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Introduction

Carbon-based systems are of great interest in physics, because of the possi-
bility of having a huge number of different structures with a large variety of
physical properties. These properties are often linked to the dimensionality of
the structures. Among the systems composed only by carbon atoms, graphene
is one of the most studied.
Graphene is a two-dimensional material where carbon atoms are arranged in
a honeycomb lattice. Experimentally graphene can be isolated starting from
the graphite, a three-dimensional carbon allotrope. Graphite is composed by
stacked graphene layers kept together by van der Waals forces. Although
graphite has been known since about 1564, only recently graphene has been
isolated out of the graphite stacking. In 2004 Novoselov, Geim et al. [1],
managed to do that and for that reason and for their studies on monolayer
graphene they were awarded the Nobel prize in 2010. Since then, graphene has
been the topic of many experimental and theoretical studies on its mechanical
and transport properties.
Some peculiar properties are its high electron mobility, and its high conductiv-
ity, together with its gapless band structure and its mechanical strength and
flexibility. The latter property is due to the fact that the sp2 hybridization
between one s orbital and two p orbitals leads to a trigonal planar structure
with the formation of a σ bond between carbon atoms, which is responsible for
the robustness of the lattice structure in all carbon allotropes. The theoretical
interest on graphene is motivated by the peculiar low energy limit of the sys-
tem, described by a Dirac hamiltonian, namely, the low energy excitations are
massless Dirac fermions. This fact is of great importance because the physics
emerging from that is the same of that for relativistic massless fermions, with
the only difference that, in graphene, Dirac fermions move with a velocity that
is lower than the speed of light (about 300 times lower than c).
Relativistic fermions have different properties with respect to those of non-
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CHAPTER 1. INTRODUCTION

relativistic ones, which can now be experimentally verified in a condensed
matter setting provided by graphene structures. An example is the so-called
Klein paradox [2], that is related to the difficulty in confining Dirac fermions by
an external potential, getting even perfect transmission across potential bar-
riers. Another peculiar effect is the anomalous integer quantum Hall effect,
measured experimentally [3], which is the characteristic feature of a mono-
layer graphene. In addition to this theoretical and experimental studies on
the single layer graphene, in the last few years, attention is growing on the
so called van der Waals heterostructures, which consist of vertically stacked
two-dimensional layers held together by the van Der Waals forces. This in-
terest regards also graphene, with the study and realization of multilayered
structured.
In this thesis we will focus on the study of a two-layer graphene system,
where a small relative rotation is applied. This system is called twisted bi-
layer graphene, tBLG. In the last ten years many experimental works have
shown that by twisting two layers of graphene by small angles, one can en-
hance the conducting properties of the system. Moreover at some specific
angles, called magic angles, the lowest energy band turns to be very close to
the Fermi level and becomes extremely flat. This is of particular interest in the
presence of ordered phases of matter like superconductivity. The densities of
charge carriers is orders of magnitude lower than the typical two-dimensional
superconductors and the measured critical temperature is however relatively
high. This makes tBLG a strong coupling superconductor. The great advan-
tage in tBLG with respect to other systems is the simple and fine tunability
of carrier densities, magnetic field and temperature, that enables a complete
and fine investigation of the rich phase diagram of such a strongly correlated
system. Also the interlayer interactions can be fine-tuned by the modulation
of the twist angle and/or the application of perpendicular electric fields and
of uniaxial strain induced by non hydrostatic pressure [9].
In this work we study the tight binding model for the tBLG, which, in the
continuum limit, correctly predicts the presence of angles at which the Fermi
velocity vanishes, and, therefore, the presence of flat bands near these magic
angles. In particular, we show how, in the low energy limit, one gets an ana-
lytical expression for the first magic angle, rederiving the effective model and
providing all the details useful for the calculation skipped in literature. More-
over we perform the numerical calculation in order to obtain the full spectrum
and the bandwidth for the lowest energy band. The latter result is useful for us
when considering the interacting system. In the presence of electron-electron
attractive interaction mediated by the phonons the system seems to sustain
a superconducting phase. By means of a path integral approach we finally
derive the corresponding critical temperature.
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Tight Binding model

2.1 First Quantization formulation

To study many body problems one should write the N-body general wavefunc-
tion and solve the Schrödinger equation for it. However this is not a directly
affordable approach neither analytically nor numerically due to the dimension
of the many body wavefunction. In fact, if we think of its generic form, the
state of the system can be written as

|Ψ⟩ =
∑

σ1,...,σN

cσ1,...σN |σ1, ...σN ⟩ (2.1)

where |σ1, ...σN ⟩ is a generic base vector of the Hilbert space Hd ⊗ ... ⊗ Hd,
where Ψ live, with Hd space of single particle. The coefficients cσ1,...σN can be
represented as a N-rank tensor, and its dimension grows exponentially with
the increasing number of particle in the system. This lead to the impossibility
of using such a description to attack a many body problem. In the contest of
solid state physics there are different approaches that can be used to simplify
the discussion and make the problem treatable. Since our aim is to describe
electrons in a solid, we will focus on the band structure theory, in particular
on the tight binding method.

An ideal solid is characterized by perfect translational symmetry and infinite
size. So for our discussion we think to solids as perfect infinite crystals. In
a crystal atoms are disposed on a lattice. The lattice is characterized by a
translational symmetry which can be exploited in our description introducing
the lattice vector, which is a linear combination of the basis vector of the
crystal and describe the infinite translational invariance. To the lattice vector
is associated a counterpart in the momentum space, the reciprocal lattice
vector, which describes the periodicity of the crystal in the momentum space.
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2.1. FIRST QUANTIZATION FORMULATION CHAPTER 2. TIGHT BINDING MODEL

Since our aim is to describe real solids, that have a finite extension, one can
overcome this problem introducing the periodic boundary condition, that let
us describe finite size crystal and bring a discretization in the momentum
space. To continue with our aim of finding a model for describing electron
in crystals, one has to introduce some approximation. The most important
approximation that we introduce is the Born-Oppenheimer approximation.
This is based on the idea that the motion of the atoms can be decoupled
from the one of the electrons, and this because the electrons are much faster
than the atoms, and basically see the atoms in the lattice as frozen, in first
approximation (this approximation can be improved in a second moment by
adding to the description the scattering of the electrons with the phonons).

With this approximation one describes the motion of the lattice with the
harmonic theory, i.e. the lattice can be described as decoupled harmonic os-
cillators, and its excitations are the so called phonons. For accounting the
electrons motion and their excitations instead one can use the band theory,
which is based on two important ingredients: the Bloch theorem that is linked
to the fact that the electronic wavefunction reflects in a sense the same period-
icity of the lattice; and the description of the medium in which the electrons are
immersed by the use of a background periodic potential, so that the electronic
Hamiltonian of the system can be written as

Ĥ = Ĥe + V̂ (2.2)

with V̂ = V (r) = V (r+R) that has the same periodicity of the lattice.
In this hamiltonian we see that no interacting potential between electrons is
added, because in first approximation we neglect it. This might appear as a
strong assumption, but can be justified by the effect of screening of the positive
charge surroundings the electrons. In fact the effect of the surrounding positive
charge is that of changing the potential generated from the negative charge
reducing it to a short-range Yukawa potential, negligible at length larger than
the lattice constant, so basically each electron does not feel the presence of
other electrons. This is the general hamiltonian and approach of the band
theory, but we are interested in a system with a strong binding between atoms
and their electrons. This means that we think to a problem in which for each
site of the lattice the electron feels basically the potential of the single atom
in which is located, and the difference caused by the presence of the other
surrounding atoms can be described as a small perturbation. So we use a
potential of the form

V (r) = Vatomic(r) + ∆U(r), (2.3)

decomposed in Vatomic(r), i.e. the potential describing the system as isolated
atom in the lattice, and ∆U(r) the term that describes the differences in
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energy due of the presence of the other atoms. To give a reason why we are
writing the potential in this way one can think at the two opposite situation:
if we think to a system made of separated atoms, every atoms has its own
electrons localized around its position. If now we think to the atoms in a
solid the electrons feels the potential of their atom, but now the presence
of the other atoms in the lattice perturbs the potential in which they are
immersed. Since we are thinking to a tight-binding model, we can think that
each electron is described by a wavefunction that is strongly localized around
its own atom, and this means that wavefunction tails go rapidly to zero in a
distance of the order of the lattice constant. This is the reason why we think
to this perturbation as a small term ∆U , which contains all the corrections
to the atomic potential to represent the full periodic lattice potential. For
this reason it also makes sense to think at the electrons wavefunction as still
localized around its atom also in this case, but the perturbation modifies
the system in a way that the wavefunction of the system is not anymore the
eigenstate of the single atom hamiltonian, so we can think to the wavefunction
as a linear combination of the form

ψ(r) =
∑
R

cRϕ̃(r−R) (2.4)

where ϕ̃(r) not necessarily an exact atomic stationary-state wavefunction.
Given now ϕn(r)

Ĥat |ϕn⟩ = En |ϕn⟩ (2.5)

eigenstate of the single atom problem, if we think that ∆Uϕn(r) is small, as
we suppose in our model, we might expect that ϕ̃(r) is not too far form the
solution of 2.5, for this reason we think that it might be a combination of a
small number of atomic orbitals

ϕ̃(r) =
∑
n

bnϕn(r) (2.6)

So the general state of the system can be written as

ψ(r) =
∑
n

bn
∑
R

cRϕn(r−R). (2.7)

We note that our state must be periodic, with the same periodicity of the
lattice, so it has to satisfy the Bloch theorem, and imposing this requirement
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2.1. FIRST QUANTIZATION FORMULATION CHAPTER 2. TIGHT BINDING MODEL

we find the form for cR

ψ(r+R′) = eik·R
′
ψ(r) Bloch theorem

= eik·R
′∑

R

cRϕ̃(r+R′ −R)

=
∑
R

eik·R
′
cRϕ̃(r+R′ −R)

=
∑
R

c̃Rϕ̃(r+R′ −R)

⇒ c̃R = eik·R
′
cR

(2.8)

and since for R′ = 0 ⇒ cR = 1 to satisfy the general form of ψ(r) and the
Bloch theorem we must have c̃R = eik·R, and so we can write our states as

ψ(r) =
∑
n

bn
∑
R′

eik·Rϕn(r−R). (2.9)

Using this state we can write the Schrödinger equation for our system(
Ĥat +∆Û

)
|ψ⟩ = εk |ψ⟩ (2.10)

Now multiplying this equation by the atomic eigenstate ϕ∗m both side and
integrating, we obtain∫

drϕ∗m(r)Hatψ(r) +

∫
drϕ∗m(r)∆Uψ(r) =

∫
drϕ∗m(r)εkψ(r). (2.11)

Noting that ∫
drϕ∗m(r)Hatψ(r) = Em

∫
drϕ∗m(r)ψ(r) (2.12)

we arrive to

(εk − Em)

∫
drϕ∗m(r)ψ(r) =

∫
drϕ∗m(r)∆Uψ(r). (2.13)

Using now 2.9 in the last equation,and exploiting the orthonormality of the
eigenstates of Hat, i.e. ∫

drϕ∗m(r)ϕn(r) = δm,n (2.14)
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we arrive finally to an eigenvalue equation that determine the coefficients bn
and the Bloch energies εk

(εk − Em)bm =− (εk − Em)
∑
n

(∑
R̸=0

eik·R
∫
drϕ∗m(r)ϕn(r−R)︸ ︷︷ ︸

(1)

)
bn+

+
∑
n

(∫
drϕ∗m(r)∆U(r)ϕn(r)︸ ︷︷ ︸

(2)

)
bn+

+
∑
n

(∑
R ̸=0

eik·R
∫
drϕ∗m(r)∆U(r)ϕn(r−R)︸ ︷︷ ︸

(3)

)
bn

(2.15)

and to simplify the notation we can define some quantities starting from
(1), (2), (3)

(1)

∫
drϕ∗m(r)ϕn(r−R) = αm,n(R)

(2)

∫
drϕ∗m(r)∆U(r)ϕn(r) = βm,n

(3)

∫
drϕ∗m(r)∆U(r)ϕn(r−R) = γm,n(R)

(2.16)

and so we can rewrite our eigenvalues problem for the tight-binding model as

(εk−Em)bm =
∑
n

−(εk − Em)
∑
R ̸=0

(
eik·Rαm,n(R) + γm,n(R)

)
+ βm,n

 bn (2.17)

2.1.1 Comment on the result

If the problem can be described with the use of only the s-wave contribution of
the atomic orbital, Eq. (2.17) becames a single equation, which can be recasted
in the form

εk = Es +
β +

∑
R ̸=0 e

ik·Rγ(R)

1 +
∑

R ̸=0 e
ik·Rα(R)

(2.18)
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with

β =

∫
dr|ϕs(r)|2∆U(r)

α(R) =

∫
drϕ∗s(r)ϕs(r−R)

γ(R) =

∫
drϕ∗s(r)∆U(r)ϕs(r−R).

(2.19)

If instead one is interested in bands generated from degenerate atomic or-
bitals, for example p-wave that are triple degenerate, Eq. (2.17) would give
a set of three homogeneous equation, whose eigenvalues are the εk for the
three degenerate p-bands, and with the correct coefficients bn that give the
appropriate linear combination. So in the general case one have to solve a
N ×N secular problem with N the degeneracy of the considered orbitals. In
the case of hybridization, i.e. when one considers a wavefunction composed
by mixed orbitals, the dimension of the secular equation becomes the sum of
the number of considered states multiplied by their degeneracy.

2.2 Second Quantization formulation

In the second quantization formalism any fermionic single particle operators
can be written as

A =
∑
i,j

⟨i| Â |j⟩c†icj (2.20)

where i, j are quantum numbers of the studied system and c†, c are the fermionic
creation and annihilation operators, i.e. they anticommute {ci, c†j} = δi,j , and
|i/j⟩ are the generic states of the system describing the state labeled by the
i/j quantum number.

If we consider the hamiltonian of our system of non interacting electrons in a
crystal we can write it as

H =
∑
i,j

⟨i| Ĥ |j⟩ c†icj (2.21)

using the same hamiltonian seen in (2.2) with potential (2.3) we can rewrite
it as

H =
∑
i

⟨i| Ĥat |i⟩ N̂i +
∑
i̸=j

⟨i|∆Û |j⟩ c†icj +
∑
i̸=j

⟨j|∆Û |i⟩ c†jci (2.22)
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with N̂ the number operator, and if we consider |i, j⟩ to be the electronic
states of the system, the Wannier functions. Calling now ⟨i| Ĥat |i⟩ = εat and
−⟨i|∆Û |j⟩ = t, we write

H = 1εat − t
∑
i̸=j

c†icj − t
∑
i̸=j

c†jci (2.23)

where the second term and the third terms are called hopping terms Without
loss of generality we can put the first term to zero so that all the bands are
computed choosing as the zero level the Fermi energy of the system. Our tight-
binding hamiltonian in second quantization, adopting also the approximation
of keeping only the nearest neighbor hopping terms, can be written as

H = −t
∑
⟨i,j⟩

(
c†icj + c†jci

)
. (2.24)

where ⟨i, j⟩ refers to i, j nearest-neighbors. To adapt this description to sys-
tems with more than one atoms in their unitary cell, as in the case of graphene,
we can introduce different names for the fermionic operators of different sub-
lattices. For example in a bipartite system with sublattices of type A and B
we can call fermionic operator for sites A with a, and for sites B with b, so
that

H = −t
∑
⟨i,j⟩

(
a†ibj + b†jai

)
(2.25)

since nearest neighbor of a site A belongs to the sublattice B and viceversa.

9
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Graphene

3.1 Description and main features

We start now our work by first introducing the general features of a graphene
monolayer. In graphene, due to the s − p2 hybridization, the carbon atoms
arrange themselves in a honeycomb structure, with an inter atomic distance of
a0 ≃ 1.42�A. This lattice is not strictly a Bravais lattice, but it can be thought
as an hexagonal Bravais lattice, with lattice constant a =

√
3a0 ≃ 2.46�A, with

a two-atom basis. So for our description we will think at graphene as formed
by two sublattices, one for each atom in the basis, that we call sublattice A
and sublattice B. In figure 5.1(a) we show the lattice and we highlight the
different sublattices by coloring them with different colors. We report the
primitive vectors and the basis vectors, showing that for our description we
choose to put the origin centered on an atom of type A

a1 =
a0
2

(
3√
3

)
, a2 =

a0
2

(
3

−
√
3

)
, τA =

(
0
0

)
, τB = a0

(
−1
0

)
(3.1)

From this definition of the primitive vectors, we can define the primitive vec-
tors of the reciprocal lattice using

ai · bj = 2πδi,j (3.2)

and so the primitive vectors of the reciprocal lattice are

b1 =
2π

3a0

(
1√
3

)
, b2 =

2π

3a0

(
1

−
√
3

)
. (3.3)

From all the points in the first Brillouin zone, graphene have two high sym-
metry points, called Dirac points for reasons that will be explained in the
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following chapters, that have a correspondence with their symmetric counter-
part with respect to the Γ point. Since their coordinates are needed we will
report them here

K =
2π

3
√
3a0

(√
3
1

)
, K′ =

2π

3
√
3a0

(√
3

−1

)
. (3.4)

The first Brillouin zone with its primitive vectors and Dirac points are repre-
sented in Fig. 5.1(b).

(a) (b)

Figure 3.1: Real Space (a) and First Brillouin zone (b) representations
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CHAPTER 3. GRAPHENE 3.2. TIGHT-BINDING APPROACH

3.2 Tight-Binding approach

To study the graphene properties, a low energy model can be derived for the
generic tight binding approach. So we start writing the Hamiltonian in second
quantization in the case of a tight binding contribution

H = −t
∑
⟨i,j⟩,σ

(
a†i,σbj,σ + b†j,σai,σ

)
− t′

∑
⟨⟨i,j⟩⟩,σ

(
a†i,σaj,σ + b†i,σbj,σ

)
(3.5)

where we denote with a(Ri) = ai the field operator for an electron in a sub-
lattice of type A in position Ri, and the same for b but for B sublattice. With
⟨i, j⟩ we refer to first nearest neighbors and ⟨⟨i, j⟩⟩ to second nearest neighbors.
As we see in the general description of the previous chapter, if we consider a
site of type A, the first n.n. are the B atoms surrounding it, as can be seen
from figure 3.2, and have coordinates denoted by the vectors δi, i = 1, 2, 3.
We write the field operators in a momentum basis

ai =
1

Ω

∑
k

e−ik·Ria(k)

bj =
1

Ω

∑
k

e−ik·(Rj+τ )b(k)

(3.6)

using this representation in hamiltonian (3.5) we can write

H = − t

Ω′

∑
⟨i,j⟩,σ

∑
k,k′

[
eik·Ria†(k)e−ik′·(Rj+τ )b(k′) + eik

′·(Rj+τ )b†(k′)e−ik·Ria(k)
]
+

− t′

Ω′

∑
⟨⟨i,j⟩⟩,σ

∑
k,k′

[
eik·Ria†(k)e−ik′·Rja(k′) + eik

′·(Ri+τ )b†(k′)e−ik·(Rj+τ )b(k)
]
(3.7)

To proceed we have to specify ⟨i, j⟩ and ⟨⟨i, j⟩⟩, i.e. the nearest neighbor and
next nearest neighbor coordinates. If we are centered in a sublattice A the
n.n. are all the adjacent B sites, and vice versa. So by writing explicitly δj ,
(see Fig. 3.2), the sum over j becomes a sum over δ. The second n.n. are the
sublattice of the same type, and they differs by a lattice vector, so the sum

13
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Figure 3.2

δ1 =
a0
2

(
1√
3

)
δ2 =

a0
2

(
1

−
√
3

)
δ3 = a0

(
−1
0

) (3.8)

over the ⟨⟨i, j⟩⟩ gives a delta function. So Eq. (3.7) becomes

= − t

Ω′

∑
k,k′

∑
i,δ,σ

[
ei(k−k′)·Rie−ik

′·δa†(k)b(k′) + eik
′·δe−i(k−k′)·Rib†(k′)a(k)

]
+

− t′

Ω′

∑
k,σ

[
a†(k)a(k) + b†(k)b(k)

]
=y 1

Ω′
∑
i e
i(k−k′)·Ri=δk,k′

= −t
∑
k,δ,σ

[
e−ik·δa†(k)b(k) + eik·δb†(k)a(k)

]
− t′

∑
k,σ

[
a†(k)a(k) + b†(k)b(k)

]
(3.9)

where in the last step we sum over k′ exploiting the δk,k′ . Introducing the

spinor Ψk =

(
a(k)
b(k)

)
we can write (3.9) in the following matrix form

H =
∑
k

Ψ†
kh(k)Ψk (3.10)

where h(k) = −
(
t′ t∆k

t∆∗
k t′

)
and ∆k =

∑
δ e

ik·δ.

Since we are interested in the low energy limit and t′ ≪ t 1, we can neglect

1We refer to the result of [13] where they show using ab initio calculation that 0.02t <
t′ < 0.2t
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for our purposes the second n.n. contribution, and this leads to

h(k) = −
(

0 t∆k

t∆∗
k 0

)
. (3.11)

The hamiltonian found in this way can also be expressed in a more compact
way using the Pauli matrices. This can be done by writing the complex number
eik·δ using the Euler’s formula, eik·δ = cos (k · δ) + i sin (k · δ), so that we can
write

h(k) = −t
∑
δ

(
0 cos (k · δ) + i sin (k · δ)

cos (k · δ)− i sin (k · δ) 0

)
=

= −t
∑
δ

cos (k · δ)σx − sin(k · δ)σy.
(3.12)

3.2.1 Hamiltonian in proximity of the Dirac Points

If we now focus our attention near the K-points, we find a Dirac like equation.
To see this we first change notation in order to express all the momenta with
respect to these Dirac points whose coordinates are reminded here

K =
2π

3
√
3a0

(√
3
1

)
, K′ =

2π

3
√
3a0

(√
3

−1

)
(3.13)

We will use in the derivation only one of these two points, since the same result
could be obtain using the other one. We express the momenta introducing
q = k−K, so our ∆k = ∆q+K =

∑
δ e

i(q+K)·δ. Substituting the coordinates
of δ and of K we can rewrite ∆q+K as follows

∆q+K =
∑
δ

ei(q+K)·δ =

= ei
a0
2
(qx+Kx)+i

√
3
2
a0(qy+Ky) + ei

a0
2
(qx+Kx)−i

√
3

2
a0(qy+Ky) + e−i(qx+Kx)a0 =

= e−i(qx+Kx)a0

{
1 + 2ei

3
2
a0(qx+Kx) cos

[√
3

2
a0 (qy +Ky)

]}
=

= e−i(qx+Kx)a0

[
1− 2ei

3
2
a0qx cos

(√
3

2
a0qy +

π

3

)]
=y expanding around q≃0

≈ −3

2
a0θ (qx + iqy)

(3.14)
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where we called θ = ie−iKxa0 . Since θ is only a phase it can be incorporated
in the spinors and can be omitted since the phase of the wavefunctions does
not change the physics. Finally we have

h(K) ≃ vf

(
0 qx + iqy

qx − iqy 0

)
= vfσ · k (3.15)

where vf = 3a0t/2, and σ = (σx, σy)
T . In the case of momenta in proximity

of the K′ point, the hamiltonian is almost the same h(K′) = vfσ
∗ · k, with

σ∗ = (σx,−σy)T . This is clearly a Dirac like hamiltonian (in momentum
space). This shows that near the Dirac points the dispersion relation becomes
linear in |k|.

3.3 Energy bands

We can compute the eigenvalues of the hamiltonian (3.10) with only n.n.
contributions, that are E± = ±t

√
∆k∆

∗
k. Expressing explicitly the ∆k, using

(3.14) (and expanding near K), we obtain

E± = ±t

√√√√1 + 4 cos

(
3

2
a0kx

)
cos

(√
3

2
a0ky

)
+ 4 cos2

(√
3

2
a0ky

)
(3.16)

(a) (b)

Figure 3.3: Graphene energy bands: (a) E(k) along the path highlighted in (b)

As one can see from figure 3.3, the Dirac points are the points where the energy
becomes null. The bands structure is highly symmetric and the low energy

16
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(a) (b)

Figure 3.4: A 3D-plot for graphene low energy spectrum.

spectrum is gapless and has linear behavior near the Dirac points, forming
Dirac cones as shown in Fig. 3.4. We finally remind that we have also a spin
symmetry to be considered in the model.
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Double Layer Graphene

We now extend the description to the double layer. This structure can be
obtained experimentally and the typical interlayer distance is equal to d⊥ =
3.35�A. When stacking two single layers, it is important to specify in which
way the atoms of the first layer are arranged with respect to the other. There
can be several kinds of stacking but we mention the two main ones: 1) the
AA stacking, that consists in putting the atoms of one layer exactly above
the atoms of the second layer; 2) the AB stacking, or Bernal stacking, which
consists in putting the atoms of sublattice A of the first layer aligned with
the carbon atoms of the sublattice B in the second layer, while the B atoms
remain over the center of the hexagon. Experimentally [18] it is found that the
AA stacking is metastable while the Bernal-stacked bilayer is stable. We now
proceed in studying the electron properties of the Bernal-stacked bilayers.

4.1 Hamiltonian generalization to Bilayer

To construct the model we will use the single layer hamiltonian found in the
previous section, and we add the interlayer hopping, using a nearest-neighbor
approximation also for this term. The hamiltonian can be written as

H = H1 +H2 +H⊥ (4.1)

where Hi, i = 1, 2 are the hamiltonian respectively of the first and second layer
and the last term the interlayer hopping. We can write also this term in the
second quantization formalism

H⊥ = t⊥
∑

R(1),R(2)

a†1(R
(1))b2(R

(2) + τ 2) + b†2(R
(2) + τ 2)a1(R

(1)) (4.2)
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where we call

⟨R(1)|H⊥ |R(2) + τ (2)⟩ = ⟨R(2) + τ (2)|H⊥ |R(1)⟩ = t⊥. (4.3)

We can move to the momentum space, by introducing

|Ψ(l)
k,α⟩ =

1√
N

∑
R(l)+τα(l)

eik·(R
(l)+τα(l)) |R(l) + τα

(l)⟩ (4.4)

where l = 1, 2 is the layer index and α = A,B the sublattice index. Using
the lattice convention adopted for the single layer graphene we have that
τA = (0, 0)T and τB = (0,−a0)T . By expressing also the fermionic creation
and annihilation operators in the momentum space

αl(R
(l)) =

1

N

∑
k

e−ik·(R
(l)+τα(l))αl(k)

α†
l (R

(l)) =
1

N

∑
k

e−ik·(R
(l)+τα(l))α†

l (k)

(4.5)

with the same indices convention of before, we can write the total hamiltonian
of the system in the momentum space as

H =
∑
k

Ψ†(k)H(k)Ψ(k) (4.6)

where we introduced the spinor Ψ†(k) =
(
a†1(k) b†1(k) a†2(k) b†2(k)

)
and

H(k) =


0 −t∆k 0 t⊥

−t∆∗
k 0 0 0

0 0 0 −t∆k

t⊥ 0 −t∆∗
k 0

 . (4.7)

4.2 Band Structure

By solving the eigenvalue problem for the hamiltonian H(k), we obtain

E±,±(k) = ±t

√(
t⊥
2t

)2

+∆k∆∗
k ± t⊥

2
=

= ±t

√√√√( t⊥
2t

)2

+ 1 + 4 cos

(
3

2
akx

)
cos

(√
3

2
aky

)
+ 4 cos2

(√
3

2
aky

)
± t⊥

2

(4.8)
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Figure 4.1: BLG band structure

and evaluating along the same path shown in Fig. 3.3 we obtain the band
structure depicted in Fig. 4.1. The presence of the hopping term between
layers breaks the double degeneracy of the hamiltonian of the two decoupled
layers, splitting the top and bottom band in two different bands. Also in this
case, the highest hole band and the lowest electron band become gapless in
proximity of the Dirac points, as was shown for the single layer graphene.
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Twisted Bilayer Graphene

5.1 Moiré Superlattice

The system analyzed is an AB stacking of two graphene layers, to which is
applied a small translation vector d and a small rotation θ. We will proceed
now in introducing the continuum model, introduced by R. Bistritzer and A.
H. MacDonald, [5], to describe the problem and we will refer to this model
as BM model. Before we start, we remember what is a Moiré pattern which,
being the key of the regained periodicity, is of foundamental importance for
a tight-binding description. A Moiré pattern is formed when two copies of
a periodic structure are overlaid with a relative small twist. This results in
a new periodic superlattice, as can be seen from figure 5.1. Is important to
notice that in general the commensurability of the two layers is dependent
on the value of the rotation angle. This observation is important because in
general a relative twist of the two layers in a commensurate structure leads
to the same crystalline structure (with eventually a rescaling of the unit cell).
One has to notice that only a small set of discrete values of the twist angle
leads to commensurate structures, in all the other cases of general rotations,
greater than few degrees, the periodicity of the crystal is destroyed, resulting
in the complete electronic isolation of the two layers. Mathematically this has,
as main consequence, the non-applicability of the Bloch’s theorem. Instead
if the rotation is small, i.e. ≲ 10◦, a Moiré pattern is formed and this is
the key of the BM model for the tBLG, and leads to the so called Moiré
Bloch bands. The differences in the patterns obtained by different rotations
are shown in figure 5.1: panels a),b),c) show how, for small angles, we obtain
commensurate structures, instead as shown by panel d), a large twist angle
leads to the destruction of the periodicity.

In the following sections we will see how the superlattice and its Brillouin
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(a) (b) (c) (d)

Figure 5.1: Dependence of Moiré pattern on the twist angle. From left to right: 1.5◦,
2.0◦, 5.0◦, 20.0◦

zone, called Moiré Brillouin zone, is introduced and characterized. Let us first
introduce the real space and the Moiré Brillouin zone primitive vectors

bM1 =

√
3

2
kθ

(
1

−
√
3

)
, bM2 =

√
3

2
kθ

(
1√
3

)
aM1 =

2π

3kθ

(√
3

−1

)
, aM2 =

2π

3kθ

(√
3
1

) (5.1)

with kθ = (8π sin(θ/2))/(3
√
3a0). In the next section, starting from the tight-

binding approach we will derive the continuum model for the tBLG.

5.2 Continuum model for the tBLG

Before we introduce the model let us start defining some quantities. We will
call a = 2.46�A the lattice constant and a0 = a/

√
(3) the carbon-carbon distance.

We denote the twist angle with θ. We account the lattice vectors1 of the
two layers as al1,a

l
2, where l = (1, 2) denote the layer index. To these will

corresponds two reciprocal lattice vectors bl1,b
l
2, and this satisfy the usual

relation for the reciprocal lattice vectors, i.e. bla · alb = 2πδa,b.

To insert the dependence on the twist angle we split the rotation in half
rotation for a layer and half for the other, symmetrizing the notation, and
this lead to

1We notice that for this section we express the primitive cell basis in a different refer-
ence system, with respect to the one used in previous chapters. In this way the computed
quantities are easier to express
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al1 =

√
3

2
a0R

l
θ/2

(
−1√
3

)
, al2 =

√
3

2
a0R

l
θ/2

(
−1

−
√
3

)
τ l
A =

(
0
0

)
, τ l

B = a0R
l
θ/2

(
0
−1

)
bl
1 =

2π

3a0
Rl

θ/2

(
−
√
3

1

)
, bl

2 =
2π

3a0
Rl

θ/2

(
−
√
3

−1

) (5.2)

with l = 1, 2 layer index, as can be seen in figure 5.2 and with

R1
θ/2 =

(
cos (θ/2) − sin (θ/2)
sin (θ/2) cos (θ/2)

)
, R2

θ/2 =

(
cos (θ/2) sin (θ/2)
− sin (θ/2) cos (θ/2)

)
(5.3)

the rotation matrices of angle ±θ/2 for the two different layers. We will refer
to the i-th position on layer l as R(l) and to it we associate a reciprocal lattice
vector G(l), so that all the position of the atom of a layer can be described in
real space byR(l) = mal1+na

l
2 and in the reciprocal space asG(l) = kbl1+wb

l
2,

with m,n, k, w inZ.

(a) (b)

Figure 5.2: tBLG Real Space and Brillouin Zone representation

The model consist of two single-layer Dirac-Hamiltonian terms derived by
the tight-binding approach described in section 1.2 and of a tunneling term,
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that describes the inter layers hopping energy contributions. Starting from the
single layer energy terms we can adapt the Dirac hamiltonian of the monolayer
graphene to our system. After a rotation with respect to a fixed coordinate
system we have the Hamiltonian

hk(θ) = −v|k|
(

0 ei(θk−θ)

e−i(θk−θ) 0

)
(5.4)

with hk(θ) the Dirac hamiltonian of a single layer, v the Fermi velocity, k
the momentum measured from the layer’s Dirac point, θk the momentum
orientation relative to the x axis. If we consider our symmetric description
we can write the hamiltonian of the decoupled two layers as |1⟩h(θ/2) ⟨1| +
|2⟩h(−θ/2) ⟨2|, considering the |l⟩ ⟨l| the projectors on layer l. For accounting
the interlayer hopping, we consider that in general the hopping t(r) is in
general a function of the position r. We will assume in Eq. (5.5) the two-
center approximation, i.e. that the interlayer hopping is only a function of
the two positions. We want to move to the representation in the momentum
space, so starting from the tunneling interlayer hamiltonian written in second
quantization in real space, we have

Vm,l =
∑

R(m),α,R(l),β

α†
m(R

(m))t
(
R(m) + τ (m)

α −R(l) − τ
(l)
β

)
βl(R

(l)) (5.5)

where α/β are the fermionic operators for the sublattice A or B, m/l layer

indices, and we define t
(
R+ τα −R′ − τ ′

β

)
as

⟨R+ τα|HT |R′ + τ ′
β⟩ = t

(
R+ τα −R′ − τ ′

β

)
(5.6)

where |R+ τα⟩ are Wannier functions. For simplicity we fix the indices of the
layer, and switching to the momentum space we can write

V1,2 =
∑

k,α,p′,β

α†
1(k)T

α,β
k,p′β2(p

′) (5.7)

with
Tα,βk,p′ = ⟨Ψ(1)

k,α|HT |Ψ(2)
p′,β⟩ (5.8)

and

|Ψ(1)
k,α⟩ =

1√
N

∑
R(1)

eik·(R
(1)+τ

(1)
α ) |R(1) + τ (1)

α ⟩

|Ψ(2)
p′,β⟩ =

1√
N

∑
R(2)

eip
′·(R(2)+τ ′

β) |R(2) + τ
(2)
β ⟩

(5.9)
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and we use α, β as sublattice indices, k,p′ respectively momentum for the first
and the second layer.

We derive the general form in the reciprocal lattice space of the Tα,βk,p′

Tα,β
k,p′ =

1

N

∑
R(1),R(2)

t
(
R(1) + τ (1)

α −R(2) − τ
(2)
β + d

)
e−ik·(R(1)+τ (1)

α )+ip′·(R(2)+τ
(2)
β )+d

(5.10)

but since t(R(1) + τ
(1)
α −R(2) − τ

(2)
β + d) is periodic with respect to R(1) and

R(2) we can express it as a series in the reciprocal lattice space, i.e.

t(R(1) + τ (1)
α −R(2) − τ

(2)
β + d) →

∑
G(1),G(2)

tG(1),−G(2) eiG
(1)·R(1)

eiG
(2)·R(2)

(5.11)

inserting this relation in the previous equation and expressing R(2) = R(1) +

τ
(1)
α − τ

(2)
β + d− r, we obtain

Tα,βk,p′ =
1

N

∑
r,R(1)

∑
G(1),G(2)

tG(1),−G(2) eiG
(1)·R(1)

eiG
(2)·(R(1)+τ

(1)
α −τ

(2)
β +d−r)·

· e−ip′·rei(p
′−k)·(R(1)+τ

(1)
α )

(5.12)

and recognizing the two delta functions when summing over r,R(1), we arrive
to

Tα,βk,p′ =
∑

G(1),G(2)

tG(2)+p′

Ω
δ(G(1) + k,G(2) + p′) eiG

(2)·(τ (2)
β +d)−iG(1)·τ (1)

α

(5.13)
where Ω is the area of the graphene unit cell.

Now as shown in [5] the hopping tk decays exponentially for momenta far from

the Dirac point of the graphene Brillouin Zone, i.e. K
(1)
D = −(b

(1)
1 + b

(1)
2 )/3

and K
(2)
D = −(b

(2)
1 + b

(2)
2 )/3, so a good approximation is to consider only

the leading nearest hopping term, evaluated at the Dirac point, tG(1)+k, with

|G(1) + k| ≃ |K(1)
D |, so tG(1)+k ≃ t

K
(1)
D

. This is related to the fact that the
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separation of the two layers d exceeds the separation of the carbon atom
of more than a factor 2 and this is relevant in the two centers integral for
computing t(r).

To understand which the leading terms in equation (5.13) are, we introduce
three vectors, as can be seen in figure 5.3 , and this constitutes the edges of
the first Moiré Brillouin Zone, i.e. the Brillouin Zone of the superlattice, and
they are related to the possible momentum transfer for the hopping term. In
particular defining

q1 = K
(2)
D −K

(1)
D

q2 = K
(2)
D + b

(2)
1 −K

(1)
D − b

(1)
1

q3 = K
(2)
D + b

(2)
2 −K

(1)
D − b

(1)
2

(5.14)

and remembering that K
(l)
D = −(b

(l)
1 + b

(l)
2 )/3

K
(l)
D =

4π

3
√
3a0

R
(l)
θ/2

(
1
0

)
(5.15)

we can write the components of qj using Eq. (5.14)

q1 =
4π

3
√
3a0

R
(2)

θ/2

(
1
0

)
− 4π

3
√
3a0

R
(1)

θ/2

(
1
0

)
=

4π

3
√
3a0

[(
cos (θ/2)
− sin (θ/2)

)
−

(
cos (θ/2)
sin (θ/2)

)]
=

= kθ

(
0
−1

)
q2 = kθ

(
0
−1

)
+

2π

3a0
R

(2)

θ/2

(
−
√
3

1

)
− 2π

3a0
R

(1)

θ/2

(
−
√
3

1

)
=

= kθ

(
0
−1

)
+

2π

3a0

[(
−
√
3 cos (θ/2) + sin (θ/2)√
3 sin (θ/2) + cos (θ/2)

)
−

(
−
√
3 cos (θ/2)− sin (θ/2)

−
√
3 sin (θ/2) + cos (θ/2)

)]
=

= kθ

(
0
−1

)
+ kθ

(√
3

2
3
2

)
= kθ

(√
3

2
1
2

)
q3 = kθ

(
0
−1

)
+

2π

3a0
R

(2)

θ/2

(
−
√
3

−1

)
− 2π

3a0
R

(1)

θ/2

(
−
√
3

−1

)
=

= kθ

(
0
−1

)
+

2π

3a0

[(
−
√
3 cos (θ/2)− sin (θ/2)√
3 sin (θ/2)− cos (θ/2)

)
−

(
−
√
3 cos (θ/2) + sin (θ/2)

−
√
3 sin (θ/2)− cos (θ/2)

)]
=

= kθ

(
0
−1

)
+ kθ

(
−

√
3

2
3
2

)
= kθ

(
−

√
3

2
1
2

)
(5.16)

where kθ = |qj | = (8π/3
√
3a0) sin(θ/2). The above approximation it is trans-

lated to the fact that an electron state with momentum p′ in the second
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Figure 5.3: qi and G
(1/2)
i , i = 1, 2, 3 vectors

layer can hop to an electron state with momentum k in the first layer only if
p′ − k = qj . Under this assumption we can rewrite the tunneling term con-
sidering only the three main contributions, where the only G(1/2) remaining
are only the reciprocal lattice vectors which connect the Dirac points to theirs

equivalent counterpart is shown in figure (5.3), so G
(l)
j = mjb

(l)
1 +njb

(l)
2 , with

j = 1, 2, 3, and (m1, n1) = (0, 0), (m2, n2) = (1, 0), (m3, n3) = (0, 1). This, by
using the definition of the qj , leads to

Tα,β(r) = ω

3∑
j=1

e−iqj ·rTα,βj (5.17)

where ω = tKD
/Ω. We underline again that this sum is reduced to only the

first MBZ, and so contain only the first three main terms. In the following
section, when we will look at the band structure, and we will keep more terms
going further in the truncation, but for the study of the low energy limit we
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can use only the previous terms from the expansion of the hopping term. To
obtain the explicit form for the Tα,βj we have to use equation (5.13), and this
give us

T1 = eiG
(2)
1 ·d

(
eiG

(2)
1 ·τ (2)

A −iG(1)
1 ·τ (1)

A eiG
(2)
1 ·τ (2)

B −iG(1)
1 ·τ (1)

A

eiG
(2)
1 ·τ (2)

A −iG(1)
1 ·τ (1)

B eiG
(2)
1 ·τ (2)

B −iG(1)
1 ·τ (1)

B

)
→ G

(l)
1 = 0b

(l)
1 + 0b

(l)
2

= eiG
(2)
1 ·d

(
e0 e0

e0 e0

)
=

(
1 1
1 1

)
T2 = eiG

(2)
2 ·d

(
eiG

(2)
2 ·τ (2)

A −iG(1)
2 ·τ (1)

A eiG
(2)
2 ·τ (2)

B −iG(1)
2 ·τ (1)

A

eiG
(2)
2 ·τ (2)

A −iG(1)
2 ·τ (1)

B eiG
(2)
2 ·τ (2)

B −iG(1)
2 ·τ (1)

B

)
→ G

(l)
2 = 1b

(l)
1 + 0b

(l)
2

= eiG
(2)
2 ·d

(
eiϕ 1
e−iϕ eiϕ

)
T3 = eiG

(2)
3 ·d

(
eiG

(2)
3 ·τ (2)

A −iG(1)
3 ·τ (1)

A eiG
(2)
3 ·τ (2)

B −iG(1)
3 ·τ (1)

A

eiG
(2)
3 ·τ (2)

A −iG(1)
3 ·τ (1)

B eiG
(2)
3 ·τ (2)

B −iG(1)
3 ·τ (1)

B

)
→ G

(l)
3 = 0b

(l)
1 + 1b

(l)
2

= eiG
(2)
3 ·d

(
e−iϕ 1
eiϕ e−iϕ

)
(5.18)

where ϕ = 2π/3 and we have to keep in mind that every time we have τ
(2)
A we

have to use instead τ
(2)
B because of the stacking AB. With this we can write

explicitly the hopping term from layer 1 to layer 2 in 5.17 as follows

Tk,p′ = ω

(
1 1
1 1

)
δk−p′,−q1 + ωeiG

(2)
2 ·d

(
eiϕ 1
e−iϕ eiϕ

)
δk−p′,−q2+

+ ωeiG
(2)
3 ·d

(
e−iϕ 1
eiϕ e−iϕ

)
δk−p′,−q3

(5.19)

and, for accounting instead the hopping from layer 2 to layer 1, one has only
to take the adjoint.

Now that we have written the explicit expression of the hopping terms, we can
take the limit of θ → 0 and d → 0 and verify that in this way our description
returns to the one saw in section Double Layer Graphene, i.e. to the AB
stacking bilayer description. So

lim
θ→0
d→0

Tk,p′ =

(
1 1
1 1

)
+ω

(
eiϕ 1
e−iϕ eiϕ

)
+ω

(
e−iϕ 1
eiϕ e−iϕ

)
= 3ω

(
0 1
0 0

)
(5.20)
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obtaining again the same form seen before

H =

(
h1 T
T † h2

)
=


0 t∆k 0 t⊥
t∆∗

k 0 0 0
0 0 0 t∆k

t⊥ 0 t∆∗
k 0

 (5.21)

where h1/2 stand for the single layer hamiltonian for layer 1/2. This hamilto-
nian has the same form as long as we consider t⊥ = 3ω. So this give us also
the relation between the hopping coefficients of BLG and tBLG.

Now going back to our description, since we are near the Dirac point, we will
measure momenta from the Dirac point K (or K’ since they are related by
symmetry), and the single layer effective hamiltonian, as seen in chapter 1,
can be written in the form of hK(k) = ℏv(kxσx − kyσy) = ℏvσ∗ · k near K
point, hK

′
(k) = ℏv(kxσx−kyσy) = ℏvσ ·k nearK ′ point. By limiting ourselves

to the first honeycomb shell, we can write the total hamiltonian as

H K,K′
M =


hKθ/2(k) wT1 wT2 wT3

wT †
1 hK−θ/2(k− q1) 0 0

wT †
2 0 hK−θ/2(k− q2) 0

wT †
3 0 0 hK−θ/2(k− q3)


(5.22)

where K ′
M is the Dirac point in the superlattice reciprocal space, which corre-

sponds by symmetry to the K point in the graphene reciprocal lattice. In this
notation k is in the Moiré Brillouin Zone, so measured from the Dirac points.
This hamiltonian acts on four two-components spinors Ψ = (ψ0, ψ1, ψ2, ψ3),
ψ0 is at momentum k near the Dirac point in one layer and the other three
ψj are at momenta near qj in the other layer. To simplify the calculations,
since hKθ/2(k) depends little on θ which is supposed to be small (as shown by

numerical simulations in [5]), we can neglect this dependence, and we will use
this simplification in the following sections.

5.3 Low energy limit

We are now interested in calculating the low energy limit, so by focusing on the
description near the Dirac points. If we consider the case k = 0, so exactly at
the Dirac point, we expect zero energy eigenstate, and this condition becames

H
K,K′

M

(0) Ψ(0) = 0Ψ(0) (5.23)
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and this leads to the conditions on the spinor components
hK(k)ψ

(0)
0 + wT1ψ

(0)
1 + wT2ψ

(0)
2 + wT3ψ

(0)
3 = 0

hK(k− q1)ψ
(0)
1 + wT †

1ψ
(0)
0 = 0

hK(k− q2)ψ
(0)
2 + wT †

2ψ
(0)
0 = 0

hK(k− q3)ψ
(0)
3 + wT †

3ψ
(0)
0 = 0

(5.24)

We note that since we are at k ≈ 0, hK(k− qj) ≃ hK(−qj). This lead to the

condition that ψj = −wh−1
j T †

j ψ0 (j = 1, 2, 3) and

Tjh
−1
j T †

j = 0 (5.25)

to prove this we explicit the calculations

h1 = ℏvσ∗ · (−q1) = −ℏvkθσy → h−1
1 = − 1

ℏvkθ
σy

⇒ T1h
−1
1 T †

1 ∝
(
1 1
1 1

)(
0 i
−i 0

)(
1 1
1 1

)
= 0

h2 = ℏvσ∗ · (−q2) = ℏvkθ

(
0 e−i

5
6π

ei
5
6
π 0

)
→ h−1

2 =
1

ℏvkθ

(
0 e−i

5
6
π

ei
5
6
π 0

)

⇒ T2h
−1
2 T †

2 ∝
(

1 eiϕ

e−iϕ 1

)(
0 e−i

5
6
π

ei
5
6
π 0

)(
1 eiϕ

e−iϕ 1

)
∝

∝

(
ei

3
2
π + e−i

3
2
π ei

13
6
π + e−i

5
6
π

e−i
13
6
π + ei

5
6
π ei

3
2
π + e−i

3
2
π

)
= 0

h3 = ℏvσ∗ · (−q3) = ℏvkθ
(

0 e−i
π
6

ei
π
6 0

)
→ h−1

3 =
1

ℏvkθ

(
0 e−i

π
6

ei
π
6 0

)
⇒ T3h

−1
3 T †

3 ∝
(

1 e−iϕ

eiϕ 1

)(
0 e−i

π
6

ei
π
6 0

)(
1 e−iϕ

eiϕ 1

)
∝

∝

(
ei
π
2 + e−i

π
2 e−i

7
6
π + ei

π
6

ei
7
6
π + e−i

π
6 ei

π
2 + e−i

π
2

)
= 0 (5.26)

where h−1
j = h−1(−qj). This can be proved also in a more elegant way by

recognizing that the Tj matrices can be rewritten as a combination of Pauli
matrices

T1 = 1 + σx, T2 = eiϕ

(
1− 1

2
σx −

√
3

2
σy

)
, T3 = e−iϕ

(
1− 1

2
σx +

√
3

2
σy

)
(5.27)
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so using the property of the Pauli matrices we can obtain the same result

T1h
−1
1 T †

1 ∝ (1 + σx)(−σy)(1 + σx) = −σy − σyσx − σxσy − σxσyσx

↓ {σa,σb}=2δa,b1

= −σy + σyσxσx

↓ σ2
x=σ2

y=σ2
z=1

= σy − σy = 0

T2h
−1
2 T †

2 ∝

(
1− 1

2
σx −

√
3

2
σy

)(
−
√
3

2
σx +

1

2
σy

)(
1− 1

2
σx −

√
3

2
σy

)
=

=

(
−
√
3

2
σx +

1

2
σy ++

√
3

4
σxσx − 1

4
σxσy +

3

4
σyσx −

√
3

4
σyσy

)
·

·

(
1− 1

2
σx −

√
3

2
σy

)
=

↓ {σa,σb}=2δa,b1, σ2
x=σ2

y=σ2
z=1

=

(
−
√
3

2
σx +

1

2
σy − σxσy

)(
1− 1

2
σx −

√
3

2
σy

)
=

= −
√
3

2
σx +

√
3

4
σxσx +

3

4
σxσy +

1

2
σy −

1

4
σyσx −

√
3

4
σyσy+

− σxσy +
1

2
σxσyσx +

√
3

2
σxσyσy =

↓ {σa,σb}=2δa,b1, σ2
x=σ2

y=σ2
z=1

= 0

T3h
−1
3 T †

3 ∝

(
1− 1

2
σx +

√
3

2
σy

)(√
3

2
σx +

1

2
σy

)(
1− 1

2
σx +

√
3

2
σy

)
=

↓ {σa,σb}=2δa,b1, σ2
x=σ2

y=σ2
z=1

=

(√
3

2
σx +

1

2
σy − σxσy

)(
1− 1

2
σx +

√
3

2
σy

)
=

=

√
3

2
σx −

√
3

4
σxσx +

3

4
σxσy +

1

2
σy −

1

4
σyσx − σxσy+

+
1

2
σxσyσx −

√
3

2
σxσyσy =

↓ {σa,σb}=2δa,b1, σ2
x=σ2

y=σ2
z=1

= 0

(5.28)

This proves also, substituting in the first equation of 5.24, that the equation
for ψ0 is h0ψ0 = 0, i.e. ψ0 is one of the two zero energy states of the isolated

layer, ψ
(1)
0 or ψ

(2)
0 .
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From this we see that we can express ψj as function of ψ0, so the hamiltonian,
using a perturbative approach, can be folded in an effective hamiltonian for
the low energy state on the ψ0 space with ψj,k ≈ −wh−1

j T †
j ψ0,k (j = 1, 2, 3)

(these terms comes from the system 5.24):

H
K,K′

M

eff,(1)(k) =
⟨Ψ|H K,K′

M |Ψ⟩
⟨Ψ|Ψ⟩

(5.29)

and substituting we have that

⟨Ψ|Ψ⟩ =
(
ψ†
0 (−wh−1

1 T †
1ψ0)

† (−wh−1
2 T †

2ψ0)
† (−wh−1

3 T †
3ψ0)

†
)

ψ0

−wh−1
1 T †

1ψ0

−wh−1
2 T †

2ψ0

−wh−1
3 T †

3ψ0

 =

= ||ψ0||2 + w2
3∑

i=1

(h−1
i T †

i ψ0)
†(−h−1

i T †
i ψ0) =

= ||ψ0||2 + w2
3∑

i=1

ψ†
0Ti(−h

−1
i )†(−h−1

i )T †
i ψ0

(5.30)

we compute (−h−1
i )†(−h−1

i ) for i = 1, 2, 3

(−h−1
1 )†(−h−1

1 ) =
1

(ℏvkθ)2
σ†yσy =

1

(ℏvkθ)2
1

(−h−1
2 )†(−h−1

2 ) =
1

(ℏvkθ)2

(√
3

2
σx −

1

2
σy

)†(√
3

2
σx −

1

2
σy

)
=

1

(ℏvkθ)2
1

(−h−1
3 )†(−h−1

3 ) =
1

(ℏvkθ)2

(
−
√
3

2
σx −

1

2
σy

)†(
−
√
3

2
σx −

1

2
σy

)
=

1

(ℏvkθ)2
1

(5.31)

where we use the hermitianity of the Pauli matrices and {σa, σb} = 2δa,b1.
Equation (5.30) becomes

⟨Ψ|Ψ⟩ = ||ψ0||2 +

(
w

ℏvkθ

)2 3∑
i=1

ψ†
0TiT

†
i ψ0 (5.32)

If we consider that the phase factor of T2, T3 when multiplied with its adjoint
give 1, the Ti are combination of hermitian matrices so they are also hermitian,
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and what is left to compute is T 2
i

T 2
1 = (1 + σx)(1 + σx) = 2(1 + σx)

T 2
2 =

(
1− 1

2
σx −

√
3

2
σy

)(
1− 1

2
σx −

√
3

2
σy

)
= 2

(
1− 1

2
σx −

√
3

2
σy

)

T 2
3 =

(
1− 1

2
σx +

√
3

2
σy

)(
1− 1

2
σx +

√
3

2
σy

)
= 2

(
1− 1

2
σx +

√
3

2
σy

)
(5.33)

and finally we have

⟨Ψ|Ψ⟩ = ||ψ0||2 +

(
w

ℏvkθ

)2

2ψ†
0

[
31 + σx −

1

2
σx −

√
3

2
σy −

1

2
σx +

√
3

2
σy

]
ψ0 =

= 1 + 6

(
w

ℏvkθ

)2

= 1 + 6α2

(5.34)

where α = w/(ℏvkθ). We can now evaluate H
K,K′

M

eff,(1)(k)

=
1

1 + 6α2

(
ψ†

0 (−wh−1
1 T †

1ψ0)
† (−wh−1

2 T †
2ψ0)

† (−wh−1
3 T †

3ψ0)
†)H


ψ0

−wh−1
1 T †

1ψ0

−wh−1
2 T †

2ψ0

−wh−1
3 T †

3ψ0

 =

=
1

1 + 6α2

[
ψ†

0h(k)ψ0 − w2ψ†
0

3∑
i=1

Tih
−1
i T †

i︸ ︷︷ ︸
(1)

ψ0 + w2
3∑
i=1

ψ†
0Ti(−h

−1
i )†T †

i ψ0︸ ︷︷ ︸
(2)

+

+ w2
3∑
i=1

ψ†
0Ti(−h

−1
i )†(−h(k− qi)h

−1
i T †

i ψ0)︸ ︷︷ ︸
(3)

]

(5.35)

where we omitted the indices K,K ′
M to simplify the notation. The summa-

tions (1) and (2), using the hermitianity of the matrices and remembering
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equation (5.25), are equal to 0, leaving only

H
K,K′

M

eff,(1)(k) =
1

1 + 6α2

[
ψ†
0h(k)ψ0 + w2

3∑
i=1

ψ†
0Ti(h

−1
i )†[h(k− qi)h

−1
i T †

i ]ψ0

]
=

↓ h(k−qi)=h(k)−hi

=
1

1 + 6α2

{
ψ†
0h(k)ψ0 + w2

3∑
i=1

ψ†
0

[(
Ti(h

−1
i )†h(k)h−1

i T †
i

)
+

−

(
Ti(h

−1
i )† hih

−1
i︸ ︷︷ ︸

1

T †
i

)
︸ ︷︷ ︸

0

]
ψ0

}
=

=
ℏv

1 + 6α2
ψ†
0

[
σ∗ · k+ w2

3∑
i=1

Ti(h
−1
i )†σ∗ · kh−1

i T †
i

]
ψ0

(5.36)

we evaluate separately the three contributions of the summation

T1(h
−1
1 )†σ∗ · kh−1

1 T †
1 =

1

(ℏvkθ)2
(−σy − σyσx)(kxσx − kyσy)(−σy + σyσx) =

= −2(1 + σx)kx

T2(h
−1
2 )†σ∗ · kh−1

2 T †
2 =

1

(ℏvkθ)2

(
σyσx −

√
3

2
σx +

1

2
σy

)(
kxσx − kyσy

)
·

·

(
−σyσx −

√
3

2
σx +

1

2
σy

)
=

=
1

(ℏvkθ)2

[
−1

2
σxkx +

3

2
σyky +

√
3

2
σxky+

−
√
3

2
σykx + kx −

√
3ky

]
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T3(h
−1
3 )†σ∗ · kh−1

3 T †
3 =

1

(ℏvkθ)2

(
σyσx +

√
3

2
σx +

1

2
σy

)(
kxσx − kyσy

)
·

·

(
−σyσx +

√
3

2
σx +

1

2
σy

)
=

=
1

(ℏvkθ)2

[
−1

2
σxkx +

√
3

2
σykx +

3

2
σyky+

−
√
3

2
σxhy +

√
3ky + kx

]
(5.37)

and summing this terms all together we obtain

H
K,K′

M

eff,(1)(k) =
ℏv

1 + 6α2
ψ†
0

[
σ∗ · k− 3α2σ∗ · k

]
ψ0 = ℏv

1− 3α2

1 + 6α2
ψ†
0σ

∗ · kψ0 =

= ℏv∗ψ†
0σ

∗ · kψ0

(5.38)

with v∗ = v 1−3α2

1+6α2 . So we can notice that the system has the same hamiltonian
of the monolayer graphene but with a rescaled Fermi velocity.

It is important to remember that the hamiltonian in (5.38) is characterized
by the K,K ′

M labels. This means that the hamiltonian is calculated in the
proximity of the K point of layer 1 and in the corresponding K ′

M point in the
Moiré Brillouin zone. In general considering the symmetries of our problem, we
have in total eight Dirac fermions labeled by the graphene monolayer valleys,
K and K ′, Moiré valleys, KM and K ′

M , and spins, ↑ and ↓ indices. So in
general a state of the system must be labeled by three indices that we will call
η = ±1 for the valley, ξ = ±1 for the Moiré valley and s = ±1 for the spin.
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5.4 Results

In general to inspect the band structure of tBLG we cannot use the simplifica-
tion of equation (5.22) because, as said previously, that was the Hamiltonian
after a truncation to the first Moiré Brillouin zone (MBZ), retaining only the
main contributions. For our aim one has to consider higher terms, i.e. trun-
cating the hamiltonian after retaining contributions coming from successive
Brillouin zones, using the reciprocal Moiré lattice vectors. If we call the Moiré
reciprocal lattice vectors as bM1 ,b

M
2 the general transferred momenta allowed,

that in equation (5.14) was written only for the first MBZ, can be written as

q1 = K
(2)
D −K

(1)
D

q2 = K
(2)
D −K

(1)
D + bM2

q3 = K
(2)
D −K

(1)
D + bM1

(5.39)

For this reason we write a generic state of the system in the Moiré Brillouin
zone as

|ψMk ⟩ =
∑

l,α,m1,m2

u(l)α |l, α,k, (m1,m2)⟩ (5.40)

where we introduce the basis

|l, α,k, (m1,m2)⟩ = |l,K(l) + k+m1b
M
1 +m2b

M
2 , α⟩ .

Let us generalize eq. (5.22): by truncating the basis after retaining higher
orders, one can refine the previous result. To be more precise we can show
the form of the matrix if we take, for example, a basis in which also other
contributions are retained:

|1, 0, 0⟩ , |2, 0, 0⟩ , |2, 0, 1⟩ , |2,−1, 0⟩ , |1, 0,−1⟩ , |1, 1, 0⟩ , |1, 0, 1⟩ , |1, 1, 1⟩ , |1,−1, 0⟩ , |1,−1,−1⟩

where we drop for simplicity the sublattice index and the momentum. With
the choice of this basis the tight binding hamiltonian becomes

H K,K′
M =



hK1 ωT1 ωT2 ωT3 0 0 0 0 0 0

ωT †
1 hK2 0 0 ωT †

2 ωT †
3 0 0 0 0

ωT †
2 0 hK2 0 0 0 ωT †

1 ωT †
3 0 0

ωT †
3 0 0 hK2 0 0 0 0 ωT †

1 ωT †
2

0 ωT2 0 0 hK1 0 0 0 0 0
0 ωT3 0 0 0 hK1 0 0 0 0
0 0 ωT1 0 0 0 hK1 0 0 0
0 0 ωT3 0 0 0 0 hK1 0 0
0 0 0 ωT1 0 0 0 0 hK1 0
0 0 0 ωT2 0 0 0 0 0 hK1


(5.41)
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where hK1 = hK1 (k + m1b
M
1 + m2b

M
2 ) single layer hamiltonian of layer 1,

and hK2 = hK2 (k + q1 + m1b
M
1 + m2b

M
2 ) single layer hamiltonian of layer

2. So by computing the eigenvalues of the previous hamiltonian, one obtains
an approximation for the tBLG band structure, which can be improved by
considering more and more reciprocal lattice vectors.

5.4.1 Study on the truncation

In this section we study how the calculation for the energy bands depends on
the truncation of the general Hamiltonian. An accurate this calculation either
for the energy bands and for the density of states is important also when we will
consider the interacting case for a reasonable estimate of the superconducting
critical temperature that we will do in the last section. We, therefore, solve
numerically the eigenvalue problem for an increasing value of the cut, i.e. a
higher cut keeps more Moiré Brillouin zones (MBZ) in consideration, so the
dimension of the hamiltonian matrix grows as the cut increases. We then
calculate the relative error of the obtained results with respect the highest cut
we could use, and this value was fixed, due to our available computation power,
to a cut at the 8th MBZ. The first consideration we can do is that the relative
error depends on the value of the angle considered. The explanation to this
lies in the band structure itself: starting from small angles, around the first
magic angle, the band are more concentrated around the Fermi energy with
respect to the higher angle case. This means that more MBZ are needed to
evaluate correctly the correction to the energy. This can be seen in particular
comparing the different plots in figure 5.4, in fact although the angle variation
is small one can observe that the relative error is much higher for smaller angles
2 ≃ 10−6 while riches the computational limit, around ≃ 10−14, increasing the
value of the angle. The fluctuations that we can see around the relative error
≃ 10−14 have not a physical meaning but are numerical fluctuations, because
we reach the numerical limit. The estimate of the band energy around the
first magic angle (θ = 1.05) reaches the error limit with a truncation to the
6th MBZ, while for θ = 5◦ are enough 4 MBZs. We will use a truncation up to
the 8th MBZ, to be sure of working with great accuracy for any value of the
twist angle. We notice also that the errors are greater in the proximity of the
borders of the MBZ, because they are points of high symmetry so more MBZ
are needed for the correct evaluation of the energy bands.

2The relative error is calculated on a scale between 0 and 1
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Figure 5.4: Relative errors in the estimation of the energy bands, for different values
of the angle (from top to bottom) 0.5◦, 1.05◦, 5◦. The relative errors are calculated
with respect to the highest cut we can set (cut up to the 8th Moiré Brillouin Zone)
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5.4.2 Band structure

We use an approximation up to the 8th Moiré Brillouin zone and study the
differences between the band structure for different values of the twist angle.
Since the Moiré BZ is 2D, the band structure is a 3D plot, but to make
the comparison easier we choose the path in figure 5.5 to evaluate the band
structure. We solve the eigenvalues problem finding the band structure of
figure 5.6.

Figure 5.5: K-path in the Moiré BZ used for computing the band structure

From the band structure and density of states we can see how the energies
change when we are near and far from the first magic angle. In all the angles
studied the bands structure is gapless in proximity of the Dirac points, so the
bands meet in the proximity of the Fermi level, and, as we said previously,
this is linked to the presence of the massless excitations in proximity of these
points.

It is important to underline that in the left plot of Fig. 5.6 the center (0, 0) is
one of the Moiré Dirac point. To understand better the picture we highlight
in Fig. 5.7 the points of interest and the boundaries of the first Moiré Brillouin
zone, so basically we superimpose figure 5.5 on the right pictures of figure 5.6.

Looking at Fig. 5.7 we remember that the zero of our momenta is the first
Dirac point KM .

Although the bands are quite thin also for very small angle, the flat bands
only appears in the proximity of the magic angle, and as we move a bit from
that, conduction and valence bands become wider and wider, as can be seen
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Figure 5.6: tBLG band structure: along the path of fig.5.5 (right), and the first band in 2D
(left) for different angles form top to bottom: 0.5◦, 1.05◦, 1.5◦, 5.0◦

42



CHAPTER 5. TBLG 5.4. RESULTS

(a) (b)

(c) (d)

Figure 5.7

comparing figure 5.6 (b) and (c): moving from θ ≃ 1.05◦ → 1.5◦ the bandwidth
increases from 0.6 meV to 64 meV, so a growth of two orders of magnitude.
We can notice also how the periodicity is preserved for all the small angles
studied, the pattern of maxima and minima does not change, except for the
magic angle in which other three minima appears. One can also compute the
rescaled Fermi velocity of the system in proximity of the Moiré Dirac point,
and this can be done using the same Hamiltonian used for the Moiré bands
calculation. This is done by using the general relation between the energy
spectrum and the band velocity, i.e.

vn,KM =
1

ℏ
∇kεn(k)

∣∣
KM (5.42)

and since we are interested in the lowest electron state we search for v0,KM . In
particular we are interested in the relation between the rescaled velocity and
the parameter α2, that is the one appearing in the folded hamiltonian (5.38),
since the zeros of α2 are linked to the ones of the rescaled Fermi velocity.

Figure 5.8 on one hand shows us the appearance of the magic angles, the
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Figure 5.8: Band velocity in proximity of the Dirac point KM as function of α2 (we
set for simplicity ℏ = 1). The points where the velocity becomes null are called magic
angles. In the inset we make a comparison with the estimation of the first magic angle
using the effective hamiltonian (5.38)

points in which the rescaled Fermi velocity vanishes, and on the other hand
gives us an hint on the behavior of the bands as function of the angles. In
fact, looking at its definition, the band velocity is linked to the gradient of the
energy spectrum, so angles in which the velocity has an high value corresponds
to angles in which the bands are wider than the ones with low velocity values.

Instead if one is interested in the low energy property one can use hamiltonian
(5.38) and study how the bands look near the Dirac points. In particular this
is useful if one is interested in studying what causes the flattening of the band
near the first magic angle. So we study how the Dirac velocity v∗ depends on
the angle in our low energy approximation. Using the explicit form for the
Fermi velocity obtained in eq. (5.38), one can clearly see that it vanishes when

v∗ =
1− 3α2

1 + 6α2
v = 0 → α2 =

1

3
(5.43)

this corresponds, by expressing it as function of the twisted angle θ, to θ =
1.05◦, and this can be computed by remembering the relation α = w/(ℏvkθ).
This result predicts with a good accordance with experiments, the first magic
angle, as can be seen from fig. 5.8. It is important to notice that the folding
of the hamiltonian can be used correctly up to the first magic angle, since we
are folding onto the lowest energy band. To describe higher energy bands and
higher energy scales one cannot use the hamiltonian (5.38) anymore.
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5.5 BCS theory applied to tBLG

We are now interested in studying the superconducting properties of the tBLG.
We will use the BCS theory, i.e. we introduce to our model an interaction
between fermions which is mediated by the coupling with phonons. We will
use for our calculation the folded hamiltonian, since we are interested in the
low energy limit, and we will look at the results in the proximity of the magic
angle, where the band is quite flat and very near to the Fermi energy. For
this purpose we rewrite the Hamiltonian in second quantization, with all the
indices

Hη,ξ,s
tb (k) = −ℏv∗ψ†

0σ
∗ · kψ0 = −εkc†k,η,ξ,sck,η,ξ,s (5.44)

where εk = 1−3α2

1+6α2ℏv (k− kF ) are the single-particle energies measured from

the Fermi surface and we use ψη,ξ,s0 (k) = ϕη0(k)c
η,ξ,s
k , with ϕη0(k) the lowest

energy eigenfunction of the Hamiltonian.
To proceed with our analysis we have to take into account the electron-phonon
interaction.

5.5.1 Phononic hamiltonian

In this section we introduce the bosonic hamiltonian for tBLG. We summarize
the general approach to introduce the harmonic model for a crystal. In the
introduction to the tight-binding model we introduced the Born-Oppenheimer
approximation, and this allow us to decouple the motion of electrons from that
of the bosons, and the lattice potential can be seen ”frozen”, from the point of
view of the electrons, because their motion is faster than that of the bosons.
But this is true only at first approximation, because if we want to describe the
lattice in a proper way we have to consider that lattice sites are the equilibrium
positions of the atoms, but they are free to vibrate around these positions. So
the first thing to do is to describe the position for an atom at time t as the
lattice vector pointing at that site, R, which fixes the equilibrium position
inside the lattice, plus a small displacement, that will depend on time and on
the considered site

r(R, t) = R+ δu(R, t). (5.45)

The system of atoms confined on a lattice, can be described by a potential
energy U , that is a function of the positions of all the atoms in the crystal,
U(r1, ..., rN ) (if we think to a system made of N atoms). The first approxima-
tion we introduce to simplify the problem is the pair approximation, i.e. we
assume that this potential can be written as a sum over pair interactions, that
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depends only on the distance between the two atoms, so we write

U(r1, ..., rN ) =
1

2

∑
R,R′

Φ
(
r− r′

)
y 5.45

=
1

2

∑
R,R′

Φ

(
R−R′ + δu(R)− δu′(R′)︸ ︷︷ ︸

(1)

)
.

(5.46)

where we hide the dependence on time to simplify the notation. To proceed
now we think at the displacement: we said that this displacement represent
the vibration of the atom around its equilibrium position, so it is a small
deviation from it with respect to the typical size of the lattice, so the lattice
constant a. This means that if the we assume true the considerations on
δu(R), also (1) must be small, i.e. |δu(R) − δu′(R′))| << a. With this in
mind one make a Taylor expansion of the potential energy, truncating it to
the harmonic contribution (second order derivatives), obtaining

U(r1, ..., rN ) ≃
1

2

∑
R,R′

Φ
(
R−R′)+ 1

2

∑
R,R′

(
δu(R)− δu(R′)

)
∇Φ
∣∣
δu,δu′=0

+

+
1

4

∑
R,R′

[(
δu(R)− δu(R′)

)
· ∇
]2

Φ
∣∣
δu,δu′=0

(5.47)

where for simplicity we hide the dependence on the Φ
(
R − R′ + δu(R) −

δu′(R′)
)
term, and we call δu(R′) = δu′. Now focusing on the second term

of eq, 5.47, we can rewrite it as:

1

2

∑
R,R′

δu(R)− δu(R′)∇Φ
∣∣
δu,δu′=0

=

=
1

2

∑
R

δu(R)
∑
R′

∇Φ
∣∣
δu,δu′=0︸ ︷︷ ︸

(1)

−
∑
R′

δu(R′)
∑
R

∇Φ
∣∣
δu,δu′=0︸ ︷︷ ︸

(2)

(5.48)

Focusing on (1) and (2) they represent the force of all the other atoms on the
one fixed by the first summation. But since we said that the site of the lattice
are the equilibrium position for the atoms, this means that the sum of all the
forces on an atom, fixed in its lattice site, is zero. For this reason the second
term is zero and thus we can rewrite eq. (5.47) as follows

U(r1, ..., rN ) = U0 +
1

2

∑
R,R′

∑
µ,ν

δuµ(R)Dµ,nu(R−R′)δuν(R
′) (5.49)
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where we use the equal symbol thinking that the higher order contributions in
the Taylor expansion can be neglected since they become smaller and smaller
at higher orders; and where we introduce U0 representing the potential energy
of the system without any deviation from the equilibrium, and

Dµ,ν =
1

2
δR,R′

∑
R′′

[
∂2

∂rµ∂rν
Φ(R−R′′)− ∂2

∂rµ∂rν
Φ(R−R′)

]
. (5.50)

Using this, one can write the generic hamiltonian of the system as

Hph =
∑
R

M

2

(
dδu(R)

dt

)2

+ U0 +
1

2

∑
R,R′

∑
µ,ν

δuµ(R)Dµ,ν(R−R′)δuν(R
′)

(5.51)
One than can proceed by introducing the conjugate momentum to δu that we
will call δp and rewrite the previous equation as

Hph =
∑
R

δp2(R)

2M
+

1

2

∑
R,R′

δu(R) ·D(R−R′)δu(R′) (5.52)

where we rewrite the harmonic potential term in matrix form D. What we
have done since this moment is done with a classical approach. To quantized
this hamiltonian one can do in a very straightforward way by introducing the
normal mode expansion of the displacement. This can be done by thinking at
the general solution of the equation of motion, that can be written starting
from hamiltonian (5.52)

M
d2

dt2
δu(R) =

∑
R

D(R−R′)δu(R′). (5.53)

The general solution can be written as a combination of plane waves that,
using the periodic boundary condition, takes the form

δun =
∑
k,m

Ck,mεme
ik·Rn−iωk,mt (5.54)

where one imposing the periodic boundary condition has that the summation
over the k point is finite and is equal to the number of atoms in the system.
By calling

Qk,m(t) = Ck,mεme
−iωk,mt

√
N (5.55)

one obtain the expansion in normal modes for the displacement

δun(t) =
1√
N

∑
k,m

Qk,m(t)e
ik·Rn . (5.56)
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Using this expression in (5.52) one obtain an equation equal in form to that
of a set of decoupled harmonic oscillators

Hph =
∑
k,m

M

2

(∣∣∣Q̇k,m∣∣∣2 + ω2
m |Qk,m|2

)
(5.57)

where Q̇ stands for Q time derivative, and this can be easily quantized as a
quantum harmonic oscillators introducing a pair of bosonic operators, the cre-
ation and annihilation bosonic operators a, a†, which satisfy the commutation
relation [ai,m, a

†
j,n] = δi,jδm,n, leading to

Ĥph =
∑
k,m

ℏωm
(
a†k,mak,m +

1

2

)
(5.58)

where m is the mode of the oscillations.

5.5.2 Phononic hamiltonian for tBLG

In the last section we introduce the general procedure to obtain the quantized
phononic hamiltonian. In this section we will apply what seen to the specific
case of the tBLG. We start by introducing the general form of the hamiltonian
for the atoms in the tBLG system, having in mind the considerations done for
the generic case of the previos section, so we write as shown in [40]

Hph = T + UE + UB (5.59)

where

T =

2∑
l=1

∑
R

M

2
ṙ
(l)
R (5.60)

is the kinetic contribution of the atoms,

UE =

2∑
l=1

∑
R

1

2

{
(λ+ µ)

(
u(l)xx + u(l)yy

)2
+ µ

[(
u(l)xx − u(l)yy

)2
+ 4(u(l)xy)

2

]}
(5.61)

is the elastic energy of strained, where λ ≃ 3.25eV Ω/�A2
and µ ≃ 9.57eV Ω/�A2

(Ω is the area of the tBLG 1st Moiré BZ) are the Lamé factors for graphene

[41,42], and u
(l)
ij = (∂iu

(l)
j +∂ju

(l)
i )/2 is the strain tensor; and UB has the form

UB =

3∑
j=1

∑
R

2V0 cos
[
bMj ·R+ bj · (r(2)R − r

(1)
R )
]

(5.62)
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and is the inter-layer binding energy, where V0 is the strength of the potential,
bMj , j = 1, 2 are the Moiré BZ primitive vectors and bM3 = −bM1 −bM2 , bj , j =
1, 2 are the unrotated graphene Moiré BZ primitive vectors and b3 = −b1−b2;
and we use the same notation for r as in (5.45). This hamiltonian can be

separated in a symmetric and asymmetric part, i.e. splitted in r± = r
(2)
R ±r

(1)
R .

This can be seen by the usual technique of dealing with two body terms, and
consist of splitting the position in a term for the position of the center of mass
and a relative position term. Since the UB terms depends directly only from
r− we will consider only the asymmetric part of the hamiltonian, since is the
most relevant for the electron-phonon coupling. We are saying in other word
that the major contribution to the electron-phonon coupling is coming from
the relative displacement between the atoms [10]. Now we proceed with the
splitting of r− as done in (5.45) so introducing the displacement

r−(R−) = R− + δu−
R− . (5.63)

So we can write the general bosonic hamiltonian with the dependence on the
displacement in the same form obtained in (5.52), this time for convenience
expressing it in the momentum space, by writing the representation in the
Moiré momentum space of the displacement

δu−
R−(t) =

∑
q

δu−
q (t)e

iq·R−
(5.64)

and remembering that this time due to the change of coordinate (symmet-
ric/asymmetric) the conjugate momentum is δp−

q = M̃δu−
−q, with M̃ =M/2.

Finally we can write the phononic hamiltonian for the tBLG as

Hph =
∑

q∈MBZ

∑
GM

1

2M̃
δp−∗

q+Gδp−
q+G +

1

2

∑
GM ,G′M

δu−∗
q+GD(G,G′)δu−

q+G′


(5.65)

where ∗ is the complex conjugate and Dq(G,G
′) is the matrix D of equation

(5.52), in the momentum representation, coming from the asymmetric part of
the harmonic approximation of the potential UB+UE and has the form [10,40]

Dq(G,G
′) =

1

2
Kq+GδG′,G +VG−G′ (5.66)

where

Kq =

(
(λ+ 2µ)q2x + µq2y (λ+ µ)qxqy

(λ+ µ)qxqy (λ+ 2µ)q2y + µq2x

)
KG = −2V0

3∑
j=1

hjG

(
bjxbjx bjxbjy
bjybjx bjybjy

) (5.67)
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where bjµ is the µ component of the bj as defined before, and hjG can be found
solving

cos
[
bMj ·R− bj ·R−] =∑

G

hjGe
iG ·R. (5.68)

By expanding then the displacement and its conjugate momentum in normal
modes, and then by quantizing it, we obtain the general form of Hph for the
phononic hamiltonian

Ĥr
ph =

∑
m,q∈MBZ

ℏωm
(
a†q,maq,m +

1

2

)
(5.69)

where we write Ĥ to remember that after the quantization the hamiltonian is
an operator. To find the frequencies for each modes, so the eigenfrequencies,
one has to solve the equation of motion, that can be written as∑

G′

D̂q(G,G
′)Qq,m(G) = M̃ω2

q,mQq,m(G) (5.70)

5.5.3 Electron-electron interaction

Since the greatest contribution to the electron-phonon coupling is given by
the relative displacement, by considering only this terms one can write the
phonon hamiltonian, in the second quantization formalism, as

Hph =
∑
m,k

ℏωm,k
(
a†k,mak,m +

1

2

)
(5.71)

where we remember k ∈MBZ, and the relative displacement in second quan-
tization is

δuR =
∑
k,m

u⃗k,m

√
ℏ

2M̃ωm,k

(
a†k,m + a−k,m

)
eik·R (5.72)

Since the system under studying is the tBLG we can express directly V (r) as

V (r) =
∑
R

V0 (r−R) =
∑
R(1)

V0

(
r−R(1)

)
+
∑
R(2)

V0

(
r−R(2)

)
(5.73)

but since if we center our system of reference on one layer, say the one labeled
with 1, we can express R(2) as function R(1) by R(2) = R(1) − τ (2) + d. Now
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we notice that the relative displacement influences the inter plane distance so
we have d′ = d+ δu. so we can rewrite eq. 5.73 as

V (r) =
∑
R

[
V0 (r−R) + V0

(
r−R+ τ (2) − d′

)]
=

=
∑
R

[
V0 (r−R) + V0

(
r−R+ τ (2) + d− δuR

)]
=y V0(r−R+τ(2)+d−δuR)≃V0(r−R+τ(2)+d)−δuR·∇V0+h.o.

≃
∑
R

[
V0

(
r−R(1)

)
+ V0

(
r−R(1) + τ (2) + d

)
− δuR · ∇V0

]
=

≃
∑
R(1)

V0 (r−R(1)
)
+
∑
R(2)

V0

(
r−R(2)

)
− δuR · ∇V0


(5.74)

The term which give the coupling between phonons and the electrons is the last
term of the previous equation, since the first part is the unperturbed poten-
tial considered in the tight-binding approach. Using the second quantization
expression of the relative displacement (5.72) we obtain the electron-phonon
coupling, remembering the general dependence of the fermionic operators on
the indeces η = ±1 for the valley, ξ = ±1 for the Moiré valley and s = ±1 for
the spin, as

He−p
η,ξ,s,η′,ξ′,s′(k) = −i

∑
q,m

gm,q,kc
†
k+q,η,ξ,s

(
a†q,m + a−q,m

)
ck,η′,ξ′,s′ (5.75)

5.5.4 BCS hamiltonian

To simplify the problem we can assume that the two contributions coming from
the different modes are equal, so we can redefine the factor gq,k incorporating
the factor two in it. In the spirit of the BCS approach we introduce the BCS
hamiltonian in the form of

HBCS =
∑
I,I′

∫
dr
[
εc†IcI′ − igc†I

(
a† + a

)
cI′
]

(5.76)

where the indices I, I ′ refer to all the possible quantum numbers I = (η, ξ, s).
Expressing the partition function in a path integral form, using the coherent
states for bosons and fermions one has

Z =

∫
D [ϕ, ϕ∗]

∫
D [ψ,ψ∗] e−Sel[ψ,ψ

∗]−Sph[ϕ,ϕ∗]−SBCS [ψ,ψ∗,ϕ,ϕ∗] (5.77)
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where ϕ are complex numbers associated to bosons and ψ are Grassmann
variables associated to fermions. The free actions for bosons is in a gaussian
form therefore we can integrate over the complex fields, obtaining an effective
interactions among the fermions

Hint =
∑
k,k′,q

∑
η,η′

∑
ξ,ξ′

∑
s,s′

−gk,k′,qc
†
k′+q,η,ξ,sc

†
−k′,η′,ξ′,s′ck+q,η′,ξ′,s′c−k,η,ξ,s (5.78)

where we suppose that this is an attractive interaction. Putting this term in
the action and writing it in momentum space, we have

SeffBCS =
∑
k,k′,q

∑
η,η′

∑
ξ,ξ′

∑
s,s′

[
(−iωn + εk)ψ

†
k,η,ξ,sψk,η′,ξ′,s′+

− gk,k′,qψ
†
k′+q,η,ξ,sψ

†
−k′,η′,ξ′,s′ψk+q,η′,ξ′,s′ψ−k,η,ξ,s

]
(5.79)

5.5.5 Comment on the interaction

In the BCS hamiltonian (5.79), we had simply assume an attractive interaction
among fermions mediated by phonons. This cannot be done in principle,
because of the large number of couplings, so that some coupling channels
could be attractive while others could be repulsive. What we are going to
show is that the main component is an effective attractive interaction, and
that only one pairing channel can be considered because it is dominant with
respect to the others. A generic state of coupled fermions can be written as

|ψI,I′⟩ =
∑
l∈Z,k

Al,kc
†
k,η,ξ,sc

†
−k,η′,ξ′,s′ |0⟩ (5.80)

where I = η, ξ, s is the set of quantum indices. The possible states, considering
for example just the valley index, can be an inter-valley or an intra-valley
pairing, i.e.

|ψ(+,ξ,s),(+,ξ,s)⟩ , |ψ(−,ξ,s),(−,ξ,s)⟩ Intra-valley

|ψ(+,ξ,s),(−,ξ,s)⟩ Inter-valley
(5.81)

To evaluate if the interaction mediated by the phonon with this state is at-
tractive or repulsive one have to evaluate

E+,+ = ⟨ψ(+,ξ,s),(+,ξ,s)|Hint |ψ(+,ξ,s),(+,ξ,s)⟩
E−,− = ⟨ψ(−,ξ,s),(−,ξ,s)|Hint |ψ(−,ξ,s),(−,ξ,s)⟩
E+,− = ⟨ψ(+,ξ,s),(−,ξ,s)|Hint |ψ(+,ξ,s),(−,ξ,s)⟩ .

(5.82)
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We refer to the result of B. Liau, Z. Wang and B.A. Bernevig [10], who calcu-
lated this expectation values and see that the pairing that gives an attractive
interaction is the inter-valley pairing. One has in general to study also the
pairing using the other two indices, ξ and s. However since in general a time-
reversal invariant interaction is more robust than a violating time-reversal
one in the presence of disorder [43], one can fix the relation between the two
remaining indices imposing the time-reversal invariant relation. Since under
time-reversal symmetry K → K′, KM → K′M and s → −s, for the property
of the Dirac hamiltonian, we will have

|ψ(η,ξ,s),(−η,−ξ,−s)⟩ (5.83)

as the strongest channel bringing attractive interaction between fermions.

5.5.6 Gap equation and critical temperature

Using this assumption for the pairing we can rewrite eq. (5.79) as follows

SeffBCS =
∑
k,k′,q

∑
η,ξ,s

[
(−iωn + εk)ψ

†
k,η,ξ,sψk,η,ξ,s+

− gk,k′,qψ
†
k′+q,η,ξ,sψ

†
−k′,−η,−ξ,−sψk+q,−η,−ξ,−sψ−k,η,ξ,s

]
(5.84)

In addition as a further approximation we will consider the strength of the cou-
pling as constant. To decouple the interaction term one performs an Hubbard-
Stratonovich transformation, introducing the field ∆

Z = A

∫
D
[
∆, ∆̄

] ∫
D [ψ,ψ∗] e−S

eff
BCS [ψ,ψ

∗,∆,∆̄] (5.85)

with

SeffBCS [ψ,ψ
∗,∆, ∆̄] =

∑
k,k′,q

∑
η,ξ,s

[
(iωn + εk)ψ

†
k,η,ξ,sψk,η,ξ,s −

|∆η,ξ,s(q)|2

g
+

+ ∆̄η,ξ,s(q)ψk,−η,−ξ,−sψk,η,ξ,s +∆η,ξ,s(q)ψk,η,ξ,sψk,−η,−ξ,−s

]
(5.86)
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Since we are interested in the low energy limit , at the mean field level, we
can consider only the term q = (q⃗, ωl) = (0, 0) getting

SeffBCS [ψ,ψ
∗,∆, ∆̄] ≃

∑
k,k′

∑
η,ξ,s

[
(iωn + εk)ψ

†
k,η,ξ,sψk,η,ξ,s −

|∆η,ξ,s|2

g
+

+ ∆̄η,ξ,sψk,−η,−ξ,−sψk,η,ξ,s +∆η,ξ,sψk,η,ξ,sψk,−η,−ξ,−s

]
(5.87)

By using this approach one think of ∆ as a physical field described as

∆̄η,ξ,s =
⟨
ψ†
k,η,ξ,sψ

†
−k,−η,−ξ,−s

⟩
(5.88)

where its value is different from 0 below the critical temperature, where the su-
perconducting properties appears, and so where the Cooper pairs are present.
By using this assumption for ∆ one is treating the problem with a mean field
calculation, in fact we are attributing a physical interpretation to the field
introduced mathematically using the H-S transformation, as shown below∑

q,k,k′

ψ†
k′+qψ

†
−k′ψk+qψ−k

q=(0,0)−→
∑
k

ψkψ−k

∑
k′

ψ†
k′ψ

†
−k′ =y a∆̄︸︷︷︸

Mean Field

+(
∑

k ψ
†
k
ψ
†
−k

−a∆̄)︸ ︷︷ ︸
Small Fluctuations

=

[
a∆̄−

(∑
k

ψ†
kψ

†
−k − a∆̄

)][
a∆−

(∑
k′

ψ′
kψ−k′ − a∆

)]
=

= a2|∆|2 + a∆ψ†ψ† + a∆̄ψψ + small fluctuations

(5.89)

Introducing the Nambu spinor Ψ = (ψI , ψ̄−I)
T we can write eq. (5.87)

=
∑
η,ξ,s

∑
k

[
|∆η,ξ,s|2

g
+ Ψ̄G−1Ψ

]
(5.90)

with

G−1 =

(
iωn + εk ∆η,ξ,s

∆̄η,ξ,s iωn − εk

)
(5.91)

From this, using the gaussian integral in the Grassmann variables, supposing
that the interaction is equal for the interchange of the quantum numbers, one
obtains

SeffBCS [∆, ∆̄] = 8

{∑
k

|∆|2

g
− ln

[
det
(
G−1

)]}
(5.92)
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and by minimizing the functional, if we suppose that ∆̄ is independent from
k (since we are supposing that the interacting potential is independent from
it), one finds the gap equation as

∂SeffBCS

∂∆
= 0

βV
∆̄

g
=

∂

∂∆̄
Tr
[
ln
(
G−1

)]
= TrG(2,1)

∆̄

g
= − 1

βV

∑
k

∆̄

ω2
n + E2

BdG

(5.93)

where we have defined EBdG(k⃗) = ε2k+ |∆|2. We can simplify the last equation
and integrating in the Matsubara frequencies we have

1

g
=

1

V

∑
k⃗

 tgh
(
βEBdG(k⃗)

2

)
2EBdG(k⃗)

 (5.94)

Now looking at the density of states and band structure at the first magic
angle, i.e. θ = 1.05◦, and at figure 5.6 (second picture from the top), we can
notice that since the band is extremely flat and squashed on the Fermi level,
we can approximate it with a small constant value. Is important to notice
that below the Tc this means that since the unperturbed energy gap is ≃ 0 all
the excitation spectrum EBdG is dominated by the phonon induced excitation.
Since our aim is to find an analytical expression for the critical temperature,
we can proceed by noticing that Tc is defined by the transition of the order
parameter ∆: ∆, the mean number of Cooper pairs, is different from zero
only in the region below Tc, so as T → Tc, ∆ → 0. With this consideration
we rewrite eq. (5.94) as follows

1

g
=

1

V

∑
k⃗

tgh

(√
ε2k+|∆|2
2kBTc

)
2
√
ε2k + |∆|2

∆→0−−−−−−→1

g
=

1

V

∑
k⃗

tgh
(

εk
2kBTc

)
2εk

(5.95)

and by switching to the integral form to take the thermodynamic limit we
have

1

g
=

∫
dk

4π2

tgh
(

εk
2kBTc

)
2εk

(5.96)

now introducing the density of energy states defined as

ν(ε) :=

∫
R2

dk

4π2
δ(ε− E(k)) (5.97)
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we can write

1

g
=

∫
dεν(ε)

tgh
(

ε
2kBTc

)
2ε

(5.98)

now since we are only interested in the integral over the lowest band we set
an energy cutoff to the integral: we know from experimental evidence, and
as shown in our numerical calculation reported in figure 5.6, that the band is
really flat so we could think to an energy interval [−δ, δ] where δ represents
the energy bandwidth. We write, approximating the density of states as a
constant value inside this interval,

1

g
= ν0

∫ δ

0

dε
tgh

(
ε

2kBTc

)
ε

(5.99)

The main contribution to the integral comes from large energies for which the
hyperbolic tangent ∼ 1, and solving in terms of Tc one gets

Tc ≃
δ

2kB
e
− 1
gν0 ≃ 1.37K (5.100)

where we used some real values taken from Ref. [10], g ≃ 1meV, ν0 ≳ 1meV−1,
and taking as band width δ ≃ 0.64meV, obtained from our calculations. This
result is in a good agreement with the experimental result reported in Ref. [9]
and very close to the result obtained in [10], Tc ≃ 0.9K, where the authors
just used the McMillan formula [14, 15]. The discrepancy, therefore, might
come from the fact that the authors of [10] claim to go beyond the mean
field approximation, taking into account also the screening effect. However
our result shows that the mean field level is sufficient to provide a fairly good
estimate for the critical temperature in this system.
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Conclusions

In this work we reviewed the general approach useful to describe graphene, de-
riving the tight-binding description and its low energy limit. We showed how
this model can be generalized to a system made of two layers of graphene,
focusing in particular to the case of two layers disposed in a Bernal stacking
(AB configuration). Then we studied the twisted bilayer graphene, i.e. a sys-
tem of two graphene layers stacked in AB configuration, shifted by a small
vector d and twisted with a relative angle θ. The system is particularly in-
teresting because its properties can be modified upon varying the parameter
θ, exhibiting a transition from an highly conducting state to an insulator.
This behavior is related to the commensurability of the structure obtained by
twisting the layers. For small twist angles the layers are in a commensurate
state and this results in the appearance of a periodic pattern, the Moiré lat-
tice. Indeed, one can verify that the physical properties of the twisted bilayer
graphene are linked to the Moiré lattice constant and to the superposition be-
tween the atoms of the two layers. Studying the band structure and analyzing
the density of states, that shows the presence of a Van Hove singularity in
correspondence of the Fermi energy, one observes, for some specific values of
θ, the appearance of flat bands.
After rederiving the tight-binding model for the tBLG, making explicit the
dependence on the tunable parameter, we calculated the band structure nu-
merically. We analyzed how the truncation in the Hamiltonian to a finite
number of Moiré Brillouin zones influences the estimation of the energies. We
then analyzed how the Fermi velocity, computed numerically, depends on the
values of the angle finding those at which the velocity almost vanishes, the so-
called magic angles. The value of the first magic angle obtained numerically
is in perfect agreement with the analytical result obtained in the low energy
limit.
In the last part of the thesis we focused on the first magic angle, consider-
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ing the folded Hamiltonian valid in the low energy limit to study the form
of the interaction. We rederived the phononic Hamiltonian, and use it to
study the electron-electron interaction mediated by phonons. We showed how
this interaction is particularly strong due to the presence of different coupling
channels. We studied how the strength depends on different couplings. After
verifying that this interaction is effectively an attraction, like in a BCS hamil-
tonian, by means of a path integral approach we derived the gap equation and
obtained an estimate for the critical superconducting temperature, finding a
good agreement with the experimental result [9].
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