

# other parameters are initialized on the basis of

responsibilities

self.alpha = np.zeros(self.K)

self.beta = np.zeros(self.K)
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self.m = np.zeros((self.K,self.D))

self.W_chol = np.zeros((self.K,self.D,self.D))

self.nu = np.zeros(self.K)

self._update_alpha()

self._update_beta()

self._update_m()

self._update_W()

self._update_nu()

def _compute_resp_statistics(self):

"""

evaluate the statistics of dataset in formulae (1.45),(1.46) and

(1.47),

which depend on the responsibilities values

"""

self.N_k = np.sum(np.exp(self.log_resp),0)

self.xbar_k = np.dot(np.exp(self.log_resp).T, self.data) / self.

N_k[:,np.newaxis]

self.S_k = np.zeros((self.K,self.D,self.D))

for k in range(self.K):

diff = self.data - self.xbar_k[k]

self.S_k[k] = np.dot(np.exp(self.log_resp[:,k])*diff.T, diff)

/ self.N_k[k]

def _update_alpha(self):

# (1.52)

self.alpha = self.alpha0 + self.N_k

def _update_beta(self):

# (1.54)
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self.beta = self.beta0 + self.N_k

def _update_m(self):

# (1.55)

self.m = (self.beta0 * self.m0 + self.N_k[:, np.newaxis] * self.

xbar_k) / self.beta[:, np.newaxis]

def _update_W(self):

# (1.56)

for k in range(self.K):

diff = self.xbar_k[k] - self.m0

cov_chol = scipy.linalg.cholesky(

scipy.linalg.inv(self.W0) + self.N_k[k] * self.S_k[k] +

self.beta0 * self.N_k[k] / self.beta[k] * np.outer(diff,

diff),

lower=True

)

# compute the Cholesky decomposition of precisions

self.W_chol[k] = scipy.linalg.solve_triangular(

cov_chol, np.eye(self.D), lower=True

).T

def _update_nu(self):

# (1.57)

self.nu = self.nu0 + self.N_k

def _squared_mahalanobis_chol(self, nu, data, means, precisions_chol)

:

"""

compute the squared Mahalanobis distance through the Cholesky

decomposition

and multiplies it by *nu*
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"""

qf = np.zeros((data.shape[0], means.shape[0]))

for k in range(means.shape[0]):

diff = np.dot(data, precisions_chol[k]) - np.dot(means[k],

precisions_chol[k])

qf[:,k] = nu[k] * np.sum(np.square(diff), axis=1)

if qf.shape[0] == means.shape[0]: qf = np.diag(qf)

return qf

def _log_det_chol(self, precisions_chol):

"""

compute the logarithmic determinant of the precision matrix

through the

Cholesky decomposition

https://math.stackexchange.com/questions/3158303/using-cholesky-

decomposition-to-compute-covariance-matrix-determinant

"""

return [2 * np.sum(np.log(np.diag(precisions_chol[k]))) for k in

range(np.shape(precisions_chol)[0])]

def _log_pitilde(self):

# (1.59), psi() is the digamma function (A.8)

return psi(self.alpha) - psi(np.sum(self.alpha))

def _log_Lambda(self):

# (1.60)

return (np.sum([psi(0.5*(self.nu-d)) for d in range(self.D)],

axis=0

) + self.D*np.log(2.0) + self._log_det_chol(self.W_chol))
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def _update_log_responsibilities(self):

"""

update the logarithms of responsibilities, given the values of

the other

variational parameters

we work with logarithms for numerical stability, since

responsibilities

are probabilities that may be very small in some cases

"""

# (1.42)

self.log_resp = (

self._log_pitilde()

+ 0.5*self._log_Lambda()

- 0.5*self.D*np.log(2*np.pi)

- 0.5*(self.D/self.beta +

self._squared_mahalanobis_chol(self.nu, self.data, self.m,

self.W_chol))

)

# normalization (1.44) using the log-sum-exp trick for numerical

stability

# https://gregorygundersen.com/blog/2020/02/09/log-sum-exp/

self.log_resp -= logsumexp(self.log_resp, axis=1)[:, np.newaxis]

def _log_dirichlet_constnorm(self):

# (A.6)

return gammaln(np.sum(self.alpha)) - np.sum(gammaln(self.alpha))

def _log_wishart_constnorm(self):

# (A.30)

return -(0.5 * self.nu * self._log_det_chol(self.W_chol)

+ 0.5 * self.nu * self.D * np.log(2.0)
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+ multigammaln(0.5*self.nu, self.D)

)

def _entropy_wishart(self):

# (A.33)

return -(self._log_wishart_constnorm()

+0.5*(self.nu-self.D-1)*self._log_Lambda() - 0.5*self.nu*self

.D

)

def compute_elbo(self):

# compute the lower bound (1.64) ignoring constants

return (self._elbo1() + self._elbo2() + self._elbo3() + self.

_elbo4()

- self._elbo5() - self._elbo6() - self._elbo7())

def _elbo1(self):

# (1.65)

return 0.5 * np.sum(self.N_k * (

self._log_Lambda()

- self.D/self.beta

- self.nu * [np.trace(np.dot(self.S_k[k],

np.dot(self.W_chol[k], self.W_chol[k].T))) for k in range

(self.K)

]

- self._squared_mahalanobis_chol(self.nu, self.xbar_k, self.m

, self.W_chol)

- self.D * np.log(2*np.pi))

)

def _elbo2(self):

# (1.66)

return np.sum(np.dot(np.exp(self.log_resp), self._log_pitilde()))
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def _elbo3(self):

# (1.67)

return (self.alpha0-1) * np.sum(self._log_pitilde())

def _elbo4(self):

# (1.68)

return (0.5*np.sum(

self._log_Lambda() - self.D*self.beta0/self.beta

- self.beta0 * self._squared_mahalanobis_chol(self.nu, self.m

, np.tile(self.m0,(self.K,1)), self.W_chol)

+ (self.nu0-self.D-1) * self._log_Lambda()

- self.nu * [np.trace(np.dot(scipy.linalg.inv(self.W0),

np.dot(self.W_chol[k], self.W_chol[k].T))) for k in range(

self.K)

])

)

def _elbo5(self):

# (1.69)

return np.sum(np.exp(self.log_resp) * self.log_resp)

def _elbo6(self):

# (1.70)

return np.sum((self.alpha-1) * self._log_pitilde()) + self.

_log_dirichlet_constnorm()

def _elbo7(self):

# (1.71)

return np.sum(0.5*self._log_Lambda()

+ 0.5*self.D*np.log(self.beta)

- self._entropy_wishart())
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def density_multivariate_t(self, x, mean, precision_chol, df):

# compute the density of the multivariate t

logdet = self._log_det_chol(precision_chol)

qf = self._squared_mahalanobis_chol(1/df,x,mean,precision_chol)

logdensity = [

gammaln(0.5*(df[k]+self.D)) - gammaln(0.5*df[k]) - 0.5*self.D

*np.log(df[k]*np.pi)

+ 0.5*logdet[k] - 0.5*(df[k]+self.D)*np.log(1+qf[:,k])

for k in range(self.K)

]

return logdensity

def avg_log_predictive(self, test_data):

# (1.73)

logdensity = self.density_multivariate_t(

x=test_data,

mean=self.m,

precision_chol=[np.sqrt((self.nu[k]+1-self.D)*self.beta[k

]/(1+self.beta[k])) *

self.W_chol[k] for k in range(self.K)],

df=self.nu+1-self.D

) # logsumexp trick

# https://gregorygundersen.com/blog/2020/02/09/log-sum-exp/

ppd = (-np.log(np.sum(self.alpha)) +

logsumexp(np.log(self.alpha)[:,np.newaxis] + logdensity, axis

=0)

)

return np.mean(ppd)

def fit(self, convergence_metric = "elbo", test_data=None, num_stop =

3, max_iter = 500, tol = 1e-3):
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"""

fit the Bayesian Gaussian mixture model via CAVI and, in case of

convergence, return one dictionary with final results and one

with history

"""

results = {}

history = {

"resp": [], "cluster": [], "weights": [], "means": [],

"covariances": [], "metric": [], "clock": [],

"init_clock": 0, "init_metric": 0

}

iter = 0

stop = 0

improvement = tol + 1

if convergence_metric == "elbo":

history["init_metric"] = self.compute_elbo()

elif convergence_metric == "predictive density":

history["init_metric"] = self.avg_log_predictive(test_data)

history["init_clock"] = timeit.default_timer() - self.clock_start

while True:

# Variational E-step

self._update_log_responsibilities()

# Variational M-step

self._compute_resp_statistics()

self._update_alpha()

self._update_beta()

self._update_m()
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self._update_W()

self._update_nu()

history["resp"].append(np.exp(self.log_resp))

history["cluster"].append(self.cluster_assignments(np.exp(

self.log_resp)))

history["weights"].append(self.posterior_mixture_weights())

history["means"].append(self.m)

history["covariances"].append(self.S_k)

if convergence_metric == "elbo":

history["metric"].append(self.compute_elbo())

print(self.compute_elbo())

elif convergence_metric == "predictive density":

history["metric"].append(self.avg_log_predictive(

test_data))

print(self.avg_log_predictive(test_data))

history["clock"].append(timeit.default_timer() - self.

clock_start)

# convergence metric improvement

if iter > 1:

improvement = history["metric"][iter] - history["metric"

][iter-1]

# if the convergence metric decreases for three consecutive

iterations, we declare convergence

if improvement < 0:

stop += 1

else:

stop = 0
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# Convergence criterion

if abs(improvement) < tol or stop >= num_stop:

cond = (stop >= num_stop) * num_stop

print("Converged at iteration {}".format(iter - cond))

print(convergence_metric, history["metric"][iter - cond])

plt.xlabel("Iterations")

plt.ylabel(convergence_metric)

plt.plot(history["metric"])

plt.show()

results["resp"] = history["resp"][iter - cond]

results["cluster"] = history["cluster"][iter - cond]

results["weights"] = history["weights"][iter - cond]

results["means"] = history["means"][iter - cond]

results["covariances"] = history["covariances"][iter -

cond]

break

iter += 1

if iter % 10 == 0: print("iter", iter)

if iter > max_iter:

print("Maximum iteration reached, not converged")

break

return results, history

def cluster_assignments(self,resp):
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# assign each observation to the mixture component that maximizes

the

# responsibility for the specific observation

return np.argmax(resp, axis=1)

def posterior_mixture_weights(self):

# (1.62)

return (self.alpha0 + self.N_k) / (self.K * self.alpha0 + self.N)

B.1.1 Fit a BGMM to the STL-10 dataset via CAVI

from __future__ import print_function

import sys

import os, sys, tarfile, errno

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import matplotlib as mpl

import random

from tqdm import tqdm

if sys.version_info >= (3, 0, 0):

import urllib.request as urllib

else:

import urllib

try:

from imageio import imsave

except:

from scipy.misc import imsave

from cavi_bgmm import CAVI_bgmm
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# image shape

HEIGHT = 96

WIDTH = 96

DEPTH = 3

# size of a single image in bytes

SIZE = HEIGHT * WIDTH * DEPTH

# path to the directory with the data

DATA_DIR = "./stl10data"

# url of the binary data

DATA_URL = "http://ai . stanford .edu/~acoates/stl10/stl10_binary. tar .gz"

# path to the binary train file with unlabeled image data

UNLAB_DATA_PATH = DATA_DIR + "/stl10_binary/unlabeled_X.bin"

def download_and_extract():

"""

Download and extract the STL-10 dataset

:return: None

"""

dest_directory = DATA_DIR

if not os.path.exists(dest_directory):

os.makedirs(dest_directory)

filename = DATA_URL.split("/")[-1]

filepath = os.path.join(dest_directory, filename)

if not os.path.exists(filepath):

def _progress(count, block_size, total_size):

sys.stdout.write("\rDownloading %s %.2f%%" % (filename,

float(count * block_size) / float(total_size) * 100.0))

sys.stdout.flush()

filepath, _ = urllib.urlretrieve(DATA_URL, filepath, reporthook=

_progress)
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print("Downloaded", filename)

tarfile.open(filepath, "r :gz").extractall(dest_directory)

def read_single_image(image_file):

"""

This method uses a file as input instead of the path - so the

position of the reader will be remembered outside of context of this

method.

:param image_file: the open file containing the images

:return: a single image

"""

# read a single image, count determines the number of uint8"s to read

image = np.fromfile(image_file, dtype=np.uint8, count=SIZE)

# force into image matrix

image = np.reshape(image, (3, 96, 96))

# transpose to standard format

# You might want to comment this line or reverse the shuffle

# if you will use a learning algorithm like CNN, since they like

# their channels separated.

image = np.transpose(image, (2, 1, 0))

return image

def read_all_images(path_to_data):

"""

:param path_to_data: the file containing the binary images from the

STL-10 dataset

:return: an array containing all the images

"""

with open(path_to_data, "rb") as f:

# read whole file in uint8 chunks

everything = np.fromfile(f, dtype=np.uint8)

# We force the data into 3x96x96 chunks, since the
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# images are stored in "column-major order", meaning

# that "the first 96*96 values are the red channel,

# the next 96*96 are green, and the last are blue."

# The -1 is since the size of the pictures depends

# on the input file, and this way numpy determines

# the size on its own.

images = np.reshape(everything, (-1, 3, 96, 96))

# Now transpose the images into a standard image format

# readable by, for example, matplotlib.imshow

# You might want to comment this line or reverse the shuffle

# if you will use a learning algorithm like CNN, since they like

# their channels separated.

images = np.transpose(images, (0, 3, 2, 1))

return images

def save_image(image, name):

imsave("%s . jpg" % name, image, format="jpg")

def save_images(images):

i = 0

for image in tqdm(images, position=0):

directory = DATA_DIR + "/" + "unlabeled_img" + "/"

try:

os.makedirs(directory, exist_ok=True)

except OSError as exc:

if exc.errno == errno.EEXIST:

pass

filename = directory + str(i)

save_image(image, filename)

i = i+1

def plot_image(image):
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"""

:param image: the image to be plotted in a 3-D matrix format

:return: None

"""

plt.imshow(image)

plt.xticks(())

plt.yticks(())

plt.show()

def plot_image_color_histograms(image, bins, max_freq):

"""

plot the RGB color histograms of a image

:image: input image

:bins: number of bins into which to divide the pixel intensities (the

same for each color channel)

:max_freq: maximum pixel counts (to adjust the plots)

"""

colors = ("red", "green", "blue")

channel_ids = (0, 1, 2)

for channel_id, color in zip(channel_ids, colors):

histogram, bin_edges = np.histogram(

image[:, :, channel_id], bins=bins, range=(0, 256)

)

plt.subplot(3, 1, 1 + channel_id)

plt.xlim([0, 256])

plt.ylim([0, max_freq])

plt.plot(bin_edges[0:-1], histogram, color=color)

plt.xlabel("Pixel intensity")

plt.ylabel("Pixel counts")

plt.show()
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def histogram_values(images, bins):

"""

concatenate the pixel counts of the three RGB histograms, providing a

3*bins-dimensional representation of each image

:images: image dataset

:bins: number of bins into which to divide the pixel intensities (the

same for each color channel)

"""

hist_values = np.zeros((len(images), 3*bins))

channel_ids = (0, 1, 2)

for i in range(len(images)):

for ch in channel_ids:

hist_values[i, range(ch*bins, (ch+1)*bins)], _ = np.histogram

(

images[i, :, :, ch], bins=bins, range=(0, 256)

)

return hist_values

def main():

# download data if needed

download_and_extract()

images = read_all_images(UNLAB_DATA_PATH)

# test to check if the whole dataset is read correctly

# print(images.shape)

# save images to disk
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# save_images(images)

M = np.shape(images)[0]

N = 10000

bins = 64

num_cluster = 30

random.seed(770)

# Randomly select N training images

idx = random.sample(range(M), 2*N)

train_images = images[idx[:N]]

# test_images = images[idx[N:]]

# Plot a sample image and its color histograms

# plot_image(train_images[71])

# plot_image_color_histograms(train_images[71], bins, 1000)

###

# Obtain the data histograms to which to fit the Bayesian Gaussian

mixture

train_hist_values = histogram_values(train_images, bins)

# test_hist_values = histogram_values(test_images, bins)

bgmm = CAVI_bgmm(train_hist_values, num_cluster, init_method="kmeans"

).fit()[0]

# Plot the nine most representative images from each of the mixture

clusters

max_resp = np.amax(bgmm["resp"], axis=1)

df_estimates = pd.DataFrame({"Idx": range(N), "Maxresp": max_resp, "

Cluster": bgmm["cluster"]})
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sorted_df = df_estimates.groupby(["Cluster"]).apply(lambda x: x.

sort_values(["Maxresp"], ascending = False)).reset_index(drop=

True)

images_to_plot = sorted_df.groupby(["Cluster"]).head(9)

for k in range(num_cluster):

idx_cluster = images_to_plot.loc[images_to_plot["Cluster"] == k,

"Idx"]

for i in range(idx_cluster.shape[0]):

splot = plt.subplot(3, 3, 1+i)

plt.imshow(train_images[idx_cluster.iloc[i]])

plt.xticks(())

plt.yticks(())

plt.show()

if __name__ == "__main__":

main()

B.2 Maximum likelihood EM algorithm for the GMM

"""

Not efficient, it’s only to do a (small) comparison with the CAVI

Bayesian mixture

"""

import numpy as np

from scipy.stats import multivariate_normal

import matplotlib.pyplot as plt
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class EM_gmm:

def __init__(self, data, num_components):

self.data = data

self.N = data.shape[0]

self.D = data.shape[1]

self.K = num_components

# parameters are randomly initialized

self.mu_k = np.random.randn(self.K, self.D)

A = np.random.rand(self.K, self.D, self.D)

self.sigma_k = [np.dot(A[k], A[k].T) for k in range(self.K)]

self.mixing_coef_k = np.repeat(1/self.K, self.K)

self.N_k = np.zeros(self.K)

self.resp = np.zeros((self.N, self.K))

def _e_step(self):

# Formula (1.24)

for n in range(self.N):

for k in range(self.K):

self.resp[n,k] = (

self.mixing_coef_k[k] *

multivariate_normal.pdf(self.data[n], self.mu_k[k],

self.sigma_k[k])

)

# normalization

self.resp /= self.resp.sum(axis = 1)[:,np.newaxis]

def _m_step(self):

# (1.28)
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self.N_k = np.sum(self.resp,0)

# (1.27)

self.mu_k = np.dot(self.resp.T, self.data) / self.N_k[:,np.

newaxis]

# (1.29)

for k in range(self.K):

diff = self.data - self.mu_k[k]

self.sigma_k[k] = np.dot(self.resp[:,k]*diff.T, diff) / self.

N_k[k]

# (1.32)

self.mixing_coef_k = self.N_k / self.N

def log_likelihood(self):

# (1.21)

logL = 0

for n in range(self.N):

logL += np.log(np.sum(

[self.mixing_coef_k[k] *

multivariate_normal.pdf(self.data[n], self.mu_k[k], self.

sigma_k[k])

for k in range(self.K)]

))

return logL

def fit(self, max_iter = 500, tol = 1e-3):

"""

fit the Gaussian mixture model by means of the maximum likelihood

EM

algorithm and, in case of convergence, return a dictionary with

final results
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in this case convergence is assessed by evaluating the log

likelihood,

also monitoring the parameters values works though

"""

results = {}

logL = []

iter = 0

while True:

self._e_step()

self._m_step()

logL.append(self.log_likelihood())

# log likelihood improvement

improvement = logL[iter] - logL[iter-1] if iter > 0 else logL

[iter]

# Convergence criterion

if iter > 0 and improvement < tol:

print( ’Converged at iteration {} ’.format(iter))

print("log−likelihood", logL[-1])

plt.plot(logL)

plt.ylabel("log−likelihood")

plt.xlabel("Iterations")

plt.show()

results["resp"] = self.resp

results["cluster"] = self.cluster_assignments(self.resp)

results["weights"] = self.mixing_coef_k

results["means"] = self.mu_k
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results["covariances"] = self.sigma_k

break

iter += 1

if iter % 10 == 0: print("iter", iter)

if iter > max_iter:

print( ’Maximum iteration reached, not converged ’)

break

return results

def cluster_assignments(self,resp):

# assign each observation to the mixture component that maximizes

the

# responsibility for the specific observation

return np.argmax(resp, axis=1)

B.3 Collapsed Gibbs sampler for the BGMM

import numpy as np

import random

from scipy.special import logsumexp

from scipy.stats import multivariate_t

import matplotlib.pyplot as plt

import timeit

from sklearn import cluster

class Gibbs_bgmm:
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def __init__(

self, data, num_components,

init_method = "random", seed = random.seed()

):

self.data = data

self.N = data.shape[0]

self.D = data.shape[1]

self.K = num_components

self.clock_start = timeit.default_timer()

# Priors hyperparameters

self.alpha0 = 1/self.K

self.beta0 = 1

self.m0 = np.zeros(self.D)

self.W0 = np.eye(self.D)

self.nu0 = self.D

# Latent variables inizialization

if init_method=="random":

# observations are assigned randomly to one of the K components

self.assignments = np.random.randint(0, self.K, self.N)

elif init_method=="kmeans":

# assignments are initialized using K-means

self.assignments = (cluster.KMeans(n_clusters=self.K, n_init

=1, random_state=seed).fit(self.data).labels_)

# Parameters inizialization
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self.N_k = np.zeros(self.K)

self.m_numerator = np.full((self.K, self.D), self.beta0*self.m0)

self.Winv_tmp = np.full((self.K, self.D, self.D),

np.linalg.inv(self.W0) + self.beta0*np.outer(self.m0, self.m0

)

)

self.beta = np.full(self.K, self.beta0)

self.m = np.zeros((self.K, self.D))

self.Winv = np.zeros((self.K, self.D, self.D))

self.nu = np.full(self.K, self.nu0)

for k in range(self.K):

for n in np.where(self.assignments == k)[0]:

self._add_statistics_nk(n, k)

def _add_statistics_nk(self, n, k):

# add sufficient statistics to new cluster

self.N_k[k] += 1

self.m_numerator[k] += self.data[n]

self.Winv_tmp[k] += np.outer(self.data[n], self.data[n])

self.beta[k] += 1

self.m[k] = self.m_numerator[k] / self.beta[k]

self.Winv[k] = self.Winv_tmp[k] - self.beta[k] * np.outer(self.m[

k], self.m[k])

self.nu[k] += 1

self.assignments[n] = k

def _remove_statistics_n(self, n):

# remove sufficient statistics from old cluster
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k = self.assignments[n]

self.assignments[n] = -1

self.N_k[k] -= 1

self.m_numerator[k] -= self.data[n]

self.Winv_tmp[k] -= np.outer(self.data[n], self.data[n])

self.beta[k] -= 1

self.m[k] = self.m_numerator[k] / self.beta[k]

self.Winv[k] = self.Winv_tmp[k] - self.beta[k] * np.outer(self.m[

k], self.m[k])

self.nu[k] -= 1

def _log_ppd_n(self, n):

logdensity = [multivariate_t.logpdf(

self.data[n],

loc = self.m[k],

shape = (1+self.beta[k]) / ((self.nu[k]+1-self.D)*self.

beta[k]) * self.Winv[k],

df = self.nu[k]+1-self.D

)

for k in range(self.K)

]

return logdensity

def avg_log_predictive(self, test_data):

# (1.73)

logdensity = [multivariate_t.logpdf(

test_data,

loc=self.m[k],
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shape=(1+self.beta[k]) / ((self.nu[k]+1-self.D)*self.beta[k])

* self.Winv[k],

df=self.nu[k]+1-self.D

)

for k in range(self.K)

]

# https://gregorygundersen.com/blog/2020/02/09/log-sum-exp/

ppd = (-np.log(np.sum(self.alpha0 + self.N_k)) +

logsumexp(np.log(self.alpha0 + self.N_k)[:,np.newaxis] +

logdensity, axis=0)

)

return np.mean(ppd)

def sampler(self, test_data, num_iter=200, burnin=50):

history = { "clock": [], "avg_log_ppd": [], "init_clock": 0, "

init_pred": 0 }

history["init_pred"] = self.avg_log_predictive(test_data)

history["init_clock"] = timeit.default_timer() - self.clock_start

for iter in range(num_iter):

obs_idx = list(range(self.N))

random.shuffle(obs_idx)

for n in obs_idx:

self._remove_statistics_n(n)

log_prob_zn = np.log(self.N_k + self.alpha0) + self.

_log_ppd_n(n)
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prob_zn = np.exp(log_prob_zn - logsumexp(log_prob_zn)) #

normalization

k = np.random.choice(range(self.K), size=1, p=prob_zn) #

sample

self._add_statistics_nk(n,k)

history["avg_log_ppd"].append(self.avg_log_predictive(

test_data))

history["clock"].append(timeit.default_timer() - self.

clock_start)

print("iter", iter)

return history

B.4 Demo of a simple VAE

# Copyright: adapted from Arun Pandey, KU Leuven

# Based on work done for the course Data Mining and Neural Networks

# by Johan Suykens, KU Leuven

# Import necessary libraries for this course ----------------------

import torch

import torch.nn.functional as nn

import torch.autograd as autograd

import torch.optim as optim

import numpy as np

from scipy.stats import norm

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec
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import os

from tqdm import tqdm

from torch.autograd import Variable

from torch.utils.data import Dataset, DataLoader

from torchvision import datasets, transforms

# Set hyper-parameters

mb_size = 100 # mini-batch size

Z_dim = 2 # latent-space dimension

h_dim = 400

c = 0

lr = 1e-3 # learning rate

max_epochs = 20

def mnist_dataloader(path_to_data= ’mnist ’):

"""MNIST dataloader with (28, 28) images."""

all_transforms = transforms.Compose([transforms.ToTensor()])

train_data = datasets.MNIST(path_to_data, train=True, download=True,

transform=all_transforms)

train_loader = DataLoader(train_data, batch_size=mb_size, shuffle=

True)

return train_loader

def xavier_init(size):

"""Xavier inizialization"""

in_dim = size[0]

xavier_stddev = 1. / np.sqrt(in_dim / 2.)

return Variable(torch.randn(*size) * xavier_stddev, requires_grad=

True)

# Load Data

mnist = mnist_dataloader()
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_, channels, x, y = next(iter(mnist))[0].size()

X_dim = channels * x * y

# Q(z|X)

Wxh = xavier_init(size=[X_dim, h_dim])

bxh = Variable(torch.zeros(h_dim), requires_grad=True)

Whz_mu = xavier_init(size=[h_dim, Z_dim])

bhz_mu = Variable(torch.zeros(Z_dim), requires_grad=True)

Whz_var = xavier_init(size=[h_dim, Z_dim])

bhz_var = Variable(torch.zeros(Z_dim), requires_grad=True)

def Q(X):

h = nn.relu(X @ Wxh + bxh.repeat(X.size(0), 1))

z_mu = h @ Whz_mu + bhz_mu.repeat(h.size(0), 1)

z_var = h @ Whz_var + bhz_var.repeat(h.size(0), 1)

return z_mu, z_var

def sample_z(mu, log_var):

eps = Variable(torch.randn(mb_size, Z_dim)) # sample from unit

gaussian

return mu + torch.exp(log_var / 2) * eps # re-parameterization trick

# P(X|z)

Wzh = xavier_init(size=[Z_dim, h_dim])

bzh = Variable(torch.zeros(h_dim), requires_grad=True)

Whx = xavier_init(size=[h_dim, X_dim])
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bhx = Variable(torch.zeros(X_dim), requires_grad=True)

def P(z):

h = nn.relu(z @ Wzh + bzh.repeat(z.size(0), 1))

X = torch.sigmoid(h @ Whx + bhx.repeat(h.size(0), 1))

return X

# TRAINING

params = [Wxh, bxh, Whz_mu, bhz_mu, Whz_var, bhz_var,

Wzh, bzh, Whx, bhx]

solver = optim.Adam(params, lr=lr) # Adam optimizer

for it in range(max_epochs): # Epochs

avg_loss = 0

for _, (X, _) in enumerate(tqdm(mnist, desc="Iter−{}".format(it))):

X = X.view(mb_size, -1)

# Forward

z_mu, z_var = Q(X)

z = sample_z(z_mu, z_var)

# Sampling from random z

X_sample = P(z)

# Loss

# E[log P(X|z)]

recon_loss = nn.binary_cross_entropy(X_sample, X, reduction= ’sum’

) / mb_size

# https://github.com/y0ast/VAE-TensorFlow/issues/3
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# D_KL(Q(z|X) || P(z)); calculate in closed form as both dist.

are Gaussian

kl_loss = torch.mean(0.5 * torch.sum(torch.exp(z_var) + z_mu ** 2

- 1. - z_var, 1))

loss = recon_loss + kl_loss

# Backward

loss.backward()

# Update

solver.step()

# Housekeeping

for p in params:

if p.grad is not None:

data = p.grad.data

p.grad = Variable(data.new().resize_as_(data).zero_())

avg_loss += loss / len(mnist)

print( ’Loss : {:.4} ’.format(avg_loss.item()))

# plot sometimes

if it % 2 == 0:

samples = P(z).data.numpy()[:64]

plt.close()

fig = plt.figure(figsize=(8, 8))

gs = gridspec.GridSpec(8, 8)

gs.update(wspace=0.05, hspace=0.05)

for i, sample in enumerate(samples):

ax = plt.subplot(gs[i])

plt.axis( ’ off ’)

ax.set_xticklabels([])
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ax.set_yticklabels([])

ax.set_aspect( ’equal ’)

plt.imshow(sample.reshape(28, 28), cmap= ’Greys_r’)

if not os.path.exists( ’out/ ’):

os.makedirs( ’out/ ’)

plt.savefig( ’out/{}_{}.png’.format(it, str(c).zfill(3)),

bbox_inches= ’ tight ’)

c += 1

# plot the manifold

if Z_dim == 2 and it == max_epochs-1:

nx = ny = 15

x_values = np.linspace(.05, .95, nx)

y_values = np.linspace(.05, .95, ny)

canvas = np.empty((28*ny, 28*nx))

for i, yi in enumerate(x_values):

for j, xi in enumerate(y_values):

z_mu = np.array([[norm.ppf(xi), norm.ppf(yi)]]).astype( ’

float32 ’)

x_mean = P(torch.from_numpy(z_mu))

canvas[(nx-i-1)*28:(nx-i)*28, j*28:(j+1)*28] = x_mean.

data.numpy()[0].reshape(28, 28)

plt.close()

plt.figure(figsize=(8, 10))

plt.axis( ’ off ’)

ax.set_xticklabels([])

ax.set_yticklabels([])

ax.set_aspect( ’equal ’)

plt.imshow(canvas, origin="upper", cmap="gray")
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plt.savefig( ’out/manifold.png’, bbox_inches= ’ tight ’)

print("Done")
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