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Abstract

Unmanned Aerial Vehicles are a rising topic in the control theory research, due to their
emerging theoretical and practical challenges. This translates into the fact that recent
studies focused on the structural properties of these aerial platforms actuated by more
than four rotors, arbitrarily oriented, to allow them to perform better than a standard
quadrotor, even in harsh conditions and in case of possible failures. Typically, to face these
problems, the forces and moments generated these platforms turn out to be decoupled
and can be treated independently.

In this thesis, the goal is to study the actuation and robustness properties of these
multirotor platforms varying their physical construction parameters. The attention is first
focused on the decoupling between the translational and rotational dynamics, that are
intrinsically coupled in the original model, and then on the maximization of the force
actuation capability that generates no angular momentum. Lastly all these studies are
combined to plan a trajectory subject to all the given constraints, and that is not affected
by propellers’ failure.

1





Abstract (Italian)

Il controllo di veicoli aerei autonomi è un argomento di crescente interesse, dovuto
all’affascinante teoria che ha come protagonisti questi dispositivi e che può condurre a
impegnative ed entusiasmanti sfide sia in campo teorico che pratico. Questo si riflette nel
fatto che studi recenti sono mirati a studiare le proprietà strutturali di questi multi rotori,
permettendo performance migliori rispetto ai droni standard con quattro eliche, anche in
situazioni anomale e nel caso di possibili guasti. Per affrontare il problema, i momenti e le
forze sono stati trattati in modo indipendente le une dagli atri, rendendo possibile lo studio
di come un numero maggiore di eliche possa portare a maggior robustezza e manovrabilità
del drone stesso. Questi punti vengono trattati in primo luogo disaccoppiando le dinamiche
di traslazione e rotazione, che nel modello dinamico sono intrinsecamente accoppiate,
successivamente viene massimizzata la capacità di attuazione delle forze che non generano
momento angolare. Tutto questo viene usato per generare una traiettoria che tenga in
considerazione tutti i vincoli dati e che sia immune dai guasti alle eliche.
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1
Introduction

1.1 State of the art

The aerial robotic modelization and control is a topic which is achieving resounding
success in the research community, and lots of theoretical challenges still need to be
addressed.

The current research topics span from single agent control problems, such as nonlinear
control [1], to multiagent control, with for example consensus, flocking and formation
control (using for example natural derived algorithms [2, 3] or rigidity theory [4]) on
multi-UAV systems.

These topics are increasingly more relevant also because aerial platforms, with respect
to ground ones, are extremely more versatile in environments where the terrain is uneven,
for example in emergency situation where natural disasters occurs [5], or in other scenarios
where they have a practical advantages for the task, like in mapping open environments
[6].

In particular, great focus is being placed in the platforms with more than four, tilted
propellers. Indeed, it has been proven that the standard quadrotor intrinsically lacks
the full actuation property and are fully vulnerable to motor failures, even with tilted
propellers [7].

1.2 Objectives

In this thesis, the first objective is to understand how the geometric design parameters
of the multirotor impact the manoeuvrability of a generically tilted hexarotor. This
condition is studied both with and without considering the constraint of generating zero
moment from the platform.

This study is done because generating angular moment directly prevent the possibility
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10 CHAPTER 1. INTRODUCTION

of attaining static hovering, that is when the forces and moments of the platform are in
equilibrium, leading to a UAV being able to stand still in mid-air.

In order to address this, first what is required in order to maintain the platform in
static hover, is defined, and then the impact of this problem in the analysis previously
done.

The obtained results for the aforementioned topics will then be used in the last part of
the thesis, to first analytically and numerically studying the problem of sideways static
hovering, and then validating it with simulations. In the last part, with a nonlinear MPC
controller, the problem of understanding the behaviour of the agent with the optimal
parameters previously discussed will be addressed.

1.3 Structure of this elaborate

Mathematical model The first chapter presented in this thesis after this introduction,
is a mathematical background chapter, used first to introduce basic concepts and notation,
then for presenting the agent model used during the rest of the analysis. The problem of
the decoupling of this model dynamic is then introduced, and a standard procedure to
solve this is presented.

This model has firstly been studied in a symbolic framework, that is SymPy. This
toolbox rapidly became unsuitable for the purpose, as it proved to have insufficient speed
to manage the matrices and computations involved.

It became particularly clear when the symbolic representation of the (right) kernel of a
3 by 6 matrix had to be found, namely the matrix mapping the inputs of the agent to the
angular momentum generated.

To cope with this, another toolbox has been adopted. By doing some researches,
SageMath [8] turned out to be particularly well suited for this task, as the same computation
was carried out with a significant speed-up, the order of eight to ten times with respect to
SymPy.

Static analysis This modelization is then used in the next chapter to address the main
focus of this thesis, that is to deal with the static analysis of the platform, meaning the
description, study and discussion on the actuation capabilities of the platform.

Exploiting the symbolic calculus, some geometrical properties of the actuation capability
geometric description. In particular, a closed formula in the case of non-constrained
condition was found, thus leading to the possibility of exploring its value in a continuum of
configurations, in contrapositive to previous studies [9], where only a numeric analysis was
carried out. Comparing then the new results with the old one, a noticeable discrepancy was
found, but it could be possibly attributed to the fact that the physical quantity considered
is a volume, so the spatial discretization resolution used numerically can become significant
for what concerns approximations, especially due to the shape of the volumes being formed
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by all diagonal components, meaning that the discretized edge could suffer from cube
voxel discretization.

After, the zero-moment constraint was addressed, but a closed formula was not found,
so a numeric approach was still used. Nevertheless, a more accurate representation of the
problem was found, and by exploiting some capabilities of SageMath it was possible to get
accurate enough results.

Lastly, the study was expanded to consider a restriction of the problem, making
interesting results emerge from this.

Dynamic analysis In the last chapter, the simulations that have been made to validate
the results and to study the platform robustness to external forces noise are then presented.
These simulations use a non-linear Model Predictive Control (MPC) controller to stabilize
and assert control on the UAV.

In order to perform these simulations, a NMPC computational framework with the
aid of MATMPC [10] was set up. Thanks to its modularity, it had been fairly simple
to expand it to be able to run batches of simulations, with different modelizations and
different parameters, such as various references and tasks to execute.

At this point the properties of this platform could be truly appreciated, with respect
to a generic quadrotor, widely used nowadays in the industry, but with undoubtedly lower
possibilities for complex manoeuvres. This was particularly clear when accounting also for
its robustness, as its ability to counteract noise forces has proven to be considerable. This
could be of particular interest for example when the application scenario requires tight
standards of firmness during operation, like in delicate pick or place problems.

The last part of the thesis illustrates all these properties, starting from the study of
the tilted static hovering problem, to the position reference tracking.





2
Mathematical Model

2.1 Mathematical Tools

2.1.1 Notation

The zero vector of size n is denoted by 0n, and the vector constituted by 1 of size n is
written as 1n. I indicates the identity matrix, whereas ei stands for its i-th columns.

Sine and cosine are sometimes denoted by their initial to prevent large equation size,
meaning that cos(α) is written as cα and sin(α) becomes sα.

Moreover, x̂ represents a versor in the same direction of x, being defined as x
|x| .

Canonical Rotation Matrices

These matrices, belonging to SO(3), represent the standard rotations of α, β and γ

around the axis x, y and z respectively.

Rx(α) =

⎡⎢⎣1 0 0

0 cosα − sinα

0 sinα cosα

⎤⎥⎦ (2.1)

Ry(β) =

⎡⎢⎣ cos β 0 sin β

0 1 0

− sin β 0 cos β

⎤⎥⎦ (2.2)

Rz(γ) =

⎡⎢⎣cos γ − sin γ 0

sin γ cos γ 0

0 0 1

⎤⎥⎦ (2.3)

13



14 CHAPTER 2. MATHEMATICAL MODEL

2.1.2 Pose Representation

Reference Frames

To represent the pose of an object, usually two reference frames are defined, being the
inertial world frame FW and the body frame FB, representing the object position, and
fixed in its CoM.

We can then define some transformations between these two frames, in particular, in
(2.4) we can see how to express a generic vector vB ∈ R3 in world frame, noted vW , with
its inverse being simply (2.5).

vW = RWBvB (2.4)

vB = RT
WBvW (2.5)

If the translational component between the two frames is then considered, equation
(2.4) becomes as in (2.6), with TW being the position of the origin of the body frame
with respect to the world frame. The inverse instead, becomes more elaborate, as the
translational component must be taken into account into the inversion. This is shown in
(2.7).

vW = RWBvB +TW (2.6)

vB = RT
WB(vW −TW ) (2.7)

Skew Symmetric matrix

Considering a generic 3D vector ω = [ωx ωy ωz]
T , we define the skew operator [ · ]×

applied to ω as

[ω]× =

⎡⎢⎣ 0 −ωz ωy

ωy 0 −ωx

−ωz ωx 0

⎤⎥⎦ (2.8)

Rotation Matrix derivative

It is useful to introduce also the derivative of a rotation matrix, in order to be able
later to describe the UAV dynamics equations.

RRT = I ⇒ ṘRT +RṘ
T
= 0 (2.9)

This is done by starting from equation (2.9), deriving it, and then noticing that the
term ṘRT is a skew symmetric matrix S. The passage to (2.10) is then trivial, but using
this formula, it can be proven [11] that the matrix S is then equal to [ω]×, with ω being
the vector representing the angular velocity vector.
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ṘRT = S ⇒ Ṙ = SR (2.10)

This means that equation (2.10) translates to (2.11), that becomes (2.12) if we want to
express ṘWB with respect to ωB.

ṘWB = [ωW ]×RWB (2.11)

ṘWB = RWB [ωB]× (2.12)

2.1.3 System actuation Capability

Fully and Under-actuated systems

We consider a UAV to be a rigid body that follows a second order dynamic, of kind

ẍ = f(x, ẋ,u, t) (2.13)

Where x represents a generalized-coordinate state vector and u represents the input
vector acting on the system.

We can also describe this relation by making explicit the part of the system where the
input has effect, and the one where it does not.

ẍ = f1(x, ẋ, t) + f2(x, ẋ, t)u (2.14)

A system that is capable of being commanded any instantaneous acceleration in x,
that translates to (2.15) is said to be Fully-actuated. If instead the system properties
reflects in (2.16), the system is said to be Under-actuated

dim [f2(x, ẋ, t)] = dim [x] (2.15)

dim [f2(x, ẋ, t)] < dim [x] (2.16)
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2.2 Standard n-rotor model

world frame
FW

•OB

body frame
FB

zPj

τ d
j

τ t
j

fj

τ j zPi

τ d
i

τ t
i

fi

τ i

τ c

fc

(a) Model overview
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3
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αi
β

−αi
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αj

β

−αj β

αk

β −αk

β

(b) Rotor Arm geometric description

Figure 2.1: Hexa rotor agent model

A generic n-rotor UAV is made of a rigid body, composed of n arms, with motors
attached at their end. For each motor shaft a propeller is attached, while rotating with
sufficient speed. Each motor rotation axis is denoted by ûzi for the i-th motor.

These axes do not need to be parallel with one another, even if in many quadrotors seen
nowadays, it is a common practice. That is, in fact, a special case that is often avoided
in research as it is intrinsically under-actuated, and fully vulnerable to rotor failures [7].
Indeed, the way they are not parallel, determines the coefficients of the system matrices,
and in particular the matrix that represents f2 in (2.14). Therefore, it is possible (and
often done) to make the system fully actuated by changing orientation to the propellers.

To properly define the agent geometry, the reference frames have to be introduced,
namely the inertial world frame FW and the agent’s body frame FB, with origin in OB,
that coincides with the Centre of Mass (CoM) of the platform.

The OB position in FB is denoted by the vector p ∈ R3, while the orientation can be
represented by a rotation matrix R ∈ SO(3).

The structure of the multirotor, as depicted in Figure 2.1a, is a Generically Tilted
MultiRotor (GTMR) model, with rotors positions and orientations as described by the
parameters α, β and in general γ. The role of these construction variables, is described by
(2.19)-(2.20) and shown in Figure 2.1b.

γi = (i− 1)
2π

n
(2.17)

pi = Rz(γi)ℓe1 (2.18)

ûzi = Rz(γi)Ry(β)Rx(αi) (2.19)

= R(γi)Ry(β)Rx((−1)iα) (2.20)

These equations, where ℓ is the length of each link, are used as the model of the
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hexarotor considered is a star-shaped one, as its modelization is the one studied in this
project.

2.2.1 Kinematics and dynamics

The agent pose can be represented by the pair X = (p,R) ∈ R3 × SO(3), describing
the full pose of the vehicle in FW .

To indicate the structure twist instead, the pair (v,ω) is presented where v = ṗ ∈ R3

symbolizes the linear velocity of OB with respect to FW , and ω ∈ R3 is the angular velocity
of FB with respect to FW , expressed in FB.

This lead to a kinematic formulation as presented in (2.21) and (2.22).

ṗ = v (2.21)

Ṙ = R [ω]× (2.22)

The dynamic equations are then derived using the standard Newton-Euler approach,
considering the forces and torques that are generated by each propeller. The i-th propeller,
with i = 1 . . . n, rotates around its own spinning axis ûzi , passing through its centre pi

with a controllable spinning rate that is ωi ∈ R.
The model taken into account, namely a generically tilted star shaped multirotor, has

each motor position defined as in (2.18).
Since each rotor spins in the Clockwise (CW) or Counterclockwise (CCW) direction

with respect to its axis, the relative raw angular velocity is not used directly as the system
input, instead we define ui = |ωi|ωi ∈ R as the control input, representing the ‘signed
square’ of the motor angular velocity.

This also have the benefit of having a linear map to the forces and moments of the
agent, as in (2.23) and (2.24).

We then say, according to the most widely used model, that the i-th propeller applies
at OPi

:

• A thrust force fi ∈ R3 that is expressed by (2.23) in FB, where cfi ∈ R+ is the
(constant) parameter that represents the force coefficient of the propeller.

• A drag moment τ d
i ∈ R3 whose direction is opposite to the angular velocity of the

propeller and whose expression in FB is reported in (2.24).

The parameter cτi ∈ R is the (constant) parameter representing the torque coefficient
(positive if the propeller is CW and negative otherwise).

fi = cfiuiûzi (2.23)

τ d
i = cτiuiûzi (2.24)
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The entire structure of the UAV is now considered, so we have to take into account
the thrust moment resulting by the force generated for each propeller, that is τ t

i ∈ R3,
defined in (2.26). Then the total control force fc ∈ R3 and the control moment τc ∈ R3,
applied at OB and expressed in FB, are reported respectively in (2.25)-(2.27)

fc =
n∑︂

i=1

fi =
n∑︂

i=1

cf ûziui (2.25)

τ t
i = pi × fi (2.26)

τc =
n∑︂

i=1

(τ t
i + τ d

i ) =
n∑︂

i=1

(cfpi × ûzi + cτiûzi)ui (2.27)

Considering now the control input vector u = [u1 . . . un]
T ∈ Rn, the equations (2.25)

and (2.27) can be rewritten shortly as:

fc = Fu (2.28)

τc = Mu (2.29)

That translates, into matrix form, in:[︄
fc

τc

]︄
=

[︄
F

M

]︄
u (2.30)

Where F represents the control force input matrix ∈ R3×n, while M ∈ R3×n is the
control moment input matrix, and therefore these depend on the geometric and aerodynamic
parameters of the agent.

The platform dynamic is then studied, and neglecting the second order effects, it is
described by the following system of Newton-Euler equations:

mp̈ = −mge3 +Rfc = −mge3 +RFu (2.31)

Jω̇ = −ω × Jω + τc = −ω × Jω +Mu (2.32)

In which g > 0,m > 0 and J ∈ R3×3 are the gravitational acceleration, the total mass
of the platform and its positive definite inertia matrix, respectively.

To summarize, the whole system equations are reported here.

ṗ = v (2.33)

Ṙ = R [ω]× (2.34)

mp̈ = −mge3 +RFu (2.35)

Jω̇ = −ω × Jω +Mu (2.36)
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2.2.2 On rotational velocity and Euler angles derivatives

At this point, it is important to study the relation between the rotational velocity in
the body frame and the derivative of the roll, pitch and yaw euler angles, namely the
relation between ωB and α, that has ϕ, θ and ψ angles as components.

Starting from equation (2.12), we can compare it to its formulation in (2.37).

ṘWB(ϕ, θ, ψ) =
∂ṘWB

∂ϕ
ϕ̇+

∂ṘWB

∂θ
θ̇ +

∂ṘWB

∂ψ
ψ̇ (2.37)

Indeed, we know that [ωB]× = RT
WBṘWB = f(ϕ̇, θ̇, ψ̇), and by performing the needed

computations, (2.38) can be obtained.

ωB =

⎡⎢⎣ωx

ωy

ωz

⎤⎥⎦ = Wα̇ =

⎡⎢⎣1 0 −sθ
0 cϕ cθsϕ

0 −sϕ cθcϕ

⎤⎥⎦
⎡⎢⎣ϕ̇θ̇
ψ̇

⎤⎥⎦ (2.38)

It can be remarked that the derivative of the pitch angle is modified by the rotation
around x, the derivative of the roll angle is directly mapped to the component of the
rotational velocity, and finally the derivative of the yaw angle is modified by the rotation
around x and y. This can be seen clearly by decomposing the transformations to find
ωB, resulting in (2.39), where we see how each component is influenced by the relative
transformations.

ωB =

⎡⎢⎣ϕ̇0
0

⎤⎥⎦+RT
x (ϕ)

⎡⎢⎣0θ̇
0

⎤⎥⎦+RT
x (ϕ)R

T
y (θ)

⎡⎢⎣00
ψ̇

⎤⎥⎦ (2.39)

It is then noticeable that the aforementioned mapping is needed only in case of a
precise modelization, and sometimes it can be relaxed. This is the case when, for example,
is the almost hovering conditions. Indeed, in hovering we can say that θ ≈ 0 and ϕ ≈ 0,
leading to an approximation of the rotational velocity as in (2.40)

ωB =

⎡⎢⎣ωx

ωy

ωz

⎤⎥⎦ ≈

⎡⎢⎣ϕ̇θ̇
ψ̇

⎤⎥⎦ . (2.40)
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2.3 Force-Moment decoupling

2.3.1 Problem description

In this section, the coupling between the forces and the moments generated by the
propellers is studied. We can in fact emphasize how the translational dynamic (2.35) is
influenced by the rotational one (2.36) through (2.34).

If we now recall the definition of fully (and under) actuated system in section 2.1.3, we
may rewrite (2.14) as in (2.41).[︄

p̈

ω̇

]︄
=

[︄
−ge3

−J(ω × Jω)

]︄
+

[︄
m−1RF

J−1M

]︄
u (2.41)

It is clear then that

[︄
m−1RF

J−1M

]︄
∈ R6×n needs to have full rank (6) in order to have a

fully-actuated system:

rank

[︄
m−1RF

J−1M

]︄
= rank

(︄[︄
m−1R 0

0 J−1

]︄[︄
F

M

]︄)︄
(2.42)

= rank

[︄
F

M

]︄
(2.43)

It is immediate to see then, that a quadrotor will not be able to attain full actuation
for any configuration of the propellers, as the matrices in (2.43) would have 4 columns.

2.3.2 Actuation

As we want to decouple the output force and momentum generated, we can firstly
recall them, as

F ∈ R3×n Control force fc input matrix 1 ≤ rank[F] ≤ 3 (2.44)

M ∈ R3×n Control moment τc input matrix 1 ≤ rank[M] ≤ 3 (2.45)

It is then possible to define two new matrices, A and B such as in (2.46) and (2.47)
respectively, to design a change of basis matrix to decouple the inputs.

A ∈ Rn×3 s.t. Im[A] = Im[MT ] = (Ker[M])⊥ (2.46)

B ∈ Rn×(n−3) s.t. Im[B] = Ker[M] (2.47)

We can then define the change of basis matrix T ∈ Rn×n as T = [A|B], that is full
rank as a consequence of the construction of the two matrices.

This can be used to create a new input vector ũ that becomes very convenient for the
decoupling problem.
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u = Tũ =⇒ u = [A|B]

[︄
ũA

ũB

]︄
= AũA +BũB (2.48)

Indeed, from (2.48) we can first expand (2.30) into (2.49).[︄
F

M

]︄
T =

[︄
FA FB

MA MB

]︄
=

[︄
FA FB

MA 0

]︄
(2.49)

Then we are finally able to see, thanks to (2.51), that the decomposition obtained is
able to map the input into forces and moments component that are easy to decouple, in
opposition to the original matrices in (2.30).

This is because now the moment can be directly allocated with ũA, having then the
ability to set the generated force entries by simply accounting for the term fA

c generated
by FAũA.

[︄
fc

τc

]︄
=

[︄
F

M

]︄
u =

[︄
F

M

]︄
Tũ =

[︄
FA FB

MA 0

]︄[︄
ũA

ũB

]︄
(2.50)

=

[︄
fA
c + fB

c

τA
c

]︄
(2.51)





3
Static Analysis

To find meaningful properties regarding the UAV manoeuvrability, this chapter dives
into different aspects that can be of relevance for the problem.

First, a geometric procedure is defined, to calculate the volume of the agent’s feasible
force space. Using this formula, an analysis spanning the possible configuration space
in α − β is done, to study which configuration can perform better, and what an angle
variation actually changes in the total volume.

The problem is then restricted to the case of zero-moment generation, with a numerical
but still refined approach, and the same analysis is repeated, finding now the differences
with respect to the previous scenario.

At last, an approximate formulation for the volume of the constrained forces restricted
to the forces that can at least keep the agent in static hover is being studied, as those are
the forces that can effectively move the hexarotor in mid-air.

3.1 Force volume description

The UAV, as seen from the previous chapter, can benefit in multiple ways by having
a geometry that improves its capability of generating forces in other directions than the
vertical one.

At first, this provides the ability to counteract the lateral noise acting on the agent,
and then it also adds possible instantaneous force vectors to be created, making possible
more complex manoeuvres.

It has to be notice though, that even if the benefits of having the properties just
mentioned are abundant, there are some disadvantages.

Having the rotor axis tilted in fact implies that to generate a purely vertical vector,
the input forces, that are generally tilted, need to be combined to make each horizontal
component cancel out. This becomes immediately a disadvantage when considering that

23
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the consumption needed to keep the agent hovering increases. This is because to apply the
same total vertical force having tilted propellers, some spurious lateral forces are created,
requiring that opposed ones to be generated in order to counteract them.

From subsection 2.2.1 and in particular from (2.30), we can consider the columns of F
as the set of vectors that are the generators of a cone representing the feasible forces that
the agent is capable of generating, represented in Figure 3.4a.

Taking then fi as the i-th force generator vector, all the forces that can be generated
will then be the summation of all the k basis vectors, each one constrained to the input
bounds. These are all the points belonging to the set D as in (3.1) for which the coefficients
αi exists in their respective domain.

D =
k∑︂

i=1

αifi with αi ∈ [0, 1] (3.1)

3.1.1 Volume Formula Study

To search for an analytic formula of the volume representing the space of feasible forces,
at first the problem was reduced to a two-dimensional one. This has been done because
the basic objective was to find a formula for the space spanned by any linear combination
of vectors with coefficients in limited domain, as in (3.1).

It can be noticed that with this formulation, no information on the dimensionality of
the problem is being used, as long as a metric of this space can be defined. It is clear
though, that if the dimension of the space in which the vectors belong is 3, this metric
will be the volume, whereas in the 2D case it reduces to an area.

Generally, the shape that we would get is that of a polyhedron, where various numeric
method exists [12] to calculate its volume, but the underlying structure of the vectors
generating it provides us with a possibility of finding a closed form solution.

We begin from the basic case of two vectors, as in Figure 3.1a. Naming the two vectors
f1 and f2, we see that the area reachable from a combination of the two vectors can be
calculated by the absolute value of determinant of the matrix formed by them, namely⃦⃦⃦
det
[︂
f1 f2

]︂⃦⃦⃦
.

This polygon will be referred as P12, whereas its area will be defined A12, for shortness.
Now the existing polygon is extended with another vector f3, as in figure Figure 3.1b.
This is done by adding the new vector to each point of the convex hull, and considering

only the ones that do not intersect with the existing polygon. It is possible to see that
now the total area is the one spanned by the first two vectors, with the additional areas
of the polygons composed by the combination of vector f3 with the first two, that is
A123. = A12 + A13 + A23.

From this, we can extend up to four vectors, as depicted in Figure 3.2a, and it is
possible to scale up to n vectors , leading to a total area of the resulting polytope equal to
(3.2).
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Figure 3.1: Polytope growing with vector number - two to three vectors
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Figure 3.2: Polytope growing with vector number - four vectors

Ak =
ℓ∑︂

i=1

ACℓ
with

⎧⎪⎪⎨⎪⎪⎩
ℓ =

(︃
n

2

)︃
Cℓ =

ℓ-th combination with indexes i, j of each
base vector(Including 0), with k basis vectors

(3.2)

From this point, the problem in the third dimension was addressed, to match the
dimensionality of the real problem. The difference, in this scenario, is that instead of
reasoning in terms of area, the volume metric was finally stumbled upon.

It is well known that the volume of the space spanned by three vectors in 3D, like in
Figure 3.3, is defined as the module of the determinant of the matrix composed by those
vector stacked as columns. The area Aij now becomes the volume Vijk. In this way, (3.2)
becomes (3.3), with the core concepts remaining the same .
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Figure 3.3: 3 vectors 3D polytope

Vk =
ℓ∑︂

i=1

VCℓ
with

⎧⎪⎪⎨⎪⎪⎩
ℓ =

(︃
n

3

)︃
Cℓ =

ℓ-th combination with indexes i, j, k of each
base vector (Including 0), with k basis vectors

(3.3)

=
ℓ∑︂

i=1

⃦⃦⃦
det
[︂
fi fj fk

]︂⃦⃦⃦
(3.4)

3.1.2 Volume Physical meaning

Before moving to the value analysis of the volume, it is worthwhile to explain its
underlying physical meaning.

Its basic definition is of a 3D space such that any point that lies inside of it, is reachable
by a combination of some basis vectors. This can be seen in (3.1), with each vector
coefficient αi in the range [0, 1], representing how much each vector is used.

This concept is now used with the basis vectors being the force vectors generated by
each propeller, thus the coefficients stands for how much the corresponding propeller needs
to spin.

Having a large volume of this polyhedron means that we can have a lot of freedom in
allocating a desired control force vector, thus meaning more capability of controlling the
agent.

It has to be taken into account also that while the volume can be expanded by (properly)
increasing the drone geometric angles, as it will be seen in the following section, this also
generally decreases the z component of the total force that can be applied.

Using more aggressive angles, in fact, means that the propellers are oriented less
perpendicular to the ground, meaning that the amount of force required by each one to
keep the UAV hovering increases, leading to a higher power consumption just to achieve
this common task.

On top of that, the decrease in the volume’s vertical height limits the ability to generally
create vertical forces, with consequences that can range from simply having less vertical
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manoeuvrability, up to extreme cases in which also hovering is not feasible, as it will be
seen in subsection 3.4.1.

3.2 Unconstrained Volume Analysis

(a) V6(α, β) Polytope without constraints and
(ωmax = 1, α = 35◦, β = 10◦)
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Figure 3.4: Hexarotor volume polytope shape for a fixed angle configuration and its volume
value plot as a function of α and β

Having found the closed formula for the 3D volume, now its value is analysed varying the
construction parameters of the UAV. Formally, the vectors taken as basis for constructing
the force volume are shown in (3.5), that are simply the columns of the F matrix scaled by
the maximum speed achievable by each propeller (squared, as from subsection 2.2.1).

f ′
i = Fumax = Fω2

max (3.5)

The shape that comes out by the procedure of taking the sum of all basis vectors,
from all the combinations of size three, is depicted in Figure 3.4a, whereas the plot of the
volume value is shown in Figure 3.4b as a function of the parameters α and β, each one in
the range [−π/2, π/2].

It is interesting to look at the symmetry in the plot. This still has to be further
investigated, but the pattern strongly shows the same number of peaks as the number
of rotors taken in exam (six), and the anti-peaks shows a radial pattern with the same
number of axis too.

To investigate the fact that the number of peaks and valleys is the same as the number
of propellers, the same analysis has been repeated for an octa rotor platform. The resulting
volume plot is shown in Figure 3.5b: the overall pattern is very reminiscent of the hexa-rotor
one, with of course the radial axis and the number of peaks being eight.
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(a) V8(α, β) Polytope without constraints
(ωmax = 1, α = 35◦, β = 10◦)
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(b) V8(α, β) value in the interval [−π/2, π/2]2

Figure 3.5: Octarotor volume polytope shape for a fixed angle configuration and its volume
value plot as a function of α and β

In this case though, it is interesting to see that the stripes that start from the origin
and expands towards the borders are not as straight as in the hexa-rotor case. They in
fact tend to get warped as the α limit is approached.

The last observation regards the boundaries of the plot, but it is trivial to expect the
volume value to collapse as soon as α or β drops to ±π/2.
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3.3 Zero-moment Constraint study

The next problem is to include the constraints in the formula. To do this, the whole
analysis starts from using the results from the force-moment decoupling seen in section 2.3.

We then observe that the number of vectors in the kernel of M is three, and therefore
the combinations of inputs that lead to zero moment is the same number.

This provides us with a basis made by FB, from (2.50), that is at most of rank 3, as of
(2.44) and the full rankness of B given by its construction.

3.3.1 B Matrix Feasibility

The matrix B calculated with SageMath by taking the right kernel of M, even though
trivially satisfying the zero-moment constraint takes values unfeasible for the input, like
being negative or higher than the maximum value attainable by the motors.

Nevertheless, a non-trivial property of the B matrix is row-stochastic, meaning that
its column sums up to one. This has various implications, with the first one being from a
geometric point of view.

The fact that the matrix sums up to one, first implies that the vector 1 lies in the
kernel of M, but physically it translates to having all the motors spinning at the same
rate. It is then trivial to think of its belonging to zero-moment space, as if we consider
the geometrical symmetries of the UAV, it comes easy to deduce that the moments of the
rotors cancel each other out if actuated evenly.

The other notable property of having the 1 vector in the kernel, is that it provides us
the possibility to have it added to any column of B while having the resulting vector in the
kernel. This provides us the ability to simply “shift” a column by its minimum component
to make it greater than zero, rescaling it later to keep in the feasible domain of the motors.

Although this reasoning is easy to apply, at first a manual approach to condition the
B was used, as it has been the first to be developed.

We can see in (3.6) how the matrix that SageMath produces, has its first rows as the
identity (I3) matrix, possibly due to its procedure of calculating it, but with neither
symmetries nor other noticeable properties. After some computations, the matrix is then
transformed into the one in (3.7), that first satisfies all the constraints of the inputs, and
on top of that a clear pattern in the elements is noticeable.



30 CHAPTER 3. STATIC ANALYSIS

Bsage =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

1 0.01728 −0.01728

0.01698 1 −0.01728

0.01698 −0.01698 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.6)

⇓

B′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0.01698

0 1 0.01698

0 0.01698 1

1 0.01698 0

0.01698 1 0

0.01698 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.7)

Another way of finding a feasible matrix is to use the facts reported above, that is to
possibly manipulate each column of the original matrix, and by first shifting it to have no
negative terms, then scaling it to limit the maximum, resulting in a matrix with elements
in the desired range.

B′
auto =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.01669 0.01698

0 0.9997 0.01698

0 0.01669 1

1 0.03368 0

0.01698 1 0

0.01698 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.8)

An example of the result of this procedure is reported in (3.8). It can be seen though,
that the first and last column are the same as the matrix found by applying the manual
procedure, with the second column being the only one that differs. This matrix proved to
generate a volume smaller than the one generated by the matrix found with the manual
method, when applied to the F matrix. This is possibly due to the second column being
less orthogonal to the other two, respect with the second column of (3.7).

3.3.2 Constrained polytopes calculation

The shapes generated by the constrained basis vectors will now be discussed. Differently
from the shapes in section 3.2, they are now simpler, as they are generated by three vectors.
The result is a polyhedron similar to the one in Figure 3.3, as in both cases three basis
vectors are used, but with the important difference that will make the use of the analytical
formula found in the previous chapter to be of no use.
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This difference lies in the fact that each vector fi in the non-constrained formula is
independent, making possible to sum them up by just making care of keeping the coefficient
in the range [0, 1], as previously said. In this scenario, however, it is not possible to simply
sum up the basis vectors, as if we do, we exceed the input value bound for the overlapping
terms.

An example of this can be seen from the previous section with the terms that if sum up,
would clearly exceed one. The volume for each polytope in this section, is then calculated
by firstly calculating all the sum of the combinations of the basis vectors, as in origin,
then scaling each vector to have its maximum component as the maximum admittable
value. The polyhedron is then build using the polyhedra class of SageMath, and then its
volume is calculated using the included method P.volume() as it was of no use to apply
other polytope volume computation methods. This is because SageMath’s one uses exact
calculations, if needed1, and more than that, it is already implemented.

3.3.3 Constrained polytopes analysis

The polytopes appear as in Figure 3.6a. It is clear that the polytope in discussion has
eight vertices: the origin, the three vectors made from B′, and their combinations.

(a) 3D polytope with zero-moment constraint (b) 3D polytope confrontation with and without
constraints(with: red, without: green)

Figure 3.6: Constrained polytope on the left and combined figure of it and the unconstrained
one on the right
(α = 34◦, β = 10◦)

Comparing it with the unconstrained polytope, in Figure 3.6b, it can be seen that
the constrained volume covers much of the latter, but since the volume scales as n3, the
volume in the figure is just 66% of the unconstrained one.

1polyhedra’s base rings documentation

https://doc.sagemath.org/html/en/reference/discrete_geometry/sage/geometry/polyhedron/constructor.html#base-rings
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Figure 3.7: V6 with zero-moment constraint plot
(α ∈ [0, π/2], β ∈ [−pi/2, pi/2])

3.4 Static hovering analysis

3.4.1 Hovering feasibility

An important aspect to evaluate when dealing with the hovering problem, is how much
the agent is able to move while standing still in the air. It is clear that a small angle
configuration is not able to generate a lot of lateral forces whilst a UAV with a more
aggressive geometry can be able to generate more downward force vectors.

We first start by defining fz as the force necessary to be produced by the UAV to stay
in hovering. This is simply equal to fz = mgẑW , and from the UAV model, it is also equal
to eT

3RFu.
Displaying this necessary force as a horizontal plane, parallel to the x − y one and

at a distance of fz,h from it, is done in Figure 3.8, where both the constrained and the
unconstrained plots are used.

It is to notice that it can be easy to underestimate how, increasing α and β to increase
the volume, the maximum force appliable to the vertical component diminishes, leading to
the possibility of being unable to keep the agent hovering.

An example of this can be seen in Figure 3.9b, where the high α value, combined
with a small β one (60◦ and 10◦, respectively) lead the feasible forces being all below the
required hovering force.

This brought up the analysis of which angles can and cannot be used for the required
task.

To deal with this, the condition to satisfy is reported in (3.9), and by defining
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Figure 3.8: Constrained polytopes with fz,h spherical cap

(a) Hovering possible (b) Hovering not possible

Figure 3.9: Constrained polytopes with fz,h spherical cap

hh = fc,maxz as the hoverable height, we can rewrite the inequality as in (3.10).

fc,maxz(α, β) = eT3F16 ⩾ fz,h (3.9)

= hh ⩾ 0 (3.10)

Plotting the condition boundary, as in Figure 3.10 and Figure 3.11, over the graphs of
the constrained and unconstrained volumes, makes clear how the results obtained in the
previous sections need to be reconsidered. This is because what seemed to be an optimal
configuration for the constrained volume in subsection 3.3.3, is clearly not an optimal for
the hovering problem, as it is extremely close to being unable to hover.
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Figure 3.10: Unconstrained volume with hoverable boundary
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Figure 3.11: Constrained volume with hoverable boundary

In particular, in Figure 3.10, we see that the optimal point for the constrained volume
would be around one radian, but the boundary imposed by the hoverability constraint
shows that most of the angles values that represent are around the peak are not feasible.

We then address the problem of finding the volume of the region over the required
vertical hover force, considering only the case of the zero-moment forces.

The first step is to observe that the shape that comes from the polyhedron being cut
by the fz,h plane, is a pyramid, which volume is reported in (3.11), with Ap being the basis
of the pyramid, and h being its height.



3.4. STATIC HOVERING ANALYSIS 35

Vp =
1

3
Aph (3.11)

The height now simply becomes the maximum total force which can be developed by
the UAV , removed of fz,h. For what concerns the base area, the intersection between the
hover plane and the three top vectors is calculated.

To explain this process, a 2D projection of the scene to a plane passing through the z
axis and one of the three vectors (rotated around z by one additional degree for clarity) is
shown in figure Figure 3.12a.

(a) 2D projection of the constrained polytope
and the hover plane

−z

fc,maxz

v1

fz,h

ψ
hh v′

1

(b) 2D projection parameters

Figure 3.12: 2D projection overview and detail

First, the three top vectors are found by mirroring the three base vectors upwards, as
this would give different vectors from the ones we are looking for, but with just a rotational
difference around the z axis.

In particular, considering as vi the new defined vectors, and vi,z as the z component of
the i-th base vector, their new z value is considered as fc,maxz − vi,z, basically mirroring it
vertically with respect to the vertical midplane of the polytope, as previously said. Each
vector’s origin is then considered to be the top vertex of the polyhedra, that is fc,max, to
have then a new triplet of vectors to use.

Having these new vectors, we then find their intersection with the hovering force plane
by firstly finding the angle ψ between them and the vertical axes, by inverting the dot
product formula in (3.12), resulting in (3.14).

a · b =|a||b|cos(ψ) (3.12)

⇓

cos(ψ) =
a · b
|a||b| (3.13)

⇓

ψ =cos−1

(︃
a · b
|a||b|

)︃
(3.14)
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Then noticing that, by (3.15), where v1 is the first top vector, hh is the height of the
hoverable volume pyramid, and we can resort to (3.17) to calculate the length of the vector
going from the top vertex to the intersection.

hh =|v′
1| cos(ψ) (3.15)

⇓

|v′
1| =

hh
cos(ψ)

(3.16)

⇓

v′
1 =|v′

1|v̂1 =
hh

cos(ψ)
v̂1 (3.17)

A representation of these parameters is displayed in Figure 3.12b.
Now a situation that can happen and that would lead to a major volume overestimate

will be addressed. This is when condition (3.18) is violated, resulting in an arrangement as
in Figure 3.13.

h∆ = hh − vi,z ⩽ 0 (3.18)

−z

h∆

|v1|

fc,maxz

fz,h

ψ

hh v′
1

Figure 3.13: 2D projection parameters, in the case of excessive elongation of the vector v1

Using the same volume formula as before, for this new case would include the extension
of the vectors over their maximum length, resulting in an obvious unfeasibility of the res-
ulting vector. To cope with this, the approach that have been used is still an approximated
one, but with a lower error.

The chosen approach was to basically check if the condition in (3.18) has been violated,
and in that case, to clamp the length of the vector, increasing then the missing volume
portion by just using V ′

p = Abh∆.
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Figure 3.14: Hoverable volume with limit indicated by the black contour

This lead to a volume like in Figure 3.14. It is clear from the values in the colorbar
placed right of the plot, that its value is lesser than the unconstrained one.

It is also interesting to investigate the resulting constrained with a low α value. This
creates unconstrained polytopes as in Figure 3.15a, very similar to the configuration with
a bigger α, but the constrained polytope, as in Figure 3.15b is very narrow.

(a) Unconstrained polytopes (b) Constrained polytopes (c) Combined polytope s

Figure 3.15: Polytopes with α = 10◦ and β = 40◦

Comparing them in Figure 3.15c, shows how the constrained volume is very small with
respect to all the unconstrained volume. All of these considerations lead to the conclusion
that the β angle has not a lot of use for the constrained volume, but this parameter can
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still useful in the unconstrained volume maximization problem, though having it small
may compromise the platform robustness, as already said.
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3.4.2 Maximum angle attainable

The last property of the UAV that has been studied in this thesis, for what concerns
the static analysis, is the ability to keep hovering while not being parallel to the ground,
but instead being tilted.

This could be of interest of for other purposes, as it would empower the agent be able
to, for example, touch a vertical surface with the aid of a bar attached to the bottom, or
to be able to land and take off from a non-horizontal surface, by modifying the force along
zW .

To address this, in this section the problem of finding the maximum inclination angle
in hovering is studied.

First of all, we notice that the study done in the previous section has to be modified,
as we are not interested any more in a plane, but instead we now have a spherical cap as
in Figure 3.16, centred at 0 and with radius fz,h. This is because to keep hovering while
tilted, the required vector will have different direction than zB, but its magnitude remains
the same, by just being perpendicular to the ground.

(a) Unconstrained polytope (b) Constrained polytope

Figure 3.16: Polytopes with fz,h spherical cap

We than have that the projection in Figure 3.12a becomes the one in Figure 3.17a, and
we see that the previous formula would underestimate the new volume, but this issue has
not being addressed, as it was out of scope for the current analysis.

We can see then, that the force vectors generating no moment that can be applied
as a control force, lie in one of the three intersection between the top vectors and the
circular cap, as they are the point both furthest from the central axis and with the smallest
vertical component of the whole volume. This fact let us simply modify Figure 3.12 into
Figure 3.17, letting us notice that now the volume would not include the space between
the dome and the previously defined plane.
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(a) 2D projection of the constrained polytope
and the hover plane

−z

fc,maxz

fz,h

ψ
hh v′

1

(b) 2D projection parameters

Figure 3.17: 2D projection overview and detail, with circular force boundary

Having adapted the previous framework
to the current problem, we define the new
intersection between vector v1 and the arc
as v′′

1 . Then the angle that we are inter-
ested in, that will be called δ, is the angle
between that point and the vertical axis. All
these parameters are shown graphically in
Figure 3.17b.

To find the value that we are interested
in, even though possible, we do not use the
exact computation to find the true vector
v′′
1 , but we use the previous one.

This has a small impact on the values
found, but it is used nonetheless as the result-
ing angle will not be overestimated, so in the
worst case scenario, the UAV will have some
control that will be able to apply around
that point to adjust to small variations.

x

z

fc,maxz

fz,h v′
1

ψ
hh

v′′
1

δ

Figure 3.18: 2D projection parameters

We can then see that the hoverable volume plot, seen in the previous section (Fig-
ure 3.14), seems strongly correlated with the maximum inclination angle, even though
this is expected. In particular, the only noticeable differences comparing the new plot in
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Figure 3.19, are now discussed. First we can see that the hoverable volume peak has a
smooth shape, whereas the maximum angle plot has a neat path where the angle has a
local maximum. We can also see that the angle plot around the contour representing the
hoverable limit, has still a meaningful value until the very proximity to it, in opposition to
the volume plot, that collapses more rapidly. The last prominent difference is that the
peak is shifted in the α axis towards 40◦, whilst previously was located around 28◦.

0 1
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5.0
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17.5

Figure 3.19: Maximum angle of inclination attainable varying α and β

In light of these facts, the best angles with respect both to the hovering problem and in
general the control under zero-moment constraints, appears to be then with β sufficiently
small to stay close to the peaks, while still being greater than 0 to keep the robustness to
faults. Moving on to the α angle instead, the optimal values possibly are between from
0.5 rad to 0.7 rad, that is from 28.6◦ to 40◦, resulting in angle to balance between stability
and manoeuvrability of the UAV.





4
Dynamic Analysis

In this Chapter we investigate the dynamic behaviour of the UAV. There exists
controllers already exploiting the zero moment components [1, 13], but since this thesis
focus is studying the fundamental properties of a nonlinear MPC has been applied, since
it was ready to be used.

4.1 MPC

4.1.1 MPC Description

The MPC is chosen because it can predict the system behaviour, exploiting the plant
model inserted in the controller.

On the basis of the system prediction, the MPC evaluates a control input, which is
optimal with respect to a set function.

The MPC is characterized by three main elements, which are:

• an internal system model, that is exploited to predict the system variables evolution;

• a cost function that has to be minimized (e.g. distance of a variable from the given
reference);

• a set of constraints to be satisfied that can be of different type (e.g., linear, quadratic,
etc.)

The modelization of the system to control plays a fundamental part in order to obtain
a satisfying control law.

To make prediction close to the real system evolution, a deep analysis on the process
has to be carried out, being cautious about the fact that a model that is excessively
complex can lead to an expensive control law in terms of computational effort.

43
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Therefore, the model inserted in MPC has to be a compromise between complexity
and efficiency.

The principal advantage of MPC is its robustness and its ability to handle constraints.
For example, some bounds can be set on the system variables in order to describe a real
problem, like ui ⩾ 0.: All of these constraints can be hard or soft, depending on how they
are defined. In general, the hard constraints describe physical limitations related to the
input actuators, whereas the soft ones are used to describe desired system behaviours.
Therefore, hard constraints are imposed on input variables, while the output and states
are characterized by the soft ones.

The Model Predictive Control implements the Receding Horizon strategy. This means
that at each instant, the control follows three steps.

1. It predicts the system evolution, in terms of states and outputs variables;

2. it evaluates a control sequence that minimizes an objective function, and then

3. it applies only the first element of the control sequence.

The procedure just depicted is schematized in Figure 4.1.

Figure 4.1: MPC working procedure (Source: Wikipedia)

At each sample time the procedure is repeated, but neglecting the other control input
values obtained before and not used to control the system.

The input control sequence computed by the controller is the result of the MPC
capability to predict the future system evolution. The ability of looking the plant future
behaviour is defined by a parameter called prediction horizon, in Figure 4.1 is noted with
letter p. It is a parameter set in the design control phase, and it is chosen as compromise
between the computational limits and the improvement of the optimal control input
obtained from the controller.
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In this Figure, it can be noticed how MPC solves the optimization problem using all
the entire control sequence computed at time k to reach the desired trajectory; but then
only the first value of the control sequence is applied to the system.

Summarizing, at each samples, MPC has to solve the following optimization problem:

min
u(·)

M (x(tf )) +

∫︂ tf

t0

L(x(t),u(t))dt (4.1)

such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(t0) = x̂0

ẋ(t) = F ((x(t),u(t)), t ∈ [t0, tf ]

H((x(t),u(t)) ≤ 0, t ∈ [t0, tf ]

(4.2)

Where L represents the cost function, t0 is the initial time (the actual time instant),
while tf is the final sample of the prediction horizon. The final stage has a separated
treatment, indeed M is the cost function for the final instant. In (4.2) the initial condition,
the state evolution and the nonlinear limitations are noted.

4.1.2 NMPC

In case of a nonlinear model dynamics, the MPC can be adapted, thus requiring a
non-linear optimization problem to be solved. This is addressed by using various solvers,
ranging from Active Set solvers to Interior Point Method solvers. The non-linearity of the
problem now poses also the issue of the local and global minimums. Indeed, under the
non-linearity condition, the critical point is not generally guaranteed to be also a global
one.

4.1.3 Model implementation

The mathematical model is written in continuous time, and it is then discretized by
integration through the explicit Runge-Kutta discretization method. In particular, the two
model used, are shown in (4.5) and (4.7), both sharing the system state that is as in (4.3).

x =
[︂
p,α,v,ω

]︂T
(4.3)

With v as the spatial velocity, being then ṗ.

ẋ =f1(x) + g1(x,u) (4.4)⎡⎢⎢⎢⎢⎣
ṗ

α̇

p̈

ω̇

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
v

W−1ω

−ge3

−J(ω × Jω)

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0

0

m−1RF

J−1M

⎤⎥⎥⎥⎥⎦u (4.5)
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ẋ =f2(x) + g2(x,u) (4.6)⎡⎢⎢⎢⎢⎣
ṗ

α̇

p̈

ω̇

⎤⎥⎥⎥⎥⎦ =f1(x) +

⎡⎢⎢⎢⎢⎣
0

0

m−1RF

J−1M

⎤⎥⎥⎥⎥⎦T

[︄
uÃ

uB̃

]︄
(4.7)

The model just described contains the inverse of the matrix W , that comes from
subsection 2.2.2, to correctly integrate the Euler angles. Aside from this, the first model
directly derives from (2.33)-(2.36), whereas the second one uses the input ũ.

These models require different constraint sets, as the first requires a soft constraint
to force the zero-moment direction, while the second one instead embeds that constraint
directly on the input. To limit the input instead, the first model can take the constraint
as a direct hard constraint on the input, bounding it in the feasible range of the motor
squared speed. These constraints are shown in detail in Table 4.1

Model Input constraints Soft constraints

Model 1 0 ⩽ ui ⩽ umax |Bu| ⩽ ε

Model 2 uÃ = 0
−Tũ ⩽ 0

Tũ− umax ⩽ 0

Table 4.1: MPC Constraints for each model

Both models contain a cost function like the one in (4.10), where the parameters that
are involved in are the h function, defined as in (4.8) and in the matrix Q as in (4.9), with
each matrix used inside that represents the weight matrix for the respective term in (4.8).

h(x) =

⎡⎢⎢⎢⎢⎢⎢⎣
p− pref

α−αref

ṗ

α̇

u− uhover

⎤⎥⎥⎥⎥⎥⎥⎦ hf (x) =

⎡⎢⎢⎢⎢⎣
p− pref

α−αref

ṗ

α̇

⎤⎥⎥⎥⎥⎦ (4.8)

Q =diag
[︁
Qp,Qα,Qv,Qalphȧ ,Qu

]︁
Qf =diag

[︁
Qp,Qα,Qv,Qalphȧ

]︁
(4.9)

L =
1

2
hTQh Lf =M =

1

2
hT

f QFhf (4.10)
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4.2 Simulations

4.2.1 Tilted Hovering Simulations

After all the analysis done, some simulations have been carried out to test the effective
ability of the UAV to maintain the tilted hovering under the optimum configurations.

These simulations have been done using an MPC controller to bring the agent from
the horizontal hovering position to the final point of the desired static hovering test.

Tilted reference generation

To test our hypothesis, we firstly have to define the correct references to pass to the
MPC controller. We first start by analysing the projection on the x− y plane of the three
vertices belonging to the top vectors of the constrained polyhedron, namely the one used
in subsection 3.4.1, in particular in Figure 3.17.

Noticing than that one of them lies along the y axis, and in particular in the negative
part of it. This has then also been verified also symbolically, empowering us to just assign
the ϕ angle with a negative value, to place the reference zB vector in the same direction.

6 4 2 2 4 6

8

6

4

2

2

4

Figure 4.2: Top vertices constrained polyhedron x− y displacement

Noiseless simulations

Firstly some simulation in ideal conditions have been carried out to test the effectiveness
of the MPC controller implementation, to validate the hypothesis done in the angle
attainable only for the theoretical work done.

This started by setting the reference position to be zero, as we are only interested in
the angular behaviour.

We can see that the agent is capable of correctly stabilize itself with 15 degrees of
rotation around the x axis. The inclination has been introduced by setting αref to have
the resulting desired zB vector in the same direction as one of the three vertices of the
hoverable volume.
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(a) 3D position trajectory
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Figure 4.3: simulation with ϕref : −15◦, α : 10◦, β : 2◦

This is done by projecting in 2D these points, in the x − y plane, as explained in
section 4.2.1.

The simulation with this parameter is done in Figure 4.4 and Figure 4.3, with the
inclination angle set at 15 degrees, and only the construction parameters changing between
the two. By observing in particular the positions in Figure 4.3a and Figure 4.4a, and the
rotations in Figure 4.3c and Figure 4.4c, it is evident that they get stabilized.

Furthermore, the input assumes values that let us have a significant range of control
over it (except for the initial peaks), making possible to, for example, counteract noise
and model uncertainties.

On top of that, it is interesting to see how the six inputs group to form three main pairs,
namely (u1, u4), (u2, u3), (u5, u6). This behaviour is observed as soon as the tolerance
applied to the soft constraint in Table 4.1 rises. This also means that even if this behaviour
does not imply the input belonging to the M kernel, as clearly in the initial simulation
instants the multirotor apply torque to rotate itself, it is clearly correlated.

Assigning the same inclination but with the opposite sign, as in Figure 4.5, shows how
the input pairs now change roles, making the u1 − u4 pair to become dominant.

Nonetheless, the force vector is not feasible any more. This can be seen directly by
observing Figure 3.16b: if the desired vector is allocated along one of the three top vertices,
inverting its angle means rotating the force vector around the z axis by pi radians. It is
then easy to see that by applying that rotation to a desired force vector close to one of
those vertices easily trespass the polyhedron boundary, thus becoming unfeasible. The
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(a) 3D position trajectory
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Figure 4.4: simulation with ϕref : −15◦, α : 33◦, β : 2◦

other reasoning that can lead to the unfeasibility conclusion, is that the vector in the first
simulation is generated mainly by the input pairs (u2, u3), (u5, u6), where the contribution
of the rotors one and four is not entirely used. This though, is expected, as these propellers
lies along the x axis, therefore being the least effective in creating forces along it, as they
are tilted. Following the same reasoning, it is possible to notice in Figure 4.5 that the
inputs roles are inverted. Indeed, now the pair that previously was greatly unused, is
subjected to an excessive load request, leading to its saturation in the first instants of the
simulation. This means that the input required to stabilize the reference vector is not
feasible with the current angle configuration.

It is noticeable that the parameters in Figure 4.3a, that are ϕref = −15◦, α = 10◦ and
β = 10◦ should not be able to maintain a stable configuration, based on Figure 3.19. This
in fact could explain why the controller is not able to get to more than 5 degrees of tilt, as
it can be seen in Figure 4.3c.
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(a) 3D position trajectory
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Figure 4.5: simulation with ϕref : 15◦, α : 33◦, β : 2◦
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4.2.2 Realistic simulations

To improve the realistic features of the simulations, some random noise has been added
to the UAV in the form of a force applied to the agent model at each simulation instant.

This proved the robustness of the controller, being able to counteract the noise and
keeping the agent under control.
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Figure 4.6: simulation with ϕref : −15◦, α : 10◦, β : 2n1
◦

These simulations proved to be comparable to the ideal ones, even considered the large
amount of noise. Nevertheless, the impact of this disturbance is very noticeable in the
inputs, and in Figure 4.7, in particular in Figure 4.7c and Figure 4.7a, how the order
of magnitude of the signals change. The other aspect to consider is that in this plot,
the input values tend to saturate a lot, due to the disturbance. It seems though, that
the controller is able to overcome these saturations. In simulations shown in Figure 4.6
and Figure 4.8, this phenomenon is even more evident, leading to even more noise in the
control inputs, as in these configurations it is more difficult to control the UAV due to the
possibly unfeasible reference.

The last observation regards the fact that while in the last two mentioned simulations
the noise is noticeable, the configuration with an α value of 33◦ in Figure 4.8, is still able
to perform comparably to its noiseless counterpart in Figure 4.5, proving that indeed it is
still more robust with respect to the configuration with α = 10◦.
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(a) 3D position trajectory
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Figure 4.7: simulation with ϕref : −15◦, α : 33◦, β : 2n1
◦

(a) 3D position trajectory
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Figure 4.8: simulation with ϕref : 15◦, α : 33◦, β : 2n1
◦



4.2. SIMULATIONS 53

4.2.3 Movement Simulations

In this section, simulation with various parameters are shown, to validate the results
discussed in the rest of the thesis.

In particular, three simulations are made at first, setting as reference zero in all three
components of the α vector, and by setting a constant position reference in one of the
components of the position. These simulations have been made to study the behaviour
of the agent in the three canonical directions, verifying its robustness and behaviour
depending on the geometric parameters.

4.2.4 Three axis simulations

It is of interest to perform the simulations with the reference position being along one
of the Cartesian axis, as this can aid in the process of better understanding the decoupled
dynamic of the agent.

x-axis
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Figure 4.9: simulation along x axis, α : 5◦, β : 2◦

Starting from the first axis, we can see how, in the 3D plot in Figure 4.9a the agent is
capable of performing a quasi-straight manoeuvre. In particular, the y and z takes very
small values compared to the x one. It can be observed that also the angles assumes small
values, indicating that the zero moment constraint is working up to a certain tolerance.
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(a) 3D position trajectory
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Figure 4.10: simulation along x axis, α : 40◦, β : 2◦

It is important to point out though that it is not able to stabilize to the reference value
in the simulation time. This is probably due to the value of α being too small, leading
to small forces components that can be allocated horizontally. This problem is solved by
increasing the α angle, as in Figure 4.10a. There, it has been set to 40 degrees, and we
can see that the stability is attained, moreover in a short time window.
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y-axis

Also in this case we have a good straightness of the path, seen in Figure 4.11a except
with respect to the previous case, a peculiar wave in the z axis is observed in Figure 4.11b
reminiscing of a sinusoidal wave, nonetheless, it is still in the order of 10−4, so it is negligible
in the problem.

The simulation with α angle of 40 degrees in Figure 4.12 instead attains a much more
stable final state.
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0 1 2 3 4 5 6 7 8

[s]

0

10

20

[m
]

#10!15 px

0 1 2 3 4 5 6 7 8

[s]

0

0.2

0.4

[m
]

py

0 1 2 3 4 5 6 7 8

[s]

0

2

4

6

[m
]

#10!4 pz

(b) position trajectory

0 1 2 3 4 5 6 7 8

[s]

-0.2

0

0.2

[d
eg

]

,1, ?

0 1 2 3 4 5 6 7 8

[s]

-2

0

2

4

[d
eg

]

#10!13 ,2, #

0 1 2 3 4 5 6 7 8

[s]

-2

0

2

[d
eg

]

#10!13 ,3, A

(c) angles trajectory
0 1 2 3 4 5 6 7 8

60

65

70

75

80

85
u

u1

u2

u3

u4

u5

u6

(d) inputs trajectory

Figure 4.11: simulation along y axis, α : 5◦, β : 2◦
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(a) 3D position trajectory
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Figure 4.12: simulation along y axis, α : 40◦, β : 2◦
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z-axis

In the last axis, we can see the simplest case that we can think of. This is because,
as mentioned in the B analysis in subsection 3.3.1, the one vector belongs to the kernel.
Implying a that a direct control with all the propellers with the same spinning rates lead
to a perfect vertical movement. In fact, this is confirmed from both Figure 4.13 and
Figure 4.14, where all the inputs almost takes the same value along all the duration of the
simulation.
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Figure 4.13: simulation along z axis, α : 5◦, β : 2◦
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(a) 3D position trajectory
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Figure 4.14: simulation along z axis, α : 40◦, β : 2◦
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4.2.5 Generic point

To combine all the simulation together, and to see how the agent would react to the
tracking of a generic position reference, here in the final simulation a reference of 0.21 is
given.

It can be seen that the agent achieve perfect tracking, with the zero moment constraint
being sufficiently satisfied, as the angle variations suggests that a small amount of it has
been generated, but the angles components assume fairly small values again.

(a) 3D position trajectory
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Figure 4.15: simulation along all axis, α : 40◦, β : 2◦





5
Conclusion

All the studies carried out in this thesis, have proven that a generically cited multirotor
possesses a large manoeuvrability and robustness if the geometry of the platform is chosen
accordingly.

The first important result is the closed formula that has been found for the volume
representing the space of feasible forces. This made possible to study its value in a
continuum of the platform configurations, and not only restricted to the hexa-rotor case,
but with a generically tilted multirotor platform.

In particular, it has been studied how the rotor sideways inclination angle α, has a
more critical role in the actuation capability, in contraposition to the β angle, responsible
for the inward or outwards inclination of the propellers with respect to its Centre of mass.

New studies brought attention to the problem of considering the volume of forces that
can effectively maintain in mid-air the UAV, even if only by an approximated formula,
but with results that have received an affirmation in the simulation, first without noise,
than with a more realistic simulation that included lateral and vertical forces noise.

5.1 Future works

To continue the work that have been done until now, what is missing is experimental
tests. This would validate all the results of this thesis, starting from the tilted hovering
problem, to the general robust trajectory tracking problem.

Further generalization of the codes could lead to be able to repeat the analysis also
for the case of possible rotor losses, and the majority of the results achieved in this thesis
could help to make a path planning algorithm capable of fault tolerance and fail safeness.
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A
Computational Tools

A.1 SageMath

SageMath [8] ‘ is a free, open-source mathematics software system licensed under the
GPL’. It is built on top of many open-source python packages, amongst which we find
NumPy, Sympy and Maxima.

It provides a convenient Python interface to symbolic computation, that combines the
power of its underlying frameworks, under a common interface.

This means for example that, for symbolic computation, the Sympy engine mixed with
Maxima are used. In this way, it is possible to exploit the higher speed of Maxima, while
being able to use all the feature of Sympy. These include for example code compiling and
export, whereas for plotting, the base engine used is matplotlib. These are only some
basic examples of SageMath’s use of the many libraries it is build upon.

A.2 MATLAB

MATLAB is both a programming language, and an IDE specifically designed for it. It
combines data analysis capabilities with easiness of expressing dense and sparse matrices
and array.
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Another important feature is its ability to easily scale the application running, starting
from multicore processing and GPU parallelization, to be able then to make the same
code run on a computing cluster.

A.2.1 Simulink

Simulink is a whole environment built to work in synopsis with MATLAB, that provides
tools to build and simulate models, with various ODE solvers.

A.3 MATMPC

MATMPC [10] is a toolbox developed in the University of Padova that provides the
user an easy-to-use simulation environment for NMPC computation and simulation.

It is developed to work with MATLAB, and the majority of its code is written in it,
whereas the most time critical code sections are written in C code, embedded in Matlab
through the Matlab C API.
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