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Abstract

In this work we address the people re-identification problem with partic-
ular attention to long-term re-identification in which a subject has to be
re-identified even after some days from the last occurrence. In particular,
we focus on multi-frame techniques, which exploit information from multiple
frames for producing the re-identification output. We introduce three algo-
rithms which improve classification performance obtained by state-of-the-art
algorithms on two public datasets: IAS-LAB and BIWI RGBD-ID. These al-
gorithms exploit 3D shape information obtained by consumer depth sensors
like Microsoft Kinect. Since at every frame only the past history of a per-
son is taken into account by these algorithms, they are all suited for online
re-identification. Moreover, they are also efficient, in order to be executed in
real time on-board of mobile robots.
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Chapter 1

Introduction

People re-identification is the problem of automatically recognizing and as-
sociating a subject to a track, after the person had been previously seen else-
where. The solution of this problem can help different areas such as service
robotics, health-care, video-surveillance and security application in general.
Re-identification is divided into short-term re-identification and long-term re-
identification based on the time passed after having viewed a subject. The
first consists in recognizing a subject after few seconds/minutes having seen
him, the latter consists in re-identifying a person after some hours or days
having seen him, assuming that the person could have changed clothes in the
meanwhile. The algorithms developed in this work fit in the latter category,
thus cannot use some useful short-term information such as signatures com-
posed of colors of some part of the body, the trajectory of the person and
so on. As we describe in Chapter 2, the information useful for this partic-
ular task are very few and most of them are based on skeleton information
returned by a depth sensor. In this work we will describe some algorithms
which improve classification performance achieved by state-of-art algorithms
by exploiting multi-frame techniques. This goal is reached using three differ-
ent algorithms, the first one performs information fusion at the feature level
while the others perform fusion at the decision-level. They are all based on
the idea to make a decision not only relying on current data, but also looking
at the decisions made in the past for the same track. In the remainder of
this thesis, we will describe these algorithms and perform a comparison of
our results with those of the best state-of-art algorithms.

11



12 1.1. Thesis structure

1.1 Thesis structure
In Section 2, we will review the literature about people re-identification. We
will cover both short-term and long-term re-identification.

In Section 3, we will give information about methods and libraries we
have used.

In Section 4, we will describe a re-identification method based on the
Silhouette of a person. This method does not perform very well compared
with state-of-the art algorithms, but represents an efficient method which
can be used in hard real-time applications.

In Section 5, we will describe the core part of our work, introducing three
algorithms which exploit past history for re-identifying a person.

In Section 6, we will describe the datasets we have used for testing the
performance of our algorithms and we will summarize our results comparing
them to state-of-the-art results on the same datasets. Finally, we will report
our conclusions and future works in Section 7.



Chapter 2

State of the Art

The people re-identification problem is a widely studied area. In literature, it
is divided into two sub-problems: short term and long term re-identification.
Our work addresses long term re-identification, but in the next sections we
will give an overview of state of the art for both categories.

2.1 Short-term re-identification

Short term re-identification is defined as the capability to re-identify a per-
son’s track few seconds or minutes after having lost it. In literature, a wide
set of algorithms exist. Here below, we subdivide these techniques according
to the type of feature they use for re-identification.

1. Algorithms based on color information: Colors can give an ex-
tremely important information of a track. In fact, difference of clothes
and skin can often be sufficient to classify one or more tracks. The
main problem of this technique is the choice of the keypoints where
to compute colors descriptors. These keypoints are highly informative
points extracted with some techniques. Descriptors of these points are
often computed with 2D algorithms like SURF[4], SIFT[13], BRIEF[6],
ORB[19] or similar ones. There are similar algorithms also for 3D data,
such as PFH[22], PFHRGB which add color information to the previous
algorithm, FPFH[21], SHOT[24], and SHOTRGB[25].

2. Algorithms based on trajectory information: Also trajectory can
give some information. If a track is lost and after few milliseconds a
new track has been detected in a position that is congruent with the
trajectory the previous track had, they’re probably the same track. As

13



14 2.2. Long-term re-identification

reported in [8], trajectory information is used mainly for re-identifying
a lost track after few seconds in a people tracking system.

3. Algorithms based on person’s biometrics features: There a wide
category of biometrics signatures that can correctly re-identify a track.
Some examples of this biometrics signatures are: face recognition[26],
iris[27], fingerprints[10] and so on.

There are a lot of works that combine one or more of this techniques to per-
form re-identification. Here we cite the most famous and recent ones.

In [16], authors calculate color descriptors only on human joints compos-
ing a signature with them. The position of every joint is returned by the
skeletal tracker which can compute them efficiently. This results in a robust
algorithm for short-term re-identification. The problem with this method is
related to the skeletal tracker which often cannot track every joint.

In [7], authors try to divide each subject in parts, calculate local descrip-
tors for each part and then combine them to form a signature. Every local
descriptors calculate the overall chromatic content, the spatial arrangement
of colors into stable regions, and the presence of recurrent local motifs with
high entropy. This work is robust even in presence of low resolution images
and with illumination changes.

In [17], short-term re-identification is necessary for the tracking purpose
of re-assigning a track after having lost it. In this work the authors use an
online version of the Adaboost classifier([9, 14]), where the descriptors was
composed of two parts picked in the color histograms of every track. This
classifier is particularly performant because histograms are calculated only
one time per frame for all the features used.

2.2 Long-term re-identification
Long term re-identification is defined as the capability to correctly re-identify
a person days after having seen it. This field is more difficult than the pre-
vious one, because information such as color cannot be used due to clothes
changing, trajectory lose of importance and biometrics are often difficult to
use in a non-collaborative environment or if a subject is far from the sensor
due to resolution problems.
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Instead of short-term re-identification that has been widely studied, long-
term re-id is currently an open-world for researchers. We describe here some
works which try to give a solution to this problem.

In [1], the authors build a tridimensional model of every subject similar
to a sarcophagus. Later these models can be compared and verified. The
model is built taking hundreds of vertices and linking them making a mono-
lithic hull. The re-identification goal is then computed using a weighted sum
of Hellinger distances between vertices of training and testing models. This
method works also with few and low resolution images.

In [2], the authors propose some soft-biometrics features that are defined
as distances between particular points in a person point cloud. The features
considered are the following:

• d1: Distance between floor and head

• d2: Ratio between torso and legs

• d3: Height estimate

• d4: Euclidean distance between floor and neck

• d5: Euclidean distance between neck and left shoulder

• d6: Euclidean distance between neck and right shoulder

• d7: Euclidean distance between torso center and right shoulder

• d8: Geodesic1 distance between torso center and left shoulder

• d9: Geodesic distance between torso center and left hip

• d10: Geodesic distance between torso center and right hip

After computing this features with RGB-D sensors like Microsoft Kinect
and NiTE Skeletal tracker, they are combined in a signature. Then, in the
re-identification phase, a weighted sum of common features between two dif-
ferent signatures is computed obtaining a distance measurement between
signatures.

In [15], a tridimensional model of a freely moving person with Microsoft
Kinect is built. The model is created matching different point clouds of

1A geodesic distance is a distance between two points following the surface of the model
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the same person after having warped them in a standard pose. After this
training phase the re-identification task is made by means of the Iterative-
Closest-Point algorithm (see 2.2.2.1) which returns a fitness score which is a
similarity distance between the two clouds. The algorithm presented in this
work has been named Point Cloud Matching (PCM). Our work is based on
this article so, in the next section, we will explain better every phase of this
algorithm.

2.2.1 Re-Identification by means of point cloud shape

2.2.1.1 Model creation

Algorithm 1: Model Creation Algorithm
Data:

• Set of k standard poses (position and orientation)

• A multi set containing n set of frames everyone related to one subject free to move

filmed by Kinect sensor.

Result: A set of n models M = {M1,M2, ...,Mn}
for current_model ← 1 to n do

Mcurrent_model ← ∅
for ∗ current_frame in frames of current_model ∗ do

Pcurrent_frame ← ∗ point_cloud of current frame ∗
∗ Divide the points of Pcurrent_frame into body parts ∗
for b in ∗ body parts of Pcurrent_frame∗ do

∗ transform body part in standard pose ∗
end
Pcurrent_frame ←computeMLS(Pcurrent_frame)
Pcurrent_frame ←computeVoxeling(Pcurrent_frame)
Pcurrent_frame ←performICP(Pcurrent_frame,Mcurrent_model)
∗ add Pcurrent_frame points to Mcurrent_model∗

end
end

The first phase is a training phase in which person’s models are built.
Every subject is free to move in a scene in front of a Microsoft Kinect sensor.
For every frame the person’s point cloud is extracted, together with position
and orientation of the skeleton joints. The joints returned by the Kinect can
have three confidence states, not_tracked, inferred or tracked. If at least one
of the joints is not_tracked or inferred, the frame is discarded. On the other
hand, if the frame has all the joints tracked, the acquired point cloud has to
be warped to standard pose. This can be done by a segmentation of body
parts; a point p belongs to a body part q if q = argminl∈L‖p − l‖ where
L is the set of person’s links. Every body part has to be transformed in
standard pose, which is simply a similar pose in which every cloud is directly
comparable. To perform this transformation, every part is rototranslated
according to its joint current pose and the standard orientation of the same
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joint. If Qc is the orientation of a body part in the current frame and Qs is the
same joint in the standard pose of the same person than the whole rotation
to apply to the points of the part is R = Qs(Qc)

−1. After this transformation
we have a point cloud directly comparable with the others, so the next steps
the authors do is to refine the frame’s standard point cloud with the Moving
Least Square algorithm (see 2.2.1.2), a downsampling (Voxeling) of the cloud
for timing problems and the match with the Iterative Closest Point of the
cloud to the current model, adding the points to it. In this way it is possible
to make a 3D model of every subject while freely moving in the scene. The
whole algorithm pseudocode is reported in Algorithm 1.

2.2.1.2 Moving Least Square

The Moving Least Square algorithm [12] is an approximation algorithm that
tries to reconstruct a continuous function from a discrete quantity of points
by upsampling or downsampling. It is very used in computer vision in partic-
ular for reconstructing surfaces from point cloud. The Moving Least Square
algorithm used is the one implemented in the Point Cloud Library inside
the "surface" module. This method is used in the Point Cloud Matching
Algorithm for smoothing purpose.

2.2.1.3 Voxeling

In the PCM algorithm, when a point cloud of a frame is acquired, after
the smoothing phase, it is necessary to downsample its points. The ICP
algorithm (see 2.2.2.1), in fact, requires to rototranslate all the points of
the cloud, at every iteration. These steps could make ICP extremely slow if
the input cloud has too much points. A cloud downsampling with the Point
Cloud Library can be done by Voxeling. This method divides the point cloud
into small 3D boxes (voxels) with a certain edge size (called voxel size). Then,
for every voxel, it computes the mean point of the cloud points in the voxel.
These mean points compose the final point cloud.

2.2.2 Point Cloud Matching (PCM) algorithm

2.2.2.1 Iterative Closest Point

The re-identification task of [15] is done with the Iterative Closest Point
(ICP)[5] algorithm which compares each test frame with every model saved
in the training phase. This algorithm is used in computer vision to register
two similar point clouds. Its goal is to minimize the distance between the
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Algorithm 2: Point Cloud Matching Algorithm
Data:

• Set of M models of n subjects freely to move computed by algorithm 1

• A multi set containing n set of test frames everyone related to a subject filmed

by Kinect sensor.

Result: A set of n classification matrices C = {C1, C2, ..., Cn} everyone with Nk rows and n
columns where k is the index of the model considered and Nk is the number of test
frames representing subject k

for ∗ current_frame in frames of current_model ∗ do
Pcurrent_frame ← ∗ point_cloud of current frame ∗
∗ Divide the points of Pcurrent_frame in body parts∗
for b in ∗ body parts of Pcurrent_frame∗ do

∗ transform b points in standard pose∗
end
Pcurrent_frame ←computeMLS(Pcurrent_frame)
Pcurrent_frame ←computeVoxeling(Pcurrent_frame)
for m← 1 to n do

fitness_scores ← computeReIdentificationScores(Pcurrent_frame, Mm)
∗ fill row current_frame with fitness_scores in the classification matrix Cm∗

end
end

two clouds via a mean-square distance metric. This can be done following
these passages:

• Compute closest points of the clouds: closest points are points
which have the smallest euclidean distance from other cloud points.

• Compute the registration: compute the roto-translation to the clos-
est point to reduce the euclidean distance

• Apply the registration: apply the registration to all the points of
the cloud

• Repeat the above points until the mean square distance is above a
threshold or until a maximum number of iterations is reached.

It is demonstrated that the algorithm converges to the minimum distance
between the clouds, but the number of iterations needed can be very large.
However, in [5], authors show that the first iterations compute a large roto-
traslation of the first cloud, then the remaining iterations refine with small
changes the registration. So, if the input clouds are close to each other, it
can be often sufficient to give a not so high maximum number of iterations
to the algorithm, for obtaining a very good registration.
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2.2.2.2 The algorithm

The Point Cloud Matching algorithm requires models created by algorithm
1 and returns a classification matrix C for each model given. This algorithm
is pretty similar to algorithm 1 in which models are created. Every frame is
transformed in standard pose and, after a MLS and a Voxeling, it is matched
with every model. The method computeReIdentificationScores computes the
fitness scores between the frame cloud and the models using ICP. These
scores represent the similarity between the frame cloud with every model in
the gallery. These values are put in a row in the final matrix. The whole
algorithm pseudocode is reported in algorithm 2
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Chapter 3

Materials and Methods

In this section we will describe materials, libraries and conventions adopted
in this thesis. The algorithms we have implemented are written in C++ and
tested with Ubuntu 12.04.

3.1 Robot Operating System (ROS)

ROS(Robot Operating System)1[18], is the middleware we have used in our
work. It has been released to provide a unique framework for robotics. It
comes with a wide collection of state-of-the-art algorithms ready to use and
hides sensor configuration to the end user. Furthermore it has a modular
organization and provides a standard way to send messages.

ROS architecture can be visualized as a peer-to-peer graph in which ROS
nodes (processes) communicate between each other with messages. These
are the main concepts in ROS:

• Node: A node in ROS is a running process. It can do operations,
algorithms and send/receive messages from/to other nodes.

• Message: A message is a data structure representing data that nodes
send/receive to/from each other. There are primitive messages like
integers, strings, vectors etc. and it is possible to define own messages,
composed of one or more primitive messages.

• Packet: ROS is organized into packets; a packet is the set of nodes
and code relative to a task. A user can develop his own packets that

1http://www.ros.org
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Figure 3.1: An example of ROS graph

can be integrated with other packets freely downloadable from ROS
community websites.

• Topic: A topic is a named bus which is used by nodes to send/receive
messages by publish/subscribe primitives. Every topic is associated to
a message file and can be used by more nodes at the same time.

• Service: A service is an alternative way of communication in ROS that
does not use topics. It’s thought for request/reply RPC interactions.
Services are composed of two messages one for the request and the
other for the reply, and it is defined by a name through which is called
by nodes.

• Bag: ROS gives the possibility to record one or more topics. These
recordings are called bags, and can be played in a second time. When
a bag is played the recorded topics appear in the ROS graph, making
possible the interaction with them.

In figure 3.1 we report an example of ROS graph in which nodes are
mapped into nodes of the graph and topics are mapped into edges. It is a
directed graph because a node can subscribe a topic (ingoing arc) and publish
a topic(outgoing arc).
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3.2 Point Cloud Library

The Point Cloud Library(PCL)2[20] is an open source library that provides
many algorithms for processing N-th dimensional image data. It is very used
in computer vision and in robotics for robot perception, it is Open-Source
and it is well integrated in ROS. The library contains state of the art algo-
rithms for: filtering, feature estimation, surface reconstruction, registration,
model fitting, segmentation and many others.

In this work, every point cloud we take from the Kinect sensor is manip-
ulated with this library. We used it for these things:

• Acquiring and saving point clouds

• Down-Sampling (Voxeling) a point cloud

• Calculating distance between points in a cloud

• Performing the ICP algorithm (see section 2.2.2.1)

• Visualizing clouds

3.3 Microsoft Kinect

Microsoft Kinect (fig. 3.2(a) and 3.2(b)) is the depth camera we have used
for this work. It is a camera that provides depth combined with RGB clas-
sic information. Depth information comes from a range sensor developed
by PrimeSense, an Israelian company. This sensor is based on an infrared
pattern projection technology which measures depth based on how the pat-
tern is deformed in the scene. It allows computers to directly view in three
dimensions, and, for this reason, it has been largely used by universities for
research purpose. Acquisition of the depth data suffers in presence of infrared
light that can disturb the view of the projected pattern. For this problem,
Microsoft Kinect sensor cannot be used outside or in presence of infrared
light sources. Also black objects cause some problems with the depth data
due to absorption of the light.

Such explained in [11], Microsoft Kinect can extract depth information by
a triangulation process. The laser projects a beam of infrared light which is
split into multiple beams by diffraction creating patterns of speckles. These

2http://www.pointclouds.org

http://www.pointclouds.org
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(a) Microsoft Kinect (b) Microsoft Kinect Hardware

(c) Microsoft Kinect v2

Figure 3.2: Microsoft Kinect sensors

speckles will appear shifted in the scene filmed by Kinect, basing on the
position of the objects. Kinect sensor obtains a disparity map comparing a
reference pattern with the one obtained by the current scene. In Figure 3.3
is explained the relation within the distance of a point k and the measured
disparity d. The coordinate system of the figure has Z perpendicular to the
image plane, X axis orthogonal to Z along the baseline b and Y orthogonal
to Z and X like a right handed coordinate system. Assume that an object in
the reference plane was at Z0 distance with the sensor and that the disparity
measured was d, then by the triangles similarity:

D

b
=
Z0 − Zk
Z0

(3.1)

and:

d

f
=
D

Zk
(3.2)

Where Zk is the depth distance of the point k we want to measure, D is
the displacement of the point k, b and f are respectively the base length and
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Figure 3.3: Depth and disparity relations

the focal length of the infrared camera and d is the observed disparity. From
equations 3.1 and 3.2 with trivial passages we can finally obtain Zk:

Zk =
Z0

1 + Z0

fb
d

(3.3)

In late 2013, Microsoft released Microsoft Kinect v2 (fig. 3.2(c)). This
sensor adopts a new technology for retrieving depth information based on
time-of-flight technology. The new sensor estimates a depth matrix measur-
ing the time of flight of an emitted signal. This technology can be reliable
also in outdoor scenes, but seems to have problem with black objects like the
previous one and introduce noisy pixels in presence of particular reflecting
objects like coins or mirrors.

3.4 Skeletal Tracker

Skeletal trackers allow us to extract information about skeletal joint posi-
tions and orientations of one person in a scene. These information are very
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important for some algorithms described in Section 2, in fact, these points
can be used to build a person signature.

There are several skeletal trackers available, we describe here the most
famous and used:

• Microsoft Skeletal Tracker [23]: With Kinect sensor, Microsoft also
developed a skeletal tracker, included in the SDK freely downloadable
from the Microsoft website3. This tracker can track 20 frontal person’s
joints (see fig. 3.4(a)) at 30 fps. It can also track until 2 people joints
together in the scene and recognizes until six people together. The
working distance of the tracker is from 0.5m to 3.5m and it can provide
also the orientation of the joints (absolute or relative).

With the Kinect v2, a new skeletal tracker has been released. This
sensor can track 25 joints (fig. 3.4(b)) introducing new joints for hands
and neck.

• NiTE Skeletal Tracker: This skeletal tracker was developed by
OpenNI (Open Natural Interaction). It can track 15 joints of peo-
ple in a scene. It is less precise than Kinect Skeletal tracker, but it
can track joints also when a person is backward and it can be included
from ROS.

• PCL Skeletal Tracker: Also in the Point Cloud Library [20], a skele-
tal tracker exists. However, this tracker requires a Nvidia Graphic Card
compatible with Nvidia CUDA and it is less precise than the previous
ones. For these reasons, this tracker has not been used in our work.

3.5 Face Detection
The Point Cloud Matching algorithm uses a face detector algorithm [26] for
estimating when a subject is frontal or not. In the classic algorithm this
information is used only for a validation check on the skeleton of the subject,
deciding if the frame is good for classification or not. In our algorithms we
used the face detector also to differentiate the classification sums and the
multi-frame models (see 5.1 and 6.4). In this way, we have noticed that we
can improve classification performance of the PCM algorithm.

3http://www.microsoft.com/en-us/kinectforwindows/

http://www.microsoft.com/en-us/kinectforwindows/
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(a) Kinect Skeletal joints (b) Kinect v2 Skeletal Joints

(c) NiTE Skeletal Joints

Figure 3.4: Skeletal Trackers
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Chapter 4

Silhouettes based Techniques

In this work we have introduced the concept of Silhouette. A silhouette can
be viewed as a sub-sampling of a 3D model that describes a side view of a
person. This is represented by a very small subset of the original model’s
points so computations with them are extremely efficient. In this section,
we will formalize what silhouettes are, how we construct and use them to
perform long term re-identification.

4.1 Silhouette
A silhouette represents the side view of a person. Before introducing it we
have to give some definitions.

Def. : Given a model M , x0, y0 ∈ R, ε, γ ∈ R+ we call bucket(x0, ε, y0, γ,M)
a set of points: B = {P = (xP , yP , zP ) ∈ R3 | xP ∈ (x0, x0 + ε) ∧ yP ∈
(y0, y0 + γ) ∧ P ∈M}.

A bucket represents a set of points of a model with limited x and y compo-
nents. In every bucket there are points with similar x and y components.
Now, we have to extract a subset of these points which better represents the
front side view of a person than the whole bucket’s points do.

Def. Given λ ∈ (0, 1) we call important points of a bucket B a set of points
Ip(B, λ) = {P = (x, y, z) ∈ R3 | z ∈ (Z(1− λ), Z)} where Z is defined
as: Z = {z | p = (x, y, z) ∈ B | ∀p̂ = (x̂, ŷ, ẑ) ∈ B ⇒ z ≥ ẑ}

The important points have the greatest z components in the bucket. Every
important points set Ip(B, λ) is then represented by a single mean point
pµ(B) = (xµ, yµ, zµ) with these components:

xµ =
ε

2
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yµ =
γ

2

zµ =

∑
p=(x,y,z)∈Ip(B,λ)

z

|Ip(B, λ)|
At this point we have defined buckets and mean points that represent them.
A silhouette is a particular set of these mean points with buckets picked on
the front of the model. We now define what we mean with front of the model,
using minimal bounding box of a model M .

Def. : Given a model M, a bounding box of M, written PM , is a rect paral-
lelepipedon with this property:

PM(B) = {∀q ∈M ⇒ q ∈ PM(B)} (4.1)

Figure 4.1: A model cloud with two bounding boxes, the green one is the
minimal

We are interested in the minimal bounding box of the model M , which is
simply a bounding box that, for every face, it has at least one point of the
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model M that stays on the face.

In figure 4.1 a point cloud of a person (the model) with two bounding
boxes around it can be viewed. The green one is the minimal bounding box.
Now we are interested in selecting a family of buckets B = {B1, B2, ..., Bn}
along the middle column of the front face of the bounding box.

Now we are ready for the silhouette definition:

Def. : Given a family of buckets of a model M

BM = {B1(x1, ε1, y1, γ1), B2(x2, ε2, y2, γ2), ..., Bn(xn, εn, yn, γn)}

along the middle column of the frontal face of the model’s minimal
bounding box PM of the model M , with the following property:

yi + γi = yi+1

∀1 ≤ i < n, xi = x ∧ εi = ε

We call Silhouette of the modelM and we write SM , the set of n mean
points of the family of buckets B = B1, B2, ..., Bn.

In figure 4.2 a set of figures are shown, that represent silhouettes of a model
with different parameters.

4.2 Silhouettes Matching

Silhouettes are light-weight point clouds that represent the side view of a
person. The algorithm we have developed is described in Algorithm 3.
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Algorithm 3: Silhouette mean distance
Data:

• Set of gallery models M = {M1,M2,M3, ...,Mn} of n people

• Set of test frames F = {F1, F2, ..., Fm} representing the same n

people for whom we have a model, but in different days

Result: A rxn (r is the number of skeleton valid frames on m frames) classification matrix C in
which at i-th row (1 ≤ i ≤ r) we have n value, the j-th (1 ≤ j ≤ n)represent the mean
distance between silhouette of the frame i and the model j

1 M initialization and computing of SM the family of models’ silhouettes
2 j ← 1
3 for i ← 1 to m do
4 Fi ← current_frame
5 Ski ← getSkeleton(Fi)
6 if Ski is_valid then
7 j ← j + 1
8 Ti ← getPointCloud(Fi)
9 STi ← computeStandardPose(Ti)

10 Si ← computeSilhouette(STi)
11 for k ← 1 to n do
12 ∗ Si = {P1, P2, ..., Pt} points of the current silhouette ∗
13 sum ← 0
14 for l ← 1 to t do
15 ∗ SMk

= {PMk1
, PMk2

, ..., PMkt} points of the current silhouette ∗
16 sum ← sum + z (PMl) - z(Pl)
17 end
18 Cjk ← sum /t

19 end
20 else
21 continue
22 end
23 end

This algorithm is pretty similar to the one used in [15]. The only difference
is the use of the silhouette instead of the full person point cloud. The output
of the algorithm is a rxn classification matrix, where r is the number of
valid frames from the total m frames and n is the number of models in the
gallery. The (i, j)-th element of this matrix contains the mean distance of
the i-th frame’s silhouette to the j-th model’s silhouette. This algorithm is
the first we have tried in our work, but we have obtained bad results wrt
reference article [15]. The main problem is the matching of the silhouettes
between test frames and gallery models. The test frames silhouettes are not
so close to gallery models silhouettes due to noise in frame acquiring. With
new sensors like the Microsoft Kinect v2 combined with Multi-frame PCM
algorithm the test silhouettes should be more similar to gallery ones and the
algorithm should perform better.
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(a) A model obtained
with Algorithm 1

(b) Silhouette of the
model with 300 points

(c) Silhouette of the
model with 150 points

(d) Silhouette of the
model with 75 points

(e) Silhouette of the
model with 50 points

Figure 4.2: Model and silhouettes
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Chapter 5

Multi-frame based Techniques

In this section we will explain the novel techniques we have introduced in this
work. Current re-identification methods make the classification of a frame
only upon its characteristics. In our algorithms the decision on a frame is
based on its characteristics and also on the previous decisions made for the
track that has generated that frame. In fact the tracking information is not
difficult to obtain, and can make the classification more stable specifically in
presence of noisy frames.

We propose three different algorithms representing different voting scheme.
They are all based on the PCM algorithm already described (see 2.2.2). This
is a list of the algorithms:

• Multi-frame PCM: This algorithm is based on the idea to match not
only a single frame against the gallery models, but a test model, built
with the last K − 1 frames seen and the current one. This algorithm
represents a classifier based on information fusion at the feature level.

• LastK PCM: This algorithm, at frame i, takes as i-th row of the
classification matrix, the sum of the last K−1 rows of the classic PCM
classification matrix plus the classification scores of the i-th frame with
the PCM algorithm. This algorithm is based on information fusion at
the decision level.

• RankingBased PCM: This algorithm is similar to the previous one,
but instead of scores it takes into account only the rank gained by every
model. At frame i, it makes a sum of the classification ranks of the
last K − 1 frames and the current one taken in the PCM classification
matrix and it writes the results on the i-th row of the classification

35
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matrix. This algorithm is based on information fusion at the decision
level.

5.1 Multi-frame Point Cloud Matching

The Point Cloud Matching algorithm (sez. 2.2.2), matches every single test
frame with the models in the gallery set, which are built with a wide collection
of training frames. The main idea of the Multi-frame PCM algorithm, is to
build a test model by registering together the test frames previously seen.
With this approach, we obtain a test model which can be compared with
gallery’s models by means of the classic PCM algorithm.

5.1.1 ModelCreation

How we create models and manage frames inside of it is a critical aspect for
obtaining good results. In particular, we have to define how many frames to
keep in the test model, how to align them and how to remove a frame if the
maximum number of frames in the model is reached and a new one has to
be inserted.

A model is a set of previously registered frames, so when we receive a new
test-frame from the sensor we do the classic operations (computeStandard-
Pose, MovingLeastSquare and StatisticalOutlierRemoval), and we do an It-
erative Closest Point on the test-model adding the registered frame points to
the model, taking track of the fitness score returned by ICP. The first frame
of a model is added without the ICP step, and the fitness score saved is the
best from the matching with gallery’s models.

When the limit of frames in the test model is reached, the points of the
worst frame are removed (based on fitness scores) and the next frame is added
to the test model. If a frame has a too low fitness score with the test model,
it is discarded.

5.1.2 Multiframe PCM Algorithm

The algorithm pseudocode is listed in Algorithm 4. The only difference with
the classic PCM Algorithm (see algorithm 2), is the presence of the test
model and the addFrame method.
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Algorithm 4: Multi-frame Point Cloud Matching Algorithm
Data:

• Set of M models of n subjects freely to move

• A multi set containing n set of test frames everyone related to a subject free to move

filmed by Kinect sensor.

Result: A set of n classification matrix C = {C1, C2, ..., Cn} everyone with Nk rows and n
columns where k is the index of the model considered and Nk is the number of test
frames representing subject k

test_model ← ∅
for ∗ current_frame in frames of current_model ∗ do

Pcurrent_frame ← ∗ point_cloud of current frame ∗
∗ Divide the points of Pcurrent_frame in body parts∗
for b in ∗ body parts of Pcurrent_frame∗ do

∗ transform b points in standard pose∗
end
Pcurrent_frame ←computeMLS(Pcurrent_frame)
Pcurrent_frame ←computeVoxeling(Pcurrent_frame)
score ← computeICP(Pcurrent_frame, test_model)
test_model ← addFrame(Pcurrent_frame, score)
for m← 1 to n do

fitness_scores ← computeReIdentificationScores(test_model, Mm)
∗ fill row current_frame with fitness_scores in the classification matrix Cm∗

end
end

As explained before, addFrame makes possible to add a frame to the
test-model following the rules in section 5.1.1. It simply adds the current
frames points to the test-model if the maximum number of frames has not
be reached, otherwise, it removes the points of the worst frame before adding
the new one.

This algorithm is based on the idea to match a training model with a
testing model, obtained by combining past information of the person and
by making a so-called information fusion at the feature-level. With this
algorithm, we have added two parameters to the classical one: the maximum
number of frames in the test model and the maximum value of score allowed
to a frame to be inserted in the test model.

5.2 Last K Point Cloud Matching

This algorithm (alg. 5) implements a classifier based on information fusion
at the decision-level. The idea behind it is to give a weight to every decision
made by the PCM algorithm at every frame. The weight that is natural
to use is the fitness score of every frame with every model in the gallery
obtained with the standard PCM algorithm. Thus, frame i will be matched
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with gallery models obtaining a row of fitness scores for every model. This
row is not filled directly in the matrix, but is previously summed with the
last K − 1 rows of the standard matrix. This point is important because if
we sum the last K − 1 rows of the current matrix instead of the standard
one, we make a different operation, giving more importance to each frame.
This algorithm has only one parameter to set (K).

Algorithm 5: LastK Point Cloud Matching algorithm
Data:

• Set of M models of n subjects freely to move

• A multi set containing n set of test frames everyone related to a subject

filmed by Kinect sensor.

Result: A set of n classification matrices C = {C1, C2, ..., Cn} everyone with Nk rows and n
columns where k is the index of the model considered and Nk is the number of test
frames representing subject k

for ∗ current_frame in frames of current_model ∗ do
Pcurrent_frame ← ∗ point_cloud of current frame ∗
∗ Divide the points of Pcurrent_frame in body parts∗
for b in ∗ body parts of Pcurrent_frame∗ do

∗ transform b points in standard pose∗
end
Pcurrent_frame ←computeMLS(Pcurrent_frame)
Pcurrent_frame ←computeVoxeling(Pcurrent_frame)
for m← 1 to n do

fitness_scores ← computeReIdentificationScores(test_model, Mm)
∗ fill row current_frame in the classification matrix Cm, with sum of current
fitness_scores and the last K-1 rows previously inserted in the matrix of the classic
algorithm∗

end
end
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5.3 Ranking Based PCM

Algorithm 6: RankingBased Point Cloud Matching algorithm
Data:

• Set of M models of n subjects freely to move

• A multi set containing n set of test frames everyone related to a subject free to move

filmed by Kinect sensor.

Result: A set of n classification matrix C = {C1, C2, ..., Cn} everyone with Nk rows and n
columns where k is the index of the model considered and Nk is the number of test
frames representing subject k

for ∗ current_frame in frames of current_model ∗ do
Pcurrent_frame ← ∗ point_cloud of current frame ∗
∗ Divide the points of Pcurrent_frame in body parts∗
for b in ∗ body parts of Pcurrent_frame∗ do

∗ transform b points in standard pose∗
end
Pcurrent_frame ←computeMLS(Pcurrent_frame)
Pcurrent_frame ←computeVoxeling(Pcurrent_frame)
for m← 1 to n do

fitness_scores ← computeReIdentificationScores(test_model, Mm)
ranking ← computeRanking(fitness_scores)
∗ fill row current_frame of the ranking matrix Km with ranking ∗
∗ fill row current_frame of the classification matrix Cm with sum of the last K rows
of Km matrix ∗

end
end

The Ranking-based Point Cloud Matching (Algorithm 6) is an algorithm
that implements information fusion at the decision-level like the algorithm
in Section 5.2. The idea is the same of the previous algorithm, but instead
of using fitness scores as weights, we use only the order of importance of the
fitness scores.

We give an increasing ranking to a set of n fitness scores ordered in
decreasing way, because the similarity is inversely proportional with these
scores. With this method the best fitness score the current frame has reached,
receive the lowest rank, the second best fitness score receive the second lowest
rank and so on. Thus, we are weighting the models with a rank in order of
similarity, losing the information about fitness score.

After the computation and the assignment of this ranking, the algorithm
proceeds exactly as the LastK-PCM algorithm (see 5.2), summing the last
K rows of the ranking matrix. This algorithm has two parameters:

• ranking vector : A set of n integers in increasing order where n is the
number of gallery models. This represents the weight assigned to every
position. In our test, we have used a linear ranking: 1, 2, ..., n.
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• K: number of frames to sum



Chapter 6

Experiments

In this section we will summarize the results we obtained with the novel
techniques we introduced. All the algorithms have been tested on two public
datasets, as explained in Section 6.1. We will give also a comparative table
with the classification performance for all the algorithms tried. For mea-
suring classification performance we have used the rank1 and Cumulative
Matching Characteristic Curves (CMC) which are widely used for evaluating
re-identification algorithms ([15], [3]).

In order to use this measurements, the classification algorithm has to pro-
duce a kxn matrix where k is the number of valid frames and n is the number
of models in the training set. Every row i of this matrix contains n floats
that represent the similarity of the current frame i against the models. If the
minimum value of this sequence is in the column j, (j ≤ n) then model j is
classified as the best similar to the frame i, if the column l (l ≤ n) contains
the second minimum than the model l is classified as the second best similar
and so on.

rank-1 is defined as the percentage of frames classified with the best model
i (model i has the lowest fitness score among gallery models), given that the
correct model of the frame was i.

The Cumulative Matching Characteristic Curve is a way to visualize dif-
ferent ranks in a coordinate system. The measurement we used about it is
the nAUC which is the area behind it. The nAUC can be expressed with
the following formula:

nAUC =

∑n
i=1 ranki

number of frames
(6.1)
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where ranki is the number of test frames whose correct model is classified in
the first i fitness scores.

6.1 Dataset
The datasets we have used for long-term re-identification are all public. We
report here some information about them:

• IAS-Lab RGBD-ID Dataset1: This dataset is made of 22 tracks of
11 different people. It is a collection of frames recorded with the NiTE
middleware. For every frame there are the following files:

– rgb image(640x480 pixels)

– depth image(640x480 pixels)

– user map(640x480 pixels)

– txt file with skeleton tracker joints position and links orientation
(estimated with NiTE middleware)

For every subject there are three sequences:

– Training: With these frames we construct the 3D model of every
subject.

– TestingA: In these frames every subject has different clothes than
in its Training sequence.

– TestingB: In these frames every subject has the same clothes he
had in Training, but the sequence is recorded in a different room.

• BIWI RGBD-ID Dataset2: The BIWI RGBD-ID Dataset is a RGB-
D dataset of people targeted to long-term people re-identification from
RGB-D cameras.

It contains 50 training and 56 testing sequences of 50 different people.
The dataset includes:

– synchronized RGB images (captured with the highest resolution
possible with a Microsoft Kinect for Windows i.e. 1280x960 pixels)

– depth images

– segmentation maps
1http://robotics.dei.unipd.it/reid/index.php/8-dataset/5-overview-iaslab
2http://robotics.dei.unipd.it/reid/index.php/8-dataset/2-overview-biwi

http://robotics.dei.unipd.it/reid/index.php/8-dataset/5-overview-iaslab
http://robotics.dei.unipd.it/reid/index.php/8-dataset/2-overview-biwi
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– skeletal data (as provided by Microsoft Kinect SDK)

In addition to this, for every person information about ground plane
coefficients are available.

The dataset is divided in three parts:

– Training: In these sequences, people performs a certain route
and motions in front of the Kinect sensor. These sequences are
targeted to build 3D models of people.

– Still: In these sequences 28 people out of 50 present in the training
phase are recorded in still position. Every person is still or slightly
moving in place and most of them are dressed differently with
respect to the training video.

– Walking: In these sequences the same people of the Still records
are recorded while they are walking in the scene. They perform
two walks frontally and two diagonally with respect to the Kinect.

6.2 PCM performance analysis
The first test we have done in our work is the analysis of the classification per-
formance of the Point Cloud Matching algorithm with some new sequences.
These sequences contain people already recorded for the IAS-Lab RGBD-ID
Dataset (see Section 6.1) two years after its recording. The people have been
recorded while rotating on theirself from −60 degrees to 60 degrees with re-
spect to the Kinect sensor as reported in Figure 6.2. This orientation angle
has been computed converting to euler angles the quaternion of the hip joint
relative to the Kinect.

A sequence we have analysed is about the model 4 of the IAS-Lab RGBD-
ID dataset. We have collected about 600 frames of him at various angles with
respect to the Kinect sensor. The total rank-1 gained by the PCM algorithm,
with this sequence, was 43.44% and the nAUC was 89.99%, confirming that
the algorithm still works fine even after two years. In Figure 6.2, is reported
the fitness scores gained by PCM algorithm with the new sequence recorded
and in Figure 6.2 is reported the nAUC with the same sequence. The model
4 fitness scores with the frames recorded are highlighted in black. The curves
in the figure show that the best classification angle of a person for the PCM
algorithm is from −20 to 20 degrees. The more a person varies his angle with
respect to the Kinect, the more the performance of the algorithm degrades
quickly even if the model is correctly recognized.
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Figure 6.1: Orientation angles assumed by the person in the new sequence
recorded. The person is in still position while he varies its angle with respect
to the Kinect sensor

6.3 Multi-frame PCM

The Multi-frame Point Cloud Matching algorithm (Algorithm 4) consists of
a multi-frame test model built online with test frames. This model is then
matched with gallery models obtaining fitness scores. This algorithm has
two parameters: the maximum number of frames in the test-model and the
maximum fitness score that can have a single test frame matched with the
current non-empty test-model. The latter parameter has been set to 0.1 while
we have done a grid-search tuning of the number of frames in the test-model,
using the datasets described in Section 6.1. In Tables 6.1, 6.2, 6.3, and 6.4 we
report the results we have reached with the best parameters on the datasets.
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Figure 6.2: Fitness scores obtained with the PCM Algorithm with a new test
sequence of model 4 recorded two years after the model has been built

In these tables our results are reported in white background cells while the
ones obtained in the reference article[15] are visible in grey background cells.

TESTING A IAS-Lab RGBD-ID DATASET Reference
Results: 28,60% 73,20%

FRAMES IN THE MODEL rank1 nAUC
2 31,15% 74,79%
4 32,27% 75,54%
5 31,45% 75,53%
6 31,67% 75,30%
8 31,80% 74,78%

Table 6.1: Multi-frame PCM Algorithm results on TestingA (IAS-Lab
RGBD-ID dataset)
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Figure 6.3: Cumulative Matching Characteristic Curve with the new test
sequence of model 4

TESTING B IAS-Lab RGBD-ID DATASET Reference
Results: 43,70% 81,70%

FRAMES IN THE MODEL rank1 nAUC
2 41,29% 80,33%
4 44,59% 81,52%
5 46,02% 81,68%
6 46,74% 81,91%
8 49,52% 81,40%

Table 6.2: Multi-frame PCM Algorithm results on TestingB (IAS-Lab
RGBD-ID dataset)
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STILL BIWI RGBD-ID DATASET Reference
Results: 32,50% 89,00%

FRAMES IN THE MODEL rank1 nAUC
2 29,06% 83,97%
4 30,95% 81,80%
5 30,47% 81,67%
6 27,12% 81,35%
8 25,66% 80,93%

Table 6.3: Multi-frame PCM Algorithm results on Still (BIWI RGBD-ID
dataset)

WALKING BIWI RGBD-ID DATASET Reference
Results: 22,40% 81,60%

FRAMES IN THE MODEL rank1 nAUC
2 24,26% 81,11%
4 18,70% 77,16%
5 17,62% 77,60%
6 15,61% 76,80%
8 17,39% 76,82%

Table 6.4: Multi-frame PCM Algorithm results on Walking (BIWI RGBD-ID
dataset)

This method improves the results for the IAS-Lab RGBD-ID dataset, but
it performs worse in the BIWI RGBD-ID dataset. This is probably due to
the noise in the test model. Even if the current frame is registered with the
model before its inclusion in it, the noise in Kinect depth estimation affects
the fitness scores. The results are more sensitive to noise in the BIWI dataset,
because there are a considerable number of similar people recorded instead
of the 11 in the IAS-Lab RGBD-ID.

With new sensors like Kinect v2, we think that this algorithm can perform
extremely better. From the first tests we have done, in fact, the point clouds
recorded with this new sensor seem to be less noisy and the contribution of
every frame to the test model should be more positive.
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6.4 LastK Point Cloud Matching

The LastK PCM algorithm is based on the sum of the last K fitness scores.
It has only one parameter: the number of frames we consider in the total
sum for every row (K). After the tuning phase of this parameter, we have
obtained the results reported in Tables 6.5, 6.6, 6.7 and 6.8.

TESTING A IAS-Lab RGBD-ID DATASET Reference
Results: 28,60% 73,20%

K rank1 nAUC
25 35,24% 73,82%
50 40,01% 74,80%
75 42,01% 75,46%
100 45,92% 75,95%

Table 6.5: LastK PCM Algorithm results on TestingA (IAS-Lab RGBD-ID
dataset)

TESTING B IAS-Lab RGBD-ID DATASET Reference
Results: 43,70% 81,70%

K rank1 nAUC
25 47,45% 80,35%
50 49,96% 81,01%
75 51,41% 81,43%
100 51,71% 81,83%

Table 6.6: LastK PCM Algorithm results on TestingB (IAS-Lab RGBD-ID
dataset)

STILL BIWI RGBD-ID DATASET Reference
Results: 32,50% 89,00%

K rank1 nAUC
25 32,59% 85,76%
50 30,40% 85,63%
75 30,97% 85,71%
100 30,30% 85,77%

Table 6.7: LastK PCM Algorithm results on Still (BIWI RGBD-ID dataset)
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WALKING BIWI RGBD-ID DATASET Reference
Results: 22,40% 81,60%

K rank1 nAUC
25 25,89% 81,89%
50 26,77% 81,35%
75 26,77% 81,39%
100 26,77% 81,39%

Table 6.8: LastK PCM Algorithm results on Walking (BIWI RGBD-ID
dataset)

The results we have obtained with this algorithm show a better improve-
ment in IAS-Lab RGB-ID Dataset. In the more challenging BIWI RGBD-ID
dataset, the results are similar to those of the standard PCM algorithm. As
for the Multi-frame algorithm results (see Section 6.3 ), also in this case we
are giving too importance to the noise. In fact, considering fitness scores
sums we consider also frames with bad scores, compromising the positive
contribution that the history gives. Thus, this algorithm can be improved
with a quality-control check. One interesting way is to check if the mean fit-
ness score of a frame significantly improves the variance of the fitness scores
if it is added in the sum.

6.5 Ranking-Based Point Cloud Matching

The Ranking-Based Point Cloud Matching algorithm addresses the people
re-identification problem like the LastK PCM algorithm (see Section 6.4).
The difference is that LastK takes into account the fitness scores of the last
K frames considering noisy frames like the others. On the contrary, Raking-
Based PCM algorithm, gives a fixed ranking to the fitness scores of a frame
ordered by similarity on the gallery models. In this way a noisy frame does
not change so much the variance of the sum as it happens in the LastK PCM
algorithm. With this algorithm there are two parameters: the ranking list of
integers and the number of frames considered in the sum (K). In our work
we have used the unit list (1, 2, ..., n) as the ranking list and we have tuned
K with it. The results with the datasets are reported in Tables 6.9, 6.10,
6.11 and 6.12.
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TESTING A IAS-Lab RGBD-ID DATASET Reference
Results: 28,60% 73,20%

K rank1 nAUC
25 33.85% 76.15%
50 34.39% 76.46%
75 35.53% 76.63%
100 34.41% 76.66%

Table 6.9: Ranking-Based Algorithm results on TestingA (IAS-Lab RGBD-
ID dataset)

TESTING B IAS-Lab RGBD-ID DATASET Reference
Results: 43,70% 81,70%

K rank1 nAUC
25 49.89% 84.53%
50 52.41% 86.41%
75 55.20% 87.88%
100 55.97% 88.53%

Table 6.10: Ranking-Based Algorithm results on TestingB (IAS-Lab RGBD-
ID dataset)

STILL BIWI RGBD-ID DATASET Reference
Results: 32,50% 89,00%

K rank1 nAUC
25 33.61% 91.22%
50 33.65% 91.06%
75 34.88% 91.09%
100 34.78% 91.15%

Table 6.11: Ranking-Based Algorithm results on Still (BIWI RGBD-ID
dataset)
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WALKING BIWI RGBD-ID DATASET Reference
Results: 22,40% 81,60%

K rank1 nAUC
25 27.60% 88.65%
50 29.04% 88.84%
75 29.04% 88.89%
100 29.04% 88.89%

Table 6.12: Ranking-Based Algorithm results on Walking (BIWI RGBD-ID
dataset)

The results we have obtained with this algorithm improve all the reference
article results on both datasets. With the ranking, we achieve the goal to give
less importance to the noisy frames. However, we have less improvement in
some cases like TestingA with respect to the previous algorithm (Section 6.4).
With this algorithm we give the same importance to all the test frames and,
with a method that detects noisy frames, this algorithm can be overtaken by
other algorithms like LastK Point Cloud Matching.

6.6 Future works
The results presented in this work show a general performance improvement
in rank-1 and nAUC with regard to the previous work [15]. There are some
possible improvements that can be done:

• Introduce Kinect v2: In this work we have used Microsoft Kinect
sensor which uses a structured light projection algorithm to capture
depth information as explained in Section 3.3. From some experiments
we have done, Kinect v2 sensor can give more accurate and less-noisy
depth information. Running the algorithms we have proposed in new
datasets recorded with this sensor should be sufficient to obtain good
results.

• Introduce a way to detect noisy frames: As described before (Sec-
tion 6.5), if we detect noisy frame we can improve the PCM algorithm
classification performance and the multi-frame techniques we have in-
troduced. A way to do this is to consider the current fitness scores with
the variance of the fitness scores previously seen. Like described in Sec-
tion 6.2 in fact, the orientation of a person considerably affects these
scores and can give a precious information on a bad classification.
Another idea, if the re-identification scene is always the same, is to
train a classifier to predict if a frame is noisy or not.
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• Combine different algorithms together: Every algorithm we have
introduced show an improvement in the classification performance with
regard to the classic one even if only with one dataset. An interesting
idea is to fuse these algorithms together, with a set of weights. In this
way, we will combine different decisions overtaking problems of every
single algorithm.



Chapter 7

Conclusions

In this work we introduced three new algorithms for long-term re-identification
based on the Point Cloud Matching algorithm [15]. These algorithms exploit
3D shape information obtained by consumer depth sensors like Microsoft
Kinect. Moreover, they are also efficient, in order to be executed in real time
on-board of mobile robots.

The Multi-frame Point Cloud Matching algorithm is a method that con-
sists in building a person model online also at test time with the last K
frames acquired. Later this model is used instead of the current frame for
computing the fitness scores with the training models.

The LastK Point Cloud Matching algorithm performs classification by
exploiting the sum of the fitness scores of the last K frames computed with
the classic Point Cloud Matching algorithm.

The Ranking-Based Point Cloud Matching algorithm uses a similar con-
cept of the LastK PCM algorithm, but instead of fitness scores, it computes
a ranking of the set of similarity scores of a frame.

These algorithms was tested with two public datasets: IAS-Lab RGBD-
ID and BIWI RGBD-ID.

The results we reached are better than the PCM algorithm[15] in terms
of rank-1 and nAUC which are indices commonly used in state-of-the-art
algorithms for long-term re-identification.

With Multi-frame Point Cloud Matching we obtained good results with
the IAS-Lab RGBD-ID dataset, but weaker results with the BIWI RGBD-ID
dataset. This is probably due to the lack of methods for cleaning the test
model from noisy frames.

The best method we introduced is the Ranking-Based Point Cloud Match-
ing algorithm. This algorithm always improves state-of-the-art classification
performance on both the datasets we used, but shows less improvement in
some cases with respect to the other algorithms we introduced. This problem
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is due to the fact that noisy and good frames are equally weighted. There
are currently no methods to establish whether a frame is good or noisy.

With the last algorithm we proposed, the LastK Point Cloud Matching
algorithm, we obtained the better improvements in some cases, but it per-
forms worse than the standard PCM algorithm in others. This is due to
noisy frames fitness scores that add large variance to the total sum of scores.

In this work, we also introduced the concept of Silhouette, which is a
signature of the side view of a person’s cloud. This method is computation-
ally less expensive than standard re-identification algorithms, but we haven’t
obtained good results with them. This is probably due to the Kinect impreci-
sion at every frame. With the advent of more accurate sensors, the algorithm
based on silhouettes will probably perform better.

Finally, we studied how fitness scores change when varying the orientation
angle of a person with the standard PCM algorithm. We noticed that the
PCM algorithm performs better when a person is still and that even when
people are seen after two years, it obtains good classification performance.

We think that with the advent of new sensors like Kinect v2 which use
different, more accurate algorithms to obtain depth information with respect
to Kinect 1, the methods we presented will obtain further improvements.
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