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Abstract

This thesis addresses the challenge of estimating the parameters of beamlets from thermal im-
ages in the STRIKE diagnostic calorimeter, a crucial component for the neutral beam source
SPIDER.The latter is a clone of themain part of theMITICANeutral Beam Injector, which is
the full-scale prototype of the ITER tokamak additional injection power system. SPIDERpro-
duces up to 1280 beamlets of H-/D-, which are collected by STRIKE during 10-second shots.
STRIKE is observed via thermal cameras, and the thermal pattern given by every single beamlet
has been experimentally proven to be approximated as a 2DGaussian curve. Traditional meth-
ods for fitting beamlets are insufficient due to their time-consuming nature, and previously
developed rapid methods are not feasible for the new operation conditions of SPIDER.
This study tests two machine learning techniques, applying both unsupervised and super-

vised learning for fast and efficient beamlet parameter estimation. An unsupervised Gaussian
MixtureModel (GMM) and a supervised deep learningmodel, YOLO (YouOnly LookOnce),
were trained on synthetic images to detect and localize Gaussian approximations of the beam-
lets. The YOLO model, in particular, demonstrated superior performance, accurately iden-
tifying beamlets with tight bounding boxes even in cases of significant overlap. Refinement
techniques for YOLO as PX modifier and Ensemble were explored but didn’t yield better re-
sults.
Challenges remain in correctly estimating the amplitude of overlapping Gaussians. There-

fore, the thesis emphasizes the need for future work in disentangling overlappedGaussians and
extending model training to experimental STRIKE data. Besides, the methods developed in
this thesis offer a promising approach for characterizing SPIDER beam profiles: YOLO for
detecting and characterizing the beamlets with fast predictions of less than one second usually,
and GMM as a support method to label future experimental data.
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1
Introduction

The ITER (International Thermonuclear Experimental Reactor) tokamak is an international
project to prove the possibility of producing energy bynuclear fusion of deuteriumand tritium
nuclei on a reactor scale. Additional heating systems are required to heat up the plasma to the
necessary temperature for fusion, like injecting neutral beams.
A diagnostic calorimeter, STRIKE (Short-Time Retractable Instrumented Kalorimeter Ex-

periment), made of 1D-CFC tiles, has been developed to study the neutral particle beam gen-
erated on SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma).
The beam impinges on the calorimeter, and thermal cameras provide images of the tile’s tem-
perature profile on the rear side.
This thesis proposes estimating the beamlets’ parameters from the temperature profile via

machine learning. The model’s input is the image taken from a specific time of the STRIKE
operation inwhich the identification of the individual beamlets as approximated 2DGaussians
is possible. The longer the time in the operation, the lower the local information about each
beamlet hitting the tile as the heat transfers in the direction of length and width and the indi-
vidual peaks of temperature start to merge.

Traditionalmethods tofit thebeamlets are generally time-consuming, exceeding the required
response time for the operation of SPIDER. Furthermore, the beamlets are expected to present
divergence and deflection, increasing the difficulty of successfully identifying each one. The
first campaign of SPIDER had five beamlets impingement per tile of the STRIKE diagnostics.
After a retrofit of the equipment, the expectation is the total operationwith eighty beamlets per
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tile for the end of 2023, so a newmethodof fitting the 2DGaussians is needed, as the previously
developed ones have limitations regarding the high number of entities in the frames.
All images used in training and testing the algorithms in this thesis were artificially generated.

Two datasets were used, identified as DS-I and DS-II. The first one, with higher variance in
the beamlets’ parameters, aimed to stress-test the detection methods; the second was as similar
as possible to the future temperature profiles in STRIKE. Both unsupervised and supervised
machine learning techniques were used to estimate the Gaussian beamlet parameters from the
thermal images.
The unsupervised Gaussian Mixture Model (GMM) was tested to cluster the data points

and fit Gaussians representing each beamlet. Initial Gaussian center estimates from peak de-
tection facilitate the iterative fitting. The choice of the GMM was direct, as the beamlets are
approximated as Gaussians, so the final thermal images would be a sum of the distributions.
The supervised deep learning model, YOLO (You Only Look Once), was also trained on

labeled synthetic images to detect and localize each Gaussian beamlet. This is the first time
YOLO has been applied to characterizing the SPIDER beamlets. YOLO was selected due to
its state-of-the-art object detection capabilities, ability to handle overlapping objects, and fast
predictions. After training, YOLO rapidly analyzes new images, predicting bounding boxes
that identify the Gaussian beamlets. The box locations and dimensions provide the necessary
parameters to characterize each beamlet.
Both unsupervised GMM and supervised YOLO strategies were evaluated on the synthetic

test data. Their estimation performance was compared through error metrics such as beamlet
center positions, standard deviations, and amplitudes.
The YOLO model demonstrated the most robust performance in detecting and localizing

the individual Gaussians on the synthetic test images. After training on labeled data, YOLO
accurately identified the beamlets and bounded them with tight bounding boxes even when
significant overlap was present. Its error rates for predicting Gaussian centers and standard
deviations were substantially lower than the unsupervised GMM approach.
Additionally, two refinement techniques, PXmodifier and PXmodifier 2, were introduced

to improveYOLO’s localization accuracy further. Thesemethods analyzed the predictedGaus-
sian centers and employed the probability density function to update the estimated standard
deviations. However, they were found to perform inconsistently due to sensitivity to overlap-
ping Gaussians.
Furthermore, all methods struggled to correctly estimate Gaussians’ amplitude or intensity

value when heavy overlap causes them tomerge. The overlapping causes the peak brightness to
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exceed the individual components’ true amplitudes. Another critical limitation in the models
was the synthetic data, which may not fully capture the complexity of experimental STRIKE
images.
To bridge these gaps, future work should focus on disentangling overlapped Gaussians to

improve amplitude characterization. Training and evaluating models should also be extended
to use future STRIKE data. Finally, the machine learning techniques in this work could have
broader applications in nuclear fusion and other physics experiments needing rapid image data
analysis.
In conclusion, the supervised YOLO model provides a promising solution for characteriz-

ing the 80 beamlets expected in the upgraded STRIKE diagnostic. Although not reaching
astonishing performance, as the GMM is an unsupervised learning model, it may be used in
support of labeling of new images. YOLO can become a valuable tool for rapidly analyzing
beam profiles during SPIDER operation with further refinement to address amplitude estima-
tion. This will facilitate accelerated experiment optimization to meet the heating and current
drive requirements for ITER.
The thesis is organized into four chapters. The chapter on Literature overview introduces

the problem, provides background context, and presents relevant literature on beamlet char-
acterization, machine learning techniques, and prior work applying neural networks to this
problem. The chapter on Methods presents the methodology, including the synthetic data
generation, application of themachine learningmodels, training procedures, and performance
evaluation metrics. The chapter on Results analyzes the results, evaluates model performance
on the test data, and compares the strengths and limitations of the approaches. Finally, the
conclusion chapter summarizes the essential findings.
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2
Literature overview

This literature review summarizes past research on rapidly characterizing particle beamlets us-
ing thermal imaging data from the SPIDER experiment. It also gives a general context of the
subjects related to this thesis.
The goal is to provide context on the challenges and gaps this thesis aims to address. First,

it outlines the general context of fusion and related topics. Finally, review previous methods
proposed to estimate beamlet parameters from IR (infrared) camera images, including transfer
function models, neural networks, and convolutional neural networks.
It highlights critical identified difficulties, such as scaling existing approaches to accommo-

date more beamlets. It previews this thesis’s objectives and proposed techniques to overcome
these limitations through innovative deep-learning solutions. Specifically, this review discusses
the need for reliable, efficient estimation of parameters for Gaussian fits to approximately 80
beamlet profiles per tile.
Finally, a brief explanation of the methods used is exposed by describing crucial concepts of

Machine Learning, the Gaussian mixture model (GMM), Neural Networks (NNs), Convolu-
tional Neural Networks (CNNs), and the YOLO architecture.
Therefore, it provides an orientation on how this thesis builds upon and extends past litera-

ture to advance beamlet characterization capabilities for diagnostics of the future operation of
SPIDER.
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2.1 Fusion

The production of energy is a big challenge as it needs to fulfill the increasing energy demand
while managing the sustainability and cost-effectiveness of the process. One of the promising
pathways is energy production using nuclear fusion. Compared to the nuclear fission used
today, it does not present the samemagnitude of problemswith the long lifetime of radioactive
waste.

Fusion combines light atomic nuclei to form a heavier nucleus, releasing much energy. The
most efficient fusion reaction in the laboratory setting is between two hydrogen isotopes, deu-
terium (D) and tritium (T), to form heavier helium atoms with the release of energy. The DT
fusion produces the highest energy gain at the ”lowest” temperature.

The fulfillment of three conditions are needed to reach nuclear fusion: very high tempera-
ture (around 150 million degrees Celsius); sufficient plasma particle density, which increases
the likelihood of collisions between particles; and sufficient confinement time, as the plasma
tends to expand and it is needed to restrict it in a defined volume [1]. The deuterium isotopes
can be extracted from seawater, guaranteeing its supply for thousands of years, and the tritium
isotope production is feasible from lithium [2].
The electrons are separated from the nuclei in a gas at extreme temperatures. Hence, the

gas becomes a plasma and can be confined and controlled using powerful magnetic fields in
different designs. One of the designed reactors is the Tokamak reactor [1].

2.1.1 Tokamak

The Tokamak is an experimental nuclear fusion reactor designed to produce energy from fu-
sion reactions [3]. Its key objective is to confine plasma at extremely high temperatures to en-
able fusion between hydrogen isotopes [3], [4].
TheTokamakwas first developed in the late 1950s by Soviet research programs, and its name

comes from theRussian acronym for ”toroidal chamber withmagnetic coils.” It has since been
adopted worldwide as the most promising magnetic confinement configuration [3].

The Tokamak confines the plasma using powerful magnetic fields generated by coils sur-
rounding a torus-shaped vacuum chamber. The charged plasma particles are controlled and
shaped by the magnetic fields enclosing the hot plasma away from the reactor walls [3].

TheTokamak chamber is first evacuated and then filledwith hydrogen gas during operation.
Through electrical currents in the vessel, the gas ionizes into plasma, and as the particles become
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energized and collide, the plasma heats up. Additional heating methods raise the temperature
to 150-300 million °C to initiate fusion reactions [4].

The energy released heats the reactor walls and might be used to produce steam to drive
turbines to generate electricity, similar to conventional thermal power plants [3].

2.1.2 ITER

ITER (International Thermonuclear Experimental Reactor) is an international scientific col-
laboration to demonstrate the scientific and technological feasibility of fusion energy. Thirty-
five nations are collaborating to construct ITER in southern France, and the world’s largest
tokamak assembly is underway. ITER will have the largest Tokamak, with a plasma chamber
volume ten times greater than current devices [1], [3].

The key objective of ITER is to achieve a self-sustaining burning plasma that produces net
energy gain from the fusion process, 500 MW of fusion power from 50MW of input heating
power. To accomplish this, ITER will heat hydrogen isotopes, deuterium-tritium, to temper-
atures over 150 million °C and confine the plasma within a Tokamak reactor. It will test in-
tegrated systems and components essential for future fusion power plants, including tritium
breeding module, remote maintenance, diagnostics, and safety [1].

The additional heating systems for ITER are two neutral beam injectors, with a third one
possible if an upgrade is necessary during operation [5]. ITER requires a significantly high
injected particle energy of 1 MeV for effective plasma heating. This ion source must deliver a
total extracted ion current of 40 A and provide an injected heating power of 16.5 MW to the
ITER plasma [6].

2.1.3 Neutral beams

Injecting a particle beam into the reactor provides the plasma with additional heating. The
injected fast neutral hydrogen atoms become ionized through collisionswith ions and electrons
in the plasma. The magnetic field then confines these newly ionized particles. The injected
ions gradually transfer their kinetic energy to the electrons and ions constituting the plasma via
successive collisions, heating it [7]. Acceleration of the injected particles and the formation of
the beams occurs before entering the plasma, i.e., outside of the reactor. They must penetrate
the plasma enveloped by its strong magnetic fields [8].

The needed beam is composed of high-energy neutral particles as the inexistence of charge
permits the particles to freely enter the strong magnetic fields around the plasma. This beam
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production and acceleration process is the focus of the NBTF Project in Italy, Padua [9].

2.2 NBTF Project - Neutral Beam Test Facility

The key objective of the NBTF Project is to demonstrate a neutral beam injector capable of
delivering 16.5 MW of 1 MeV power for 1-hour pulses, as ITER needs. To accomplish this,
the NBTF Project is developing two prototypes at Padua - SPIDER, which tests the negative
ion source, andMITICA, which tests the full-scale 1 MV neutral beam injector [9].
SPIDER and MITICA allow experimental optimization of the physics and technology for

negative ion production, extraction, acceleration, and neutralization at the required power lev-
els. The knowledge gained from testing these prototypes enables the NBTF Project to finalize
the neutral beam injector design for ITER [9].

2.2.1 RFX

RFX Group is a research consortium established in 1996 consisting of five Italian partners
– CNR (National Research Council), ENEA (Italian National Agency for New Technolo-
gies, Energy and Sustainable Economic Development), INFN (National Institute for Nuclear
Physics, added to the consortium in 2005), University of Padua, and Acciaierie Venete S.p.A
(steel producer) [10]. TheRFXGroupaims to expandunderstandingof fusion-relevantplasma
physics and push technological boundaries in research facilities [11].
The RFX Group pursues this goal by operating experiments like RFX-mod2 and partici-

pating in major fusion projects like ITER. RFX houses test facilities like SPIDER and MIT-
ICA prototypes in the NBTF experiment to support ITER-neutral beam development. With
multidisciplinary expertise and international collaboration, the RFXGroup provides research,
training, and innovation to progress fusion [11].

2.2.2 MITICA

Thekeyobjective ofMITICA(Megavolt ITERInjector&ConceptAdvancement) is todemon-
strate the operation of a 1 MV neutral beam injector capable of meeting ITER’s injected heat-
ing power requirements. MITICA aims to produce a neutral particle beam with an energy of
1MeV at a power of 16.5 MW sustained for 1-hour pulse lengths [8].

To achieve this, MITICA utilizes a negative ion beam source and a 5-stage accelerator to
generate and accelerate negative ions. The neutralization of the ions occurs before injection,
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and in the 1:1 scale prototype, they will hit the target calorimeter. The results fromMITICA
will validate the injector design and performance for integration on ITER [8].

2.2.3 SPIDER

The SPIDER (Source for Production of Ion ofDeuteriumExtracted fromRF plasma) is a pro-
totype negative ion source designed to test the feasibility of meeting the neutral particle beam
injection (NBI) requirements that will heat the ITER tokamak. SPIDER is the world’s most
powerful negative ion source and has operated since 2018 [12]. Optimization of SPIDER op-
erational variables allows testing of different operating regimes to characterize the beam optics
as uniformity, divergence, and current [12].
SPIDERutilizesRFpower toproduce a dense plasma in the source fromwhichnegative ions

are extracted. An extraction and acceleration system follows the ion source, consisting of three
electrode grids with 1280 holes each. The plasma is extracted and accelerated through these
grids using a potential difference [12]. The source and diagnostics are enveloped by a vacuum
chamber formed by two cylindrical sections 4 meters in diameter and 6 meters in length [13].

Key design parameters for SPIDER are [12]:

• Beam energy of 100 keV 

• Production of negative ions of Deuterium and Hydrogen 

• RF system power of 800 kW 

• Pulse duration of 1 hour 

• Internal source pressure of 0.3 P

SPIDER provides critical data to finalize the design of the ITER ion source to meet its heat-
ing and current drive requirements. Different systems can measure the accelerated ion beam;
one is the STRIKE diagnostic calorimeter, and the other is the Beam Dump calorimeter [13].
The first one is the main diagnostics for the SPIDER experiment; the latter is a water-cooled
calorimeter that can absorb all the power of the beams in a steady state and has calorimetric
measurements performed. The advantage of the Beam Dump is that it can operate for long
pulses at full power, but as a disadvantage, it does not have a high resolution as STRIKE as it
is limited to a few centimeters [13].
The SPIDER with the beamlet impingement structure and the positioning of the IR cam-

eras used to capture images from STRIKE is presented in figure 2.1.
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Figure 2.1: (a) SPIDER, (b) Tile impingement ‐ 80 beamlets, (c) Positioning of IR cameras. Extracted and adapted from
Delogu et al. (2019) [14].

STRIKE

STRIKE (Short-TimeRetractable InstrumentedKalorimeter Experiment) is a high-resolution
calorimeter of 16 carbon fiber composite (CFC) tiles mounted on a metal structure. The or-
ganization of the tiles follows a 4 x 4 structure. The calorimeter allows measurements with a
precision of about 3 mm. Still, as it is not cooled, it only characterizes the impulses in a very
short window of a few seconds [13]. The key objectives of STRIKE are to measure the unifor-
mity, current, deflection, and divergence of the SPIDERbeams, and it is considered the central
diagnostic system for the SPIDER experiment [13].

The unidirectional carbon fibers are oriented in the same direction as the beam, so the heat
conduction in the depth direction is significantly higher than in the height and width direc-
tions; the ratios of the tiles used were 20 in this aspect [14]. The main measurements of the
calorimeter are high-precision 2D temperature maps formed by the beams hitting its surface
and collected by two IR (infrared) cameras.

The anisotropic conductivity property of the tile is necessary since the IR cameras used for
capturing the data for the calorimeter are positioned at the back of the surface in which the
beams hit the tiles. Hence, transferring the thermal pattern to the backmust occur with distor-
tion as small as possible [15] , [14].

The front-facing optical measurement approach faces challenges from two sources. First,
the energized gas layer between the beam and the calorimeter emits light, interfering with ob-
servation. Second, the beam’s heat causes the material to transition from solid to gas on the
calorimeter’s surface, releasing obscuring particles [14].
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The IR camera possesses a 640×480-pixel resolution and can identify temperature variances
as low as <30 mK, and it transmits full-frame 16-bit data at up to 50 Hz [16]. The axial posi-
tioning accuracy is +/- 5 mm, and the final error in estimating the beamlet pattern is lower or
equal to +/- 5% [2].

Besides the two IR cameras to measure the temperature changes, STRIKE has two other
sets of direct diagnostics, which are the thermocouples to measure the local temperature to
calibrate the signal from the IR cameras and current sensors that measure the current of the
beams [2].

In the full operation of SPIDER, 80 beamlets organized in a 16 x 5 format should hit each
STRIKE tile, as the calorimeter is composed of 16 tiles, and the equipment will operate with
1280 beamlets [14]. The analysis to determine the parameters of the energy beam and en-
ergy flux profile entails solving a complex inverse non-linear problem, which is mathemati-
cally challenging due to its ill-posed nature. Essential data for this analysis includes the non-
linear attributes of the tiles and the two-dimensional temperature distribution captured on the
calorimeter’s surface [16].

Figure 2.2 presents the STRIKE calorimeter, a close-up of the CFC tiles, and the IR camera
capture from the first campaign of SPIDER.

Figure 2.2: (a) STRIKE, (b) Two CFC tiles, (c) Image capture by IR camera on the first campaign ‐ The right side is the rear
side of the tiles. Extracted and adapted from Canocchi (2019) [2].
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2.3 Beams characterization

2DGaussians approximate eachbeamlet in the temperature profile representationonSTRIKE.
They have their positions, standard deviation, and amplitude influenced by SPIDER’s operat-
ing and construction conditions. The equation 2.1 presents a Gaussian distribution probabil-
ity density generally used in the fittings considering zero angulation and normalized amplitude.

f(x, y) =
1

2πσxσy
e

(
− 1

2

[
(x−μx)

2

σ2x
+

(y−μy)
2

σ2y

])
(2.1)

where σi represents the standard deviation of theGaussian in the i-th direction and μi the center
coordinate in i-th direction.

The evaluation of the beamlet formation involves three essential characteristics, which are
discussed in the work of Canocchi (2019) [2]. The beamlet divergence, deflection, and current
can be estimated using the parameters of the approximated Gaussians.

Beamlet divergencemeasures howdistributed thebeamparticles’ velocities in theplane trans-
verse to the direction of the beampropagation. Its value relates to the standard deviation of the
approximated Gaussian of the beamlet. Deflection is the difference in the position of the cen-
ter of the beamlet from the expected one divided by the distance of STRIKE to the last grid on
the ion source. It is possible to estimate current by computing the total energy deposited on
each tile by knowing the temperature increase and the specific heat, density, and volume of the
material [2].

The operation of the SPIDER in the first campaign involved a mask of five holes per tile in
front of the STRIKE calorimeter due to pressure issues [16]. A remarkable characteristic of
the beamlet shape in the first campaign, which only had five beamlets hitting each STRIKE’s
tile, was that it had an ellipse form, flattened in the x-direction [2].
Grids extraction and acceleration tensions, current in thefilter, and thepressure in theplasma

are the operating conditions of SPIDER that can change the beamlet characteristics as dis-
cussed in theworkofCanocchi (2019) [2]. The artificially generated images used in this current
thesis accounted for these variations in beamlet characteristics.

The final expected values of the parameters used in the synthesis were based on the simula-
tions of Pimazzoni (2018) [17] as there is no experimental data of the full operating conditions
of 80 beamlets per tile on STRIKE. The database was generated and provided by Dr. Delogu
and Dr. Pimazzoni to the author and reflects the expectation of the results of future experi-
mental images.
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2.3.1 Previous works in fast characterizing STRIKE

The STRIKE measurements performed by the IR camera must be analyzed to understand a
series of beamlet characteristics. The work of the identification of the profile of the beams
needs to be performed within a few minutes as it is a requirement to understand the beamlets’
conditions in operating time [16], [14].
Various methods mentioned in the literature can estimate the impinging flux with minimal

error. However, they share a commondisadvantage of substantial computational time required
to achieve convergence for each 2D thermal pattern examined [16].
The RFX team studied different approaches to reduce this time of estimation during opera-

tion, each tackling a specific problem of characterizing the IR frames. The common challenge
is identifying the beamlets in the tile. However, all dealt with fewer beamlets hitting each tile,
generally only five of them, a number lower than the 80 beams in the next full campaign of
SPIDER.

In theworksdeveloped, there is an assumption that the input-output linkof the temperature-
heat profile is invertible [16]. This section briefly describes some of the studies with the leading
results.

In 2015, Delogu et al. [18] presented a transfer function method to solve the problem of
faster analysis of the STRIKE profile utilizing the fast Fourier transform algorithm. The pre-
vious methods used a multiple peak 2D fit of the beamlet thermal pattern, which had a high
convergent time. The study performed tests in a small-scale version of the calorimeter (mini-
STRIKE), and the tile was considered a system on the control-engineering view and so could
be modeled using a transfer function. The energy flux of the beamlets profile was then esti-
mated using the temperature profile via the inverse of this function. The energy fluxes profile
approximation was a 2D Gaussian distribution constant in time. The Hubbert function ap-
proximated the temperature profiles, which are always larger and smoother than the energy
profiles. The estimation results were good, but the number and locations of the beamlets in
the study restricted the use to the future 80 beamlets per tile operation of STRIKE.

Delogu et al. in 2019 [14] presented an alternative approach. The newmethod usedNeural
Networks to estimate the heat flux profile by pre-processing the image using FFT (Fast Fourier
Transform) andPCA (PrincipalComponentAnalysis) for dimensionality reduction. Two gen-
eral models were proposed for the stationary and non-stationary IR data. One model directly
predicted the heat flux from the 2D temperature profile from the calorimeter IR cameras as
input. The other model predicted the 2D temperature profile from the heat flux as input, so
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the authors expected to solve the inverse problem inverting this later model. The direct predic-
tion model proved more feasible for the stationary condition and was considered reliable for
performing the task.
However, despite the excellent performance in the synthetic data, themodel built byDelogu

et al. (2019)[14] failed in the experimental one due to the high noise in the frames [16]. In a
later development, it was concluded that using the parameters of the approximated Gaussians
for the temperature and heat fluxes profiles resulted in better performance for the experimental
data [16].
As the model from Delogu et al. (2019)[14] proved not to be suitable for the experimental

data, in the study of Delogu et al. (2022) [16] a new set of NNs was proposed and tested. The
model’s inputs were the seven characterizing parameters from the fitted Gaussians in the 2D
temperature profile (x and y center, x and y standard deviation, amplitude, and angulation).
The outputs were the five parameters for the fitted Gaussians for the heat flux (excluding angu-
lation and differentiation in x and y standard deviation).

Delogu et al. (2022) [16] tested different architectures of theNN(NeuralNetwork), varying
the number of outputs. The best model achieved was to predict each output parameter of the
heat flux profile in different NNs, resulting in 25 NNs trained with just a single output. The
final reconstructed heat flux using the best model type reached high performance with low
errors in the standard deviation and amplitude estimations.

It is essential to highlight that the model from Delogu et al. (2022)[16] needed the parame-
ters of the approximated Gaussians of the temperature as input. The work tackled fitting the
profiles for five beamlets per tile. However, increasing to 80 beamlets per tile demands new
tools to perform the estimations, which was the core objective of this thesis, as the results can
later be used as input to the model from Delogu et al. (2022)[16] to estimate the heat flux
profiles.

Steffinlongo (2019) [19] developed two NNs to characterize the heat flux from the temper-
ature profile on STRIKE, operating with five beamlets per tile impingement. The difference
between the two NNs was the output, with one predicting the heat profile directly and the
other the characteristic parameters of the fitted Gaussians of the heat profile. The same pre-
processing used in the work of Delogu et al. (2019) [14], a combination of FFT and PCA, was
applied to reduce the input space while maintaining the main features.

In the study, Steffinlongo (2019) [19] concluded that the direct prediction of the heat profile
from the temperature profile didn’t reach good results as the estimated standard deviation and
amplitudes presented high errors. The second method analyzed, the prediction of the parame-
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ters of the approximatedGaussians of the heat flux, reached low errors in the reconstruction of
the profile for synthetic data. However, it could not estimate the HWHM (Half-width at half
maximum) of the Gaussians for the experimental data, as it did not have the parameter vari-
ance between beamlets in the same image on the training data. The synthetic data used in the
current thesis incorporated this variation in the HWHM on the same image on the database,
as recommended by Steffinlongo (2019)[19].
As discussed by Steffinlongo (2019)[19] and Delogu et al. (2019)[14], the pre-processing

using FFT and PCA of the thermal image involved a choice in the number of principal compo-
nents and frequencies to reduce the number of inputs while maintaining the main features of
the signal. The manual choice of compression level is unnecessary when the image transforma-
tion is performed using CNN (Convolutional Neural Network) layers, which gives the same
effect of dimensionality reduction with the extraction of main features. The final compression
and feature extraction in the CNN layers results from the architecture of the NN chosen.

In the study of Lonigro (2019)[20], a CNNwas trained to predict the parameters of a Gaus-
sian given the input image. The synthetic Gaussian images used in the study presented varia-
tions in center position, standard deviation in the x and y direction, amplitude, and rotation,
totalizing seven parameters. Each image showed a random number of randomly generated
Gaussians in a 200 by 300 pixels black image, and the model output was the seven parameters
characterizing each Gaussian present.

The training of an initial CNN to determine the centers yielded promising results for just
one Gaussian in the image. At the same time, the second tested CNN to predict the centers
and the standard deviations together did not reach the same performance. It even increased
the error in the center estimation. The final model architecture that presented the best results
for the prediction of one Gaussian was the one composed of three CNNs: one to predict the
centers, the other one for the standard deviation, and the last one for the angulation. Training
different CNNmodels with two Gaussians in the image did not yield good results [20].

The CNN models looking at the entire image from Lonigro (2019)[20] could not success-
fully identify more than one entity in the image, as the complexity of learning the image be-
comes increasingly higher as the combination of objects’ location and shapes are exponential
with its number. The author at first circumvented the problemusing a close-up strategy, which
required the estimation of the center of theGaussian and a crop-size parameter to extract a sub-
image in which the trained CNN was used to estimate all parameters of the extracted entity.
This method also presents limitations, as the crop size needs to be adequately chosen for each
dataset and is not learned directly during the training step.
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As the two Gaussians estimations already presented challenges, using the close-up strategy
for a higher number of Gaussians was not feasible, so Lonigro (2019)[20] dealt with this prob-
lem of identifying many entities moving a sliding window in the image and applying the same
best CNN from the estimation of up to two Gaussians. This last attempt resulted in good
results but withmisfires of some estimates and only considered ten Gaussians in the image ran-
domly organized in the tests.

Themethod derived in the current thesis to localize and detect multiple objects in the image
differs in approach. It does not utilize the slidingwindow technique but theYOLO–YouOnly
Look Once – architecture. The YOLO architecture permits a more flexible range of object
locations and shapes in the detection than a sliding window strategy, as it processes the whole
image simultaneously [21].

Finally, Cannochi (2019)[2] performed different pre-process in the images of the STRIKE,
such as background subtractions, image clipping, and perspective correction, as well as post-
process, such as computation of the energy deposited on the tiles, calorimetric current, deflec-
tion, and divergence of the beams. Knowing the beamlet profiles produced in STRIKE allows
many analyses of the operating state of SPIDER, which the studies of Cannochi (2019)[2]
extensively discussed.

Fastly estimating the beamlets’ characteristics may lead to a quicker experiment adjustment.
Hence, this thesis’s main objective is a reliable and efficient estimation of the parameters of the
beamlets’ approximated Gaussians considering the complete operation condition of 80 beam-
lets per tile in the STRIKE tiles. The post-process and pre-process algorithms andmethods are
out of the scope as it is already well developed in previous works and can be extended to the
analysis of future conditions.

16



2.4 Machine Learning

Machine learning is a branch of artificial intelligence that aims to learn the representation of
a problem through data. This section’s formal description of this learning process was based
on the book of Shalev-Shwartz, S. and Ben-David, S. (2014) [22] and considered a supervised
learning framework.

It is important to note that this thesis applies both unsupervised learning, theGaussianMix-
ture Model, and supervised learning, YOLO, to solve the problem of identifying the beamlets’
approximated Gaussians.

2.4.1 Supervised Learning

Supervised learning is where themodel is providedwith labeled training data, aiming to learn a
mapping from inputs to outputs. The learner in the basic supervised statistical learning setting
has access to the following data:

• Domain set (X ): an arbitrary set of objects that need to be labeled;

• Label set (Y): the possible labels of the objects, for example, 0 or 1;

• Training data (S): The sequence of pairs X × Y the learner can access. Each input
(X ) has a known label (Y), often called a target, and it serves as the training set of the
problem;

• Learner’s output: h, a predictor.

The learnermust use the training data to output a prediction rule or hypothesis, h : X −→ Y .
This hypothesis can predict the label of new objects in the domain set outside of the training
data.
The learning algorithm learns through the minimization of the training error that it has ac-

cess to. This error is called empirical error or empirical risk, so the whole process of outputting
a prediction rule h that minimizes the error is called Empirical RiskMinimization (ERM) [22].
The equation for the computed empirical risk function for a particular prediction rule h in a
training set ofm samples is presented in equation 2.2. The equation 2.3 presents the best out-
put of a learner given a set of hypothesesH; for example,H can be the set of linear functions
that relates x and y.

Ls(h) :=
|i ε [m] : h(xi) ̸= yi|

m
(2.2)
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ĥ := argmin
h ε H

LS(h) (2.3)

There are many different learning tasks that a machine learning model can tackle. Here, two
are described with their suitable loss function to evaluate the quality of the predictor. The way
to evaluate a predictor will change according to the learning objective, and the format of the
loss function used is as important as the definition of the hypothesis class.
InMulticlassClassification, for example, the objective is to classify objects based on the train-

ing set of correctly classified ones. A predictor that identifies the color (label) (e.g., red, blue,
yellow, green) is aMulticlass Classification problem, and the evaluation of this predictor could
be based on the probability of getting a wrong classification result.
In Regression, the objective is to find a pattern between X and Y values, i.e., a function to

predict the target Y using the domain set X as input. For example, a predictor that identifies
the maximum stress (R) of a structure based on the displacement in a point (R2) is a regression
problem, and the sum of the squared differences between the true target and the predicted
values could evaluate this predictor.

The loss functions (l) are defined as any function such that, given a set of hypothesisH and
some domainZ , it mapsH×Z to nonnegative real numbers, l : H×Z −→ Rb. The domain
Z in the prediction problem is the product of the domain set and the labels, i.e., an element in
the domainZ is the tuple z = (x, y) where x εX and y ε Y .

The empirical risk is the expected loss of a sample S = (z1, ..., zm) ε Zm, and its equation is
presented in 2.4.

LS(h) :=
1
m

m∑
i=1

l(h, zi) (2.4)

The typical loss functions used for classification and regression tasks are:

• 0-1 loss: normally used for classification problems:

l0−1(h, (x, y)) :=

{
0 if h(x) = y
1 if h(x) ̸= y

(2.5)

• Square loss: normally used for regression problems:

lsq(h, (x, y)) := (h(x)− y)2 (2.6)
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The empirical risk is used as an estimate of the minimization of the true risk represented by
function 2.7. So, minimizing the empirical risk might not guarantee the minimization of the
true risk, a problem related to the generalization of the models.

LD(w) = E
z∼D

[l(w, z)] (2.7)

where l is the loss function, which computes the error between the predictions and the true
labels.

2.4.2 Unsupervised Learning

Unsupervised learning deals with unlabeled data, i.e., only the domain set (X ) is known. The
algorithm explores the structure and patterns inherent in the data without explicitly being told
the ”right answer.” Common unsupervised learning methods include:

• Clustering: The objective is to group similar data points based on specific criteria.

• Dimensionality Reduction: Aims to reduce the number of variables in consideration,
making the data more accessible to visualize or compute.

The principle ofminimizing a loss function applies to the unsupervised learning framework;
for example, in the k-means clustering algorithm, the loss function minimized is the total dis-
tance of the data points to the centers of the k clusters.
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2.4.3 Gaussian mixture model

A Gaussian mixture model (GMM) supposes that data points come from a combination of
Gaussian distributions whose parameters are unknown. It is like an extension for the k-means
clustering bymodeling the covariances of the data alongwith the centers of the latentGaussian
components [23]. In the GMMmodel, the true assignment of each data point to a Gaussian
is unknown, so this is an unsupervised learning problem.

As described in section 2.3, 2DGaussians can approximate the beamlet temperature profile
in the STRIKE calorimeter. Therefore, the final resulted profile in the tile can be represented
by the sum of many Gaussian, and the problem is described as a Gaussian mixture model.

Given many beamlets, i.e., Gaussians, the problem is estimating each entity’s parameters.
This can be framed as an optimization problem - finding the parameters that maximize the
likelihood given the data distribution.

The Gaussians in the mixture can have different degrees of freedom in the fitting regarding
the covariance matrices. The sklearn.mixture module allows configuring different covari-
ance settings for the Gaussian components. This controls whether the Gaussians have corre-
lated or independent variances [23].

There are four covariance types [23]:

• Full: Each Gaussian has its general covariance matrix between the x and y dimensions,
and it allows correlations between x and y variances;

• Tied: Same covariance structure as ”Full,” but all Gaussians share the same general co-
variance matrix;

• Diagonal: Each Gaussian has its diagonal covariance matrix, meaning no x and y vari-
ances correlation, i.e., the x and y variances are independent, and the Gaussian format
has no angulation;

• Spherical: Each Gaussian has a single variance value, meaning circularly symmetric.

The ’full’ setting is the most flexible, allowing each Gaussian to have differently shaped el-
lipses based on the covariance matrix. The ’spherical’ setting forces circular Gaussians and is
the strictest. Therefore, the appropriate setting depends on assumptions about the x and y
variances correlations and constraints and possible simplifications for the problem.

The fitting of the parameters in GMM occurs using the expectation-maximization (EM) al-
gorithm, which provides an iterative approach. First, initial Gaussian parameters are randomly
set (e.g., centered on data points, from k-means algorithm, or user-defined). Then, for each
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data point, the probability that it was generated from eachGaussian is calculated. The parame-
ters are then updated tomaximize the likelihood of the data under these Gaussian assignments.
Repeating this process guarantees convergence to a local optimum [23].
Formally, the log-likelihood of a data point xi given the latent variables, i.e., hidden variables,

is expressed in equation 2.8. The objective of the EM algorithm is to maximize this likelihood
w.r.t. the parameters θ (means, covariances) of the Gaussians [24].

l(θ) =
n∑
i=1

log
∑
z(i)

p
(
x(i); z(i); θ

)
(2.8)

where n is the number of independent samples, and z is the latent variable.
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2.5 Neural Networks

Neural networks (NNs) are powerful modeling techniques for different learning tasks. It’s
vastly used in problems in that no explicit rules can be programmed, for example, image recog-
nition. This section aims to formally define anNNand present the general toolset used to train
this model. The author followed the descriptions given in the book of Shalev-Shwartz, S. and
Ben-David, S. (2014) [22].

The NN has a series of interconnections (links) between neurons, generally present in large
numbers. These connections are typically represented as lines and the neurons as graph nodes.
Neurons have a primary function in transforming the input data into an output via a trans-
fer function. Before information enters the next neuron, it passes through an interconnection
with a weighted factor applied. Therefore, the input data of the neurons is the sum of informa-
tion arriving through the edges. [22].
In the context of learning, the hypotheses class of NN are the predictors that share the same

underlying graph structure but have different weights at the edges. The training process of an
NN involves minimizing a loss function within the hypotheses class, which consists of param-
eters such as weights and bias. [22].

A feedforward NN is presented in figure 2.3. The model is generally structured in input,
hidden, and output layers. The artificial neurons are fully connected, and information travels
from the input to the output layer.

Figure 2.3: Feedforward Neural Network.

Because of its complicated structure and typically high amount of data necessary, the learn-
ingprocess of the hypothesis class ofNNpredictorsHV,E,σ is computationally demanding. The

22



Stochastic Gradient Descendent and Backpropagation algorithms are used in this process [22].

2.5.1 FeedforwardNeural Network

Adirected acyclic graph represents the feedforwardNN.Nodes in the graph represent neurons,
and edges represent interconnections between them. The nomenclatures and descriptions are
based on the book of Shalev-Shwartz, S. and Ben-David, S. (2014) [22].
Every neuron is a scalar function, transforming the input data into an output one, σ : R −→

R. It generally acts as a threshold function or, as it is called, an activation function. There are
many possible functions; the most used one is the sigmoid presented in equation 2.9. Another
one that may be used is the ReLu function, shown in 2.10 [22].

σ(a) =
1

1+ exp(−a)
(2.9)

σ(a) = max(0, a) (2.10)

The structure can be divided into layers (V) to understand an NN better. Given that T is
the number of layers, a disjoint subset of neurons from the NN. The nodes in one layer are
connected to the next one, so every layer connects a node inVt−1 to nodes inVt, where t ε [T].
An edge E represents the connection, each with a weight function w : E −→ R.

The first layer,V0, is the input layer, containing n+1 neurons. The n is the size of the input
space, and the added neuron is a constant bias value that always has the value 1. The vt,i repre-
sents the ith neuron in the tth layer, and the output of this neuron for the input x is denoted by
ot,i(x). The calculation proceeds layer by layer, i.e., the outputs of the layers t are the inputs for
the layer t+ 1.

A final expression of the input in the t+ 1 layer can be constructed using the outputs of the
t layer and the weights. Given a j neuron in the t+1 layer, vt+1,j ε Vt+1, the input at+1,j(x)when
theNN is fedwith the input vector x is presented in equation 2.11. The output of the j neuron
is shown in equation 2.12.

at+1,j(x) =
∑

r:(vt,r, vt+1,j ε E)

w((vt,r, vt+1,j))ot,r(x) (2.11)

ot+1,j(x) = σ(at+1,j(x)) (2.12)
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The input to the neuron vt+1,j is the sum of outputs of the neurons in Vt connected to it. Be-
sides the summation, the outputs of the neurons in Vt are weighted by the weight function w
assigned over the connecting edge to the neuron vt+1,j. The final output of this neuron is only
the application of the activation function σ in its input.

The layersV1, ...,VT−1 are called hidden layers, and the final one,VT, is the output layer. It
can have a single or more neuron depending on the type of target that the model is predicting.
The hidden layers t + 1 can have neurons not connected to the previous layers, outputting a
constant.

Some parameters to describe a feedforward NN are:

• The value T is generally called the depth of the network (excluding the input layerV0).

• The size of the network, |V|, represents the number of neurons in it.

• The width of the network,maxt|Vt|, represents the maximum number of neurons in a
layer.

The feedforward NN’s structure of depth 2, size 10, and width 5 is presented in figure 2.3.

2.5.2 Training of a Neural Network

The training description in this section will follow the training of a feedforward NN, which is
more straightforward to visualize than the other architectures presented in later sections. The
generalization of different architectures can be done. New implementations in the evaluations
of loss and gradients in the training process exist, but all follow the same general idea presented
here. The description of the SGD and backpropagation algorithms are based on the book of
Shalev-Shwartz, S. and Ben-David, S. (2014) [22] andGoodfellow, I.; Bengio, Y. andCourville,
A. (2016) [25].

Once specified by the parameters (V, E, σ, w), the feedforwardNN is a function as hV,E,σ,w :

R|V0−1| −→ RVT , i.e., an input returns anoutput. Anyoneof these functions canbe ahypothesis
class for learning.

The usual hypotheses class of neural network predictors is all functions hV,E,σ,w in which the
triplet (V, E, σ) are fixed. This triplet is called the architecture of the network, and the weights
over the edges are the parameters defining a hypothesis in the class. The hypotheses class is
presented in equation 2.13.

HV,E,σ = hV,E,σ,w : w is a mapping from E toR (2.13)
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SGD

The StochasticGradientDescent algorithm (SGD) is a heuristic applied in the training ofNNs.
It minimizes the loss function LS(w) to find the hypothesis inHV,E,σ tuning the weights over
the edges.

Supposing anNNhas n inputs and k outputs, and given E is a finite set, i.e., a finite number
of edges, it’s possible to represent the weights as a vectorw ε R|E|. This NN can be denoted as
hw : Rn −→ Rk, and given a target y εY , the prediction loss is denoted as Δ(hw(x), y). The loss
function assumed for the derivations is the squared loss, as presented in equation 2.14. The
risk function of the network over the training domain is shown in equation 2.15.

Δ(hw(x), y) =
1
2
∥hw(x)− y∥2 (2.14)

LS(w) = E
(x,y) ε S

[Δ(hw(x), y)] (2.15)

The SGD is an extended version of the gradient descendent (GD) procedure. Gradient de-
scendent is an iterative optimization procedure in which each step of the solution of an equal-
ity of a function is improved by taking a step in the direction of the negative gradient from
the current point. SGD simplifies gradient computation by taking steps in a random direction
approximating the expected negative gradient [22]. This makes the algorithm less prone to
getting stuck in local minima and reduces computational cost.

Formally, given a differentiable function f : Rd −→ R at the pointw, the gradient∇f(w) is
computed as the vector of partial derivatives of f as in equation 2.16.

∇f(w) =
(
∂f(w)
∂w1

, ...,
∂f(w)
∂wd

)
(2.16)

The value of w is updated in every step according to a step parameter η (learning rate), the
current point, and the gradient computed. Hence, the update step equation is presented in
2.17. The algorithm starts from an initial random value of w, for example, w1 = 0. This
updated value of w decreases the value of the function going in the opposite direction of the
maximum increase of f aroundwt.

wt+1 = wt − η∇f(wt) (2.17)

The GD applied to the empirical risk involves the evaluation of ”m” times the function’s
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gradient; hence, the operation’s computational cost scales O(m) with the number of training
samples [25]. The equation of a final GD for the empirical risk, equation 2.4, is presented in
2.18.

∇wLS(h) :=
1
m

m∑
i=1

∇wΔ(hw(x), y) (2.18)

The difference in the SGD algorithm is that the updating direction may not be precisely the
opposite of the gradient of the empirical risk function; hence, it does not use the entire training
dataset to evaluate the gradient. This is helpful becausemachine learning needs extensive train-
ing data to generalize effectively. Consequently, such large datasets also demand significantly
more computational resources to compute the gradients of the model in the training [25].
In the iterations using SGD, only a minibatch of n samples from the training dataset, B =

x(1), ..., x(n), is considered. The final equation for calculating the gradient using SGD is pre-
sented in 2.19. Using the compute gradient grad, the estimated neww is evaluated as in equa-
tion 2.17 [25]

grad :=
1
n

n∑
i=1

∇wΔ(hw(x), y) (2.19)

There are important details when applying SGD to theNNs, including possible enhancements
to the GD algorithm. These enhancements are not considered as a discussion scope in this
thesis. The backpropagation algorithm is the solution for computing the gradient for the loss
for the entire NN.

Backpropagation

Backpropagation allowsNNs to learn from data by efficiently computing each parameter’s im-
pact on the final predictions during training. Backpropagation computes the gradient of the
NN’s loss function, exploiting the model’s construction in layers and working backward to
correct each parameter from the final loss. In the following brief explanation, the mechanism
of computing the gradient of the loss function on an example (x, y) w.r.t. the vector w is pre-
sented.

The minima search in this section will be described using the sigmoid function, equation
2.9, and the loss function as the squared loss, but any derivation using a differentiable scalar
function as activation and a differentiable function for loss similarly holds [22]. All derivations
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and definitions were based on the book of Shalev-Shwartz, S. and Ben-David, S. (2014) [22].

An essential definition for understanding the backpropagation algorithm is the Jacobian of
f atw εRn, given that f is a function with multiplem outputs f : Rn −→ Rm. The Jacobian of
f at w ε Rn denoted as Jw(f), is an m × n matrix of partial derivatives in which the ith row is
related to the ith output variable and the jth column is associatedwith the jth variable atw. Given
fi: Rn −→ R the ith output function, the element at i, j of the Jacobian matrix is presented in
2.20.

Ji,j =
∂fi
∂wj

(2.20)

The chain rule propriety for the Jacobian given two functions f : Rn −→ Rm and g: Rk −→ Rn

and their composition (f ◦ g): Rk −→ Rm is presented in equation 2.21.

Jw(f ◦ g) = Jg(w)(f)Jw(g) (2.21)

The backpropagation exploits the decomposition of the neural network in layers to compute
the gradient. For every layer t in theNN, denote asVt = vt,1, ..., vt,kt the set of kt = |Vt| neurons
and asWt εRkt+1,kt the weight matrix, which gives the values of the connections of layer Vt to
Vt+1. If the edge E exists, theWt,i,j is the weight of the edge (vt,j, vt+1,i), and when the edge is
not present, the weight is set to 0.

Computing the partial derivatives w.r.t. edges fromVt−1 toVt is computing themw.r.t. the
elements inWt−1. With all other weights fixed, the outputs of neurons in layer Vt−1 become
fixed numbers represented by the vector ot−1. A loss function for the subnetwork of layers Vt

to VT can be defined based on the output of the neurons in Vt. This loss function is denoted
by lt : Rkt −→ R and can be written as in equation 2.22.

gt(Wt−1) = lt(ot) = lt(σ(at)) = lt(σ(Wt−1ot−1)) (2.22)

The previous results are written in a transpose form, reducing the weight matrix to a vector
for convenience. Let wt−1 ε Rkt−1kt be the reduced row vector by concatenating the rows of
Wt−1. The output vector is transformed to a kt × (kt−1kt) matrix Ot−1, whose values in the
diagonal are the transposed ot−1 vector. This rearrangement modifies the input of the neurons
in the layer Vt asWt−1ot−1 = Ot−1wt−1, and the loss function of the layer becomes equation
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2.23.

gt(wt−1) = lt(σ(Ot−1wt−1)) (2.23)

Besides the chain rule in terms of Jacobian, two results are used to compute the Jacobian of the
loss function:

• Given f (w) = Aw for A εRm,n. Jw(f ) = A

• For every n, given the notation σ to the function Rn to Rn, that applies the sigmoid
function element-wise. Therefore denoting α = σ(θ), for every i αi = σ(θi) = 1

1+exp(−θi) .
The Jacobian Jθ(σ) is a diagonal matrix with entry σ′(θi). The derivation of the scalar
sigmoid function is presented in equation 2.24.

σ′(θi) =
1

(1+ exp(θi))(1+ exp(−θi))
(2.24)

The Jacobian of the loss function in the layer Vt is computed using the chain rule and pre-
sented in equation 2.25.

Jwt−1(gt) = Jσ(Ot−1wt−1)(lt)diag(σ′(Ot−1wt−1))Ot−1 (2.25)

In terms of output and input values of the layer, the equation is simplified to 2.26.

Jwt−1(gt) = Jot(lt)diag(σ′(at))Ot−1 (2.26)

Denoting δt = Jot(lt), the Jacobian can be rewritten as equation 2.27.

Jwt−1(gt) = (δt,1σ′(at,1)oTt−1, ..., δt,ktσ′(at,kt)oTt−1) (2.27)

The gradient of lt at ot, δt, is calculated recursively. Starting from the last layer, VT, the loss is
computed using the NN output u and the true labels y as lT(u) = Δ(u, y). Assuming the loss
function is Δ(u, y) = 1

2 ||u − y||2, Ju(lT) = (u − y). In the last layer, δT = JoT(lT) = (oT - y).
Noting equation 2.28 and using the chain rule, the Jacobian of the loss function on the layer
Vt can be written using the loss function on the layer Vt+1, and the final result is expressed in
equation 2.29.

lt(u) = lt+1(σ(Wtu)) (2.28)
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δt = δt+1diag(σ′(at+1))Wt (2.29)

This result for the Jacobian and the definitionof the computationof the vectorsat, ot in theNN
fully define how to compute the elements of equation 2.27. Therefore, the Backpropagation
algorithm pseudo code is the following, extracted from [22], which can be divided into two
macro steps: forward and backward. The first is the computation of all inputs and outputs of
neurons run from the input to the output layer; the second is the computation of all Jacobians
from the output to the input layer.

Backpropagation for NNs
input: an example (x, y), weight vectorw,HV,E,σ
forward:
set o0 = x
for t from 1 to T:
for i from 1 to kt
set at,i =

∑kt−1
j=1 Wt−1,i,jot−1,j

set ot,i = σat,i
backward:
set δT = oT - y
for t = T-1, T-2, ..., 1
for i = 1, ..., kt
δt,i =

∑kt+1
j=1 Wt,j,iδt+1,jσ′(at+1,j)

output
each edge partial derivative of (vt−1,j, vt,i) is set to δt,iσ′(at,i)ot−1,j

The final algorithm of training a Neural Network, extracted from [22], is presented, consid-
ering the combination of the SGD and the backpropagation, usingmini-batches and updating
the weight parameters using n training examples in each iteration.

Training for Neural Networks
parameters: Number of iterations τ; step size sequence η1, η2, ..., ητ; regulariza-
tion parameter λ > 0
input: HV,E,σ
initialize: choosew(1) εR|E| at random s.t. w(1) is close enough to 0
for i from 1 to τ:
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sample (x, y) from training sample
calculate vi = backpropagation(x, y,w,HV,E,σ)
updatew(i+1) =w(i) - ηi(vi + λw(i))

output w̄ = best performingw(i) on validation set

Deep learning libraries such as TensorFlow let the user specify the number of samples the
model must consider updating its weights. The common terminology in the libraries is ”Batch
size” for the number n of training examples presented before updating the weights and Epoch
for the number of iterations the training set shows to the NN until the end of the learning
process.

Overfitting and underfitting

It’s possible to observe that the number of parameters in theNNpredictors class can be consid-
erable. This can lead to overfitting during the learning process, which is a challenge that must
be addressed with this type of predictor.

Overfitting is a natural path that the learning may lead and can be described as a learner
reaching a predictor that has an excellent performance in the training set but a very bad one in
the true ”world.” This happens when the hypothesis chosen by the learner in the hypothesis
class is the one that fits the training set verywell and cannot be generalized to new samples. The
validation set is used to identify the scenario of overfitting and escape from it.

Overfitting is detected in the training by monitoring the loss in a validation set. The valida-
tion set contains samples that themodel does not access during training and is used to estimate
the model’s true loss. Different strategies can be used to separate the collected data into train-
ing and validation sets. Overfitting starts when the training error of the NN keeps declining in
the learning process, but the validation error starts increasing.

There are some computationally cheap methods to avoid overfitting:

• The dropout method consists of a technique that randomly ”removes” neurons during
the training from the network. At each step, the network is trained with a subset of
neurons, which reduces the number of weights and avoids the output depending ”too
much” on a single neuron. The dropout probability is uniform and independent be-
tween neurons and is a hyper-parameter that needs to be tuned.

• Regularizing the weights involves adding a term in the loss function as a penalization for
having a high sum of the weights. An L1 or L2 term of the weights can be used, and the
hyper-parameter λ can be tuned to determine the penalty’s size.
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• Monitoring the training and validation loss is valuable to identify the right moment to
stop the learning process. This method to avoid overfitting is called early stopping, and
it uses the validation error to decide to stop the training.

The opposite of overfitting is underfitting, which occurs when the hypothesis class is not
complex enough to fit the problem satisfactorily or when the learning algorithm fails to find
a suitable hypothesis. Underfitting due to insufficient model complexity can be mitigated by
adding neurons or layers to the network architecture. When building NN models, selecting
the best hypothesis class between the topologies trained is common. The selection is based on
the validation error, and typically, there is a test set to estimate the final true risk of the fully
defined NNmodel.
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2.6 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialization of NNs to treat grid-like topol-
ogy data, e.g., images and time-series data. It is a type of neural network where convolution
replaces the usual matrix multiplication in one or more layers. The primary material used
in the description of this section is based on the book of Goodfellow, Ian; Bengio, Y.; and
Courville, Aaron (2016) [25] and on the course presented by Andrew NG et al. on Coursera
about Convolutional Neural Networks inside of the Deep learning specialization provided by
DeepLearning.AI [26].
In the 1990s, AT&T’s team crafted a CNN for checks reading. Post-2000, Microsoft lever-

aged CNNs for OCR and handwriting, broadening commercial utility. Specializing in grid-
structured data, CNNs excel in two-dimensional images and permit scalable model growth
[25].
Convolutional neural networks utilize three key concepts to enhance machine learning per-

formance: sparse connectivity, parameter sharing, and equivariance. Through sparse interac-
tions, CNN contrasts with traditional systems where outputs interact with all inputs. Each
output interacts with a limited set of inputs in the Convolution layer, which uses small kernels
for the connections [25]. Deep networks, with many Convolution layers stacked, allow deeper
units to connect with vast input sections so richer representations can be learned indirectly.
Stridden convolution and pooling further expand this reach[25].
Furthermore, the parameter sharing in these layers enhances memory use, computational

cost, and statistical efficiency, and the convolution’s equivariance property ensures output
shifts equally to input alterations. Parameter sharing is efficient and logical as it identifies fea-
tures like edges universally as they appear in many parts of the image [25].

2.6.1 Convolution and Convolution in NNs

Convolution, a mathematical operation on two real-valued function arguments, is exemplified
through the equation 2.30 and commonly denoted as 2.31. In convolutional network termi-
nology, the first argument, function x, is the input, and the second, function w, is the kernel.
The output is often referred to as the feature map [25].

s(t) =
∫

x(a)w(t− a)da (2.30)

32



s(t) = (x ∗ w)(t) (2.31)

When x and w are defined on integer t, the discrete convolution can be defined as presented
in equation 2.32.

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a) (2.32)

Inmachine learning, multidimensional arrays of data and parameters serve as input and ker-
nel. The latter one has its values optimized by the learning algorithm. Convolutions on multi-
ple axes employ a two-dimensional image I and kernel K, and its computation is presented in
equation 2.33 [25].

S(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(m, n)K(i−m, j− n). (2.33)

Cross-correlation, presented in equation 2.34, diverges from convolution by not flipping
the kernel and is often mislabeled and used in machine learning libraries and implementations
[25].

S(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(i+m, j+ n)K(m, n) (2.34)

The figure2.4 presents an example of convolution given an input of 3x3 and a kernel, or filter,
with the size of 2x2. The image is not padded, p = 0, and the stride equals 1 in both directions, s
= (1, 1). Padding and striding are presented in a later section; the first is related to adding values
in the input borders to increase the locations where the kernel may be applied, and the second
is the number of indexes the kernel is moved in each computation [26].

Figure 2.4: Convolution operation example. Kernel 2x2, input 3x3, s = (1, 1), and p = 0.
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The convolution process in anNN can be expressed by a 4D kernel tensor,K, with elements
Ki,j,k,l indicating the connection between a unit in the output channel i and another in the in-
put channel j. This connection considers an offset of k rows and l columns. Given the observed
data I, they are represented by elements Ii,j,k, the input unit’s value in channel i at row j and
column k. The output,Z, is analogous to I. The value ofZ is outputted by the convolution of
K across I, without flippingK, as presented in equation 2.35 [25].

Zi,j,k =
∑
l,m,n

[
Il,j+m−1,k+n−1Ki,l,m,n

]
(2.35)

In CNNs, ’convolution’ embodies parallel operational applications. While one kernel discerns
a feature type across spaces, a network layer aspires to capture diverse features from multiple
regions. This is achieved in a single layer by stacking togethermanykernels, resulting in ioutput
channels independent of the number of input channels.

2.6.2 Pooling

Convolutional Networks typically involve three stages. Initially, parallel convolutions produce
linear activations. A nonlinear activation function then passes these activations. Finally, a pool-
ing function modifies the output. This last pooling step is not necessarily applied, but almost
all CNNs employ it as it speeds up computation and makes features more robust [26] [25].

A pooling layer summarizes the outputs of neurons in a local neighborhood by computing
an aggregate statistic. Among these statistics options, max pooling identifies the maximum
value in a rectangular local zone. Others include averaging within this local zone, the L2 norm,
or a weighted average based on pixel distance [25]. A critical characteristic of the pooling layer
is that it doesn’t have weights to be adjusted in the training process, so sometimes the convolu-
tional and pooling layers are considered just one convolutional layer [26]. Figure 2.5 presents
a max pooling example using a filter of 2x2.

Pooling’s strength lies in its ability to maintain invariance to slight input translations, mean-
ing the pooled outputs remain mostly unchanged when the input is shifted slightly. If the
presence of a feature is more important than its precise location, invariance to small transla-
tions can be an advantageous characteristic in the network [25]. When pooling over distinct
convolution outputs, features can learn specific transformation invariance, for example, rota-
tion.

The pooling function is essential as it adapts the network to varying input sizes and reduces
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Figure 2.5: Pooling operation example with filter 2x2 and s = (2, 2).

computational cost when used to downsize the input dimension [25]. Generally, the images
in CNNs are shrunk in size (width and height) and enlarged in channels using pooling layers
[26].

2.6.3 Stride and padding

Zero-padding (or simply padding) in convolutional networks preserves the input I’s size and
enhances the network’s capability, allowing output size control independently of the kernel by
adding p pixels around the input. ”Valid” convolution, where kernels are entirely inside the
input as padding is not considered, provides an output of m - k + 1, i.e., the final outputs’ di-
mensions are reduced compared to the input ones. ”Same” convolutionmatches input-output
sizes, while ”full” convolution, visiting each pixel k times, offers m + k - 1 size. These types of
padding control the convolutional layers’ limit expanse, with an optimal padding level typically
ranging between valid and full convolution [25].

The convolution can further downsample the input dimensions by applying a stride (s)
greater than one with an option for different values for each direction. The stride value sets
how many indexes the kernel is moved in each computation, skipping some positions, which
reduces the computational cost but compromises the feature extraction. Figure 2.7 shows an
example of the convolution computation using a stride of (1, 1) and (2, 2); it is essential to no-
tice the effect of shrinkage of data when stride is used. The downsampled convolution formula
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Figure 2.6: Valid and Same padding examples.

is presented in 2.36 considering the same stride value for row and column direction.

Zi,j,k = c(K, I, s)i,j,k =
∑
l,m,n

[
Il,(j−1)×s+m,(k−1)×s+nKi,l,m,n

]
(2.36)

The final output size of the layer given the padding (p) and stride values (s), the kernel size
(f), and the input size (n) can be computed using the relation presented in 2.37 [26].

j, k = ⌊n+ 2p− f
s

+ 1⌋, ⌊n+ 2p− f
s

+ 1⌋ (2.37)

Figure 2.7: Stride example, s = (1, 1) and s = (2, 2).

2.6.4 Backpropagation in CNN

Three operations — convolution, backprop from output to weights, and backprop from out-
put to inputs — are crucial for training deep convolutional networks [25].
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The training aims to minimize a loss function LS(I,K). In forward propagation, convolu-
tion transforms the input image intooutput tensorsZused inLS calculation. Backpropagation
then calculatesG, which is the gradient of the loss function with respect to the output tensor,
defined by expression 2.38 [25]. A convolutional network that uses a strided convolution with
kernel stackK on a multi-channel image Iwith stride s is considered.

Gi,j,k =
∂

∂Zi,j,k
LS(I,K) (2.38)

Training needs the computation of the derivatives with respect to the kernel weights using
the expression 2.39 [25]. This is essential for updating the convolutional kernels during the
learning process.

g(G, I, s)i,j,k,l =
∂

∂Ki,j,k,l
LS(I,K) =

∑
m,n

Gi,m,nIj,(m−1)×s+k,(n−1)×s+l (2.39)

If the layer isn’t the lowest in the network, equation 2.40 computes the gradient concerning
the input I for further backpropagation [25]. It is essential to update the weights of previous
layers in the networks.

h(K,G, s)i,j,k =
∂

∂Ii,j,k
LS(I,K) (2.40)

Considering the convolutional network with stride s and padding p, the expression for the
gradient can be detailed as expression 2.41 [25].

h(K,G, s)i,j,k =
∑
l,m
s.t.

(l−1)×s+m=j

∑
n,p
s.t.

(n−1)×s+p=k

∑
q

Kq,i,m,pGq,l,n (2.41)
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2.7 Computer vision

Convolutional networks can scale to large-sizedNNs andhave provenhighly successful for two-
dimensional image inputs. Over time, various designs or ’architectures’ of these networks have
emerged for computer vision tasks. This section explores some key architectures, including the
specific model used in this thesis. The primary material used in this section is from the course
presented by AndrewNG et al. on Coursera about Convolutional Neural Networks inside of
the Deep Learning specialization provided by DeepLearning.AI [26].
Computer vision is a broad field that addresses various problems. Three significant areas

within this domain that are relevant to the scope of this thesis are image classification, object
detection, and semantic segmentation [26].

• Image Classification: This task involves assigning a label to an entire image based on its
content. For instance, given a photo, themodel determines whether it depicts a cat, dog,
car, or other object. It doesn’t provide the location or count of the objects;

• Object Detection: This is more detailed than image classification. It not only identifies
the objects present in an image but also determines their boundaries. It can involve mul-
tiple objects of multiple classes in the image. For example, the model will highlight each
car’s location using bounding boxes in a picture with several cars;

• Semantic Segmentation: Every pixel in an image is labeled with a class. For example, in
an autonomous car’s camera image, the model will label pixels to indicate if they belong
to the road, a pedestrian, a vehicle, the sky, a tree, etc.

2.7.1 Object detection: bounding boxes and IoU

Bounding box dimensions are relative to the image size. These boxes locate and encapsulate
the detected objects, visually representing the detection [26]. The boxes can be located by their
center or bottom left, and the height andwidth fully characterize them in the 2D image. Figure
2.8 presents a bounding box locating a statue in the picture; the box is shownwith a green line,
the center of the box is identifiedwith the coordinates (x, y), andwidth andheight are presented
as well.
Onemetric often used when evaluating object detection algorithms is the IntersectionOver

Union (IoU). It serves a dual purpose as a measuring tool to assess the accuracy of object local-

38



Figure 2.8: Bounding box example, locating a statue.

ization and can be used as a feature within the models to refine predictions. The formula to
compute IoU is presented in 2.42, given two bounding boxes, A and B.

IoU(A,B) =
Area of Intersection(A,B)

Area of Union(A,B)
(2.42)

Typically, an IoU value of 0.5 is considered standard for object detection. While stricter
criteria can be applied, values lower than this are uncommon.

2.7.2 Case studies

In deep learning, case studies and published models are essential sources to start investigating
the solution of a problem. For example, recent deep learning models for computer vision typ-
ically require vast resources and data to be trained, so utilizing the work previously done is
crucial for the success of such a model. Some already trained networks for computer vision are
available to be used, and using these pre-trained models constitutes an excellent head start to
solve a problem [26]. Four architectures exemplify the progression in deep learning for com-
puter vision: LeNet-5, VGG, ResNet, and Yolo.
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LeNet-5

LeNet-5, presented in the seminal paper of LeCun et al., 1998 [27], as cited in [26], was a pio-
neeringCNNdesigned explicitly for handwriting and character recognition, laying the ground-
work for future CNNs in image recognition tasks. The model has around 60,000 parameters,
making it relatively lightweight compared to later models. The network is presented in image
2.9 [26].

Figure 2.9: LeNet‐5 architecture. Figure adapted from Ng, Katanforoosh, and Mourri (2023) [26].

The CNN can be described in tabular form, which presents the sequential layers, inform-
ing the number of filters or neurons and other important information about the architecture.
The LetNet-5 is shown in table 2.1; it is possible to check that the numbering of the layers is
sequential and the pooling and convolutional (CONV) layers are considered just one.

It is essential to notice how the convolution layers are stacked one after another, shrinking
the image height andwidth and increasing the number of channels. After several convolutional
layers, the network transitions to fully connected layers, which process the extracted features.
The final layer uses a softmax activation to provide probabilities for each potential output. For
instance, the network is designed to recognize digits, giving the likelihood of the image being
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Layer Number: filters/neurons Filter size Stride/padding Output size
Input - - - 32 x 32 x 1
Conv 1 6 5 x 5 s = 1, p = valid 28 x 28 x 6

Avg. Pooling 1 - 2 x 2 s = 2 14 x 14 x 6
Conv 2 16 5 x 5 s = 1, p = valid 10 x 10 x 16

Avg. Pooling 2 - 2 x 2 s = 2 5 x 5 x 16
Conv 3 120 5 x 5 s = 1, p = valid 120

Fully connected 1 120 - - 84
Fully connected 2 84 - - 10

Table 2.1: LetNet‐5 architecture. Table adapted from Ng, Katanforoosh, and Mourri (2023) [26].

each digit from 0 to 9 [26].

VGG

VGG-16 is a deep convolutional neural network (CNN) designed for large-scale image recog-
nition presented by K. Simonyan and A. Zisserman (2015) [28], as cited in [26]. The ’16’ in
VGG-16 refers to the number of layers with trainable weights. There’s also a VGG-19 variant
and while it has more layers, its performance is comparable to VGG-16 without significant
improvements [26]. The VGG-16 NN is presented in table 2.2.

The network doubles the number of filters at each layer, increasing its depth and ability to
capture intricate detailswhile decreasing thewidth andheight of thedata. TheNNconsistently
uses 3x3 filterswith a stride (s) of 1, implementing amax pooling afterwardwith a 2x2 filter and
stride of 2, effectively reducing the data tensor size. The network has 138 million parameters
to be trained [26]. The final two layers are fully connected and end in a final layer that uses a
softmax activation to provide probabilities for each potential output [26].

ResNet

ResNet (Residual Network) is designed for large-scale image recognition. It’s notably deep,
presented by He et al. (2015) with a version containing 152 layers [29], as cited in [26]. The
optimization algorithmcan strugglewith verydeep architectures in traditional neural networks.
Deeper networks can sometimes perform worse due to this difficulty in training. ResNet’s
design, with its residual blocks and skip connections, counters this problem, making very deep
networks more effective [26].

SkipConnections are ”shortcuts” or ”residual connections.” Instead of sending data straight
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Layer Number: filters/neurons Filter size Stride/padding Output size
Input - - - 224 x 224 x 3

2 x Convolution 64 3 x 3 s = 1, p = same 224 x 224 x 64
Max Pooling - 2 x 2 s = 2 112 x 112 x 64

2 x Convolution 128 3 x 3 s = 1, p = same 112 x 112 x 128
Max Pooling - 2 x 2 s = 2 56 x 56 x 128

3 x Convolution 256 3 x 3 s = 1, p = same 56 x 56 x 256
Max Pooling - 2 x 2 s = 2 28 x 28 x 256

3 x Convolution 512 3 x 3 s = 1, p = same 28 x 28 x 512
Max Pooling - 2 x 2 s = 2 14 x 14 x 512

3 x Convolution 512 3 x 3 s = 1, p = same 14 x 14 x 512
Max Pooling - 2 x 2 s = 2 7 x 7 x 512

Fully connected 1 25088 - - 4096
Fully connected 2 4096 - - 4096
Fully connected 3 4096 - - 1000

Table 2.2: VGG‐16 architecture. Table adapted from Ng, Katanforoosh, and Mourri (2023) [26].

through every layer, ResNet occasionally lets data skip some layers. Specifically, the activation
from one layer is added to a later layer’s activation, usually before a ReLU activation function
and after the linear transformation. This process allows the term a[l] to skip layers; the notation
of superscript [l] indicates the output belongs to the lth layer [26].
The residual block diagram is presented in figure 2.10, and a toy example of a 4-layer residual

NN is shown in image 2.11. The a[l] value that skips the l + 1 layer in the figure is summed
before the activation function of the layer l+2, the equation 2.43 extracted from [26] presents
the computation of a[l+2] in the residual block.

Figure 2.10: Residual block: shortcut or skip connection. Figure extracted from Ng, Katanforoosh, and Mourri (2023) [26].
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a[l+1] = σ
(
w[l+1]a[l] + b[l+1]) (2.43)

a[l+2] = σ
(
w[l+2]a[l+1] + b[l+2] + a[l]

)
(2.44)

Figure 2.11: Residual Network. Figure adapted from Ng, Katanforoosh, and Mourri (2023) [26].

CNN to object detection

Traditional CNNs (Convolutional Neural Networks) usually provide a single output for an
image, classifying it into a particular category. However, if identifying an object and determin-
ing its location in an image is needed, the standard approach of these CNNs falls short [26].
A potential solution is the ”sliding window detection” method. The training of such CNN
should use tightly cropped images of the object of interest. For instance, if identifying cars, use
images cropped closely around cars. The goal is for the object to occupy most of the image.

The trained CNN is then applied to the various cropped portions of new images by sliding
a window across the image. The CNN predicts the likelihood of the object’s presence within
eachwindow. The object’s exact location is identified by examining theCNN’s predictions for
eachwindow. Thismethod requires theCNN to evaluate numerous windowed portions of an
image. Using larger strides or window sizes can speed up the process but may sacrifice accuracy
as the object might not fit correctly in the window [26].

In 2014, Sermanet et al. [30], as cited in [26], introduced an approach to optimizing the
sliding windowmethod by processing the entire image in one go through the CNN as a convo-
lution implementation of the sliding window. Although the process presented by Sermanet et
al. was computationally effective, the disadvantage lay in the accuracy of the bounding box, as
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the problem of a not perfectly matching window to the object is still present in the approach
[26].
The YOLOmodel presented in the next section and used in this thesis overcomes both prob-

lems of computational efficiency and bounding box accuracy, as both properties are essential
to the problem of characterizing the STRIKE calorimeter, as discussed in previous sections.

2.7.3 YOLO

YOLO, or ”You Only Look Once,” redefines object detection using a single neural network to
predict bounding boxes and class probabilities straight from image pixels. As it discerns object
sizes and shapes, it is a robust method. Remarkably, it learns very general representations of
objects, offering superior performance compared to other methods, and is extremely fast in
evaluations [21].
YOLO method reasons globally about images, enabling it to implicitly encode contextual

information about class nuances and appearance. Unlike other techniques, such as slidingwin-
dows or regionproposals, YOLOviews the entire image during training and testing. While Fast
R-CNN often misidentifies background patches as objects due to a lack of larger context vi-
sion, resulting in background errors, YOLO has fewer than half suchmistakes. Notably, when
YOLO trains on natural images and tests on artwork, it vastly outperforms top detectors like
DPM and R-CNN, demonstrating a more robust generalization [21].

Themodel was first developed and proposed by Redmon et al. in 2015 [21], as cited in [26].
Many versions of the model were released with many improvements over time. Still, only the
main concepts needed to grasp how versions of YOLOwork are presented here, i.e., bounding
boxes, anchor boxes, and non-max suppression. The general loss function and the architecture
of the first version (YOLOv1) [21] and the version used in this thesis are also presented inmore
detail.

YOLO divides an image into a grid, often using finer grids like 19 x 19, and instead of sepa-
rate models for classification and localization, YOLO employs a unified vector. This vector is
assessed for each grid cell in the image, and its general form, given C possible object classes, is
presented in equation 2.45 [26].

Prediction = [confidence, bx, by, bw, bh, p1, p2, . . . , pC] (2.45)

Where:

• [bx, by, bw, bh] are the bounding box attributes;
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• confidence is confidence in the presence of an object;

• p1, p2, . . . , pC are the class probabilities.

YOLOmight be used to predict specific bounding boxes around detected objects. It’s versa-
tile and capable of recognizing various box ratios. The fundamental principle is that each object
gets assigned to only one grid cell where the object’s center lies. Using finer grids, YOLOmini-
mizes the chances of having multiple object classes within a single cell [26]. The Anchor boxes
concept to be described later enables YOLO to predictmultiple objects within a single cell [31].
Unlike methods that might require running a separate algorithm for each grid cell, as dis-

cussed in the previous section, YOLO’s architecture involves a single convolutional network
performing computations for all cells simultaneously. This design choice enables YOLO to
operate at remarkable speeds, making it apt for real-time object detection [26]. All the ad-
vantages described in speed, localization, and generalization made this model unique for the
characterization of STRIKE.

Non-max suppression

A challenge in object detection using YOLO is that the same object can be detected multiple
times, resulting in overlapping bounding boxes. Non-max suppression (NMS) is an algorithm
designed to address this issue. Its primary function is to reduce the multiple identifications of
the same object to a single bounding box. For example, by dividing an image into 19 x 19 boxes,
each box could detect the same object but with varying confidence levels (probabilities) [26].

The NMS algorithm removes all low-probability predicted bounding boxes given a thresh-
old. This threshold is chosen in the prediction step and can be a parameter to regulate the
model prediction quality [26]. In the second step, the algorithm highlights the box with the
highest probability among the remaining ones. All boxes with a high IoU overlap with this se-
lected box (typically an overlap of 0.5 or more, but it can also be set in the prediction step) are
suppressed. The idea is that these suppressed boxes are likely detecting the same object [26].

After the highest probability box has been selected and overlapping boxes suppressed, the
process is repeated for the next highest probability until all boxes are either suppressed or iden-
tified as predictions [26]. TheNMS algorithm gives the YOLOmodel two parameters that can
be chosen in the prediction step: the threshold for the lowest probability and the acceptable
IoU between bounding boxes.

45



Anchor boxes

The introduction ofAnchor boxes occurred inYOLOv2 [31]. TheYOLOv8used in this thesis
doesn’t utilize Anchor boxes but a different approach to predict many scales inside a grid cell
[32]. The description of Anchor boxes is maintained here. It is an easier way to understand
how a computer vision model would detect overlapping objects of different scales in the same
grid cell.

Traditionally, each grid cell predicted only one class of object. If multiple objects fall within
the same grid cell, the system struggles to identify them separately. Anchor boxes are predefined
shapes that can represent different types of objects. The detection system can modify its pre-
dictions using these boxes, considering multiple objects within a single grid cell [26]. For every
grid cell, there’s a prediction for each anchor box. Objects are paired with a grid cell (based on
the object’s midpoint) and an anchor box. The anchor box selected is the one that most closely
matches the object’s shape, determined by the Intersection over Union (IoU) metric [26].

For example, if two anchor boxes are used, each grid cell will predict two distinct bounding
boxes. It’s essential to note that sometimes, these bounding boxes might extend beyond the
boundaries of the grid cell. Figure 2.12presents the example of thepredictionof the two anchor
boxes in a grid cell. The anchor boxes are moved to the predicted centers in the image but not
resized, and the prior centers do not necessarily need to be equal for all anchor boxes; the image
only highlights how the shape of each anchor boxmight help identify different types of objects
in the image.

The vector of prediction when two anchor boxes are applied is presented in equation 2.46
[26]. The subscript i denotes predictions associated with the ith anchor box.

Prediction = [confidence1, bx1, by1, bw1, bh1, p11, p12, . . . , p1C,

confidence2, bx2, by2, bw2, bh2, p21, p22, . . . , p2C] (2.46)

Anchor boxes can be tailored to fit the objects in the dataset better. One method is manual
selection, choosing common shapes in the data. Alternatively, a more data-driven approach
involves using k-means clustering. This method groups common object shapes together, pro-
viding a clearer picture of the prevalent object shapes in the dataset.

46



Figure 2.12: Two Anchor boxes represented considering objects with their center in the central grid cell. Figure created
based on Ng, Katanforoosh, and Mourri (2023) [26]

Architecture YOLOv1

YOLOv1 comprises a single NN to extract relevant features from the images. The first version
of YOLOwas built using aCNNwith 24 convolutional layers followed by two fully connected
layers [21], presented in table 2.3.

The YOLO algorithm received many improvements over time, arriving at version 3 with its
creators Redmon, J.; Farhadi, A. [33] and being developed up to version 8 by other researchers.
This thesis used version 8, developed by Ultralytics [34]. References for all versions of YOLO
can be accessed in [35].

Architecture YOLOv8

YOLOv8 architecture utilizes two major elements that are referred to as backbone and head.
The backbone is the CNN responsible for the feature extraction of the images; the head is the
NN responsible for the final prediction of classification and localization [32]. As the CNN of
YOLOv8 ismore complex, withmany skip connections and split operations, it is more suitable
to present it in a diagram format instead of the tabular form of the other NNs. The diagram
of the YOLOv8 model, considering all five variations of size, is presented in figure 2.13. The
table in the ”details” part of the diagram describes the difference between the CNN sizes, from
nano (n) to extra large (x).
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Layer Number: filters/neurons Filter size Stride/padding Output size
Input - - - 448 x 448 x 3

Convolution 64 7 x 7 s = 2, p = same 224 x 224 x 64
Max Pooling - 2 x 2 s = 2 112 x 112 x 64
Convolution 192 3 x 3 s = 1, p = same 112 x 112 x 192
Max Pooling - 2 x 2 s = 2 56 x 56 x 192
Convolution 128 1 x 1 s = 1, p = same 56 x 56 x 128
Convolution 256 3 x 3 s = 1, p = same 56 x 56 x 256
Convolution 256 1 x 1 s = 1, p = same 56 x 56 x 256
Convolution 512 3 x 3 s = 1, p = same 56 x 56 x 512
Max Pooling - 2 x 2 s = 2 28 x 28 x 512

4 x Convolution [256 (1 x 1), 512 (3 x 3)] 1 x 1, 3 x 3 s = 1, p = same 28 x 28 x 512
Convolution 512 1 x 1 s = 1, p = same 28 x 28 x 512
Convolution 1024 3 x 3 s = 1, p = same 28 x 28 x 1024
Max Pooling - 2 x 2 s = 2 14 x 14 x 1024

2 x Convolution [512 (1 x 1), 1024 (3 x 3)] 1 x 1, 3 x 3 s = 1, p = same 14 x 14 x 1024
Convolution 1024 3 x 3 s = 1, p = same 14 x 14 x 1024
Convolution 1024 3 x 3 s = 2, p = same 7 x 7 x 1024
Convolution 1024 3 x 3 s = 1, p = same 28 x 28 x 1024
Convolution 1024 3 x 3 s = 2, p = same 14 x 14 x 1024

2 x Convolution 1024 3 x 3 s = 1, p = same 7 x 7 x 1024
Fully connected 50176 - - 4096
Fully connected 4096 - - 7 x 7 x 30

Table 2.3: YOLOv1 architecture. Table adapted from the original paper of Redmon (2015) [21].
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Figure 2.13: YOLOv8 model diagram, extracted from [32].
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Loss function YOLOv1

The loss function described in the first version of YOLOv1 considered a combination of three
types of losses related to the coordinates, objectness, and classification. Each loss is accounted
for in the final error metric and is presented in equations 2.47 to 2.51, extracted from [21].
The S2 value is the number of grid cells in the method, and B is the number of bounding

boxes predicted for each grid cell. The indicator 1objij is used in the equations to penalize only if
an object is present in the grid cell and the 1noobjij when not. As many grid cells do not contain
objects, the losses are weighted by the parameters λcoord and λnoobj, the latter one lower than the
first one [21].

• The bounding box center loss:

Lcenter = λcoord
S2∑
i=0

B∑
j=0

1objij
(
(xi − x̂i)2 + (yi − ŷi)

2) (2.47)

where(xi, yi) is the true center coordinates of the object; and (x̂i, ŷi), the predicted ones.

• The bounding box dimension loss and the square of the width and height are done to
address the problem that the error in larger boxes should affect the metric less than the
error in small ones:

Ldimension = λcoord
S2∑
i=0

B∑
j=0

1objij
((√

wi −
√

ŵi

)2
+

(√
hi −

√
ĥi
)2
)

(2.48)

where (wi, hi) is the true width and height of the bounding box, respectively, and the
(ŵi, ĥi) are the predicted ones.

• The objectness confidence loss for object:

Lconf_obj =
S2∑
i=0

B∑
j=0

1objij
(
Ci − Ĉi

)2
(2.49)

where Ci is the true objectness confidence score, and Ĉi is the predicted one.

• The objectness confidence loss for no object:

Lconf_noobj = λnoobj
S2∑
i=0

B∑
j=0

1noobjij
(
Ci − Ĉi

)2
(2.50)
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where Ci is the true objectness confidence score, and Ĉi is the predicted one.

• The class probability loss:

Lclass =
S2∑
i=0

1obji
∑

c∈classes

(
pi(c)− p̂i(c)

)2 (2.51)

where pi(c) is the true class probability for class c and p̂i(c) is the predicted one.
The total YOLOv1 loss is just the sum of these losses, and it is presented in equation 2.52

[21].

LYOLO = Lcenter + Ldimension + Lconf_obj + Lconf_noobj + Lclass (2.52)

Loss function YOLOv8

Ultralitycs YOLOmodel training is based on three losses, similar to the ones in YOLOv1, and
their curves are presented in the training process. The losses are:

• box_loss: Regression loss for the bounding boxes measures the error between the pre-
dicted coordinates and the ground truth ones. It is a mean squared error [36].

• cls_loss: Classification loss incurred from incorrect object class predictions within the
bounding boxes. Measures the error between the predicted class probabilities and the
ground truth ones. The binary cross-entropy loss is used [36].

• dfl_loss: Distribution Focal Loss adjusts the standard focal loss to address the class im-
balance in object detection tasks. It dynamically adjusts the weights of each category
during training based on their distribution. It uses the predicted and true box geometri-
cal features and compares the distribution of them [32].

PerformanceMetrics in Object Detection

Differentmetrics are commonly used in object detectionmodels to evaluate their performance;
their definition lies in the need for a unified framework to assess the object detection models,
whose performance must be computed in both the classification and localization tasks. Here,
an overview of some of the metrics is presented. It is essential to notice that a classification
of true positive/false positive of object detection is related to an IoU threshold between the
ground truth box and the predicted one [37].
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• Precision: Ratio of correctly predicted positive observations to the total predicted pos-
itives. It is computed as equation 2.53. Precision shows howmuch the model misclassi-
fies, giving false detections [37].

Precision =
True Positives

True Positives+ False Positives
(2.53)

• Recall: Ratio of correctly predicted positive observations to all the actual positives. It’s
given by equation 2.54. This measures the model’s capacity to detect the objects in the
image [37].

Recall =
True Positives

True Positives+ False Negatives
(2.54)

• Average Precision (AP): For each class, an AP score is computed as the area under the
precision-recall curve. This provides insights into the trade-off between precision and
recall for different thresholds [37].

• mean Average Precision (mAP): This is the average of AP over all classes, providing
a single score that summarizes the object detection model’s performance. For a dataset
with C classes, it’s computed as equation [37].

mAP =
1
C

C∑
i=1

APi (2.55)

where APi is the average precision for class i.

• mAP50: mAP with an IoU threshold of 0.5, denoted as mAP@0.5 alternatively, is a
widely used metric in object detection. A predicted bounding box is considered correct
if it has an IoU of 0.5 or higher than any ground-truth bounding box [37].
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3
Methods

This chapter describes the analysis performed in the synthetic images of two datasets based on
STRIKE,DS-I andDS-II. Researchers at RFX provided both datasets, so their generation pro-
cess is briefly described. Artificial data generation is elaborated in the ”Datasets” section. Labels
for the supervised learningmodel are the location and the sizes of bounding boxes around each
Gaussian. This labeling process is also described.
The models applied are briefly cited, and any meaningful information regarding the param-

eters used is described. In this thesis, the final objective was to identify the centers and stan-
dard deviations (sigmas) of these Gaussians, and the methods of the Gaussian Mixture Model
(GMM) and the YOLOmodel were tested to achieve this objective. Additionally, the PXmod-
ifier andPXmodifier 2were introduced to refine the estimations of the YOLOmethod, aiming
to enhance the center and covariance detections. Finally, an ensemble strategy used to combine
the results of two methods is described.
At the end of this chapter, the evaluation errors used to compare the estimation models

are discussed, and their equations are provided. All analysis, model training, and prediction
were carried out using Python on the Google Colab environment, and the notebooks can be
consulted on the GitHub of the author [38].
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3.1 Datasets

This sectiondescribes the labeling and the image dataset generation for this thesis. Twodatasets
were generated, differing in the Gaussian parameters. The generated datasets consisted of a 2D
mapof intensity values,mapped to grayscale images usingMatplotlib’s default colormapbefore
applying the detection methods. Eighty beamlets approximated as Gaussians were generated
separately for both datasets, considering random values for its center and diagonal covariance
matrices. The Gaussians didn’t have rotation.

TheGaussianswere expected to be distributed in 5 columns and 16 rows. Hence, the centers
of the generatedGaussians were set based on a randomoffset from this expected grid. Gaussian
standard deviations in the x and y directionwere expected to be bounded, so the sampled values
from a random distribution reflecting this prior were used.

Ideally, all beamswould have identical shapes and currents, so theGaussians should have the
same amplitude and minimal x and y deviations, appearing as concentrated peaks in the heat
map. However, beam variations were introduced, causing the Gaussians to differ in amplitude
and spread with some overlapping and becoming entangled, making them hard to distinguish.

The first dataset (DS-I) was created to challenge the identification methods, so large deflec-
tions, amplitude variances, and divergences were present in the images. The second dataset
(DS-II) considered the expected beamlets’ parameters from SPIDER in its generation, present-
ing low deflection and divergence and a more uniform amplitude in its images.

The DS-I presented 800 images with substantial differences between sets of 200 images.
Thus, this dataset was split into four groups with 200 images in the experiments. Each group
was identified as letters in the later section of the results. Accordingly, all methods were evalu-
ated for five subsets, considering the four with 200 images and an extended one combining the
first two subsets into a 400-image group.

The images in this first dataset had dimensions of 377 x 143 pixels. Each pixel represented
roughly 2 mm in the STRIKE tiles [14]. As it had high deflection values, some Gaussian had
its centers lying outside the image or were entirely outside. Only Gaussians with its center in
the image were considered in the analysis.

The seconddataset (DS-II) presented uniformcharacteristics between thewhole 400 images,
so no grouping of subsets was constructed. The methods were evaluated once for this dataset,
which was used entirely. It had a lower resolution than the DS-I images, presenting only 180 x
72 pixels per image.
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3.1.1 Labeling

The labeling for the Gaussians was constructed from the parameters used in their generation.
Theboundingbox centerswere theGaussian centers, and thewidth andheightwere three times
the x and y standard deviations (sigmas or σ), which covered 99% of the Gaussian area. There-
fore, each Gaussian in the image received a five-number label: one for its class (0 - Gaussian),
two for the center location, and two for the box size.

3.1.2 Errors evaluation

Different errors were evaluated, focusing on theGaussians localization and amplitudes and the
number of objects identified—the localization errors were computed separately in the x and
y directions. The computation of errors required pairing predicted and true Gaussians in the
image, so a matching algorithm was used after the models’ predictions. All errors are relative,
and their value is reported in percentage in the tables of the results section.

The applied matching algorithm found the optimal one-to-one assignment of Gaussians by
minimizing the total squared distance of the centers between matches in the image. This op-
timization was accomplished using the Scipy library optimize.linear_sum_assignment.
Any true Gaussians not matched to an estimated one were excluded from the error calculation,
so unidentifiedGaussians did not contribute to the reported errors of themethods. Any falsely
identified Gaussian did not affect the errors computed as well.

The center error metric is presented in expression 3.1.

ECenteri =
1
m
∑
k

Ĉi,k − Ci,k

Ci,k
(3.1)

where m is the number of true Gaussians matched in the image, Ci,k is the ith center coordi-
nate for the kth Gaussian with i = x, y, and k = 1,...,m, and Ĉi,k is the predicted one.
The standard deviation error metric is presented in expression 3.2.

Eσi =
1
m
∑ σ̂i,k − σi,k

σi,k
(3.2)

where m is the number of true Gaussians matched in the image, σi,k is the standard deviation
in ith direction for the kth Gaussian with i = x, y, and k = 1,...,m, and σ̂i,k is the predicted one.
The difference between the true number and the estimated number of Gaussians was calcu-

lated for each image. This difference provides a rough error measurement for the global identi-
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fication accuracy as it doesn’t consider aminimum IoU tomatch predicted and trueGaussians.
The expression used in the computation is presented in equation 3.3.

E# =
Number of identified Gaussians
Number of Gaussians identifiable

(3.3)

where the Number of Gaussians identifiable were the Gaussians with its center inside the
image, and the Number of identified Gaussians were the number of predicted Gaussians in
the image.

The amplitude in the image, as it was in pixel scale, needed to be converted back to the inten-
sity values used in the datasets. The original image at the predicted Gaussian centers was used
to get the actual intensity values. The amplitude error metric is presented in 3.4.

EA =
1
m
∑ Âk − Ak

Ak
(3.4)

where m is the number of true Gaussians matched in the image, Ak is the amplitude for the
kth Gaussian with k = 1,...,m, and Âk is the predicted one.

Another error evaluated but not as important in comparing themethodswas the reconstruc-
tion error based on themean squared error of pixels. This pixel-level errormetric evaluates how
well the estimated Gaussians can recreate the original image. Lower errors indicate more accu-
rateGaussian fitting. To compute this, the image is reconstructed using the estimatedGaussian
parameters, and the difference between the reconstructed and original image is calculated for
each pixel in each Gaussian region. The reconstruction error metric is presented in expression
3.5.

EReconstruction =
1
m
∑
k

∑
P ε bbk

(P̂− P)2

n(bbk)
(3.5)

where m is the number of true Gaussians matched in the image, bbk is the predicted bound-
ing box for the kth Gaussian with k = 1,...,m, P are the pixels’ value inside bbk, and P̂ is the
predicted value.

3.1.3 Dataset splitting

Each evaluation comprised three subsets of the dataset used in the study of each method. The
splitting was related to dividing the data into training, validation, and test datasets. The pro-
portion used was 70%, 20%, and 10%, respectively.
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The validation dataset is used during training to measure the model’s performance in gener-
alizing. As it is used in the training, it can’t be used later to estimate the true risk of the model.
The test dataset is held out from the training to assess the true risk of the model.

It is important to note that the GMM is an unsupervised learning method. Therefore, it
was directly applied to the test dataset, not using the training and validation datasets in the
methods.
The test dataset is the same for all methods to guarantee an equivalent estimation of the true

risk between them, and all errors reported are based on the set of images belonging to it. The
numbering of images for each dataset is registered in the appropriate result section.
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3.2 GMMmethod

In the Gaussian Mixture Models (GMMs), an image is modeled as being generated from a
mixture of Gaussian distributions, as described in section 2.4.3. GMM fitting allows passing
initial estimates for the Gaussian parameters like centers and standard deviations.

Without initial estimates, the model randomly initializes the parameters. However, reason-
able initial estimates are essential for converging to an accurate solution, so the estimated cen-
ters of the Gaussians were passed to the method. The standard deviations were randomly ini-
tialized, and the Gaussians’ covariance type was chosen as diag; for more details, check 2.4.3.

The initial center estimateswere obtainedby applying the peak detection algorithm from the
scikit-image library, peak_local_max, to a Laplacian-filtered version of the image. The
peak_local_max function finds the highest peak within a local region of the data, ignoring
other lower values. This helps identify the center of a Gaussian curve in a sub-region of the
image, even if parts of different Gaussian curves are also present in that region.

The Laplacian from scipy library, ndimage.laplace, was applied to the images to high-
light areas of rapid intensity change. The filtered images comprised pixels with a Laplacian
value greater than or equal to 0, indicating a Gaussian peak or edge.

As the filtered image highlighted the centers (peaks) of theGaussians, it enabled better detec-
tion than on the raw image by the peak_local_max function. Using these estimated centers
to initialize the model helped guide the fitting process compared to random initialization.

The x and y coordinates of pixels exceeding a Laplacian threshold of 0 were used as the input
of themodel fitting, as theGMMmodel in the sklearnonly considers the x and y coordinates.
Thenumber ofGaussians that themodel used in the fittingswas the number of identifiedpeaks
by the peak_local_max function.

As discussed in section 2.4.3, GMM is an unsupervised learning model, and no labeling
about the dataset was passed to the model. The final output of the GMMmodel is the centers
of the Gaussians and the covariances. The amplitude value for each Gaussian was considered
as the intensity value in the object’s predicted center.
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3.3 YOLOmethod

A pre-trained YOLO model on the COCO-120 dataset, ”yolov8s.pt,” available on the library
of Ultralytics [34], was retrained on the labeled images of Gaussians in the datasets. The
model was trained in six different datasets and used to predict the sampled images. There-
fore, the evaluation metrics in the Results chapter were reported identifying the dataset the
model was trained by coupling ”YOLO” with the identification of the dataset. This suffix is
suppressed when evident from the context or when the model is being discussed generally, so
the model is only identified as ”YOLO.”

After 100 training epochs, the training was stopped, and the trainingmetrics were evaluated
to check the final model performance. In one of the datasets, the model was trained for 200
training epochs to assess the improvement of the performance metrics. The batch size was
passed as ”-1” to the model, meaning the algorithm maximized the number of images in each
batch to the capacity in memory of the GPU.

The confidence and intersection over union (IoU) thresholds are key parameterswhen using
YOLO. The confidence threshold filters out detections with a low likelihood of accuracy. The
IoU threshold is used to merge overlapping bounding boxes that result from multiple detec-
tions of the same object. The predictions in this thesis used the default values provided by the
library for these parameters, 0.25 and 0.7, for confidence and IoU, respectively.

The input for the YOLOmodel was the grayscale images, and the output was the bounding
box coordinates. Each Gaussians’ parameter set could be determined using the bounding box
location and size as the labeling process allowed this by construction. The amplitude value for
each Gaussian was the intensity value in its predicted center in the image.

To train the YOLO, each image needed labels in this format:

• Column 1: The class ID - use as 0 for all Gaussians;

• Columns 2 and 3: The x, y coordinates of the bounding box center;

• Columns 4 and 5: The width and height of the bounding box.

This labeling structure allows YOLO to learn to detect the objects and localize them with
bounding boxes during training. The bounding box coordinates predicted by the YOLO algo-
rithm should be normalized to the range [0, 1] considering the image sizes, so this allows the
predictions to be standardized across varying dimensions of images.
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The YOLO folder structure requires separate train, validation, and test subsets. Each subset
contains an images folder and a labels folder. This latter onepresents the information structures
described above for each Gaussian in the image so that the file would have more or less eighty
lines with five columns.

60



3.4 PX modifier and PXmodifier 2

Considering the characteristics of the Gaussian distribution, a refining method for the YOLO
predictions was developed to adjust its estimated centers and standard deviations. The tech-
nique was decomposed into a first stage of center adjustment and a second stage of standard
deviation estimation. Each stepwas applied in the x and ydirection for each identifiedGaussian
by YOLO. It is important to note that after using the method in the x-direction, the center’s
coordinates passed to the y-direction step is the initial one, even though it might have occurred
an update in the x-coordinate.

The first stage was accomplished by analyzing a square trial region around the first estimated
centers. This trial regionworkedwith a step in the grid, set by a step_size, and by comparing the
amplitudes in the points in this trial zone. If the amplitude at a trial point was higher than the
original estimated center, the center was moved to this new coordinate. The value of step_size
equal 1 was used in the experimentations, as higher values were demonstrated to be highly un-
stable. If, with the incremental step_size from the center, the point was outside the edge, the
edge was considered the center to be evaluated.

Using the density formula of Gaussian distribution, 2.1, it was possible to estimate the stan-
dard deviation in x and y in the second phase. The equation used in the estimation is presented
in expression 3.6.

σ =

√√√√− (xi±3 − xi)2

2log
(

f(xi±3)

f(xi)

) (3.6)

The formula of estimations depended on the amplitude ratio between the peak of the Gaus-
sian and another point. The estimate used a step_size of 3 pixels, chosen through a trial and
error procedure. Therefore, the amplitude ratio compared in the second phase was between
the center and pixels 3 steps above/below.

The variances were calculated from points above and below the center. These were averaged
to estimate the final variance. If the computed variance was negative, the point 3 steps away
had a higher amplitude likely caused by overlapping Gaussians. Only positive variance values
were averaged in this case, so negative variances were excluded.

Themethod was later modified to a PXmodifier 2 version, in which the lowest variance was
used if the up and down variances differed too much. The distribution of the up and down
variance differences for each Gaussian in the image was analyzed, and the outliers were selected
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using the IQRmethod. This new version was based on the observation that a significant differ-
ence flags a high Gaussian overlap probably present in the outlier direction. The PX modifier
2 encompasses the expression 3.7 as a post-processing of the estimations from 3.6.

if σ̂(xi+3)− σ̂(xi−3) outlier: σ̂ = min (σ̂(xi+3), σ̂(xi−3)) (3.7)

62



3.5 Ensembled

Expecting that the PXmodifier 2 would give different errors for different Gaussians compared
to YOLO, an ensembled method was proposed. The ensemble was tested only with PXmodi-
fier 2 and YOLO, as the PXmodifier presented high errors, as reported in the results.

The ensembling was based on the EReconstruction,k, to select the best estimation method for
each Gaussian in the image. The EReconstruction,k, was calculated on the cropped region of the
kth Gaussian for each method, considering the bounding box predicted by each. The errors
were then compared for each Gaussian and each method, caring that the same Gaussian was
being compared. The model with the lower EReconstruction,k, for the region of the kth Gaussian,
was used to predict its parameters. Therefore, the prediction in an ensembled image combined
Gaussians’ predicted parameters of the two methods.
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4
Results

This section presents the results of evaluating the provided datasets with the proposed meth-
ods. It starts with a brief analysis of the images dataset, an important exercise to understand
the variances between the images. Qualitative images of the detection were vastly presented to
deepen the discussion about the advantages and weaknesses of each method.
The first dataset (DS-I) was split into four groups of images; each was analyzed using the

four proposedmethods, and the errorswere reported. A study combined two groups (A andB)
fromDS-I to understand the model’s robustness. The YOLO’s test error and training metrics
for this extended group (DS-IE) were also reported.
The second dataset (DS-II) was analyzed entirely, without following a group splitting as the

first one, using the best model selected from the tests in the first dataset (DS-I). YOLO trained
in the DS-IE, the extended group of DS-I, was tested, and a new training was performed using
images fromDS-II. All errors for both YOLOmodels and theGMMmethod in theDS-II were
reported in this chapter.
To conclude, critical remarks and recommendations for using the models in the future op-

eration of SPIDER are provided, as well as the opportunities for enhancements for the YOLO
model, considered the best method developed.
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Images / ID Amplitude Cx Cy σx σy
Base / Base 5.57E7 - - 9.9 5.19
0 - 200 / A +1.5E6 Same ± 10 + 3 + 2
200 - 400 / B +2E6 ± 4 Same + 6 + 3
400 - 600 / C +2.1E6 Same Same + 17 + 10
600 - 800 / D +2.1E6 ± 5 Same + 17 + 10

Table 4.1: Groups of images in DS‐I and characteristic parameters compared to the base image.

4.1 Dataset analysis

The two datasets provided were initially analyzed in terms of general characteristics of deflec-
tion and divergence as an exercise to understand the complexities involved in detecting the
Gaussians.

The first dataset (DS-I) was compared with the provided base image. As described in the
previous chapter 3, the Gaussians were generated using random offset parameters from this
expected base image. The first image in the figure 4.1 presents it.
Table 4.1 presents themean offsets of the parameters for the four groupings created from the

800 images from the DS-I. The values in the table are presented as the mean increment/decre-
ment of theGaussians in the images from theones in thebase image. The increment/decrement
values for the center and standard deviation (σ) are based on the number of pixels. The center
of the base is not provided in the table, as it requires 80 pairs of coordinates, but it can be seen
in the figure 4.1. The groups are identified later using the dataset identification concatenated
with its ID, e.g., DS-IA.

The figure 4.1 presents a sample of the images in DS-I in grayscale. The images shown are
109, 203, 401 and 601. The base image is presented first; it is possible to observe a very orga-
nized 5 x 16 array of Gaussian peaks that are well separated from each other and with a con-
sistently high amplitude. The positioning in the x-axis of the Gaussians centers are all aligned
in the columns, and a different positioning in the y-axis is used, maintaining a reasonable dis-
tance between Gaussians. The space between columns was also varied to simulate an x and y
deflection expected from the SPIDER beamlets.

Analyzing image 109 in the secondplace, a sample from images inDS-IA, there’s a noticeable
distortion in the placement of some Gaussians, mainly in the y direction, with intense entan-
glement of some Gaussians. Not all Gaussians are identified, and some are out of the image
due to the high difference in Cy described in 4.1. The amplitudes are consistently high, and in
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some places, the amplitude appears much higher due to the overlapping of Gaussians in the y
direction.
Analyzing image 203 in the third place, a sample from images inDS-IB, there’s a clear overlap

of many Gaussians, especially in the x direction, related to the higher σx and Cx values. The
overlapping causes a less distinct appearance of individual Gaussians and a more continuous
luminance profile, but more Gaussians are identifiable than the images from group A.

Analyzing the image in the fourth and fifth places, a sample from images in DS-IC and DS-
ID, respectively, almost all Gaussians overlap, causing a uniform luminance profile across the
entire image. The overlap is so significant that identifying any Gaussians becomes challenging,
likely due to high standard deviation in both the x and y directions.

Figure 4.1: Base image and an image example for each group in DS‐I, image identification based on Image ID on 4.1.

The challenge of identifying the Gaussians using a Computer Vision technique is entirely
different between the groups. The first image on 4.1, the base one, provides a minimal chal-
lenge, as theGaussians arewell-separated anddistinct, so simplepeakdetectionmethods should
be enough. The images in groups A and B are trickier to work on, as someGaussians are closer
to each other, making them harder to distinguish.

When Gaussians overlap or entangle, a simple peak detection might mistake closely spaced
Gaussians as one. Furthermore, distortions in the placement mean that assumptions about
regular spacing can’t be applied, requiring more adaptive methods. The summation caused by
overlapping generates brighter peaks that can overshadow adjacent lighter ones, causingmissed
detections.
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The images in groups DS-IC and DS-ID lack clear peaks, and it is hard to differentiate be-
tween overlapping Gaussians and the background. The detection task is challenging as the
image resembles a blurred gradient, hardly resembling any Gaussian structure.
The amplitudes of the Gaussian will be an essential characteristic when applying the meth-

ods in the experimental data, as this regulates the contrast between the objects and the back-
ground. Higher contrast facilitates detection, and it is better if noise is present, as the noise and
Gaussian amplitude difference would be more significant.
Lastly, it is essential to notice that the images used in this thesis have variations in Gaussian

width, height, amplitudes, and positioning, as recommended for a training dataset for a model
that would need to deal with this generalization in the experimental images.
Figure 4.2 presents the images from 4.1 labeled using the bounding boxes. Those labels were

used to train the YOLOmodel.

Figure 4.2: Labeled base image and samples for each group in DS‐I, image identification based on Image ID on 4.1.

In the second dataset (DS-II), the 400 images provided have a restricted parameter variance,
making them appear more rounded than those on the first dataset. A notable limitation is that
these images have only a quarter of the resolution of the prior models, with half the pixels in
both the x and y directions. All methods tested with the previous Gaussians were also applied
to this new dataset.
The figure 4.3 presents two samples from DS-II and the bounding boxes constructed from

the ground truth parameters for each Gaussian. It is possible to check that the lower resolu-
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tion results in a loss of fine detail compared to the DS-I. The individual Gaussians and their
structures are not as sharply defined, and their differences have been somewhat blurred. The
amplitudes between Gaussians are also variable, visible by the image’s brightness. The Gaus-
sians overlap and merge frequently, making individual object detection more challenging.

Figure 4.3: Two image examples with labeling in DS‐II (a) image 0, (b) image 0 with bounding boxes, (c) image 313, (d) image
313 with bounding boxes.

It is possible to observe from the labeled data with bounding boxes on 4.3 that Gaussians
vary in shape and size. Some Gaussians are more circle-like, unlike the Gaussians from DS-I,
which all presented an ellipse-like format with a vertical flattening, which was expected as the
objects showed this format in the first campaign of SPIDER [2].
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4.2 Results first dataset

The performance of the methods in the first dataset (DS-I) is described in this section, and the
structuring of the datasets follows the proposed grouping explained in the previous section 4.1.
The figures analyzed in this section are the predictions of the GMM and YOLO methods;

each figure presents one image for each dataset: figure 4.4 presents group DS-IA (image 109);
figure 4.5 presents group DS-IB (image 203); figure 4.6 presents group DS-IC (image 401);
figure 4.7 presents group DS-ID (image 601). Each figure shows: (a) a raw grayscale image, (b)
the image with the ground truth bounding boxes and centers, (c) predicted bounding boxes
and centers by GMM, and (d) predicted bounding boxes and centers by YOLO.

Figure 4.4: Image 109 (DS‐IA) detection using GMM and YOLO methods.

By examining figure 4.4, GMM seems to reasonably predict the positions and standard de-
viations for distinct Gaussians, as seen by the close alignment of several green boxes to their
corresponding blue ones. Challenges arise for the method in areas where multiple Gaussians
are closely spaced or overlap. In these cases, GMM tends to predict a single, larger bounding
box encompassing multiple Gaussians instead of individual ones, interpreting the overlapping
Gaussians as one entity. Therefore, it misses some Gaussians.
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The bounding boxes for the GMMmethod tend to overestimate the standard deviation of
the Gaussians in the x direction, probably related to the initial shape of the data points. As this
seems a generalized problem for all Gaussians in figure 4.4, this can be dealt with a proportional
constant to be applied after the prediction to correct the overestimation. Since the chosen
points are more dispersed along the x-axis when no Gaussians are overlapping, the estimates
for the standard deviation in the x-direction tend to be overestimated and, in the y-direction,
underestimated.

There is an apparent absurd false positive Gaussian identification in the top right of figure
4.4. This occurred because a tiny part of an out-of-the-imageGaussianwas passed to theGMM
algorithm. Recalling that Gaussians that the center is out of the image was not labeled nor
considered in the error computations, but parts of it were present in the images andwere passed
to the methods.
A closer examination of the fitted Gaussian centers for image 109 in figure 4.4 revealed sig-

nificant shifts in the initial center estimates during theGaussianMixtureModel’s optimization
process. As a result, two close yet distinct Gaussians were erroneously combined into one. The
combination occurred with the center of the Gaussian positioned between the two original
centers. This led to a notable increase in amplitude error because the model didn’t accurately
represent the true distribution with two distinct peaks. The underlying reason for this prob-
lem is that when the GMM model optimizes both centers and covariances, it only treats the
provided centers as starting points and can modify them as needed.

The problem in figure 4.4 highlights how the initial conditions or starting points for the
GMMmight influence its predictions. Different initializations might lead to different model
fits, especially in complex scenarios with overlaps. In this thesis, the centers of Gaussians were
estimated by the peak local method and given to the GMM algorithm, but the standard devia-
tions were randomly initialized.

One solution for the problem in 4.4 is creating custom code that optimizes the covariances,
keeping the initial centers static. This approach would prevent unwanted center shifts, ensur-
ing that closely spaced Gaussians remain distinct and don’t combine. Another further imple-
mentation that might improve the GMM algorithm is passing estimates for the standard devi-
ation to initialize it. Although promising, the solution was not followed in this thesis, as the
GMMmethod took a long time to converge, and the latter development of the YOLOmodel
was more promising in the detection precision and prediction time.

By examining figure 4.4, the YOLO model effectively identifies and places bounding boxes
around most of the individual Gaussians, matching closely with the ground truth. Unlike the
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GMM, YOLO handles overlapping or closely spaced Gaussians more efficiently. It can differ-
entiate between closely spaced Gaussians without merging them into a single entity or missing
them entirely, drastically reducing the rate of false merges compared to GMM. Furthermore,
the bounding boxes predicted by YOLO in 4.4 seem to be tighter and more precise, closely en-
capsulating the Gaussian. This is a better improvement related to the overestimations in the x
direction in GMM.

It is essential to notice that Gaussians with an intense overlapping, e.g., more than fifty per-
cent, are not correctly identified byYOLO.However, the author hardly identifies these overlap-
pingGaussians in a close visual inspection of (a) in figure 4.4. The existence of someGaussians
is only known after looking at the labeled image (b).

Figure 4.5: Image 203 (DS‐IB detection using GMM and YOLO methods.

Analyzing the figure 4.5 shows that the models are challenged with the overlapping Gaus-
sians as well, YOLO being able to detect better in conditions of overlapping and closely spaced
Gaussians. On a closer look at the figure, one significant difference from the previous image
109 on DS-IA is that the GMMmethod produces multiple bounding boxes for a single Gaus-
sian, indicating that the model incorrectly identified more local peaks than the ground truth
ones, an opposite problemof the one ofmergingGaussians in the prediction. Whenproducing
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many predictions for the same ground truth Gaussian, the model increases the false positives,
decaying in precision.
The error of false positives highlights one of the disadvantages of GMM as it attempts to fit

a specified number of Gaussian distributions to the data that needs to be passed a priori. This
choice of the number of Gaussians to fit can impact performance. Too few and it might merge
multiple entities; too many might over-segment, as occurred in the prediction in figure 4.5.

It is possible to check as well that from figure 4.5, as the GMMmodel considers all Gaussian
data points to fit the data, oneGaussian at the top is overestimated in the y-direction due to the
influence of anotherGaussian that its center is out of the image, as the same problempresented
and explained from figure 4.4. As these out-of-image Gaussians are not labeled and, therefore,
not used in the training process, YOLO usually doesn’t predict them.

In image 203, YOLO did a better job than the previous 109, as it dealt better with overlap-
pingGaussians in the x-direction. No extreme overlappings also occurred; looking at the image
(b) in figure 4.5, it is possible to notice that almost all overlaps are less than 50% IoU.

Figure 4.6: Image 401 (DS‐IC) detection using GMM and YOLO methods.

In figures 4.6 and 4.7, it is hard to understand the matching Gaussians from the picture.
Later, the methods are evaluated regarding error metrics, which is more suitable in this case.
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Figure 4.7: Image 601 detection using GMM and YOLO methods.

Nevertheless, it is possible to check that GMM seems to miss entirely or only partially capture
some Gaussians, especially in areas with more faded blobs. The method merges many entities
and has bounding boxes with a substantial standard deviation in the x-direction.

YOLO’s boxes for images in figures 4.6 and 4.7 appear more uniform across the image, and
some can be correctly matched back to the original ground truth. YOLO generates many over-
lapping bounding boxes, suggesting the method doesn’t frequently merge the entities as the
GMM. YOLOmight miss a few Gaussians, but its miss rate is way lower than GMM’s. In fig-
ure 4.7, there is a clear false positive at the top for a Gaussian in the edge identified by YOLO,
a rare circumstance for the method.

In conclusion, YOLO appears to have a more consistent and slightly superior performance
than GMM, looking at the figures 4.6 and 4.7. Thankfully, the DS-IC and DS-ID image pat-
ternswith spreadGaussians are improbable in SPIDER’s operation. It is expected that a human
can’t detect theGaussians for such patterns as well, so if this type of image appears, it will be im-
mediately understood that a problem is present in the generation of the beamlets, as the strict
control of deflection and divergence is a must requirement for operation on ITER. Neverthe-
less, these images were tested to stress the object detectionmodels and understand the limiting
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E#(%) ECx/ECy(%) Eσx/Eσy(%) EA(%)

Image GMM YOLO GMM YOLO GMM YOLO GMM YOLO
109 85.9 94.9 2.2/0.4 0.9 / 0.1 101.1/80.7 2.4/2.0 21.9 22.4
203 94.9 100 2.7/0.6 2.0/0.1 24.9/46.7 5.9/1.7 10.49 12.62
401 54.4 107.6 13.7/2.5 10.6/0.2 38.9/46.7 15.1/3.8 86.2 97.5
601 56.6 101.3 15.9/1.8 10.7/0.3 39.5/41.1 10.4/4.0 99.54 108.4

Table 4.2: GMM and YOLO prediction errors in DS‐I for images 109, 203, 401, and 601.

constraints.

Consequently, the later description of the developments of the PX modifier and ensemble
in section 3.4 doesn’t include the analysis of the sets DS-IC and DS-ID, as the two other ones,
DS-IA and DS-IB, are the ones that are closer to the expected in the SPIDER operation.

It is worth mentioning that the trained YOLO model exceeds the speed requirement of
prediction, requiring less than one second, a margin significantly lower than the few minutes
needed for the experiment [14].

Finally, the error metrics of the prediction for each image in the figures 4.4 to 4.7 for the
YOLO and GMMmethods are presented in table 4.2.

Comparing the errors in all images, the influence of the Gaussians overlapping in increasing
the mean error for standard deviations and amplitude is evident. YOLO is less affected than
the GMM method in the standard deviation estimation. Still, as both methods estimate the
amplitude similarly, YOLO suffers from high errors in amplitude estimation of the Gaussians
as the GMM. It is also clear that the GMM number of entities identified is significantly re-
duced when the objects overlap, losing nine percentual points from image 209 to 109, while
YOLO only loses 5. As GMMmerges many Gaussians in the predictions, the reported errors
in standard deviation estimations are prohibitive, as presented in 4.2.

The number of Gaussians identified by YOLO and GMM in the groups DS-IC and DS-
ID images differs substantially. GMM presents a low detection rate, as many Gaussians are
merged in a unique one. YOLO gives many false positives, which results in a greater number
of Gaussians identified than the ground truth, i.e., a percentage greater than 100. YOLO is a
reasonable model to estimate the dispersions even for images in groups DS-IC andDS-ID, but
the amplitude is overestimated, doubling from the ground truth value. This demonstrates the
robustness and capacity of the model. Although good when trained with subsets of images, a
more general dataset was tested to understand the generalization capabilities of YOLO.

75



Figure 4.8: Images 109 and 203 detections using YOLO trained using DS‐IA, DS‐IB and DS‐IE.

Extended DS merging DS-IA andDS-IB

The YOLO method was then tested in an extended DS-I group (DS-IE), training the model
with images from groups DS-IA and DS-IB. The objective was to evaluate a more generalized
model to be applied directly without retraining to the profiles that might arise on STRIKE
in the next campaign of SPIDER. As GMM doesn’t have a supervised training step, using an
extended group would not affect any of the method’s performance, so it was not experimented
with in this dataset.

The prediction for images 109 and 203 using the model trained with the extended group
compared to the models trained with its specific datasets is presented in figure 4.8.

Comparing the predictions in figure 4.8, the model trained in the extended set (DS-IE) has
an almost identical prediction to the ones trained on the specific datasets (DS-IA and DS-IB).
This indicates the capacity of YOLO for generalization, opening up different possibilities of
training, for example, includingmany images with artificially generated datasets with noise and
a variety of Gaussian shapes in the train set, which might not affect the excellent performance
of the model in the restricted datasets and could increase the generalization capabilities.
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Figure 4.9: Training metrics for YOLO using dataset DS‐IE. Figure generated by the library [34].

Training metrics of YOLO for DS-IE

YOLO was trained with more epochs in the extended dataset, 200, to understand the limit of
fitting on the model before overfitting. Figure 4.9 presents the three losses of the model for
the train and validation dataset during training as the epochs evolved. Figure 4.10 shows the
detection performance of the model. The other models trained followed a similar trend in the
errors, so only the training metrics of this extended dataset are analyzed in this section. The
model’s training with the extended dataset, i.e., 360 images in the training set, took 1 hour to
complete the 200 epochs utilizing the Tesla T4 GPUwith 15GBmemory on Google Colab.

Analyzing the figure 4.9, the training losses decrease substantially in the initial epochs and
continue afterward, suggesting that themodel is learning and improving its performance on the
training set, therefore without evident underfitting issues. The validation loss values follow a
similar trend as the training loss, which is a positive sign, indicating the model’s improved per-
formance on unseen data. There is a clear indication of no overfitting as training and validation
losses decrease with training, and the last one doesn’t increase in the process. All three losses
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Figure 4.10: Detection metrics for YOLO using dataset DS‐IE. Figure generated by the library [34].

decay, so themodel improves its performance in the localization of the bounding boxes and the
detection of objects.
As there is a sharp loss drop in the initial epochs, it might be beneficial in the future, if larger

datasets are used, to train the model with early stopping, setting a reasonable threshold for the
loss-decreasing. The dataset in this thesis was small, so the early stopping was overruled by
setting patience of 100 epochs in the training.
Infigure 4.10, the precision, recall, and consequentlymAP50 increasewith themodel’s train-

ing, indicating that it identifiesmost objectswithoutmany false positives. The robust detection
performance metrics are consistent with the observed decreasing losses in 4.9. ThemAP50-95,
which is the computation of themeanmAPover the range of IoU from 50 to 95, indicates that
the model with training can localize the Gaussians in the image with the bounding boxes with
high precision.

PX modifier and Ensemble

Attempting to find the local maximum using the refinement method described in 3.4 didn’t
yield optimal results. Some computed centers were further from the ground truth ones com-
pared to the predictions of YOLO before the refinement. Intersections between Gaussians are
likely the cause; the combined effect of one Gaussian over another can distort the place of the
peak of both Gaussians in the image.

This observation is supported by analyzing the figure 4.11, which plots the true centers
against the estimated and refined ones (ground truth, YOLO, and PX modifier 2). The blue
boxes in figure 4.11 are the predictions of PXmodifier 2, and the text color blue is the identifi-
cation of the center of the method. The bounding boxes in red and the numbering in red are
the ground truth labels. The bounding box and centers in green are the predictions of YOLO.
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Figure 4.11: Image 109 and 203 prediction YOLO and PX modifier 2.
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Analyzing the figure, it is possible to observe that some Gaussians aren’t distinctly differen-
tiated as the sum of two separate entities; for example, Gaussians 57 and 58 centers in image
109 in figure 4.11 have a distance of only 4 pixels.

Therefore, from the comparison of image 4.11, it’s evident that the Gaussian separation
heavily influences the standard deviation estimation using the inverse of the probability den-
sity function. The amplitudes fed into the inverse function are taken directly from the image.
Consequently, they may exceed the ground truth amplitude of the Gaussians due to their en-
tanglement. Even when Gaussians are distinctly separated, YOLO typically provides a more
accurate standard deviation estimation than the method derived from the inverse of the den-
sity function.

In conclusion, thepredictions fromtheYOLOmethodarebetterwithout thepost-processing
using the PX modifier 2. The next hope of improvement in YOLO is that the errors commit-
ted in the Gaussians are different from PX modifier 2 and YOLO, which gives the possibility
of ensembling to reduce error. This didn’t yield better results, as shown in table 4.4.

After careful analysis of the predictions of YOLO and PX modifier 2 combined in the En-
semble, the hypothesis for the inexistence of a significant enhancement using themethod is that
the error associated with one Gaussian is often intertwined with errors from other Gaussians.
Consequently, even if a Gaussian has a reduced EReconstruction error in one estimation context,
this occurs due to the influence of close Gaussians summing up the error in one or the other
method, not that the Gaussian per se was better estimated.

The figure 4.12 presents a reconstructed image using the predicted parameters from YOLO,
PX modifier, and the Ensembling method. The image reconstructed is the number 140 from
the DS-IA.

It is hard to notice any difference between the Ensemble and the YOLO in figure 4.12, as
many Gaussians of the Ensemble come from the latter. In the image, a Gaussian that was bet-
ter estimated in the PX modifier 2 method is highlighted. As it is possible to notice, the PX
modifier 2 successfully identified that the Gaussian had a wider standard deviation in the y-
direction.

In figure 4.12, the apparent weakness in the intensity of the Gaussians in the reconstructed
images compared to ground truth is due to the overestimation of amplitude in overlapping
Gaussians. The images were not normalized to the same intensity to highlight the presence of
this error.
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Figure 4.12: Image 140 reconstruction by prediction YOLO DS‐IA, PX modifier 2, and Ensemble.

4.2.1 Test error metrics - DS-IA, DS-IB, and DS-IE

The table 4.3 presents the identification of images in each test set used to compute this section’s
errors. The following error tables show themean and standard deviation of the errors between
these images in the test set.

The table 4.4 and 4.6 presents the errors for the DS-I groups DS-IA andDS-IB, respectively.
The table 4.4, and 4.6 presents the amplitude estimation and pixel reconstruction errors. The
unit of pixel error reconstruction is the unit of intensity for this dataset.

In the DS-IA errors presented in tables 4.4 and 4.5, it is clear that GMM fails to identify a

Dataset Test set size Images

DS-IA 20 18, 53, 55, 70, 79, 94, 99, 109, 112, 113, 121, 129,
131, 140, 148, 176, 184, 186, 193, 194

DS-IB 20 203, 204, 217, 239, 241, 253, 257, 274, 277, 285, 292,
306, 310, 334, 348, 349, 363, 364, 385, 395

DS-IE 40 Previous datasets combined

Table 4.3: Images in the test set in each dataset.

81



Method E#(%) ECx(%) ECy(%) Eσx(%) Eσy(%)

GMM 83.3± 3.0 1.6± 0.4 0.4± 0.1 16.3± 2.1 39.1± 1.4
YOLODS-IA 96.0± 2.7 1.4± 1.3 0.3± 0.3 2.8± 0.4 3.3± 0.8
PXmodifier 96.0± 2.6 1.0± 1.3 0.5± 0.3 7.2± 0.7 31.7± 9.1
PXmodifier 2 96.0± 2.6 1.0± 1.3 0.5± 0.3 6.6± 0.6 15.2± 1.6
Ensembled 96.0± 2.6 1.3± 1.3 0.3± 0.3 2.7± 0.4 3.4± 0.7

Table 4.4: Localization errors for the test set on the DS‐IA for all developed methods.

Method EA(%) EP
GMM 20.8± 3.0 (3.4± 0.2)× 105

YOLODS-IA 26.4± 4.8 (6.3± 1.9)× 105
PXmodifier 29.0± 5.0 (12.2± 2.7)× 105
PXmodifier 2 29.0± 5.0 (9.8± 2.2)× 105
Ensembled 26.4± 4.7 (6.2± 1.9)× 105

Table 4.5: Intensity errors for the test set on the DS‐IA for all developed methods.

high number of Gaussians, accounting for only an 83% detection rate on average, as it merges
them as discussed previously. YOLO has a significantly higher identification rate at 96.0%,
showcasing its robustness in object detection. The identification of PX modifier, PX modi-
fier 2, and Ensemble has an identification rate equal to YOLO, as it only adjusts the already
identified Gaussians by YOLO from the image.

As expected by the previous discussion, GMM performs poorly in estimating the standard
deviations in dataset DS-IA. YOLO outperforms GMM significantly in estimating the stan-
dard deviations, with YOLO showing the lowest error values in both directions, even when
considering the refinementmethods. The Ensemble presented a lower standard deviation than
YOLO, as probably some Gaussians could be better estimated using the PX modifier 2, dis-
cussed previously in the figure 4.12, but in general, the model didn’t improve significantly the
results.

It is possible to observe that PXmodifier 2 in the dataset DS-IA was able to reduce the error
in the x coordinate of the center but increase the error in the y coordinate. This is due to the
overlappings of theGaussians in the y-direction, which causes a false peak by the summation of
two Gaussians, misleading the method. This showcases that the PX modifier 2 is not a robust
method to be applied, as the overlappings significantly mislead the predictions. The method
only works well in conditions of clear Gaussian separation. This can also be concluded by
comparing the increased error in the amplitude estimation in table 4.5, which shows that PX
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Method E#(%) ECx(%) ECy(%) Eσx(%) Eσy(%)

GMM 95.8± 2.0 2.6± 0.3 0.5± 0.2 25.2± 0.9 47.6± 0.6
YOLODS-IB 100.5± 0.8 2.1± 0.2 0.1± 0.0 5.7± 0.6 1.7± 0.5
PXmodifier 100.5± 0.8 2.4± 0.2 0.3± 0.0 39.3± 12.6 19.9± 3.8
PXmodifier 2 100.5± 0.8 2.4± 0.2 0.3± 0.0 23.3± 1.8 14.5± 1.2
Ensembled 100.5± 0.8 2.1± 0.2 0.1± 0.0 7.9± 1.4 2.6± 0.8

Table 4.6: Localization errors for the test set on the DS‐IB for all developed methods.

Method EA(%) EP
GMM 9.6± 1.0 (5.3± 0.1)× 105

YOLODS-IB 11.7± 1.3 (3.4± 0.4)× 105
PXmodifier 12.8± 1.5 (12.2± 2.2)× 105
PXmodifier 2 12.8± 1.5 (8.2± 0.9)× 105
Ensembled 11.8± 1.3 (3.2± 0.4)× 105

Table 4.7: Intensity errors for the test set on the DS‐IB for all developed methods.

modifier 2 was misleading in updating some centers.
In conclusion, for dataset DS-IA, YOLO outperforms all other methods in terms of robust-

ness and performance of detection and localization. All methods suffer from amplitude esti-
mations, including YOLO.
In DS-IB, it is interesting to highlight that the amplitude estimation errors are lower than

in the DS-IA for all methods, demonstrating that the Gaussian overlapping is the main reason
for the mistakes in the DS-IA dataset. GMM improved the detection rate substantially, indi-
cating that the method is not robust to overlappings. PXmodifier 2 for DS-IB suffers more in
estimating the standard deviation in the x-direction compared to the y-direction in the DS-IA.
This indicates that the overlapping significantly impacts the method, as already discussed.

YOLOpresents a rate of identification higher than 100% for this dataset, which indicates the
generation of false positives. Although this could be a problem, thismargin is so low it suggests
that only in some images did YOLO predict more than 80 images.
In conclusion, for dataset DS-IB, YOLO outperforms all other methods in terms of robust-

ness and performance of detection and localization. All methods suffer from amplitude esti-
mations, including YOLO, but in reduced intensity, as theGaussians are less overlapped in this
dataset than in DS-IA. This problem should be dealt with in future developments, disentan-
gling the Gaussians.
The table 4.8 presents the mean error in the test set for the localization parameters on each
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Method E#(%) ECx(%) ECy(%) Eσx(%) Eσy(%)

YOLODS-IE 98.6± 2.2 1.7± 0.7 0.1± 0.0 3.6± 1.9 1.6± 0.7
PXmodifier 98.6± 2.2 1.5± 1.0 0.4± 0.1 23.9± 18.4 24.5± 9.3
PXmodifier 2 98.6± 2.2 1.5± 1.0 0.4± 0.1 15.2± 8.7 14.6± 2.6
Ensembled 98.6± 2.2 1.7± 0.7 0.1± 0.0 4.7± 3.1 2.2± 0.6

Table 4.8: Localization errors for the test set on the DS‐IE for all developed methods.

Method EA(%) EP
YOLODS-IE 17.3± 6.3 (4.3± 1.3)× 105
PXmodifier 19.4± 7.2 (11.5± 2.0)× 105
PXmodifier 2 19.4± 7.2 (8.5± 1.3)× 105
Ensembled 17.4± 6.2 (4.2± 1.4)× 105

Table 4.9: Intensity errors for the test set on the DS‐IE for all developed methods.

method of YOLO trained using the extended dataset DS-IE. The table 4.8 presents the ampli-
tude estimation and pixel reconstruction errors.

As the errors in 4.9 are computed using the extended test set that combines the test set of
groupsDS-IA andDS-IB, it is expected that the error would be themean between the errors of
4.5 and 4.7, if no performance degradation with the generalized dataset on training occurred.
The deviation in the errors between images would also be greater, which explains the variance
in the mean error reported in the results. As in the previous tables, the ensembled error is the
ensemble between the predictions of YOLO and PXmodifier 2 predictions.

Indeed, evaluating the tables 4.4, 4.6, and 4.8, the YOLO DS-IE prediction errors for the
model trained with the mixed images are at least equal to the average from the errors from
YOLODS-IA andYOLODS-IA.This shows the capability of YOLO in generalizing theGaus-
sian forms and the increase in performance with a larger dataset with more training epochs.

In conclusion, the GMMmethod exhibits significant errors for all datasets when estimating
the standard deviation in the y and x directions. This can be attributed to the model fitting
Gaussians to a point cloud that only approximates the genuine shapes. Frequent overlaps of
Gaussians along the x or y direction could account for the pronounced error in standard devi-
ation estimations, as many Gaussians were merged in bigger blobs. The lower detection per-
centages for GMM are probably related to this merging, which occurs in identifying the local
peaks step, as the posterior fitting is done based on the number of peak identifications passed
to the algorithm.

The YOLO method was developed and tested as GMM presented high errors in the stan-
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dard deviation estimation and a low Gaussian detection rate. YOLO seems to recognize the
expected standard deviation of the Gaussians in the images, allowing overlapping Gaussians to
be detected. However, the challenge arises when estimating amplitude in overlapping Gaus-
sians. It is possible to check from the lower mean errors of amplitude for the DS-IB compared
to DS-IA that the overlapping is the primary cause of the increase of the error, as group DS-IB
has a higher error in the estimation of the center thanDS-IA and instead has a lower amplitude
error.
YOLO fails to distribute the amplitudes between the Gaussians, as the values were taken

directly from the images as the othermethods. As a result, the final reconstructed data possesses
up to twice the intensity of the original image in some intensely overlapping Gaussians. This
discrepancy is due to the Gaussians being reconstructed with the combined amplitude of the
final sum. This is the reason all reconstruction errors for all methods in all datasets present a
high value.
In conclusion, YOLO appears to outperform GMM, both PX modifier, and ensembling,

regarding localization accuracy, handling overlapping Gaussians, and reducing false positives.
YOLO has generalization capabilities, indicating increased performance with training using a
larger dataset during more epochs. Gaussian entanglement, causing the high amplitude errors,
remains the main challenge to be addressed in future developments.
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Method
Metric GMM YOLO

% identified 67.8± 2.8 109.3± 8.3
ECx(%) 6.3± 0.7 8.4± 1.3
ECy(%) 2.3± 0.3 6.2± 2.6
Eσx(%) 20.9± 1.9 52.8± 3.4
Eσy(%) 25.5± 3.1 22.6± 2.1
EA(%) 45.6± 2.8 70.0± 4.1
EP 4.6± 0.1 14.7± 3.0

Table 4.10: Table of localization and intensity errors for the test set on the DS‐II for GMM and previously trained YOLO
DS‐IE.

4.3 Results for the second dataset

The second dataset provided, DS-II, is the one that approximates the expected future profile in
the STRIKE calorimeter from the SPIDER operation. The previously trained YOLO model
with the extended dataset, DS-IE, and the GMMmethod were evaluated.

The PX modified 2 and Ensemble were discontinued and not tested in this DS-II as the
PX modified method is not as robust as the YOLO, so the extra computational effort to the
refinement doesn’t make sense as it frequently critically worsened the predictions of standard
deviation for many Gaussians.

Due to the lower resolution of the images, the background is imperfectly resolved using the
Laplacian transformation. Additionally, the Gaussian regions appear fragmented. Despite
these issues, most Gaussians seem to be correctly determined after inspecting the results from
image 323 in figure 4.13.

The results of the second dataset (DS-II) for training the YOLOmodel usingDS-IE and the
GMMmethod are presented in table 4.10. Note that the intensity data in the images of DS-II
were in terms of temperature, so the EP for this dataset is not comparable to DS-I.

The errors forGMMappear lower than YOLO sometimes because the comparison of errors
is based on matching one ground truth Gaussian and a predicted one. Therefore, Gaussians
from ground truth that are not matched weren’t in the error computations. Hence, when the
GMMmethod has a significantly low percentage of identification of Gaussians, its error is not
comparable to YOLO because of this effect.

It is possible to notice fromfigure 4.13 that theGMMmethod can identify the circularGaus-
sians successfully but suffer from the overlapping ones as in the DS-I, merging many. YOLO
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Figure 4.13: Image 323 (DS‐II) detection using GMM and YOLO DS‐IE methods.

trained only withGaussians fromDS-I that are flattened in the x-direction can’t predict the cir-
cular formats, outputting many false positives of flattened Gaussians that cover one Gaussian
that is not flattened in the image. Despite this problem, the YOLOmodel trained in images of
DS-IE could identify some Gaussians, regardless of the lower resolution in DS-II images. This
demonstrates the ability to generalize the model in different conditions.

A new training of a YOLOmodel was performed as the previous model’s prediction perfor-
mance was not good, and the clear misprediction for circular Gaussians was vastly present in
this new dataset. The results of the second dataset for this further training of the YOLOmodel
are presented in table 4.11, and the comparison of the prediction of image 323 is shown in 4.14.

Analyzing the table 4.11, YOLO trained on the DS-II didn’t miss or misfire any Gaussian
in the images on the test dataset, a compelling result for the identification of the 80 beamlets
hitting STRIKE. The mean errors in the standard deviations were lower than 2%, a remark for
the precision needed in the characterization for ITER. Themaximum standard deviation error
in the x-direction for one Gaussian occurred in image 188, equal to 13.9%. In the y-direction,
this error is 20.6% on image 323.

These maximum errors in standard deviation should be reduced in the future to guarantee
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Figure 4.14: Image 323 (DS‐II) detection using YOLO DS‐IE and YOLO DS‐II methods.

Metric Value
E#(%) 100± 0.0
ECx(%) 0.4± 0.1
ECy(%) 0.1± 0.0
Eσx(%) 1.7± 0.2
Eσy(%) 1.7± 0.2
EA(%) 52.2± 2.8
EP 3.1± 0.2

Table 4.11: Table of localization and intensity errors for the test set on the DS‐II for the trained YOLO DS‐II.
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Figure 4.15: YOLO DS‐II best and worst prediction in DS‐II.

an error lower than 10% for all beamlets, a precision recommended for ITER [2]. On average,
the method exceeds five times theminimum requirement in both directions. Hence, it demon-
strates that YOLO can be used in the future characterization of STRIKE in the next SPIDER
campaign with the remaining challenge of disentangling the Gaussian for a better amplitude
estimate.

Figure 4.15 presents the worst (image 323) and best (image 109) prediction of the YOLO
model considering the error metric of the standard deviation of the Gaussians. Themean stan-
dard deviation error for image 323 is 1.73% and 2.44% for x and y-directions, respectively. The
maximum standard deviation error for a Gaussian in the image is 20.63% in the y-direction.
The mean standard deviation error for image 109 is 1.46% and 1.3% for x and y-directions, re-
spectively. The maximum standard deviation error for a Gaussian in the image is 6.89% in the
x-direction.

It is possible to observe on 4.15 that even for theworst prediction, theGaussians’ parameters
predicted by YOLO are extremely close to the ground truth ones. This indicates that the errors
are bounded in the model, and the model presents a good performance even in the image with
maximum errors.
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4.3.1 Remarks and further developments

It’s crucial to note that the dataset created for this thesis assumes a specific timeframe for extract-
ing images from the video of the IR cameras. As the experiment advances and the beamlets hit
the tile, the Gaussians expand by the heat transfer. Eventually, they may merge completely,
making distinguishing between the beamlets impinging the calorimeter impossible.

Therefore, extracting the images in the true experiment will require adjustments, and the
model might benefit from training using various Gaussian sizes. For instance, frames can be
taken from 1s to 5s after the beamlets initiate. Another limitation is that, due to variations in
SPIDER’s operational conditions, the Gaussian sizes may differ significantly at the same video
timestamp across different runs. Developing a model tailored for streaming video may offer a
more generalized solution for varying SPIDER conditions.

When Gaussians overlap, their boundaries become indistinct, leading all fitting methods to
occasionally misallocate points or combine overlapping Gaussians. This can result in several
Gaussians being perceived as one peak, concealing their amplitude and the actual number of
Gaussians. Suchoverlap complicates the distinctionbetween individual components in aGaus-
sianmixture. A clear separationbetweenGaussians is preferable to identify their amplitude and
centers accurately.

High amplitude errors present in all methods were related to these overlappings. The am-
plitude of each Gaussian was considered to be the direct intensity value at its center. In an
ideal scenario, this value would represent the peak intensity. However, due to inaccuracies in
predicting the center, it might not always coincide with the actual peak. The overlap between
Gaussians exacerbates thismisalignment, as oneGaussian intensity sums to another one. Thus,
the amplitude estimates often deviate significantly from the true peaks, primarily due to the in-
fluence of intersecting Gaussians and off-center predictions.

Future work to disentangle Gaussians is strongly advisable if required by the SPIDER ex-
perimental images. This can be accomplished by testing the YOLOmodel with a high IoU in
Gaussians with outlier amplitudes, which can signal an overlapping issue. Another possible
path is to employ a further curve fitting varying amplitudes and maintaining the other param-
eters fixed from the results of YOLO.

It’s vital to note that experimental images from STRIKE may exhibit noise not present in
the synthetic training data. If the YOLOmodel underperforms on these experimental images,
retraining with synthetic data that includes noise is advised if labeled experimental data is not
available. The noise within the images could inviabilize the initial GMMmethod, which em-

90



ploys Laplacian filtering, which is highly sensitive to noisy data. Should this occur, testing a
direct image prediction without Laplacian filtering might be a viable alternative for the GMM
method. There is also the option to try noise removal techniques as a preprocessing step on the
images.
The GMMmethod can identify Gaussians for data labeling since it employs unsupervised

learning. Labeling steps can bemore time-consuming than prediction, so the algorithm’s com-
putational time might be sufficient. After using GMM, a manual refinement is advisable. La-
beling may pose challenges since bounding boxes are three times the standard deviation. How-
ever, utilizing dedicated labeling software can simplify the process. This manually refined la-
beled data is essential for training the YOLO model with experimental data. A combination
with the synthetically generated dataset might also be a good exploration of the problem.

Even if the future beamlets drift from aGaussian-like profile, YOLO learns features directly
from the data through training, making it potentially more adaptable to various data distri-
butions and complexities. In contrast, GMM relies on assumptions about the data Gaussian
distribution and might struggle if the data doesn’t align with those assumptions.
The prediction times of YOLO, generally less than 1 second, were remarkably faster than the

GMMones, typically almost 1 minute, both times in a CPU onGoogle Colab. This facilitates
YOLO to predict stream video if necessary in the future, optimizing the model to run on pre-
diction in a GPU. Another advantage of YOLO is that the model is typically more consistent,
as it doesn’t rely on iterative refinement based on starting point conditions as GMM does.
Finally, if rotated Gaussians appear in the experimental data and the angulation needs to be

determined, the training of a YOLO segmentationmodel is suggested, as it would classify each
pixel in the image and the restriction of bounding boxes that are parallel to the axis is surpassed.
Amodifiedmodel using rotated bounding boxes might also be trained; for example, YOLOv5-
obb [39].
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5
Conclusion

The object detection model of the 80 beamlets in the STRIKE tile was developed successfully,
attending to the required detection performance and exceeding the computational time needed
for prediction. The successful model was based on the YOLO architecture, and a pre-trained
model was retrained using a dataset of artificially generated images. A secondmethod that was
developed didn’t reach the same performance nor the computational time prediction required
for the task. It was based on the GMM algorithm and an initial peak estimation using a local
maximum identification function.
The YOLOmodel demonstrated robust performance in detecting and localizing individual

2D Gaussians, as demonstrated in the test images of DS-II, with error rates below 2% for pre-
dicting Gaussian centers and standard deviations. Specifically, the mean error for centers was
0.4% in the x-direction and 0.1% in the y-direction. The mean error reached 1.7% for standard
deviations in both x and y-directions. YOLO achieved exceptional accuracy in detecting the
2D Gaussian shapes in the test images, successfully identifying all beamlets. However, ampli-
tude estimation was challenging due to overlapping Gaussians, with a mean error of 52.2% for
this estimation. Its prediction time to detect the beamlets in an image was under 1 second,
efficiently meeting the speed requirements.
Despite the bad performance of the second method, as it was an unsupervised learning al-

gorithm, it can be helpful as a labeling method in the future images of STRIKE. It exhibited
significantly high errors of 6.3% and 2.3% for x and y centers, respectively, and 20.9% and 25.5%
for standard deviation in the x and y direction, respectively, in the test images ofDS-II. ItsGaus-
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sian detection rate was also low, averaging 67.8%, and presented a high amplitude mean error
of 45.6%.
The methods developed to refine the results of YOLO, PX modifier, PX modifier 2, and

Ensemble didn’t achieve their objective. Although PX modifier/PX modifier 2 improved the
centers’ localization, the standard deviation computation was tremendously affected by the
overlapping Gaussians, yielding bad results for the methods. The Ensemble method did not
successfully use the results of different models to improve the detections.
All methods failed to estimate the amplitude correctly due to challenges with overlapping

Gaussians. Still, a further curve fitting varying amplitudes and maintaining the other parame-
ters fixed can be pursued as futurework to resolve the problem. The author expects that YOLO
trained in this thesis and future refinements of themodel will help understand SPIDER results
and its optimization to advance the technologies required for nuclear fusion.
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