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Introduction

The aim of this thesis is to illustrate the technique of importance sampling to

simulate rare events and to apply it to a class of ecological models, known as mul-

tiplicative models, where rare events are crucial to correctly infer regular patterns

of ecosystems.

Ecological systems are among the most studied complex systems as they are a

topic of interest for scientists in various research areas besides ecology, ranging

from physics, mathematics, to computer science. An ecosystem consists of a large

number of interacting players - i.e. individuals belonging to different species. In-

teractions are between individuals of a species, between species and in general

between individuals and the environment, for example atmospheric agents, whose

temporal dynamics can be determined by external forces. This interplay among

the ecosystem components makes difficult to obtain a deterministic description

in terms of variables associated to each component. The microscopic dynamics,

regarding the single individuals, often reveals itself as noisy and should then be

described by probabilistic rules. All these features make the ecological systems

complex and the attempt of modelling such systems leads naturally to consider

their components as belonging to large families of identical microscopic units. On

a macroscopic scale, self-organization arises from the dynamics of these minimal

units, that evolve coupled by interaction terms.
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In fact, ecological systems are characterized by the emergence of recurrent

dynamical patterns.

One of most frequently observed regularities in ecology is the so called Taylor’s

Law (TL) [36]. Due to the high complexity of ecological systems the number of

individuals of a species, also referred to as population number, can be conveniently

represented by a random variable. For this random variable, TL states that vari-

ance and mean follow a power law relationship. This statement has an almost

universal character. It was first observed by L. R. Taylor in 1961 [32], but since

then it has been verified in a variety of systems and within significantly different

areas of research, ranging from genetics [24] to finance [15], for example, other than

ecology. At present, after more than fifty years since the law was first put forward

for consideration, there is no agreement among researchers as to the possible mi-

croscopic mechanism giving rise to the statement [36]. The main issue consists in

the universal character of the law, nevertheless other aspects of it still wait for an

explanation. One of these concerns the behaviour of the power exponent of the

law. Most empirical studies report TL with exponent close to 2, somehow irre-

spective of the details of the ecosystem to which it corresponds [1, 10, 36], whereas

theoretical models allow any value for it [5–7, 21]. Thus, is Taylor’s law exponent

determined by ecological processes or is it a statistical artifact?

In Giometto et al. [17] authors show that limited sampling of sites or replicates,

relative to the duration of observation, inevitably leads to an exponent near 2,

for a very broad class of underlying processes known as multiplicative processes.

Such Markovian processes are widely used to describe the evolution over time of

the number of individuals in a given ecosystem. By employing Large Deviation

Theory, authors show explicitly how the exponent in TL depends on the num-
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ber of observations and on the duration of the census time series. Except for

astronomically large samples, or times, of observations, the sampled value of the

exponent must be close to 2 almost independently of process details. One of the

relevant messages of the cited article is that the precise value of the TL’s expo-

nent is strongly influenced by rare events that are “invisible” when the process is

observed in a limited number of trials. “Rare events” are events that occour with

a very low frequency, typically of order 10−10 or smaller, requiring respectively

1010 or more independent trials to be detected. As example, in the multiplica-

tive Markovian model that will be analysed later, if the random process counts

100 steps approximately 1016 independent realizations of it would be needed to

reveal its most rare events. Clearly, taking into account such events results in a

severe computation strain on the random number generator machine and eventu-

ally makes the simulation task impossible to complete. Here is where importance

sampling comes into play, as a method which decreases the number of trials to

make simulation feasible. In doing that, the condition that must be fulfilled is

that the precision level of the simulation must not be altered. To overcome the

obstacle of the low frequency with which a rare event occurs through a simula-

tion the idea of the importance sampling method is quite simple: to change the

probability law of the process to increase the probability of the event. As a con-

sequence the event will occur with a higher frequency and a smaller number of

trials will be needed to observe it in the simulation. Large Deviation Theory will

have a fundamental role in finding the best probability law to simulate the process.

The thesis work starts by illustrating the theoretical background necessary to deal

with rare events and then applies it to the computation of the Taylor’s law power

exponent for ecological models based on Markovian multiplicative processes.
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Plan of the thesis

Chapter 1. The first chapter is dedicated to Large Deviation Theory. This theory

treats the problem of calculating probabilities of events in which random processes

take values far from what is predicted by the law of large numbers. Such events are

characterized by small probabilities - they are then rare events - and will turn out

to have the same characteristics of the rare events entering the computation of the

Taylor’s law exponent. For this reason Large Deviation Theory will be employed

all through the remainder of the text, first in defining an efficient tool to estimate

low probability events and then in setting the problem regarding the behaviour of

the Taylor’s law exponent. In order to give the theoretical knowledge needed to

understand the following chapters, the main theorems and objects of the theory

are presented: the concept of rate function for probability sequences, Cramér’s

theorem and Gärtner-Ellis theorem.

Chapter 2. As mentioned above, Taylor’s law exponent will be obtained by simu-

lating the multiplicative process representing the population number dynamics of

the species. This chapter analyzes the problem of designing high-efficiency sim-

ulations, that is, simulations that provide the result, with the required precision,

with the smallest possible number of repeated trials. In particular, the problem of

rare events taking part in simulations is studied. It will be shown, by using Large

Deviation Theory, that for the multiplicative process under study a probability

distribution for the random variables exists that makes the simulation the most

efficient possible. The set of results displayed is generally known as importance

sampling technique. The first part of the chapter introduces the basic idea of the

technique, then its core object, the biasing simulation distribution. The second

part is dedicated to find the biasing simulation distribution for the multiplicative

process of interest.
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Chapter 3. In this chapter the problem regarding the behaviour of the Taylor’s law

power exponent is presented. In a wide variety of empirical observations, including

sampling measurements, ad hoc experiments and simulations, the power exponent

appears to be bounded within an almost universal range of values, irrespective

of the models used to represent the species (or the system for which Taylor’s law

holds). Large Deviation Theory is employed to demonstrate that the possible cause

of this phenomenon consists in undersampling measurements that are ineffective

in detecting the rare events involved in the ecological process under study. From

this it will follow that a high-efficiency simulation technique is needed to correctly

evaluate the exponent, precisely the importance sampling technique discussed in

Chapter 2.

Chapter 4. The importance sampling method is finally exploited to estimate the

Taylor’s law power exponent. The results, obtained for the class of multiplicative

processes, will prove that the new simulation method correctly evaluates the expo-

nent, as it provides estimates that depend on the underlying process and are not

restricted to a particular range of values, in agreement with theoretical predictions.

This will be a verification that a high-efficiency simulation technique is crucial in

providing accurate estimate of the exponent when rare events are involved in the

simulation process.
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Chapter 1

An Introduction to Large
Deviation Theory

In probability theory, Large Deviations Theory deals with processes determined

by random variables taking values far from the values predicted by the law of large

numbers. In particular, the first aim of Large Deviations Theory (in the following

denoted LDT) consists in evaluating the probability that a sum of independent

identically distributed random variables deviates from its mean, equal to the mean

of each of the random variables. The law of large numbers predicts this probability

tends to zero when the number of random variables in the sum grows large, but it

doesn’t characterize the way the probability decreases. LDT provides this informa-

tion, first for sums of independent identically distributed random variables, then

for a larger family of random variables, under assumptions regarding the random

variables themselves or their particular functions.

Beyond mathematics, the role of LDT is recognized as fundamental in disci-

plines where there is the need to evaluate with the highest accuracy probabilities

regarding the dynamics of complex or stochastic systems. As a consequence, LDT

is found of utility in different research fields [4, 9, 20].

In defining performance of telecommunication networks LDT is applied to esti-

mate the probability of data loss during transmission. The event of data loss is rare
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1. AN INTRODUCTION TO LARGE DEVIATION THEORY

in today communication systems, but it could lead to the failure of the system if it

is not properly detected. Here LDT has the role of estimating the probability of a

system failure [22, 30]. Another field of application of LDT is finance engineering,

where risk management in dealing with loans portfolios involves estimating the

probability of large financial losses due to simultaneous loan defaults [18]. The

role of LDT as a theory useful in preventing a system failure is known in insurance

market also, where the theory is employed to evaluate the probability that a large

number of claims is set within a short time window [13, 14].

Finally, in physics LDT finds application in statistical mechanics [12, 34],

in problems relating to Brownian motion [31], polymer dynamics [20], percola-

tion [19]. In order to accurately describe such dynamics probabilities of order

10−30÷10−50 or lower have to be computed. As to these problems the role of LDT

is to provide methods to reduce the computation effort needed to come up with

reliable results [30].

Besides applications, in physics LDT has been recognized also as a sound mathe-

matical theory to rigorously formulate statistical mechanics itself [12], to the point

that LDT has been seen as a natural mathematical language of statistical mechan-

ics [29, 34]. As example LDT can justify the extremum principles of minimum free

energy and maximum entropy [11, 34].

In this chapter an introduction to Large Deviation Theory is given by stating

its fundamental theorems. These results, as anticipated in the Introduction, will

be necessary in Chapter 2 to implement the importance sampling simulation tech-

nique, then in Chapter 3 to define the problem regarding the power exponent of

Taylor’s law. The work done here to establish the Large Deviation Theory will

find its justification in Chapter 4, where the power exponent will be computed by

means of the importance sampling technique.

In order to set the starting point and the mathematical context of LDT it is
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1.1. Large Deviation Theory and the Law of Large Numbers

useful to look at the relationship between the theory and the law of large numbers.

1.1 Large Deviation Theory and the Law of Large

Numbers

LDT is often presented with examples relating to sums of random variables. Let

(Xn)n∈N be a sequence of independent identically distributed (i.i.d.) real-valued

random variables with expectation value, or mean, E[Xn] = m. Assuming m <∞,

the law of large numbers (LLN) states that the sum, or sample average,

Sn =
1

n

n∑
i=1

Xi

converges to m as n→∞ almost surely. Then, by a standard result of probability

theory, Sn converges to m in probability too:

lim
n→∞

P(|Sn −m| > δ) = 0 ∀δ > 0.

The above expression states nothing about the velocity in n with which the quan-

tity P(|Sn−m| > δ) goes to zero. The aim of LDT is to define the behaviour of this

probability with respect to n. Figure 1.1 gives an example of how Sn behaves as

n→∞ for sequences of uniformly or Gaussian distributed i.i.d. random variables.

In both cases the outcomes converge to the respective means, but with possibly

slight differences that LLN is unable to detect.

LDT results come at first in the form:

P(|Sn −m| ≥ x) = f(n)e−nI(x)

where f(n) is a sequence converging in n to zero more slowly than the inverse

of the exponential sequence and I(x) is a function, called the exponential rate

function for Sn, which has some characteristic properties that will be shown later

13



1. AN INTRODUCTION TO LARGE DEVIATION THEORY
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Figure 1.1: On the left is plotted Sn for different realizations of a sequence of i.i.d. r.v.s
with uniform distribution in [0,1], on the right the plot refers to a sequence of Gaussian
r.v.s with expectation values 1/2 but with different variances (σ2

red = 1, σ2
green = 2,

σ2
blue = 4. For all distributions Sn approaches 1/2 when n grows large. Differences are

on the velocity, in n, with which this happens.

in the text. It is often difficult to find an expression for the sequence f(n) and this

leads LDT to state limit theorems in the simpler form:

lim
n→∞

1

n
logP(|Sn −m| ≥ x) = −nI(x).

The new expression is itself a limit for n → ∞ but now the function I(x) gives

an explicit information as to the speed with which the sequence P(|Sn −m| ≥ x)

approaches zero when n increases: I(x) establishes the dependence of this speed

on the point x. Furthermore, LDT gives the exact expression of I(x), according

to the particular sequence of random variables considered. With respect to this,

LLN states only that, for any sequence of i.i.d. random variables, for x > 0 the

rate function satisfies I(x) > 0.

Although the additional information provided by LDT versus LLN could seem

of little importance, it will reveal itself as fundamental to compute probabilities

regarding rare events.

According to the problem undertaken, LDT comes with general and ad hoc

results. Cramér’s theorem is the first mathematical result that laid the foundations

for the Theory. Gärtner-Ellis theorem is a refinement of the former, being it

14



1.2. Cramér’s theorem

applicable to a broader class of sequences of random variables.

1.2 Cramér’s theorem

Let (Xn)n∈N be a sequence of i.i.d random variables taking values in R and with

expectation value E[X1] = m <∞. (The probability space of the variables is not

relevant.) Cramér’s theorem answers the question of determining the probability

dynamics of the sequence (Sn)n∈N where Sn is the sample average, also known as

empirical average in physics, defined in section 1.1.:

Sn =
1

n

n∑
i=1

Xi.

The moment generating function of the Xi random variables will be denoted by

M(·):

M(θ) = E[eθX1 ], θ ∈ R.

Definition 1.1. The function

I(x) = sup
θ

[θx− logM(θ)]

is called the large deviation rate function of the sequence (Sn).

I(x) has some properties, fundamental within LDT.

Proposition 1.2. I(·) is convex.

Proof. If λ ∈ [0, 1], then ∀x1, x2,

I(λx1 + (1− λ)x2) = sup
θ

[θ(λx1 + (1− λ)x2)− logM(θ)]

= sup
θ

[θλx1 − λ logM(θ) + θ(1− λ)x2)− (1− λ) logM(θ)]

≤ sup
θ

[λ(θx1 − logM(θ))] + sup
θ

[(1− λ)(θx2 − logM(θ))]

= λI(x1) + (1− λ)I(x2).

then I(x) is convex.
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1. AN INTRODUCTION TO LARGE DEVIATION THEORY

Proposition 1.3. The point of minimum of I(·) is xmin = E[X1] = m and

I(xmin = m) = 0.

Proof. M(0) = 1, then I(x) ≥ 0x − logM(0) = 0 ∀x. Jensen’s inequality gives

M(θ) ≥ exp(θm), hence θm − logM(θ) ≤ 0 ∀θ. This implies I(m) = 0 and

I(x) ≥ I(m) ∀x.

Proposition 1.4. For x > m

I(x) = sup
θ≥0

[θx− logM(θ)],

and I(·) is an increasing function (x > m).

For x < m

I(x) = sup
θ≤0

[θx− logM(θ)],

and I(·) is a decreasing function (x < m).

Proof. ∀θ ∈ R by Jensen’s inequality

logM(θ) = logE[eθX1 ] ≥ E[log eθX1 ] = θm.

Then for x ≥ m and ∀θ < 0

θx− logM(θ) ≤ θm− logM(θ) ≤ I(m) = 0,

where I(m) = 0 from proposition 1.3. Thus in the definition for I(x), for x > m the

supremum is realized over positive values of θ. Finally, θx− logM(θ), as function

of x, is increasing, then I(x) is monotone increasing on [m,∞]. The result for

x < m is obtained analogously.

From the above propositions it follows that I(·) can be ∞ for some values of

its argument, thus the following definition is useful.

Definition 1.5. For function F (·) the set DF = {x : F (x) < ∞} is called the

effective domain of F (·).

16



1.2. Cramér’s theorem

In what follows the interior of a set D will be denoted by D̃.

Proposition 1.6. In the interior of the effective domain of M(·)

M ′(θx)

M(θx
= x ⇒ I(x) = θxx− logM(θx) (1.1)

Proof. The condition for M(·) of being differentiable in D̃ is assured by a standard

result in real analysis (or probability theory). The proposition is demonstrated by

considering g(θ) = θx − logM(θ). By calculating g′(θ) and g′′(θ) it is found g is

concave and g′(θx) = 0, thus g(θx) is the maximum of g(θ), then (1.1) holds true.

In the following examples rate functions are derived from absolutely continuous

and discrete probability distributions.

Example 1 (Standard Gaussian random variable). For X1 ∼ N (0, 1) the moment

generating function is M(θ) = exp(θ2/2), then

IN (0,1)(x) = sup
θ

[θx− θ2/2] = x2/2.

Example 2 (Bernoulli random variable). For X1 ∼ Be(p), where p ∈ (0, 1),

M(θ) = peθ + 1− p, then

g′(θ) = x− peθ

peθ + 1− p

and g′(θx) = 0 with

θx = log(
x

p
) + log

(1− p
1− x

)
that gives

M(θx) =
1− p
1− x

Thus

IBe(p)(x) =

{
x log

(
x
p

)
+ (1− x) log

(
1−x
1−p

)
0 ≤ x ≤ 1

∞ x < 0, x > 1.

17



1. AN INTRODUCTION TO LARGE DEVIATION THEORY
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Figure 1.2: On the left is plotted IN (0,1), on the right IBe(p) for different values of p
(pblue = 0.1, porange = 0.5, pgreen = 0.9). Outside [0, 1] IBe(p) is ∞.

Having defined the rate function and its properties it is now possible to state

Cramér’s theorem.

Theorem 1.7 (Cramér). Let (Xn)n∈N be a sequence of i.i.d. R-valued random

variables, (Sn) the corresponding sequence of sample averages and I(·) its rate

function.

If A ⊂ R is a closed interval then

lim sup
n→∞

1

n
logP(Sn ∈ A) ≤ − inf

x∈A
I(x). (1.2)

If B ⊂ R is an open interval and for every y ∈ B there exists a θy for which

I(y) = θyy − logM(θy), then

lim inf
n→∞

1

n
logP(Sn ∈ B) ≥ − inf

x∈B
I(x).

Proof. Upper bound. A is of the form A = [a, b]. If m ∈ (a, b), recalling the

properties of I(·), I(m) = 0 =⇒ infx∈A I(x) = 0. As to the left hand side of

the upper bound limit, LLN states limn→∞ P(Sn ∈ [a, b]) = 1 ∀a, b : a < m < b.

Thus the two sides are both zero and the statement is true.

18



1.2. Cramér’s theorem

If m /∈ (a, b),m ≤ a, for θ ≥ 0, indicating with Pn(x) the probability distribution

function of Sn,

P(Sn ∈ [a, b]) =

∫
[a,b]

dPn(x) =

∫
[a,b]

e−θxeθx dPn(x)

≤ e−θa
∫

[a,b]

eθx dPn(x)

≤ e−θa
∫

eθx dPn(x) = e−θa
(
M(

θ

n
)
)n

(the last equality follows from independency and identical distribution of the Xi

random variables). Then

1

n
logP(Sn ∈ [a, b]) ≤ −θa

n
+ logM

( θ
n

)
and θ can be replaced by nθ (because nθ still satisfies nθ ≥ 0), giving

1

n
logP(Sn ∈ [a, b]) ≤ −[θa− logM(θ)]

that holds true for all θ > 0, thus

1

n
logP(Sn ∈ [a, b]) ≤ inf

θ>0
{−[θa− logM(θ)]}

= − sup
θ>0
{θa− logM(θ)}

= −I(a)

= − inf
x∈[a,b]

I(x).

(1.3)

The upper bound limit of the statement is obtained by taking the limit superior

over n on both sides.

If m /∈ (a, b), b ≤ m, the result is obtained by replacing Xi with −Xi.

Lower bound. Now B is of the form B = (a, b). For y ∈ (a, b) there always exists

δ > 0 so that (y − δ, y + δ) ⊂ (a, b). The statement is proved if

lim inf
n→∞

1

n
logP

(
Sn ∈ (y − δ, y + δ)

)
≥ −I(y).
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By hypothesis there is a θy that gives I(y) = θyy − logM(θy). It can be taken

y ≥ m (the case y ≤ m is handled analogously). Then, from the Proposition 2.4

θy must be θy ≥ 0. Now a new random variable Xθy is adopted, with cumulative

distribution function (or probability distribution)

Pθy(z) = P(Xθy ≤ z) =

∫ z
−∞ exp(θyx) dP (x)

M(θy)

(here P is the distribution function of Xi in the sequence Xn of i.i.d. random

variables). Xθy has expectation value E[Xθy ] = m. Thus, adopting LLN, for every

ε ≥ 0

lim
n→∞

∫
|(x1+···+xn)/n−y|<ε

dPθy(x1) · · · · · dPθy(xn) = 1,

while for ε < δ

P
(
Sn ∈ (y − δ, y + δ)

)
=

∫
|(x1+···+xn)/n−y|<δ

dP (x1) · · · · · dP (xn)

≥
∫
|(x1+···+xn)/n−y|<ε

dP (x1) · · · · · dP (xn)

≥ e(−ny−nε)θy
∫
|(x1+···+xn)/n−y|<ε

eθy(x1+···+xn)dP (x1) · · · dP (xn)

≥ e(−ny−nε)θy(M(θy))
n

∫
|(x1+···+xn)/n−y|<ε

dPθy(x1) · · · dPθy(xn).

Since the last inequality holds true for every n, it follows

lim inf
n→∞

1

n
logP

(
Sn ∈ (y − δ, y + δ)

)
≥ (−y − ε)θy + logM(θy)

= −I(y)− εθy.

and since ε > 0 is arbitrary the limit ε→ 0 can be taken, leading to the result.

Chernoff bound. Inequality (1.3) in the first part of the proof shows the upper

bound statement (1.2) is satisfied for all n, not just for n large. This upper

bound is sometimes referred to as the Chernoff bound, from the terminology of

communications theory, where LDT is applied in computing probabilities of data

loss events [3, 4].
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1.2. Cramér’s theorem

Minimum rate point. Cramér’s theorem shows that the asympotic behaviour

(n → ∞) of the probability for the sample average Sn to rest in a set E 63 m

depends only on one point, the minimum rate point of the set, that is the point

y ∈ E defined as y = infx∈E I(x). As example, for ∆ > 0 fixed but arbitrary it

holds that for every r > 1

lim
n→∞

1

n
logP

(
Sn ∈ (m+ ∆,m+ r∆)

)
= lim

n→∞

1

n
logP

(
(Sn ∈ (m+ ∆,∞)

)
,

which implies, by definition of limit, there exists a n̄ so that for every n ≥ n̄

P
(
Sn ∈ (m+ ∆,m+ r∆)

)
= P

(
(Sn ∈ (m+ ∆,∞)

)
, ∀r > 1.

This gives the minimum rate points of a set E the role of governing the rate with

which P(Sn ∈ E) converges to zero.

Lower and upper bounds. In establishing the lower bound, a new probability

distribution Pθy(·) has been introduced so that the expectation value of the origi-

nal random variables changes into the minimum rate point of the considered set:

E[Xθy ] = y, Iθy(y) = infx∈(a, b) Iθy(x) where Iθy(·) is the rate function for the sum

of the new random variables.

Results expressed in terms of upper bound for closed sets and lower bound for

open sets are common within LDT. The two limits coincide for intervals, that are

convex sets (Chapt. 2 in [9]). Hence, defining I(B) = infx∈B I(x), for intervals

Cramér’s theorem states

lim
n→∞

1

n
logP(Sn ∈ B) = − inf

x∈B
I(x) = −I(B).

This expression is more often displayed as

P(Sn ∈ B) ' e−nI(B) for n→∞.

The last form conveys in the simplest and most intuitive way the improvement

brought by LDT to probability theory. For B 3 m proposition 1.3 gives I(B) = 0,
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1. AN INTRODUCTION TO LARGE DEVIATION THEORY

then P(Sn ∈ B) = 0. This is no news, since it is also known from LLN. But for

B 63 m LLN would only say P(Sn ∈ B)
n→∞−→ 0: LDT describes instead exactly how

P(Sn ∈ B) behaves when n → ∞, according to I(B). It could be said the rate

function I(·) is all that is needed to know the asymptotic behaviour of a probability

sequence.

1.3 Gärtner-Ellis theorem

Gärtner-Ellis theorem is a generalization of Cramér’s theorem. This theorem

makes no direct assumptions on the sequence of r.v.s and focuses instead on the

sequence of their moment generating functions. An important consequence is the

possibility to state large deviation results for functionals of sequences of r.v.s,

including sequences showing dependency, for example Markov chains.

Assumptions. Gärtner-Ellis theorem is given here for a sequence (Yn)n∈N of r.v.s

with values in Rd. No conditions are requested directly on these Yn. Assumptions

are made for the sequence (φn)(·) of functions defined as

φn(θ) =
1

n
logE[e〈θ, Yn〉], θ ∈ Rd

The symbol 〈· , ·〉 denotes the usual scalar product in Rd: 〈θ, Yn〉 =
∑d

i θiYn,i.

For λ ∈ [0, 1] Holder’s inequality gives, ∀ θ1, θ2,

φn(λθ1 + (1− λ)θ2) =
1

n
logE

[
(e〈θ1, Yn〉)λ (e〈θ2, Yn〉)(1−λ)

]
≤ 1

n
log
(
E
[
e〈θ1, Yn〉

])λ
+

1

n
log
(
E
[
e〈θ2, Yn〉

])(1−λ)

= λφn(θ1) + (1− λ)φn(θ2),

then (φn) is a sequence of convex functions.

The following definitions will be used in the assumptions.

Definition 1.8 (Steepness). A function f : Rd → R differentiable on its effective
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1.3. Gärtner-Ellis theorem

domain D̃f is called steep if

(xn) ⊂ Df , xn → x ∈ ∂Df =⇒
∥∥f(xn)

∥∥→∞.
Definition 1.9 (Essential smoothness). A convex function f is said essentially

smooth if

D̃f 6= ∅,

f is everywhere differentiable in D̃f ,

f is steep.

Hypothesis in Gärtner-Ellis theorem consists of three assumptions on the (φn),

called standard assumptions when φn are convex functions. These technical condi-

tions are satisfied in a large number of applications, in particular that of computing

rare events probability as will be done in Chapter 4.

Assumption A1. φ(θ) = limn→∞ φn(θ) ∃ ∀ θ ∈ Rd, with ∞ regarded both

as a valid limit and a possible term in (φn)n∈N. The effective domain of φ, Dφ, is

convex, then φ(θ) is itself convex, because it is the limit of a sequence of convex

functions on a convex set.

Assumption A2. 0 ∈ D̃φ and ∀α ∈ R the set {θ ∈ Rd : φ(θ) ≤ α} is closed in

Rd.

Assumption A3. φ is essentially smooth.

In order to set upper and lower bounds in Gärtner-Ellis theorem a new large

deviation rate function is needed.

Definition 1.10 (Gärtner-Ellis rate function). The function

I(x) = sup
θ

[〈θ, x〉 − φ(θ)]

is called the large deviation rate function of the sequence (Yn).
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1. AN INTRODUCTION TO LARGE DEVIATION THEORY

Even if the same notation for Cramér’s rate function is adopted, it will be clear

from the context which of the two is being used.

If assumptions A1, A2, A3 are met then there exists a point m ∈ Rd for which

∇φ(0) = m (Remark 3.2.1 in [3]). It must be noted, to avoid misunderstanding,

that m here is not directly related to the sequence (Yn) and it could be not the

expectation value of Y1. This happens because the assumptions do not require

the sequence (Yn) to be of i.i.d. random variables. As example, in cases where

(Yn) shows dependency there would be no evident relationship between m and the

statistics of (Yn). Nevertheless, the point m has the same role as the mean value

of the i.i.d. random variables in Cramér’s theorem (Remark 3.2.1 in [3]), that is

m = ∇φ(0) =⇒ I(x) ≥ I(m), ∀x.

Gärtner-Ellis theorem provides upper and lower bounds for the probability

sequence Pn = P
(
Yn/n ∈ K

)
, depending on K being compact, closed or open set

in Rd.

Theorem 1.11 (Gärtner-Ellis). For every compact subset K ⊂ Rd

A1 =⇒ lim sup
n→∞

1

n
logP

(Yn
n
∈ K

)
≤ − inf

x∈K
I(x).

For every closed subset C ⊂ Rd

A1, A2 =⇒ lim sup
n→∞

1

n
logP

(Yn
n
∈ C

)
≤ − inf

x∈C
I(x).

For every open subset B ⊂ Rd

A1, A3 =⇒ lim sup
n→∞

1

n
logP

(Yn
n
∈ B

)
≥ − inf

x∈B
I(x).

Proof. The proof of the theorem comes through technical lemmas. It is reported

in section A.1 of the Appendix..
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1.3. Gärtner-Ellis theorem

Assumptions for Gärtner-Ellis theorem are necessary: if one of them is not

satisfied one or more statements of the theorem could fail, as the following examples

show.

Example 3. Let (Yn), n ∈ N, a sequence of independent r.v.s with distribution

P (Yn = n) = 1/2 = P (Yn = −n), then φn(θ) = (1/n) log
(
(eθn + e−θn)/2

)
. Since

limn φn(θ) = |θ|, A3 is not met by φ(θ). I(x) is null for x ∈ [−1, 1] and ∞

otherwise, while P(Yn/n ∈ (−1, 1)) = 0 ∀n, then

lim inf
n→∞

1

n
logP

(Yn
n
∈ (−1, 1)

)
= −∞ 6≥ − inf

x∈(−1,1)
I(x) = 0.

Here the left hand side does not comply with the theorem because assumption 3

is not satisfied in θ = 0. Nevertheless assumptions A1 and A2 are still satisfied,

then the upper bound for the compact set [−1, 1] is as given by the theorem:

P(Yn/n ∈ [−1, 1]) = 1 ∀n, then

lim sup
n→∞

1

n
logP

(Yn
n
∈ [−1, 1]

)
= 0 ≤ − inf

x∈[−1,1]
I(x) = 0.

Example 4. (Heavy tailed r.v. and sample average) Given a sequence (Xn) of

i.i.d. r.v.s, Xn ∼ N (1, 1), and a r.v. E ∼ Exp(1), with Xn independent of E ∀n,

Gärtner-Ellis theorem can be used to find the asymptotic behaviour of

Pn = P
(
E +

n∑
i=1

Xi > nA
)

for some set A ⊂ R. Writing Yn = E +
∑n

i=1 Xi, being Xn independent of E ∀n,

E
[
exp(θYn)

]
= E

[
exp (θE) exp (θ

n∑
i=1

Xi)
]

= E
[
exp (θE)

]
E
[
exp (θX1)

]n
then

1

n
logE

[
exp(θYn)

]
=

1

n
logE

[
exp (θE)

]
+ logE

[
exp (θX1)

]
.
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1. AN INTRODUCTION TO LARGE DEVIATION THEORY

The expectation values are

E
[
exp (θE)

]
=

{
1

1−θ θ < 1

∞ θ ≥ 1

and

E
[
exp (θX1)

]
= exp

(
θ +

θ2

2

)
.

Thus limn→∞ φn(θ) is

φ(θ) =

{
θ + θ2

2
θ < 1

∞ θ ≥ 1

(because φn(θ)|θ≥1 = ∞ ∀n). The expression of φ shows assumption A1 is

satisfied by (φn). As to assumption A2, 0 belongs to D̃φ, but the α-level set

{θ ∈ R : φ(θ) ≤ α} = {θ ∈ [−1 −
√

1 + 2α,−1 +
√

1 + 2α ] ∩ (−∞, 1)} and for

α > 3/2 this set is {θ ∈ [−1 −
√

1 + 2α)} and is not closed (for α < −1/2 the

square root is not defined, the set is ∅, then closed). With (θn) ⊂ (−∞, 1) = Dφ,

θn → 1 ∈ ∂Dφ, |∇φ(θn)| = 1 + θn → 2 6= ∞, then φ is not steep and does not

comply with assumption A3.

Therefore within Gärtner-Ellis theorem an upper bound for P(Yn > nA) is assured

for A compact and not for A closed (not compact), nor it can be set a lower bound

when A is open. Finally, the rate function is

I(x) = sup
θ

[θx− φ(θ)]

= sup
θ<1

[θx− θ − θ2

2
]

=

{
(x−1)2

2
x < 2

x− 3
2

x ≥ 2

The overall result is that the asymptotic drift of the probability regarding a sum

of i.i.d. normal random variables may be significantly altered by adding to it even

only one r.v. differently distributed. In this case the new r.v. had an exponential

distribution, consequently this result holds for every added random variable that
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1.4. Markov processes

is heavy-tailed (for which limx→∞ exp(λx)P(X > x) = ∞, ∀λ > 0 ). The central

limit theorem (CLT) and the law of large numbers wouldn’t provide the same

information. A careless use of CLT and LLN could lead to conclude that adding

the exponential distributed variable does not change limn→∞ Pn. Indeed CLT and

LLN statements do not contradict the result of the example, but they do not offer

any means to describe how Pn behaves when n→∞.

A general Theory of Large Deviations is given in section A.2 of the Appendix,

where Varadhan’s lemma is also demonstrated.

1.4 Markov processes

It has been said Gärtner-Ellis theorem has to be used in place of Cramér’s theorem

if the random variables in the sequence are not i.i.d.. The simplest sequence with

dependency is a Markov chain. Here the state space is assumed to be finite, for

simplicity of the form

χ = {0, . . . , k}, k ∈ N fixed,

and the chain irreducible (any state of the chain can be reached starting from any

other state with a strictly positive probability). The transition probabilities will

be denoted by

pij = P(Xn+1 = j|Xn = i),

In what follows it is considered the possibility of mapping the variables Xn by

a function f : χ → R. The sample average for f(Xn) is defined as it is usual:

Sn = (1/n)
∑n

i=1 f(Xn).

Let now π be the stationary distribution of the process: πP = π, where P is the

chain transition matrix. By hypothesis, the chain is irreducible and its state space
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1. AN INTRODUCTION TO LARGE DEVIATION THEORY

is finite, then the ergodic theorem assures that π exists, it is unique and that, for

every initial distribution ν, the following convergence holds:∑
x∈χ

|νP n − π| n→∞−→ 0.

As a consequence, the ergodic theorem makes it possible to state a law of large

numbers for Sn as

Sn
P−→ Eπ[f ] =

k∑
j=0

f(j)π(j).

The role of Large Deviations Theory in studying Markov chains is then to quantify

the rate in n with which Sn approaches Eπ[f ]. Again, it would not be possible to

obtain this information with the sole LLN.

To apply LDT the sequence φn(θ) introduced with the Gärtner-Ellis theorem is

now

φn(θ) =
1

n
logE[exp (θnSn)].

Denoting with p(x1, . . . , xn) the joint probability function for the first n steps of

the chain,

E[exp (θnSn)] =
∑
x1∈χ

∑
x2∈χ

· · ·
∑
xn∈χ

exp
(
θ

n∑
i=1

f(xi)
)
p(x1, x2, . . . , xn)

=
k∑

x1=0

k∑
x2=0

· · ·
k∑

xn=0

exp
(
θ

n∑
i=1

f(xi)
)
p(x1)

n−1∏
i=1

p(xi+1|xi).

Let now F be the set of all functions mapping χ into R and be Tθ : F → F the

linear operator acting on g ∈ F as

Tθ(g)(x) =
∑
y∈χ

eθf(y)pxy. (1.4)

Having defined Tθ, the expectation value becomes

E[exp (θnSn)] =
k∑

x1=0

T nθ (1)(x1) exp
(
θf(x1)

)
p(x1),
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1.4. Markov processes

where the T nθ (1) stands for Tθ applied n times to the constant function g = 1.

Since χ is finite the iteration of Tθ consists in multiplying n times the matrix

representing the operator and applying the resulting matrix to the vector with all

entries equal to 1. From definition the matrix Tθ is strictly positive (Tθ ij > 0 ∀ i, j)

and Perron-Frobenius theorem assures Tθ has a largest eigenvalue λ(θ):

λ(θ) = sup
g : ‖g‖≤1

‖Tθ(g)‖

corresponding to a unique eigenvector ψ (‖ · ‖ represents the Euclidean norm for

vectors). Then it is possible to express T nθ at first order in ψ with a rest term

negligible with respect to en:

T nθ (g)(x) = cgλ(θ)nψ(x) + o(n), lim
n→∞

o(n)e−n = 0, cg > 0 constant,

where ψ(x) indicates the component of ψ corresponding to the state x. At this

point the introduction of Tθ is justified:

lim
n→∞

φn(θ) = lim
n→∞

1

n
log

k∑
x=0

T nθ (1)(x) exp
(
θf((x)

)
p(x)

= lim
n→∞

1

n
log

k∑
x=0

cgλ(θ)nψ(x) exp
(
θf((x)

)
p(x)

= log λ(θ) + lim
n→∞

1

n
log

k∑
x=0

cgψ(x) exp
(
θf((x)

)
p(x)

= log λ(θ).

Finally, log λ(θ), of effective domain R, is closed, convex and steep, then Gärtner-

Ellis theorem states the rate function associated to nSn =
∑n

i f(Xi) is

I(x) = sup
θ

[θx− log λ(θ)].

This theoretical result can be applied to any irreducible Markov chain with

finite state space.
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Chapter 2

The Rare Event Problem in
Simulation Design

Since its first application in physics, in the early 30’s by E. Fermi, simulation has

become a fundamental part in scientific studies. Thanks to their adaptability, and

to the increasing power of computers, simulation techniques are today common

to a variety of disciplines, ranging from applied mathematics [2–4], in deriving

probability theory results, to finance, where it is used in risk management [18], from

physics, where simulations are applied to study complex systems and dynamical

processes [16, 30], to natural sciences, when ecosystems parameters are evaluated

[17]. The need of employing simulation arises in cases where it is not possible, or

straightforward, to obtain results by theory or numerical methods. For example,

when systems with a high degree of freedom are under study, equations describing

them, be they deterministic or stochastic, could be unsolvable either in analytic

or numerical way [3]. In such cases simulations provide an approximate solution

expressed in terms of an estimate and the probability with which it approximates

the solution within a fixed maximum error.

A system simulation is performed by first assigning a probability distribution

to the variables of the system, according to the model used to represent it, and

then by carrying out repeated realizations of the variables. The estimate of the
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2. THE RARE EVENT PROBLEM IN SIMULATION DESIGN

searched solution, usually a functional of the variables adopted in the simulation,

is obtained by computing sample averages of the outcomes.

However, when low probability events enter the simulation process, the stan-

dard simulation could fail in providing the searched result and a more sophisticated

simulation architecture is needed. This chapter presents such a new architecture,

the importance sampling technique, and the theoretical framework that will serve

later to apply it to the ecological question.

2.1 Estimating low probability events

The problem of a rare event entering a simulation process consists in finding a

method to reduce the computational effort required on the random number gen-

erator machine to take the simulation to an end. A prototype of this problem is

that of estimating the probability of the rare event itself.

Let E be the rare event and let µ = P(E) be the parameter to evaluate.

By definition of the expectation value, E[·], the probability P(E) equals E[1E]

where 1E stands for the indicator function over E (1E = 1 if E occurs, 1E = 0

if E does not occur). Thanks to the identity P(E) = E[1E], in order to get µ a

simulation could be performed by repeating a number of independent experiments,

or trials, in which the event can happen or not. Any time the event E occurs the

corresponding output, 1E, is set to 1, otherwise it is set to 0. The average of the

outputs, according to the law of large numbers, converges to P(E) as the number

k of independent trials increases:

Sk =
1

k

k∑
j=1

(1E)j
k→∞−→ E[1E] = P(E),

where (1E)j is the outcome in the j-th trial. From this, to obtain P(E) a simulation

should go on indefinitely, to realize the condition k →∞. This is not possible and

an approximate result is then accepted, that will be expressed by a value µ̄, called
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2.1. Estimating low probability events

estimate of µ, a maximum error ε and the probability, or confidence, yε with which

µ̄ lies in the confidence interval [µ− ε, µ+ ε].

The parameters ε and yε define the precision of the estimate. Once a precision

level (ε, yε) has been fixed, the simulation is run until the estimate µ̄ satisfies that

precision, that is, the simulation is interrupted only when the estimate µ̄ lies about

µ within maximum error ε with the fixed probability yε.

Precision requirements may come as the most delicate part of a simulation

design. Nevertheless, they control the reliability of the simulation: without a

precision constraint the final output is useless, since it is not known the proba-

bility with which it matches, within the confidence interval, the parameter to be

estimated.

To appreciate the difficulties that may arise in rare event simulation, it is useful to

consider, as example, the problem of estimating the mean of a Bernoulli random

variable by observing a sequence of i.i.d. Bernoulli random variables of parameter

µ:

P(X1 = 1) = µ = 1− P(X1 = 0).

Since µ is given, the problem is already solved: E[X1] = µ and Var [X1] = µ(1−µ).

But supposing not to be able to compute the mean by theory, then it can be

estimated by using the sample average

µ̄ =
1

k

k∑
j=1

Xj.

The variablesXj are i.i.d., thus the expectation value of µ̄ is E[µ̄] = 1
k

∑k
j=1 E[Xj] =

1
k
kE[X1] = µ, the parameter to evaluate. As mentioned above, a maximum error

ε on the estimate µ̄ and a confidence must be set for the simulation to produce a

reliable result. In this example, if the estimate µ̄ is requested with a maximum

error ε = 5% with yε = 95% confidence, then µ̄ must satisfy

P
(
|µ̄− µ| ≤ 0.05µ

)
= 0.95. (2.1)
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Since µ̄ depends on k, (2.1) is a condition on the number of independent trials of

events {Xi = 1}. The number k̃ satisfying this condition will be the minimum

number of independent trials to execute: any k ≥ k̃ could be accepted, because

for such k the simulation will provide, according to LLN, an even better estimate

of µ.

Let now {X1 = 1} be a rare event: its probability is extremely low. What has

to be evaluated is the minimum number k̃ of independent trials of events {Xi = 1}

necessary to estimate µ with the desired precision. Since, by hypothesis, {X1 = 1}

has a low probability, µ ' 0 and Var [X1] = µ(1 − µ) ' µ. Then, because µ̄ is

a sum of k i.i.d. random variables, 1
k
Xj, its variance is k times the variance of

( 1
k
X1):

Var [µ̄] = k
µ(1− µ)

k2
' µ

k
.

Now, the central limit theorem states

µ̄− µ√
Var(X1)

√
k

L−→ Y ∼ N (0, 1),

where N (0, 1) denotes the Gaussian distribution of mean 0 and variance 1 and the

right arrow stands for convergence in distribution as k →∞. This result implies

P
(
|µ̄− µ| ≤ xµ

)
= P

(∣∣∣1
k

k∑
j=1

(Xj − µ)
∣∣∣ ≤ 0.05µ

)
= P

(∣∣∣ 1√
k

k∑
j=1

Xj − µ√
µ

∣∣∣ ≤ 0.05
√
kµ
)

' P
(
|Y | ≤ 0.05

√
kµ
)
,

where the symbol ' means the equality holds for k large. For the standard Gaus-

sian r.v. P(|Y | ≤ y) = 0.95 with y ' 2, then, to comply with (2.1) it must

be

0.05

√
k̃µ ' 2 ⇐⇒ k̃ ' 1600

µ
.
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The last expression quantifies the problem: if the probability of the rare event

{X1 = 1} were, as example, µ ' 10−6, to reach the desired precision in (2.1) k̃

should be ' 1.6 × 109. Had the required precision been higher, k̃ would have

reached an even greater order of magnitude. These values for k̃ represent an ob-

stacle in simulation design, as they imply a long computation time and, eventually,

they could reveal themselves as prohibitive for more complex simulation processes.

It could be argued at this point that every simulation requires the knowledge

of the probability distribution of all the random variables involved in the process

and that this knowledge in probability theory is sufficient to obtain exact formulas

to compute any probability or expectation value of interest. While this is true, the

task of providing the result by applying probability theory only may be difficult

to perform, as shown by the next argument.

Let (Yn) be a sequence of i.i.d. random variable in R with probability distribu-

tion function p and expectation value m. In many cases of interest the following

probability is to compute:

µ = P
( 1

n

n∑
i=1

Yi > L
)
, (2.2)

with L > m constant. Here, as a standard result of probability theory, the com-

putation of µ requires the knowledge of the n-fold convolution of p. This calculus

becomes rapidly difficult as n increases, both by analytic and numerical means.

Moreover, even when the convolution were available, the integral over R should be

computed, and this calculus would also be hard to take to an end. In this case a

simulation turns out to be a convenient tool to get the result. However, simulation

itself could be ineffective as to the problem of getting the result easily. The direct

simulation method would be performed by generating a number k of independent
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trials of the event { 1
n

∑n
i=1 Yi > L} and the estimate would be

µ̄ =
1

k

k∑
j=1

1{ 1
n

∑n
i=1 Y

j
i >L}

,

where Y j
i stands for the Yi variable in the j-th trial of the event { 1

n

∑n
i=1 Yi > L}.

The limit to the utility of this method is the long running time necessary to come

up with a result and a specified precision. As seen in Chapter 1, for L > m the

probability in (2.2) goes to zero as n increases. This is equivalent to state that the

probability of observing the event { 1
n

∑n
i=1 Yi > L} in a simulation with k trials is

decreasing with n. In particular, recalling the results of Large Deviation Theory,

0 < µ� 1/n.

Let E be the event in question, E = { 1
n

∑n
i=1 Yi > L}. For n > k the possible

situations are:

� the event E does occur. Then

µ̄ =
nE
k
,

where nE is the number of times E appears through the k trials.

� the event E does not occur. In this case

µ̄ = 0.

In both situations µ̄ is a wrong estimate of µ, since 0 6< µ̄ 6� 1/n. The only

possibility to reach an adequate result would be to perform the simulation as done

at the beginning for the Bernoulli i.i.d. sequence, forcing k to be greater than

n. And yet, if the searched probability is very low, the number k of independent

trials needed to provide a reliable result would be very large, proportional to

the inverse of the probability. As example, probabilities of order 10−30 ÷ 10−50,

found in different scientific and engineering applications, would require k of order
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2.1. Estimating low probability events

1030 ÷ 1050, resulting in a severe computation strain and eventually making the

simulation task impossible to complete. The problem consists then in developing a

method which decreases the number k to make simulation feasible. In doing that,

the condition that must be fulfilled is that the precision level of the simulation

must not be altered.

2.1.1 The importance sampling idea

To overcome the obstacle of the low frequency with which a rare event occurs

through a simulation, the idea of the importance sampling method is to augment

artificiously the probability of the event. As a consequence the event will occur

with a higher frequency and a smaller number of trials will be needed to observe

it in the simulation.

In order to introduce this technique, let µ = E[f(Z)] be the parameter to eval-

uate, where f is a function and Z a random variable of distribution (or probability

density) p taking values on the domain of f . The expression returns the expecta-

tion value of Z if f is the identity function, while it evaluates to a probability if

f is the indicator function over a set E (in a given realization 1E(z) = 1 if z ∈ E,

0 otherwise). Instead of estimating µ directly as µ̄ = 1
k

∑k
j=i f(Zj), by generating

a sequence (Zn) of i.i.d. r.v.s all with the same distribution of Z, the importance

sampling method employs a different sequence (Xn) of i.i.d. random variables dis-

tributed according to a new function b. The role of the new distribution is that of

changing the probability with which the event determined by Z occurs, so as to

increase its frequency. For this reason b is called biasing distribution.

The new estimate of µ is

µ̄b =
1

k

k∑
j=1

f(Xj)
p(Xj)

b(Xj)
. (2.3)

The new estimator is often referred to as importance sampling estimate. It’ll be
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2. THE RARE EVENT PROBLEM IN SIMULATION DESIGN

denoted also as µ̄IS.

Although the variables Xi in (2.3) are governed by b, different from p, µ̄IS is still

an unbiased estimator for µ. Indeed, from the definition, the expectation value of

µ̄IS is

E[µ̄b] = E
[1

k

k∑
j=1

f(Xj)
p(Xj)

b(Xj)

]
=

1

k

k∑
j=1

E
[
f(Xj)

p(Xj)

b(Xj)

]
=

1

k

k∑
j=1

∫
f(x)

p(x)

b(x)
b(x)dx

=

∫
f(x)p(x)dx

= E[f(Z)]

= µ.

(2.4)

This means, by using LLN, that µb also will converge to µ as k → ∞. At this

point the introduction of the new estimator seems to complicate the calculus for

µ, instead of simplifying it, because µ̄IS requires to evaluate at each step the ratio

p(·)/b(·), and this could neutralize the advantage of using b. The introduction of

µ̄IS will be of advantage in that, with a convenient probability distribution b, the

outputs f(Xi)
p(Xi)
b(Xi)

come closer to the mean µ throughout the simulation, that is

equivalent to a lower dispersion of the outputs about µ. This variance reduction

will cause the sample average µ̄b to provide the result, within the required precision,

with a smaller number of trials. As a consequence, the simulation performed with

the new distribution will end in advance with respect to the original one, while still

satisfying the precision requirements. In the remainder of the chapter the method

to define the new probability distribution is shown.

Remark. There’s a domain issue regarding the definition of b in (2.3). The ratio

p(·)/b(·), also called the likelihood ratio, diverges in points x̃ where p(x̃) 6= 0
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2.1. Estimating low probability events

and b(x̃) = 0. In the hypothesis these points occur in the simulation, the estimate

wouldn’t have any physical nor mathematical meaning, since it would be the result

of applying a distribution for simulation purpose only. Anyway, this may cause

the sum to diverge only if x̃ f(x̃) 6= 0 when p(x̃)/b(x̃) = 0. Then, the support of

the biasing distribution must satisfies the following requirement:

support(f · p) ⊂ support(f · b).

2.1.2 Optimal biasing distributions

The terms involved in the sum (2.3) are independent and identically distributed,

thus the variance of µ̄b is k times the variance of 1
k
f(X1)p(X1)

b(X1)
:

Var [µ̄b] = k
1

k2
Var

[
f(X1)

p(X1)

b(X1)

]
,

kVar [µ̄b] = E
[(
f(X1)

p(X1)

b(X1)

)2]− E
[
f(X1)

p(X1)

b(X1)

]2
=

∫
f(x)2p(x)2

b(x)2
b(x) dx− µ2

(2.5)

where the square of the expectation value in the second line equals µ2 in the third

line because

E
[
f(X1)

p(X1)

b(X1)

]
=

∫
f(x)

p(x)

b(x)
b(x) dx = µ.

Writing Vb =
∫
f(x)2 p(x)2

b(x)
dx the variance of µ̄b becomes

kVar [µ̄b] = Vb − µ2. (2.6)

Thus, to reduce Var [µ̄b], b should minimize Vb. As to Vb, Jensen’s inequality gives

Vb = E
[(
f(X)

p(X)

b(X)

)2] ≥ (E[|f(X)|p(X)

b(X)

])2

=
(∫
|f(x)|p(x)

b(x)
b(x) dx

)2

=
(∫
|f(x)|p(x) dx

)2

.
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2. THE RARE EVENT PROBLEM IN SIMULATION DESIGN

The above expression is satisfied as equality if and only if X is constant almost

surely (a r.v. X is almost surely a constant c if the set on which X 6= c has zero

probability measure). This implies Vb is minimized when b makes |f(x)|p(x)/b(x)

constant, thus when

b(x) = bopt(x) =
|f(x)|p(x)∫
|f(x)|p(x)dx

(2.7)

where the integral is to normalize bopt to a probability distribution function and the

index opt stands for optimal . The expression (2.7) for bopt is of no practical util-

ity: the denominator evaluates to µ, the parameter to estimate, that is unknown.

Nevertheless, bopt still remains the optimal choice, since it is the probability distri-

bution that best reduces the estimator variance. For this reason it can be a guide

in finding a distribution function to put into practical use.

Let f be the indicator function over some set E representing a rare event, f =

1E. First, from (2.7) it follows that the support of bopt is entirely on E. Thus bopt

shifts all the probability on the rare event E, with the consequence of increasing the

frequency of E throughout the trials. In the second place the behaviour of bopt over

the rare event coincides with the behaviour of p, since bopt(·)|E = 1
µ
p(·)|

E
. Thus bopt

maintains the probability structure of p over E. Following these characteristics of

bopt, the biasing probability distribution to be used should satisfy three properties:

- b increases the probability of observing the rare event.

- b minimizes the estimator variance.

- b preserves the original probability structure over the rare event.

Remark. The above properties have been asserted in a general form. Indeed, an

event has no probability structure. It is the random variable determining the event

to be governed by a probability distribution. The probability structure over an

event is meant to be the shape of the probability distribution of the variables by

which the event is determined.
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2.1. Estimating low probability events

The search of a biasing probability distribution consists in defining a new func-

tion complying with some requirements, among which the properties stated above.

There’s no assurance that the properties will all be satisfied. Hence, a priority must

be defined between the three. Those that cannot be discarded are the first two: the

frequency of occurrence of the rare event E must be increased, otherwise the sim-

ulation would take even more trials to observe a sufficient number of realizations

of E, and the variance of the estimator must be the minimum possible, otherwise

the simulation would take more trials to provide a result matching the required

precision. As to the third property, there’s no advantage in trying to preserve the

probability structure over E if E is the rare event in the process, because what has

to be observed through the simulation is E itself and not its inside structure. If,

on the other hand, a particular collection Fi of subsets of E is of interest, then the

procedure to find the biasing distribution could be carried out for each of them,

treating each one as a rare event (that will be rarer than E, since Fi ⊂ E).

2.1.3 The simulation-stop criterion

In the previous sections it has been remarked that by adopting an importance

sampling technique it is possible to decrease the number of simulation trials while

still achieving the required precision. However, there’s no standard mechanism

which fixes, before the simulation begins, the right number of trials k needed to

achieve the fixed precision. Nevertheless, without such a mechanism the simulation

would go on indefinitely, because there wouldn’t be any k to stop it. This problem

is solved by adopting a criterion which uses the results of the simulation itself to

define k, then taking the simulation to an end.
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2. THE RARE EVENT PROBLEM IN SIMULATION DESIGN

Let µ̄b the importance sampling estimator of µ = E[f(X)], with X a r.v. and

f a real function. To simplify notation let g(x) = f(x)p(x)
b(x)

, so µ̄b = 1
k

∑k
i=1 g(Xi).

The precision requirement on µ̄b is expressed by the condition

P
(
|µ̄b − µ| ≤ εµ

)
= yε, (2.8)

where ε is the maximum error accepted on µ, and yε the fixed confidence. The

left-hand side of (2.8) can be rewritten with the help of the central limit theorem,

as done in 2.1,

P
(
|µ̄b − µ| ≤ εµ

)
= P

(∣∣∣ 1
k

∑k
j=1(g(Xj)− µ)√

Var [g(X)]

√
k
∣∣∣ ≤ εµ

√
k√

Var [g(X)]

)
' P

(
|Y | ≤ εµ

√
k√

Var [g(X)]

)
,

where Y is a standard Gaussian random variable. Now, expresion (2.5) gives

Var [g(X)] = kVar [µ̄b] and in the notation of eq. (2.6) kVar [µ̄b] = Vb − µ2, then

the condition (2.8) becomes

P
(
|Y | ≤ εµ

√
k√

Vb − µ2

)
= yε. (2.9)

Now, for any y ∈ (0, 1) there’s a unique number t > 0 such that P(|Y | ≤ t) = y.

The quantity

t(yε) =
εµ
√
k√

Vb − µ2

is then fixed by yε, and not k, according to the distribution of Y , in this case the

normal distribution: t(yε) is the unique number satisfying P(|Y | ≤ t(yε)) = yε.

Hence, condition (2.8), equivalent to

P
(
|Y | ≤ t(yε)

)
= yε,

is met when the number k of trials satisfies

t(yε) =
εµ
√
k√

Vb − µ2
,
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2.2. Importance sampling and Large Deviation Theory

or, solving with respect to k, when

k =
(t(yε)

ε

)2(Vb
µ2
− 1
)
. (2.10)

As for the optimal biasing distribution, this expression for k cannot be used: Vb

and µ are unkown quantities and µ is what the simulation is done for! (This is

the reason why a standard mechanism to find k does not exist.) To fix a solution,

k could be obtained by replacing µ with µ̄b and Vb with its importance sampling

estimator V̄b:

V̄b =
1

k

k∑
j=1

(
f(Xj)

p(Xj)

b(Xj)

)2

.

By doing this the number k changes in

k̃(k) =
(t(yε)

ε

)2( V̄b
µ̄2
b

− 1
)
. (2.11)

Estimators µ̄b and V̄b depend on k, so k̃ is still a function of k: it represents

the estimate of k that complies with (2.10) and that is obtained with the best

information available, since it is estimated from the outcomes of the simulation

itself up to the last k-th trial. Because every k̂ > k of (2.10) would be acceptable,

having replaced k by k̃ the criterion to stop the simulation becomes:

stop the simulation at k∗ = min{k : k ≥ k̃(k)}. (2.12)

2.2 Importance sampling and Large Deviation

Theory

In section 2.1.2 two properties have been identified a biasing distribution must

have: it must increase the probability of the rare event and it must minimize the

estimator variance. How to achieve this? Large Deviation Theory will provide the

answer.
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2. THE RARE EVENT PROBLEM IN SIMULATION DESIGN

The setting will be:

(Xp,n)n∈N is a sequence of random variables, Xn taking values in a space Sn, with

distribution pn.

(fn)n∈N is a sequence of measurable functions, fn : Sn → Rd.

the parameter of interest is of the form µn = P(fn(Xp,n)/n ∈ E) with E ⊂ Rd.

(Xb,n)n∈N is the sequence adopted in the importance sampling estimator µ̄IS, with

Xb,n of biasing distribution bn (support(pn) ⊂ support(bn), ∀n).

The following assumption is taken on (µn):

the sequence (µn) satisfies a large deviation principle.

As seen in the previous section, the estimator µ̄IS,n for the element µn is:

µ̄IS,n = µ̄n =
1

k

k∑
j=1

1

{
fn(X

j
b,n

)

n
∈E}

dpn
dbn

(
Xj
b,n

)
, (2.13)

where the likelyhood ratio is in the form of a derivative (Radon-Nikodym deriva-

tive) when pn and bn are continuous distributions (probability density functions).

From now on only the importance sampling estimator will be considered, then

the symbol µ̄n will be used in place of µ̄IS,n to simplify notation. At this point,

it is straighforward to choose bn such that the probability of the support of the

indicator function in (2.13) is increased, by changing conveniently the parameters

of pn. As to decreasing the variance of the estimator, the method is not so evident.

As shown in 2.1.2, µ̄n is a sum of k i.i.d. elements, then, for n is fixed, its

variance is constant, or kVar [µ̄n] is constant. Which is, instead, the behaviour

of Var [µ̄n] as n change? A theorem shows the variance follows a large deviation

principle. To demonstrate this, some definitions are in order.

It is first defined the sequence of functions

αn(θ) =
1

n
log

∫
e〈θ, fn(x)〉dpn

dbn
(x)dpn(x), θ ∈ Rd,
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2.2. Importance sampling and Large Deviation Theory

Each αn is convex, as φn in the setting of the Gärtner-Ellis theorem. Then it is

introduced the sequence of probability measures (νn), with νn defined on Sn,

νn(A) = e−ncn(0)

∫
A

dpn
dbn

(x)dpn(x),

for A ⊂ Sn. To (νn) it is associated the sequence of r.v.s (Zn), where Zn is Sn-

valued with probability distribution νn on Sn. For every n, fn can be applied to

Zn generating a sequence on Rd.

It is now defined the sequence of log-moment generating functions, for θ ∈ Rd

βn(θ) =
1

n
logE

[
exp〈θ, fn(Yn)〉

]
=

1

n
log

∫
e−nαn(0)e〈θ, fn(x)〉dpn

dbn
(x)dpn(x)

= αn(θ)− αn(0).

Now, if the sequence (αn) satisfies the standard assumptions A1, A2, A3 stated in

1..., these conditions are also satisfied by the sequence (βn) and the Gärtner-Ellis

theorem thus holds for the sequence (fn(Zn)) [3, 20].

At this point it is introduced the variance rate function RV :

RV (x) = sup
θ∈Rd

[
〈θ, x〉 − α(θ)

]
, x ∈ Rd, (2.14)

where α(θ) = limn→∞ αn(θ). The component of Var [µ̄n] that varies with n will be

indicated as in (2.6):

Vn =

∫
1{ fn(x)

n
∈E}

(dpn
dbn

(x)
)2

dbn(x).

In what follows, for a set E ⊂ Rd,
◦
E denotes the interior of E, Ē the closure of E,

∂E the boundary of Ē \
◦
E.

Theorem 2.1. Let E ⊂ Rd be a set with
◦
E 6= ∅, Ē =

◦̄
E, over which

0 < infx∈E RV (x) <∞. Then

lim
n→∞

1

n
log Vn = − inf

x∈E
RV (x).
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Proof. Thanks to the definition of νn,

Vn =

∫
1{ fn(x)

n
∈E}

(dpn
dbn

(x)
)2

dbn(x)

= enαn(0)

∫
fn(x)
n
∈E
dνn(x)

then

1

n
log Vn = αn(0) +

1

n
log

∫
fn(x)
n
∈E
dνn(x)

and since a large deviation principle holds for the sequence (fn(Zn)), it follows

lim
n→∞

1

n
log Vn = α(0)− inf

x∈E
sup
θ∈Rd

[
〈θ, x〉 − α(θ)− α(0)

]
= − inf

x∈E
sup
θ∈Rd

[
〈θ, x〉 − α(θ)

]
= − inf

x∈E
RV (x).

where limn is used in place of lim infn and lim supn because of the conditions put

on the set E, that make the upper and lower bounds in Gärtner-Ellis theorem

coincide.

In ultimate analysis theorem 2.1 states that if a large deviation principle holds

for the sequence (µn) defined by (fn(Xn)), a large deviation principle holds for the

sequence (Vn).

2.2.1 An efficiency criterion for simulations

From (2.6), Var [µn] can be written as

kVar [µ̄n] = Vn − µ2
n. (2.15)

Since for every random variable the variance is greater than or equal to zero,

expression (2.15) implies Vn − µ2
n > 0 for all n. Thus, Vn converges to zero in n

with a rate that can only be smaller than the rate with which µ2
n approaches zero.
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So, if

lim
n→∞

1

n
log µn = −I and

lim
n→∞

1

n
log Vn = −R,

it must be

R ≤ 2I. (2.16)

At this point, which is the optimal choice for R to realize an efficient importance

sampling estimator, that is, to perform the simulation with the smallest number

of trials? Recalling eq. (2.10), to comply with a precision (ε, yε) the simulation

should run for a number k of trials set by

k =
(t(yε)

ε

)2(Vn
µ2
n

− 1
)

(where t(yε) realizes P(|Y | ≤ t(yε)) = yε for Y ∼ N (0, 1)). In the above expression

Vn and µ2
n converge to zero, but with different rates, respectively R and I with

R ≤ 2I. If the inequality (2.16) is met strictly k diverges exponentially in n,

because the ratio Vn/µ
2
n, that goes as the exponential of n(2I − R) for n large,

diverges. For R = 2I the ratio converges instead to 1.

The optimal choice is then R = 2I.

Since R is the rate function for Vn and Vn depends on bn, the optimal choice for

R is a condition on (bn). This leads to the following efficiency criterion:

a sequence (bn) of biasing simulation distributions is efficient if it realizes the

condition R = 2I.

The need of adopting a criterion on R, instead directly on k, comes because it

is not possible to obtain any significant result acting with respect to k: for any

sequence (bn), Var[µ̄n] simply decreases with k and (bn) does not depend on k,

then there’s no possibility to force (bn) to decrease the variance further. On the

other side, (bn) can be chosen so it decreases the variance of the estimator in n.
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Indeed, with respect to n, the sequence (bn) could determine both a decrease or

an increase of the variance of the estimator µ̄n if n is large.

From a more general point of view, the concept at the basis of the efficiency

criterion is that the variance reduction for a particular estimator µ̄m of interest can

be achieved by first identifying the sequence (bn) that realizes the best variance

reduction for the sequence of estimators (µ̄n). Then, the estimator µ̄m is obtained

by selecting, from the sequence (bn), the particular bm.

In doing so, the problem of finding the optimal biasing distribution is reduced to

the problem of maximizing the variance rate function R, instead of minimizing

directly the variance for the particular estimator µ̄m of interest. This is a simpli-

fication, in that the task of maximizing R in most cases turns out to be simpler

than finding the bn that minimize the variance of µ̄m. This happens because the

latter method is a functional minimization problem, generally more complicated

than the former.

2.2.2 The theory behind the technique

In the following the assumptions are:

- the log-moment generating functions βn associated to the Rd-valued random

variables fn(Xp,n) satisfy the standard assumptions A1, A2, A3.

- the set E ⊂ Rd satisfies:
◦
E 6= ∅, Ē =

◦
Ē, 0 < I(E) < ∞, where I(E) =

infx∈E I(x).

An element t ∈ E is called a minimum rate point of E if I(t) = I(E).

A point t ∈ E is called a dominating point of E if it is the unique element satisfying:

- t ∈ ∂E,

- ∃! θt ∈ Rd : ∇β(θt) = t ,
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- E ⊂ H(t) = {x : 〈θt, x− t〉 ≥ 0} .

In the hypothesis E has a dominating point t, it holds

lim
n→∞

1

n
log µn = −I(t) = − sup

θ
[〈θ, x〉 − β(θ)] = −[〈θ, t〉 − β(θ)],

where limn has been used because from the assumptions limn(·) = lim infn(·).

Thus µ2
n has rate 2I(t). As to Vn, it must be

lim inf
n→∞

1

n
Vn ≥ −2I(t).

The inequality is met as equality with the choice dbn = (1{ fn(Xp,n)

n
∈E})/µndpn ,

but, as seen in section 2.1, this is of no utility.

Let now bn be exponential shifts of pn:

dbn(x) =
exp 〈ψ, fn(x)〉∫

exp 〈ψ, fn(y)〉 dpn(y)
dpn(x) =

exp 〈ψ, fn(x)〉
exp

(
nβn(ψ)

) dpn(x), (2.17)

with ψ ∈ Rd. For (bn) the associated (αn) is

αn(θ) =
1

n
log

∫
exp 〈θ, fn(x)〉dpn

dbn
(x) dpn(x)

= βn(θ − ψ) + βn(ψ)

then
α(θ) = lim

n→∞

(
βn(θ − ψ) + βn(ψ)

)
= β(θ − ψ) + β(ψ),

Thus, for [−ψ, ψ] ⊂
◦
E, assumptions A1, A2, A3 hold for α also.

Theorem 2.1 says the rate function for Vn is

RV (x) = sup
θ

[〈θ, x〉 − α(θ)]

= sup
θ

[〈θ, x〉 − β(θ − ψ)− β(ψ)]

= sup
θ

[〈θ, x〉 − β(θ − ψ)] + [〈ψ, x〉 − β(ψ)]

= I(x) + [〈ψ, x〉 − β(ψ)].
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If it is selected ψ = θt, RV (x) becomes

RV (x) = I(x) + [〈θt, x〉 − β(θt)],

that gives, in t, RV (t) = 2I(t). Here t is the dominating point of E, so that

∀x ∈ E, 〈θt, x− t〉 ≥ 0 and I(x) ≥ I(t). Hence

RV (X)−RV (t) = I(x)− I(t) + 〈θt, x− t〉 ≥ 0,

from which it follows

RV (E) = inf
x∈E

RV (x) = RV (t) = 2I(t) = 2I(E).

The last expression shows the sequence (bn) defined in (2.17) is efficient ( and this

can be employed in the simulation). This proves the following theorem.

Theorem 2.2. If the set E has a dominating point η, the sequence (bn) defined as

dbn(x) = exp[−nβn(θt)] exp[〈θt, fn(x)〉]dbn(x)

is efficient.

The problem of reducing the estimator variance to design an efficient simulation to

estimate µn = P(fn(Xp,n)/n ∈ E) is now solved: bn is the probability distribution

to be used. As example, to estimate

P
(
f100(Xp,100)/100 ∈ E

)
the importance sampling estimator will be

µ̄100 =
1

k

k∑
j=1

1

{
f100(X

j
b,100

)

100
∈E}

dp100

db100

(
Xj
b,100

)
,

where each Xj
b,100 in the j-th trial is generated with distribution b100.
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2.2.3 Importance sampling technique for Markov chains

The sequence of efficient biasing distribution has been obtained through the Gärtner-

Ellis theorem, which does not require the sequence (Xn) to be i.i.d.. Indeed, the

i.i.d. condition has never been assumed, only the standard assumptions for the

sequence (βn) have played a role in getting the result. As a consequence it is

possible to derive an efficient sequence of biasing distributions for Markov chains

also.

Let (Ãi) a sequence of random variables representing samples from a Markov

chain Ãn.

The hypothesis are

- Ãn has a finite state space χ = {0, 1, . . . , k}, k ∈ N fixed.

- Ãn is homogeneous, irreducible and aperiodic.

- f is a fixed function, f : χ→ R.

The transition probabilities are denoted by pxy = P(Ãn+1 = y|Ãn = x). The

quantity of interest is

µn = P
( n∑
i=1

f(Ãi) > nt
)
,

for which the importance sampling estimator is

µ̄n =
1

k

k∑
j=1

1{
∑n
i=1 f(Aji )>nt}

p(Aj1, . . . , A
j
n)

b(Aj1, . . . , A
j
n)
,

where p(x1, . . . , xn) and b(x1, . . . , xn) are respectively the original and the bias-

ing joint distributions and An is the chain generated according to the transition

probabilities bij. With respect to the notations of the previous section, Sn = χn,

Xp,n = (Ã1, . . . , Ãn), Xb,n = (A1, . . . , An), d = 1 and fn(x1, . . . , xn) =
∑n

i=1 f(xi).
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Let F be now the set of all functions g : χ → R. Following a method parallel to

that adopted for Markov chains in Chapter 1, let Wθ : F → F be the operator

Wb,θ(g)(x) =
∑
y∈χ

eθf(y)g(y)
p2
xy

bxy
.

As Tθ in (1.4), Wb,θ is positive, thus, by the Perron-Froebenius theorem, it has a

unique largest positive eigenvalue νb(θ). The element αn(θ) is then

αn(θ) =
1

n
log
[∑
y1∈χ

· · ·
∑
yn∈χ

p(y1, . . . , yn)2

b(y1, . . . , yn)
exp
(
θ

n∑
i=1

f(yi)
)]

=
1

n
log
[ ∑
y1,...,yn∈χ

p(y1)2
∏n−1

i=1 p
2
yi,yi+1

b(y1)
∏n−1

i=1 byi,yi+1

exp
(
θ

n∑
i=1

f(yi)
)]

=
1

n
log
[∑
y1∈χ

W n
b,θ(1)(y1)

p(y1)2

b(y1)
exp
(
θf(y1)

)]
and by the same argument used with Tθ, taking the limit for n→∞ gives

αb(θ) = lim
n→∞

αn(θ) = log νb(θ).

For the component Vn of the estimator variance (kVar [µ̄n] = Vn−µ2
n), theorem 2.1

gives

lim
n→∞

1

n
log Vn = − inf

x∈(t,∞)
RV (x) = RV (t) = − sup

θ

[
θt− log νb(θ)

]
.

The rate function for µn is instead

lim
n→∞

log µn = −I(t) = sup
θ

[
θt− log λ(θ)

]
= θtt− log λ(θt)

]
,

where λ(θ) is the largest eigenvalue of Tθ and θt is the root of the equation

t = λ′(θ)/λ(θ), seen in section 1.4.

Following what has been done in the previous section, the sequence of simula-

tion distributions is chosen among the family of exponential shifts of pij:

bxy = pxy exp
(
θtf(y)

) ψθt(y)

λ(θt)ψθt(x)
, (2.18)
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with ψθ the eigenvector of Tθ relative to λ(θ) and ψθt(x) its component correspond-

ing to the state x. For bxy as in (2.18) the operator Wb,θ becomes

Wb,θ(g)(x) = λ(θt)ψθt(x)
∑
y∈χ

exp
(
(θ − θt)f(y)

)
g(y)

pxy
ψθt(y)

.

The largest eigenvalue of Wb,θ is νb(θ) = λ(θt)λ(θ − θt) and its corresponding

eigenvector is ξθ(y) = ψθt(y)ψθ−θt(y). Then, with b as in (2.18), the variance rate

function is

RV (t) = sup
θ

[
θt− log νb(θ)

]
= sup

θ

[
θt− log λ(θt)− log λ(θ − θt)

]
= sup

θ

[
θtt− log λb(θt) + (θ − θt)t− log λ(θ − θt)

]
= sup

θ

[
I(t) + (θ − θt)t− log λ(θ − θt)

]
= 2I(t)

(2.19)

and this shows the choice (2.18) is efficient.
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Chapter 3

Taylor’s Law from Multiplicative
Models: the Role of Rare Events

The state of a species belonging to a given ecosystem can be described by adopting

different variables and parameters. One of these, useful in ecology to keep control

of the state of a species within an ecosystem, is the degree of aggregation, or simply

aggregation, defined as the tendency of individuals of the species to aggregate in

groups instead of keeping random distance or constant distance between them [1,

32]. According to this qualitative definition the condition of individuals of keeping

random distance among them corresponds to a low degree of aggregation, while the

condition of constant distance corresponds to a regular pattern of individuals and

then to zero degree of aggregation. Taylor’s law states that variance and mean

of the index representing the aggregation of a species are governed by a power

law [10, 32, 36].

In this chapter the problem of evaluating the power exponent is analyzed. It will

be demonstrated that in order to correctly estimate the exponent a high-efficiency

simulation method is needed.
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3.1 Origins of Taylor’s law

The variable adopted in ecology to represent the aggregation of a species is the

population density d of the species:

d = N/S,

where N is the number of individuals per unit of area S.

Individuals of a species are subjected to interactions, among themselves or be-

tween them and other species of the system, thus d is a dynamic variable. More-

over the number of interactions and their nature make difficult to predict the time

evolution of d in a deterministic way, giving d the character of random variable.

However at this point it is not possible to define for d the expectation value E[d]

and the variance Var [d] as for a random variable in probability theory, because

no probability distribution has been assigned to it. Indeed from measurements of

d a model and possibly a probability distribution are sought after to predict the

dynamics of the system. Being d a random variable, statistics suggests to take as

estimators of E[d] and Var [d] respectively

m = mk =
1

k

k∑
j=1

dj

and

σ2 = σ2
k =

1

k

k∑
j=1

(dk −m)2,

where k is the number of independent measurements and dj denotes the value of

d in the j-th independent measurement. The subscript k indicates that m and

σ2 depend on the number of measurements. For random variables with finite

expectation value LLN states

lim
k→∞

mk = E[d].
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3.1. Origins of Taylor’s law

A B

Figure 3.1: The dots represent the individuals of a population over a sampled area.
The grid shows the sample units. In A the individuals distribute in a random way,
thus the difference among the numbers of individuals per unit area is small and the
population number variance is small. In B aggregation is evident, corresponding to a
higher variance. A zero variance would instead correspond to a regular distribution
pattern over the grid.

Population densities from real ecological systems are always finite, then mk is

a good estimator, at least asymptotically, for E[d]. As to σ2, it evaluates the

fluctuations of the values of d around its mean m: for a set of measurements a

small value of σ2, with respect to m, indicates dj are close to m for each j, while

a high value of σ2 indicates dj are distant from the mean m. A small value of σ2

then corresponds to a low degree of aggregation, a large value to a high degree of

aggregation [32]. Figure 3.1 displays two examples of aggregation.

The population structure, or state, of a species could depend on its size, but

a species index as, for example, the index of aggregation, should be independent

of it, so that it could be used to identify the species or its population structure

independently of the size.

Analysing 24 papers (dated 1936 to 1960) reporting population densities of
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different species ranging from worm larvae to shellfish on seashore [32], the English

entomologist L. R. Taylor found their variance σ2 could be related to their mean

m by a power law:

σ2 = amb.

Taylor interpreted the a parameter as a computing factor, or a parameter depend-

ing on the size of the sampling unit, thus having no physical meaning, and he

stated the b parameter was the index of aggregation of the species. This interpre-

tation is supported by the scale invariant property of b: if the sampling unit is

multiplied by a constant factor c and under this operation d changes in cd, then

the mean m changes in

mc = E[dc] = E[cd] = cE[d] = cm,

where c comes out of the expectation value due to the linearity of E[·]. The variance

σ2 changes instead in

σ2
c = E[(dc −mc)

2] = E[c2(d−m)2] = c2E[(d−m)2] = c2σ2.

Thus, if

σ2 = amb

it follows

σ2
c = c2σ2 = c2amb = acm

b
c

with ac = c2−ba. This shows b can be adopted as an index of aggregation because it

is independent on the mean of the population density and it can vary only if some

change in the population structure occours. An example is given in figure 3.2.

Since it appeared in the 1961 article by Taylor, it became evident this law could

have a universality character, because it reasonably fitted data regarding a variety

of living species [10, 36]. Other data were obtained from an increasing number of
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3.1. Origins of Taylor’s law

A B

Figure 3.2: Interactions between individuals belonging to different species, above in
different colors, give rise to a variety of distribution patterns corresponding generally
to different degrees of aggregation. Here, A and B photograph two states of the same
ecosystem. If changes occour in the populations, the distribution patterns are very likely
to change also, causing the aggregation indices to vary.

ecological systems and the law seemed to apply well in describing aggregation of

species very different between them and living in areas with no common charac-

teristics [1]. In addition, other data were brought showing some ecological systems

followed Taylor’s law with respect to time, that is, it seemed it was possible to

relate variance and mean of population densities by a power law when they were

computed over time but on the same site [10, 26]. This was an enhancement of the

validity of the law, suggesting the existence of a universal mechanism governing

ecological systems both in time and space. An even more interesting property of

the law was its appearance in contexts other than the ecological one, including

physics, life science, finance [10]. It is reported in [24] that even in human genome

it is possible to find a clustering phenomenon well described by a power law for

variance and mean. In [24] the number of genes per unit of physical length in a

human chromosome was measured and it was shown its variance and mean fol-
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lowed a power law relationship. Taylor’s power law is also found in epidemiology

where it seems to well describe diseases diffusion [23]. Other examples refer of

clustering or aggregation phenomenons in economics, where Taylor’s law models

relevant financial fluctuations [10, 15].

3.2 Models and issues

In order to explain Taylor’s power law (TL) models were proposed which were

specific for the ecosystems at first studied, but as the almost universal character

of the law became clear more general mechanisms were put at trial and methods

from statistical mechanics to statistics and probability theory were adopted [5, 7,

8, 10, 28].

Two questions constitute the main issues about the law:

� Which is the law’s origin?

� Which is the possible range of values of the b exponent?

Which is the law’s origin? As to the first question there is at present no agreement

among researchers. This is due to the ubiquitous character of the law that may

be explained by two ways:

- the systems for which the law holds share similar dynamical features, or a

common physical mechanism [10, 33],

- the power law - like behaviour of variance against mean of a system observable is

due entirely to a probability distribution not related to any physical common

mechanism, or having no physical meaning [25, 35].

Which is the possible range of values of the b exponent? In the attempt to under-

stand the law the behaviour of the b exponent plays a crucial role. In ecological
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3.2. Models and issues

A B

Figure 3.3: In A what is expected for an ecological system is shown: individuals of
diverse species, marked in varied colors, should follow different distribution patterns,
characterized by different degrees of aggregation, besides other parameters. In B is
pictured what is instead observed: individuals belonging to different species seem to
distribute according to the same pattern, irrespective of the species. This surprising
feature is also found outside ecology [10].

settings it should be representative of species. Although some of the species of

a given ecosystem could share the same value for b, there’s no evident reason for

which b should be the same for a variety of species within a particular and among

different ecosystems. This is predicted by theoretical studies showing that popula-

tion dynamics can be reasonably described by models known as population growth

models and that Taylor’s law appear with possibly any real value of b [5–8, 21].

Further studies about multiplicative growth models, a subset of the population

growth models, have shown b can vary abruptly when even small changes in the

interactions occur [5, 6, 21].

In contrast to these theoretical predictions empirical studies show b is bounded and

takes values within the interval [1, 2] and more frequently b ' 2 [1, 10]. Figure 3.3

offers a simplified representation of the problem.
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As to the estimate of b, its value should be obtained from the probability distri-

bution governing the variable. In the case of ecological systems, that are complex

systems, to determine the real probability distribution even of only one variable

is almost impossible. This is why theoretical models are used: the value of b is

determined by the probability distribution used in the model that is assumed to

best reproduce the dynamics of the variable. Once such a theoretical model is

developed a test is needed to validate it. The issue arises at this point: while

theoretical models (for a given variable) predict for b values in a wide range, tests

report bounded values and mostly b ' 2. This is a crucial and delicate issue: if

consensus on Taylor’s law origin was achieved, theory should justify also why b is

bounded, why b ' 2, why this behaviour is almost universally observed.

A possible explanation is given in ”Sample and population exponents of gener-

alized Taylor’s law” by Giometto et al. [17].

3.3 Taylor’s law exponents and the Large Devi-

ation Theory

In the cited article the authors propose that the range of values observed for b

could be a statistical artifact. In particular, the limited range observed could be

a consequence of undersampling measurements, that is, measurements that are

ineffective in detecting rare events, of major importance for computing the correct

value of m and σ2, and thus b. This section reviews the mathematical arguments

and steps adopted in the article to reach the conclusion.

In what follows the theoreticalcal value of b (that should represent the value of

b for the species considered) will be denoted simply with b and will be called the

population exponent, the experimental value will be denoted with bS and will be

called the sample exponent, to stress it is computed via sampling.
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3.3.1 The multiplicative random process in Markovian en-
vironment

The aim is to describe the evolution of the power exponent b for a species with

respect to time. The population number, or density, of the species to which b is

related, is then represented by a random variable N that is function of time t.

The model adopted to describe the dynamics of N(t) is the multiplicative growth

model in Markovian environment:

N(t) =
t∏

n=1

An (3.1)

where

N(t) is the population number, or density, of the species over a fixed area, de-

pending on time t,

N0 > 0 is its initial value (initial t is 0),

An is a homogeneous Markov chain with

state space χ = {r, s}, r 6= s, r, s > 0,

symmetric transition matrix Γ, Γxy > 0 ∀x, y ∈ χ:

Γ =

(
1− γ γ
γ 1− γ

)
, γ ∈ (0, 1).

The chain An is assumed to be at equilibrium, then the distribution π(x) of the

initial state A1 is the stationary one. Since Γ is symmetric and Γxy > 0 ∀x, y ∈ χ

it follows that

π(x) = 1/2, x ∈ χ, ∀γ ∈ (0, 1).

3.3.2 Sample and population exponents

The estimate of b(t) requires the knowledge of expectation value and variance of

N(t). The definition of N(t) implies that b(t) depends also on the state space χ
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and the transition probability γ, but these quantities are fixed in the model, then

they will be regarded as parameters, not as independent variables. The random

variable N(t) is a product of r and s up to time t, so it does not depend on the

order of r and s and it can be written as

N(t) = N0r
tLt(r)stLt(s) (3.2)

with Lt(z), for z ∈ {r, s}, defined by

Lt(z) =
1

t

t∑
n=1

δAn,z

(δ is the Kronecker’s delta). Then Lt(r) is the fraction of times r appears in a

given Markov chain and it is a discrete random variable valued in [0, 1]. Lt(s) has

analogous meaning.

The connection between Var [N(t)] and E[N(t)] is looked for when t is large,

because for small t the chain is easily predicted studying its distribution law. In

mathematical terms “t large” is simplified with t → ∞ and the relationship to

establish is between limt→∞Var [N(t)] and limt→∞ E[N(t)]. The problem here is

of the kind encountered in section 2.1: the probability distribution of N(t) is

known, but for t large the calculus of the statistics is anyway not practicable by

analytical or numerocal methods.

Since Var [N(t)] and E[N(t)] are both strictly positive and the logarithmic function

is bijective on its domain, then log Var [N(t)] and logE[N(t)] can be used. As to

the first quantity, it is demonstrated that positivity of Γ and r 6= s imply [5]

lim
t→∞

1

t
log Var [N(t)] = lim

t→∞

1

t
logE[N(t)2]. (3.3)

Then, now, the link to set is between limt→∞ logE[N(t)2] and limt→∞ E[N(t)].

This relationship can be obtained in the framework of Large Deviation Theory. In

this context Gärtner-Ellis theorem states Lt(r) obeys [20]:

lim
t→∞

1

t
logP(Lt(r) ∈ [x, x+ dx]) = −IΓ(x) (3.4)
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Figure 3.4: The rate function is here plotted for γblue = 0.15, γorange = 0.55 and
γgreen = 0.95. On the right, with the same color code, P(Lt(r) ∈ [x, x + dx]) is plotted
for times tline = 20 and tdashed = 50. As x approaches 0 or 1 the probability for the state
r to appear in a realization of the Markov chain An with frequency x decreases rapidly
to zero with higher rate for larger t.

for x ∈ [0, 1] and dx an infinitesimal interval, with rate function

IΓ(x) = sup
u>0

[
x log

( u1

(Γu)1

)
+ (1− x) log

( u2

(Γu)2

)]
(3.5)

where u is a vector in R2 with u1, u2 > 0. The dependency of IΓ on the transition

matrix is made explicit in the following form:

IΓ(x) = (x− 1) log
[
1− γ

( 2x(γ − 1)

Cγ(x)− 2γx
+ 1
)]
− x log

[
1 +

γ(2x− Cγ(x))

2x(γ − 1)

]
, (3.6)

with

Cγ(x) = γ +
√
γ2 + x(x− 1)(8γ − 4).

Figure 3.4 shows IΓ for different values of γ. As seen in Chapter 1, every rate

function I is convex and I(x) ≥ 0 ∀x ∈ R. Here IΓ has its minimum in x = 1/2,

IΓ(1/2) = 0, independently of Γ.

Finally, once (3.4) is obeyed, Large Deviation Theory gives, by means of Varad-

han’s lemma [20],

lim
t→∞

t−1 logE[N(t)k] = sup
x∈[0,1]

[kG(x)− IΓ(x)] , (3.7)
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with G(x) = x log r+ (1− x) log s and k ∈ N. From (3.3) and LDT result (3.7), it

is now possible to give an expression for Taylor’s law exponent b:

b(γ) =
supx∈[0,1] [2G(x)− IΓ(x)]

supx∈[0,1] [G(x)− IΓ(x)]
. (3.8)

Here it has been remarked the b dependence on Γ.

Generalized exponents

Taylor’s law may be extended to set a connection between moments higher than

the first and the second, in which case it is called the generalized Taylor’s law :

E[Nk(t)] = ajkE[N j(t)]bjk . (3.9)

As to this form, the goal is to predict the behaviour of the generalized exponents

bjk. By repeating the passages adopted to derive b(γ), in the hyphotesis t → ∞,

result (3.7) gives

bjk(γ) =
limt→∞ t

−1 logE[N(t)k]

limt→∞ t−1 logE[N(t)j]
=

supx∈[0,1] [kG(x)− IΓ(x)]

supx∈[0,1] [jG(x)− IΓ(x)]
. (3.10)

The population exponents b(γ), equivalent to b12(γ), and bjk(γ) can have disconti-

nuities for some critical values γc, as reported in figure 3.5 in black continuous line,

depending on the state space χ. This should be a property of the species to which

N(t) is related (because γ is the transition probability that should reproduce the

dynamics of N(t) through the chain An).

From now on the focus will be on b(γ), having bjk(γ) identical structure.

3.3.3 The role of rare events

Now comes the most important step to get the result: b(γ) in (3.8) will be obtained,

in a sampling of N(t), only if in the sampling all the values x ∈ [0, 1] are observed.

The value b(γ) in (3.8) that should appear in Taylor’s law, is correctly estimated,
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in a sampling, by bS only if in the sampling that gives bS all the values x ∈ [0, 1]

come out, because only in this case the suprema in (3.8) are correctly computed.

In the expression for b the argument x is the fraction of times r appears in a

generic realization, or trial, of the Markov chain An up to t, determining N(t) in

that generic realization. Thus bS can coincide with b only if the sampling of N(t)

is made of a number of trials of the chain An sufficient to see the state r appearing

0 times, 1 time, . . . , t times in the chain up to time t with the proper frequencies

through the trials. Indeed only in this case the sampling detects all the possible

values for x in [0, 1] needed to evaluate the suprema in (3.8).

The obstacle is that the probability for r to appear, in a trial of the chain, with

extreme frequencies, x ' 0 or x ' 1, is extremely low, then a very large number

of trials is needed to observe this rare event. In other words, the probability of

missing these extreme values of x in the sampling is very high and this corresponds

to compute the suprema in (3.8) over a sub-interval (x−, x+) ⊂ [0, 1], getting

bS 6= b (and bSjk 6= bjk).

On the right of figure 3.5 it is reported the gap between population b and sample bS

exponents as a function of time for fixed χ and γ. Here the sampling is performed

via a direct simulation, as explained in 3.3.4. The number of trials of the sampling

-the size of the simulation- changes the time up to which the estimate bS of b is

still acceptable: a higher number of trials provides bS close to b for a longer time.

Nevertheless, for finite number of trials, all the simulations fail in estimating b as

t increases.

Up to now it has been demonstrated that a possible cause to the discrepancy

between population and sample exponents is the sampling inefficiency: for large t

the sampling of N carried out by a direct simulation method cannot detect all the

events needed in (3.8) to compute the population exponents.

By the point of view of probability theory this happens because, for large t the
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Figure 3.5: Results from [17]. On the left it is shown the behaviour of b(γ), in A
for χ = {2, 1/4}, in B for χ = {4, 1/2}. As predicted, in A b(γ) shows a discontinuity.
Theoretical results, expression (3.8), are in black lines, results from simulation are in
black dots for t = 10, R = 106, red squares for t = 400, R = 104. Black dots meet
condition t� logR and, according to discussion of 3.3.3, they well reproduce b(γ), while
red squares, being obtained with t � logR, comply with condition (3.18), reproducing
a wrong estimate. On the right it is displayed b(t) for χ = {2, 1/4} and with fixed
γ = 0.55, close to the critical γc. In A theoretical results are displayed from (3.15). The
upper dashed horizontal line is b(γ = 0.55) from (3.8), the dotted lower line is instead
bR(γ = 0.55) in (3.15). Different colors refer to R = 10n trials of the chain An, going
from nblue = 2 to nred = 6 and results are averaged over 108/R simulations (the blue
curve over 105 simulations). As predicted, for t large a simulation with finite size R
anyway fails in providing an accurate estimate for b.
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direct simulation method fails in revealing all the possible paths of the Markov

chain An up to the time t. In the remainder of the section Large Deviation Theory

is again used to find the number R of independent trials required to correctly

estimate b for a fixed t, with a direct simulation method.

Since the difference between bS and b originates from the difficulty of detecting

the events of r appearing with extreme frequencies in the sampling, the probability

to be studied is P(Lt(r) > x) when x ' 1 and x ' 0.

In order to do this, independent identically distributed random variables X i(t) =

Lit(r), i = 1, . . . , R, are introduced, where Lit(r) is the frequency of r in the i-th

trial of the chain An and R the number of independent trials of the Markov chain

An realized in the sampling. The random variable x+ defined as

x+ = max{X1(t), . . . , XR(t)}

can then be interpreted as the typical maximum frequency with which the state

r is observed in a chain An. Because the Markov chains An are independently

replicated and x+ is computed over R of these chains, it follows, for R large,

P(Lt(r) > x+) =
1

R
. (3.11)

Analogously the typical minimum frequency with which r is observed in a chain is

x− = min{X1(t), . . . , XR(t)}

and it will be

P(Lt(r) < x−) =
1

R
. (3.12)

Now Large Deviation Theory comes into play to estimate R for t large. Recalling

the condition t→∞, Varadhan’s lemma gives [17, 20]

R ' exp [tIΓ(x±)], (3.13)
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For what has been said above, R in (3.13) is (an estimate of) the number of

independent realizations of the chain An needed to compute P(Lt(r) > x) for

extreme x (x ' 0, x ' 1). It is now possible to get x± by taking the logarithm of

both sides and expanding IΓ in Taylor series around xmin:

x± =
1

2
±

√(1− γ
2γ

) logR

t
. (3.14)

Finally the sample exponents are

bS(γ, t, R) = bR(γ, t) '
supx∈[x−,x+] [2G(x)− IΓ(x)]

supx∈[x−,x+] [G(x)− IΓ(x)]
, (3.15)

and

bSjk(γ, t, R) = bRjk(γ, t) '
supx∈[x−,x+] [kG(x)− IΓ(x)]

supx∈[x−,x+] [jG(x)− IΓ(x)]
(3.16)

where for notation clarity S is substituted by R, being R the “size” of S.

From (3.14) it follows that for fixed R the arguments in (3.15) are computed

over the interval [x−, x+] which is centred on x = xmin and becomes smaller as t

increases.

Because of IΓ(x = xmin) = 0, for a finite number R of realizations of the process

N(t), the weight of IΓ in the arguments of (3.15) goes to 0 as t increases and

therefore

lim
t→∞

bR(γ, t) = 2.

In particular after just a time t′ such that logR = o(t′), the estimate of b is

bR(γ, t) ' 2, whatever b is! According to (3.14) to get instead an estimate bR near

b for a time t the order of magnitude of R is R = et.

On the contrary, bR is close to the population exponent b when the arguments of

the suprema in (3.8) occcur for x′ ∈ [x−, x+] (in this case, in the region t → ∞

where (3.8) describes exactly b, bR = b).
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For example, if the suprema are reached in x′ > 1/2, then, from x± = 1
2
±√(

1−γ
2γ

)
logR
t

, bR well approximates b if x′ < x+, equivalently if

t <
(1− γ

2γ

)
(x′ − 1/2)−2 logR, (3.17)

while bR → 2 if

t >
(1− γ

2γ

)
(x′ − 1/2)−2 logR. (3.18)

implying an estimate bR close to b requires a number R of trials of order R = et.

If the values r and s cause a discontinuity for b(γ) at a critical γc, then the limits

given for t define the regions in which measures of bR show the same discontinuity.

Analogous results hold for bRjk.

3.3.4 The direct simulation procedure

The process N(t) is defined by a Markov chain whose transition probabilities are

known, then the sampling of N(t) will be obtained through simulation.

Procedure for bγ(t). Here γ and χ = {r, s} are fixed. To get b(·) for times t′ up to

t the procedure consists of the steps:

1. simulate R chains An up to n = t,

2. at each time n ≤ t compute the expectation value and variance of N(·) as

E[N(·)] =
1

R

R∑
j=1

N(·)j,

Var [N(·)] =
1

R

R∑
j=1

N2(·)− E[N(·)]2,

by using (3.1),

3. compute the linear interpolation for the points logE[N(·)] versus log Var [N(·)]

up to t′.
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Table 3.1: Scheme of the procedure to compute bγ(t).

times
trial 1 2 . . . t′ . . . t− 1 t

1 A1(1) A1(2) . . . A1(t′) . . . A1(t− 1) A1(t)
2 A2(1) A2(2) . . . A2(t′) . . . A2(t− 1) A2(t)
... · · · · · · · · · · · · · · · · · · · · ·
R AR(1) AR(2) . . . AR(t′) . . . AR(t− 1) AR(t)

↓ ↓ ↓ ↓ ↓
E[N(1)] E[N(2)] . . . E[N(t′)] . . . E[N(t− 1)] E[N(t)]

Var [N(1)] Var [N(2)] . . . Var [N(t′)] . . . Var [N(t− 1)] Var [N(t)]

↓ ↓ ↓
b(t′) · · · b(t− 1) b(t)

The exponent b(t′) is the angular coefficient of the linear interpolation. The crite-

rion to select the time interval for the interpolation is the following:

a time interval can be used if, increasing it by a time unit, the angular coefficient

of the interpolation does not change.

A scheme of the procedure is reported in table 3.1.

Procedure for bt(γ). The procedure is the same followed for bγ(t), but here t is

fixed and the parameter γ varies in (0, 1). The computation used different state

spaces to verify the existence of critical values γc, as predicted in sections 3.3.2

and 3.3.3. Results reported in figure 3.5 refer to χ = {2, 1/4} and χ = {4, 1/2}.

The t parameter and the number R of independent trials have been chosen to

stress in the most clear way the different behaviour of b(γ, t), according to the

discussion in 3.3.3, and to make the simulation accomplishable: t = 10 with

R = 106 (satisfying (3.17)) and t = 400 with R = 104 (satisfying (3.18)).
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3.3.5 How to measure bR?

In the article by Giometto et al. [17] two important results have been established:

� the behaviour of the observed Taylor’s law exponent (bR ' 2 almost inde-

pendently of process characteristics) may be the result of limited sampling

efforts;

� to get an estimate bR close to b a number R ' et of independent replicates

of the process is needed.

It is now clear that an accurate estimate of b or bjk is not always attainable: for

t large the condition R ' et can make the sampling impossible to perform. As

example, for the multiplicative process adopted, if γ = 0.5 and t = 100, condition

(3.17) requires a number R ' 1013 of independent trials to observe the rare event

{x+ = 0.9}. To accomplish this task the random number generator should provide

R × t ' 1015 independent random numbers r or s according to the transition

matrix of the chain, since every chain, in this example, consists of 100 steps. Even

when t is one order of magnitude smaller, for example in the range 20 ÷ 50, the

computation cannot be completed within short time intervals. An estimate of

the running time that clinches the matter is given at the end of Chapter 4, it’s

somewhere in the vicinity of years . . .

This argument is the ultimate reason why a high-efficiency simulation method is

needed. The next Chapter is dedicated to design the best sampling for b, finally

showing the utility of Large Deviation Theory.
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Chapter 4

Importance Sampling Estimate of
Taylor’s Law Exponent

This chapter is dedicated to estimating the power exponent b of Taylor’s law.

The problem of computing bR - estimate of b - is that exposed in Chapter 2:

to identify a simulation method that provides expectation value and variance of

a random variable with a fixed precision and with a number R of independent

trials far lesser than the size of a direct simulation. In Chapter 2 the analysis

of rare events by means of the Large Deviation Theory lead to the importance

sampling technique as a high-efficiency simulation method. This new technique is

implemented here to finally compute b. Results will show that a highly efficient

simulation based on importance sampling method reveals the predicted value of

the exponent, confirming what has been reached in Chapters 2 and 3.

4.1 Rare events in the Markovian multiplicative

model

The quantities to be estimated are expectation value and variance of the random

variable

N(t) = N0

t∏
n=1

An,
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4. IMPORTANCE SAMPLING ESTIMATE OF TAYLOR’S LAW EXPONENT

where An is the Markov chain as defined in 3.3.1.

The procedure based on the direct simulation method (DS), explained in 3.3.4,

evaluates at each time t E[N(t)] and Var [N(t)] directly, and treats all the events en-

tering the process N(t) in the same manner. Such a simple approach, schematized

in table 3.1, generates R independent Markov chains An and, for each time step,

computes the statistics at the end of the simulation: it is ineffective in revealing

the rare events hidden in N(t).

The importance sampling technique (IS), on the contrary, focuses on single sets: it

estimates rare events probabilities by means of new probability distributions -the

biasing distributions studied in 2.1.1- which are specific of each rare event. The

procedure based on IS method, then, requires isolating the single sets that make

N(t), in particular the low probability events.

Now, in detailed way, we find these important sets, the rare events of N(t).

To do this, it is convenient to express N(t) by using Lt(z) defined in 3.3.2: since

Lt(r) + Lt(s) = 1 the expression of N(t) becomes

N(t) = N0r
tLt(r)st(1−Lt(r)) = N0s

t
(r
s

)tLt(r)
= N0s

t
(r
s

)∑t
i=1 δAi,r

.

(4.1)

The expectation value of N(t) can thus be written as

E[N(t)] = N0s
tE
[(r
s

)tLt(r)]
= N0s

t

t∑
m=0

(r
s

)m
P(tLt(r) = m)

= N0s
t

t∑
m=0

(r
s

)m
P
( t∑
i=1

δAi,r = m
) (4.2)
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4.1. Rare events in the Markovian multiplicative model

and the variance as

Var [N(t)] = E[N(t)2]− E[N(t)]2 = N2
0 s

2t

t∑
m=0

[(r
s

)2m

P(tLt(r) = m)
]
− E[N(t)]2

= N2
0 s

2t

t∑
m=0

[(r
s

)2m

P
( t∑
i=1

δAi,r = m
)]
− E[N(t)]2.

(4.3)

The above expressions show that the statistics of N(t) depend on the sets

{1

t

t∑
i=1

δAi,r = x
}
, x ∈ {0, 1

t
,
2

t
, . . . ,

t− 1

t
, 1}. (4.4)

As discussed in Chapter 3, the direct simulation method fails in estimating b for

large t because it is ineffective in detecting the events in (4.4) in which the random

variable

Lt(r) =
1

t

t∑
i=1

δAi,r

takes values far from its expectation value µ:

{1

t

t∑
i=1

δAi,r � µ
}

and
{1

t

t∑
i=1

δAi,r � µ
}
. (4.5)

The direct simulation cannot reveal events in which the state r appears in the

chain An up to t (large) with frequency x ' 0 or x ' 1:

{1

t

t∑
i=1

δAi,r = x
}

with 0 ≤ x� µ or µ� x ≤ 1. (4.6)

The probability characterizing these events has been computed by LDT: the large

deviation principle (3.4) and the expression (3.5) of the rate function imply the

probability is extremely low. Thus, the sets defined in (4.5) or (4.6) are the rare

events that the new simulation procedure must detect and whose probability it

must estimate.
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4.1.1 The importance sampling procedure

The procedure to compute b(t), for t fixed will be the following:

1) for t′ ≤ t, estimate P(
∑t′

i=1 δAi,r > m) for m = 0, 1, . . . , t′ by adopting the

importance sampling technique,

2) compute P(
∑t′

i=1 δAi,r = m) for m = 1, . . . , t′ as

P(
∑t′

i=1 δAi,r = m) = P(
∑t′

i=1 δAi,r > m− 1)− P(
∑t′

i=1 δAi,r > m),

3) obtain the curve logE[N(t′)] versus log Var [N(t′)] through (4.2) and (4.3)

respectively and b(t) as the angular coefficient of its linear interpolation.

Remark.

- According to LDT results given in (2.2), probabilities can be estimated for sets

admitting a dominating point. Then the events considered in step 1) are those in

which
∑t′

i=1 δAi,r is greater than m.

- While for a generic Markov chain the probability has to be estimated for every

possible value m = 0, 1, . . . , t′, the simmetry of the transition matrix of the chain

considered in Chapter 3 allows to compute the probabilities for the values m =

t′/2, . . . , t′ only.

- The procedure described above must be repeated for every t of interest, since

for different values of t the sets {
∑t′

i=1 δAn,r = m} are different sets with different

probabilities.

- The power exponent b(t) can be obtained by an interpolation procedure only,

because there is no relationship between the two parameters a and b in the Tay-

lor’s law that makes it possible to determine b(t) with the only point (E[N(t)],

Var [N(t)]).
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4.2 Computation of the power exponent

The importance sampling technique requires the knowledge of the biasing proba-

bility distribution b(A1, . . . , An) for n = t′/2, . . . , t′. From now on the distribution

b will be denoted with pb. The work to identify pb has been done in 2.2.3. In the

notation of that section

χ = {r, s}, k = 1,

f : χ→ R, f(Ai) = δAi,r.

The biasing pb is given by expression (2.18):

pb,xy = pxy exp
(
θtf(y)

) ψθt(y)

λ(θt)ψθt(x)
, (4.7)

where λ(θ) and ψθ are respectively the maximum eigenvalue and its corresponding

eigenvector of the operator Tθ defined in (1.4) and θt is solution of

t =
λ′(θ)

λ(θ)
. (4.8)

For the chain An considered here the operator is

Tθ =

[
prr exp θ prs
psr exp θ pss

]
=

[
(1− γ) exp θ γ
γ exp θ 1− γ

]
(4.9)

with maximum eigenvalue

λ(θ) =
(1− γ)(1 + exp θ) +

√
(1− γ)2(1 + exp θ)2 − 4 exp θ(1− 2λ)

2
(4.10)

and corresponding eigenvector

ψθ =

(
1

γ exp θ
γ−1+λ(θ)

)
. (4.11)

The biasing distribution is represented by the transition matrix Γb of elements

Γb,xy = pb,xy as given in (4.7):

Γb(θt) =
1

λ(θt)

(
(1− γ) exp θt γ

ψθt (s)

ψθt (r)

γ
ψθt (r)

ψθt (s)
exp θt 1− γ

)
. (4.12)
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In the above expression ψθt(z) is the component of the ψθt eigenvector that cor-

responds to the state z ∈ χ, then, from (4.11), ψθt(r) = 1, ψθt(s) = γ exp θt/(γ −

1 + λ(θt)).

4.2.1 The importance sampling estimators

Estimators of the probabilities P(
∑n

i=1 δAi,r > m) of step 1) of the procedure to

get b(t) are

µ̄n =
1

k

k∑
j=1

1{
∑n
i=1 δÃi,r

>m}
p(Ãj1, . . . , Ã

j
n)

pb(Ã
j
1, . . . , Ã

j
n)

=
1

k

k∑
j=1

1{
∑n
i=1 δÃi,r

>m}

p(Ãj1)
∏n−1

i=1 pÃji Ã
j
i+1

pb(Ã
j
1)
∏n−1

i=1 pb,Ãji Ã
j
i+1

=
1

k

k∑
j=1

1{
∑n
i=1 δÃi,r

>m}

p(Ãj1)
∏n−1

i=1 pÃji Ã
j
i+1

pb(Ã
j
1)
∏n−1

i=1

(
pÃji Ã

j
i+1

exp (θtδÃji+1,r
)
ψθt (Ã

j
i+1)

ψθt (Ã
j
i )λ(θt)

)
and, thanks to the products in the last ratio,

µ̄n =
1

k

k∑
j=1

1{
∑n
i=1 δÃi,r

>m}
p(Ãj1)

pb(Ã
j
1)

ψθt(Ã
j
1)

ψθt(Ã
j
n)

λn−1(θt)

exp
(
θt
∑n−1

i=1 δÃji+1,r

) (4.13)

where the index j stands for the j-th trial of the new Markov chain Ãn evolving in

each trial with transition matrix Γb. The expression (4.13) requires the knowledge

of p(Ã1) and pb(Ã1), for each j-th trial. How to choose these values? By hyphotesis

the chain An starts at equilibrium, that is, the distribution π of A1 is the stationary

one (being Γ symmetric π(r) = π(s) = 1/2). The element A1 can be thought as

the element of An following a starting point A0 which, itself, is chosen with the

stationary distribution π. The random variable Ã1 is instead the first state of

the chain Ãn that is governed by the new transition matrix Γb and that cannot

be a priori assumed to be at equilibrium. Nevertheless, Ãn is a realization of the

chain An modified according to Γb from element Ã1 only: Ã1 follows an element Ã0
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whose distribution is π, the same stationary distribution of the chain An. Indeed

p and pb have for Ãj1 the meaning:

p(Ãj1) = pÃj0 Ã
j
1

pb(Ã
j
1) = pb,Ãj0 Ã

j
1
,

where, for every j-th trial, Ãj0 is chosen according to the stationary distribution

π(·) = 1/2. By inserting the last expressions into (4.13), with pb as in (4.7), the

estimators are

µ̄n =
1

k

k∑
j=1

1{
∑n
i=1 δÃi,r

>m}
λn(θt)

exp
(
θt
∑n

i=1 δÃi,r
) ψθt(Ãj0)

ψθt(Ã
j
n)
. (4.14)

The simulation codes that provided the outputs of this Chapter are listed in B.1.

4.3 Results

The organization is: first it is reported the case where χ causes a discontinuity in

b(γ), then the case of no discontinuity (denoted respectively with χDis and χNoD).

In the former case b(t) and b(γ) are both analyzed, in the latter, less critical, it is

displayed only the behaviour of b(γ). The displays will be easily compared with

those of figure 3.5 in Chapter 3.

Error analysis.

The error bars shown in the figures have been computed as [b−εb, b+εb] with b the

predicted value of the exponent and ε the maximum error in the simulations. The

correct error bars, computed with the theory of error propagation (as in Chapters

10 and 11 in [27]), would be quite larger than the one here adopted. Then, the

error bars reported in all the figures stand for precision requirements even stricter

than those that have been chosen for the simulations.
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40 60 80 100
t
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10.6

10.8

11.0

11.2

b0.55 (t)
b(t) with γ = 0.55, χDis, ϵ = 5%, conf. = 95%

Figure 4.1: Behaviour of b(t) for fixed γ = 0.55.

Discontinuity case: b(t).

Figure 4.1 reports values of b(t) for χ = {2, 1/4} with fixed γ = 0.55. The

simulation has been performed requiring a maximum error ε = 5% and a 95%

confidence. The bright orange line is the theoretical value (b = 10.5344 for γ =

0.55). The light orange region is the 5% error bar [b − εb, b + εb] within which

results should be found. In the following figures results refer to higher precision

levels. All graphics reported above show the IS method provides estimate of b(t)

within the desired maximum error. In particular results reproduce the theoretical

value for large t better than for early t. This feature can be explained one more

time by Large Deviations Theory. For small times the events entering the process

are not as rare as for large times and the biasing probability distributions are not

appreciably different from the original ones. For this reason results show for small t

the instability already seen with the direct simulation mehod. As to the behaviour

of b(t) reported in figure 4.2, values obtained by requiring 95% confidence level

seem to better reproduce the theoretical value with respect to the values of the

second graphic. This is due only to the particular random paths followed by the
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20 25 30 35 40 45 50
t
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b0.55 (t)
b(t) with γ = 0.55, χDis, ϵ = 1%, conf. = 95%

20 25 30 35 40 45 50
t
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10.50

10.55
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10.65

b0.55 (t)
b(t) with γ = 0.55, χDis, ϵ = 1%, conf. = 99%

Figure 4.2: The error bar is [b − εb, b + εb] with ε = 1% in both graphics, but the
reported values have been obtained requiring different confidence level.
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process in the simulations. Being the maximum error requirement the same, the

only difference that could be found between the two sets of outcomes is the presence

of some values outside the error bar, more in the first graphic than in the second.

Figure 4.3 reports the numbers k(m) of independent trials of the Markov chain

An realized in the simulation to estimate P(
∑t

i δAi,r > m), where t/2 ≤ m ≤ t,

according to the criterion (2.12) defined in 2.1.3. Results shown correspond to

graphic in figure 4.1, for times t multiple of 10. A common pattern is shared by

each curve, for t equal to 10 through 100. This feature is due to the combined

choice of the IS biasing probability distribution and the simulation stop criterion:

for small m the events entering the process have high probabilities relatively to

the events at m large and the estimate of their probability requires a low number

of trials to satisfy the stop criterion (2.12). As m increases the events probabilities

decrease and a higher number of trials are needed to meet the stop criterion. But

the number k(m) doesn’t increase for every m. For m approaching t the biasing

probability distribution makes the rare event more likely and simultaneously the

estimate µ̄2
b in (2.11) decreases to very low values. Since the estimator variance V̄b

is reduced but not zero, the ratio V̄b/µ̄
2
b becomes large and the stop criterion is met

sooner than for m in the middle of [t/2, t]. The behaviour of k(m) in estimating

b(t) is similar for different precision levels, as shown in figure 4.4.

Discontinuity case: b(γ).

The curve b(γ) has been reproduced for t = 10 and t = 40. Results are shown in

figures 4.5 and 4.6. The error bar [b(γ)−εb(γ), b(γ)+εb(γ)], due to the behaviour

of the theoretical b(γ), diverges for γ → γc and reduces to zero for γ ' 0.7.

Because of the performance of the IS simulation method for small t, discussed

before, the precision requirements are not satisfied for t = 10. This, anyway,

doesn’t imply the IS method has failed: the requirements were set on the estimators
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k(m) with γ = 0.55, χDis, ϵ = 5%, conf. = 95%

Figure 4.3: k(m) = #trials to estimate P(
∑t

i δAi,r > m). Different colors refer to t
multiple of 10, going 10 to 100. k(m) shows identical features independently of t.

of the partial probabilities P(
∑t

i δAi,r > m) that had to be multiplied by (r/s)m and

this term, for χ = {2, 1/4} and m ' t, rises to the point of eventually producing

a final value of b(γ) quite different from the theoretical value. Results for t = 40,

instead, comply with the required precision for every γ, again confirming the IS

method is reliable for increasing times.

No discontinuity case: b(γ).

In figures 4.7 and 4.8 results of b(γ) are reported when χ = {4, 1/2}, for which

the theoretical b(γ) shows no discontinuity. Also in absence of discontinuity the

IS simulation method is more reliable for large than for small times. Nevertheless,

for t = 10 the experimental curve is anyway far from being a straight orizontal

line, showing the IS method has been able to reveal that b varies for different γ.
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k(m) with γ = 0.55, χDis, ϵ = 1%, conf. = 95%
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Figure 4.4: To meet higher precision levels k(m) increases significantly, to the point
that a maximum error ε = 1% requires a number of trials more that five times higher
with respect to ε = 5% for the same confidence of 95%, as expected.
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4.3. Results
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Figure 4.5: Theoretical values are in orange dashed line, simulation values in blue
circles. The vertical line is the asymptoth γ = γc where b(γ) diverges. The light orange
region in the graphic at the bottom is the error bar within which results should be found.
This region has contours varying with γ, since b(γ) is not constant.
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Figure 4.6: For larger t IS simulation method provides better estimates of b(γ) (theo-
retical curve given in orange dashed line). Values obtained for t = 40 are not only inside
the error bar, but they are almost on the theoretical curve, with appreciable errors only
for γ close to γc (where b(γ) diverges).
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4.4. Importance sampling versus direct simulation method
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Figure 4.7: For χ = {4, 1/2} the error bar never goes to zero but is nevertheless close
to it and, for t = 10, one point falls outside the maximum error region.

4.4 Importance sampling versus direct simula-

tion method

Results displayed for b(t) and b(γ) verify that the importance sampling method in

simulation has been a successful tool in estimating the power exponent of Taylor’s

law.

The major differences between the IS and the DS methods are:

- the IS simulation method selects, among all the admissible probability dis-

tributions, the most efficient. The DS method simply doesn’t consider the

efficiency problem.

- the IS simulation method, based on LDT, provides an estimate that complies

with the precision requirements with a number of trials far smaller than the

number necessary to the DS method. Evidently, by comparing the numbers

k displayed in figures 4.3 and 4.4 to R ' 1013 (given in 3.3.5), the IS method

outclasses the second in terms of efficiency.

The most relevant consequence is the difference between the computation times.
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Figure 4.8: As for the discontinuity case, for t = 40 all the results provided by the IS
simulation method fall within the error bar [b− εb, b+ εb].
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4.4. Importance sampling versus direct simulation method

A reduced number of trials implies a reduced computation time. In order to

compare the two methods, taking as example the curve b(t) in the discontinuity

case for γ = 0.55, while the direct simulation method took some hours to generate

the curve up to t = 50, but providing completely wrong estimates for every t ≥ 20,

the IS simulation method took about half an hour to generate the curve up to t =

100 with results satisfying the precision requirements ε = 5%, confidence = 95%,

that is, providing what had been asked (the computation time, or run-time, for

this task is reported in figure 4.9). For stricter precision level the computation time

increased significantly, but still being far and far smaller than the corresponding

time needed by the DS method and still satisfying the required precision.

20 40 60 80 100
t
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1000

1500

2000

run- time (t)
[s]

run-time(t) with γ = 0.55, χDis

ϵ=5%, conf.=95%

ϵ=1%, conf.=95%

ϵ=1%, conf.=99%

Figure 4.9: Different precision levels required different run-times, expressed in seconds
[s]. Time steps t have no time unit, since they do not necessarily represent a physical
time.
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4. IMPORTANCE SAMPLING ESTIMATE OF TAYLOR’S LAW EXPONENT

To compare numbers, in figure 4.3 typical k are at most of order 104 (to be summed

to get b(t)), the order of magnitude of R is instead 1013: the IS running time is 108

times smaller than the DS one. Having required the IS simulation half an hour,

the DS method would have taken, at least, 1/2×108 hours . . . quite a longer time!

Clearly, the DS simulation would never come to an end and the IS method is the

only possible choice.

The purpose of designing a high-efficiency simulation that could detect the rare

events hidden in the random multiplicative process studied here has been reached.
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Conclusions

In this thesis we have devised an algorithm, based on importance sampling method,

to perform simulations of random processes representing ecological systems. We

have selected the class of Markovian multiplicative models for their relevant role

in describing the emergence of Taylor’s law.

Taylor’s law for ecological systems states that variance and mean of population

abundance are related by a power-law relationship. This empirical law has been

verified in a wide variety of research fields to the point of suggesting that a context

independent mechanism may be responsible for it. As it often happens in the study

of complex systems - and those ecological are complex systems - computational

methods turn out to be indispensable to infer key features of the ecological model

of interest, in our case to determine the range of values of the power exponent

appearing in Taylor’s law.

In Chapters 2 and 3, proceeding from the previous work by Giometto et al.

[17], we have shown that standard direct simulation methods (DS) provide incor-

rect estimates of the power exponent and that the possible cause for this is the

incapacity of such sampling techniques in revealing the rare events entering the

random process of the model under study. To tackle the problem of estimating

statistics of rare events - events occurring with extremely low probabilities - a new

sampling technique, the importance sampling (IS), has been studied in Chapter 2.
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4. IMPORTANCE SAMPLING ESTIMATE OF TAYLOR’S LAW EXPONENT

The name ”importance sampling” refers to a wide family of methods employed

to decrease the number of independent trials in a simulation, while providing es-

timates in agreement with a required precision. In Chapters 1 and 2 we have

analyzed rare event probabilities and selected the most efficient probability distri-

bution to detect, in the simulation, the rare events of the Markovian multiplicative

random process. The results of Chapter 4 demonstrate the IS simulation method

outclasses the DS method for the former provides estimates in agreement with

the required precision by performing a number of trials of the process far lesser

than the number needed by the the latter. The most evident advantage of the IS

method is the reduction of computation time: to reach the same precision the DS

method would have needed a computation time about 108 times larger than that

needed by the IS method! The results, then, have confirmed what was predicted

in [17]: the anomalous behaviour of the power exponent in Taylor’s law can be a

consequence of ineffective sampling measurements.

In order to implement the IS technique for the multiplicative model, we have

studied the basic theorems and principles of Large Deviation Theory and learned

how to employ them. LDT has played a crucial and leading role: it served to de-

scribe rare event probabilities and to find the most efficient probability distribution

(the biasing distribution) for the model.

The simulation technique exposed in this work may be profitably applied in

any context where multiplicative random processes, Markovian also, are adopted.

The design of efficient simulations is still today a topic of active research, that

founds itself on a rigorous mathematical theory (as seen, LDT and the principles of

importance sampling). With this work we hope to have brought a useful example

that shows the possible consequences of using a standard simulation method and

the advantages of adopting an importance sampling method, advantages that could

be of precious help in different areas of research.
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Appendix A

Large Deviation Theory

Here proofs of the Gärtner-Ellis theorem and Varadhan’s lemma are reported.

As given in [20], the results come through lemmas. The demonstrations, quite

technical, are an example of the typical way adopted in LDT to get results: to

set upper and lower bounds, respectively for compact and closed sets, and then to

extend the bounds to open sets.

A.1 Proof of Gärtner-Ellis theorem

Lemma A.1 (Exponential overbound). Given a R-valued r.v. Z, then for t ≥ 0

and z ∈ R, P(Z > z) ≤ E[exp(tZ)] exp(−tz).

Proof. With f(z) the distribution function of Z, P(Z > z) =
∫∞
z
df(x). For all

t ≥ 0, for x ∈ [z,∞), exp[t(x− z)] ≥ 1, then

P
(
Z > z

)
≤
∫ ∞
z

et(x−z)df(x)

≤
∫ ∞
∞

et(x−z)df(x)

= E
[
etZ
]
e−tZ .

Lemma A.2. For a ∈ R, θ1, . . . , θm ∈ Rd it is defined the half-space
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A. LARGE DEVIATION THEORY

Hθ(a) = {x ∈ Rd : 〈x, θ〉 − φ(θ) ≤ a}. With C = ∩mi=1Hθi(a), then

A1 =⇒ lim sup
n→∞

1

n
logP

(Yn
n

/∈ C
)
≤ −a.

For a subset E ⊂ Rd infx∈E I(x) will be replaced by the simpler notation I(E)

and La will denote the a-level set of I(x): La = {x : I(x) ≤ a}, a ∈ R.

Proof. (Gärtner-Ellis theorem, upper bound for compact sets.) A1 is assumed.

With ε > 0 fixed,

K ⊂ LcI(K)−ε

= {x : I(x) > I(K)− ε}

= {x : sup
θ

[〈θ, x〉 − φ(θ)] > I(K)− ε}

= ∪θ{x : 〈θ, x〉 − φ(θ) > I(K)− ε}

and the last set is an open cover of a compact set. For this compact set Heine-Borel

theorem states there exists a finite subcover, then there exists a finite sequence

θ1, . . . , θm with which

K ⊂ ∪mi=1{x : 〈θi, x〉 − φ(θi) > I(K)− ε}

= ∪mi=1H
c
θi

(I(K)− ε)

= (∩mi=1H
c
θi

(I(K)− ε))c.

Lemma 2.16 now leads to

lim sup
n→∞

1

n
logP

(Yn
n
∈ K

)
≤ −[I(K)− ε], ∀ ε > 0

and the upper bound for the compact set K is obtained by taking ε→ 0.

Lemma A.3. ∀ a ∈ R,

A1, A2 =⇒ La is compact.

Lemma A.4. With Lδa = {x : ‖x− y‖ < δ for some y ∈ La}, then

A1, A2 =⇒ lim sup
n→∞

1

n
logP

(Yn
n

/∈ Lδa
)
≤ −a.
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A.1. Proof of Gärtner-Ellis theorem

Proof. (Gärtner-Ellis theorem, upper bound for closed sets.) A1 and A2 are

assumed and C ⊂ R is closed. A positive a chosen, Lδa is bounded, thus Lδa ∩A is

compact. Since P (Yn/n ∈ C) = P (Yn/n ∈ C ∩ Lδa) + P (Yn/n ∈ C ∩ (Lδa)
c), from

lim sup
n→∞

1

n
logP

(Yn
n
∈ C ∩ Lδa

)
≤ −I(C)

and

lim sup
n→∞

1

n
logP

(Yn
n
∈ C ∩ (Lδa)

c
)
≤ −a

it follows

lim sup
n→∞

1

n
logP

(Yn
n
∈ C

)
≤ −max{I(C), a}.

The last inequality holds true for every a > 0, then the upper bound for closed

sets is proved by taking lima→∞.

Lemma A.5. Fn denotes the distribution function of Yn and a new sequence of

r.v.s Y
(θ)
n is introduced with distribution function given by

dF (θ)
n (x) =

dFn(x) exp(〈θ, x〉)∫
exp(〈θ, x〉)dFn(x)

=
dFn(x) exp(〈θ, x〉)

exp(nφn(θ))
.

Defined Bδ(v) = {x : ‖x − v‖ < δ}, δ > 0, if v ∈ ∇φ(Dφ) and θv is the solves

∇φ(θ) = v, then

lim
n→∞

P
(Y (θv)

n

n
/∈ Bδ(v)

)
= 0.

Lemma A.6. If v = ∇φ(θ) for a θ = θv, then

lim inf
n→∞

1

n
logP

(Yn
n
∈ Bδ(v)

)
≥ −I(v)− δ‖θv‖.

Proof. (Gärtner-Ellis theorem, lower bound for open sets.) First an open B ⊂

∇φ(Dφ) is considered. With v ∈ B fixed but arbitrary, then

lim sup
n→∞

1

n
logP

(Yn
n
∈ B

)
≥ lim inf

n→∞

1

n
logP

(Yn
n
∈ Bδ(v)

)
≥ −I(v)− δ|θv|,

97



A. LARGE DEVIATION THEORY

for a nonempty set of small δ > 0. Since v is arbitrary the lower bound statement

for open B ⊂ ∇φ(Dφ) is proved applying limδ→0.

If B is an arbitrary open set, the statement for the lower bound is again true

if, for any v ∈ B

lim sup
n→∞

1

n
logP

(Yn
n
∈ B

)
≥ −I(v). (A.1)

Theory on convex functions states D̃I ⊂ ∇φ(D̃φ). Thus for v ∈ B three cases may

happen.

If v /∈ DI (A.1) follows because −I(v) = −∞.

If v ∈ D̃I , the proof is as given for B ⊂ ∇φ(Dφ), since the condition on v is the

same.

If v ∈ DI \D̃I , for every ball Bv centred in v it is possible to choose a v′ ∈ Bv∩D̃I

that satisfies I(v′) ≤ I(v).

This shows that in minimizing the rate function over B the points in ∂DI do not

play any role and only the points in D̃I must be considered. Then, the lower bound

for open sets is established.

A.2 General theory

Cramér’s and Gärtner-Ellis theorems define upper and lower bounds for a sequence

of probabilities, regarding the sequence of sample averages Sn or random variables

Yn when the random variables meet certain conditions. The knowledge of these

two theorems makes it possible to formulate the general theory of large deviations

on the base of a more general definition of the rate function and by introducing

the large deviation principle. The content of this section will serve only as a

background knowledge for Chapter 3, where results are given in terms of the large

deviation principle and Varadhan’s lemma.
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A.2. General theory

Definition (Polish space). A Polish space is a complete separable metric space.

Definition A.7. Let P be a Polish space with distance d : P × P → [0,∞). A

function f : P → [−∞,∞] is called lower semi-continuous if any of the following

equivalent conditions are satisfied:

(i) lim infn→∞ f(xn) ≥ f(x) ∀ (xn), x : xn → x ∈ P .

(ii) limε↓0 infy∈Bε(x) f(y) = f(x) withBε(x) = {y ∈ P : d(x, y) < ε},

(iii) the level sets f−1
(
[−∞, c]

)
are closed for all c ∈ R.

Definition A.8 (Rate function). A function I : P → [0,∞] is called rate func-

tion if

(RF1) I 6≡ ∞.

(RF2) I is lower semi-continuous.

(RF3) I has compact level sets.

For a set S ⊂ P it will be be denoted I(s) = infx∈S(x), the closure of S by

cl(S), the interior by int(S).

Definition A.9 (LARGE DEVIATION PRINCIPLE). A sequence of probability

measures (Pn) on P is said to satisfy the large deviation principle (LDP)

with rate n and rate function I if

(LDP1) I is a rate function as given in Definition A.8.

(LDP2) lim supn→∞
1
n

logPn(C) ≤ −I(C) ∀C ⊂ P closed.

(LDP3) lim infn→∞
1
n

logPn(A) ≥ −I(A) ∀A ⊂ P open.

Theorem A.10 (Uniqueness of I). If a sequence of probabilities (Pn) satisfies a

LDP, then its associated rate function is unique.

Proof. Let I and J be two rate functions for (Pn) and x ∈ P be fixed. Defined in

P the sequence BN = B1/N(x) of open balls with radius 1/N , N ∈ N, then RF1
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A. LARGE DEVIATION THEORY

and RF2 imply

−I(x)
(a)

≤ −I(BN+1 ≤ lim inf
n→∞

1

n
logPn(BN+1)

≤ lim sup
n→∞

1

n
logPn

(
cl(BN+1)

)
≤ −J

(
cl(BN+1)

) (b)

≤ −J(BN),

where (a) holds because x ∈ BN+1, (b) because BN ⊃ cl(BN+1). Taking N →∞,

being J lower semi-continuous, it follows that limN→∞ J(BN) = J(x). Hence

I(x) ≥ J(x). The opposite follows by interchanging I and J .

A.2.1 Varadhan’s lemma

The first important theorem in the general theory of large deviations is due to

Varadhan. It is a generalization of the Laplace’s method of integration.

Theorem A.11 (Varadhan’s lemma). Given a sequence (Pn) satisfying the LDP

on P with rate n and rate function I and F : P → R a continuous function bounded

from above, then

lim
1

n
log

∫
P
enF (x)Pn(dx) = sup

x∈P

[
F (x)− I(x)

]
.

where Pn denotes the distribution or the probability density function relating to Pn.

In what follows, for two sequences of positive numbers (an) and (bn) the symbol

≈ will denote logarithmic equivalence:

an ≈ bn
def.⇐⇒ lim

n→∞

1

n
(log an − log bn) = 0. (A.2)

By definition of logarithmic equivalence, for two sequences (cn), (dn) of positive

numbers a largest exponent dominates principle holds true:

cn + dn ≈ cn ∨ dn, (A.3)

that can be extended to a finite but arbitrary set of positive sequences.
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A.2. General theory

Proof. (Varadhan’s lemma.) It is defined the sequence of set functions (Jn):

Jn(S) =

∫
S

enF (x)Pn(dx), forS ⊂ P a Borel set,

and

α = sup
x∈P

F (x), β = sup
x∈P

[
F (x)− I(x)

]
.

Suprema α and β satisfy −∞ < b ≤ a < ∞, because I ≥ 0 and F is continuous

and bounded from above.

Upper bound. The space P is partitioned by F−1 by the following set definitions:

D = F−1([β, α]),

DN
k = F−1([dNk−1, d

N
k ]), k = 1, . . . , N, N ∈ N, with dNk = β + k

N
(α − β) for

k = 0, 1, . . . , N .

For sets D and DN
k it holds that D =

⋃N
k=1 D

N
k .

Since F is continuous all DN
k are closed sets, then the LDP gives

lim sup
n→∞

1

n
logPn(DN

k ) ≤I (DN
k ) ∀k.

For every k = 0, 1, . . . , N and every N , restriction of F on DN
k is bounded:

F (x)
∣∣
DNk
≤ dNk , then relationship (A.3) gives

lim sup
n→∞

1

n
log Jn(D) ≤ max

1≤k≤N

[
dNk − I(DN

k )
]
.

Now the inequality

dNk ≤ inf
x∈DNk

F (x) +
1

N
(α− β)

can be used to get a better bound on the lim sup:

lim sup
n→∞

1

n
log Jn(D) ≤ max

1≤k≤N

[
inf
x∈DNk

F (x)− inf
x∈DNk

I(x)
]

+
1

N
(α− β)

≤ max
1≤k≤N

sup
x∈DNk

[F (x)− I(x)] +
1

N
(α− β)

= sup
x∈C

[F (x)− I(x)] +
1

N
(α− β)

≤ β +
1

N
(α− β).
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The upper bound for Jn(D) is then proved by taking the limit N → ∞. For the

sequence (Jn(P \D)) it holds

Jn(P \D) ≤ expnβ,

then, by applying (A.3), it follows

lim sup
n→∞

1

n
log Jn(P) ≤ β

and the upper bound is proved.

Lower bound. Since F is continuous, for x ∈ P and δ > 0 fixed but arbitrary the

set

Bx,δ = {z ∈ P : F (z) > F (x)− δ}

is open (and a neighbourhood of x). From LDP3 the sequence (Pn) satisfies

lim inf
n→∞

1

n
logPn(Bx,δ) ≥ −I(Bx,δ).

Properties of I and the definition of Bx,δ imply that I(Bx,δ) ≤ I(x) and this can

be used in the last inequality to obtain

lim inf
n→∞

1

n
log Jn(Bx,δ) ≥ F (x)− δ − I(x).

On Bx,δ the sequence (Jn) satisfies Jn(P) ≥ Jn(Bx,δ). By letting δ ↓ 0 and by

applying supx∈P it follows:

lim inf
n→∞

1

n
log Jn(P) ≥ β,

that proves the lower bound for the statement.
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Appendix B

Simulation Codes

The computation of b(t) and b(γ) requires the solution of transcendental equa-

tion (4.8), the simulation of Markov chains An for different transition probabili-

ties, the calculus of linear interpolation coefficients. To carry out these steps the

symbolic programming language Wolfram Mathematica® has been used.

B.1 Code for b(γ)

Here it is reported the code that implements the IS simulation as devised in Chap-

ter 4. The exponent b(γ) is computed for t = 40. Explanations are given in

comment format (* ... *).

Code for b(γ) with fixed t = 40, ε = 5%, confidence = 95%, discontinuity case (χ = χDis

r=2; (* state r *)

s=1/4; (* state s *)

N0=1; (* N(t=0) *)

\[Gamma]min =0.05; (* minimum \[ Gamma] *)

\[Gamma]max =0.95; (* maximum \[ Gamma] *)

d\[ Gamma ]=0.10; (* increment of \[Gamma] *)

tmax =40; (* time for b *)

\[ Epsilon ]=0.05; (* maximum error on partial probabilities *)

quantil \[ Epsilon ]=1.960;
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B. SIMULATION CODES

matrixT [\[ Theta]_]:= (* operator T_\[ Theta] *)

{{(1 -\[ Gamma]) Exp[\[ Theta ]],\[ Gamma]},

{\[ Gamma] Exp[\[ Theta ]],1-\[ Gamma ]}};\[ Lambda ][\[ Theta]_]:=

(1/2)((1 -\[ Gamma ])(1+ Exp [\[ Theta ]])+ Sqrt [((1 -\[ Gamma ])^2)

((1+ Exp [\[ Theta ]])^2)+(4( -1+2 \[ Gamma])Exp [\[ Theta ]])]);

Print [\[ Lambda ][\[ Theta ]]];

For[ (* loop on \[ Gamma],transition probability *)

\[ Gamma ]=\[ Gamma]min ,\[ Gamma ]<=\[ Gamma]max ,

\[ Gamma ]=\[ Gamma]+d\[ Gamma],

Print [\[ Gamma ]];

time [\[ Gamma ]]= (* computation time control *)

Timing[

For[ (* loop on t, time steps *)

t=tmax/2,t<=tmax ,t++,

If[ (* case: even time *)

EvenQ[t]==True ,

For[ (* loop on n = t/2, ..., t *)

n=0,n<=(t/2)-1,n++,

root\[ Theta]T=x/. Solve[ (* solution \[ Theta]T *)

\[ Lambda]’[x]==(1/2+n (1/t)) \[ Lambda ][x],x,Reals];

\[ Theta]T=root\[ Theta]T[[1]];

\[ Lambda ]\[ Theta]T= (* max. eigenvalue of T_\[ Theta] *)

Eigenvalues[matrixT [\[ Theta]T]][[1]];

\[ Lambda ]\[ Theta]Tmin= (* min. eigenvalue of T_\[ Theta] *)

Eigenvalues[matrixT [\[ Theta]T]][[2]];

\[Psi ]\[ Theta]Tr= (* r component of max.eigenvector *)

Eigenvectors[matrixT [\[ Theta]T]][[1 ,1]];

\[Psi ]\[ Theta]Ts= (* s component of min.eigenvector *)

Eigenvectors[matrixT [\[ Theta]T]][[1 ,2]];

\[Pi]q= (* biasing transition probability matrix *)

{{((1 -\[ Gamma ])/\[ Lambda ]\[ Theta]T) Exp [\[ Theta]T],

(\[ Gamma ]/\[ Lambda ]\[ Theta]T)

(\[ Psi ]\[ Theta]Ts/\[Psi]\[ Theta]Tr)},

{(\[ Gamma ]/\[ Lambda ]\[ Theta]T)

(\[ Psi ]\[ Theta]Tr/\[Psi]\[ Theta]Ts) Exp[\[ Theta]T],

(1-\[ Gamma ])/\[ Lambda ]\[ Theta]T}};

\[Pi]qrr =\[Pi]q[[1 ,1]]; (* components: bias. transit. prob.*)

\[Pi]qrs =\[Pi]q[[1 ,2]];

\[Pi]qsr =\[Pi]q[[2 ,1]];

\[Pi]qss =\[Pi]q[[2 ,2]];

jsum\[Mu]=0; (* initialization sum for expectation value*)
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B.1. Code for b(γ)

jsumVar =0; (* initialization sum for variance *)

safetyk=Infinity; (* safety number of trials *)

ksure =100; (* initial safety number of trials *)

For[ (* loop on j, trials of Markov chain A_n *)

j=1,j<=ksure ,j++,

\[Psi ]0=0; (* initializations \[Psi] for bias. prob.*)

\[Psi]t=0;

a0=RandomChoice [{r,s}]; (* initial state of chain A_n *)

If[a0==r, (* initial \[Psi] in chain A_n *)

\[Psi ]0=\[ Psi ]\[ Theta]Tr ,\[ Psi ]0=\[ Psi ]\[ Theta]Ts];

state=a0; (* start of j-th chain A_n *)

\[ Delta ]=0; (* Kronecker delta *)

sum\[ Delta ]=0; (* initial sum of Kronecker delta *)

indFunct =0; (* indicator function *)

For[ (* loop on i, steps for chain A_n *)

i=1,i<=t,i++,

a=RandomReal []; (* generation of states of A_n *)

If[state==r,If[a<\[Pi]qrr ,state=r,state=s],

If[a<\[Pi]qsr ,state=r,state=s]];

If[state==r,\[ Delta ]=1 ,\[ Delta ]=0];

sum\[ Delta]=sum\[ Delta ]+\[ Delta ]];

If[sum\[ Delta]>t (0.5+n (1/t)),indFunct=1,indFunct =0];

If[state==r, (* final \[Psi] in expres. of bias. prob.*)

\[Psi]t=\[ Psi ]\[ Theta]Tr ,\[ Psi]t=\[ Psi ]\[ Theta]Ts];

jsum\[Mu]= (* sum for expectation value *)

jsum\[Mu]+ indFunct (((\[ Lambda ]\[ Theta]T^t)

\[Psi ]0)/( Exp [\[ Theta]T sum\[ Delta]] \[Psi]t));

jsumVar= (* sum for variance *)

jsumVar+indFunct (((\[ Lambda ]\[ Theta]T^t)

\[Psi ]0)/( Exp [\[ Theta]T sum\[ Delta]] \[Psi]t))^2;

\[Mu ]=(1/j) jsum\[Mu]; (* expectation value *)

var =(1/j) jsumVar; (* variance *)

If[\[Mu]!=0, (* decision to stop the simulation *)

safetyk =(( quantil \[ Epsilon ]/\[ Epsilon ])^2)

((var /(\[Mu]^2))-1), safetyk=Infinity ];

ksure=Max[100, safetyk ]]; (* update of number of trials *)

indexL=t ((1/2)+(n/t));

pLarger[indexL ]=\[Mu]]; (* partial probability P(...>m) *)

pLarger[t]=0; (* partial probability P(...>t) set to 0 *)

For[ (* computation of partial probabilities P(...=m) *)

indexP=t/2,indexP <=t,indexP++, (* for t/2<=index <=t *)

If[
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indexP ==t/2,p[indexP ]=1-2 pLarger[indexP],

p[indexP ]= pLarger[indexP -1]- pLarger[indexP ]]];

For[ (* for 0<=index <=t/2 *)

indexPmirror =0,indexPmirror <=(t/2)-1, indexPmirror ++,

p[indexPmirror ]=p[t-indexPmirror ]];

estEN[t]= (* computation of expectation value E[N(t)] *)

N0 (s^t) Sum [((r/s)^m) p[m],{m,0,t}];

estEN2[t]=(N0^2) (s^(2 t)) Sum [((r/s)^(2 m)) p[m],{m,0,t}];

estVarN[t]= (* computation of variance Var[N(t)] *)

estEN2[t]-((estEN[t])^2);

Print[t,"   ",Log[estEN[t]],"   ",Log[estVarN[t]]]

,

For[ (* repeat procedure for case: odd times *)

n=1/2,n<=(t/2)-1,n++,

root\[ Theta]T=x/. Solve[

\[ Lambda]’[x]==((1/2)+(n/t)) \[ Lambda ][x],x,Reals];

\[ Theta]T=root\[ Theta]T[[1]];

\[ Lambda ]\[ Theta]T=Eigenvalues[matrixT [\[ Theta]T]][[1]];

\[ Lambda ]\[ Theta]Tmin=Eigenvalues[matrixT [\[ Theta]T]][[2]];

\[Psi ]\[ Theta]Tr=Eigenvectors[matrixT [\[ Theta]T]][[1 ,1]];

\[Psi ]\[ Theta]Ts=Eigenvectors[matrixT [\[ Theta]T]][[1 ,2]];

\[Pi]q={{((1 -\[ Gamma ])/\[ Lambda ]\[ Theta]T) Exp [\[ Theta]T],

(\[ Gamma ]/\[ Lambda ]\[ Theta]T)

(\[ Psi ]\[ Theta]Ts/\[Psi]\[ Theta]Tr)},

{(\[ Gamma ]/\[ Lambda ]\[ Theta]T)

(\[ Psi ]\[ Theta]Tr/\[Psi]\[ Theta]Ts) Exp[\[ Theta]T],

(1-\[ Gamma ])/\[ Lambda ]\[ Theta]T}};

\[Pi]qrr =\[Pi]q[[1 ,1]];

\[Pi]qrs =\[Pi]q[[1 ,2]];

\[Pi]qsr =\[Pi]q[[2 ,1]];

\[Pi]qss =\[Pi]q[[2 ,2]];

jsum\[Mu]=0;

jsumVar =0;

safetyk=Infinity;

ksure =100;

For[j=1,j<=ksure ,j++,

\[Psi ]0=0;

\[Psi]t=0;

a0=RandomChoice [{r,s}];

If[a0==r,\[ Psi ]0=\[ Psi ]\[ Theta]Tr ,\[ Psi ]0=\[ Psi ]\[ Theta]Ts];

state=a0;
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\[ Delta ]=0;

sum\[ Delta ]=0;

indFunct =0;

For[i=1,i<=t,i++,

a=RandomReal [];

If[state==r,If[a<\[Pi]qrr ,state=r,state=s],

If[a<\[Pi]qsr ,state=r,state=s]];

If[state==r,\[ Delta ]=1 ,\[ Delta ]=0];

sum\[ Delta]=sum\[ Delta ]+\[ Delta ]];

If[sum\[ Delta]>t(0.5+n (1/t)),indFunct=1,indFunct =0];

If[state==r,\[ Psi]t=\[ Psi ]\[ Theta]Tr ,\[ Psi]t=\[ Psi ]\[ Theta]Ts];

jsum\[Mu]=

jsum\[Mu]+ indFunct (((\[ Lambda ]\[ Theta]T^t)

\[Psi ]0)/( Exp [\[ Theta]T sum\[ Delta]] \[Psi]t));

jsumVar=

jsumVar+indFunct (((\[ Lambda ]\[ Theta]T^t)

\[Psi ]0)/( Exp [\[ Theta]T sum\[ Delta]] \[Psi]t))^2;

\[Mu ]=(1/j) jsum\[Mu];

var =(1/j) jsumVar;

If[\[Mu]!=0,

safetyk =(( quantil \[ Epsilon ]/\[ Epsilon ])^2)(( var /(\[Mu]^2))-1),

safetyk=Infinity ];

ksure=Max[100, safetyk ]];

indexL=t((1/2)+(n/t));

pLarger[indexL ]=\[Mu]];

pLarger[t]=0;

For[indexP =(t+1)/2 ,indexP <=t,indexP++,

If[indexP ==(t+1)/2,p[indexP ]=(1/2) - pLarger[indexP],

p[indexP ]= pLarger[indexP -1]- pLarger[indexP ]]];

For[indexPmirror =0,indexPmirror <=(t-1)/2 , indexPmirror ++,

p[indexPmirror ]=p[t-indexPmirror ]];

estEN[t]=N0 (s^t) Sum[((r/s)^m) p[m],{m,0,t}];

estEN2[t]=(N0^2) (s^(2 t)) Sum [((r/s)^(2 m)) p[m],{m,0,t}];

estVarN[t]= estEN2[t]-(( estEN[t])^2);

Print[t,"   ",Log[estEN[t]],"   ",Log[estVarN[t]]]

]

]];

(* table of LogE[N(t)] vs LogVar[N(t)] *)

bofgammaLogLogDist40e5 [\[ Gamma ]]=

Table [{Log[estEN[z]],Log[estVarN[z]]},{z,tmax/2,tmax }];
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fit= (* linear interpolation of Log... vs Log... *)

Fit[bofgammaLogLogDist40e5 [\[ Gamma]],{1,x},x];

bofgammaDist40e5 [\[ Gamma ]]= (* b(\[ Gamma]) for t=tmax *)

Coefficient[fit ,x,1];

Print [\[ Gamma],"     ",bofgammaDist40e5 [\[ Gamma]],

"    ",time [\[ Gamma ]][[1]]]];

(* print results: b(\[ Gamma] and computation time *)

B.2 Code for b(t)

The code to evaluate b(t) for fixed γ is simply obtained from the previous one by

removing the for-loop

For [\[ Gamma ]=\[ Gamma]min ,

\[ Gamma ]<=\[ Gamma]max ,

\[ Gamma ]=\[ Gamma]+d\[ Gamma],

... ] .

Results of figures 4.1 and 4.3 have been obtained by setting tmax = 100, results of

figures 4.2 and 4.4 with tmax = 50 and by changing the precision requirements to

\[Epsilon] = 0.01 and quantil\[Epsilon] = 2.5758.

108



Bibliography

[1] R. M. Anderson et al. “Variability in the abundance of animal and plant
species”. In: Nature 296 (1982), pp. 245–248.

[2] S. Asmussen and Peter W. Glynn. Stochastic Simulation: Algorithms and
Analysis. Stochastic modelling and applied probability. New York: Springer
Science+Business Media, 2007.

[3] J. A. Bucklew. Introduction to Rare Event Simulation. Springer series in
statistics. New York: Springer-Verlag, 2004.

[4] J. A. Bucklew. Large Deviations Techniques in Decision, Simulation and
Estimation. New York: John Wiley, 1990.

[5] J. E. Cohen. “Stochastic population dynamics in a Markovian environment
implies Taylor’s power law of fluctuation scaling”. In: Theor. Popul. Biology
93 (2014), pp. 30–37.

[6] J. E. Cohen. “Taylor’s law and abrupt biotic change in a smoothly changing
environment”. In: Theor. Ecol. 2014.7 (2013), pp. 77–86.

[7] J. E. Cohen. “Taylor’s power law of fluctuation scaling and the growth-rate
theorem”. In: Theor. Popul. Biology 88 (2013), pp. 94–100.

[8] J. E. Cohen, M. Xu, and Schuster W. S. F. “Stochastic multiplicative popula-
tion growth predicts and interprets Taylor’s power law of fluctuation scaling”.
In: Proc. R. Soc. B 280 (2013).

[9] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications.
Berlin, Heidelberg: Springer, 2009.

[10] Z. Eisler, I. Bartos, and J. Kertész. “Fluctuation scaling in complex systems:
Taylor’s law and beyond”. In: Adv. Phys. 57.85 (2008).

[11] R. S. Ellis. “An overview of the theory of large deviations and applications
to statistical mechanics”. In: Scand. Actuar. J. 1 (1995), pp. 97–142.

[12] R. S. Ellis. Entropy, Large Deviations and Statistical Mechanics. New York:
Springer, 1985.

109



BIBLIOGRAPHY

[13] P. Embrechts, C. Kluppelberg, and T. Mikosch. Modelling Extremal Events
for Insurance and Finance. Berlin, Heidelberg: Springer-Verlag, 1997.

[14] P. Embrechts and N. Veraverbeke. “Estimates for the probability of ruin with
special emphasis on the possibility of large claims”. In: Insurance: Mathe-
matics and Economics 1 (1982), pp. 55–72.

[15] X. Gabaix et al. “A theory of power-law distributions in financial market
fluctuations”. In: Nature 423 (2003), pp. 267–270.

[16] C. Giardina et al. Simulating rare events in dynamical processes. research
paper. Universities of Modena e Reggio emilia, Sorbonne (Paris), ESPCI,
2011.

[17] A. Giometto et al. “Sample and population exponents of generalized Taylor’s
law”. In: PNAS 112.25 (2015), pp. 7755–7760.

[18] P. Glasserman. Monte Carlo Methods in Financial Engineering. New York:
Springer-Verlag, 2004.

[19] G. Grimmett. “Large deviations in subadditive processes and first-passage
percolation”. In: Particle Systems, Random Media and Large Deviations.
Ed. by R. Durrett. Contemporary Mathematics 41. American Mathematical
Society, 1984, pp. 175–194.

[20] F. den Hollander. Large Deviations. Ed. by Fields Institute Monographs.
American Mathematical Society, 2000.

[21] J. Jiang et al. “Population age and initial density in a patchy environment
affect the occurrence of abrupt transitions in a birth-and-death model of
Taylor’s law”. In: Ecological Modelling 289 (2014), pp. 59–65.

[22] S. Juneja and P. Shahabuddin. “Rare-event simulation techniques: an intro-
duction and recent advances”. In: (2005).

[23] M. Keeling and B. Grenfell. “Stochastic dynamics and a power law for
measles variability”. In: Phil. Trans, R. Soc. London B (1999), pp. 769–
776.

[24] W. S. Kendal. “A scale invariant clustering of genes on human chromosome
7”. In: BMC Evolutionary Biology (2004).

[25] W. S. Kendal and B. Jørgensen. “Taylor’s power law and fluctuation scaling
explained by a central-limit-like convergence”. In: Phys. Rev. E 83.066115
(2011).

[26] A. M. Kilpatrick and A. R. Ives. “Species interactions can explain Taylor’s
power law for ecological time series”. In: Nature 422 (2003), pp. 65–68.

110



Bibliography

[27] M. Loreti. Teoria degli errori e fondamenti di statistica. Padova: Decibel
editrice, 1998.

[28] P. A. Marquet et al. “Scaling and power-laws in ecological systems”. In: The
Journal of Experimental Biology 208 (2005), pp. 1749–1769.

[29] Y. Oono. “Large deviation and statistical physics”. In: Progr. Theoret. Phys.
Suppl. 99 (1989), pp. 165–205.

[30] A. Shwartz and A. Weiss. Large Deviations for Performance Analysis, Queues,
Communications and Computing. London: Chapman and Hall, 1995.

[31] A.-S. Sznitman. Brownian Motion, Obstacles and Random Media. Berlin:
Springer, 1998.

[32] L. R. Taylor. “Aggregation, variance and the mean”. In: Nature 189.4766
(1961), pp. 732–735.

[33] L.R. Taylor and R. A. J. Taylor. “Aggregation, migration and population
dynamics”. In: Nature 265 (1977), pp. 415–421.

[34] H. Touchette. “The large deviation approach to statistical mechanics”. In:
Physics Reports 478 (2009), pp. 1–69.

[35] X. Xiao, K. J. Locey, and E. P. White. “A process-independent explanation
for the general form of Taylor’s law”. In: The American Naturalist 186 (2015),
E51–E60.

[36] M. Xu. Taylor’s power law: before and after 50 years of scientific scrutiny.
Available at arxiv.org/abs/1505.02033v2, 2016.

111


