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Università  degli  Studi  di  Padova 

DIPARTIMENTO DI MATEMATICA “TULLIO LEVI–CIVITA” 

Corso di Laurea Magistrale in Matematica 
 

 

 

 

MASTER’S DEGREE THESIS 
 

 

 

 

 

 

 

 

 

Generating sequences of finite groups 

 

 

 

Candidate:                                                                                                                        Supervisor: 

Emanuele Di Bella                                                                                                          Chiar.mo Prof. Andrea Lucchini 





Contents

1 Irredundant generating sequences 7

1.1 First definitions and Tarski’s theorem . . . . . . . . . . . . . . . . . . . . . . 7
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Introduction

This thesis deals with finite groups and the study of some generation properties. In particular,
one has that a set S is a generating set for a finite group G if ⟨S⟩ = G and, if we suppose that
S does not contain generating subsets, then we say S is irredundant or minimal. In recent
decades, researchers focused on studying properties of minimal generating sets, for example
its maximal and minimal size, which are denoted by m(G) and d(G), respectively.
At the beginning, it is necessary to cite the most remarkable result about the existence of
generating sets: indeed, for any integer k such that d(G) ≤ k ≤ m(G), Tarski’s Theorem
guarantees the existence of a minimal generating set of size k.
After that, we should mention a significant purpose about the study of generating sets, which
is the computation of m(G). Actually, the most relevant results are about symmetric and
alternating group (m(Sn) = n − 1 and m(An) = n − 2, [13]) and about projective special
linear groups (m(PSL2(p)) was computed for p prime and it was given an upper bound for
p a prime-power, [14]).
Chapter 1 focuses on irredundant generating sequences, i.e. sequences of elements of a finite
group G which are generating but do not contain generating subsequences. In particular, we
aim to show a formula that computes the exact number of irredundant generating sequences;
to do this, we use the Möbius function, which is a function on a partially ordered set with
a manageable recursive definition; it is often used and has many applications in Number
Theory. Thanks to Möbius function (defined on the lattice of subgroups of a finite group) and
the related Möbius inversion theorem, together with a tricky construction that is described
step by step, we are able to give an elegant proof of the formula; then, we want to show
how the formula can be applied to the most common finite groups and what are the most
significant implications. For this purpose we make an intense use of GAP, describing in
details the implementation of the formula.
Chapter 2 examines sequences composed of subgroups of a finite group G, requiring that the
subgroups belong to a fixed family of finite groups. Similarly as for sequences of elements, we
are interested in the computation of the maximal size of a generating sequence of subgroups,
we aim to show a formula for the computation of the exact number of such sequences and
we are able to prove an existence theorem similar to Tarski’s one. However, we will see
that the results listed above are not true in general but only under certain assumptions. In
particular, we wish to put in evidence a strong dependence on the choice of the initial fixed
family of finite groups. We mostly study generating sequences when the choice of the family
of finite groups is one of the following: family containing all cyclic groups, family containing
all solvable groups and family containing cyclic groups only of prime-power order. It is clear
that these are strong assumptions and we provide many examples to show how things can
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be challenging when one tries to relax some of those. For the reasons explained above, one
can imagine how much the study of sequences of subgroups can be diversified, consequently
this can be also interesting for future researches (in this regard we will put in evidence some
open problems concerning this topic).
We conclude the thesis with some insights related to the study of the probability to generate a
finite group. Specifically, we would like to consider not only the probability to generate with
elements, but also with subgroups, as in Chapter 2. Then we compare the expected number
of elements to generate a finite group with the expected number of subgroups to generate it
(again, we assume the subgroups belong to a fixed family of finite groups), providing suitable
examples.
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Chapter 1

Irredundant generating

sequences

1.1 First definitions and Tarski’s theorem

Let G be a finite group.

Definition 1.1. A generating sequence ofG is a sequence (g1, . . . , gn) such that ⟨g1, . . . , gn⟩ =
G.

Definition 1.2. A generating sequence (g1, . . . , gn) is irredundant if no proper subsequence
generates G, and is redundant otherwise.

Definition 1.3. We say:

(i) m(G) is the largest size of an irredundant generating sequence of G;

(ii) i(G) is the largest size of any irredundant sequence of G;

(iii) d(G) is the smallest size of a generating sequence of G. Observe that the fact that
there are no generating sequences of length smaller than d(G) means that there are no
sequences of length d(G) with a generating proper subsequence, i.e. d(G) is also the
smallest size of an irredundant generating sequence of G.

We have d(G) ≤ m(G) ≤ i(G).

Definition 1.4. We denote by Γn(G) the set of all length-n generating sequences of G and
with Γ∗

n(G) the set of all lenght-n sequences of G. Moreover, ϕn(G) := |Γn(G)|, i.e. ϕn(G)
is the number of length-n generating sequences.

Now fix a positive integer n and denote by ϕn
n(G) the number of irredundant generating

sequences in G of length n. The aim of this chapter is to compute ϕn
n(G).
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At first, observe that ϕn
n(G) = 0 when n < d(G). If n = d(G) we reduce to ϕn

n(G) = ϕn(G) >
0 thanks to the observation in Definition 1.3(iii). If n = m(G) we have ϕn

n(G) > 0 just by
definition of m(G), and for the same reason ϕn

n(G) = 0 if n > m(G). We are left to check
what happens when d(G) < n < m(G). In particular, we know that in this case ϕn

n(G) > 0
thanks to the following result by Tarski:

Theorem 1.1 (Tarski). If d(G) ≤ n ≤ m(G) then G has an irredundant generating sequence
of length n.

Proof. Clearly, we can suppose m(G) − d(G) ≥ 2. Fix t such that d(G) < t ≤ m(G) and
such that there is an irredundant generating sequence s = (g1, . . . , gt) (for sure we can do
this for t = m(G)). Since s is generating, every g ∈ G can be expressed as a word of length
l(g) composed of elements of s. Say A the family of irredundant generating sequences of G
with length smaller than t. For any sequence a ∈ A, set δ(a) = maxg∈al(g), ν(a) = |{g ∈
a | l(g) = δ(a)}|. Fix a = (a1, . . . , au) ∈ A (=⇒ u < t) minimizing δ(a) and ν(a), and fix
i ∈ {1, . . . , u} such that l(ai) = δ(a), in particular we get ai = b1b2 with l(b1), l(b2) < l(ai).
The sequence (a1, . . . , ai−1, b1, b2, ai+1, . . . , au) is clearly a generating sequence, hence we can
fix an irredundant generating subsequence a∗. By construction, δ(a∗) ≤ δ(a) and if equality
holds we have ν(a∗) < ν(a) by our choice of ai. In particular, we get a∗ ̸∈ A (by the
minimazing condition on a), i.e. the length of a∗ is larger or equal than t. But we also have
that the length of a∗ is smaller or equal than u + 1 ≤ t, hence the only possibility is that
equality holds, obtaining u = t− 1. In particular a is an irredundant generating sequence of
length t− 1. Obviously we can repeat this construction until t = d(G) + 2 and the theorem
is proved.

1.2 Möbius function and Hall’s formula

From now on, our purpose is to compute the exact number of irredundant generating se-
quences. We start with the well-known construction by Möbius on partially-ordered sets.

Let P be a finite poset. We can define a map µP : P × P → Z such that:

µP (a, b) = 0 if a > b

µP (b, b) = 1
∑

a≤c≤b

µP (c, b) = 0 if a < b
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Theorem 1.2 (Möbius inversion). Let f be a function from a poset P into an additive
abelian group. For a fixed a ∈ P define

F (b) =
∑

a≤x≤b

f(x).

Then, for b ≥ a, we have

f(b) =
∑

a≤x≤b

µP (x, b)F (x).

Proof. For a fixed element b ≥ a, we have

∑

a≤x≤b

µP (x, b)F (x) =
∑

a≤x≤b

µP (x, b)



∑

a≤y≤x

f(y)


 =

=
∑

a≤x≤b

∑

a≤y≤x

µP (x, b)f(y) =
∑

a≤y≤x≤b

µP (x, b)f(y) =

=
∑

a≤y≤b

∑

y≤x≤b

f(y)µP (x, b) =
∑

a≤y≤b

f(y)



∑

y≤x≤b

µP (x, b)


 .

Now observe that
∑

y≤x≤b µP (x, b) = 1 if and only if y = b, and is zero otherwise. Hence

∑

a≤y≤b

f(y)



∑

y≤x≤b

µP (x, b)


 = f(b)

and the proof is concluded.

Consider now the lattice G of the subgroups of a finite group G. This is a poset with a larger
element, G, hence we can define the Möbius function µG in the following way:

µG(H) := µG(H,G)

for any subgroup H, and by the above construction, we get

µG(G) = 1
∑

H≤K≤G

µG(K) = 0 if H < G

Observe that the function ψ(H) :=
∑

K≤H ϕn(K) satisfies the assumptions of Theorem
1.2 and since ϕn(G) is the number of length-n generating sequences, we just have ψ(H) =∑

K≤H ϕ(K) = |H|n and we get the Hall’s formula

ϕn(G) =
∑

H≤G

µG(H)|H|n.
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1.3 Counting irredundant generating sequences

In this section our goal is to show a formula to compute the exact number of irredundant
generating sequences.

Definition 1.5. We say that a generating sequence (g1, . . . , gn) has irredundancy rank k
if it has a subsequence of length k that generates G but no such subsequence of length
k− 1. Moreover, let ϕk

n(G) denote the number of generating sequences of G of length n and
irredundancy rank k, and similarly let ϕ≤k

n (G) denote the number of generating sequences
of G of length n and irredundancy rank smaller or equal to k.

Remark 1.1. Observe that a sequence of length n is irredundant if and only if it has
irredundancy rank n; this, together with the definition above, clarifies the notation ϕn

n(G).

Now fix k, n positive integers. Let N =
(
n
k

)
, so that there are N subsets π ⊆ {1, . . . , n} with

|π| = k. Let P := {(H1, . . . , HN ) : Hi < G} ∪ {(G, . . . , G)} and P ′ = P \ (G, . . . , G). The
relation (H1, . . . , HN ) ≤ (K1, . . . ,KN ) if Hi ≤ Ki for each i makes P a partially ordered set.
We can denote by µP the Möbius function for P , defined as follows:

µP (G, . . . , G) = 1,
∑

(H1,...,HN )≤(X1,...,XN )

µP (X1, . . . , XN ) = 0 (1.1)

for any (H1, . . . , HN ) < (G, . . . , G) in P .

Lemma 1.1. If (H1, . . . , HN ) < (G, . . . , G) in P then

µP (H1, . . . , Hn) = (−1)N−1µG(H1) · · ·µG(HN )

Proof. Proceed by induction on N and
∏

i |G : Hi|. Given γ < N and H1, . . . , Hγ proper
subgroups of G, we can define P (H1, . . . , Hγ) := {(X1, . . . , Xγ) such that Hi ≤ Xi < G} and
P ′(H1, . . . , Hγ) = P (H1, . . . , Hγ) \ {(H1, . . . , Hγ)}. Combining together the two equations
(1.1) and using induction, one easily gets

−µP (H1, . . . , HN ) = 1 +
∑

(X1,...,XN )∈P ′(H1,...,HN )

µP (X1, . . . , XN ) =

1 + (−1)N−1
∑

(X1,...,XN )∈P ′(H1,...,HN )

µG(X1) · · ·µG(XN ) =

1 + (−1)N−1µG(H1)
∑

(X2,...,XN )∈P ′(H2,...,HN )

µG(X2) · · ·µG(XN )+

(−1)N−1
∑

H1<K<G

µG(K)
∑

(X2,...,XN )∈P (H2,...,HN )

µG(X2) · · ·µG(XN ).

Again, by (1.1), we get

1 +
∑

(X2,...,XN )∈P (H2,...,HN )

µP (X2, . . . , XN ) = 0,
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hence, by induction,

(−1)N
∑

(X2,...,XN )∈P (H2,...,HN )

µG(X2) · · ·µG(XN ) = −1,

and we get

1 + (−1)N−1
∑

H1<K<G

µG(K)
∑

(X2,...,XN )∈P (H2,...,HN )

µG(X2) · · ·µG(XN ) =

1 +
∑

H<K<G

µG(K) = −µG(H1).

Putting everything together we get that

µP (H1, . . . , HN ) = µG(H1)


1 + (−1)N

∑

(X2,...,XN )∈P ′(H2,...,HN )

µG(X2) · · ·µG(XN )


 .

Again by (1.1) applied to (H2, . . . , HN ) we get

1 + µP (H2, . . . , HN ) +
∑

(X2,...,XN )∈P ′(H2,...,HN )

µP (X2, . . . , XN ) = 0

and by induction

1 + (−1)N
∑

(X2,...,XN )∈P ′(H2,...,HN )

µG(X2) · · ·µG(XN ) = (−1)N−1µG(H2) · · ·µG(HN ).

Combining the latter computation with the one above we can conclude:

µP (H1, . . . , HN ) = µG(H1)(−1)N−1µG(H2) · · ·µG(HN ).

Let Pk = {π1, . . . , πN} be the set of the subsets of {1, . . . , n} of cardinality k. To any sequence
s = (g1, . . . , gn) ∈ Gn we associate a sequence (H1, . . . , HN ) in the following way. We define
Hm = ⟨gj | j ∈ πm⟩ and set i(s) = (H1, . . . , HN ) if Hi < G for each i and i(s) = (G, . . . , G)
otherwise.

Remark 1.2. On one hand observe that if s ∈ Gn and i(s) = (G, . . . , G), then there is a
subsequence of length k generating G (the one composed of the generators of the subgroup
Hm such thatHm = G), i.e. s has irredundancy rank at most k. On the other hand, if s ∈ Gn

is a generating sequence with rank at most k, there exists πm ∈ Pk such that Hm = G and
therefore i(s) = (G, . . . , G).

Now define a function in the following way: f : P → N maps any (H1, . . . , HN ) ∈ P into the
number of sequences s ∈ Gn such that i(s) = (H1, . . . , HN ), clearly we have

∑

(H1,...,HN )∈P

f(H1, . . . , HN ) = |G|n. (1.2)

Thanks to Remark 1.2 we immediately get ϕ≤k
n (G) = f(G, . . . , G).
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Theorem 1.3. For any finite group G, we have

ϕ≤k
n (G) = |G|n + (−1)N−1

∑

(H1,...,HN )∈P ′

µG(H1) · · ·µG(HN )

n∏

i=1

|Yi(H1, . . . , HN )|,

where N =
(
n
k

)
and Yi(H1, . . . , HN ) =

⋂
j:i∈πj

Hj .

Remark 1.3. If we consider n = k the formula reduces to Hall’s. Indeed, N = 1, ϕ≤n
n (G)

is just ϕn(G) and Yi(H) = H, so that we have

ϕn(G) = |G|n +
∑

H<G

µG(H)

n∏

i=1

|H| = |G|n +
∑

H<G

µG(H)|H|n =
∑

H≤G

µG(H)|H|n.

Proof of Theorem 1.3. Define F : P → N by setting F (H1, . . . , HN ) =
∑

(K1,...,KN )≤(H1,...,HN )

f(K1, . . . ,KN ), so by (1.2) we have F (G, . . . , G) = |G|n. For (H1, . . . , HN ) < (G, . . . , G),
F (H1, . . . , HN ) equals the number of sequences (g1, . . . , gn) such that ⟨gi : i ∈ πm⟩ ≤ Hm

for each m. The latter is equivalent to the fact that a sequence (g1, . . . , gn) is such that
gi ∈ Yi(H1, . . . , HN ) for each i. Thus

F (H1, . . . , HN ) = |Y1(H1, . . . , HN )× · · · × Yn(H1, . . . , HN )| =
n∏

i=1

|Yi(H1, . . . , HN )|.

By applying Möbius inversion we obtain

f(G, . . . , G) =
∑

(H1,...,HN )∈P

µP (H1, . . . , HN )F (H1, . . . , HN ).

Now, f(G, . . . , G) = ϕ≤k
n (G), F (G, . . . , G) = |G|n, we get

ϕ≤k
n (G) = |G|n + (−1)N−1

∑

(H1,...,HN )∈P ′

µG(H1) · · ·µG(HN )

n∏

i=1

|Yi(H1, . . . , HN )|.

Corollary 1.1. For any finite group G, the number ϕn
n(G) of irredundant generating se-

quences of length n in G is given by:

∑

H<G

µG(H)|H|n + (−1)n
∑

(H1,...,Hn)∈P ′

n∏

i=1

µG(Hi)

∣∣∣∣
⋂

j ̸=iHj

∣∣∣∣ for n > 1

∑

H≤G

µG(H)|H| for n = 1

Proof. The case n = 1 is trivial: clearly k = 1, hence we are in the situation discussed in
Remark 1.3 and we get Hall’s formula with n = 1. Now suppose n > 1 and observe that
ϕn
n = ϕ≤n

n −ϕ≤n−1
n = ϕn(G)−ϕ

≤n−1
n , so that using Hall’s and the previous formulas, we get

∑

H≤G

µG(H)|H|n − |G|n − (−1)n−1
∑

(H1,...,Hn)∈P ′

n∏

i=1

µG(Hi)

∣∣∣∣
⋂

j ̸=iHj

∣∣∣∣ =
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=
∑

H<G

µG(H)|H|n + (−1)n
∑

(H1,...,Hn)∈P ′

n∏

i=1

µG(Hi)

∣∣∣∣
⋂

j ̸=iHj

∣∣∣∣

1.4 Some examples

In this section we wish to provide some examples on the computation of irredundant gener-
ating sequences for some finite groups, using Corollary 1.1.

Example 1.1. Consider the dihedral group of order 2p, with p prime. In particular, we
have that D2p = ⟨a, b | ap = b2 = e, bab = a−1⟩ and it is immediate to check that the only
subgroups are the trivial group, the whole group, ⟨a⟩ and ⟨baj⟩ for j = 0, . . . , p − 1 (which
are p+1 cyclic maximal subgroups, the first of order p and the others of order 2). Moreover,
it is immediate to compute the Möbius function: µD2p

(D2p) = 1, µD2p
(H) = −1 for any

non-trivial H < G and µD2p
({1}) = p.

It is obvious that d(D2p) = m(D2p) = 2, so that it makes sense only to compute ϕ2
2(D2p). We

then obtain: ϕ2
2(D2p) =

∑
H<D2p

µD2p
(H)|H|2 +

∑
(H1,H2)∈P ′ µD2p

(H1)µD2p
(H2)|H1||H2|.

To make the computation of the second term easy to understand, we use the following table:

sequences in P ′containing
the underlying elements µD2p

(H1)µD2p
(H2) |H1||H2|

{1}, {1} 1 p2 1

{1}, ⟨a⟩ 2 −p p

{1}, ⟨baj⟩ 2p −p 2

⟨a⟩, ⟨baj⟩ 2p 1 2p

⟨baj⟩, ⟨baj⟩ p2 1 4

⟨a⟩, ⟨a⟩ 1 1 p2

It is now enough to make products of rows and sum up, getting 4p2. The first term is a
straightforward computation and it gives −p2−3p. In conclusion, we get ϕ2

2(D2p) = 3p(p−1).
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Example 1.2. Fix two primes p, q and consider the cyclic group of order pq, Cpq = ⟨a⟩. We
have 4 subgroups: the trivial one, Cpq itself, ⟨aq⟩ and ⟨ap⟩. First, we can compute directly
the number of generating sequences of length 2, in particular of irredundant ones. Indeed,
observe that in this group we have the following distinct elements: (p − 1)(q − 1) elements
which generate the whole group, p− 1 elements of the subgroup ⟨aq⟩, q − 1 elements of the
subgroup ⟨ap⟩ and the identity element. The generating sequences are: (p − 1)2(q − 1)2

when we have two generators, 2(p − 1)(q − 1)(p + q − 1) when we have only a generator
and 2(p − 1)(q − 1) which are the sequences with two elements each in a proper subgroup
of the group, i.e. one is in the subgroup ⟨aq⟩ and one in the subgroup ⟨ap⟩. It is clear
that the latters are the only irredundant sequences. Summing up we get that the group has
(p2 − 1)(q2 − 1) generating sequences.
Observe that we can easily generalize the computation of the number of irredundant gener-
ating sequences for a cyclic group of order the product of k primes. Indeed, the number of
irredundant generating sequences of length k in this case is just n!(p1 − 1) · · · (pk − 1): the
only way to have an irredundant generating sequence is to pick a generator for each subgroup
of the form ⟨api⟩, where a is the generator of the group and i = 1, . . . , k; in particular we
have (p1−1) · · · (pk−1) irredundant generating sets, hence n!(p1−1) · · · (pk−1) irredundant
generating sequences.
Now let’s go back to the case where the cyclic group has order the product of two primes. We
show we get the same result with the formula of Corollary 1.1. First, compute the Möbius
function. By definition, µG(Cpq) = 1; ⟨aq⟩ and ⟨ap⟩ are contained only in Cpq, hence their
Möbius is just −1; the trivial subgroup is contained in the previous three subgroup, hence
the Möbius is 1. We get then:

∑

H<G

µG(H)|H|n = 1− p2 − q2.

The second term reduces to
∑

(H1,H2)∈P ′

µG(H1)µG(H2)|H1||H2|

To make things clearer, consider the following table (H1 is the term on the left column, H2

the term on the top row and in the other cells the result of µG(H1)µG(H2)|H1||H2|):

{1} ⟨aq⟩ ⟨ap⟩

{1} 1 −p −q

⟨aq⟩ −p p2 pq

⟨ap⟩ −q pq q2

Now we have to sum the results in the table, getting

1 + p2 + q2 + 2(−p− q + pq).

Combining the two parts of the formula we get

1− p2 − q2 + 1 + p2 + q2 + 2(−p− q + pq) = 2(1− p− q + pq) = 2(p− 1)(q − 1)
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as we wanted.
Now we are left to compute the case n > 2. Similarly as before, we have

∑

H<G

µG(H)|H|n = 1− pn − qn.

For the second part we should compute a sum over 3n terms, which can be a little tricky.

However, we can observe that just for a few sequences the term

∣∣∣∣
⋂

j ̸=iHj

∣∣∣∣ is non-trivial,

hence we may try to compute
∑

(H1,...,Hn)∈P ′

∏n

i=1 µG(Hi) at first. If we say j the number

of non-trivial subgroups in the sequence (i.e. in the sequence there are j subgroups which
are ⟨ap⟩ or ⟨aq⟩ and n − j the trivial subgroup). In such a sequence the Möbius depends
on (−1)j . Moreover, there are 2j ways of choosing the elements (depending on whether we
choose ⟨ap⟩ or ⟨aq⟩) and once the elements are fixed,

(
n
j

)
is the number of possible ordered

sequences. Then we have

∑

(H1,...,Hn)∈P ′

n∏

i=1

µG(Hi) =

n∑

j=0

(
n

j

)
(−2)j .

Now we need to look for the sequences where the term

∣∣∣∣
⋂

j ̸=iHj

∣∣∣∣ is non-trivial, but this is

straightforward, indeed these are just the sequences with n−1 times the subgroup ⟨ap⟩ (resp.
⟨aq⟩) and the other subgroup which is different, i.e. ⟨aq⟩ or {1} (resp. ⟨ap⟩ or {1}), and
also the two sequences with n subgroups equal to ⟨ap⟩ or ⟨aq⟩. Say P the family of these
sequences. We get

∑

(H1,...,Hn)∈P

n∏

i=1

µG(Hi) = 2n(−1)n−1 + 2n(−1)n + 2(−1)n = 2(−1)n.

And now we are left to compute

∑

(H1,...,Hn)∈P

n∏

i=1

µG(Hi)

∣∣∣∣
⋂

j ̸=iHj

∣∣∣∣ =

= np(−1)n−1 + np(−1)n + nq(−1)n−1 + nq(−1)n + (−1)npn + (−1)nqn = (−p)n + (−q)n.

The number of irredundant generating sequences is then

∑

H<G

µG(H)|H|n + (−1)n




∑

(H1,...,Hn)∈P ′

n∏

i=1

µG(Hi)−

−
∑

(H1,...,Hn)∈P

n∏

i=1

µG(Hi) +
∑

(H1,...,Hn)∈P

n∏

i=1

µG(Hi)

∣∣∣∣
⋂

j ̸=iHj

∣∣∣∣


 =

1− pn − qn + (−1)n




n∑

j=0

(
n

j

)
(−2)j − 2(−1)n + (−p)n + (−q)n


 =

15



= 1 + (−1)n




n∑

j=0

(
n

j

)
(−2)j


− 2 = −1 + (−1)n




n∑

j=0

(
n

j

)
(−2)j


 .

Now it is enough to prove this is zero. Proceeding by induction:

(−1)n+1




n+1∑

j=0

(
n+ 1

j

)
(−2)j


 = (−1)n+1




n∑

j=1

(
n+ 1

j

)
(−2)j + 1 + (−2)n+1


 =

= (−1)n+1

(
n−1∑

k=0

(
n+ 1

k + 1

)
(−2)k+1 + 1 + (−2)n+1

)
=

= (−1)n+1

(
n−1∑

k=0

(
n

k + 1

)
(−2)k+1 +

n−1∑

k=0

(
n

k

)
(−2)k+1 + 1 + (−2)n+1

)
=

= (−1)n+1

(
n−1∑

k=0

(
n

k + 1

)
(−2)k+1 + 1 + (−2)

(
n−1∑

k=0

(
n

k

)
(−2)k + (−2)n

))
=

= (−1)


(−1)n

n∑

j=0

(
n

j

)
(−2)j − 2(−1)n

n∑

k=0

(
n

k

)
(−2)k


 = 1.

Example 1.3. Consider S3 = {{1}, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}. We have the following
distinct subgroups (for simplicity we write ⟨x y⟩ for ⟨(x y)⟩):

• S3

• ⟨1 2⟩ = {{1}, (1 2)}

• ⟨1 3⟩ = {{1}, (1 3)}

• ⟨2 3⟩ = {{1}, (2 3)}

• ⟨1 2 3⟩ = {{1}, (1 2 3), (1 3 2)}

• {1}

As before, we easily compute the Möbius:

• µ(S3) = 1

• µ(⟨1 2⟩) = −1

• µ(⟨1 3⟩) = −1

• µ(⟨2 3⟩) = −1

• µ(⟨1 2 3⟩) = −1

• µ({1}) = 3
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We can compute the irredundant generating sequences of length 2. Using our formula we
get:

µ({1}) |{1}|2 + µ(⟨1 2⟩) |⟨1 2⟩|2 + µ(⟨1 3⟩) |⟨1 3⟩|2 + µ(⟨2 3⟩) |⟨2 3⟩|2 + µ(⟨1 2 3⟩) |⟨1 2 3⟩|2+

2(µ({1}) |{1}| µ(⟨1 2⟩) |⟨1 2⟩|+ µ({1}) |{1}| µ(⟨1 3⟩) |⟨1 3⟩|+ µ({1}) |{1}| µ(⟨2 3⟩) |⟨2 3⟩|+

µ({1}) |{1}| µ(⟨1 2 3⟩) |⟨1 2 3⟩|+µ(⟨1 2⟩) |⟨1 2⟩| µ(⟨1 3⟩) |⟨1 3⟩|+µ(⟨1 2⟩) |⟨1 2⟩| µ(⟨2 3⟩) |⟨2 3⟩|+

µ(⟨1 2⟩) |⟨1 2⟩| µ(⟨1 2 3⟩) |⟨1 2 3⟩|+ µ(⟨1 3⟩) |⟨1 3⟩| µ(⟨2 3⟩) |⟨2 3⟩|+

µ(⟨1 3⟩) |⟨1 3⟩| µ(⟨1 2 3⟩) |⟨1 2 3⟩|+ µ(⟨2 3⟩) |⟨2 3⟩| µ(⟨1 2 3⟩) |⟨1 2 3⟩|)+

µ({1}) |{1}| µ({1}) |{1}|+ µ(⟨1 2⟩) |⟨1 2⟩| µ(⟨1 2⟩) |⟨1 2⟩|+ µ(⟨1 3⟩) |⟨1 3⟩| µ(⟨1 3⟩) |⟨1 3⟩| +

µ(⟨2 3⟩) |⟨2 3⟩| µ(⟨2 3⟩) |⟨2 3⟩| + µ(⟨1 2 3⟩) |⟨1 2 3⟩| µ(⟨1 2 3⟩) |⟨1 2 3⟩| =

3− 4− 4− 4− 9 + 2(−6− 6− 6− 9 + 4 + 4 + 6 + 4 + 6 + 6) + 9 + 4 + 4 + 4 + 9 = 18.

1.5 GAP implementation

At this point it is clear that the formula is an interesting way to compute irredundant
generating sequences, but making all the computations by hand can often be challenging, as
we have seen in the previous examples. To make things easier, we are going to show a way
to implement the formula on GAP:

At first, we have to define the group we want to work with and a list with his subgroups:

1 G:=...;

2 list:=AllSubgroups(G);;

Then we want to compute the Möbius function

3 tom:=TableOfMarks(G);;

4 moebius:=MoebiusTom(tom);;

5 moebius.mu;

6 [x_1,...,x_n]

Observe that we may get a list with non-assigned values instead of zeros, so that we need
the following:

7 firstml:=[]

8 for i in [1..Size(moebius.mu)] do

9 firstml[i]:=GetWithDefault(moebius.mu,i,0);

10 od;
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Now we want to define a list such that the i-th slot of this list is the value of the Möbius
of the i-th subgroup in our list of subgroups of G. For this purpose it is enough to observe
that moebius.mu returns the values of the Möbius with respect to the list of subgroups up
to conjugation:

11 s:=1;;

12 secondml:=[];;

13 secondml[1]:=firstml[1];;

14 for i in [1..Size(list)-1] do

15 if IsConjugate(G, list[i+1], list[i]) then

16 secondml[i+1]:=firstml[s];

17 else secondml[i+1]:=firstml[s+1];

18 s:=s+1;

19 fi;

20 od;

Now we can define a new list removing the zeros of secondml. This new list is the one that
we will use for the main computation:

21 ml:=[];;

22 for i in [1..Size(secondml)] do

23 if secondml[i]<>0 then

24 Add(ml,secondml[i]);

25 fi;

26 od;

Now we do the same for the list of subgroups:

27 sl:=[];;

28 for i in [1..Size(secondml)] do

29 if secondml[i]<>0 then

30 Add(sl,list[i]);

31 fi;

32 od;

Now we can proceed with the implementation of the formula. The idea is to define two empty
lists and add in these lists the elements of the two summands. The first part is then:

33 el1:=[];;

34 for i in [1..Size(sl)-1] do

35 Add(el1,ml[i]*Size(sl[i])^n);

36 od;

The second part is:

37 el2:=[];;

38 for x_1 in [1..Size(sl)-1] do

39 ...

40 for x_n in [1..Size(sl)-1] do

41 Add(el2,ml[x_1]*...*ml[x_n]*Size(Intersection(sl[x_2],...,al[x_n])*...

42 *Size(Intersection(sl[x_1],...,sl[x_i-1],sl[x_i+1],...,sl[x_n])*...*

43 Size(Intersection(sl[x_1],...sl[x_n-1])));
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44 od;

45 ...

46 od;

Then we just have to put the two parts together following the formula:

47 Sum(el1)+(-1)^n*Sum(el2);

Let’s try to use the code for S3 and check we get the same results of Example 1.3:

1 G:=SymmetricGroup(3);;

2 list:=AllSubgroups(G);;

3 tom:=TableOfMarks(G);;

4 moebius:=MoebiusTom(tom);;

5 moebius.mu;

6 [3,-1,-1,1]

7 firstml:=moebius.mu;;

8 s:=1;;

9 secondml:=[];;

10 secondml[1]:=firstml[1];;

11 for i in [1..Size(list)-1] do

12 if IsConjugate(G, list[i+1], list[i]) then

13 secondml[i+1]:=firstml[s];

14 else secondml[i+1]:=firstml[s+1];

15 s:=s+1;

16 fi;

17 od;

18 secondml;

19 [3,-1,-1,-1,-1,1]

20 ml:=secondml;;

21 sl:=list;;

22 el1:=[];;

23 for i in [1..Size(sl)-1] do

24 Add(el1,ml[i]*Size(sl[i])^2);

25 od;

26 Sum(el1);

27 -18

28 el2:=[];;

29 for x_1 in [1..Size(sl)-1] do

30 for x_2 in [1..Size(sl)-1] do

31 Add(el2,ml[x_1]*ml[x_2]*Size(sl[x_1])*Size(sl[x_2]));

32 od;

33 od;

34 Sum(el2);

35 36

36 Sum(el1)+(-1)^2*Sum(el2);

37 18
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1.6 Irredundant generating sequences of S4

Before the explicit computation of the irredundant generating sequences of length 3 of S4,
we discuss the following results from [3] (Theorem 2.1, Corollary 2.2, Remark p. 6):

Theorem 1.4. Let S be an irredundant generating set for Sn of size n − 1, where n ≥ 7,
and S(T ) a set of n− 1 transpositions. Then S can be of two different types:

(a) S = S(T );

(b) S is a set composed of a transposition s and n− 2 elements of the form st (or ts if this
is a 3−cycle) for any t ∈ S(T ) \ s;

Corollary 1.2. For n ≥ 7, the number of irredundant generating sets of Sn are nn−2 of the
type (a) and nn−2(n− 2) of the type (b).

As per the statement, the theorem works for n ≥ 7. However, in [3] they discuss the case
for n = 4, stating that it is enough to add the sets composed of two transpositions with a
common element and a double transposition. In particular, we have 36 sets of this type:
there are 6 ways to choose the first transposition, 4 ways to choose the second with an only
element in common with the first and 3 ways of choosing the double transposition, then
divide by 2 in order not to count two times the same pair of transpositions. Now we have to
add 16 sets of the type (a) and 48 elements of the type (b). Therefore, there should be 100
generating irredundant sets.
Now we want to repeat the computations above using our GAP procedure, as follows:

1 G:=SymmetricGroup(4);;

2 list:=AllSubgroups(G);;

3 tom:=TableOfMarks(G);;

4 moebius:=MoebiusTom(tom);;

5 moebius.mu;

6 [-12,,2,1,3,,,-1,-1,-1,1]

7 firstml:=[]

8 for i in [1..Size(moebius.mu)] do

9 firstml[i]:=GetWithDefault(moebius.mu,i,0);

10 od;

11 firstml;

12 [-12,0,2,1,3,0,0,-1,-1,-1,1]

13 s:=1;;

14 secondml:=[];;

15 secondml[1]:=firstml[1];;

16 for i in [1..Size(list)-1] do

17 if IsConjugate(G, list[i+1], list[i]) then

18 secondml[i+1]:=firstml[s];

19 else secondml[i+1]:=firstml[s+1];

20 s:=s+1;

21 fi;

22 od;
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23 ml:=[];;

24 for i in [1..Size(secondml)] do

25 if secondml[i]<>0 then

26 Add(ml,secondml[i]);

27 fi;

28 od;

29 sl:=[];;

30 for i in [1..Size(secondml)] do

31 if secondml[i]<>0 then

32 Add(sl,list[i]);

33 fi;

34 od;

35 el1:=[];;

36 for i in [1..Size(sl)-1] do

37 Add(el1,ml[i]*Size(sl[i])^3);

38 od;

39 el2:=[];;

40 for x_1 in [1..Size(sl)-1] do

41 for x_2 in [1..Size(sl)-1] do

42 for x_3 in [1..Size(sl)-1] do

43 Add(el2,ml[x_1]*ml[x_2]*ml[x_3]*

44 Size(Intersection(sl[x_2],sl[x_3]))*

45 Size(Intersection(sl[x_1],sl[x_3]))*

46 Size(Intersection(sl[x_1],sl[x_2])));

47 od;

48 od;

49 od;

50 Sum(el1)+(-1)^3*Sum(el2);

51 888

Since we have the number of irredundant generating sequences, we have to identify sequences
which are equal up to the order of the elements, so that we get 148 irredundant generating
sets. This means that there is something wrong with the results from [3]. In particular
Theorem 1.3 (b) considers the irredundant generating sets with a transposition s, a 3-cycle
st and a 3-cycle st′, which are 24, and the irredundant generating sets with a transposition
s, a 3-cycle st and a double transposition st′, which are 24, but also the sets with the other
two double transpositions should be considered, hence we should add 48 to the previous
computation and we get again 148. Indeed, suppose s = (1 2) and t = (1 3). According
to the discussion above, we are interested in the three sets containing s, st and a double
transposition, which areK1 = {(1 2), (1 2 3), (1 2)(3 4)}, K2 = {(1 2), (1 2 3), (1 3)(2 4)} and
K3 = {(1 2), (1 2 3), (1 4)(2 3)}. K1 has been counted in Theorem 1.3 (b). We want to show
that K2 is irredundant and generating. Since {(1 2), (1 2 3)} ⊆ S3 and {(1 2), (1 3)(2 4)} is
contained in a 2-Sylow, these cannot generate S4. Clearly, also {(1 2 3), (1 3)(2 4)} is not
generating, since both elements are in A4, hence we are left to prove that K2 is a generating
set. Observe that (1 2)(1 2 3) = (1 3) and (1 3)(1 3)(2 4) = (2 4), hence {(1 2), (1 3), (2 4)} ⊆
K2, but the first one is a set of type (a), hence it generates the whole group and so does
K2. The same arguments hold for K3, since (1 2 3)(1 2) = (2 3) and (1 4)(2 3)(2 3) = (1 4).
Clearly, the same procedure can be applied for any choice of s and t, whenever st is a 3-cycle.
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Chapter 2

Irredundant generating

sequences of subgroups

2.1 First definitions and generalization of Tarski’s the-

orem

In this section we want to discuss what happens if we consider sequences of subgroups instead
of sequences of elements. Fix a family of finite groups F .

Definition 2.1. We say (H1, . . . , Hn) is an irredundant generating F-sequence of G if
⟨H1, . . . , Hn⟩ = G but ⟨H1, . . . , Hi−1, Hi+1, . . . , Hn⟩ ≠ G where Hi ≤ G and Hi ∈ F ,
for any i = 1, . . . , n.

Remark 2.1. Suppose F is a family containing all cyclic finite groups. It is clear that there
is a correspondence between irredundant generating sequences of elements of G, (g1, . . . , gn),
and irredundant generating F-sequences of cyclic subgroups of G, (⟨g1⟩, . . . , ⟨gn⟩).

Exactly as for sequences of elements, we can consider the maximal and minimal length of an
irredundant generating F-sequence, denoted by mF (G) and dF (G), respectively. Observe
that they are closely related with the choice of F , e.g. if G ∈ F then dF (G) = 1, while if F
is the family of cyclic groups we just have dF (G) = d(G) by Remark 2.1. However, things
are easier for mF (G):

Proposition 2.1. For any finite group G and family of finite groups F containing all the
cyclic groups, we have mF (G) = m(G).

Proof. By Remark 2.1, m(G) ≤ mF (G). Conversely, let s = (H1, . . . , HmF (G)) be an
irredundant generating F-sequence. Clearly, Hi = ⟨Xi⟩ for a certain set Xi, for any
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i = 1, . . . ,mF (G). Since the union of the Xi’s is a generating set, it also contains an irredun-
dant generating set, say Y . Then we can observe that Y ∩Hi ̸= ∅ for any i = 1, . . . ,mF (G),
otherwise s would not be irredundant. Therefore, we get mF (G) ≤ |Y | ≤ m(G).

At this point one could ask whether an irredundant generating F-sequence of a certain length
exists. To answer this question, here is a generalization of Theorem 1.1:

Theorem 2.1. For any finite group G and family of finite groups F , containing all cyclic
groups and closed under subgroups, there exists an irredundant generating F-sequence of
length n for any n such that dF (G) ≤ n ≤ mF (G).

Proof. Let Ω be an irredundant generating set of elements of G, such that |Ω| = m(G). For
any g ∈ G, let l(g) be the length of g when it is expressed as a word of elements of Ω.
Moreover, for any H ≤ G, let l(H) = min⟨X⟩=H

∑
x∈X l(x). Now suppose that there is an

irredundant generating F-sequence of length t (for sure this happens for t = mF (G)) and let
B be the set of the irredundant generating F-sequences of length smaller than t. To prove the
theorem we need to find an irredundat generating F-sequence of length t−1 and then iterate
the process for any t > dF (G). For any B ∈ B, let δΩ(B) = maxH∈Bl(H) and νΩ(B) =
|{H ∈ B | l(H) = δΩ(B)}|. Fix B = {H1, . . . , Hu} ∈ B minimizing δΩ(B) and νΩ(B).
Observe that if Hi is cyclic for any i = 1, . . . , u, we conclude by Remark 2.1 and Theorem
1.1. Without loss of generality, suppose Hu not cyclic and δΩ(B) = l(Hu). In particular, we
have Hu = ⟨g1, . . . , gr⟩, for r ≥ 2, with l(Hu) =

∑r

i=1 l(gi). Now, set Ku = ⟨g1, . . . , gr−1⟩
andKu+1 = ⟨gr⟩ so that we can consider the F-sequence {H1, . . . , Hu−1,Ku,Ku+1}. Clearly,
the latter is a generating F-sequence since B is, hence it contains an irredundant generating
F-sequence B∗. By construction, δΩ(B

∗) ≤ δΩ(B) and if equality holds νΩ(B
∗) ≤ νΩ(B).

By our choice of B, it has to be B∗ ̸∈ B, therefore |B∗| ≥ t. But we also know that
|B∗| = |B|+ 1 ≤ t, hence the only possibility is that equality holds, i.e. u = t− 1.

Example 2.1. If we assume F = {C2, C73}, then G = PSU3(9) has irredundant generating
F-sequences of length 2 and 4 but not 3. Specifically, a sequence with three subgroups gen-
erated by elements of order 2 would not be generating (four elements of order 2 are needed to
generate G); a sequence of length 3 containing a group generated by an element of order 73
would not be irredundant, since an element of order 73 generates the whole group together
with any element of order 2 or any another element of order 73. All this implies that there are
no irredundant generating sequences of length 3. However, for the reasons explained above,
any sequence of length 2 containing two cyclic groups generated by an element of order 73
and any sequence of length 4 containing only cyclic groups generated by an element of order
2 would be irredundant and generating. In other words, it turns out that the assumption on
cyclic groups is necessary in general.
Moreover, observe that the theorem is not true if we don’t assume that F is closed under
subgroups. Indeed, assume F contains only the cyclic groups and G = C2×C2×C2. Clearly,
dF (G) = 1. However, since d(G) = 3, there are no irredundant generating F-sequences of G
of length 2.

We conclude this section with a simple but interesting result for a different choice of F .
Consider the following theorem from [1]:

Theorem 2.2. In every finite group G there exists a pair of conjugate solvable subgroups
H,K ≤ G, such that ⟨H,K⟩ = G. In particular, if x ∈ G is such that H = xKx−1 then
⟨H,x⟩ = G.

24



We can then immediately deduce the following:

Corollary 2.1. Let F be the family of all solvable finite groups, then dF (G) ≤ 2.

2.2 Counting irredundant generating sequences of sub-

groups

In this section we want to discuss the computation of irredundant generating sequences of
subgroups, in particular we will proceed similarly as for sequences of elements and we will
get similar results. To avoid confusion, we will use φn(G) in place of ϕn(G) to indicate the
number of length-n generating sequences of subgroups, φ≤k

n (G) in place of ϕ≤k
n (G) to indicate

the number of length-n generating sequences of irredundancy rank smaller or equal than k
and φnn(G) in place of ϕn

n(G) to indicate the number of length-n irredundant generating
sequences.

Definition 2.2. For any X ⊆ G, we define σG,F (X) to be the number of subgroups of G
which are in F and are contained in X.

Remark 2.2. At first we try to develop an analogous of Hall’s formula. Fix n and let
ψ(H) :=

∑
K≤H φn,F (K) = σG,F (H)n. Applying Theorem 1.2 we get

φn,F (G) =
∑

H≤G

µG(H)σG,F (H)n.

In particular, observe that if n = 1, then:

∑

H≤G

µG(H)σG,F (H) =

{
1 if G ∈ F

0 if G ̸∈ F
.

After that, we want a formula for irredundant generating F-sequences. Recall that we defined
Pk = {π1, . . . , πN} as the set of the subsets of {1, . . . , n} of cardinality k. Now fix a family
of finite groups F and as in the previous chapter, to any sequence s = (K1, . . . ,Kn) ∈ Fn,
Ki ≤ G for any i = 1, . . . , n, we associate a sequence (H1, . . . , HN ) where Hm = ⟨Kj | j ∈
πm⟩ and i(s) = (H1, . . . , HN ) if Hi < G for each i and i(s) = (G, . . . , G) otherwise.
Again, i(s) = (G, . . . , G) is equivalent to say that s has irredundancy rank at most k.
Now define a function in the following way: f : P → N maps each (H1, . . . , HN ) ∈ P into
the number of sequences s composed of subgroups of G in F such that i(s) = (H1, . . . , HN );
clearly we have ∑

(H1,...,HN )∈P

f(H1, . . . , HN ) = σG,F (G)
n. (2.1)

As before, we get φ≤k
n (G) = f(G, . . . , G).
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Theorem 2.3. For any finite group G, we have

φ
≤k

n,F (G) = σG,F (G)n + (−1)N−1
∑

(H1,...,HN )∈P ′

µG(H1) · · ·µG(HN )

n∏

i=1

σG,F (Yi(H1, . . . , HN )),

where N =
(
n
k

)
and Yi(H1, . . . , HN ) =

⋂
j:i∈πj

Hj .

Proof of Theorem 1.3.
Define F : P → N by setting F (H1, . . . , HN ) =

∑
(S1,...,SN )≤(H1,...,HN ) f(S1, . . . , SN ), so we

have F (G, . . . , G) = σG,F (G)
n. For (H1, . . . , HN ) < (G, . . . , G), F (H1, . . . , HN ) equals the

number of sequences (K1, . . . ,Kn) such that ⟨Ki : i ∈ πm⟩ ≤ Hm for eachm = 1, . . . , N . The
latter is equivalent to the fact that a sequence (K1, . . . ,Kn) is such thatKi ∈ Yi(H1, . . . , HN )
for each i = 1, . . . , n. Thus

F (H1, . . . , HN ) =

n∏

i=1

σG,F (Yi(H1, . . . , HN )).

By applying Möbius inversion we obtain

f(G, . . . , G) =
∑

(H1,...,HN )∈P

µP (H1, . . . , HN )F (H1, . . . , HN ).

Now, f(G, . . . , G) = φ≤k
n (G), F (G, . . . , G) = σG,F (G)

n, hence we get

φ≤k
n,F (G) = σG,F (G)

n +(−1)N−1
∑

(H1,...,HN )∈P ′

µG(H1) · · ·µG(HN )

n∏

i=1

σG,F (Yi(H1, . . . , HN )).

Corollary 2.2. For any finite group G and family of finite groups F , the number φnn,F (G)
of irredundant generating F-sequences of length n in G is given by:

∑

H<G

µG(H)σG,F (H)n + (−1)n
∑

(H1,...,Hn)∈P ′

n∏

i=1

µG(Hi)σG,F



⋂

j ̸=i

Hj


 for n > 1

∑

H≤G

µG(H)σG,F (H) for n = 1

Proof. The proof is exactly as the one of Corollary 1.1.
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2.3 A particular choice of F

In this section, we focus on a particular choice of the family of finite groups F ; indeed it is
interesting to check whether previous results still work if F is the family of all cyclic groups
with a prime-power order. Thanks to Remark 2.1, we can equivalently deal with sequences
of elements with the desired condition. For the sake of clarity, we denote by S the family of
irredundant generating sequences of elements of order a prime-power, and denote by d̃(G)
and m̃(G) the minimal and maximal length, respectively, of an element in S(G).

Lemma 2.1. For any finite group G, m̃(G) = m(G).

Proof. If (x1, . . . , xn) ∈ S then it is also, trivially, an irredundant generating sequence of
elements of G, therefore m̃(G) ≤ m(G).
Conversely, let (g1, . . . , gm) be an irredundant generating sequence, with m = m(G). Let
gi =

∏ti
j=1 xi,j with |xi,j | = plii for i = 1, . . . ,m. Now, if we consider the set X = {xi,j :

1 ≤ i, j ≤ n}, then there is an irredundant generating sequence Y ⊆ X. Observe that
Y ∩{xi,1, . . . , xi,ti} ≠ ∅ for any i = 1, . . . ,m, otherwise (g1, . . . , gm) would not be irredundant.
Therefore, by construction we have m̃(G) ≥ |Y | ≥ m(G).

We are interested in investigating if the generalization of Tarski’s Theorem still works. Here
we show that this is true under certain assumptions. First, observe the following:

Theorem 2.4. Let G be a solvable finite group and fix an integer k such that d̃(G) ≤ k ≤
m̃(G), then there is an irredundant generating S-sequence of length k.

Proof. We proceed by induction on the order of G. Since G is solvable, we can fix a minimal
normal subgorup N of G, such that |N | = pt for some prime p. Fix an irredundant generating
sequence in S(G/N), say (g1N, . . . , grN). Now we define a sequence (g̃1, . . . , g̃r) in the
following way: if |giN | is a p-power, then gi has order a power of p and we set g̃i = gi;
if |giN | is a q-power, for a prime q ̸= p, then there exists g̃i with order qn and such that
g̃iN = giN . At this point, we can have two distinct situations:

• Suppose N ≤ Frat(G). Then, for any (g1N, . . . , grN) ∈ S(G/N), we can define
(g̃1, . . . , g̃r) ∈ S(G) as above (the two sequences have the same length). In partic-

ular, d̃(G) = d̃(G/N) and m̃(G) = m̃(G/N), hence we are done using induction.

• Suppose N ̸≤ Frat(G). In this case we can fix H < G, a maximal subgroup of G not
containing N , such that G = N ⋊H. We have m̃(G) = m(G) = m(H)+1 = m̃(H)+1
(where the first and last equality hold thanks to Lemma 2.1 and the second equality

thanks to Lemma 12 [8]). Moreover, d̃(G) = d̃(H) or d̃(H) + 1. Indeed, for any
(g1, . . . , gd̃(H)) ∈ S(H) and n ̸= 1 ∈ N , (g1, . . . , gd̃(H), n) ∈ S(G). By induction, for

any integer k such that d̃(H) ≤ k ≤ m̃(H), there exists an irredundant generating
sequence (g1, . . . , gk) ∈ S(H). Again, if we fix n ̸= 1 ∈ N , then (g1, . . . , gk, n) ∈ S(G),

hence we can find a sequence of length t in S(G) for any integer t such that d̃(H)+1 ≤

t ≤ m̃(H) + 1, i.e. for any integer t such that d̃(G) < t ≤ m̃(G) (and of course also for

t = d̃(G) by definition).
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However, we aim to show that we can relax the assumption on solvability for symmetric and
alternating groups. At first, observe the following result [9]:

Theorem 2.5. For any integer n ≥ 25, it is always possible to find a prime between n and
6
5n.

We can then deduce the following:

Corollary 2.3. For any integer n > 7, there exists a prime p such that n/2 < p ≤ n− 3.

Proof. If 7 < n < 50 one can check it immediately by hand. If n is even, apply the previous
theorem to n/2, so that there is a prime p such that n/2 < p ≤ 6n/10 < n− 3. If n is odd,
just do the same for (n+ 1)/2.

Now we want to show a straightforward construction on Sn and An. At first, fix n ≥ 3 and
let α, β in Sn be as follows:

• If n > 7 then we fix a prime n/2 < p ≤ n − 3 thanks to Corollary 2.3 and pick
α = (1 2 . . . p) and β = (u u + 1 . . . n) in such a way β has length the maximum
power of 2 strictly smaller than n (and observe that this is obviously larger than n/2).

• n = 7, α = (1 2 3 4 5), β = (4 5 6 7)

• n = 6, α = (1 2 3 4 5), β = (3 4 5 6)

• n = 5, α = (1 2 3), β = (2 3 4 5)

• n = 4, α = (1 2 3), β = (3 4)

• n = 3, α = (1 2), β = (2 3)

Similarly, for An:

• If n > 7 then we fix a prime n/2 < p ≤ n − 3 thanks to Corollary 2.3 and pick
γ = (1 2 . . . p) and δ = (n− p+ 1 . . . n), so that δ has length p.

• n = 7, γ = (1 2 3 4 5), δ = (3 4 5 6 7)

• n = 6, γ = (1 2 3 4 5), δ = (2 3 4 5 6)

• n = 5, γ = (1 2 3), δ = (3 4 5)

• n = 4, γ = (1 2 3), δ = (2 3 4)

Before going on, one should keep in mind the following:

Definition 2.3. A group action G×X → X is transitive if it possesses only a single group
orbit, i.e., for every pair of elements x, y ∈ X, there is a group element g such that gx = y.

Definition 2.4. Consider a group action G ×X → X. A group block is a subset ∆ of X
such that:

• g∆ = ∆, or

• g∆ ∩∆ = ∅.
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Definition 2.5. A group action G × X → X is said to be primitive if it is transitive and
it has no nontrivial group blocks, i.e., denoting a group block with ∆, we can only have
∆ = {x} for some x ∈ X or ∆ = X. A group that has a faithful primitive group action is
called a primitive group.

Theorem 2.6 (Jordan [5]). If a primitive permutation group G is a subgroup of the sym-
metric group Sn and contains a p-cycle for some prime number p < n − 2, then G is either
the whole symmetric group Sn or the alternating group An.

Lemma 2.2. Following the construction above, we get Sn = ⟨α, β⟩ and An = ⟨γ, δ⟩.

Proof. For n ≤ 7 one can prove the result by hand. If n > 7, observe that p + l(β) > n,
hence the support of the two permutations α and β intersect. For this reason ⟨α, β⟩ is
transitive. However, we can say more, because ⟨α, β⟩ is transitive and it contains a cycle of
length p > n/2, hence it is also primitive. By Jordan’s Theorem, ⟨α, β⟩ = An or Sn, and
by our choice of the length of β it must be ⟨α, β⟩ = Sn. The same arguments show that
An = ⟨γ, δ⟩.

Proposition 2.2. For any n ≥ 3 and for any 2 ≤ k ≤ n−1, Sn has an irredundant generating
sequence of length k with elements of order a prime-power. Similarly, for any n ≥ 4 and for
any 2 ≤ k ≤ n− 2, An has an irredundant generating sequence of length k with elements of
order a prime-power.

Proof. For any t ≥ 3, we can construct αt, βt ∈ St as before, and observe that ⟨αt, βt, (t t+
1), (t+1 t+2), . . . , (n−1 n)⟩ = Sn, which is obvious by induction (⟨Sn−1, (n−1 n)⟩ = Sn). It
is also irredundant, indeed ⟨αt, βt, (t t+1), . . . , (x x+1), (x+2 x+3), . . . , (n−1 n)⟩, for some
integer t ≤ x ≤ n−3, maps {1, . . . , x+1} and {x+2, . . . , n} in themselves, respectively, hence
it cannot be Sn; similarly, ⟨βt, (t t+ 1) . . . , (n− 1 n)⟩ fixes 1 and ⟨αt, (t t+ 1) . . . , (n− 1 n)⟩
maps {1, . . . , p} in itself. Obviously, by construction, all the elements of the sequence have
prime-power order.
Similarly, for any t ≥ 4, we have ⟨γt, δt, (t t + 1 t + 2), (t t + 1)(t + 2 t + 3), (t t + 1)(t +
3 t + 4), . . . , (t t + 1)(n − 1 n)⟩ = An and this is again irredundant, indeed if we consider
⟨γt, δt, (t t+1 t+2), (t t+1)(t+2 t+3), . . . , (t t+1)(x x+1), (t t+1)(x+2 x+3), . . . , (t t+
1)(n − 1 n)⟩ for some integer t + 2 ≤ x ≤ n − 3, we observe that it maps {x + 2, . . . , n} in
itself, hence it cannot be An; similarly, ⟨γt, δt, (t t+1)(t+2 t+3), . . . , (t t+1)(n−1 n)⟩ maps
{(t t+1)} in itself; finally, observe that ⟨δt, (t t+1 t+2), (t t+1)(t+2 t+3), . . . , (t t+1)(n−
1 n)⟩ and ⟨γt, (t t+ 1 t+ 2), (t t+ 1)(t+ 2 t+ 3), . . . , (t t+ 1)(n− 1 n)⟩ map {1, . . . , p} and
{n−p+1, . . . , n} in themselves, respectively. This construction provides then an irredundant
generating sequence of elements of prime-power order for any k such that 2 ≤ k < n− 2 (not
for length n− 2 because we did not define γ3 and δ3, however we already know the existence
of a sequence in S(An) of length n− 2 by Lemma 2.1 and the fact that m(An) = n− 2 [13]),
hence the proof is concluded.
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2.4 Expected number of subgroups in F to generate a

finite group

Let G be a finite group and F a family of finite groups. If we fix a sequence {Hn}n∈N of
groups of F , we can define a random variable τG,F in the following way:

τG,F := min{n ≥ 1 | ⟨H1, . . . , Hn⟩ = G}

and also the probability that n elements of F generate G:

PG,F (n) :=
|{(H1, . . . , Hn) with Hi ∈ F and Hi ≤ G | ⟨H1, . . . , Hn⟩ = G}|

σG,F (G)n
.

In particular we get that P (τG,F > n) = 1− PG,F (n) so that we can introduce the expected
number of subgroups of G in F needed to generate G:

eF (G) :=
∑

n≥1

nP (τG,F = n) =
∑

n≥0

(1− PG,F (n)).

Let K ≤ G and consider the probability to generate a subgroup of K with n subgroups of G
in F : (

σG,F (K)

σG,F (G)

)n

=
∑

H≤K

PH,F (n).

Interpreting the first member of the above equality as a function ofK, one can apply Theorem
1.2 and get the following equality:

PG,F (n) =
∑

H≤G

µG(H)

(
σG,F (H)

σG,F (G)

)n

.

Proposition 2.3. If G is a finite group and F a family of finite groups, then:

eF (G) = −
∑

H<G

µG(H)σG,F (G)

σG,F (G)− σG,F (H)
.

Proof.

eF (G) =
∑

n≥0

(1− PG,F (n)) =
∑

n≥0


1−

∑

H≤G

µG(H)

(
σG,F (H)

σG,F (G)

)n


 =

= −
∑

n≥0

(
∑

H<G

µG(H)

(
σG,F (H)

σG,F (G)

)n
)

= −
∑

H<G



∑

n≥0

µG(H)

(
σG,F (H)

σG,F (G)

)n


 =

= −
∑

H<G

µG(H)σG,F (G)

σG,F (G)− σG,F (H)
.
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At this point we can implement the above formula:

1 G:=...;

2 list:=AllSubgroups(G);;

3 tom:=TableOfMarks(G);;

4 moebius:=MoebiusTom(tom);;

5 moebius.mu;;

6 firstml:=[]

7 for i in [1..Size(moebius.mu)] do

8 firstml[i]:=GetWithDefault(moebius.mu,i,0);

9 od;

10 s:=1;;

11 ml:=[];;

12 ml[1]:=firstml[1];;

13 for i in [1..Size(list)-1] do

14 if IsConjugate(G, list[i+1], list[i]) then

15 ml[i+1]:=firstml[s];

16 else ml[i+1]:=firstml[s+1];

17 s:=s+1;

18 fi;

19 od;

20 f:=[];;

21 for i in [1..Size(list)] do

22 if Is*desiredproperty*(list[i]) then

23 f[i]:=list[i];

24 else f[i]:=0;

25 fi;

26 od;

27 sigma:=[];;

28 for i in [1..Size(list)] do

29 sigma[i]:=0;

30 od;

31 for i in [1..Size(list)] do

32 for j in [1..Size(f)] do

33 if IsSubgroup(list[i],f[j]) then

34 sigma[i]:=sigma[i]+1;

35 fi;

36 od;

37 od;

38 el:=[];

39 for i in [1..Size(list)-1] do

40 el[i]:=ml[i]*sigma[Size(list)]/(sigma[Size(list)]-sigma[i]);

41 od;

42 -Sum(el);

43 Float(-Sum(el));

Example 2.2. Let F1 be the family of cyclic groups and F2 be the family of nilpotent
groups, then eF1

(S4) =
7837
2340 ∼ 3, 35 and eF2

(S4) =
517052
168245 ∼ 3, 07, as one can easily verify

31



applying the implementation above setting G=SymmetricGroup(4) and using the commands
”IsCyclic” and ”IsNilpotent” at line 22, respectively.

We are now interested in comparing e1(G) (the expected number of elements of G which are
needed to generate it, [7]) and eF1

(G). In particular, keep in mind the following, again from
[7]:

Proposition 2.4. If G is a finite group, then:

e1(G) = −
∑

H<G

µG(H)|G|

|G| − |H|
.

We can add the following lines to the code above:

44 el2:=[];

45 for i in [1..Size(list)-1] do

46 el2[i]:=ml[i]*Size(G)/(Size(G)-Size(list[i]));

47 od;

48 -Sum(el2);

49 Float(-Sum(el2));

At this point we can just apply the GAP procedure to some finite groups. The following
table contains the most relevant results:

Group e1(G) eF1
(G)

Cp
p

p−1
2

S3 2,90 2,92

S4 3,09 3,35

S5 2,85 2,97

A4 2,47 2,76

A5 2,46 2,80

Q8 3,33 4,17

D8 3,33 3,62

D10 2,69 2,57

D14 2,63 2,41

D16 3,33 3,63

D18 2,90 2,88

D22 3,04 2,93

PSL2(7) 2,38 2,66
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The results above show that e1(G) > eF1
(G) only when G = D10, D14, D18, D22. This

suggests that this may be true in general for D2n with n odd. This can be proved if, in
particular, n is prime:

Proposition 2.5. Let p ̸= 3 be a prime, then eF1
(D2p) ≤ e1(D2p) and equality holds if and

only if p = 2. In particular eF1
(D2p) =

1
p+1 + 2

p
+ 2.

Proof. As we have seen in Example 1.1, we have that D2p = ⟨a, b | ap = b2 = e, bab = a−1⟩,
the only subgroups are the trivial group, the whole group, ⟨a⟩ and ⟨baj⟩ for j = 0, . . . , p− 1
(which are p + 1 cyclic maximal subgroups, the first of order p and the others of order 2)
and the Möbius function is the following: µD2p

(D2p) = 1, µD2p
(H) = −1 for any non-

trivial H < G and µD2p
({1}) = p. Moreover, we can observe that σD2p,F1

(D2p) = p + 2,
σD2p,F1

(⟨H⟩) = 2 for any non-trivial H < G and obviously σD2p,F1
({1}) = 1.

Summing up, we get:

• e1(D2p) = −
∑

H<D2p

µD2p
(H)|D2p|

|D2p|−|H| = −

(
µD2p

({1})|D2p|

|D2p|−|{1}| +
∑p−1

j=0

µD2p
(⟨baj⟩)|D2p|

|D2p|−|⟨baj⟩| +

+
µD2p

(⟨a⟩)|D2p|

|D2p|−|⟨a⟩|

)
= − 2p2

2p−1 +
∑p−1

j=0
2p

2p−2 +
2p

2p−p
= − 2p2

2p−1 +
2p2

2p−2 +2 = 2p2

(2p−1)(2p−2) +2.

• eF1
(D2p) = −

∑
H<D2p

µD2p
(H)σD2p,F1

(D2p)

σD2p,F1
(D2p)−σD2p,F1

(H) = −
µD2p

({1})σD2p,F1
(D2p)

σD2p,F1
(D2p)−σD2p,F1

({1})−

−
∑

{1}<H<G

µD2p
({H})σD2p,F1

(D2p)

σD2p,F1
(D2p)−σD2p,F1

(H) = −p(p+2)
p+2−1 + (p+1)(p+2)

p+2−2 = 1
p+1 + 2

p
+ 2.

Thus we get eF1
(D2p) < e1(D2p) for any p > 3 and eF1

(D2p) = e1(D2p) if and only if p = 2
(observe that we knew that the inequality is not true for p = 3, since D6 ≃ S3 and S3 is in
the table).

Example 2.3. Consider the group Cp × Cp where Cp = ⟨x⟩ and p is prime. If we set
b := (x, 1) and a := (1, x) one can immediately check that the only non-trivial subgroups are
the p+ 1 maximal cyclic subgroups ⟨a⟩ and ⟨baj⟩ for j = 0, . . . , p− 1. In particular, we get
eF1

(Cp × Cp) = eF1
(D2p) =

1
p+1 + 2

p
+ 2.
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