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Abstract

In neuroscience, the existing literature suggests a high level knowl-

edge on the properties of the basic components of the central nervous

system (CNS). The next step is to understand how the building blocks

of the CNS cooperate and interact to accomplish different tasks (e.g.,

cognition, response to external stimuli, etc..). To do that, a simulation

tool capable of handling large-scale network simulations is needed.

The high level of complexity about the simulation in terms of pa-

rameter tuning and large-scale of data handling has always required

ad hoc hardware (super computers or large cluster). However, these

resources are expensive and not always available. Modern graphics

processors (GPUs), provide a high-performance, programmable, low-

cost platform on which large-scale neuronal network simulations can

run. The aim of the present work is to develop a simulation tool that

is capable of (1) closely mimicking the physiological phenomena of

the neurons and their networks, and (2) exploiting the computational

capabilities of the new available hardware. To these goals, different

models have been extensively analyzed looking for those that provide

the best compromise between quality of the predictions and compu-

tational efficiency, with the possibility of implementation on parallel

hardware. The proposed software will be available to the scientific

community in order to provide researchers with a versatile, powerful

and easy to access tool to simulate large-scale neuronal networks.
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Chapter 1

Introduction

1.1 Problem overview

The properties of the basic components of the central nervous system (CNS) have

been investigated for more than 50 years, and now the mechanisms underlying

the computational properties of single neurons have been understood. Also the

basic circuitry of cortical networks has been extensively studied (for a review

please refer to Thomson & Bannister [2003]). The attention in now focused on

the interactions and coding strategies of neurons, to understand how they coop-

erate in big networks to accomplish specific tasks, like vision, pattern recognition,

learning.

Simulation is a very powerful tool to study neuronal networks, because in silico

models do not need particular preparations to be investigated and, moreover, they

allow to explore different experimental conditions with small effort1.

Up to now the simulation of large-scale2 spiking neuronal networks (SNN) has

required super-computers or large cluster (e.g. Izhikevich & Edelman [2008]), ex-

pensive resources that are not always available. Even the simulation of “smaller”

networks (few thousands of neurons or less) using a normal personal computer

is not comfortable, because the amount of data to manage leads to prohibitive

1e.g. a simulator could allow to simulate a network with or without a particular set of
connections to test its behavior for the two different configurations, simply changing an ounce
of parameters. Performing the same experiment on a real neuronal network might be very
difficult, if not impossible.

2Large-scale means “on the order of magnitude of tens of thousands of neurons”.
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computational times.

1.1.1 Proposed solution

Neural networks are “parallel” in nature, as they are made of a lot of similar in-

teracting entities. Modern graphics processors (GPUs), being able to process si-

multaneously hundreds or even thousands of entities, provide a high-performance,

programmable, low-cost platform on which large-scale SNN simulations can run.

Exploiting their computational power can boost incredibly the performances of a

simulator.

Some work has been done in this direction (e.g. Nageswaran et al. [2009],

Yudanov et al. [2010]), but so far, to our knowledge, no really realistic SNN

simulator especially designed for graphic hardware yet exists.

1.2 Motivations

Understanding how biological neuronal networks process information to accom-

plish high level tasks can be the starting point to develop new biologically-inspired

computational strategies. Simulation studies of large population of neurons are

limited by the cost of the resources that have been traditionally needed. A sim-

ulation software exploiting modern GPUs is an accessible alternative resource.

1.3 Aim of the work

Our intention is to provide the scientific community with an easily accessible tool

for large-scale realistic SNN simulations.

We are developing a simulation tool that exploits the computational capabil-

ities of the new available hardware. The most important requirement is that it

closely mimics the physiological phenomena of the neurons and their networks.

Our attention is particularly focused on the thalamo-cortical system (Figure 1.1),

but we cannot exclude that we may extend it to model other types of networks

in the future (e.g. the cerebellar cortex). The work is divided in three phases:

2



Figure 1.1: Simplified diagram of the microcircuitry of the cortical laminar struc-
ture (Upper) and thalamic nuclei (Lower). Neuronal and synaptic types are as
indicated. Only major pathways are shows in the figure; bold lines denote path-
ways carrying more than 30% of synapses to a particular target. Arrows indicate
types and directions of internal signals. Self-synapses denote synaptic connections
within the populations. L1-L6 are cortical layers; wm refers to white-matter.
From Izhikevich & Edelman [2008].
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1. Assess various models of the physiological process that will be simulated,

finding the ones that provide good predictions and better adapt to be im-

plemented on parallel hardware.

2. Design and implement the simulation software, using the models selected

in section 1.

3. Create a tool for the automatic creation of complex networks (e.g. Fig-

ure 1.1) according to the design defined in (2), possibly based on existing

shared protocols (e.g. NeuroML – http://www.neuroml.org) for compat-

ibility with other existing simulation tools (Neuron – http://www.cell.

com/neuron, Brian – http://briansimulator.org, GENESIS – http:

//genesis-sim.org).

The present thesis focuses on phases (1) and (2).

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 provides background

information on neural physiology, while Chapter 3 gives an overview on CUDA-

enabled GPUs’ architecture. In Chapter 4 and Chapter 5 neuronal and synaptic

mathematical models are introduced and evaluated. Chapter 6 presents the de-

sign and the implementation of the software. Finally, some appendices provide

additional information about physiology, mathematical models and some code

listings.

4
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Chapter 2

Physiology

I n this chapter we will describe the physiological basis underlying electric phe-

nomena and communication in the nervous system. For further information about

the subjects treated in this chapter, please refer to D’angelo & Peres [2012].

2.1 Morphology

Neurons in the mammalian central nervous system come in many different forms.

Given the diversity of functions performed by neurons in different parts of the

nervous system, in fact, there is a wide variety in shape, size, and electrochemical

properties of neurons. From a functional point of view, however, neurons generally

have four important zones:

1. an input zone consisting of a variable number of dendritic membrane pro-

cesses extending for hundreds of micrometers, where signal from other cells

are integrated. Due to its particular structure, this zone is usually called

“dentritic tree”;

2. an elaboration site, where integrated signals are processed to elicit a re-

sponse to be propagated to other cells. This zone is called axon hillock ;

3. a cable-like membrane projection, generating from the axon hillock, called

axon, that carries the information along the nerve. Most of the neurons have

5



only one axon, but it usually undergoes extensive branching, enabling com-

munication with many target cells. To minimize metabolic expense while

maintaining rapid conduction, the axons of many nerves are myelinated,

that is, they acquire a sheath of myelin, a protein-lipid complex that is

wrapped around the axon. The sheaths are formed by glial cells: oligoden-

drocytes in the central nervous system and Schwann cells in the peripheral

nervous system. This sheath enables action potentials to travel faster than

in unmyelinated axons of the same diameter, whilst using less energy;

4. the nerve/axon endings, where communication with other cells takes place

through particular structures called synapses.

Figure 2.1: Morphology of various type of pyramidal cells in the cerebral cortex

The cell body (called soma), containing the nucleus and other important cellu-

lar structures, usually corresponds to the root of the dendritic tree and contains

the axon hillock, but it can be located within the axon (like in auditory neu-

rons) or attached to the side of the axon (for example, cutaneous neurons). The

diameter of the soma can vary from 5 to 50 µm.

2.2 Membrane Potential

The cell membrane is a biologic structure that separates the interior of a cell

from the surrounding environment and controls the movements of substances in

6



Figure 2.2: Representation of two neurons.

and out of cells. It consists of a phospholipides bilayer where several proteins

are embedded. Phospholipides’ polar head are hydrophilic and then they sponta-

neously organize to face the surrounding polar fluid, while their apolar tails are

oriented towards the interior of the membrane. Proteins are needed to allow the

cell to exchange small polar or charged molecules, as is the case for ions, with the

external environment, which otherwise could not cross the membrane because

of the interior apolar region. These proteins can be divided in two categories:

ion channels, which allow passive diffusion of ions down concentration gradients,

and ion transporters/pumps which actively push ions across the membrane to

establish those concentration gradients.

When a thin electrode is inserted inside a cell, a constant potential difference

can be observed with a reference electrode kept in the extracellular fluid. This

potential difference is negative and of few tens of millivolts in amplitude. Since

ions are present at different concentrations inside and outside the cell ([K+]out <

[K+]in while the opposite is true for Na+, Cl− and Ca2+ ions), their movements

are influenced both by the chemical gradients and the electric field responsible of

the membrane potential. The observed potential results as a dynamic equilibrium

where the net ions flux across the membrane is zero. This is not true for each ion

indeed. The value of the membrane potential at which the net flux of a single ion

7



X is zero is called the reversal potential of ion X (EX) and can be obtained by

EX =
RT

zXF
ln

[X]out

[X]in
(2.1)

whereR = 8.314 472 J mol−1 K−1 is the universal gas constant, F = 96 485 C mol−1

is the Faraday constant, T is the absolute temperature in K, zX is the valence

of the ion, [X]out and [X]in are the concentrations of the ion X respectively out-

side and inside the cell in mol m−3. (2.1) is called Nernst equation. It is worth

noting that the reversal potential of a given ion can be very different from the

steady-state value of the membrane potential, that is given by the Goldman-

Hodgkin-Katz (GHK) equation:

Em =
RT

F
ln
PNa+ [Na+]out + PK+ [K+]out + PCl− [Cl−]in
PNa+ [Na+]in + PK+ [K+]in + PCl− [Cl−]out

(2.2)

where

• [ion]out and [ion]out are respectively the extracellular and intracellular con-

centrations of that ion in mol m−3

• Pion is the membrane permeability for that ion expressed in m s−1

• R, T and F are defined as in (2.1)

Ion Int (mM) Ext (mM) Rev (mV)
Sodium (Na+) 49 440 59
Potassium (K+) 410 22 0
Chloride (Cl−) 40-100 560 -65
Calcium (Ca2+) 0.0002 10 145

Table 2.1: Intracellular and extracellular concentrations of the most important
ions and their respective reversal potentials for the squid axon. Int: intracellular
concentration; Ext: extracellular concentration; Rev: reversal potential.

8



2.2.1 Electric Model of the Membrane

Cytoplasm and extracellular fluid are electrolytic solutions, and then they are

electric conductors, while the membrane is an insulator. Moreover, the existence

of a potential difference across the membrane means that there is an unbalanced

number of electric charges both inside and outside the cell. In this particular

case, as the resting membrane potential is negative, there is a surplus of negative

charges inside the cell and a surplus of positive charges outside. These charges

are attracted by the electric field and lay on the surface of the membrane. Hence

the phospholipidic bilayer can be represented with a capacitor. As membranes

contains also structures that can be passed through by charged particles (e.g.

ion channels and transporters), the electric representation of the membrane must

include resistors connected in parallel with the capacitor. The conductance of

the membrane is very low and can vary depending on the number of proteins and

their conformation (open/closed/inactivated state1).

Figure 2.3: Equivalent electric circuit of the cell membrane.

Figure 2.3 shows the electrical model of the membrane: the three conductances

represent the permeability of the membrane to each specific ion, while the three

batteries represent the voltage difference driving them, as given by (2.1). This

1see section 2.3
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circuit is described by the first order differential equation (2.3)2

CmV̇ = −
∑
ion

Iion (2.3)

where ionic currents3 are given by

Iion = Gion(V − Eion) (2.4)

It is worth noting that for steady-state conditions (2.3) gives
∑

ion Iion = 0, i.e. the

sum of all the ionic currents is zero, but that’s not true for each of them (see (2.4)).

2.3 Ion Channels

Ion channels are integral membrane proteins with a central pore that allow ions to

move passively across the membrane down their electrochemical gradient. These

proteins can be in two main conformation, one in which the pore is open (open

state) and an other in which the pore is closed (closed state). A lot of different

ion channels exists, but they all share two common properties: selectivity and

gating.

Gating is the mechanism governing morphological transition between open

and closed state. Depending on the stimulus that opens or closes the pore, ion

channels can be divided in voltage-gated (they respond to changes of the mem-

brane potential) or ligand-gated (conformation state changes when the protein

binds a specific ligand molecule) ion channels. These two gating mechanisms are

not mutually exclusive, but ion channels generally adopt one or the other. When

both of them are present in the same channel, one prevails on the other.

Selectivity refers to the ability of the channel to choose which particular ion

specie can pass through it. Thus for example a channel for sodium (Na+) is

permeable to Na+ ions but not to K+ or Ca2+.

2In this thesis the membrane potential will be labeled either as Em or V , preferring the
former in chemical equations and the latter when describing equivalent electric circuits.

3Ionic currents sign convention: positive from inside to outside.
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2.3.1 Channels opening and closing mechanisms

Figure 2.4 show a typical current recording through a single channel for a fixed

voltage across the membrane. Even if in steady-state conditions, the current

Figure 2.4: Single channel recording of a voltage-gated ion channel.

through the channel switches frequently between two levels (see Figure 2.4): level

zero (closed channel) and another one of few picoamperes (open channel). It must

be noticed that the duration of the opening and closing events shows a certain

degree of variability, suggesting a stochastic mechanism controlling morphological

changes in the channel protein. In the simplest case, transitions between the two

states can be described as:

C
α(V ) // O
β(V )
oo (2.5)

where C and O represent respectively closed and open states, while α and β

represent the number of transition in each directions occurring in a unit time.

Continuous macroscopic currents observed in whole-cell patch clamp recordings

arise from the summation of a lot of single “on/off” stochastic currents at the

microscopic level.

An other important parameter used to characterize the activity of a ion chan-

nel is its opening probability pO. Depending on the type of gating mechanism,

pO can be described as:

11



• voltage-gated channels

pO =
1

1 + exp

(
−
zg e(E − E1/2)

kT

) (2.6)

where e is the elementary charge, k is the Boltzmann’s constant, T the

absolute temperature. E1/2 and zg are parameters varying from channel to

channel and set respectively the potential at which pO = 0.5 and the slope

of the curve in that point.

• ligand-gated channels

pO =
1

1 +

(
KD

[L]

)n (2.7)

known as Hill’s equation, where [L] is the concentration of ligand. KD is

known as dissociation constant and it is the concentration of ligand needed

to make pO = 0.5, while n describe the steepness of the relation between

pO and [L].

Inactivation

Some types of voltage-gated ion channels, when stimulated by a long-lasting

depolarizing pulse, are permeable only for a brief period of time, and then they

enter a non-permeable state, although the depolarization lasts. This phenomenon

is called inactivation and can be found, for example, in the Na+ voltage-gated

channels responsible of the action potential. To take in account this additional

behavior, one more additional state must be added to the kinetic scheme (2.5),

resulting then:

C
r1(V ) // O
r2(V )

oo

r3��

I

r4(V )

^^

(2.8)
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States C and I are indistinguishable analyzing a patch clamp recording, being

both of them non conductive states, but note that channels can recover from

inactive state only once the membrane become repolarized4.

2.3.2 Sodium channels

Voltage-gated sodium channels

Voltage-gated Na+ channels (NaV) play an essential role in the generation and

propagation of action potentials, in the spike after depolarization and in the

control of the firing frequency. Closed at the resting potential, NaV channels

rapidly open when the membrane is depolarized. The voltage-dependency of the

activation well fits with Boltzmann’s equation (2.6). E1/2 is very variable and the

generally relatively high zg makes these channels very sensitive to weak membrane

depolarization too. Additionally, NaV channels have a very variable inactivation

mechanism.

They can be further divided depending on the properties of the current they

generate.

Transient currents: they activate very rapidly, with submillisecond time con-

stants, causing positive feedback inward Na+ currents that further activate other

NaV channels. This is the underlying mechanism of the fast depolarizing phase

of the action potential. Moreover, these channels show a very fast inactivation

mechanism. Recovering from inactivation instead requires several milliseconds,

forcing the cell in a refractory period.

Persistent currents: those currents differ from transient ones because they

are active at lower depolarization levels at which they don’t inactivate. They

are responsible of the modulation of the firing frequency and of the subthreshold

behavior.

4Inactivation is not a directly reversible process, since channels must first be closed before
they can be reopened again.
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2.3.3 Calcium channels

Voltage-gated calcium channels

From a biophysical point of view these channels (CaV) can be divided in two

classes: low-voltage activated (LVA) and high-voltage activated (HVA), which

exhibit an higher E1/2 compared to the first ones.

Low-threshold currents: channels responsible for these currents exhibit fast

inactivation kinetics. Most of them is inactivated at resting potential, this means

that the membrane must first be hyperpolarized in order to open the channels.

They are responsible of the post-inhibitory rebound spikes.

High-threshold currents: these currents are activated at higher threshold

and shows a slower inactivation kinetic compared to CaLVA currents. These chan-

nels are important because they activate Ca2+-activated K+ channels, and are

responsible of the bursting firing pattern. Moreover CaLVA–induced Ca2+ fluxes

trigger neurotransmitter release in the synapses.

2.3.4 Potassium channels

Voltage-gated potassium channels

These channels (KV) activate when the membrane depolarizes, and their cur-

rents are responsible of the repolarizing phase of the action potential and of the

modulation of the firing frequency.

Delayed-rectifier current: this current (DRK) activates at about −50 mV,

it has a time constant of few milliseconds around 0 mV and doesn’t inactivate.

It is responsible of the depolarizing phase of the action potential.

Transient A-type currents: it differs from DRK current as it activates faster,

and shows inactivation with time constant comparable to sodium fast current. Its

role is the modulation of the firing frequency.
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M-type currents: it shows slow activation kinetic after membrane depolariza-

tion and no inactivation. As for A-type currents, they play an important role for

the regulation of neuronal excitability.

Calcium-activated potassium channels

K+Ca2+-activated channels (KCa) are regulated by the intracellular concentra-

tion of Ca2+. These channels opens during action potentials after Ca2+ ions

enter inside the cell through CaV channels. They play a role during repolarizing

and after spike hyperpolarized phases of the action potential, as well as in the

modulation of the firing frequency.

2.4 Action Potential

If a current pulse of proper amplitude and duration5 is injected into an excitable

cell in order to depolarize its membrane, we notice that when the membrane

potential reaches a certain level (about −40 mV) of depolarization (that is often

defined threshold), it rapidly increases to a positive value of about 30 mV and

then falls down to a value a little bit more negative than the resting potential

and then it goes back to the resting value. It can be observed that the amplitude

(we could say even more generally the shape) of the recorded voltage trace is

independent from the amplitude of the current stimulation, and it is always the

same once the potential reaches the threshold. This stereotyped behavior is called

action potential6.

2.4.1 Shape of the action potential

The time course of an action potential can be divided in three phases (see Figure

2.5):

5The minimum value of the amplitude of the current step that provokes an action potential
after an infinite period of time is called rheobase.

6Action potentials in neurons are also referred as spikes. The temporal sequence of action
potentials generated by a neuron is called spike train. When a neuron produces an action
potential it is said to be firing.
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1. rising phase: in this first phase the membrane becomes more and more

depolarized. Initially the depolarization is induced only by the injected

current, but, once the potential reaches the threshold value, a great inward

flux of Na+ ions arises. This sudden and great current causes the rapid

increase of the membrane potential observed in the voltage traces. The

threshold7 is defined as that value at which the velocity of the depolarization

changes.

2. peak and falling phase: with a little delay with respect to the sodium current

also a potassium currents appears. This balances the sodium one and thus

the potential gets to its peak value. In the meanwhile, the sodium current

is shut down, and then the potassium currents repolarizes the membrane

back to the resting potential.

3. hyperpolarization phase: at the end of the second phase the potassium cur-

rent is still persistent, causing the hyperpolarization of the membrane. This

phase is also known as spike after hyperpolarization. When the potassium

current is finally shut down the cell restores the resting potential through

active mechanisms.

When the cell is in phases 1 and 2 it is said to be in its absolute refractory

period, because the application of a second stimulus would not change the time

course of the potential and could not elicit a further action potential until the

end of phase 2.

During phase 3 the cell is said to be in its relative refractory period, because

a second stimulus would unlikely elicit an other spike. Indeed the neuron is still

hyperpolarized, and therefore far threshold.

2.4.2 Propagation of the action potential

Passive signal propagation

The axon can be approximated by a cylindrical conductor enveloped by an insu-

lator layer (the myelin sheath) surrounded by an electrolytic solution. If the time

7It must be said that the value of the threshold can be variable, because it can depend on
the past history of the membrane potential.
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Figure 2.5: Different phases of the action potential: yellow) rising phase; blue)
falling phase; purple) hyperpolarization phase.

dependence of the conductance8 is neglected the axon can be compared to a linear

cable. With this assumption, the propagation of the signal is said electrotonic.

Figure 2.6 represent the equivalent electric circuit of such a cable: here an

horizontal slice of length dx is represented by one internal axial resistance rin dx

coupled with the external environment by the parallel of a resistance of value

rm/dx and a capacitor of value cm dx. It is assumed that these parameters are

constant both in time and in space. Applying the formalism of electric circuits

we obtain the following relation, which describes, in steady-state conditions and

for a constant current injected in x = 0, the trend of the membrane potential

according on the distance from the origin:

Em(x) = E0 exp
(
−x
λ

)
(2.9)

where E0 is the value of the membrane potential at x = 0. The space constant

λ control how rapidly the signal decays moving far from the origin. The space

8i.e. the active properties that provide the axon with excitability.
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constant can be calculated as:

λ =

√
rm

rin

(2.10)

Figure 2.6: Electric representation of an insulated cable surrounded by an elec-
trolytic solution, as it is the case for a passive unbranched dendritic segment.

For physiological values of cm, rm and rin, λ is few millimeters in the best

cases, thus passive propagation of cellular electrical signal is meaningful only for

short distances. Propagation of the action potential for longer distances requires

a continuous regeneration of the signal along the fiber to permit it to reach distal

targets.

Local circuits

The propagation of the action potential occurs through active processes, based

on voltage-dependent sodium and potassium conductances, together with the

passive electrotonic propagation process. Hodgkin and Huxley merged the two

descriptions, obtaining a solution consisting in a excitation wave traveling at

constant speed along the cable. The point where the action potential is generated

is considered as a source of current flowing across the membrane and along the

axon.

Figure 2.7 describes this concept. The action potential is traveling from left

to right and is in the orange zone. In this region an inward sodium current is

present and it propagates on both sides along the axon according to electrotonic
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Figure 2.7: Propagation of the action potential. Top: propagation in unmyeli-
nated fiber. Bottom: propagation in myelinated axon.

propagation, causing the depolarization of adjacent patches of membrane. If the

stimulation is strong enough, the patch on the right side will generate an action

potential. This is not true for the patch on the left side: being in its refractory

period, even if the stimulus depolarizes the membrane above the threshold, the

generation of the action potential will fail. This mechanism guarantees that the

propagation is unidirectional.

The speed of the excitation wave is strongly related to the diameter of the

axon (and hence its space constant): the bigger the diameter, the faster the

propagation (Rushton [1951]).

Saltatory conduction

Many axons present periodically regions enveloped inside an insulating myelin

sheath and free regions. The former are called internodes and the latter nodes of

Ranvier. Myelinated regions are highly insulated from the outside environment,

and poor of ion channels, which are concentrated at Ranvier’s nodes. The high

insulation of myelinated regions causes a strong increment of the space constant
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there, which can reach values around 3 mm. This means that the electric pulse

can “jump” for a distance greater than the internodal one and it is still strong

enough to regenerate the action potential. Conduction velocity in myelinated

fibers is then much higher9 than unmyelinated ones’ having the same diameter.

2.5 Synapses

Synapses are functional connection between neurons. Most of them connect axons

with dendrites, but also axo-axonic, axo-somatic and dendo-dendritic synapses

are known. They allow the transmission of information from presynaptic to post-

synaptic neuron. They can be distinguished in two different types: electrical

synapses, also called gap junction, and chemical synapses. In this section we will

talk about the latter.

2.5.1 Structure

Chemical synapses are made of three distinct elements: the synaptic terminal,

also called synaptic bouton, the synaptic space (synaptic cleft), a thin space of

about 20 nm that separates the membranes of the pre- and postsynaptic neurons,

and the postsynaptic membrane.

The release of neurotransmitter by the presynaptic neuron induce a current

on the postsynaptic side.

Presynaptic side

The synaptic bouton is a specialized area within the axon of the presynaptic neu-

ron (the source of the signal) where neurotransmitter molecules are enclosed in

small membrane vesicles. They are usually situated in the terminal part of the

axon, after the last node of Ranvier. In the terminal part of the axonal membrane,

sodium channels are replaced by high-threshold voltage-gated calcium channels so

that the depolarization induced by an action potential produces an influx of Ca2+

in the presynaptic terminal. Calcium ions interact with calcium-binding proteins

that, once activated, induce the fusion of the vesicles with the bouton’s membrane

9it can exceed 100 m s−1
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Figure 2.8: Representation of neurotransmitter release process. When voltage-
gated channels depolarize the membrane Ca2+ enter the cytosol via HVA calcium
channel. Ca2+ ions bind to a calcium-binding protein (X) and produces an
active form (X∗); X∗ promotes the exocytosis of synaptic vesicles an release of
transmitter molecules (triangles) into the synaptic cleft. The transmitter can
induce a postsynaptic current by binding to ligand-gated ion channels (left) or to
a secondmessenger-linked postsynaptic receptor (right) which induce a cascade
of reactions that end with the opening of K+ ligand-gated ion channels. From
Destexhe et al. [1994].

and the following release of neurotransmitter in the synaptic cleft. There, trans-

mitter molecules can bind to specific receptors on the postsynaptic membrane or

be recovered by the presinaptic terminal, a process called transmitter reuptake.
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Postsynaptic side

Neurotransmitters can bind to two distinct categories of receptors in the postsy-

naptic membrane:

• ionotropic receptors : they are ligand-gated ion channels (e.g. AMPA-

kainate or GABAAreceptors). They usually produce fast currents, with

rising times of some hundreds of microseconds and decaying times of few

milliseconds.

• metabotropic receptors : for these receptors, the receptor complex and the

ion channel are not part of the same protein complex. When the recep-

tor binds to transmitter molecules, it produce a cascade of intracellular

reactions that ends up with the opening of the ionic channels. Currents

produced after the activation of metabotropic receptors are characterized

by slower dynamics (with time constants up to one second), if compared

with ionotropic-receptors induced ones, because they are the result of a

metabolic reactions. The most important receptor of this category in the

central nervous system is the GABABreceptor, found in inhibitory synapses.

As for every ion channel, also for synaptic channels it is possible to find a

value of the membrane potential, the reversal potential, at which, even if the

channel is open, the net current is zero. If at the resting potential the current

across postsynaptic channels tends to depolarize the membrane, it is said to be

excitatory (EPSC: Excitatory Post Synaptic Current), since it moves membrane

potential towards the threshold, otherwise they are said to be inhibitory (IPSC:

Inhibitory Post Synaptic Current). It is worth noting that a current that usually

is inhibitory may become excitatory if certain conditions are met. For example

GABAAreceptor selectively permeable to Cl−, thus its reversal potential is the

same of the ion, that is around −65 mV. It is clear that if the membrane po-

tential is at values more negative than the resting one, GABAAcurrent becomes

excitatory.
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2.5.2 Short term synaptic plasticity

During repetitive stimulation, EPSCs can show modulations of their amplitude,

that are together defined short term synaptic plasticity.

Synaptic facilitation consists in a gradual increase of the amplitude of the

synaptic response caused by Ca2+ accumulation in the presynaptic terminal due

to the repetitive stimulation. This happens because the complete extrusion of

Ca2+ after the first stimulus is complete only after some tens of milliseconds.

The release mechanism, being Ca2+-dependent is therefore facilitated.

Synaptic depression represents a progressive decrease of the amplitude of the

synaptic response that eventually will tend to a reduced steady state value. De-

pression is primarily caused by the limited velocity of transmitter reuptake. When

a second pulse arrives (typically within a period of some tens of milliseconds) some

of the previously used vesicles could be not yet available for the release process,

resulting in a lower number of releasing sites (and hence of the total number of

released transmitter molecules).

Together with these two mechanisms there is a third one taking place in the

postsynaptic side. Many synaptic receptor, in addition to a closed and open state,

have a third conformation for which the associated ionic channel is open but not

conducting. When a receptor enters this state it is said to be desensitized. The

desensitization process for synaptic receptors is similar to inactivation for voltage-

gated ion channels.

Usually facilitation and depression coexist. At the end of a spike train, how-

ever, the functional state of a synapse returns to basal conditions. This fact

makes short-term synaptic plasticity a completely reversible phenomenon.
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Chapter 3

GPU Architecture

Figure 3.1 shows a simplified view of the CUDA GPU architecture from NVIDIA.

It contains an array of Streaming Multiprocessors (SMs). Each SM consists of

eight floating-point Scalar Processors (SPs), a multi-threaded instruction unit

(Register), a 16 up to 48KB user-managed shared memory and 16KB of cache

memory (8KB constant cache and 8 KB texture cache)1. Each SM has a hardware

thread scheduler that selects a group of threads (called warp) for execution. If any

one of the threads in the group issues a costly external memory operation, then

the thread scheduler automatically switches to a new thread group. By swapping

thread groups, the thread scheduler can effectively hide costly memory latency.

At any instant of time, the hardware allows a very high number of threads to be

active simultaneously.

The following are general best practices to keep in mind while designing a

CUDA program:

1. Parallelism: To effectively use the GPU resources, the application needs

to be mapped in a data-parallel fashion; each thread should operate on

different data. Also, a large number of threads (in the thousands) need to

be launched by the application to effectively hide the stalling effects caused

while accessing GPU memory.

2. Memory bandwidth: To achieve peak memory bandwidth, each processor

should have uniform memory access (e.g., thread0 accesses address0, thread1

1From CUDA Programming Guide, v4.0
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Figure 3.1: Simplified architectural view of a CUDA enabled graphic processor.

accesses address0+4, thread2 accesses address0+8 etc.). If memory accesses

are uniform, it is possible to group many memory accesses into a single

large memory access (termed coalescing operation) achieving high memory

bandwidth. In CUDA 1.2 compatible GPUs (and future families) memory

coalescing is performed if all SPs within an SM accesses the same memory

segment in any ordering.

3. Minimize thread divergence: By design, the current CUDA GPUs selects a

warp of 32 threads, and executes them using a single instruction register.

Maximum performance can be achieved if all the threads within the warp

execute the same instruction. If different threads within the warp follow

different branches, which are termed divergent warps, then this will lead to

sub-optimal performance.

It is important to note that the above factors are interrelated, and all four factors

need to be optimized for effective execution on GPUs.
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Chapter 4

Neurons

4.1 Introduction

It is widely accepted that neurons encode information in the temporal patterns

of their action potentials1, hence a careful reproduction of their “computational

properties” is an important issue. In this chapter we are going to analyze several

models for this purpose. Finally, we will discuss briefly multi compartmental

models.

4.1.1 Selection criteria

We are going to evaluate various models according to the following criteria:

1. Quality of predictions.

2. Computational cost: obviously, if two models are available to describe the

same phenomenon, we will prefer the one that is computationally lighter.

3. Number of reproducible neuro-computational properties: models describ-

ing different phenomena simply assigning different parameters to the same

equations are preferred to models requiring different equations to account

for the same phenomena.

1Refer to Appendix C: Firing patterns for information about firing patterns.
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4. Possibility of implementation (on parallel code2): a model needing a fixed

amount data to reproduce different behaviors is preferred to models requir-

ing variable amounts of data to reproduce the same phenomena. This is

because handling objects of different sizes in parallel code is a difficult, at

all trivial, task.

The assessment of the various models must consider all the previous criteria.

4.2 Phenomenological models

As their name says, these models describe the behavior of a neuron with few or

no assumptions about underlying physiological mechanism. They are all based

on the assumption that spikes are stereotyped events, hence what is important

is the correct prediction of their occurring times, rather than their actual shape.

Moving from this hypothesis, many models have been proposed to achieve this

task. They can be classified into two main families, i.e. integrate-and-fire (IF)

and spike-response models (SRM), according to the approach used to describe

the time course of the membrane potential: a set of differential equations for the

first, whereas the latter are formulated using filters.

4.2.1 Leak integrate-and-fire neurons

The differential equation governing the simplest integrate-and-fire model is de-

rived from a basic circuit for the cell membrane, consisting of a capacitor C

in parallel with a resistor R driven by a driving force Er. The whole circuit is

driven by a time-dependent current I(t)3. Once the circuit is solved, the following

dynamic equation is obtained for the voltage:

Cv̇ = −v − Er
R

+ I(t) (4.1)

In leak IF neurons the shape of the action potential is not described explicitly,

but rather a spike is triggered at time t̄ whenever the potential v reaches a certain

2See Chapter 3 for an overview of CUDA programming best practices
3The nature of I(t) is not specified: it can be an artificially injected current as well as the

input current from the synapses.
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threshold value ϑ > Er. Immediately after, the potential is reset to the value Er.

Formally, this is written as:

if t̄ : v(t̄) = ϑ, lim
t→t̄+

v(t) = Er (4.2)

and for t > t̄ the dynamics are again given by (4.1). A more general version of

the leak IF neuron includes an absolute refractory period after the generation of

a spike, during which the dynamics is interrupted. The integration then restarts

at time t̄+ ∆abs with the new initial condition v(t̄+ ∆abs) = Er. In this way the

maximum firing frequency is limited so the neuron cannot fire at an arbitrary high

frequency. The current-frequency relation can be found solving the differential

equation (4.1) for a constant input current I0. Hypothesizing that a spike occurred

at time t̄, we obtain:

v(t) = Er +RI0

(
1− e−(t−t̄−∆abs)/τ

)
, t > t̄+ ∆abs (4.3)

where τ = RC is the membrane time constant. For t → +∞, v approaches the

steady-state value Er +RI0. Hence, if Er +RI0 < ϑ no more spikes are triggered,

otherwise a new spike occurs and, solving (4.3) for the elapsed time ∆T = t− t̄
required to reach the threshold and calculating its reciprocal, one obtains the

following current-frequency relation:

f =

(
∆abs + τ ln

RI0

RI0 − ϑ− Er

)−1

(4.4)

The IF model clearly represent a class 1 excitable neuron4.

Although it is the simplest and computationally cheapest model of a spiking

neuron, its application is very limited because it lacks important computational

properties, like adaptation or bursting.

Adaptation

Adaptation can be included adding one more differential equation to the model.

The new variable mimics a sort of slow high-threshold potassium conductance

4Refer to Appendix C for details.
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that force the potential to hyperpolarized values:Cv̇ = −gL(v − EL)− w(v − EK) + I(t)

ẇ = −w/τw
(4.5)

where gL represents a leak conductance and EL is the reversal potential of the

current mediated by gL. This current is always present and accounting for the

passive properties of the membrane. After each spike, the potential v is reset to

a new value vr as in (4.2), whereas w is updated according to

lim
t→t̄+

w(t) = w(t̄) + d (4.6)

This immediate increase of w can be interpreted as the opening of calcium-

dependent potassium channels caused by the influx of calcium during an action

potential due to HVA calcium channels. A negative feedback variable like w

makes the explicit simulation of an absolutely refractory period unnecessary and

introduces a relative refractory period “for free”.

4.2.2 Nonlinear models

The integrate-and-fire-with-adaptation model represents the vast majority of neu-

rons in the central nervous system, i.e. excitatory pyramidal cells. Indeed these

neurons are about 80% of the total number of cortical neuron, and largely exhibit

class 1 excitability with adaptation. However, a 20% of neurons are not repre-

sented by this model, and even within pyramidal cells other firing patterns are

found. Moreover, spikes are not explicitly simulated, but rather added “manu-

ally” to voltage traces when a threshold crossing is detected. Hence the need of

finding mathematical models which can describe better neuronal dynamics.

The models we are going to study in this section5 can be written in the generic

5 Many other models have been proposed, among all we mention the one described by
Fitzhugh (Fitzhugh [1961]) and the one proposed by Hindmarsh and Rose ( Hindmarsh & Rose
[1984]). The main drawback of these solutions is that each of them can reproduce only a limited
subset of the firing and computational properties found in neurons (Izhikevich [2004]), and this
fact implies that the simulation of different types of neurons requires different models.
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abstract form:

V̇ = f(V )− w + I (4.7)

ẇ = a(bV − w) (4.8)

where V is a potential-like variable, while w is a recovery variable needed to

take into account firing frequency adaptation and other properties. w somehow

represents all the ionic currents that are not directly involved in the generation

of the action potential.

For this types of models spiking does not occur depending on the polarization

threshold, but rather if the potential tends to escape towards infinity in a finite

time. In practice, this is true if V is greater than a given value Vp, that is the

theoretical peak value of the voltage during an action potential. If a spike is

detected, the model is then reset in a fashion similar to equations (4.2) and (4.6):V ← c

w ← w + d
(4.9)

Adaptative quadratic integrate-and-fire

Izhikevich proposed a model where the v̇−v relations is a second order polynomial

(Izhikevich [2003]):

v̇ = 0.04v2 + 5v + 140− u+ I (4.10)

u̇ = a(bv − u) (4.11)

This model is purely phenomenological, as a matter of facts v and u are dimen-

sionless variables, as well as a, b, c and d are dimensionless parameters, and the

same is true for the input current I. If v = 30, the model is reset according to

equations (4.9)6.

Although purely phenomenological, the model can account for a large variety

of neuronal firing patterns (Izhikevich [2004]). It has been fully characterized

6The choice of the cutoff value Vp is critical, as the recovery variable tends to diverge when
the potential escapes to infinity.
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by its author, who provides the values of the parameters for different classes of

cortical neurons/firing patterns (see Figure 4.1).

Figure 4.1: Examples of firing patterns and neuron types that can be reproduced
by the Izhikevich’s simple model. Each inset shows a voltage response of the
model neuron to a step of dc-current I = 10 (bottom). Time resolution is 0.1 ms.

Adaptative exponential integrate-and-fire (AdEx)

If v̇ depends exponentially on v, we obtain the so called exponential integrate-

and-fire neuron, proposed Brette and Gerstner (Brette & Gerstner [2005]):

CV̇ = −gL(V − EL) + gL∆T exp

(
V − VT

∆T

)
− w + I (4.12)

τwẇ = a(V − EL)− w (4.13)

where C is the membrane capacitance, gL the leak conductance, EL the leak re-

versal potential, VT the threshold, ∆T the slope factor, a the adaptation coupling

parameter and τw is the adaptation time constant. A full characterization of the

model and its parameters can be found in Naud et al. [2008]. The model is reset

when v = 20 mV (Brette & Gerstner [2005]) or v = 0 mV (Naud et al. [2008]),

and the potential is reset respectively to EL or to an additional parameter Vr.

Unlike the previous model, all parameters of the Adaptive Exponential Integrate-

and-Fire model have a biological interpretation:

31



• In the absence of adaptation, VT is the maximum voltage that can be

reached under constant current injection without generating a spike (rheobase

current). In the presence of adaptation the voltage corresponding to the

rheobase current is shifted.

• The slope factor ∆T quantifies the sharpness of spikes. It can be related to

the sharpness of the sodium activation curve, when one neglects the acti-

vation time constant. In the limit of zero slope factor, the model becomes

an integrate-and-fire model with a fixed threshold VT .

• Spike triggered adaptation (the parameter b) summarizes the effect of cal-

cium dependent potassium channels under the assumption that calcium

influx occurs mainly during an action potential. Note that the coupling

of voltage and adaptation via the parameter a also contributes to spike-

triggered adaptation because of the sharp rise of the voltage during the

upswing of an action potential.

• The subthreshold parameters in equation (4.12) can be extracted from ex-

periments by standard linear identification methods, whereas parameters VT

and ∆T can be extracted from experiments using the technique of dynamic

I − V curves (Badel et al. [2008]).

4.3 Conductance-based models

Conductance-based models are based on an equivalent electric circuit of the mem-

brane. The double lipid bilayer is represented by mean of a capacitor in parallel

with a leak conductance, which is an approximation of the passive properties of

the cell. Several current sources are connected in parallel with the base RC cir-

cuit, in order to take into account ion-channel7 and synaptic-mediated as well as

artificially injected currents. Applying Kirchhoff’s current law to the circuit and

considering the relation between voltage and current through a capacitor, we get

7For a summary of the types of ion channels that can be expressed by a neuron refer to
sections 2.3.2, 2.3.3, 2.3.4. Each type of ion channel mediates a current that takes the same
name.
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Figure 4.2: Equivalent electrical circuit of a membrane, in which only sodium
and potassium ions are considered. The capacitor C represents the capacity of
the membrane, while gL is its passive conductance and VL the corresponding
driving force. They cause a current IL that tends to keep the membrane at its
resting potential. gNa and gK are instead “active” conductances, and represent
the voltage-dependent ion channels embedded in the membrane. VNa and VK
are the reversal potential for sodium and potassium respectively as given by the
Nernst equation (2.1).
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the following first order differential equation for the time evolution of the circuit:

CV̇ = −ḡleak(V − Eleak)− Iion − Isyn − Iext (4.14)

where V is the membrane potential, C is the total membrane capacity, ḡleak and

Eleak are the conductance and the reversal potential for the leak current, and

Iext, Isyn and Iion are the external-injected, synaptic and ion-channels-mediated

currents respectively. The convention followed for their signs is that an inside-out

flowing current is considered to be positive.

It is worth noting that even synaptic currents are carried by ions flowing

through ion channels,therefore, in principle, we could have identified all the cur-

rents that are not artificially injected with the same label. Nevertheless, in order

to separate inputs and free evolution of the cell system, we distinguish from ionic

currents that depend only on the internal state of the cell (Iion)8 and currents that

are driven by external factors (Isyn). In this chapter we are focusing of the former,

but, although the underlying mechanisms are different, a similar description is

possible also for the latter.

I-V relation for ionic currents

Iion results from the sum of the currents carried by the various ions. Each ionic

current in turn arises from the contribution of different ion channels permeable to

a specific ion. The generic ionic current through a generic population of channels

can modeled by two different equations:

• Electrochemical diffusion: Ion are present in different concentration inside

and outside the cell so, in addition to the electric field, they are subject to

chemical gradients. For this reason, ions tend to flow better in one direction

rather than in the other, across the membrane. This phenomenon is called

rectification, and it is all the more important the more the concentrations

are different. If this is the case, the ionic flux across the membrane is better

can be modeled by the phenomenological law called Goldman-Hodgkin-Katz

8i.e. voltage and ionic concentrations. For the most important ionic currents found in
neuron, please refer to Appendix B: Ionic currents.
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(GHK) flux equation:

ΦS = pS(t, V )z2
S

F 2

RT
V

[S]i − [S]o exp(−zSV F/RT )

1− exp(−zSV F/RT )
(4.15)

where Φ is the flux of ion S across a unit area of membrane (therefore to

obtain the value of the current, Φ must be multiply by the total membrane

area), pS is the permeability of the membrane for ion S given by the ionic

channel of interest, z2
S is the valence of S, F and R are the usual physical

constants and T the absolute temperature, [S]i and [S]o the concentration

of ion S in the intra and extracellular media and V the membrane potential.

The GHK flux equation is mostly used by electrophysiologists not only when

the ratio between [S]i and [S]o is large, but also when one or both change

considerably during an action potential.

• Linear ohmic relation: Most of the times, however ion concentration inside

and outside the cell are comparable, and ionic current can be described by

a simpler a linear ohmic relation:

Ix = gi(t, V )(V − Ei) (4.16)

where Ei is the value of the reversal potential of the channel9, Gi, which

generally is time and voltage dependent, is the sum of the conductances of

all the channels responsible of the current i. This linear relation is suitable

for most of the currents found in neurons.

Both models have advantages and drawbacks: GHK equation is more complete,

but it requires additional physiologic information (ion concentrations). Moreover,

it is hard to find values for channels permeability in literature, and extra work

must be done to extract them from experimental data; linear ohmic relation is

a much more simple model (also from the computational point of view), but

it based on strong approximations. If it can be cleanly( used for sodium or

9That is the reversal potential of a specific ion as given by the Nernst equation (2.1), if the
channel is selectively permeable to a single ion species; otherwise Ei is given by a weighed sum
of the various Nernst potential accordingly to the reletive permeability the channel shows for
the various ions.
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Figure 4.3: Example of current–voltage relation for K+ ions predicted by GHK
(marked line) and using a linear ohmic relation (unmarked line) . It is worth
noting how GHK relation approaches two different asymptotes when V diverges
from zero.

potassium currents because these ions have comparable intra and extracellular

concentration), the same cannot be said in case of calcium. However, it is worth

noting that neurons spend most of their time near their resting potential, whose

value (between -60 to −70 mV) is far from calcium reversal potential (about

120 mV), therefore the voltage-current relation can be approximated as linear

also in the case of calcium ions10. For these reasons, when, in the future, we

implement conductance-based models, we will use the ohmic linear relation for

each ionic current.

In both (4.16) and (4.15) the value of the conductance and of the membrane

permeability are functions of time and membrane potential, but they can also

depend on other factors like the intracellular concentration of calcium or other

molecules. In the following subsection we will introduce two different theoretical

framework to describe their dynamics.

10However, in principle, we should still care about intracellular calcium concentration and
continuously update its reversal potential using the Nersnt equation (2.1).
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Further extension of conductance-based models

Also calcium dynamics, a subject we are not treating in this thesis, can be sim-

ulated with conductance-based models. For this reason, it is possible to include

also non voltage-dependent currents11.

4.3.1 Hodgkin-Huxley formalism

The first attempt to describe voltage dependency of ionic conductances was re-

alized by Hodgkin and Huxley on their work about the electrical properties of

the squid giant axon (Hodgkin & Huxley [1952]). They focused on fast sodium

and potassium currents responsible of the generation of the action potential, but

the formalism they introduced can be used to characterize other types to ionic

currents found in neurons.

They hypothesized that several independent activation particles must simulta-

neously occupy a certain position in the membrane, depending on its potential, to

allow the flow of ions. This fact can be illustrated by a two-states state diagram:

C
α(V ) // O
β(V )
oo (4.17)

where C and O represent the closed and open positions respectively, and α(V )

and β(V ) are the voltage-dependent transition probabilities. In order to interpret

inactivation phenomenon observed in experimental data, they introduced one

or more independent blocking particles, ruled by a similar kinetic scheme, may

prevent the flux of current if they occupy a certain position.

Usually, the fraction of activating particles in the open position are represented

by the gating variable m, while the fraction of non-blocking inactivation particles

by h. According to scheme (4.17), the temporal evolution of the generic gating

variable x is governed by a first order differential equation:

ẋ = αx(V )(1− x)− βx(V )x (4.18)

11e.g. IC and IAHP currents, which play an important role in the adaptation process of the
firing frequency at different time scales. See Yamada et al. [1989].
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here α and β assume the meaning of transition rates. This equation can also

be rearranged into another form more suitable to fit voltage-clamp experimental

data:

ẋ =
1

τx(V )
(x̄(V )− x) (4.19)

where the steady-state value x̄ and the time constant τx are given by

x̄(V ) = αx(V )/ [αx(V ) + βx(V )] (4.20)

τx(V ) = 1/ [αx(V ) + βx(V )] (4.21)

These functions are usually sigmoid- and bell-shaped respectively.

Figure 4.4: Steady-state values and time constant of m and h, the gating vari-
ables introduced by Hodgkin and Huxley to describe the voltage dependency on
membrane potential of the sodium conductance.

The total conductance for a any given current j is assumed to be proportional

to the number of activated gating particles that are not blocked. Mathematically:

Gj = ḡjm
pjhqj (4.22)

where ḡ is the maximal conductance, i.e. the product of the conductance of

a single j-type channel times the number of channels of that type found in the

membrane, pj is the number activation particles that must be open simultaneously

to allow the flux of ion, while qj is the number of inactivation particles that must

simultaneously be removed to remove the block. If a current does not inactivate

over the time, qj = 0.
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4.3.2 Markov models

According to Hodgkin-Huxley formalism a channel is considered to be composed

of several independent gating particles, all assumed to be equal to one another.

Voltage-clamp experiments on single channel recordings instead evidenced that

the situation is different: inactivation of sodium channels have been proven to

be voltage independent and strongly coupled with the active state (Aldrich et al.

[1983] and Benazilla [1985]). In principle, this could be true also for other ion

channel. These experimental evidences suggest to consider channel proteins on

the whole. Markov models12 are suitable to describe channel kinetics. The base

assumption is that conformational changes of the protein, leading to different

conductive states, are influenced only by its present configuration (and not from

the past hystory).

The simplest possible kinetic scheme to describe a channel that does not

inactivate is given by:

C
α(V ) // O
β(V )
oo (4.23)

This scheme is equal to the one used for gating particles, with the difference that

here C and O are the closed and open state of the whole channel and not of single

subunits.

To include inactivation one more state is required (I), thus obtaining the

following minimal model:

C
r1(V ) //

r5(V )

��

O
r2(V )

oo

r3��

I

r4(V )

^^

(4.24)

Opening from the inactive state is not possible, and inactivation from the open

state is ruled according to a constant rate r3. Other rates are voltage dependent.

Although other schemes are possible adding or deleting some of the connections

12See Kinetic schemes for an introduction on Markov models.
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between the states, this one is the closest to physiological facts.

4.3.3 Choice of the function for the voltage dependency

of the rate constants

In Hodgkin and Huxley’s work, the voltage dependence of the rate constants were

fit to voltage-clamp measurements using empirical functions of the membrane

potential. This approach was used in many other works to characterized also

other type of currents (Yamada et al. [1989], Reuveni et al. [1993], Traub & Miles

[1991]). We report the most commonly used for the sake of clarity:

f(V ) =
A(V − VH)

1 + exp[−(V − VH)/k]
,linoid (4.25)

f(V ) =
A

1 + exp[−(V − VH)/k]
,sigmoid (4.26)

f(V ) = A exp[−(V − VH)/k] ,exponential (4.27)

This approach is a good solution because it leads to good fits of experimental data,

but it is not compatible with the requirement for a model to be mathematically

cheap (criteria 3 and 4).

Alternatively, the exact functional form of the voltage-dependence of the

rate constants could be deduced from thermodynamics (Destexhe & Huguenard

[2000]). This approach has two advantages: first of all, it is physically meaningul,

and, second, but maybe even more important, it allows to describe all the rate

constants using the same functional form, as we will see next.

Thermodynamic models

Generally, it is assumed that the transition between two states of the channel

corresponds to a conformational change of the ion channel protein. Given a

transition between two states S1 and S2, with a voltage-dependent rate constant

r(V ):

S1
r(V ) // S2 (4.28)
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the rate of the transition depends exponentially on the free energy barrier between

the two states (Eyring [1935]):

r(V ) = r0 exp [−∆G(V )/RT ] (4.29)

where r0 is a constant, R and T are the universal gas constant and the absolute

temperature, while ∆G(V ) is the free energy barrier, which can be written

∆G(V ) = G∗(V )−G0(V ) (4.30)

where G∗(V ) is the energy of an intermediate state and G0(V ) is the free energy

of the initial one.

Figure 4.5: Free energy function. From Destexhe & Huguenard [2000].

The relative values of the free energy of the initial and final states (G1 and

G2) determine the equilibrium distribution between these states, while the kinetic

of the transition depends on the size of the barriers. How the transition rates

between these conformational states depend on membrane potential is given by

the voltage-dependence of the free energy barrier, which is in general very difficult

to evaluate. In the following some assumptions are made in order to manage the
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problem.

Linear thermodynamic model:

the simplest relation linking the free energy of a state i with the membrane

potential is linear:

Gi(V ) = Ai +BiV (4.31)

where Ai corresponds to the free energy that is independent of the electrical field,

and the linear term BiV to the effect of the electrical field on isolated charges

and rigid dipoles. Thus, we can express the energy barrier with respect to any

given state as:

∆G(V ) = (A∗ − A) + (B∗ −B)V (4.32)

and then, letting a = A∗−A and b = B∗−B, we obtain the following expression

for the rate constant α and β of the generic transition between states S1 and S2:

α(V ) = α0e
−(a1+b1V )/RT (4.33)

β(V ) = β0e
−(a2+b2V )/RT (4.34)

With the assumption that the conformational change consists in the movement

of a freely moving gating particle of charge q (Hodgkin & Huxley [1952]), the

forward and backward time constant can be rewritten (Borg-Graham [1991]):

α(V ) = Ae−γqF (V−VH)/RT (4.35)

β(V ) = Ae(1−γ)qF (V−VH)/RT (4.36)

where γ ∈ (0 . . . 1) is the relative position of the energy barrier in the membrane,

VH is the half-activation voltage and A is a constant; R, F and T are the usual

physical quantities.

The drawback of models in which the rate functions are simple exponentials of

voltage is that these functions can reach unrealistically high values, which leads

to very small time constants and possibly aberrant behavior. Different solutions

are possible to avoid this problem:

1. the number of states of the kinetic diagram is increased, and some tran-
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sitions are made voltage independent. E.g. scheme (4.17) should become:

C0

α(V ) // C2
β(V )
oo

k1 // O
k2
oo (4.37)

so, when the time constant of the first transition assumes very high values,

the evolution of the system towards the open state is rate limited by k1 and

k2. This solution has several drawbacks: different transition are modeled in

different ways, and the model becomes more expensive in terms of memory,

which is in contrast with our purpose of minimizing memory occupancy.

2. impose a minimum value to the time constants: smart solution, but we

found that it complicates the implementation of the model.

3. force an artificial saturation of the rate functions (Hartshorne et al. [1986]):

α(V ) =
a1

1− exp[−(V − VH)/b]
(4.38)

β(V ) =
a2

1− exp[(V − VH)/b]
(4.39)

where a1 and a2 are the limit values, b is the voltage sensitivity and VH

the half-activation potential. These parameters are the same for both the

rate constants. This solution is as cheap as the linear model, in terms of

required parameters, needing only four parameters for each state transition.

Non-linear thermodinamic model

An exhaustive characterization of the free energy function of a conformational

state of a channel is impossible, since many different factors contribute to its

final value (e.g mechanical constraints, the position of charged amino-acids, etc.).

Nevertheless, without any assumption about the actual molecular structure of the

channel, the free energy function of the generic conformation i can be expressed
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as a Taylor series expansion:

Gi(V ) =
+∞∑
j=0

A
(i)
j V

j

(4.40)

The first order approximation of this expression leads to the linear model of

equation (4.31). A
(i)
0 and A

(i)
1 assume respectively the same meaning of Ai and

Bi in the linear approximation of the free energy funciton. The higher-order

terms describe effects such as electronic polarization and pressure induced by V,

as well as mechanical constraints (see Figure 4.6). The energy barrier can then

be written as:

∆G(V ) =
+∞∑
j=0

A
(∗)
j V j −

+∞∑
j=0

A
(0)
j V j

=
+∞∑
j=0

(A
(∗)
j − A

(0)
j )V j =

+∞∑
j=0

ajV
j (4.41)

where aj = A
(∗)
j − A

(0)
j .

The application of this expression to the open-close scheme (4.17) leads to the

following expressions for the forward and backwward rate constants:

α(V ) = α0 exp
(
−
∑+∞

i=0 aiV
i/RT

)
(4.42)

β(V ) = β0 exp
(
−
∑+∞

i=0 biV
i/RT

)
(4.43)

It is worth noting that, in general, the parameters ai and bi are not necessar-

ily interrelated because they represent the energy barrier of two different states

(here the “closed” and the “open” ones), which, in principle, may have very dif-

ferent distributions of charges, resulting in different coefficients in eq. (4.40) and

therefore resulting in different values for ai and bi.

We can truncate the Taylor expansion (4.41) to have a polynomial approx-

imation of the energy barrier. For example, the truncation at the second term

gives the quadratic expansion, requiring six independent parameters, that can be
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written as:

α(V ) = A−[b1(V−VH)+c1(V−VH)2]/RT (4.44)

β(V ) = A[b2(V−VH)+c2(V−VH)2]/RT (4.45)

Similarly, we can write a cubic expansion, which requires eight independent pa-

rameters:

α(V ) = A−[b1(V−VH)+c1(V−VH)2+d1(V−VH)3]/RT (4.46)

β(V ) = A[b2(V−VH)+c2(V−VH)2+d2(V−VH)3]/RT (4.47)

Figure 4.6: Models of ion-channel gating based on the movement of an electric
charge inside the channel. A: A freely moving gating charge will result in a
free energy that depends linearly on voltage. B: Imposing constraints on the
movement of the gating charge will add nonlinear terms in the free energy. The
example shown here illustrates the case of a gating charge attached to a spring of
constant k, which will result in a quadratic voltage-dependence of the free energy.
From Destexhe & Huguenard [2000].
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Conclusions about rate constants

Thermodynamic models provide a solid theoretical framework to describe confor-

mational changes of the voltage-activated channel proteins. The use of nonlinear

models reduces the number of states needed, and provides better explanation of

experimental data Destexhe & Huguenard [2000].

Rate constants are limited for mechanical reasons, indeed a protein cannot

change its conformation arbitrarily fast. This effect can be obtained using non

linear thermodinamics models (4.44, 4.45) or (4.46, 4.47) or functions that satu-

rates at extreme voltages (4.38). To state which is the best solution, we need to

compare both the models according to their ability to explain experimental data.

We will make this analysis as soon as they will be available.

4.4 Multi-compartmental models

The value of the membrane potential along a passive, infinitely long and uniform

cylindrical dendrite of diameter d, with axial resistivity ρ, membrane specific

resistance and capacity Rm and Cm respectively, is conveniently described by the

following equation:

τ
∂V

∂t
= λ2∂

2V

∂x2
+ (EL − V ) (4.48)

where τ =
√
RmCm is the membrane time constant, λ =

√
rm/ra the length

constant and EL is the leakage potential. rm and ra are respectively the specific

membrane and axial resistance per unit length of the cable, and are defined as

rm =
Rm

πd
, ra = 4

ρ

πd2
(4.49)

Similarly we define the capacity per unit length as

cm = πdCmlabeleq : perunitlengthc (4.50)

Equation (4.48) gives also an analytical solution for the voltage along a finite

cable if suitable boundary conditions are imposed.

Although it has been proved that a branched dendrite can be assimilated to a
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finite cable if some constraints on the diameters of the various segments are met

(Rall [1962]), obtaining an analytical solution from (4.48) for a more generic and

realistic dendritic structure is far too complex, and therefore the problem must

be solved numerically. In order to solve for the membrane potential, the dendritic

tree must be divided into small cylindric compartments with an approximately

uniform membrane potential and uniform electrical properties. Adjacent com-

partments are coupled by the longitudinal resistance that is determined by their

geometrical properties (see Figure 4.7).

Figure 4.7: Electric equivalent model of a compartmentalized dendritic tree. In
this high-level abstraction we do not represent explicitly other electrical properties
of the compartments, which are left as responsibility of the generic element Zi.
The axial resistance of each compartment is 2Rai = ra∆xi, where ∆xi is the
length of the ith compartment.

The simplest possible compartment is a passive cylinder of length ∆x, in which

the generic element consist of a parallel between a capacitor C = cm∆x and a

conductance Gm = ∆x/rm driven by the leakage potential EL. Synaptic currents,

when needed, are provided by a voltage-dependent current source. This passive

circuit can be easily adapted to represent also active compartments described

either with the conductance-based formalism or with the AdEx model: indeed it

is only required to add additional voltage-dependent current sources (consisting

on voltage-dependent conductances and a driving force in case of conductance

based models) in parallel with the capacitor and the passive leakage conductance.

On the other hand the Izhikevich model requires an ad hoc representation, the
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Figure 4.8: Representation of a passive cylindrical compartment.

mathematical model not including a linear voltage-dependent current, as the

leakage one is.

4.4.1 Mathematical model of a dendritic tree

The most natural way to represent a dendritic three is a graph, where the edges are

the compartments and the nodes the points where the compartments join. Each

compartment can be represented, without any loss of generality, as in Figure 4.9.

Figure 4.9: Representation of a generic compartment. Vd and Vu are the potentials
at the extremites of the compartment (d is for down, meaning “toward the root”,
and u is for up, in the sense of “toward the leaves” of the “dendritic tree”), Ga is
the axial conductance, reciprocal of the axial resistance Ra

For the Kirchhoff law of currents, we can say that the current through the

capacitor of the k-th compartment is equal to the sum of the currents leaving the
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central node, and hence, for the current-voltage relation of a capacitor, we can

write:

CkV̇k = Gk,a(Vni − Vk) +Gk,a(Vnj − Vk)− f(Vk) (4.51)

where f(Vk) is the total membrane current caused by the generic element Zx,

whereas the other two components on the right hand side of the equation represent

the current leaving towards other compartments.

The potentials Vni and Vnj of nodes i and j respectively are obtained as the

weighted average of the potentials of all the compartments incident on them.

That is, for a generic node `, the following:

Vn` =
∑

i∈=(n`)

(
Gi
kVi)

)
/
∑

i∈=(n`)

Ga
k (4.52)

where =(n`) is the set of edges incident on node `.

Including eq. (4.52) in eq. (4.51), we can describe a whole tree of n compart-

ments using a single matrix equation:

CV̇ = GdenV − f(V) (4.53)

where V ∈ Rn is a column vector containing all the membrane potential C ∈
Rn×n is a diagonal matrix where Cii is the capacity of the membrane of the i-

th compartment, Gden ∈ Rn×n is the square matrix containing the information

about the edge linking and f : Rn → Rn is a vector function implementing the

dynamics within each compartment such that fi(V) = fi(Vi). In particular this

general representation can describe:

• the single-compartment case, when n = 1 and obviously Gden = 0;

• a passive tree, if fi(V) = Gm(Vi − EL);

• any other model shown in this chapter, when the function f(·) is properly

implemented.
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4.5 Conclusions

We showed that both conductance-based and phenomenological models can be

used to simulate the activity of the cell membrane. In the following paragraph,

we will draw some conclusions.

Conductance-based Models

In conductance-based models each known ionic current is described explicitly.

According to Hodgkin-Huxley formalism, each ion channel is controlled by two

independent voltage-dependent “gating particles”, each one characterized by a

set of first order differential equations. If, on the other hand, simplified Markov

models are used, the whole channel is described by a small system of first order

differential equations.

Markov models, in combination with thermodynamic-based rate constants,

provide a valid alternative to Hodgkin-Huxley formalism, because all the channels

can be described using the same scheme (scheme (4.23) is obtained from (4.24)

simply forcing r3, r4 and r5 to zero), changing only the parameters of the rate

functions.

Nevertheless, the fact that each firing pattern requires different set of ionic

currents, limits the use of this type of models in parallel simulations, unless

particular strategies are used13. The situation is even more complicated if calcium

dynamics is included in the model, because handling electrochemical diffusion in

multi-compartmental models (an issue not treated here) is not a trivial task.

For all these reasons, we decided to use a phenomenological model to simulate

active properties of the cellular membranes, in this early version of our software.

We leave the implementation of conductance-based with a future work.

Phenomenological Models

Despite their simple formulation, some phenomenological models are capable to

reproduce (almost) all the electrical responses found in cortical neurons. In par-

13We do not analyze these strategies in the present work because we are still studying them
and we have not found a definitive solution yet.
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ticular, we have analyzed two variant of the IF neuron: the Izhikevich model and

the adaptative exponential integrate-and-fire model.

We chose to implement the AdEx model for the following reasons:

• its formulation is the same of a passive compartment in which an exponen-

tial function of the voltage is added. This means, essentially, that the same

algorithm can be used, with slight differences, to simulate both active and

passive compartments.

• the Izikevich model shows unrealistic nonlinearities in the subthreshold

regime and exhibits a too slow upswing of the action potential compared to

real neurons (Izhikevich [2008])

• the dimensionless formulation of the Izhikevich model makes it difficult to

be coupled with the parameters of a passive dendritic tree. It would be

required to rescale all the parameters describing the tree and the synaptic

input, or to rescale the model parameters itself to match the parameters of

the dendritic tree’s physiology. In both cases, extra work is needed to be

done, and the advantage of having a precharacterized space of parameters

is lost.

Dendrites (and compartments)

Equation (4.53) allows us to describe the dynamics of a whole neuron, considering

the cell body and the dendrites, with a set of first-order differential equations.

The structure of (4.53) allows to decouple the inter-compartment interactions

from the intra-compartment specific behavior.
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Chapter 5

Synapses

5.1 Introduction

As synapses are the most numerous entities within a neural network simulation,

our aim was to obtain a model as simple as possible, but capable to take into ac-

count all the main features of synaptic transmission. We approached the problem

using two different formalisms: the first one uses the framework of linear system

theory and handles the problem from a higher level of abstraction, while the sec-

ond one is closer to the detailed models mimicking the physiological phenomena

more accurately.

In this work, which is an early report on a complete simulation software

system, we neglected the plasticity caused by synaptic transmitter release for the

sake of simplicity of the network at the moment. In the future versions of the

model they will be included.

First of all we will analyze detailed models of synaptic conductances. Then we

will make some considerations about the transmitter release process, and finally

we will treat the above mentioned models.

5.2 Detailed models of synaptic currents

We simulated most important synaptic currents in the central nervous system

(i.e. AMPA/kainate, NMDA, GABAAand GABABmediated currents) with highly
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detailed models, indistinguishable from real recordings, in order to get data to be

fitted by our simplified models (because large data sets of experimental recordings

were not available in this case). Synaptic currents were generated according to

simulated voltage clamp experiments. In the following subsections simulation

techniques are illustrated.

5.2.1 Presynaptic mechanisms of transmitter release

Transmitter release involves different processes in the presynaptic side (Yamada

& Zucker [1992]). An exhaustive model requires several differential equations

to describe the phenomenon, but Destexe and coworkers (Destexhe et al. [1994])

realized that mechanisms underlying transmitter release are so fast that transmit-

ter’s concentration inside the synaptic cleft ([T ]) can be considered in equilibrium

with the presynaptic membrane potential (Vpre). They found that this stationary

relationship is well approximated by a sigmoid function when an ohmic relation

is used to simulate Ca2+ currents1:

[T ](Vpre) =
[T ]max

1 + exp[−(Vpre − Vp)/Kp]
(5.1)

where Tmax is the maximal concentration of transmitter in the synaptic cleft,

Kp = 5 mV gives the steepness and Vp = 2 mV sets the value at which the

function is half-activated.

Some hypothesis were made to obtain this relation: (a) upon invasion by an

action potential, Ca2+ enters the presynaptic terminal due to the presence of

HVA Ca2+ current; (b) Ca2+ activates a calcium-binding which promotes release

by binding to the synaptic vesicles; (c) an inexhaustible supply of vesicles are

available in the synaptic bouton, ready to release. While hypothesis (a) and

(b) make the model close to physiological reality, (c) sets a strong constraint on

what can be modeled: assuming that there are always vesicles ready to be used

implies that short-term presynaptic-phenomena-induced plasticity is completely

1This means that calcium reversal potential is considered to the Nernst potential from equa-
tion (2.1), and that current-voltage relation is linear. The complementary approach is to use the
Goldman-Hodgkin-Katz equation (2.2), which leads to a different function for the transmitter-
voltage relation.

53



neglected. However, this does not represent an immediate problem, as modeling

these phenomena is not in the purpouse of this work.

5.2.2 Markov models of postsynaptic currents

We required that our detailed model was able to capture three important aspects

of receptor gating kinetics:

• Activation/binding : at low concentrations of transmitter, the time course

of the rising phase of the synaptic current is rate limited by the amount of

transmitter present in the synaptic cleft. At higher concentrations, activa-

tion is controlled by the opening rate once the transmitter is bound to the

receptor. The more molecules of transmitter must bind to the receptor to

activate it, the more the activation will be delayed.

• Deactivation/unbinding : both desensitization and transmitter removal con-

tributes to the time course of the decaying phase. Deactivation rate is

limited either by the closing rate of the receptoror by the rate of unbinding

of transmitter from the receptor.

• Desensitization: we already mentioned that ligand-gated channels can enter

a desensitized state, similar to the inactivated state for voltage-gated ion

channels. Desensitization decreases the fraction of channel that open after

a repeated stimulation, inducing a form of short term synaptic depression.

AMPA/kainate receptors

AMPA/kainate receptors mediate the prototypical fast excitatory synaptic cur-

rents in the brain. Their raise time can be in the submillisecond range, while the

decay time constant is about 5 ms. It is believed that the decay time constant is

due mainly to transmitter remove from the synaptic cleft rather than to desensi-

tization of the receptor. It is worth noting that different types of neurons express

different types of AMPA receptors. For example inhibitory interneurons express

AMPA receptors that are about twice as fast in rise and decay times as those on

pyramidal neurons (Hestrin. [1993]).
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For the simulation of AMPA currents we used the Markov kinetic model as

described by Standey and collegues(Standley et al. [1993]):

C0

Rd1 //

Rb1
��

D1

Rd2 //
Rr1

oo D1
Rr2

oo

C1

Rb2 //

Ru1

OO

C2
Ru2

oo
Ro // O
Rc
oo

(5.2)

where the unblound closed form of the receptor C0 binds to one molecule of trans-

mitter T , leading to the singly-bound closed form C1 or to the singly-bound desen-

sitized state D1. By binding another molecule of T it can then move to states C2

or D2, respectively doubly-bound closed and desensitized forms. The receptor can

then open from the state C2, leading to the open form O. For the rate constants

are used the values as found in Destexhe et al. [1994]: Rb1 = 20 ms−1 mM−1,

Ru1 = 1.3 ms−1, Rb2 = 10 ms−1 mM−1, Ru2 = 2.6 ms−1, Ro = 0.9 ms−1, Rc =

0.5 ms−1, Rd1 = 10 ms−1 mM−1, Rr1 = 0.0002 ms−1, Rd2 = 0.002 ms−1 mM−1,

Rr2 = 0.0001 ms−1 mM−1.

The AMPA current is then given by:

IAMPA = ḡAMPA[O](V − EAMPA) (5.3)

where ḡAMPA = 1 nS (Destexhe et al. [1994]) is the maximal conductance, [O]

is the fraction of channels in the open state, V is the postsynaptic membrane

voltage and EAMPA = 0 mV is the reversal potential.

NMDA receptors

NMDA receptors mediate slow excitatory currents, with a rise time of about 20 ms

and decay time constant between 25 ms to 125 ms. The slow activation kinetic is

due to the requirement that two molecules of transmitter must bind to open the

channel, together with intrinsic slow opening rate of the bound form. The slow

decay is belived to be caused by slow unbinding of glutamate from the receptor.

NMDA receptors are blocked by physiological concentrations of Mg2+. This
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block is voltage dependent and allows NMDA receptors to conduct only at de-

polarized membrane potential. For NMDA receptor we used the following model

(Destexhe et al. [1998]):

C0

Rb[T ] // C1

Rb[T ] //
Ru[T ]
oo C2

Rd

��

Ru[T ]
oo

Ro // O
Rc
oo

D

Rr

OO

(5.4)

where the unbound form C0 binds to a molecule of T leading to the singly-bound

form C1. With the same rate constant Rb, the receptor move from C1 to C2 when

it bound one more molecule of transmitter. From C2 the receptor may enter a

desensitized state D or open, entering the state O. In (Destexhe et al. [1998])

the following values for the rate constants are provided: Rb = 5000 mM−1 s−1,

Ru = 12.9 s−1, Rd = 8.4 ms−1, Rr = 6.8 s−1, Ro = 46.5 s−1 and Rc = 73.8 s−1.

The NMDA current is described by the following equation:

INMDA = ḡNMDAB(V )[O](V − ENMDA) (5.5)

where all the parameters have the same meaning as for AMPA current. ḡNMDA =

1 nS, ENMDA = 0 mV. B(V ) is the voltage-dependent magnesium block. It has

been demonstrated that Mg2+ block is an extremely fast process compared to

other kinetics of the NMDA receptor, therefore it can be described by an in-

stantaneous function of the postsynaptic membrane potential (Jahr & Stevens

[1990]):

B(V ) =
1

1 + [Mg2+]out exp(−0.062V )/3.57
(5.6)

where [Mg2+]out is the external magnesium concentration (1 to 2 mM in physio-

logical conditions).
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GABAAreceptors

GABAAreceptors mediate most of the fast inhibitory synaptic currents in the

central nervous system. They have at least two binding sites for GABA and show

a weak desensitization. However, as with AMPA/kainate receptors, deactivation

following transmitter removal is the main determinant of the decay time.

The model we used was found in (Destexhe et al. [1998]) and is based on the

following state diagram:

C0

Rb1 [T ]
// C1

Ro1

��

Rb2 [T ]
//

Ru1 [T ]
oo C2

Ro2

��

Ru2 [T ]
oo

O1

Rc1

OO

O2

Rc2

OO

(5.7)

The transmitter (GABA) can bind to the unbounded closed form C0 leading to

the singly- and doubly-bounded forms, respectively C1 and C2. Both forms can

open and lead to the open forms O1 and O2 respectively. The autors of the paper

reported the following values for the rate constant: Rb1 = 20 000 mM−1 s−1, Ru1 =

4600 s−1, Rb2 = 10 000 mM−1 s−1, Ru2 = 9200 s−1, Ro1 = 3300 s−1, Rc1 = 9800 s−1,

Ro2 = 10 600 s−1 and Rc2 = 410 s−1.

The current is given by:

IGABAA = ḡGABAA([O1] + [O2])(V − ECl) (5.8)

where ḡGABAA = 0.5 nS is the maximal synaptic conductance, [O1] and [O2] is

the fraction of receptors in the open states and ECl = −70 mV is the reversal

potential of chloride, the ion GABAAreceptors are permeable to.

GABABreceptors

GABABreceptors are metabotropic receptors, whose response is mediated by K+

channels that are activated by intracellular concentration of G-proteins activated

when the transmitter binds to the receptor. They require high level of presynaptic
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activity to elicit a response. The process leading to the opening of potassium

channels can be describe by the following kinetic equations (Destexhe & Sejnowski

[1995]):

d[R]

dt
= K1[T ](1− [R]− [D])−K2[R] +K3[D] (5.9a)

d[D]

dt
= K4[R]−K3[D] (5.9b)

d[G]

dt
= K5[R]−K3[G] (5.9c)

IGABAB = ḡGABAB
[G]n

[G]n +Kd

(V − EK) (5.9d)

where [R] and [D] are respectively the fraction of activated and desensitized

receptor, [G] is the concentration (in µM) of activated G-protein, ḡGABAB = 1 nS is

the maximal conductance of K+ channels, EK = −90 mV is the reversal potential

of calcium and Kd is the dissociation constant of the binding of G on K+ channels.

Parameters have the following values: Kd = 100 µM4, K1 = 660 mM−1 s−1, K2 =

20 s−1, K3 = 5.3 s−1, K4 = 17 s−1, K5 = 0.83 mM s−1, K6 = 7.9 s−1 and n = 4 is

the number of binding sites for G-proteins on the potassium channel.

5.2.3 Generation of the dataset

We generated current traces for each type of receptor, simulating voltage-clamp

experiments where postsynaptic potential was hold at Vclamp = −60 mV using

the formalism introduced in this section. Presynaptic voltage was simulated by

an Hodgkin-Huxley model with Na+ and K+ conductances for the generation

of action potentials. We provide two different types of stimulation: in the first

experimental protocol a single spike was elicited by the injection of a brief current

pulse lasting 5 ms.

5.3 Transmitter release process

Synaptic conductances depend on the concentration of transmitter inside the

synaptic cleft, as the gating process of the postsynaptic receptors is ligand-
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dependent. Then it is crucial to find a model for this process. In the previous

section we showed how it can be considered as an instantaneous function of the

presynaptic potential (eq. (5.1)). This relation can be further simplified assuming

that transmitter concentration immediately saturates at its maximum value at

the onset of an action potential, and that it is immediately removed from the

synaptic cleft when the spike ends. The transmitter-potential relation therefore

assumes a pulse-like fashion:

[T ](t) =

[T ]max, if Vpre(t) ≥ Vth

0, otherwise
(5.10)

where Vth is the threshold for transmitter release.

The implicit assumption underlying the previous equation is that the presy-

naptic voltage is generated by mean of a physiologically plausible model. As a

matter of fact things are different if a phenomenological model is used to simulate

presynaptic membrane potential: because of the hard reset on spike detection,

the duration of an action potential might be considerably different depending on

the time step of the simulation. Let’s assume that the rising phase of the ac-

tion potential is so rapid that the elapsed time since the crossing of Vth and the

reaching of the peak value can be neglected. Let the integration time step be ∆t:

between the peak value of the presynaptic potential and its reset, we have that

the potential is above the threshold for transmitter release for an equivalent sim-

ulated time of trel = ∆t (Vpeak − Vth)/(Vpeak − Vreset). If we consider a simulation

run with ∆t = 1 ms and another with ∆t = 0.01 ms, we have that in the first case

the transmitter is released for a period hundred times longer than in the second

one. We underline that the same problem, even if with minor impact, is found

also in detailed model for the simulation of the membrane potential, as different

parameters for the same ion channel may lead to slightly different time courses

of the action potential waveform, that means maybe slightly different durations.

This problem can be avoided if we impose that transmitter release must occur
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for a given predefined time after a spike is detected, that is:

[T ](t) =

[T ]max, if t− tS < tr

0, otherwise
(5.11)

where tS is the time of the onset of the last spike and tr is the duration of the

releasing process, dependent on the particular type of presynaptic neuron.

In next sections, when required, we will simulate transmitter concentration

using (5.11), in order to prove if a synaptic model is good independently from

the method used to simulate the presynaptic potential. Of course, since (5.11) is

a strong approximation of reality, we are aware that we might not obtain perfect

fits. However we are not interested that the prediction of a model will perfectly

overlap with the experimental data, but rather that it can reproduce the essential

features of the particular synaptic current of interest.

5.4 Synapses as Linear Time Invariant Systems

Analyzing the problem from a very abstract point of view we can say that what

happens in synapses is that a transient current, due to a change of the synap-

tic conductance, appears at the postsynaptic side when an action potential in-

vades the synaptic bouton. We can treat synapses as a “black box” that convert

presynaptic activity into postsynaptic conductances. We decided to use a linear

time-invariant (LTI) system to model these phenomena because they are quite

flexible, easy to analyze and computationally efficient.

5.4.1 Definition of the input of the system

We followed a top-down approach to model our system: we made very strong

abstractions and then went into detail.

Our first hypothesis was to consider the input of the system to be presynaptic

spikes, completely neglecting transmitter release dynamics. We justify this de-

cision because spikes are intrinsically impulsive phenomena. Spikes are modeled

as Dirac’s delta function, hence the change of the synaptic conductance after a
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Figure 5.1: Schematic representation of the synaptic I/O system. Action po-
tentials of the presynaptic neuron are modeled as Dirac’s delta function (green
arrow). The output of the system is the time course of the synaptic conductance
(red curve).

spike is the impulse response of the system itself. The input of the system u(t) is

provided by a spike detection algorithm, a simple function that returns a impulse

whenever the presynaptic potential crosses a given threshold with positive slope:

u(t) =
∑
i

δ(t− tSi) (5.12)

where tSi is the time of i-th spike that satisfies:

f(tSi) =

Vpre(tSi) = Vth

V ′pre(tSi) > 0

In the actual implementation this function compares the value of the presynaptic

potential at a given time step and the previous one with the threshold, detecting

an action potential at the step t2 if and only if Vpre(t) ≥ Vth and Vpre(t−1) < Vth.

In our second approach the input of our system was a signal mimicking the

concentration of transmitter in the synaptic cleft after an action potential. We

slightly modified equation (5.11) to represent an dimensionless normalized signal:

u(t) =

1, if t− tS < tr

0, otherwise
(5.13)

2Here t represent a simulation time step, hence it is not a continuous variable, but it assumes
discrete integer values.
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5.4.2 Choice of the impulsive response function

The input/output relation of a LTI system can always be represented by a linear

ordinary differential equation with constant coefficients:

n∑
i=0

aiy
(i)(t) =

m∑
j=0

bjx
(j)(t) (5.14)

where y(i)(t) and x(j)(t) are respectively the i-th and j-th derivatives of the output

y(t) and of the input x(t) (y(0)(t) = y(t) and x(0)(t) = x(t)).

Due to memory occupancy reason, we restricted our analysis to second order

systems (n = 2) with dependency only on the present state of the input (m = 0),

which require two state variables to be simulated plus six parameters to store the

coefficients of the system. Equation (5.14) becomes:

a2y
′′(t) + a1y

′(t) + a0y(t) = b0x(t) (5.15)

The impulse response (h(t)) of such a system depends on the roots λ1 and λ2 of

the polynomial a2λ
2 + a1λ+ a0 = 0. In particular, they can be:

real and distinct, leading to h(t) = A1 e
λ1t + A2 e

λ2t (5.16a)

real and coincident, leading to h(t) = A t eλt (5.16b)

complex conjugates, leading to h(t) = A1 e
(σ+iω)t + A2 e

(σ+iω)t (5.16c)

Due to the causality of the system, all h(t) = 0 when t < 0. In our particular case

oscillating solutions are of no interest, thus we made use only of the functions

(5.16a) and (5.16b). They were modified in order to be more physiologically

meaningful and, with reference to eq. (5.16a), to respect some constraints imposed

by the particular problem, that is:

1. h(0) = 0, that implies A1 = −A2, thus h(t) = A
(
eλ1t − eλ2t

)
.

2. h(t) must be positive for t > 0, because negative conductances are physically

meaningless; this fact requires λ1 < λ2.
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Finally, we obtained:

h1(t) = gmax
t

τ
e1−t/τ (5.17a)

h2(t) = gmax
(
e−t/τ1 − e−t/τ2

)
, τ1 > τ2 (5.17b)

5.4.3 Identification of the model

We fitted the artificially generated data with the linear model. We tested both

the delta impulsive input (5.12) and the square-pulse release (5.13).

Delta-pulse input

We first tested our simplest hypotesis, i.e. we condidered synaptic input as de-

scribed in equation (5.12). In this case the output of the system is the impulse

response itself, thus we fitted the currents obtained as describe in section 5.2.3

with the following function:

Isyn(t) = g(t) (Vclamp − Esyn)

where g(t) is one of (5.17b) and (5.17a), Vclamp = −60 mV and Esyn is the

reversal potential of each receptor. The fitting procedure was performed using a

non linear least squares algorithm. The estimates of the parameters are shown in

tables 5.1 and 5.2. It is noticeable how the bi-exponential model is the best for all

the receptors according to the weighted residual sum of squares of the estimates.

A comparison between the currents predicted by simple model and the ones

obtained with the detailed model is shown in Figure 5.2. Our opinion is that bi-

exponential models, even with some discrepancies, well reproduce the time course

of synaptic currents for ionotropic receptors (i.e. AMPA, NMDA and GABAA),

while they cannot mimic the slow activation phase of the GABABmediated cur-

rent.

Square-pulse release

We then tested the model with the second type of input (see eq. (5.13)) assuming

that tr = 1.5 ms. This is still a simple function, and the output of the system can
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Figure 5.2: Best fits of the mono (red traces) and bi-exponential(blue traces)
models to the current traces generated with the detailed models (black traces),
when the input of the system consists on a Dirac’s delta pulse.

be analytically evaluated once the duration of the pulse (tr) is known3. Solving

the integral, we obtain:

g1(t) =


0, t < 0

ḡ [T ]max e
[
τ
(

1− e− t
τ

)
− t e− t

τ

]
, 0 ≤ t < tr

ḡ [T ]max e
[
(t− tr + τ)

(
1− e− t−trτ

)
− (t+ τ)e−

t
τ

]
, t ≥ tr

(5.18)

for the convolution with h1(t), and

g2(t) =


0, t < 0

ḡ [T ]max

[
τ1

(
1− e−

t
τ1

)
− τ2

(
1− e−

t
τ2

)]
, 0 ≤ t < tr

ḡ [T ]max

[
τ1

(
e
tr
τ1 − 1

)
e
− t
τ1 − τ1

(
e
tr
τ1 − 1

)
e
− t
τ1

]
, t ≥ tr

(5.19)

3From our data we could estimate that tr ≈ 1.75 ms.
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the output when the impulse response is h2(t).

The estimates are reported in Table 5.3 and Table 5.4, and their fits in Fig-

ure 5.3. Once again bi-exponential functions fit better to the data, but the model

is still not capable to mimic the slow onset of the GABAB-mediated current.

Figure 5.3: Best fits of the mono (red traces) and bi-exponential(green traces)
models to the current traces generated with the detailed models (black traces)
when the input of the system is a short-lasting pulse of duration tr.

Final considerations on LTI systems

Comparing the weighted residual sum of squares of the best-fitting impulse re-

sponse (i.e. the bi-exponential function) returned by the fitting procedure, when

input (5.12) and (5.13) are applied, we noticed that the output of the system

fits better to the data when it is fed with input (5.13), except the case of the

GABAAreceptor. The predicted current does not mimic the fast rising phase of

the GABAA-mediated current, even if it fits better during the decaying phase.

This is surely a limit of our model, but we cannot say that it completely failed

for the simulation of GABAA-mediated currents. Many subtypes of the same
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Receptor ḡmax (nS) τ1 (ms) τ2 (ms) WRSS
AMPA 3.530 1.905 1.540 30296

GABAA 0.983 5.271 0.510 19847
NMDA 0.309 146.214 5.431 724875
GABAB 0.187 194.188 69.261 85089

Table 5.1: Estimates of the parameters for the bi-exponential model: ḡmax, max-
imal conductance; τ1,2 time constants; WRSS, weighted residual sum of squares.

Receptor ḡmax (nS) τ (ms) WRSS
AMPA 0.276 1.725 30306

GABAA 0.675 2.160 35092
NMDA 0.262 43.999 5426623
GABAB 0.068 119.192 91439

Table 5.2: Estimates of the parameters for the mono-exponential model: ḡmax,
maximal conductance; τ time constant; WRSS, weighted residual sum of squares.

Receptor ḡmax (nS) τ1 (ms) τ2 (ms) WRSS
AMPA 0.262 2.943 0.005 25141

GABAA 0.551 4.670 0.017 33438
NMDA 0.175 146.674 4.640 699288
GABAB 0.107 196.376 67.248 82018

Table 5.3: Estimates of the parameters for the bi-exponential model: ḡmax, max-
imal conductance; τ1,2 time constants; WRSS, weighted residual sum of squares.

Receptor ḡmax (nS) τ (ms) WRSS
AMPA 0.206 1.074 138533

GABAA 0.419 1.667 87818
NMDA 0.150 43.413 5708173
GABAB 0.039 118.401 89612

Table 5.4: Estimates of the parameters for the mono-exponential model: ḡmax,
maximal conductance; τ time constant; WRSS, weighted residual sum of squares.
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receptors exist, and we used only one detailed model that reproduce the current

generated by a specific subtype among many others. This means that currents

generated by other subtypes of GABAAreceptors may be better fitted by our

model.

An other important limitation of this model is that it does not reproduce

saturation of the synaptic conductance, nor desensitization of the receptors. As a

matter of fact a train of action potentials elicit an unrealistic unbounded increas-

ing response. This is an intrinsic behavior. Let’s assume to be in the simplest

condition, where a spike train is described by (5.12); the output of the system

is the convolution of its impulse response with the input signal. In this simpler

situation what happens is:

y(t) = h ∗ u(t) =

+∞∫
−∞

h(t− u)
∑
i

δ(u− i∆t) dt =
∑
i

h(t− i∆t)

It is obvious that if the interspike interval ∆t is small enough the i-th signal starts

before the transient of the (i − 1)-th has exausted, and the peak of the i − th

repetition would be greater than the peak value of the impulse response.

5.5 Kinetic models for synaptic conductances

In the previous section we realized a phenomenological mathematical model, with-

out considering the physiology underlying synaptic transmission. In this section

we will adopt a different approach: we are going to take into consideration phys-

ical mechanisms of the gating process, transmitter release and second messaging,

developing a model that is based on physiology. The process mainly consists in

the simplification of the models introduced in section 5.2.

In all this chapter we consider synaptic currents mediated by ion channel x

as generated by a variable conductance multiplied by a potential difference, as in

the following formalism:

Ix = ḡx s(V − Ex) (5.20)

where the variable conductance is obtained weighting the maximal value ḡx by
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the variable s, V is the postsynaptic membrane potential and Ex is the reversal

potential for the particular ion channel.

5.5.1 Model of transmitter release

Most of the models developed in this section are based on kinetic schemes4. In the

particular case of synaptic transmission, the gating process is ligand regulated:

this means that some of the rate constants (see equation (A.4)) may depend on

the transmitter concentration inside the synaptic cleft. For the simulation of

transmitter release we will use equation (5.11).

5.5.2 State diagrams for ligand gated channels

State diagrams represent conformational changes of a protein. The simplest di-

agram that can be written for a ligand gated channel involves only two states,

closed (C) and open (O), where the opening rate is ligand-concentration depen-

dent:

C
r1([L]) // O
r2

oo (5.21)

Sometimes the introduction of an additional desensitized state (D) is required

to take into account time dependency properties of the channel. Scheme (5.21)

in this case becomes:

C
r1([L]) //

r6([L])   

O
r2

oo

r3~~
D

r5

``
r4

>> (5.22)

Further simplified schemes can be derived by this one if one or more rate constant

are set to zero; in particular scheme (5.21) represent the case in which r3 = r4 =

r5 = r6 = 0. In the next paragraphs we will analyze only the second state

diagrams, because any consideration valid for it can obviously be applied also to

the simpler one.

As we implicitly mentioned talking about rate constants, we are in the con-

text of a large number of proteins, since we want to model macroscopic currents

4see Kinetic schemes for an introduction.
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produced by a synapse as a whole. In this condition C, O and D represent the

fraction of channels that, at any given time, are respectively in the closed, open

or desensitized state; hence it follows that

C +D +O = 1 (5.23)

Thus the number of differential equations in that represent the system5can be

reduced from three to two setting C = 1−O −D, leading to:

ẋ1 = −(r2 + r3)x1 + r4x2 + r1[L](1− x1 − x2) (5.24a)

ẋ1 = r3x1 − (r4 + r5)x2 + r6[L](1− x1 − x2) (5.24b)

that we rearrange to obtain the matrix form:(
ẋ1

ẋ2

)
=

[
a11 a12

a21 a22

](
x1

x2

)
+

(
b1

b6

)
(5.25)

where x1 represents the receptors in the open state and x2 the ones that are

desensitized and a11 = −(r1[L] + r2 + r3), a12 = −r1[L] + r4, a21 = r3 − r6[L],

a22 = −(r4 + r5 + r6[L]), b1 = r1[L] and b6 = r6[L].

This representation requires to store two floating point variables for each sim-

ulated synapse, plus six variables shared among all the synapses that express the

same receptor to store the rate constants from which to calculate the coefficients

of the equation. Thus memory occupancy requirements are respected. Moreover,

this model is also computationally efficient requiring 4 scalar multiplications and

2 scalar additions for the matrix-vector product, plus 8 scalar additions/subtrac-

tions and 2 multiplication to compute the coefficients, making a total of 10 scalar

multiplications and 10 scalar addition/subtraction for the computation of the

derivatives of the variables x1 and x2.

5see the master equation (A.4) in Kinetic schemes.
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Application of the model to AMPA, NMDA and GABAA-mediated

currents

Destexhe and colleagues (Destexhe et al. [1994]) found that the simple scheme (5.22),

or some of its subtypes in which some of the ri are set to zero, can reasonably

reproduce the time course of ionotropic-receptor mediated currents when a 1 mM

rectangular pulse of transmitter lasting 1 ms is applied.

For this types of currents the weighting variable s of equation (5.20) is the

fraction of open channels at a given time, that is x1 of equation (5.25).

GABABreceptor

Neuromodulators-mediated transmission, that is the case of GABAB, is based

on a complete different mechanism. On one hand there is the activation of the

receptors due to the binding with the neurotransmitter, that in turn activates G-

proteins. On the other, activated G-proteins interact with potassium ion channels

leading them to an open state. Different simplified models can be obtained de-

pending on different working hypothesis:

• the concentration of activated G-proteins ([G]) is assumed to be a rectan-

gular pulse of given duration, and the ionic channel is modeled according to

a kinetic scheme similarly to ionotropic receptors, but where rate constants

depend on [G] rather than on transmitter concentration (Destexhe et al.

[1994]).

• kinetic equations (5.9) are simplified eliminating one variable (Destexhe

et al. [1998], Destexhe [1998]). In particular, the desensitized state is drop,

and the equations become:

˙[R] = K1[T ](1− [R])−K2[R] (5.26a)

˙[G] = K3[R]−K4[G] (5.26b)
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The fraction of open ion channels represents the weighting variable s in (5.20),

that is calculated as

s =
[G]n

[G]n +Kd

(5.27)

Also equations eqs. (5.26a) and (5.26b) can be put in matrix form like (5.25).

Since the number of state variables is always two, the same considerations about

memory occupancy and performance we did for ionotropic receptors are valid for

this model too.

5.6 Conclusions

Being more flexible than LTI systems and without requiring much more com-

putational time, kinetic models are a good solution for the simulation of the

postsynaptic receptor dynamics.

Regarding the presynaptic side, we implemented transmitter release as a

square pulse of fixed duration and amplitude, although other more realistic solu-

tion exists. We took this decision in order to reduce, for the moment, the number

of free parameters of the model while keeping our software able to simulate a

functional network. In next versions of the software, the model will be expanded

and also presynaptic side-dependent plasticity phenomena will be included, as

well as long term plasticity.
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Figure 5.4: Best fits for different simple kinetic schemes (continuous traces) to av-
eraged postsynaptic current mediated by AMPA/kainate receptors (noisy traces)
based on a rectangular transmitter pulse as reported in text. Reported from Des-
texhe et al. [1994].
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Chapter 6

Design and implementation

6.1 Introduction

In this chapter we will describe how the models previously introduced transformed

into software1. First of all we will produce a domain model of the software, which

is an abstract representation of the various entities and their static relationships2.

We will make an extensive use of class diagrams for this purpose. Then, we will

explain implementation strategies.

6.2 Design phase

A neuronal network consists of several neurons interacting each other by mean

of synapses. In the general case, a neuron is made of more than one electrical

compartment. A synapse takes information from one neuron and propagate it

to another one (i.e. it interacts with a specific compartment of the postsynaptic

neuron).These concepts are illustrated in Figure 6.1. Synapses and Neuron/-

Compartments, can be analyzed separately, as they play two different roles in a

1For introduction on best practices on software design please refer to Gamma et al. [1995].
2We underline that we are presenting a conceptual view of the software, and that the actual

code is not a blind implementation of the abstractions explained here, since further optimiza-
tions could be language-dependent and therefore cannot be represented with the uml formalism.
In particular, not all the structures and concepts of object oriented languages are allowed in
CUDA code (for example virtual functions or abstract classes). The actual implementation
requires a lower level approach.
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Figure 6.1: Abstraction of a neuronal network.

network, that is comunication and information processing respectively.

6.2.1 Neurons and compartments

Dendritic tree

Recalling what we said in Chapter 4, section Multi-compartmental models, a com-

partment can be described essentially by mean of three passive electrical param-

eters and its membrane potential, because we assume that all the ion channels

(i.e. what confers active properties to the membrane) are limited to the soma.

We do not care about active properties of the membrane for the time being.

The dendritic tree is described by mean of a graph structure, where edges rep-

resent compartments and nodes the points where the compartments join. Nodes

have the responsibility of averaging the potentials of all the incident edges (see

equation (4.52)) and store this information in order to let edges/compartments

to calculate the current flowing from/to other compartments. This is done by

sharing information through a common buffer where nodes write and edges read.

A special case is represented by the cell body, which are both nodes and com-

partments at the same time (we will consider this aspect in the implementation

section). A positive feature of this approach is that no dedicated objects are
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Figure 6.2: Illustration of the logical relationships between node and edges and
their corresponding implementations in somata (CompSoma) and dendritic com-
partments (CompEdge). Other realizations of the Node interface, i.e. all the
nodes that are not somata, are not shown. The fields of the Edge interface are
indexes inside the shared buffer.
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required to manage whole neurons, because the particular dendritic structure of

any cell is implicitly defined by the runtime relationships between Edges and

Nodes. Moreover, this solution makes network creation easier, because object

relations and cross references are minimize. Nevertheless, there are also some

drawbacks: being the compartments not aware of their neighbors, there is no

concept of “locality”, and thus all the information exchange must occur through

the slow global memory.

Active compartments

For this first implementation, we hypothesized that dendrites are passive struc-

tures. All the active conductances are concentrated in the somatic compartment.

Each neuron, then, has one and only one active compartment, simulated using

the adaptative exponential integrate-and-fire model (equations (4.12, 4.13). This

is a temporary solution, as we are planning to extend active behavior also to the

dendritic tree.

6.2.2 Synapses

Synapses are junctions where communication between neurons takes place. We

distinguish between pre and postsynaptic sites, as they correspond to distinct

functional units (see Figure 6.3). The presence of transmitter inside the synaptic

cleft is represented by an information flow from PresynapticBouton and Postsy-

napticDensity. A concrete implementation may consists of a shared buffer where

presynaptic boutons write transmitter concentrations, which are read, in turn,

by postsynaptic densities (see Figure 6.5).

Presynaptic side

The process of transmitter releasing is synchronized with presynaptic spikes, or

shifted by a fixed amount of time if conduction delay is considered. We made the

assumption that all the boutons “separated” from the soma by the same amount

of time share the same time courses of the transmitter release, i.e. all the synapses

are equal from the presynaptic point of view, and the distinction is made only by

mean of a shift in time.
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Figure 6.3: Illustration of the two distinct functional units assembling a synapse.

This imply that single synapse dependent phenomena, like stochastic spon-

taneous release, are neglected, but nevertheless the number of distinct entities is

reduced from N (total efferent synapses) to Dmax∆T
−1 (number of time frames)

where Dmax is the maximum delay and ∆T is the time step of the simulation

(at least until Dmax∆T
−1 < N). Considering Dmax = 20 ms3 and ∆T = 0.01 ms

we obtain Dmax∆T
−1 = 2000, that is more or less than the estimetad average

number of synapses per neuron. This approach is also computationally efficient

and, for greater values of ∆t, memory cheaper than the representation of single

presynaptic boutons. As a matter of facts the updating cost of synaptic boutons

can be reduced from O(N) to O(1), if a circular buffer is used to store past history

of synaptic activity (see Figure 6.4).

In a circular buffer of size M , the index of the first element – corresponding

to the current time step – is any i0 such that 0 ≤ i0 < M . The index of a generic

frame k in the future, only i0 must be updated, according to the following rule:

i0 ← (i0 + 1)modM . In this way, no data have to be copied. A two dimensional

matrix where each row (or column) is a circular buffer is a cylindrical array. In

this case, the non circular row index represent, for example, neurons, while the

circular column index represents time.

From the presynaptic point of view, we do not represent a physical synapse,

3Considering a lower bound of 1 m s−1 for the conduction velocity of the signal, Dmax =
20 ms is equivalent to a covered distance of 2 cm, i.e. we can simulate a cortical area of 4 cm in
diameter. If we consider myelinated axons, where conduction velocity is even greater, the size
of the simulated network can be further increased.
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Figure 6.4: Basic structures to store past data. Left: a circular array. Right: a
cylindrical array, the generalization of the of a circular array to a two dimensional
matrix. Modified from Brette & Goodman [2011].

but rather the concentration of transmitter an hypothetical bouton would release

if it was at a certain distance from the soma. How the concentration is actually

calculated is of partial importance4, the only constraint this process has to satisfy

is to store the calculated value in the present frame of the buffer.

Postsynaptic side

We assume that each postsynaptic density contains two types of receptors, one

mediating a fast synaptic current, whereas the other a slower one5. Each receptor

complex is characterized by a conductance, a reversal potential for the current and

specific kinetics, approximated by a system of two coupled differential equations

both in the cases of ionotropic and metabotropic receptor (Chapter 5):ẋ = F ([T ])x+G[T ]

s = h(x)
(6.1)

4In the present version of the software transmitter release is implemented as a brief rectan-
gular pulse, and all short-term plasticity phenomena are neglected (see Chapter 5, Transmitter
release process). However, what we explained in this section holds true even if other solutions
are considered.

5e.g. AMPA & NMDA for the excitatory synapses, GABAA& GABABfor the inhibitory
ones. These are all the receptors we included up to now in our simulation
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where x ∈ R2×1 is the state vector, F ([T ]) ∈ R2×2 and G ∈ R2×1 are matrices

that relate the evolution of the state with its present value and the concentration

of transmitter [T ], and h : R2 → R is a function that returns the activation of

the channel given its present state.

Only two state variables and six additional parameters are needed to describe

the evolution of the whole system. However, we assume that any neuron expresses

only one receptor of the many available subtypes for each class, and therefore

kinetic parameters can be stored only once per neuron. For the same reason,

specific conductances and reversal potentials are stored per neuron as well. In

this way, only the state must be stored for each synapse, leading to a considerable

saving of memory6.

The output of a receptor is not a current, but, rather, its conductance. Con-

sider, for example, the total synaptic current mediated by GABAAreceptor in a

given compartment:

IGABAA =
∑

j∈GABAA

ij =
∑

j∈GABAA

[gj(V − EGABAA)] (6.2)

Regardless how each conductance gj is computed, both V and EGABAA are con-

stant inside the compartment, then the above expression becomes:

IGABAA = (V − EGABAA)
∑

j∈GABAA

gj (6.3)

i.e. we can perform a cumulative sum of the conductance from the various

synapses, and then calculate the current by multiplying the previous result with

the appropriate electric potential. Letting NS be the total number of synapses

afferent to a generic compartment and NR the number of different types of recep-

tors, we reduce the number of scalar multiplication form NS (that can be large)

to NR (that is 4 in our case).

6In this first version of the software that means only four (see note on page 78) sets of kinetic
and electrical parameters stored per each neuron, resulting in great memory saving.
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Figure 6.5: Summary diagram for synapses modeling. Each relationship is shown
with its own cardinality, for details, see text.

6.2.3 Summary

A summary of what we said about synapses is represented in the diagram shown

in Figure 6.5. Boutons are linked to neurons by a many-to-one association, that

means their responsibilities can be transferred to neurons, taking care that enough

space is reserved for each neuron in order to store all the past time values of the

concentration of released transmitter. We could apply a similar concept to com-

partments and synaptic densities as well, since few sets of kinetic and electrical

parameters are shared among the synapses targeting a specific compartment. How

the interaction between densities and compartments is implemented depends on

the data structure used to represent compartments: with the present design, each

compartment store a list of all its afferent synapses.

In this case no pecific object exists to manage neurons as a whole, hence

the input for presynaptic boutons is represented by the somatic compartment

of the various neurons. Kinetic parameters, shared by the all compartments of

the same neuron, can be stored in a look-up table. Each compartment stores an
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index referencing the correct entry it needs for its synapses.

6.3 Implementation

Our software, like any CUDA program, is essentially divided in two parts:

• host code: this code runs on CPU and is responsible to load data, free mem-

ory after usage and coordinate the simulation flow and the main program

logic.

• device code: this code is executed by the GPU and it is the core of the

program, because it implements the models used for the simulation.

The software has been developed using C++ language for host code and C/C++

with CUDA extensions for device code.

6.3.1 Data model

So far we have used high level concepts typical of object oriented programming to

explain the design and the program logic, but in CUDA only a restricted subset of

C++ features is available. Complex structures like classes must be decomposed

in their basic components (i.e. primitive types), all the variables must be stored

in big arrays and references must be handled explicitly. The main difficulties

concerned the efficient implementation of multicompartmental models, which we

are explaining next.

Representation of the dendritic tree

The implementation of the diagram shown in Figure 6.2 is not straightforward,

because there are some abstraction relationships. We solved the problem in the

following way (illustration in Figure 6.6): edges keep track of their adjacent nodes

by mean of an adjacency list (implemented as an array of pair of references),

nodes do the same for their incident edges; all the information about electric

potentials is stored in one big array; no matter if it is from somas, nodes or

dendritic compartments, each type of entity has a reserved space in this array.
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Every entity is identified by an index; to access the right memory location in the

array of the voltages, this index is offset by an appropriate value. In this way

Figure 6.6: Data structures used to represent dedritic trees in memory. The upper
rectangle represents the vector of the electric potentials. Each section corresponds
to the potentials of a different type of entity. The light blue rectangle is the edges’
adjacency list. The light orange one is the nodes’ incidence list.

we solved the problem due to the polymorphic behavior of the entities of type

CompSoma and CompEdge.

6.3.2 Memory Analysis

Let N be the number of simulated neurons, M the number of synapses per neuron,

k the number of edges per neurons, D the number of delays. The total number

of edges is NE = kN , the total number of nodes, in the worst case,is NN =

(k − 1)N (the worst case is represented by a cable, where the number of nodes

is exactly k − 1). We used 32 bit floating point representation for real numbers

and large integers (1 word). We will perform an upper bound analysis, assuming

that all nodes have the same degree equal to a. Table 6.1 reports the memory

requirements for every type of entity. Based on the expression of Table 6.1, the

total amout of memory required by differeny configurations is shown if Figure 6.7.
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Component Description
Memory requirements
(in words)

Soma dynamics (V , w), incident edges,
current, type, transmitter

(5 + a)N +DN

Edge potential, adjacent nodes, type 4kN

Node potential, incident edges (1 + a)(k − 1)N

Synapse fast and slow dynamics, source,
target

6MN

Table 6.1: Memory requirements

Figure 6.7: Memory requirements for different configurations of the network.
Parameters have the following values: a = 4, k = 16, D = 1 (no delays, spike
propagation is immediate). Each series correspond to a different configuration:
the number of neurons is indicated in the name of the series, while the number
of synapses is M = 100, 200, 400, . . . , 2000.
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6.3.3 Execution flow

The simulation flow on GPU is shown in Figure 6.8. Each activity represents,

more or less, a kernel (a function run on GPU):

• Initialize Network : performs the initialization of the whole network, setting

all dynamic variables to their initial values. After the initialization, the

simulation enters the main loop.

• Update Nodes : nodes are grouped accordingly to the number of incident

edges. All the nodes having the same degree are processed simultaneously,

by the kernel Compute Node Potential. The potential of each node is calcu-

lated according with equation (4.52). For somas, which are nodes with an

electric capacity, the total outgoing current is instead computed and stored

for later use.

• Update Edges : passive compartments are processed in this kernel. It con-

sists of three sub procedures:

1. the receptors of all the afferent synapses are updated (Updaqte Synaptic

Conductances); the conductances of the synapses sharing the same

dynamics are summed together.

2. once the have been updated and the total conductance for each re-

ceptor is available, synaptic current are calculated (Compute Synaptic

Currents);

3. the total outgoing current is calculated (summing the contributes from

synapses and from other compartments with the leakage current) and

the potential is updated according with the current-voltage relation of

a capacitor (see eq. (4.51))

• Update Somas : the update phase of the somata is subdivided in the same

way as the one of the edges.

• Update Transmitter Release: this function updates the concentrations of

the transmitter released by the various neurons.
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Figure 6.8: Top: flowchart of the simulation using GPU showing various kernels.
Each activity roughly correspond to a GPU kernel. Bottom: detailed represen-
tation of the activities show in the main flow chart.
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6.3.4 Results

We simulated a small-world network (Figure 6.9) of compartmentalized neurons.

We chose this topology because the creation of a network with this connection

pattern is particularly easy. Each neuron projectes and recives 288 synapses. The

number of synapses is a parameter used to create the network. Each neuron had

extensively branched and widespread dendrites, for a total of 224 compartments.

This chose a very high value because we wanted to test our program in the case

of a very high number of compartments.

Figure 6.9: Illustration of the small-world topology used in our simulation. Green
circles represent excitatory neurons, blue circles inhibitory neurons. Each neuron
makes a fixed number of connections (288) with other neurons falling within a
given distance: for example, the highlighted excitatory neuron (yellow circle)
projects and receives connections to and from the neurons inside the red shaded
region.

We created different networks with an increasing number of neurons (detatils

in Table 6.2). The simulation was run on a Nvidia Fermi S2050 graphic card

(448 core, GPU 1.15 GHz, RAM 2687 MB), an on a personal computer (CPU:

Intel R©i5 -3470 3.20 GHz (single core), RAM 8 GB DDR3). Performances of both

the solutions are shown in Figure 6.10. It is clearly noticeable how performances

are incredibly sped up exploiting the parallel architecture of a graphic processor.
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(a) Comparison of the performances of a classical CPU implementation and of the
parallel GPU implementation to simulate one time frame of the same network. Data
are in milliseconds.

(b) Speedup of performances exploiting the to the hardware acceleration capabilities of
the GPU.

Figure 6.10
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# Somas # Edges # Nodes # Synapses
65 14560 1625 18720
260 58240 6500 74880
1040 232960 26000 299520
4160 931840 104000 1198080
16640 3727360 416000 4792320
66560 14909440 1664000 19169280

Table 6.2: Different network configurations tested. The number of every type of
entity is reported.

88



Chapter 7

Conclusions

We realized a flexible neuronal network simulation software, that closely mim-

ics physiology, though maintaining good performances. In particular, also the

different morphological aspects of various types of neurons can be cosidered.

It is, however, only the first step towards the realization of a more complete

tools for the simulation of large-scale physiologic networks of spiking neurons.

In the following pages, we will briefly comment our results, and have a look on

future directions of this work.

Critical analysis

The scheme of Figure 6.8 corresponds to a forward Euler integration method,

which is stable and precise only if very small time steps are used. More sophisti-

cated integration techniques (which could allow to increase the time step, while

maintaining if not increasing the same level of precision) would require to loop

several times over the main cycle before advancing to the next time step of sim-

ulation. We wondered if it was possible to improve on the simulation with these

more sophisticated tools adapting the updating and the looping logic, but keep-

ing the same unchanged design. The answer was negative, and we are going to

explain the reasons next.

The present software, as we said when we talk about the design, lacks the

concept of “locality”, because there are no “objects” that explicitly define and

manage the behavior of high level entities (i.e. neurons). Rather, they (neurons)

are implicitly defined by the interactions between the various lowest level build-
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ing blocks (compartments and synapses), which are unaware of higher levels of

abstractions. For this reason, all the intermediate steps, needed if more complex

integration strategies are used, must be temporarily stored in global memory1,

with the following consequences:

1. since, in principle, additional data are required for each entity of the sim-

ulation, considerably much more memory should be used, the size of the

network (number of neurons, compartments and synapses) being the same.

It follows that, being the same the total amount of memory available on

the graphic card, we are forced to simulate smaller networks.

2. a greater number of slow global memory access is required, probably reduc-

ing the overall performances of the simulator.

3. due to the large size of additional data to handle, there are important

management issue to solve.

For all these reasons, we decided that changing the integration scheme was not

worthwhile.

These considerations made us understand that further improvements are pos-

sible only changing the design, including higher level concepts, in order to orga-

nize data in such a way that the intermediate steps required by other integration

schemes could be executed all together (meaning not simultaneously, but within

a single function call, in order to exploit shared memory). We have been aware

of this possibility from the design phase, but, if we had improved the design to

optimize performances, we should also have thought how to instantiate a net-

work according to the new data structures. As a matter of fact, the automatic

creation of large-scale networks, problem not treated in this thesis, is not a triv-

ial task, even in the case of the relatively simple data layout we adopted. For

this reason, we preferred to realize a simpler but ready to use application, being

completely aware of its possible limits, in order to proof the feasibility of our

first idea (speeding up simulations using GPUs). Nevertheless, we are planning

to improve considerably this software during a future expressly reserved project.

1It is not possible to exploit the faster shared memory, because compartments processed in
the same block of threads are not guaranteed to belong to the same neuron.
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Indeed we are already studying new algorithms and implementation strategies for

this purpose. We are confident that a stable version will be available soon.

Future perspectives

We are evaluating to include also conductance-based models in future versions of

this tools. As a matter of fact, being each ionic current explicitly described, these

models allow to study the effect of pharmacological manipulations (i.e. blocking

some ion channel) may have on networks’ behavior. In the end of Chapter 4, we

explained the main limitations about the use of this models in parallel simulations,

the simulation of calcium dynamics being the most important. Recently, we found

a work of 2008 (Pospischil et al. [2008]) where it has been shown that the most

important firing patterns can be reproduced using only a limited subset of the

known ionic current (INa,t, IK , IM , IT and IL) and without caring about calcium

dynamics, at the cost that the current-frequency relations of simulated neurons

are slightly different from real ones. This compromise could be the starting point

to enhance our tool with the possibility to simulate even more realistic neuronal

networks. We have already begun a new design phase to include these simpler

conductance-based models in our simulators.
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Figure 7.1: Screenshot of a demonstrative stub application to simulate
conductance-based neurons. We developed this sample application to test our
new design.
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Appendix A

Kinetic schemes

We can suppose that a channel protein can assume several conformations, some of

which allow ions transition across the protein, and others not. All together these

conformations can be represented to the set of states S1 . . . Sn. Conformations

of the first type correspond to open states of the channel, the latter to closed or

desensitized states. The gating process can be thought as a series of stochastic

transitions between states ending with the opening of the channel.

Let P (Si, t) be the probability of being in state Si at time t, and P (Si → Sj)

the transition probability from state Si to state Sj. It is worth noting that

P (Si → Sj) might depend on the membrane potential V or the concentration of

a ligand molecule [L], according to the gating mechanism of the particular ion

channel. Transitions between any couple of states Si and Sj is described by:

Si
P (Si→Sj) // Sj
P (Sj→Si)
oo (A.1)

The time evolution of the the probability of state Si is described by the Mater

equation (Colquhoun & Hawkes [1981]):

dP (Si, t)

dt
=

n∑
j=1

P (Sj, t)P (Sj → Si)−
n∑
j=1

P (Si, t)P (Si → Sj) (A.2)

The left term represents all the transition entering Si, while the right term rep-

resents the contribution of all the transitions leaving it. The time evolution of

the system depends only on its present state and it is entirely defined by knowl-
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edge of the set of transition probabilities that, as we said, can be constant or

dependent on some channel-extrinsic variable as the membrane potential or the

concentration of some messenger molecule.

In the limit of large numbers of channels, the probability of being in a state

Si becomes the fraction of channels, noted si, in that particular state, and the

transition probabilities form state Si to state Sj become the rate constant sij,

i.e. the number of channels that move from state Si to Sj in the unit time. The

transition probability between two states becomes a reaction:

Si
rij // Sj
rji

oo (A.3)

and the master equation is rewritten as:

ṡi =
n∑
j=1

sj rji −
n∑
j=1

si rij (A.4)

which is a conventional kinetic equation describing the evolution of the system.
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Appendix B

Ionic currents

• INa,t Transient sodium current involved in action potential generation. Dom-

inant in axons and cell bodies. Rapidly activates and rapidly inactivates.It

is characterized by very fast kinetics: it activates within a few ms and is

steeply voltage dependent with half maximal conductance at about −8 mV.

Inactivation has a time constant of 10 – 20 ms.

• INa,p: Persistent and non-inactivating sodium current. Much smaller in

amplitude than INa,t. Plays an interesting role in the neuron. Activated by

depolarization bringing the membrane potential close to the action potential

threshold. Markedly enhances the response to excitation and keep the cell

moderately depolarized for extended periods.

• IT : Low threshold ”Transient” calcium current. Rapidly inactivates. Thresh-

old is more negative than −65 mV. Rhythmic burst firing. Depolarization

to −60 mV inactivates this current and eliminates the bursting. Reactivated

by repolarization.

• IL: High threshold ”Long-lasting” calcium current. Slowly inactivates.

Threshold about −20 mV. Calcium spikes in dendrites. Involved in synap-

tic transmission.

• IK : Potassium current activated by strong depolarization. ”Delayed rec-

tifier.” Repolarizes the membrane after an action potential. Part of the

Hodgkin-Huxley model. Common in the CNS and supplemented by other
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currents in mammals. Activates at membrane potentials positive to−40 mV

and strengthens with depolarization. Slowly inactivates. Inactivation com-

plete at about 10 mV. Recovery from inactivation takes seconds. Also

passes some other ions at low concentration.

• IC Potassium current activated by calcium concentration increases within

the cell (IL) and very sensitive to membrane potential depolarization. Gen-

eral category IKCa . Plays a role in action potential repolarization and in-

terspike interval. This current produces enhanced repolarization after each

action potential. Inactivates quickly upon repolarization.

• IAHP : Slow afterhyperpolarization potassium current (very slow). Sensi-

tive to calcium concentration increases within the cell (IL) and a number

of neurotransmitters, but insensitive to membrane potential. General cat-

egory IKCa . Supports slow adaptation of action potential discharge in the

hippocampus and cortex.

• IA: Transient, inactivating potassium current. Plays a role in action po-

tential repolarization and in delaying onset of firing. Basically, the action

potential is delayed until IA shuts down. Activates in response to membrane

potentials positive to−60 mV, but then inactivates rapidly. Reactivates in

response to repolarization. Kinetics resemble the fast voltage-dependent

sodium inward current.

• IM : Muscarinic potassium current. Activated by depolarization to about

−65 mV. Noninactivating. Spike frequency adaptation. Quiets the cell

after an initial spike.

• Ih: Depolarizing mixed cation (Na+ and K+) current activated by hyper-

polarization. Rhythmic activities. Slow time course. May control the com-

munication of synaptic inputs to the soma of cortical pyramidal cells.

96



Appendix C

Firing patterns

Neurons exhibit various types of steady-state responses when they are excited

by a depolarizing current step (Connors & Gutnick [1990], Gray & McCormick

[1996]):

• regular spiking (RS): this firing pattern is the one most commonly exhibited

by the neurons of the cortex, hence its definition of “regular” (Figure C.1).

RS neurons respond with a train of action potentials when presented with

prolonged stimuli of constant amplitude. Moreover, these neurons exhibit

pronounced adaptation of the spike frequency. This firing pattern is almost

only exhibited by excitatory pyramidal cells.

• intrinsically bursting (IB): IB neurons are distinguished from RS neurons

as their spikes tend to appear in a stereotyped clustered pattern, the burst,

which is often the minimal response to a just-threshold intracellular stimulus

(Figure C.1). Within a burst, each successive spike usually declines in

amplitude. After the burst, the IB cells usually respond with a regular

spike train, most of time exhibiting adaptation of the firing frequency. This

particular firing pattern is usually found in layer V pyramidal cells.

• fast spiking (FS): individual spikes produced by FS neurons are charac-

terized by their very brief duration, usually lasting less than 0.5 ms. They

exhibit little or no adaptation during prolonged intracellular current pulses.

Indeed, when strongly stimulated, they can sustain spike frequencies of at
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least 500 – 600 Hz for hundreds of milliseconds (Figure C.1). Most in-

hibitory neurons show this firing pattern.

• low-threshold spiking (LTS): LTS neurons generate adapting trains of action

potentials in response to depolarizing current injection, similar to the re-

sponse of RS cortical neurons. In addition, they generate a burst of action

potentials in response to injection of hyperpolarizing current pulses, due

to the presence of T-type calcium channels. This behavior is also known

as post inhibitory rebound. This firing pattern is shown by many cortical

inhibitory neurons1.

• complex spiking : complex spikes are slow, 1 – 3 Hz spikes, characterized

by an initial prolonged large-amplitude spike, followed by a high-frequency

burst of smaller-amplitude action potentials. This firing pattern is found in

the cerebellar Purkinje cells2.

Neurons can also be classified based on their sensitivity to the amplitude of the

applied stimulation:

• Class 1 excitability : the strength of the applied stimulation is encoded in

the firing rate of the cell. Class 1 excitable neurons have the ability to fire

low-frequency spikes when the input is weak (but superthreshold). This

kind of excitability is usually associated with pyramidal cells and other

types of RS neurons.

• Class 2 excitability : if a neuron cannot fire low-frequency spike trains, it

is said to be class 2 excitable. That is, it is either quiescent or it fires a

train of spikes with a some relatively large frequency (about 40 Hz). It is

straightforward that this type of neurons cannot encode the strength of the

stimulation in their output. The most representative category of this type

of excitability is provided by FS cells.

1A similar pattern is also exhibited by thalamic relay neurons, with the difference that they
do not present adaptation and their burst are more powerful compared to ones of LTS cells.

2Even though the present work mainly focuses on neuronal network of the cerebral cortex, we
mention them because, in the future, we intend to extend our software also to model cerebellar
circuitry).
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Figure C.1: Most important firing patterns found in neocortical neurons. Blue
line are voltage traces, red lines the profile of the injected current. All current
steps have the same amplitude.

For a complete review of all the firing patterns and computational properties of

neurons, please refer to Izhikevich [2004].
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Appendix D

Source code listings

We report the source code of the kernels of our simulator.

// some u s e f u l t y p ede f s
typedef unsigned int uint ;
typedef uint2 u int [ 2 ] ;

/∗ KERNEL: ker updateNodes
PURPOSE: c a l c u l a t e the averaged p o t e n t i a l f o r each node .
INPUT:

nodePoten t ia l s : p o t e n t i a l s o f the nodes
edgePo t en t i a l s : p o t e n t i a l s o f the edges
inc identEdges : conta ins the inc i d en t edges o f a l l the nodes
edgeType : type o f the edges , needed to f i nd t h e i r e l e c t r i c a l parameters
degree : number o f i n c i d en t edges
nNodes : t o t a l number o f nodes
o f f s e t : va lue needed to f i nd the r i g h t in f o in inc identEdges

∗/
g l o b a l void ker updateNodes (

f loat ∗ nodePotent ia l s ,
f loat ∗ edgePotent ia l s ,
u int ∗ inc identEdges ,
char ∗edgeType ,
u int degree ,
u int nNodes ,
u int o f f s e t

)
{

// f ind the index o f the node
const uint nodeID = blockDim . x ∗ blockIdx . x + threadIdx . x ;

// i f i t i s g r ea t e r than #nodes then e x i t
i f ( nodeID >= nNodes ) return ;

// perform an average o f the p o t e n t i a l o f the inc i d en t edges
double N = 0 , D = 0 ; // he lp v a r i a b l e s needed to c a l c u l a t e the average
for ( int j = 0 ; j < degree ; j++){

// f ind the re f e r ence to the j−th in c i d en t edge
uint edgeID = inc identEdges [ o f f s e t + nodeID + j ∗ nNodes ] ;
// f ind th type o f the edge
char type = edgeType [ edgeID ] ;
f loat G = c edgeConductance [ type ] ; // a x i a l conductance o f the edge
f loat V = edgePoten t i a l s [ edgeID ] ; // p o t e n t i a l o f the edge
// perform a cumulat ive sum
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N += G ∗ V;
D += G;

}
// c a l c u l a t e and save the averaged p o t e n t i a l o f the node
nodePotent ia l s [ nodeID ] = N / D;

} ;

/∗ KERNEL: ker updateSomaNodes
PURPOSE: c a l c u l a t e the d end r i t i c current o f each soma
INPUT:

somaPotent ia l s : p o t e n t i a l s o f the somas
edgePo t en t i a l s : p o t e n t i a l s o f the edges
somaCurrent : d end r i t i c current
inc identEdges : conta ins the inc i d en t edges o f a l l the somas
edgeType : type o f the edges , needed to f i nd t h e i r e l e c t r i c a l parameters
degree : number o f i n c i d en t edges
nSoma : t o t a l number o f somas
o f f s e t : va lue needed to f i nd the r i g h t in f o in inc identEdges

∗/
g l o b a l void ker updateSomaNodes (

f loat ∗ somaPotent ia ls ,
f loat ∗ edgePotent ia l s ,
f loat ∗ somaCurrent ,
u int ∗ inc identEdges ,
char ∗edgeType ,
u int degree ,
u int nSomas ,
u int o f f s e t

)
{

// f ind the index o f the soma
const uint somaID = blockDim . x ∗ blockIdx . x + threadIdx . x ;

// i f i t i s g r ea t e r than #somas then e x i t
i f ( somaID >= nSomas ) return ;

Vs = somaPotent ia l s [ somaID ] ;
// c a l c u l a t e the amount o f current f l ow ing out from the soma
// towards the dendr i t e s
double I = 0 ; // t o t a l current
for ( int j = 0 ; j < degree ; j++){

// f ind the re f e r ence to the j−th in c i d en t edge
uint edgeID = inc identEdges [ o f f s e t + nodeID + j ∗ nNodes ] ;
// f ind th type o f the edge
char type = edgeType [ edgeID ] ;
f loat G = c edgeConductance [ type ] ; // a x i a l conductance o f the edge
f loat V = edgePoten t i a l s [ edgeID ] ; // p o t e n t i a l o f the edge
// perform a cumulat ive sum of a l l the curren t s
I += G ∗ (Vs − V) ;

}
// c a l c u l a t e and save the t o t a l d end r i t i c current
somaCurrent [ somaID ] = I ;

} ;

/∗ KERNEL: ker updateEdges
PURPOSE: update the p o t e n t i a l o f the edges
INPUT:

p o t e n t i a l s : p o t e n t i a l s a l l the o b j e c t s o f the s imu la t ion
edgePo t en t i a l s : p o t e n t i a l s o f the edges
edgeAdjacency : nodes ad jacent to the edges
edgeSynapses : conta ins the in f o on synap t i c connect ions
synTransmitter : t r ansmi t t e r concent ra t ions
edgeType : type o f the edges , needed to f i nd t h e i r e l e c t r i c a l parameters
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nEdges : t o t a l number o f edges
∗/

g l o b a l void ker updateEdges (
f loat ∗ p o t e n t i a l s ,
f loat ∗ edgePotent ia l s ,

u int2 ∗ edgeAdjacency ,
u int2 ∗ edgeSynapses ,

f loat ∗ synTransmitter ,
char ∗edgeType ,

u int nEdges
)

{
// f ind the index o f the edge

const long edgeID = blockDim . x ∗ blockIdx . x + threadIdx . x ;
// i f i t i s g r ea t e r than #edges then e x i t

i f ( edgeID >= nEdges ) return ;

// f ind the e l e c t r i c a l p r op e r t i e s o f the edge
char type = edgType [ edgeID ] ; // f ind the type o f the edge
f loat C = c edgeCapac i ty [ type ] ; // mem. capac i t y o f the edge
f loat Gl = c edgeLeakCond [ type ] ; // mem. l eak cond . o f the edge
f loat El = c edgeLeakPot [ type ] ; // l eak rev . p o t e n t i a l
f loat Ga = c edgeConductance [ type ] ; // a x i a l conductance o f the edge
f loat V = edgePoten t i a l s [ edgeID ] ; // p o t e n t i a l o f the edge

// c a l c u l a t e current from adjacent nodes
f loat Iden = 0 ;
u int2 nodeIDs = edgeAdjacency [ edgeID ] ;
Iden += Ga ∗ (V − p o t e n t i a l s [ nodeIDs [ 0 ] ] ) ; // current from node 1
Iden += Ga ∗ (V − p o t e n t i a l s [ nodeIDs [ 1 ] ] ) ; // current from node 2

// c a l c u l a t e current from synapses
f loat Isyn = dev synCurrent ( edgeID , V, type , edgeSynapses ,

synTransmitter , nEdges , N SYNAPSES PER EDGE ) ;

// update the p o t e n t i a l o f the edge
edgePot en t i a l s [ edgeID ] = V + DELTA T ∗ ( Gl ∗ ( El − V) − Iden − Isyn ) / C;

} ;

/∗ KERNEL: ker updateSomas
PURPOSE: update the s t a t e o f the somas
INPUT:

somaPotent ia l s : p o t e n t i a l s a l l the o b j e c t s o f the s imu la t ion
somaState : recovery v a r i a b l e s o f the somas
somaCurrent : d end r i t i c curren t s o f the somas
somaSynapses : conta ins the in f o on synap t i c connect ions
synTransmitter : t r ansmi t t e r concent ra t ions
somaSpikeTimes : f i r i n g time o f each soma
somaType : type o f the soma , needed to f i nd e l e c t r i c a l parameters
nSoma : t o t a l number o f edges
i t e r : current time s t ep

∗/
g l o b a l void ker updateSomas (

f loat ∗ somaPotential ,
f loat ∗ somaState ,
f loat ∗ somaCurrent ,
u int2 ∗ somaSynapses ,

f loat ∗ synTransmitter ,
u int ∗ somaSpikeTimes ,
char ∗somaType ,

u int nSoma ,
u int i t e r
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)
{

// f ind the index o f the soma
const long somaID = blockDim . x ∗ blockIdx . x + threadIdx . x ;

// i f i t i s g r ea t e r than #somas then e x i t
i f ( somaID >= nSomas ) return ;

char type = somaType [ somaID ] ; // type o f the soma
f loat V = somaPotent ia l [ somaID ] ; // p o t e n t i a l o f the soma
f loat w = somaState [ somaID ] ; // recovery var . o f the soma

// c a l c u l a t e the t o t a l current
f loat I = 0 ;
I −= somaCurrent [ somaID ] ;
I −= dev synCurrent ( somaID , V, type , somaSynapses ,

synTransmitter , nSoma , N SYNAPSES PER SOMA) ;

// update the model and de t e c t a p o s s i b l e s p i k e
int sp ike = dev updateAdEx ( type , I , &V, &w) ;
i f ( sp ike ) {

// i f a sp i k e occurred , save the current time s t ep
somaSpikeTimes [ somaID ] = i t e r ;

}

// save the updated va lue s
somaPotent ia l [ somaID ] = V;
somaState [ somaID ] = w;

} ;

/∗ KERNEL: ker updateTransmit ter
PURPOSE: update t ransmi t t e r concen t ra t ions
INPUT:

synTransmitter : t r ansmi t t e r concent ra t ions
somaSpikeTimes : f i r i n g time o f each soma
somaType : type o f the soma , needed to f i nd e l e c t r i c a l parameters
nSoma : t o t a l number o f edges
i t e r : current time s t ep

∗/
g l o b a l void ker updateTransmitter (

f loat ∗ synTransmitter ,
u int ∗ somaSpikeTimes ,
char ∗somaType ,
u int nSomas ,
u int i t e r

)
{

// f ind the index o f the soma
const long somaID = blockDim . x ∗ blockIdx . x + threadIdx . x ;

// i f i t i s g r ea t e r than #somas then e x i t
i f ( somaID >= nSomas ) return ;

char type = somaType [ somaID ] ;
f loat Trel = c somaReleaseDurat ion [ type ] ; // durat ion o f the r e l e a s e

f loat T;
// compare the current time with the time o f the l a s t s p i k e
i f ( i t e r − somaSpikeTimes [ somaID ] < Trel / DELTA T){

T = c somaMaxConcentration [ type ] ;
}
else {

T = 0 ;
}
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// save the concentra t ion o f t ransmi t t e r
synTransmitter [ somaID ] = T;

} ;
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