UNIVERSITÀ DI PADOVA

FACOLTÀ DI INGEGNERIA

TESI DI LAUREA

VALUTAZIONE E CLASSIFICAZIONE FUNZIONALE DI VALVOLE CARDIACHE MECCANICHE

Laureanda: Clemens Romata

Relatore: Ch.mo Prof. Andrea Bagno

Correlatori: Prof. Vittorio Pengo

Prof. Gino Gerosa

Corso di laurea Magistrale in Bioingegneria

5 ottobre 2010

Anno accademico 2009-2010

Alla mia famiglia

INDICE

SOMMARIO1		
INTRODUZIONE	3	
CAPITOLO 1: IL CUORE E LE VALVOLE CARDIACHE	7	
1.1 ANATOMIA E FISIOLOGIA DEL CUORE	7	
1.1.1 La parete cardiaca, atri e ventricoli	7	
1.1.2 Il ciclo cardiaco	8	
1.2 LE VALVOLE CARDIACHE	12	
1.2.1 Anatomia e funzione delle valvole cardiache	12	
1.2.2 Malattie delle valvole cardiache	16	
1.3 I TONI CARDIACI	19	
CAPITOLO 2: LE PROTESI VALVOLARI CARDIACHE	23	
2.1 LE PROTESI VALVOLARI MECCANICHE	23	
2.1.1 Storia e tipologie	23	
2.1.2 St. Jude Regent	28	
2.1.3 Sorin Bicarbon Overline	29	
2.1.4 On-X	30	
2.1.5 Carbomedics Top Hat.	31	
2.1.6 Medtronic Advantage	32	
2.2 LE PROTESI VALVOLARI BIOLOGICHE	33	
2.3 VALVOLE COSTRUITE MEDIANTE TECNICHE DI INGEGNERIA		
TESSUTALE	35	
2.4 IMPIANTO TRANSCATETERE DELLA VALVOLA AORTIVA (TAVI).	36	
CAPITOLO 3: MATERIALI E METODI	39	
3.1 SHEFFIELD PULSE DUPLICATOR	39	
3.2 MYOTIS 3C	41	
3.3 ALGORITMO PER LA SELEZIONE DEI SUONI DI CHIUSURA	42	

3.4 LO SPETTRO DI POTENZA	46
3.4.1 La finestratura	47
3.5 LA STIMA DEL MODELLO AR	52
3.5.1 Identificazione del modello	54
3.5.2 Scelta dell'ordine del modello	55
3.5.3 Aspetti implementativi	56
3.6 LE RETI NEURALI ARTIFICIALI	57
3.6.1 I neuroni artificiali	57
3.6.2 I modelli di rete	59
3.6.3 L'algoritmo di backpropagation	62
3.6.4 Aspetti implementativi	66
CAPITOLO 4: CLASSIFICAZIONE DEI DATI IN VITRO	69
4.1 IL SET-UP SPERIMENTALE	69
4.2 CLASSIFICAZIONE SULLA BASE DEGLI SPETTRI DI POTENZA	76
4.2.1 Classificazione degli spettri della valvola Sorin Bicarbon Overline	77
4.2.2 Classificazione degli spettri della valvola St. Jude Regent	80
4.2.3 Classificazione degli spettri della valvola On-X	83
4.2.4 Classificazione degli spettri della valvola Carbomedics Top Hat	86
4.2.5 Classificazione degli spettri della valvola Medtronic Advantage	89
4.2.6 Rete complessiva	92
4.3 CLASSIFICAZIONE SULLA BASE DELLA STIMA DI UN MODELLO A	R93
4.3.1 Classificazione sulla base dei coefficienti del modello AR per la valvola	l
Sorin	93
4.3.2 Classificazione sulla base dei coefficienti del modello AR per la valvola	l
St. Jude	96
4.3.3 Classificazione sulla base dei coefficienti del modello AR per la valvola	l
On-X	98
4.3.4 Classificazione sulla base dei coefficienti del modello AR per la valvola	l
Carbomedics	100
4.3.5 Classificazione sulla base dei coefficienti del modello AR per la valvola	L
Medtronic	102

CAPITOLO 5: CLASSIFICAZIONE DEI DATI IN VIVO	105
5.1 CLASSIFICAZIONE SULLA BASE DEGLI SPETTRI	105
5.2 CLASSIFICAZIONE SULLA BASE DEI COEFFICIENTI DEL MODEL	LO
AR	115
5.3 IL PROBLEMA DELLA VALIDAZIONE DEI RISULTATI	122
CAPITOLO 6: CONCLUSIONI	129
APPENDICE: OUTPUT DELLE RETI PER LA CLASSIFICAZIONE IN VITE	RO133
A.1 OUTPUT RETE SOR	133
A.2 OUTPUT RETE SJR	136
A.3 OUTPUT RETE ON-X	139
A.4 OUTPUT RETE CARB	142
A.5 OUTPUT RETE MED	145
A.6 OUTPUT RETE COMPLESSIVA	148
BIBLIOGRAFIA	155

SOMMARIO

L'obiettivo principale del presente lavoro di tesi è stato lo sviluppo di un metodo non invasivo e affidabile per il monitoraggio del funzionamento di protesi valvolari cardiache meccaniche bileaflet, incrementando la probabilità di rilevazione precoce di formazione di trombi sulla superficie protesica.

Il metodo suddetto si basa sull'ipotesi che le formazioni trombotiche sulla superficie della valvola bileaflet ne alterano il suono di chiusura; pertanto sono state simulate in vitro diverse condizioni di funzionamento di cinque diversi modelli di protesi utilizzando lo Shieffield Pulse Duplicator presso il centro di Cardiochirurgia "V. Gallucci" del Policlinico Universitario di Padova, applicando formazioni trombotiche di diverso peso e forma. Per ogni condizione di funzionamento è stato acquisito il suono prodotto dalla chiusura degli emidischi delle valvole con un fonocardiografo digitale, il Myotis 3C. Successivamente, è stato sviluppato un algoritmo per l'isolamento dei suoni di chiusura dei leaflet della protesi ed è stato determinato lo spettro di potenza del segnale fonocardiografico riflette le caratteristiche di funzionalità dei vari modelli valvolari nelle diverse condizioni di funzionamento, sono stati sviluppati degli algoritmi di classificazione del segnale utilizzando reti neurali di specifica topologia, utilizzando il Neural Network Toolbox di Matlab.

Le reti neurali addestrate sono state utilizzate, successivamente, per la classificazione degli spettri di potenza di segnali fonocardiografici acquisiti in vivo su pazienti ricoverati nei reparti di Cardiologia e Cardiochirurgia del Policlinico Universitario di Padova e su pazienti del Servizio di Prevenzione e Terapia della Trombosi dell'Ospedale dei Colli di Padova.

Infine si è cercata un'alternativa alla classificazione degli spettri, calcolando per i segnali fonocardiografici i coefficienti di un modello auto-regressivo di ordine fissato, e sviluppando algoritmi di classificazione utilizzando reti neurali, addestrate però con i coefficienti del modello AR.

Le prestazioni in vitro e in vivo delle reti hanno confermato come questo metodo, opportunamente validato, abbia potenzialità di applicazione in ambito clinico.

INTRODUZIONE

Da circa 50 anni le protesi valvolari cardiache vengono utilizzate per la sostituzione di quelle native per le quali un trattamento farmacologico o di chirurgia ricostruttiva non è sufficiente. Nel mondo, ogni anno, vengono impiantate circa 250000 protesi valvolari cardiache, con un incremento di circa il 5-7% annuo: di queste circa il 55% sono protesi meccaniche, mentre il 45% sono biologiche [1].

Le valvole meccaniche hanno il vantaggio di non rovinarsi nel tempo ma presentano lo svantaggio di richiedere una terapia anticoagulante a lungo termine; d'altra parte le valvole biologiche durano meno ma non necessitano di ulteriori terapie. Le valvole biologiche possono essere ottenute da cadaveri o da animali (spesso maiali).

Le protesi valvolari differiscono tra di loro per diverse caratteristiche, tra le quali la durevolezza, la trombogenicità ed il profilo emodinamico. Con rare eccezioni, le valvole meccaniche sono durevoli, il più delle volte 20 o 30 anni; per contro, dal 10-20% delle protesi omologhe al 30% delle protesi eterologhe falliscono tra i 10 e i 15 anni dall'impianto e devono essere perciò sostituite. In genere, i pazienti al di sotto dei 40 anni presentano un'alta incidenza del malfunzionamento della valvola eterologa. Anche sulla base di queste caratteristiche, le valvole meccaniche sono preferite nei soggetti giovani o con un'aspettativa di vita superiore a 10 o 15 anni, oppure che assumono una terapia anticoagulante a vita per altre ragioni. Le valvole biologiche sono da preferirsi, invece, nei soggetti più anziani, o con un'aspettativa di vita inferiore o che non possono o non vogliono affrontare una terapia anticoagulante a vita [2].

Come suddetto, lo svantaggio per i pazienti che subiscono la sostituzione della valvola nativa con una meccanica è legato alla necessità di sottostare a una terapia anticoagulante orale (TAO) per tutta la vita, oltre ai controlli clinici necessari a bilanciare tale terapia e monitorare il funzionamento della valvola. Tali precauzioni sono finalizzate a ridurre il rischio di fallimento della protesi, in genere associato a due eventi caratteristici, al di là delle possibili endocarditi: la formazione di un panno fibrotico anomalo sulla superficie della protesi e/o la formazione di coaguli e di trombi. Entrambe le eventualità creano una situazione di estrema criticità per la salute del paziente poiché la formazione di coaguli di sangue è la prima causa di blocco del meccanismo valvolare e, il possibile distacco di emboli può mettere

severamente a rischio la vita del paziente. È facile immaginare, quindi, come possa diventare cruciale la diagnosi precoce di queste situazioni di rischio.

Attualmente la metodologia diagnostica standard per il monitoraggio del paziente a cui è stata impiantata una valvola cardiaca meccanica (MHV, Mechanical Heart Valve) prevede prelievi del sangue ogni una/due settimane circa per calibrare la terapia anticoagulante: l'esame di controllo è il "tempo di protrombina", cioè si misura il tempo che impiega a formarsi il coagulo quando il sangue è messo a contatto con apposite sostanze, e la risposta viene di regola espressa come INR. In questo modo si evita, da una parte, che il sangue diventi troppo viscoso favorendo coaguli e di conseguenza la formazione di trombi, e dall'altro si evita il rischio opposto di emorragie.

È evidente come tale monitoraggio fornisca solo un'indicazione indiretta sulla funzionalità della valvola; infatti l'effettivo movimento del/dei leaflet della valvola e la prestazione fluidodinamica non vengono mai valutate, se non in occasione degli eco-doppler di controllo che però hanno cadenza annuale [3]. Si aggiungono all'eco-doppler la cinefluoroscopia, che non può essere ripetuta frequentemente a causa delle radiazioni a cui è sottoposto il paziente e l'ecocardiografia trans-esofagea, particolarmente invasiva.

Da queste considerazioni si evince la necessità di sviluppare un sistema per il controllo del funzionamento della protesi valvolare che consenta un monitoraggio più efficace, rapido, non invasivo, gestibile eventualmente dal paziente stesso al fine di diagnosticare precocemente le formazioni trombotiche, aumentare la qualità di vita del paziente e ridurre, se possibile, i costi a carico del Sistema Sanitario Nazionale.

L'idea alla base di questo metodo è che il suono prodotto dalla valvola cardiaca meccanica non pregiudica la qualità di vita del paziente [4] e perciò può essere analizzata con molto interesse.

Recenti studi si sono occupati in particolare delle valvole meccaniche bileaflet, quelle con due emidischi rigidi che ruotando aprono e chiudono l'orifizio. È stato dimostrato che la chiusura asincrona dei leaflet, indice di funzionamento corretto, genera nel suono di chiusura un caratteristico "doppio click" [5],[6].

Avendo notato come lo spettro di potenza del segnale fonocardiografico rifletta le proprietà e il comportamento di diverse valvole, si è interpretata la classificazione degli spettri come un problema di riconoscimento di pattern complessi, risolvibile quindi utilizzando reti neurali artificiali [7],[8].

In questo lavoro di tesi si è cercato di ottimizzare la struttura di reti neurali artificiali, sviluppate in Matlab, per la classificazione degli spettri del segnale fonocardiografico di 5

diversi modelli di valvole cardiache meccaniche. La simulazione di condizioni fisiologiche variabili è stata realizzata utilizzando lo *Sheffield Pulse Duplicator* del centro "V.Gallucci" del Policlinico Universitario di Padova. L'acquisizione del segnale fonocardiografico è stata eseguita utilizzando il *Myotis 3C*, prodotto dalla Cardiosignal GmbH, in dotazione al Dipartimento di Scienze Cardiologiche,Toraciche e Vascolari dell'Università di Padova.

Le reti neurali create e addestrate per la classificazione degli spettri in vitro sono anche state utilizzate per la classificazione degli spettri di segnali fonocardiografici, acquisiti in vivo, di pazienti ricoverati presso i reparti di Cardiologia e Cardiochirurgia del Policlinico Universitario di Padova e di pazienti del servizio di Prevenzione e Terapia della Trombosi dell'Ospedale dei Colli di Padova.

Infine è stata creata una via alternativa alla classificazione degli spettri di potenza, stimando un modello auto-regressivo dei segnali fonocardiografici acquisiti in vitro e classificando i segnali in sei diverse classi di rischio attraverso l'uso di reti neurali, create in Matlab, addestrate con i coefficienti stimati del modello auto-regressivo.

Inizialmente si descriverà il contesto anatomico e fisiologico in cui collocare le valvole cardiache. Il primo capitolo sarà dedicato alla descrizione del cuore, della circolazione e delle valvole cardiache native e fornirà una breve panoramica sulle patologie da cui sono più frequentemente colpite.

Nel capitolo 2 verranno elencate le principali tipologie di protesi valvolari; verrà posta maggiore attenzione sulle protesi meccaniche bileaflet e verrà fornita una descrizione dei cinque modelli utilizzati nel presente lavoro di ricerca.

Il capitolo 3 sarà dedicato alla descrizione degli strumenti, degli algoritmi e dei metodi utilizzati.

Il capitolo 4 illustrerà i risultati di classificazione ottenuti con gli spettri di potenza dei segnali acquisiti in vitro, e con la classificazione basata su modelli auto-regressivi.

Il capitolo 5 illustrerà i risultati della classificazione degli spettri di potenza dei segnali acquisiti in vivo.

CAPITOLO 1

IL CUORE E LE VALVOLE CARDIACHE

Per comprendere a fondo il funzionamento delle valvole cardiache è necessario conoscere gli aspetti anatomici e fisiologici del cuore e il suo ruolo all'interno della circolazione sistemica. In questo capitolo verrà dedicata particolare attenzione alla struttura anatomica, al funzionamento delle valvole cardiache e alle patologie che più frequentemente le colpiscono [9-11].

1.1 ANATOMIA E FISIOLOGIA DEL CUORE

Il cuore (Figura 1.1) è situato nella cavità toracica, fra i polmoni, in uno spazio detto mediastino anteriore; è adagiato sul diaframma che lo separa dai visceri addominali ed è protetto anteriormente dallo sterno e dalle cartilagini costali che gli fanno da scudo. Ha la forma di un cono capovolto alto circa 12 cm ed il suo peso, in un individuo adulto, è di circa 200-300 grammi.

Figura 1.1: Struttura anatomica del cuore e sua collocazione.

1.1.1 La parete cardiaca, atri e ventricoli.

La superficie del cuore appare liscia e lucente perché un sottile involucro, il pericardio, che ha uno spessore pari a venti millesimi di millimetro, aderisce esternamente a tutte le sue parti piane e a tutte le sue insenature. Asportando questa delicata membrana appare la sottostante tonaca, il miocardio, che è la più spessa fra le tre tonache che compongono la parete cardiaca poiché misura, secondo le zone, da 5 a 15 millimetri. Composto da sistemi di fibre muscolari aventi direzioni diverse, il miocardio ha uno spessore molto maggiore nel ventricolo che negli atri.

La terza tonaca, che riveste interamente la cavità del cuore aderendo in ogni suo punto alla superficie interna del miocardio, è l'endocardio. Quest'ultima membrana, sottile come il pericardio, è del tutto paragonabile all'endotelio che riveste la superficie interna di tutti i vasi sanguigni (arterie e vene): come quest'ultimo, l'endocardio ha la funzione di favorire lo scorrimento della corrente sanguigna, impedendo ogni eventuale attrito che potrebbe essere causa di formazione di un coagulo sanguigno.

Il potenziale a riposo delle fibre miocardiche è di circa -90 mV; le singole fibre sono separate le une dalle altre da membrane, ma la depolarizzazione si propaga attraverso di esse come se formassero un sincizio, per la presenza di giunzioni comunicanti. Il potenziale d'azione delle singole cellule muscolari del cuore, derivato mediante un elettrodo intracellulare, è caratterizzato da una rapida depolarizzazione, da un plateau e da un processo di ripolarizzazione lento. La depolarizzazione iniziale è dovuta ad un flusso verso l'interno di Na⁺ attraverso canali per il Na⁺ a rapida apertura. L'entrata di Ca²⁺ attraverso canali per il Ca²⁺ a più lenta apertura produce la fase di plateau; la ripolarizzazione è dovuta all'efflusso di K⁺ attraverso differenti tipi di canale per il K⁺.

Considerato nella sua conformazione interna, il cuore si compone di quattro cavità: due superiori, gli atri, e due inferiori, i ventricoli. Queste cavità si distinguono a loro volta in destre e sinistre. Le due cavità destre comunicano ampiamente tra loro e formano il cosiddetto cuore destro; le due sinistre comunicano pure fra di loro e formano il cuore sinistro. Non esiste comunicazione invece fra cavità destre e cavità sinistre.

1.1.2 Il ciclo cardiaco

Il cuore funziona come una pompa aspirante e premente, in cui l'energia necessaria viene fornita dalla contrazione del muscolo cardiaco stesso. In effetti si tratta di una pompa di eccezionale efficienza, se si tiene conto del suo volume. Basti pensare che durante il sonno il cuore di un uomo pompa circa 5 litri di sangue in un minuto e che questa quantità sia prontamente raddoppiata quando subentra un'attività fisica, sia pur moderata. Se ci si sottopone a un lavoro molto pesante, oppure a una vigorosa attività atletica, la gittata cardiaca aumenta notevolmente, raggiungendo valori superiori a 20 litri di sangue al minuto.

Un ciclo cardiaco è costituito da tutti quei fenomeni che vanno dall'inizio di un battito all'inizio del battito successivo e può essere suddiviso in due fasi: diastole (Figura 1.2) e sistole (Figura 1.3).

Figura 1.2: Diastole

Figura 1.3: Sistole

Le varie parti del cuore battono normalmente in ordinata sequenza: prima si contraggono gli atri (sistole atriale) e poi i ventricoli (sistole ventricolare); durante la diastole tutte e quattro le camere cardiache sono rilasciate. Il battito cardiaco origina in un sistema di conduzione cardiaco specializzato, attraverso il quale diffonde in tutte le parti del miocardio. Le strutture che costituiscono il sistema di conduzione cardiaco sono: il nodo seno atriale (nodo SA), le vie atriali internodali, il nodo atrioventricolare (nodo AV), il fascio di His e le sue branche ed il sistema di Purkinje. Le varie parti del sistema di conduzione, come anche, in condizioni anormali, parti del miocardio, sono capaci di scarica spontanea. Tuttavia, il nodo SA scarica normalmente a frequenza più alta, e la sua depolarizzazione si propaga alle altre regioni prima che queste scarichino spontaneamente. Pertanto, il nodo SA è il normale avviatore (segnapassi o "pacemaker") cardiaco, e la sua frequenza di scarica determina la frequenza alla quale il cuore pulsa. La depolarizzazione, iniziata nel nodo SA, si propaga rapidamente attraverso gli atri, convergendo quindi sul nodo AV. La depolarizzazione atriale si completa in 0.1 secondi. Poiché la conduzione del nodo AV è lenta, vi è un ritardo di circa 0.1 sec (ritardo nodale AV) prima che l'eccitamento si propaghi ai ventricoli. Questo ritardo è abbreviato dalla stimolazione del simpatico cardiaco e allungato dalla stimolazione dei vaghi. Dalla sommità del setto, l'onda di depolarizzazione si propaga rapidamente lungo le fibre di Purkinje a tutte le parti dei ventricoli, in 0.08-0.1 sec. Nell'uomo, la depolarizzazione del miocardio ventricolare inizia nel lato sinistro del setto interventricolare, e procede dapprima verso destra, attraverso la parte centrale del setto; procede quindi lungo il setto fino all'apice del cuore, e risale lungo le pareti ventricolari fino al solco AV, propagandosi dalla superficie endocardica a quella epicardica. Le ultime parti ad essere invase sono la regione postero basale del ventricolo sinistro, il cono polmonare e la parte più alta del setto.

Registrata extracellularmente, l'attività elettrica sommata di tutte le fibre muscolari cardiache costituisce l'ECG, all'interno del quale l'onda P è prodotta dalla depolarizzazione atriale, il complesso QRS dalla depolarizzazione ventricolare, il segmento ST e l'onda T dalla ripolarizzazione ventricolare. L'onda U è un reperto incostante, attribuita a una lenta ripolarizzazione dei muscoli papillari.

L'ordinato processo di depolarizzazione appena descritto provoca un'onda di contrazione che si propaga per il miocardio. Nelle singole fibre miocardiche la contrazione comincia subito dopo la depolarizzazione e dura fino a circa 50 ms dopo il completamento della ripolarizzazione. La sistole atriale comincia dopo l'onda P dell'ECG e la sistole ventricolare verso la fine dell'onda R, terminando subito dopo l'onda T. La contrazione produce una sequenza di variazioni della pressione e del flusso nelle cavità cardiache e nei vasi sanguigni. Per pressione sistolica, nel sistema vasale, s'intende la pressione massima raggiunta durante la sistole e per pressione diastolica quella minima raggiunta durante la diastole.

Durante la diastole, i ventricoli si trovano nello stato di riposo dopo essersi contratti. Le valvole semilunari, che dividono il ventricolo destro dall'arteria polmonare e il ventricolo sinistro dall'aorta, si sono appena richiuse e le valvole atrio-ventricolari non hanno ancora cominciato ad aprirsi. Sia i ventricoli sia gli atri si trovano in uno stato di rilassamento. In questo momento il sangue, che arriva al cuore, entra negli atri. Man mano che gli atri si riempiono si crea una differenza di pressione tra questi e i ventricoli ancora vuoti (Figura 1.4 a).

Figura 1.4: Le fasi del ciclo cardiaco.

Le valvole atrio-ventricolari allora, cedendo alla pressione della massa sanguigna contenuta negli atri, si aprono e il sangue passa nei ventricoli che in poco tempo si riempiono quasi completamente (Figura 1.4 b). A questo punto gli atri si contraggono (sistole atriale) e spingono il sangue nei ventricoli. La contrazione della muscolatura atriale che circonda le vene cave e le vene polmonari al loro sbocco negli atri, ne restringe gli orifizi e, d'altra parte, l'inerzia del sangue in movimento tende a mantenere il sangue stesso nel cuore; tuttavia, durante la sistole atriale vi è un certo rigurgito di sangue nelle vene.

Immediatamente anche i ventricoli entrano nella loro fase di contrazione (Figura 1.4 c). All'inizio della sistole ventricolare la pressione esistente nei ventricoli supera quella esistente negli atri, le valvole atrio-ventricolari si chiudono perché le loro cuspidi sono spinte verso l'alto dalla pressione della massa sanguigna contenuta nei ventricoli (Figura 1.4 d). La muscolatura ventricolare inizialmente si accorcia relativamente poco, ma la pressione intraventricolare aumenta bruscamente come il miocardio comprime il sangue contenuto nei ventricoli. Questo periodo di contrazione ventricolare isovolumetrica dura circa 0.05 sec, fino a quando la pressione nei ventricoli sinistro e destro supera la pressione nell'aorta (80 mmHg) e nell'arteria polmonare (10 mmHg) e le valvole aortica e polmonare si aprono. Durante la contrazione isovolumetrica le valvole AV fanno ventre negli atri provocando un piccolo ma netto aumento di pressione. Quando le valvole aortica e polmonare si aprono, inizia la fase di eiezione ventricolare (Figura 1.4 e). l'eiezione è dapprima rapida, ma rallenta poi col progredire della sistole. La pressione intraventricolare sale ad un massimo e comincia a discendere prima della fine della sistole. La pressione massima è di circa 120 mmHg, nel ventricolo sinistro e di 25 mmHg, o meno, nel ventricolo destro. Nella fase tardiva della sistole la pressione aortica in realtà supera quella ventricolare, ma per un breve periodo la quantità di moto acquisita dal sangue fa sì che questo continui ad effluire. Le valvole AV vengono tirate verso il basso dalla contrazione del miocardio ventricolare e la pressione atriale scende. Ciascuno dei due ventricoli espelle nella sistole 70-90 ml in condizioni di riposo. Il volume di sangue ventricolare telediastolico è di circa 130 ml.

Il volume di sangue pompato dai ventricoli in una singola contrazione è chiamato *stroke volume*: la sua diminuzione è uno dei primi segnali di allarme per l'insufficienza cardiaca. *Stroke volume* moltiplicato per la *frequenza cardiaca*, misurabile in battiti per minuto (bpm), dà l'output cardiaco, il volume di sangue pompato dal cuore in un minuto. In Figura 1.5 si riportano le fasi principali del ciclo cardiaco, tracciate unitamente all'ECG, all'andamento delle pressioni nell'atrio sinistro, nel ventricolo sinistro e in aorta.

Figura 1.5: Le fasi principali del ciclo cardiaco, il tracciato ECG e l'andamento delle pressioni nel ventricolo sinistro, nell'atrio sinistro e in aorta.

1.2 LE VALVOLE CARDIACHE

1.2.1 Anatomia e funzione delle valvole cardiache

Le valvole cardiache sono costituite da lamine sottili (lembi), flessibili e resistenti, di tessuto fibroso rivestito da endotelio, saldamente ancorate agli anelli valvolari. I movimenti dei lembi sono passivi: è l'orientamento delle valvole ad assicurare l'unidirezionalità del flusso sanguigno attraverso il cuore.

Nel cuore sono presenti due tipi diversi di valvole: le valvole atrioventricolari e le valvole semilunari (Figura 1.6). Sono valvole atrio-ventricolari la valvola tricuspide e la valvola mitrale; sono, invece, valvole semilunari la valvola aortica e la valvola polmonare.

Figura 1.6: Vista interna del cuore: si distinguono le quattro valvole e i muscoli papillari.

La valvola tricuspide è posta fra l'atrio destro e il ventricolo destro, mentre la valvola mitrale è posta fra l'atrio sinistro e il ventricolo sinistro; sono rispettivamente formate da tre e due cuspidi (ragion per cui è stata paragonata ad una mitra vescovile da cui il nome di mitrale). Le cuspidi delle valvole atrioventricolari sono costituite dalla giustapposizione di due lamine fibrose: una lamina assiale, rivolta verso l'asse centrale del ventricolo, ed una lamina parietale che prospetta verso la parete ventricolare. La lamina assiale è formata da uno strato superficiale, ricco di fibre elastiche, e da uno strato profondo con fasci di collagene e tessuto mucoso. Mentre lo strato superficiale si riconosce già a livello dell'impianto della cuspide sull'anello fibroso, quello profondo compare solo ad una certa distanza dall'anello. La lamina parietale è costituita anch'essa da uno strato superficiale di natura elastica ed uno profondo di fibre di collagene. Esse si aprono e si chiudono ciclicamente: quando la pressione atriale è maggiore rispetto alla pressione ventricolare sono aperte e viceversa si chiudono. Ai bordi si inseriscono le corde tendinee che hanno origine dai muscoli papillari dei ventricoli; essi impediscono la protrusione delle valvole negli atri durante la sistole ventricolare (Figura 1.7).

Figura 1.7: Valvola atrio-ventricolare.

La valvola tra il ventricolo destro e l'arteria polmonare e quella fra il ventricolo sinistro e l'aorta (valvole semilunari) sono costituite da tre cuspidi a forma di coppa attaccate all'anello valvolare fibroso. Alla fine della fase di eiezione ridotta della sistole ventricolare, il flusso del sangue si inverte momentaneamente verso i ventricoli: questa inversione di flusso provoca l'accollamento rapido delle cuspidi impedendo il reflusso del sangue. Durante la sistole ventricolare, le cuspidi non aderiscono alle pareti dell'aorta o dell'arteria polmonare, ma si librano nel sangue rimanendo circa a metà strada tra la parete del vaso e la loro posizione di chiusura. Dietro le valvole semilunari dell'arteria polmonare e dell'aorta sono infatti presenti piccole tasche (seni di Valsalva), in cui si formano i vortici che impediscono alle cuspidi di aderire alle pareti del vaso (Figura 1.8).

Figura 1.8: Valvola semilunare.

Per ragioni strutturali anatomiche, i sottili lembi delle valvole atrioventricolari (A-V) praticamente non necessitano di un flusso retrogrado per la chiusura, mentre le più spesse valvole semilunari (S-L) hanno bisogno di un flusso piuttosto forte e che duri qualche millisecondo.

Come descritto precedentemente, ai lembi delle valvole A-V sono collegati anche i muscoli papillari per mezzo delle corde tendinee. Essi si contraggono simultaneamente alle pareti ventricolari, ma al contrario di quanto ci si potrebbe aspettare, non aiutano le valvole a chiudersi. La loro funzione, infatti, è quella di tirare i lembi delle stesse internamente verso i ventricoli al fine di prevenire un rigonfiamento troppo consistente verso gli atri. Se una corda tendinea si rompe o se uno dei muscoli papillari si paralizza, le valvole possono spingersi indietro in modo tale da diventare anche gravemente incontinenti: una tale situazione può avere conseguenze anche letali.

Le valvole S-L aortica e polmonare, invece, funzionano in maniera completamente diversa. Innanzitutto, gli alti valori pressori presenti nelle arterie al termine della sistole ventricolare fanno sì che tali valvole si chiudano di scatto e non in maniera dolce come la mitrale e la tricuspide; inoltre, a causa delle più ridotte aperture, la velocità di eiezione del sangue è molto più alta di quella presente nelle valvole A-V dove l'apertura è più larga. E la rapida chiusura ed eiezione fanno sì che i margini delle valvole S-L siano sottoposti ad una maggiore abrasione meccanica rispetto a quelli delle valvole AV. Infine, le valvole S-L non sono sostenute da corde tendinee e presentano anatomicamente una struttura atta a resistere a sollecitazioni meccaniche anche di una certa entità.

La morfologia delle quattro valvole cardiache è illustrata in Figura 1.9.

Figura 1.9: Morfologia delle quattro valvole cardiache.

1.2.2 Malattie delle valvole cardiache

Le valvole più soggette a disfunzioni sono quelle situate nella parte sinistra del cuore, cioè la mitrale e la aortica, perché sottoposte ad un regime pressorio più elevato e ad uno stress meccanico maggiore. Anche le valvole della parte destra del cuore possono presentare malfunzionamenti; tuttavia questi ultimi avvengono in genere in presenza di altre valvulopatie, sono rari e dovuti a problemi congeniti; per questa ragione, in questo contesto, si decide di porre maggiore attenzione sui malfunzionamenti della valvola mitrale e di quella aortica.

Si definiscono valvulopatie le malattie che colpiscono le valvole cardiache e sono sostanzialmente di due tipi: la stenosi e l'insufficienza. Una valvola si definisce stenotica quando al suo massimo grado di apertura presenta un orifizio di dimensioni minori di quelle fisiologiche. In presenza di una stenosi valvolare, affinché possa circolare la portata di sangue necessaria per il benessere fisiologico, il cuore deve fornire un'energia maggiore di quella richiesta in assenza di stenosi, e quindi deve produrre maggior lavoro. Allo scopo, le pareti cardiache subiscono modifiche strutturali tali da consentire alle fibre che le compongono di aumentare opportunamente la pressione sistolica ventricolare. In particolare si verificano un ispessimento delle pareti cardiache (ipertrofia) e una sfericizzazione del ventricolo. Superato un certo limite, la capacità del cuore di produrre maggior lavoro viene meno, subentrano lo scompenso cardiaco ed infine l'insufficienza cardiaca che causa il decesso in tempi brevi.

Una valvola cardiaca si definisce insufficiente o incompetente¹ quando i suoi lembi non si chiudono completamente; si verifica quindi la presenza di un orifizio residuo provocando un reflusso ematico dalle arterie nei ventricoli (insufficienza delle valvole semilunari), ovvero dai ventricoli negli atri (insufficienza delle valvole atrio-ventricolari). La Figura 1.10 illustra il caso della valvola aortica.

Figura 1.10: Valvola aortica in fase di chiusura: a sinistra sana e a destra incompetente.

¹ La patologia viene denominata indifferentemente insufficienza valvolare, incompetenza valvolare, prolasso valvolare.

L'incompleta chiusura è dovuta ad anomalie dei lembi o delle strutture collegate ai lembi stessi; ad esempio nel caso della valvola aortica, la dilatazione della radice aortica può causare un allontanamento dei lembi valvolari ai quali, di conseguenza, è impedita una perfetta adesione. Nel caso delle valvole atrio-ventricolari, un malfunzionamento nelle capacità di tensione delle *chordae tendinae* può trattenere i lembi causandone l'insufficienza.

Nell'insufficienza aortica il sangue ritorna al ventricolo dopo che questo si è svuotato; tale rigurgito determina un sovraccarico del ventricolo dovuto allo sforzo eccessivo compiuto dal cuore per vincere lo stesso; l'insufficienza aortica causa un aumento della pressione telediastolica, che raggiunge i valori di quella atriale sinistra causando la chiusura prematura della valvola mitrale. Nei casi di insufficienza aortica si può intervenire con una terapia farmacologica atta a diminuire il postcarico, ma la terapia definitiva è la sostituzione chirurgica della valvola con una protesi meccanica o biologica.

Molto spesso stenosi e insufficienza coesistono nella stessa valvola causando la cosiddetta stenoinsufficienza.

Le valvulopatie possono essere congenite, presenti cioè dalla nascita, o acquisite, comparse cioè nel corso della vita. Le valvulopatie acquisite possono essere di origine degenerativa (più frequenti nei soggetti anziani, spesso ipertesi, dovute all'usura delle strutture valvolari), infettiva (endocarditi), ischemica (in corso di infarto acuto del miocardio), traumatica (molto rare) o secondaria a una ingente dilatazione del ventricolo e/o dei grandi vasi.

La causa più frequente, soprattutto in passato, delle lesioni valvolari è la febbre reumatica, conseguenza di un infezione di origine streptococcica non prontamente curata (infiammazione alla gola, scarlattina, otite e altre). Il danno non è causato direttamente dall'infezione batterica ma dalla risposta immunitaria da parte dell'organismo che, nel rispondere all'attacco della tossina streptococcica, danneggia anche i propri tessuti. Gli anticorpi attaccano le valvole, che in periodi anche molto lunghi (da mesi ad anni) vengono gradualmente erose e sostituite da tessuto fibroso. Un'altra causa di degenerazione valvolare è l'endocardite: è un'infezione batterica (spesso da streptococco o stafilococco) che colpisce l'endocardio. Spesso è conseguenza di infezioni non trattate in altre parti dell'organismo; di solito colpisce valvole con anomalie congenite o già danneggiate, e portatori di valvole artificiali. Le colonie di microrganismi che crescono sull'endocardio causano fori e distorcono la forma naturale delle valvole, compromettendone la funzionalità. Inoltre possono essere colpite da degenerazione mixomatosa e da degenerazione calcifica. La prima è un processo dovuto ad una serie di cambiamenti metabolici e porta ad una progressiva perdita di elasticità della valvola mitrale

che può causare la rottura dei legamenti che ne controllano l'apertura e la chiusura. La seconda, invece, è riferita al deposito di calcio sui lembi della valvola aortica, provocandone la stenosi: può colpire anche la mitrale che risulta indebolita e non più in grado di bloccare il reflusso del sangue.

L'anomalia congenita più diffusa come causa di stenosi aortica è la bicuspidia in cui, invece di tre cuspidi, ne sono presenti soltanto due.

La terapia risolutiva nei casi stenosi valvolare aortica è la sostituzione della valvola; in realtà, in alcuni casi, prima di ricorrere alla sostituzione, si possono tentare trattamenti palliativi come la valvuloplastica con palloncino² o una valvulotomia chirurgica³; tali pratiche vengono prese, generalmente, in considerazione nel caso di pazienti giovani poiché consentono di ritardare la sostituzione della valvola stessa.

Il prolasso della valvola mitrale (Figura 1.11) è una patologia che colpisce il 2-6 % della popolazione, spesso è associato alla degenerazione mixomatosa; può riguardare solo i leaflet o l'intera struttura valvolare, provocando vari gradi di reflusso del sangue dal ventricolo all'atrio. L'operazione più frequente, in questo caso, è la ricostruzione valvolare, ma quando non è possibile si ricorre alla sostituzione della valvola con una protesi meccanica o biologica. L'intervento di sostituzione valvolare avviene a cuore aperto e prevede l'utilizzo della macchina cuore-polmone che si prende carico di pompare il sangue quando il cuore viene fermato. L'operazione è poco più rischiosa del bypass coronarico, in parte per il rischio di infarto causato dal calcio che viene liberato, in parte per la possibile entrata di bolle d'aria nel circolo sanguigno, rischio che riguarda tutte le operazioni a cuore aperto.

Figura 1.11: prolasso della valvola mitrale e sostituzione con una protesi meccanica.

² Dilatazione della valvola stenotica effettuata con un catetere a palloncino.

³ Correzione chirurgica della stenosi di una valvola cardiaca, consistente nella rottura di concrescenze cicatriziali delle commessure effettuata con un dito o con un dilatatore, i quali vengono introdotti nelle cavità cardiache mediante una piccola incisione o dopo una più ampia apertura del cuore.

1.3 I TONI CARDIACI

Con lo stetoscopio si odono normalmente due toni durante il ciclo cardiaco: un suono basso e un po' prolungato (primo tono) causato dalla chiusura delle valvole mitrale e tricuspide all'inizio della sistole ventricolare, e un suono più breve e più alto (secondo tono), causato dalla chiusura delle valvole aortica e polmonare subito dopo la fine della sistole ventricolare. In molti individui giovani normali, si sente anche un terzo tono, dolce, basso, dopo il primo terzo della diastole. Questo tono coincide con il periodo di rapido riempimento ventricolare ed è dovuto probabilmente a vibrazioni determinate dall'irruzione del sangue. Se la pressione atriale è alta o il ventricolo è rigido, come quando è ipertrofico, si può udire, subito prima del primo tono, un quarto tono; questo è dovuto al riempimento ventricolare causato dalla sistole atriale, ed è raramente udibile nell'adulto normale.

Il primo tono ha una durata di circa 0.15 secondi ed una frequenza di 25-45 Hz. È dolce quando la frequenza cardiaca è bassa, perché allora i ventricoli sono pieni di sangue e i lembi valvolari si toccano prima della sistole. Il secondo tono dura circa 0.12 secondi e ha una frequenza di 50 Hz. È intenso ed acuto quando la pressione nell'aorta e nell'arteria polmonare è alta, perché in tale caso le valvole si chiudono bruscamente alla fine della sistole. Spesso, durante l'inspirazione, l'intervallo fra la chiusura della valvola aortica e la chiusura della valvola polmonare è abbastanza lungo da far sentire doppio il secondo tono (sdoppiamento fisiologico del secondo tono). Lo sdoppiamento è presente anche in molte malattie. Il terzo tono ha una durata di 0.1 secondi.

I soffi sono suoni anormali udibili in varie parti del sistema vascolare.

Il flusso ematico è laminare e non turbolento fino ad una velocità critica; sopra questa velocità, e oltre una ostruzione, il flusso è turbolento. Il flusso laminare è silenzioso, mentre il flusso turbolento crea suoni. Il flusso ematico aumenta di velocità quando un'arteria o una valvola cardiaca sono ristrette.

La più importante, ma non la sola, causa dei soffi cardiaci è rappresentata dai vizi valvolari. Quando una valvola è stenotica il flusso ematico nella direzione normale è turbolento. Quando invece la valvola è insufficiente, il sangue refluisce attraverso di essa (rigurgito): passando attraverso un orifizio ristretto, accelera il flusso.

Conoscendo gli eventi meccanici del ciclo cardiaco, si può prevedere se un soffio, dovuto a stenosi o a insufficienza in una data valvola, si verifica durante la sistole o durante la diastole (Tabella 1.1).

VALVOLE	ANORMALITA'	SOFFIO
Aortica o polmonare	Stenosi	Sistolico
	Insufficienza	Diastolico
Mitrale o tricuspide	Stenosi	Diastolico
	Insufficienza	Sistolico

Tabella 1.1: Soffi cardiaci.

I soffi dovuti a malattia di una determinata valvola si odono meglio, di solito, quando lo stetoscopio è applicato sopra quella valvola; pertanto i soffi dovuti ad alterazioni delle valvole aortica o polmonare di solito si sentono meglio alla base del cuore, ed i soffi causati da malattie della mitrale si sentono in genere meglio all'apice (Figura 1.12).

Anche altri aspetti , quali la durata, il carattere, l'accentuazione e la trasmissione del suono, aiutano a localizzarne l'origine nell'una o nell'altra valvola.

Figura 1.12: Principali focolai di auscultazione per le valvole cardiache.

Uno dei soffi più intensi è quello prodotto dal rigurgito di sangue nel ventricolo sinistro attraverso un foro in un lembo della valvola aortica; la maggior parte dei soffi si sente solo con l'aiuto dello stetoscopio, ma questo soffio diastolico molto alto può essere talvolta sentito anche ad orecchio nudo e a distanza dal paziente.

Nell'insufficienza aortica il soffio è udibile durante la diastole; esso è dovuto alla turbolenza del sangue che torna indietro dall'aorta al ventricolo sinistro provocando un rumore a frequenze relativamente alte.

Nell'insufficienza mitralica il sangue refluisce durante la sistole nell'atrio sinistro, generando un soffio ad alta frequenza che risulta però difficile da percepire se non auscultato all'apice del cuore, a causa della posizione profonda dell'atrio nel torace.

Nella stenosi mitralica i suoni generati dal sangue che, con difficoltà, passa dall'atrio al ventricolo sinistro danno origine a soffi molto deboli e di frequenza talmente bassa che la maggior parte dello spettro sonoro è al di sotto della soglia dell'udibile.

Nei difetti congeniti del setto interventricolare, il flusso di sangue dal ventricolo sinistro al ventricolo destro determina un soffio sistolico.

In figura 1.13 si riportano i soffi dovuti ad anomalie delle valvole cardiache.

Figura 1.13: Soffi dovuti ad anomalie delle valvole cardiache.

CAPITOLO 2

LE PROTESI VALVOLARI CARDIACHE

Al giorno d'oggi le tecniche chirurgiche si sono evolute notevolmente e spesso, nel caso di valvulopatie, risulta possibile riparare la valvola senza doverla sostituire. Quando però non è più possibile rinviare l'intervento di sostituzione della valvola nativa, si procede con l'impianto di una protesi che può essere meccanica o biologica.

Le valvole biologiche possono essere ottenute da cadavere o da animali di altra specie, spesso maiali. Le valvole meccaniche hanno il vantaggio di non deteriorarsi nel tempo, ma presentano lo svantaggio di richiedere una terapia anticoagulante a lungo termine.

Le protesi valvolari differiscono tra loro per diverse caratteristiche, tra le quali il profilo emodinamico, la durevolezza, l'effettiva area orifiziale e la trombogenicità. Le valvole meccaniche, con rare eccezioni, sono durevoli il più delle volte 20 o 30 anni; per contro le valvole biologiche spesso falliscono tra 10 e 15 anni dall'impianto. Per queste ragioni le valvole meccaniche sono preferite nei pazienti giovani o con un'aspettativa di vita superiore a 10/15 anni oppure che richiedono una terapia anticoagulante per altre ragioni. Le valvole biologiche sono da preferirsi nei soggetti anziani o con un'aspettativa di vita inferiore, o che non possono o non vogliono assumere la terapia anticoagulante.

2.1 LE PROTESI VALVOLARI MECCANICHE

Prima di descrivere in dettaglio i cinque modelli di valvola analizzati in questo lavoro di tesi, è opportuno ricordare lo sviluppo che ha portato alle protesi attualmente in uso [3,12].

2.1.1 Storia e tipologie

Tutte le valvole progettate sono costituite da tre componenti principali: occlusore, alloggiamento (housing) e anello di sutura (sewing ring). L'occlusore costituisce la parte mobile della protesi, deve essere in grado di aprire e chiudere senza interferenze e di adattarsi alle differenze di pressione del flusso ematico. Il movimento dell'occlusore sull'housing influenza notevolmente il flusso ematico. La protesi deve essere progettata in modo da minimizzare le turbolenze del flusso e di conseguenza minimizzare il lavoro compiuto dal cuore e la probabilità di formazione di trombi e di comparsa di fenomeni emolitici. L'anello di sutura è il punto di congiunzione della protesi con i tessuti del ricevente.

Negli ultimi cinquant'anni si è registrato lo sviluppo di protesi sempre più avanzate per quanto concerne il profilo emodinamico e la biocompatibilità.

La prima valvola cardiaca meccanica impiantata risale al 1952, quando il dottor Charles Hufnagel impiantò nel tratto discendente dell'aorta una protesi costituita da una gabbia di plexiglas al cui interno vi era una palla di polietilene che fungeva da occlusore (Figura 2.1).

Figura 2.1: Valvola di Hufnagel.

L'impianto di una valvola meccanica nella corretta posizione anatomica fu possibile solo nel 1960 dopo l'invenzione della macchina cuore-polmone. Tale valvola fu messa in commercio dalla Starr-Edwards ed era un modello caged-ball (a palla ingabbiata). L'occlusore era costituito da una palla di gomma siliconica (Silastic), materiale con proprietà elastiche in grado di garantire l'attenuazione degli urti, a cui in un secondo momento venne aggiunto solfato di bario per rendere l'occlusore radio-opaco. La gabbia era costituita da acciaio inossidabile, successivamente sostituito da una lega, Stellite 21, contenente cobalto, cromo, molibdeno e nichel in diverse proporzioni, rispettivamente 61-63 %, 25.5-29 %, 5-6 %, 1.75-3.75 %. Nel caso della protesi *caged-ball* si parla di flusso periferico, perché il flusso ematico, a causa della struttura della protesi, è diverso da quello fisiologico e avviene ai lati della palla anziché centralmente; ciò determina un incremento del lavoro cardiaco e del salto di pressione transvalvolare. Negli anni successivi il design di queste valvole è stato migliorato; tuttavia il vasto ingombro e il grande potenziale trombogenico portarono ad accantonare progressivamente l'utilizzo di questo modello di protesi. Inoltre le analisi microscopiche effettuate su valvole espiantate hanno evidenziato la presenza di frammenti di silicio sull'housing, segno di un processo di usura abrasiva, che rende le superfici più scabre e aumenta il potenziale trombogenico. Si è registrato anche il tentativo di sostituire la palla con un disco ingabbiato, ma anche questa soluzione, utilizzata solo in posizione atrio-ventricolare, fu presto abbandonata. In Figura 2.2 si riporta il modello caged-ball, una ricostruzione del flusso ematico attraverso di essa e frammenti di silicio nell'occlusore di una valvola cagedball.

Figura 2.2 : Protesi caged-ball: A) vista totale; B) flusso ematico ricostruito; C) frammenti di silicio nell'occlusore di una valvola caged-ball.

Nel 1964 iniziò l'introduzione delle valvole *single tilting-disc* (a singolo disco oscillante), ma fu nel 1969 che Bjork e Shiley misero a punto i primi modelli che sarebbero stati poi utilizzati su larga scala, con angolo di apertura di 60° e disco dal profilo inizialmente piano-convesso, poi convesso-concavo. L'innovazione principale introdotta nel modello *tilting-disc* è la riduzione della distorsione del flusso ematico rispetto al precedente modello *caged-ball*: la pressione sanguigna fa ruotare un occlusore circolare che consente al sangue di fluire centralmente. Il minor spessore di questa valvola rispetto alla caged-ball la rende adatta al posizionamento anche in siti anatomici più ristretti senza rischio che i tessuti vengano danneggiati (Figura 2.3).

Figura 2.3: A sinistra il modello tilting-disc Bjork-Shiley; a destra la ricostruzione del flusso ematico.

Nei primi modelli di protesi *single tilting-disc* l'occlusore era composto da poliossimetilene, noto anche con il nome commerciale di Delrin⁴ prodotto dalla Dupont, biocompatibile, a basso rischio trombogenico e con una durata stimata attorno ai 50 anni [12]. Per alcuni

⁴ È una poliformaldeide a peso molecolare maggiore di 20000 Da. Possiede proprietà meccaniche eccellenti e ottima resistenza agli agenti chimici e all'acqua entro un ampio raggio di temperature.

modelli in Delrin si sono registrati casi di deformazione o cedimento dell'occlusore, con conseguente ritiro dal mercato della protesi (Figura 2.4).

Figura 2.4: Modello *single tilting disc*: A) modello Bjork-Shiley (Delrin); B) deformazione dell'occlusore in Delrin, C) rottura dei gamebetti di una *tilting-disc* con occlusore concavo-convesso.

Il Delrin è stato sostituito da carbonio pirolitico, il materiale più utilizzato nelle protesi meccaniche ancora oggi [13]. Possiede infatti basso coefficiente d'attrito, che si traduce in minor rischio emolitico e riduzione delle turbolenze, ed elevata resistenza all'usura (durata maggiore). Può essere depositato in strati molto sottili e viene considerato il miglior materiale antitrombogenico disponibile.

Nel 1977 vennero introdotte le prime valvole Medtronic-Hall, con housing in titanio ricoperto da carbonio pirolitico ed occlusore incernierato centralmente, in grado di aprire fino a 75° per le protesi aortiche e 70° per quelli mitrali (Figura 2.5).

Nel 1978 fu introdotta la valvola Lillehei-Kaster, che presenta un perno che fuoriesce dall'housing e che funge da guida per l'occlusore di carbonio pirolitico. Con questa struttura il leaflet può raggiungere un angolo di apertura pari a 80°. A valvola chiusa, la Lillehei-Kaster ha un volume di rigurgito inferiore rispetto alle altre valvole tilting-disc. L'evoluzione di questo modello portò alla creazione nel 1984 del modello Omniscience, in carbonio pirolitico, e nel 1990 della protesi indiana Chitra (Figura 2.5).

Figura 2.5: A) modello Medtronic-Hall; B) modello Lillehei-Kaster, C) modello Omniscience, D) modello Chiara.

Nel 1977 la St. Jude Medical introdusse sul mercato il primo modello di valvola *bileaflet*, attualmente la tipologia di protesi meccanica più impiantata al mondo. Vi sono due emidischi che fungono da occlusori, interferiscono minimamente col flusso sanguigno, rendendolo più vicino a quello fisiologico (Figura 2.6). Talvolta si verifica un lieve rigurgito a valvola chiusa, necessario per assicurare maggiore pulizia in corrispondenza dei cardini ed evitare la formazione di trombi [8].

Figura 2.6: Modello bileaflet, a destra ricostruzione del flusso ematico.

Negli ultimi 50 anni, oltre a uno sviluppo nei modelli, si è registrato un notevole sviluppo dei materiali (Figura 2.7), come già accennato nel caso del Delrin e del carbonio pirolitico. I materiali utilizzati devono essere: i) resistenti al deterioramento meccanico e strutturale dovuto ai ripetuti cicli di apertura e chiusura; ii) facilmente lavorabili per un'ottimale sterilizzazione e per il trattamento delle superfici; iii) biocompatibili, non degradabili e inerti, in modo da non causare reazioni avverse da parte dell'organismo; iv) tromboresistenti. Per le sue caratteristiche ideali sia in termini di biocompatibilità che di resistenza alla fatica e al deterioramento, il carbonio pirolitico si è dimostrato il materiale con le prestazioni migliori, soprattutto quando usato sia per l'alloggiamento che per i leaflet , come nelle valvole St. Jude. L'utilizzo del carbonio LTI richiede particolare attenzione nella fase di assemblaggio della protesi, poiché esso è un materiale ceramico e molto fragile se sottoposto a stress elevati. Un altro fattore da considerare nella scelta del materiale dell'occlusore è il fenomeno della cavitazione, cioè la formazione di bolle a causa dei repentini cambiamenti di pressione del sangue nei pressi della valvola. L'energia rilasciata al momento del collasso delle bolle può danneggiare, a lungo termine, la valvola, può creare emolisi o attivare piastrine. Si ritiene che

materiali come l'UHMWPE (polietilene ad altissimo peso molecolare) possano in parte assorbire l'energia di impatto dell'occlusore contro l'housing, al contrario del carbonio pirolitico, riducendo gli sbalzi pressori ematici e la cavitazione. Infine l'anello di sutura può essere realizzato in Dacron, Teflon, polipropilene, materiali altamente biocompatibili, per evitare il *leakage* periprotesico, cioè il distacco parziale della protesi dal tessuto circostante [13].

Nei prossimi paragrafi verranno illustrate le principali caratteristiche di cinque diversi modelli di protesi *bileaflet*, utilizzate per i test sperimentali nel presente lavoro di tesi [7].

Figura 2.7: Struttura e materiali della valvola bileaflet ATS.

2.1.2 St. Jude Regent

La valvola aortica St. Jude Regent è stata introdotta nella pratica clinica nel 1999, nel 2002 negli Stati Uniti. La St. Jude Medical (St. Paul, Minnesota) è stata la prima produttrice di valvole bileaflet. Le valvole St. Jude sono le più impiantate nel mondo e rappresentano il "gold standard" con cui vengono confrontate le prestazioni delle altre protesi.

Housing e leaflets sono in grafite, con l'aggiunta di tungsteno per la radio-opacità e rivestiti in carbonio pirolitico. Nel modello Regent (Figura 2.8) restano invariate le proprietà di emocompatibilità e resistenza strutturale che negli anni hanno reso affidabili i modelli precedenti, ma vengono anche migliorate le prestazioni emodinamiche: l'angolo di apertura è 85° e i cardini sono interamente collocati su un bordo in carbonio che sporge in direzione sotto-anulare rispetto all'anello. Il flusso sanguigno attraverso di essa è simmetrico, di ridotta turbolenza, quasi laminare; inoltre si ha un profilo emodinamico migliore rispetto alle valvole St. Jude precedenti. L'anello di sutura è in PET o PTFE, è completamente sopra-anulare: in questo modo a parità di anello valvolare nativo si può impiantare una valvola di diametro maggiore. Il rapporto tra orifizio e anello è di oltre 84 %. Sono disponibili due diversi tipi di anelli di sutura: Standard o Flex cuff, a seconda della flessibilità che si desidera [14].

Figura 2.8: Valvola St. Jude Regent.

Le complicanze più comuni sono le formazioni trombotiche o di un panno sui leaflet, generalmente dovute a una terapia anticoagulante non adeguata, e l'endocardite. Sono stati riportati casi isolati di blocco intraoperatorio dei leaflet a causa del posizionamento sottoanulare del meccanismo di rotazione, che al contrario dei design precedenti è più esposto al rischio di bloccarsi a causa dell'interferenza dei tessuti sottovalvolari circostanti [15].

2.1.3 Sorin Bicarbon Overline

Le protesi valvolari sono prodotte dalla Sorin Biomedica Cardio (Saluggia, Italia), sono sul mercato dal 1990, hanno il marchio CE ma non sono ancora state approvate dalla FDA [7].

I leaflet sono concavo-convessi, costruiti in grafite e tungsteno ricoperti da un sottile rivestimento di carbonio pirolitico (Carbofilm) per assicurarne bassa trombogenicità. L'escursione dei leaflet è basata solo su un movimento rotatorio e non avviene alcuno scivolamento: questo riduce l'attrito e di conseguenza l'usura della valvola. Inoltre i leaflet permettono un flusso laminare attraverso la valvola riducendo le turbolenze, dividendolo in tre parti idrodinamicamente equivalenti. La cerniera è stata progettata con canali di lavaggio in modo da ridurre il ristagno di sangue e la probabilità di formazione di coaguli.

La totale sopra-anularità della protesi permette l'impianto di valvole con orifizio più ampio. L'housing è costituito da una lega di titanio (Ti6Al4V), molto resistente, dotata di elevata rigidezza al fine di ridurre la possibilità di deformazioni dopo l'impianto, e rivestito in Carbofilm, un film sottile in carbonio la cui struttura è sostanzialmente equivalente a quella del carbonio pirolitico. Questo consente di massimizzare l'area effettiva dell'orifizio (EOA, Effective Orifice Area); per queste valvole si ottiene un rapporto tra orifizio della protesi e anello valvolare pari al 100 %. Il rivestimento garantisce all'alloggiamento buona biocompatibilità senza modificarne le proprietà fisiche e strutturali. L'anello di sutura è costituito da uno strato in PET e uno in PTFE con rivestimento di Carbofilm per migliorare l'emocompatibilità ed evitare crescita di tessuto verso l'interno della valvola (Figura 2.9).

Figura 2.9: Valvola Sorin Bicarbon Overline.

Il grado di emolisi e di trombogenicità si è rivelato basso. Non sono riportati casi di cedimento meccanico, si è verificato, invece, un certo deterioramento del rivestimento di Carbofilm in corrispondenza dei cardini ma senza conseguenze.

2.1.4 On-X

Le On-X, che hanno avuto l'approvazione dalla FDA nel 2001, sono prodotte dalla On-X Life Technologies Inc., prima chiamata MCRI (Medical Carbon Research Institute) ad Austin, Texas. Esistono sia modelli per il posizionamento intra-anulare che sopra-anulare (Figura 2.10).

L'anello di sutura è in PTFE ed è attaccato alla valvola tramite un anello di titanio, che ne consente la giusta orientazione. I leaflet sono di grafite e tungsteno ricoperti da una lega di carbonio pirolitico e si collegano all'housing tramite cerniere a farfalla. La lega di carbonio pirolitico utilizzata per l'housing e per il rivestimento dei leaflet non contiene silicio, a differenza degli altri modelli di valvola: questo materiale dall'elevata purezza, chiamato On-X Carbon, risulta avere migliori caratteristiche per resistenza, durata, emodinamica e non trombogenicità. L'housing più allungato rispetto agli altri modelli di valvola descritti nei precedenti paragrafi, riduce l'angolo effettivo di rotazione dei leaflet attorno alle cerniere. Con questo design il flusso del sangue risulta meno turbolento e il reflusso è ridotto; oltre a garantire migliori caratteristiche emodinamiche, il prolungamento dell'housing protegge gli occlusori e impedisce la crescita di tessuto nell'orifizio. Un sistema brevettato attutisce l'impatto dei leaflet in chiusura: l'energia viene distribuita sui due punti vicini ai perni, in

modo che la velocità dell'impatto sia ridotta del 4 0%; si evitano così fenomeni di cavitazione ed emolisi.

Figura 2.10: A) valvola On-X aortica, B) cerniera a farfalla.

Gli studi a breve termine e i trial clinici hanno dimostrato che l'innovativo design della On-X migliora notevolmente le prestazioni emodinamiche rispetto agli altri modelli di valvola [1]. Dal 2006 è in atto negli Stati Uniti un trial clinico, PROACT (Prospective Randomized On-X Valve Reduced Anticoagulation Clinical Trial) per verificare se le particolari caratteristiche di questa protesi possano consentire la riduzione della terapia anticoagulante senza rischio di episodi tromboembolici [17].

2.1.5 Carbomedics Top Hat

La valvola Carbomedics Top Hat è prodotta dalla Sulzer Carbomedics ad Austin, Texas. È stata introdotta nel 1986, e nel 1993 ha ricevuto l'approvazione dell'FDA (Figura 2.11). Le protesi aortiche, dette Top Hat, sono le prime valvole destinate all'impianto totalmente sopraanulare.

I leaflet sono costruiti in grafite, con una componente di tungsteno per renderli radio-opachi, e rivestiti in carbonio pirolitico; l'housing è completamente in carbonio pirolitico e inoltre è circondato da un anello di titanio che ne garantisce l'indeformabilità e consente di ruotare e orientare la valvola come è più opportuno durante l'impianto. L'anello di sutura è in Dacron rivestito di carbonio Biolite. La valvola è disegnata senza perni che sporgono nel flusso sanguigno in modo da ridurre la turbolenza, facilitare l'impianto e proteggere il meccanismo di rotazione dei due leaflet. L'apertura raggiunta dai leaflet è pari a 78°.

Figura 2.11: Valvola Carbomedics Top Hat.

Come detto, le Carbomedics Top Hat sono le prime valvole dall'impianto totalmente sopraanulare; questa caratteristica rende possibile l'utilizzo di protesi dal diametro maggiore, e di conseguenza si ha un aumento dell'area orifiziale. Questo implica l'aumento della portata e la riduzione dei gradienti pressori in corrispondenza della valvola. Il vantaggio è notevole in casi di anello aortico particolarmente stretto o calcifico [18]. Sono riportati in letteratura casi di leakage periprotesico e di complicazioni tromboemboliche [1].

2.1.6 Medtronic Advantage

La valvola aortica bileaflet Medtronic Advantage è un prodotto della Medtronic Inc. (Minneapolis, Minnesota). La valvola è commercialmente disponibile nei paesi dell'Unione Europea e in Canada. È stato prodotto anche un modello "Supra" per l'impianto in posizione sopra-anulare (Figura 2.12).

L'housing è in carbonio pirolitico; anche i leaflet sono in carbonio pirolitico e si aprono fino ad una angolo di 86°, mentre l'angolo di chiusura è di 22°. L'anello di sutura in PET, ruotabile, è fissato all'housing tramite un anello di titanio.

Il flusso attraverso la valvola è facilitato dal trattamento delle superfici a contatto con il sangue con il metodo brevettato "Surface Engineering" che le rende lisce. Inoltre il sistema di cerniere a farfalla "Sure-Flow" è innovativo e di proprietà della Medtronic: si tratta di un meccanismo multilivello e asimmetrico che assicura il flusso continuo del sangue nelle zone di incernieratura, normalmente sensibili alla formazioni di trombi.

Le valvole bileaflet sono caratterizzate in generale da un trascurabile flusso di ritorno in corrispondenza dei leaflet, che ne assicura la pulizia. Numerosi studi hanno però rilevato in vivo un eccessivo reflusso nelle valvole Medtronic Advantage a causa dell'incompleta chiusura dei leaflet, che è risultata asintomatica e non dovuta a formazioni trombotiche. A

meno di complicanze, non è necessaria la sostituzione della protesi, basta tenerne sotto controllo il funzionamento.

Figura 2.12: Valvola Medtronic Advantage.

2.2 LE PROTESI VALVOLARI BIOLOGICHE

Il primo prodotto commerciale risale al 1963. Le valvole biologiche possono essere eterologhe, se composte di tessuto non umano (valvolare o pericardico), oppure omologhe, ossia valvole umane prelevate da cadavere (Figura 2.13).

Le protesi biologiche sono tipicamente ottenute applicando il tessuto biologico ad un supporto (stent) che funge da sostegno al tessuto prelevato dal donatore, dopo essere stato opportunamente trattato al fine di inibire la risposta immunogenica nel ricevente, e allo stesso tempo consente la successiva applicazione al cuore. Questo costrutto è un grado di mimare le caratteristiche di struttura, morfologia e flusso sanguigno tipiche delle valvole native umane.

Figura 2.13: Protesi biologica porcina (A), bovina (B), omologa (C).

La presenza dello stent comporta alcune conseguenze indesiderate: la possibile ostruzione del flusso ematico può causare maggiore frizione e turbolenza all'interno della valvola, compromettendone la durevolezza e provocando stenosi residue, calcificazione e

degenerazione. Per far fronte a questi problemi, sono state progettate valvole biologiche stentless che esibiscono migliori proprietà emodinamiche (Figura 2.14).

Figura 2.14: Protesi porcina stent-less (modello Biocor).

Il principale vantaggio delle protesi biologiche è il basso potenziale trombogenico: con questo tipo di valvole non è richiesta la terapia anticoagulante a vita. Il limite principale delle valvole biologiche è legato però al possibile rigetto per effetto della risposta immunitaria del ricevente; devono essere perciò "decellularizzate" per eliminare dalla matrice tutte le cellule del donatore; il trattamento di decellularizzazione può però modificare in maniera considerevole le caratteristiche funzionali della matrice extra-cellulare, alterandone drasticamente le proprietà biochimiche e biomeccaniche. Le valvole biologiche non sono vitali dal momento che i trattamenti applicati sul tessuto del donatore ne compromettono la funzionalità biologica.

La durata media delle valvole biologiche, si aggira attorno ai 10 o 15 anni: processi degenerativi possono infatti insorgere a causa delle reticolazioni chimiche che si rendono necessarie per dare stabilità alle fibre di collagene dopo la decellularizzazione. La reticolazione è spesso ottenuta utilizzando glutaraldeide: reagente chimico non costoso, solubile in acqua, in grado di produrre reticolazioni stabili. Il lento rilascio di glutaraldeide non reagita, presente nella matrice dopo il trattamento, può causare severi problemi: citotossicità, risposta infiammatoria, calcificazione. Inoltre impedisce la ri-endotelizzazione ostacolando l'integrazione del dispositivo [2].

Promettenti sono le proprietà delle valvole costruite mediante le nuove tecniche di ingegneria tessutale, di cui si daranno maggiori informazioni nel paragrafo successivo.

2.3 VALVOLE COSTRUITE MEDIANTE TECNICHE DI INGEGNERIA TESSUTALE

In considerazione dei limiti delle valvole meccaniche e di quelle biologiche, di recente si è fatto ricorso a tecniche di ingegneria tessutale per produrre valvole completamente biologiche, autologhe e viventi, con caratteristiche funzionali proprie dei tessuti nativi. L'aspetto più significativo dell'impiego di queste tecniche è la possibilità di utilizzare in vivo cellule prelevate dallo stesso paziente (Figura 2.15).

Le tecniche dell'ingegneria tessutale richiedono: la costruzione di un supporto (scaffold) sul quale far aderire le cellule; il prelievo delle cellule dal paziente; la preparazione della coltura cellulare per la semina sul supporto; la semina delle cellule e l'incubazione in un bioreattore; l'intervento chirurgico di sostituzione della valvola malata con la valvola ingegnerizzata.

Lo scaffold può essere sintetico, e quindi deve essere costituito di un polimero biodegradabile e bioriassorbibile, in grado di lasciare spazio alla crescita di tessuto dopo la fase in vitro, oppure può essere di derivazione animale, opportunamente trattato.

Nel caso di utilizzo di materiali sintetici il vantaggio fondamentale è che diventa possibile la funzionalizzazione con particolari segnali molecolari in grado di favorire l'adesione e la crescita cellulare. Sulle matrici sintetiche, una volta ottenute nella forma e nelle dimensioni desiderate, e dopo sterilizzazione con ossido di etilene, è possibile seminare le cellule del paziente. La fase di condizionamento può avvenire in un bioreattore statico o dinamico. Gli svantaggi nella scelta di uno scaffold sintetico sono: difficoltà nella costruzione di una struttura tridimensionale stabile, resistente e allo stesso tempo flessibile, provvista di cuspidi funzionali; trombogenicità dei polimeri; scarsa adesione e di conseguenza scarsa rigenerazione cellulare.

Per quanto riguarda la scelta degli scaffold biologici, si deve innanzitutto scegliere il donatore, allogenico o eterogenico a seconda che appartenga o meno alla stessa specie del ricevente; in un secondo momento lo scaffold deve essere sottoposto ad un particolare trattamento che può essere di sola fissazione con glutaraldeide o di vero e proprio lavaggio (decellularizzazione) per eliminare le cellule del donatore, lasciando inalterata solo la matrice extra-cellulare. Questo tipo di matrice, diversamente da quella di sintesi, contiene la struttura ed i componenti ottimali per ospitare le cellule del ricevente, tuttavia alcuni metodi applicati per il trattamento della valvola ne possono compromettere composizione e struttura, deteriorandone le caratteristiche complessive.

La valvola biologica trattata può essere impiantata direttamente nel ricevente o utilizzata come supporto per la crescita preliminare di cellule autologhe, usando eventualmente un

bioreattore per la fase di condizionamento. Anche queste presentano aspetti negativi, ad esempio le valvole fissate con glutaraldeide subiscono un processo di calcificazione e sono di fatto "non viventi"; quelle seminate con cellule autologhe, anche se di maggior durevolezza, vengono difficilmente ripopolate in vivo [2].

Figura 2.15: applicazione delle tecniche di ingegneria tessutale alle valvole cardiache; da sinistra a destra: valvola ottenuta con miofibroblasti, valvola ottenuta con cellule midollari, valvola ottenuta con cellule staminali.

2.4 IMPIANTO TRANSCATETERE DELLA VALVOLA AORTICA (TAVI)

L'ultima frontiera della cardiochirurgia è rappresentata dalla valvola Edward SAPIEN (Figura 2.16), costituita da una rete di acciaio inossidabile su cui sono cuciti tre leaflet in pericardio bovino. Questa valvola, in sala operatoria, viene compressa con una specifica apparecchiatura, impiantata attraverso un catetere che raggiunge la sede valvolare attraverso una piccola incisione praticata a livello dell'arteria femorale o tra le costole in corrispondenza dell'apice del cuore. Quando il catetere raggiunge la sede valvolare, viene gonfiato un palloncino che espande la rete metallica; in questo modo i lembi della valvola danneggiata vengono compressi, mentre quelli della valvola nuova si espandono. Il vantaggio fondamentale di questo tipo di tecnica è la possibilità di evitare l'utilizzo della macchina cuore-polmone e la bassa invasività dell'intervento, poiché non si effettua l'apertura del torace.

Questo tipo di tecnica, proprio per la bassa invasività, è adeguata per i pazienti anziani con gravi stenosi; è sconsigliato, invece, per pazienti con una lunga aspettativa di vita o in grado di sopportare l'intervento tradizionale, visto che non si conoscono ancora i risultati a lungo termine di questa pratica chirurgica. È da evidenziare che il paziente deve essere sottoposto ad ecocardiografia transesofagea, per determinare precisamente il diametro valvolare in modo da scegliere correttamente la dimensione della protesi ed evitare la presenza di leakage periprotesico e l'embolizzazione della valvola stessa. Inoltre il paziente deve sottoporsi ad angiografia per individuare calcificazioni o tortuosità. È da notare quindi la necessità di un team esperto in sala operatoria e la necessità di anestesia generale per il paziente [19].

Figura 2.16: A) palloncino su cui viene montata la valvola; B) modello in pericardio bovino.

CAPITOLO 3

MATERIALI E METODI

In questo capitolo saranno presentati gli strumenti utilizzati nella fase di acquisizione dei dati e i fondamenti teorici su cui si basa l'elaborazione effettuata sui segnali acquisiti. In dettaglio saranno descritti lo Sheffield Pulse Duplicator ed il Myotis 3C. Inoltre saranno descritti un algoritmo messo a punto per la selezione dei suoni di chiusura, il calcolo dello spettro di potenza e la scelta della finestra più opportuna, le reti neurali e la stima dei coefficienti di un modello auto-regressivo.

3.1 SHEFFIELD PULSE DUPLICATOR

Il pulse duplicator è uno strumento che permette di simulare il flusso pulsatile cardiaco al fine di testare in vitro protesi valvolari cardiache, sia meccaniche che biologiche. Per i test in vitro di questo lavoro di tesi è stato utilizzato lo Sheffield Pulse Duplicator in dotazione al Centro "V. Gallucci" del Policlinico Universitario di Padova.

Lo Sheffield Pulse Duplicator, sviluppato dall'Università di Sheffield presso il *Department of Medical Physics and Clinical Engineering* del Royal Hallamshire Hospital, rispetta le direttive ISO 5840: 1980 (E) << *Cardiovascular Implants-Cardiac Valve Prostheses>>* e gli standard ISO/WD 5840 <<*Cardiac Valves>>* e CEN 285 WG3 <<*Non active Surgical Implants. Part I: Cardiac Valves>>* Marzo 1994.

Il cuore è riprodotto solo da un punto di vista funzionale e non da un punto di vista geometrico. Lo Sheffield Pulse Duplicator, il cui schema è riportato in Figura 3.1, comprende un modello della parte sinistra del cuore, un modello della circolazione sistemica, cioè il carico presente all'uscita dal cuore, un elaboratore per il controllo della pompa e per la rilevazione dei dati di pressione e di flusso.

Si può distinguere il serbatoio, indicato con la lettera R, al cui interno è presente la camera mitralica (M), in cui il flusso entra dopo aver attraversato i raddrizzatori di flusso in polipropilene (S) e la sede di posizionamento della valvola mitrale (MV). Successivamente il fluido confluisce nel ventricolo (V) e accede alla sede di posizionamento della valvola aortica (AV) dopo essere stato di nuovo raddrizzato (S). I raddrizzatori sono necessari per rendere il profilo delle velocità all'ingresso delle sedi di test il più vicino possibile a quello del regime laminare. Il modello della circolazione sistemica (SA) comprende una capacità C realizzata tramite una camera chiusa contenente un volume d'aria che viene compressa o espansa

durante le fasi del ciclo cardiaco, ed una resistenza periferica R_p , che è modellata con un tratto di piccoli tubi di nylon con diametro di 3 µm e in serie una valvola a palla FCV (*Flow Control Valve*), che consente all'operatore di variare la resistenza periferica e quindi regolare la pressione aortica.

Figura 3.1: Schema dello Sheffield Pulse Duplicator.

Infine la pompa elettromeccanica a pistone (in Figura 3.1 indicata come "servo sistema") è controllata dal computer, in cui viene impostata una forma d'onda flusso-tempo, trasformata poi in segnale analogico; il servo amplificatore la processa, insieme al segnale proveniente dal tachimetro del motore. Il moto viene trasmesso ad una vite a sfere tramite un giunto elastico e un reggispinta. La vite è connessa all'asta del pistone, che può scorrere dentro una camera trasformando il movimento in spinta lineare. È possibile regolare i parametri corrispondenti all'output cardiaco, allo *stroke volume* e alla frequenza cardiaca. Al computer sono connessi trasduttori di flusso e di pressione che, in Figura 3.1, sono indicati rispettivamente con EMF e Vp, Ap (pressione ventricolare e aortica) [8,20].

In Figura 3.2 si riporta un'immagine della pompa elettromeccanica a pistone.

Figura 3.2: Pompa elettromeccanica a pistone dello Sheffield Pulse Duplicator.

3.2 MYOTIS 3C

Lo strumento utilizzato per l'acquisizione del suono delle protesi valvolari cardiache, sia in vitro che in vivo, è il Myotis 3C prodotto dalla Cardiosignal GmbH. È uno strumento (Figura 3.3) dotato di una sonda per la fonocardiografia convenzionale e una per la fonocardiografia ad ultrasuoni ed è inoltre fornito di ingresso per la registrazione dell'elettrocardiogramma, utile nel caso in cui il paziente è portatore di più protesi valvolari, poiché consente di associare ogni suono alla valvola corrispondente.

Lo strumento, oltre a permettere l'acquisizione del segnale, ha anche una funzione diagnostica. L'analisi della funzionalità della protesi valvolare avviene analizzando il corrispondente suono di chiusura: il software effettua un filtraggio passa-alto in modo da eliminare il contributo dei toni cardiaci e isolare le frequenze nell'intervallo 10-22 kHz e in un secondo momento viene identificato il caratteristico "doppio click" di chiusura della valvola bileaflet. Il presupposto su cui si basa questo tipo di analisi è la chiusura asincrona dei due emidischi, da cui si possono trarre informazioni sul corretto funzionamento della protesi [5,6]. Il riconoscimento dei doppi click avviene tramite un algoritmo in grado di rilevare la presenza di due picchi nel suono di ogni evento di chiusura; i picchi vengono identificati in base al superamento di una soglia stabilita euristicamente in base al picco massimo dell'acquisizione; successivamente viene valutata la distanza e l'ampiezza dei picchi, in modo da classificare gli eventi di chiusura come singolo o doppio click (Figura 3.4).

Questo strumento è stato utilizzato in questo lavoro solo per l'acquisizione dei dati e non come strumento diagnostico; inoltre è stata utilizzata esclusivamente la sonda per la fonocardiografia ad ultrasuoni posizionata, come suggerito dal costruttore, sotto il plesso subxifoideo o tra il quarto e il quinto spazio intercostale.

Figura 3.3: Myotis 3C.

Figura 3.4: a) tracciato fonocardiografico di una valvola normofunzionante , b) tracciato fonocardiografico di una valvola con un leaflet non correttamente funzionante.

3.3 ALGORITMO PER LA SELEZIONE DEI SUONI DI CHIUSURA

In questo lavoro sperimentale è stato creato un algoritmo in grado di isolare i suoni di chiusura dei leaflet della valvola ed escludere tutti gli altri suoni che in questo caso non costituiscono segnale utile ai fini dell'analisi e quindi sono classificabili come rumore.

L'algoritmo si basa sull'osservazione che il segnale acquisito mediante il Myotis 3C, contenente 1323000 campioni, presenta un alternarsi di picchi di dimensione maggiore, corrispondenti ai suoni di chiusura della valvola (in magenta in Figura 3.5) e di picchi di dimensione minore (in verde), corrispondenti ai suoni di apertura della valvola e ai suoni della pompa elettromeccanica del Pulse Duplicator.

Figura 3.5: a) esempio di segnale audio registrato, b) ingrandimento del segnale: in magenta i picchi corrispondenti ai suoni di chiusura, in verde i picchi corrispondenti a rumore.

Basandosi sull'osservazione che la variabilità del segnale in corrispondenza dei suoni di chiusura sia maggiore di quella in corrispondenza del rumore, l'algoritmo divide il vettore contenente i campioni dell'acquisizione audio in segmenti da 64 campioni e confronta la deviazione standard del segnale nel segmento con la deviazione standard globale, cioè la deviazione standard dell'intero segnale. Si decide di inserire in un vettore solo i dati contenuti nei segmenti in cui la deviazione standard locale supera di almeno 4.75 volte quella globale.

In Figura 3.6 nel grafico in alto è riportato il segnale ottenuto dalla registrazione in cui si possono notare i picchi relativi ai suoni di chiusura e quelli relativi al rumore della pompa; nel grafico centrale si nota che, a seguito dell'elaborazione descritta, il segnale che è stato conservato è solo relativo ai suoni di chiusura, mentre quello relativo al rumore della pompa è stato posto a zero. Il terzo grafico riporta il segnale effettivamente elaborato in frequenza, costituito da circa 7500 campioni a fronte dei 1323000 campioni del segnale originale.

Figura 3.6: Esempio di segnale originale (in alto), step intermedio nell'elaborazione (al centro), segnale selezionato dopo l'applicazione dell'algoritmo (in basso).

Osservando tutti i risultati ottenuti dall'applicazione della suddetta analisi si è notato che questo tipo di elaborazione permette di cancellare una grandissima parte dei suoni della pompa ma non riesce ad eliminarli totalmente. Infatti esistono due tipi di errori in cui si incorre:

- se il rumore prodotto dalla pompa ha una forma d'onda paragonabile, in ampiezza, a quella dei suoni di chiusura, l'algoritmo non riesce a distinguerlo e quindi ad eliminarlo;
- se il suono di chiusura della valvola ha un ampiezza molto più piccola degli altri suoni di chiusura l'algoritmo lo elimina perché lo classifica come un suono prodotto dalla pompa.

Il primo tipo di errore è più comune del secondo; l'incidenza totale di questi errori è di circa 4%. nelle Figure 3.7 e 3.8 si riportano due esempi rispettivamente del primo errore e del secondo; in particolare in Figura 3.7 il picco è a $9.88*10^5$ Hz (picco centrale nel cerchio verde); in Figura 3.8 il picco mancante è a $3.65*10^5$ Hz (picco mancante nel cerchio magenta).

Figura 3.7: Errore di tipo 1.

Figura 3.8: Errore di tipo 2.

Il vantaggio sostanziale dell'applicazione di questo tipo di algoritmo è l'eliminazione del rumore, la selezione del segnale utile e la riduzione dell'ingombro dei dati poiché permette di comprimere notevolmente la dimensione del vettore da elaborare successivamente.

3.4 LO SPETTRO DI POTENZA

Lo spettro di potenza può essere ottenuto sia attraverso metodi FT che attraverso metodi parametrici. I metodi FT sono basati sulla *Fourier Transform* e considerano sequenze di dati a durata finita. Implicitamente si assume che la sequenza di dati al di fuori dell'intervallo di osservazione sia nulla. I metodi parametrici si propongono di ricavare lo spettro di potenza da un insieme di parametri in grado di approssimare la sequenza, fuori dalla finestra di osservazione, con la sua estrapolazione fornita da un modello che sia una buona approssimazione dello stesso processo osservato. I metodi FT possono essere indiretti, cioè ricavano lo spettro di potenza dalla funzione di autocorrelazione del processo, oppure diretti, cioè si basano sulla sequenza stessa di dati. In questo lavoro si è scelto di utilizzare il metodo del *Periodogramma*, un metodo FT diretto.

La formula corretta per il calcolo dello spettro è:

$$P(\omega) = \lim_{N \to \infty} E\left[\frac{1}{N}\left|\sum_{0}^{N-1} x(n)e^{-j\omega n}\right|^{2}\right]$$

che prevede l'aspettazione e il calcolo del limite. Poiché la sequenza è di durata finita (si ha un numero finito di campioni) queste operazioni si omettono e si definisce lo "stimatore periodogramma" che risulta essere, però, solo un'approssimazione distorta della densità spettrale di potenza:

$$\hat{P}_{PER}(\omega) = \frac{1}{N} \left| \sum_{0}^{N-1} x(n) e^{-j\omega n} \right|^2$$

I metodi basati sulla FT producono una stima dello spettro che non è consistente, ovvero la varianza dello stimatore non tende a zero per N che tende all'infinito. Per migliorare la stima è opportuno suddividere i dati a disposizione in L intervalli, ciascuno di dimensione K (KL=N), calcolare lo spettro su ciascun intervallo e poi mediare gli spettri ottenuti. I valori di L e K devono essere scelti in modo accurato per far fronte a tre esigenze contrastanti: mantenere L elevato per limitare i fenomeni di distorsione, K elevato per ridurre la varianza dello stimatore, limitare KL per soddisfare l'ipotesi di processo stazionario.

Come soluzione a questo problema si è ricorsi al metodo di Welch che si basa sull'impiego di segmenti che si sovrappongono parzialmente. Inoltre ogni segmento è stato finestrato

opportunamente. Per ulteriori dettagli sulla finestratura si rimanda al sottoparagrafo successivo. Operando in questo modo la risoluzione in frequenza peggiora, ma la maggiore regolarità della stima finale la rende preferibile, ai fini della classificazione, a quella ottenuta con il metodo del periodogramma tradizionale.

In Matlab lo spettro di potenza con metodo di Welch si calcola attraverso la function:

$$[Pxx, f] = pwelch(x, w, noverlap, nfft, fc)$$

dove x è la sequenza di dati nel dominio del tempo, w è la finestra utilizzata, *noverlap* indica la sovrapposizione di due segmenti adiacenti, *nfft* sono i campioni della Fast Fourier Transform, *fc* è la sequenza di campionamento del Myotis. In questo caso x è il vettore risultante dall'applicazione dell'algoritmo di selezione dei suoni di chiusura, w è la finestra utilizzata, definita nel modo specificato nel sottoparagrafo seguente, *noverlap* viene impostato al valore di default in Matlab, cioè 50%, *nfft* è impostato a 512 (di conseguenza lo spettro conterrà (512/2)+1 campioni fra 0 e *fc*/2), mentre *fc* è pari a 44100 Hz.

La function *pwelch* restituisce in output i vettori f e Pxx: f e l'asse delle frequenze e contiene, in questo caso, 257 campioni equispaziati fra 0 e 22050 Hz,*Pxx*contiene il valore dello spettro di potenza per ciascun campione del'asse delle frequenze [8,21].

3.4.1 La finestratura

La finestratura equivale a una moltiplicazione nel dominio nel tempo e ad una convoluzione nel dominio della frequenza; serve a ridurre il fenomeno del leakage spettrale che inevitabilmente compare quando il segnale osservato durante un intervallo finito ha una lunghezza che non è multiplo intero del periodo del segnale stesso.

In letteratura esistono vari tipi di finestre ciascuna delle quali presenta pregi e difetti e, quindi, la scelta della finestra più opportuna va fatta volta per volta in funzione delle finalità per cui ci si accinge a calcolare lo spettro. In Figura 3.9, si mostra un possibile spettro di una finestra per evidenziarne i parametri più significativi: la massima altezza dei lobi laterali, la larghezza del lobo principale e la velocità di decadimento dei lobi laterali (roll-off rate).

Figura 3.9: Analisi spettrale.

Uno dei parametri di maggiore interesse dello spettro di una finestra è senz'altro l'andamento dei suoi lobi laterali, in quanto da essi dipende in che misura le componenti spettrali del segnale d'ingresso si disperdono lungo l'asse delle frequenze andando a modificare l'ampiezza delle righe spettrali adiacenti. Un altro parametro importante dello spettro di una finestra è la larghezza del lobo principale. Questo parametro determina, infatti, la risoluzione spettrale conseguibile con il segnale finestrato nel senso che, per mantenere separate e quindi distinguibili due righe spettrali di frequenza prossima, è necessario adottare una finestra il cui lobo centrale abbia larghezza inferiore alla differenza di frequenza delle componenti spettrali di interesse. Però, a mano a mano che il lobo centrale diventa più stretto e che quindi aumenta la risoluzione spettrale peggiora. In conclusione, scegliere la finestra ottimale significa individuare la finestra il cui spettro fornisca il compromesso migliore (in relazione al contenuto informativo cui si è interessati) tra dispersione e risoluzione spettrale. Ogni funzione finestra ha le proprie caratteristiche che possono essere utilizzate al meglio in funzione dell'applicazione specifica.

Per poter scegliere la funzione finestra ottimale è innanzitutto necessario avere qualche informazione, anche se non particolarmente accurata, sul contenuto spettrale del segnale di interesse. Ad esempio, se si prevede che nel segnale siano presenti interferenze anche di valore elevato ma comprese in una banda di frequenza non contigua a quella del segnale di interesse, è opportuno usare una finestra che presenti un elevato roll-off rate dei lobi laterali. Se viceversa i segnali interferenti agiscono in una banda più prossima alla frequenza del segnale di interesse, è preferibile scegliere una funzione finestra in cui i lobi laterali siano molto attenuati rispetto all'ampiezza del lobo centrale, pertanto il parametro più importante da

considerare nella scelta sarà la massima altezza dei lobi laterali. Se nel segnale di interesse sono presenti componenti spettrali molto prossime tra loro e si vuole evitare che si verifichi un effetto di mascheramento reciproco, sarà importante avere una buona risoluzione spettrale e, quindi, si guarderà principalmente alla larghezza del lobo principale, cercando di individuare una finestra con un lobo principale molto stretto. Se è più importante valutare l'ampiezza di una componente piuttosto che la sua localizzazione in frequenza, è preferibile scegliere una funzione finestra con un lobo centrale più largo e possibilmente piatto in corrispondenza del suo massimo. Tra le varie finestre ne esiste una, quella di hanning, che presenta un buon compromesso tra tutti i parametri, nel senso che funziona abbastanza bene nel 95% dei casi di interesse pratico: ha un lobo centrale abbastanza stretto, quindi fornisce una buona risoluzione spettrale, l'altezza dei lobi laterali è molto attenuata rispetto a quella del lobo centrale e il loro decadimento è abbastanza rapido. Per tali considerazioni, quando non si hanno a disposizione troppe informazioni sul segnale di interesse, la finestra di hanning è una buona scelta iniziale.

Per le considerazioni sopraesposte e considerando che nella classificazione si utilizzano gli spettri normalizzati dando poca importanza all'ampiezza dei lobi, si è cercata una funzione finestra con un lobo principale abbastanza stretto in modo da avere una buona risoluzione spettrale e con dei lobi laterali attenuati rispetto all'ampiezza del lobo centrale.

In Tabella 3.1 si riportano i parametri su definiti delle principali finestre il cui numero di campioni nel dominio del tempo è 128.

CARATTERISTICHE DELLE FUNZIONI FINESTRA				
Finestra	Mainlobe width(-3dB)	Relative sidelobe attenuation (dB)	Leakage Factor (%)	
Hanning	0.021484	-31,5	0.05	
Barthann	0.021484	-35,9	0.03	
Bartlett	0.019531	-26,5	0.28	
Blackman	0.025391	-58,1	0.00	
Blackman- Harris	0.029297	-92,1	0.00	
Bohman	0.025391	-46	0.00	
Flat-Top	0.058594	0	96.76	
Hamming	0.019531	-42,6	0.03	
Nuttal	0.029297	-96,8	0.00	
Parzen	0.027344	-53,1	0.00	

 Tabella 3.1: Caratteristiche delle varie finestre.

Nel caso del segnale fonocardiografico si è deciso di utilizzare finestre che mostrano minor ampiezza del lobo principale, maggiore attenuazione dei lobi laterali e minore fattore di leakage. In particolare sono state studiate le finestre di hamming, hanning, bohman, blackman, blackman-harris e parzen. In figura 3.10 sono rappresentati a sinistra le finestre nel dominio del tempo e a destra nel dominio delle frequenze; in blu si ha la finestra di hanning, in verde quella di hamming e in rosso quella di bohman.

Figura 3.10: Finestra di hanning, hamming e bohman.

In Figura 3.11 sono rappresentate: in blu la finestra di blackman, in verde quella di blackmanharris e in rosso quella di parzen.

Figura 3.11: Finestre di blackman, blackman-harris e parzen.

Per la scelta della finestra, per ogni modello di valvola, è stato calcolato lo spettro utilizzando il metodo di Welch e finestrando con le finestre suddette; per ogni diversa condizione di funzionamento per ogni modello di valvola tutti gli spettri disponibili (ottenuti per le diverse condizioni di beat rate e stroke volume). Nelle Figure 3.12 e 3.13 si riporta un esempio, ottenuto nel caso di formazione trombotica intermedia di una valvola Sorin Bicarbon Overline (per maggiori dettagli sulle condizioni sperimentali rimanda al Capitolo 4).

Figura 3.12: Media degli spettri nel caso Sorin Bicarbon Overline I2.

Figura 3.13: Dettagli del grafico in Figura 3.12.

Nella Figura 3.13 si noti che la curva ottenuta con la finestra di hamming è di ampiezza maggiore, i picchi sono più definiti e presenta maggior dettaglio. Per la finestratura in questo lavoro è stata scelta la finestra di hamming, di ampiezza 128.

In Matlab il comando per definire la finestra di hamming è:

dove N è il numero di campioni che costituiscono la finestra nel dominio del tempo, in questo caso pari a 128.

3.5 STIMA DEL MODELLO AR

Per elaborare segnali di interesse biologico, spesso si ricorre all'impiego di modelli ARMA, cioè modelli a tempo discreto, lineari, tempo invarianti, descritti da un'equazione alle differenze. Si tratta di "modelli di dati" che si limitano a descrivere le relazioni ingressouscita, a differenza dei "modelli di sistema" che invece hanno l'obbiettivo di descrivere il sistema che produce i dati.

Si parla di modello aleatorio quando i segnali di ingresso e uscita, indicati con u_n e y_n , sono processi aleatori stazionari. Si assume che l'ingresso x_n sia rumore bianco, stazionario a media nulla. La relazione ingresso-uscita è:

$$y_n = -\sum_{k=1}^p a_k y_{n-k} + \sum_{k=0}^q b_k u_{n-k}$$

con ordini p e q interi e finiti e coefficienti a_k e b_k reali.

Il modello ARMA fornisce una descrizione parametrica del processo aleatorio stazionario y di uscita, nel senso che ad ogni realizzazione del processo di ingresso corrisponde una realizzazione del processo di uscita.

Si parla di modelli AR con riferimento al caso in cui l'uscita in un certo istante dipenda dall'uscita negli istanti precedenti e dall'ingresso nell'istante attuale. I modelli AR sono molto usati per la loro semplicità e perché sono disponibili molti algoritmi per la loro identificazione, l'equazione alle differenze per tali modelli è:

$$y_n = -\sum_{k=1}^p a_k y_{n-k} + b_0 u_n$$

dove u_n è rumore bianco, a valor medio nullo e varianza ${\sigma_u}^2,$ cioè:

$$\mathbf{E}[u_n] = 0, \qquad R_u(k) = \mathbf{E}[u_n u_{n+k}] = \sigma_u^2 \,\delta_m, \qquad \delta_m = \begin{cases} 1 & per \quad m = 0 \\ 0 & altriment \end{cases}$$

Per caratterizzare il processo in uscita ad un modello AR, si esaminano le proprietà di stazionarietà e si calcolano media e funzione di autocorrelazione:

1. si può dimostrare che il processo è stazionario se i parametri a_n soddisfano le condizioni di stabilità del sistema, cioè se le radici dell'equazione caratteristica:

$$A(z^{-1}) = 1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_p z^{-p} = 0$$

sono tutte interne al cerchio unitario del piano zeta. Quindi la stabilità del sistema è collegata alla stazionarietà nel meccanismo di generazione dei dati;

 il processo di uscita è a valor medio nullo. Infatti, valutando l'aspettazione dei termini dell'equazione alle differenze per il modello AR e sfruttando la linearità dell'operatore aspettazione, si ottiene:

$$E[y_n] = -\sum_{k=1}^p a_k E[y_{n-k}] + b_0 E[u_n]$$

Per la stazionarietà del processo, $E[y_n] = E[y_{n-k}]$ per ogni k. Essendo il processo di ingresso a media nulla, si può riscrivere come:

$$\mathrm{E}\left[y_n\left(1+\sum_{k=1}^p a_k\right)\right] = 0$$

Dato che il secondo fattore del prodotto è in generale diverso da zero, il fatto che il prodotto sia nullo comporta che sia nullo il primo fattore, ovvero la media del processo;

3. si calcola la funzione di autocorrelazione di y_n per k>0

$$R_{y}(k) = \mathbf{E}[y_{n}y_{n-k}] = \mathbf{E}\left[\left(-\sum_{i=1}^{p}a_{i}y_{n-i}+b_{0}u_{n}\right)y_{n-k}\right] = -\sum_{i=1}^{p}a_{i}R_{y}(k-i)+b_{0}\mathbf{E}[u_{n}y_{n-k}]$$

Per calcolare l'ultimo addendo dell'equazione sopra, si sfrutta il fatto che il sistema è causale, quindi per k>0 tale addendo è nullo perché l'uscita all'istante n-k non dipende dall'ingresso nell'istante futuro n. Per k=0, sostituendo a y_n l'equazione alle differenze per il modello AR, si ottiene $E[u_n^2]=b_0\sigma_u^2$. Inserendo queste relazioni nell'equazione ottenuta precedentemente l'autocorrelazione si ottiene un insieme di equazioni, noto come Equazioni di Yule-Walker:

$$R_{y}(k) = \begin{cases} -\sum_{i=1}^{p} a_{i} R_{y}(k-i) & per \quad k > 0\\ -\sum_{i=1}^{p} a_{i} R_{y}(k-i) + b_{0}^{2} \sigma_{u}^{2} & per \quad k = 0\\ R_{y}(-k) & per \quad k < 0 \end{cases}$$

Dall'espressione di $R_y(0)$ è evidente come i termini $b_0 e \sigma_u^2$ non giocano singolarmente, ma solo come prodotto. Pertanto non è restrittivo considerare in alternativa al modello

originale $b_0 = 1$ e varianza del rumore di ingresso $= b_0^2 \sigma_u^2$, $\sigma_u^2 = 1$ e guadagno del sistema $= b_0 \sigma_u$. Infatti i tre modelli portano alla stessa descrizione statistica (media e funzione di autocorrelazione) [21].

3.5.1 Identificazione del modello

Si assuma che l'ordine p sia noto. Identificare il modello vuol dire associare un valore numerico ai parametri del modello a1 ap e σ_u^2 ; in tutto p+1 incognite. Si illustra il metodo di stima dei parametri del modello AR basato sulla predizione. Il modello in forma di predizione descrive l'uscita all'istante n come combinazione lineare delle uscite negli istanti precedenti con coefficienti a_k pari a quelli del modello origine. Infatti, essendo il rumore di ingresso bianco, si rinuncia a qualsiasi tentativo di predizione e lo si pone pari al suo valore medio, cioè a zero. Indicando con il simbolo ~ il valore stimato:

$$\widetilde{y}_n = -\sum_{k=1}^p a_k y_{n-k} \; .$$

Applicando il modello di predizione all'uscita del sistema fisico si ottiene la predizione del segnale all'istante n, noti i suoi valori precedenti:

$$\widetilde{s}_n = -\sum_{k=1}^p a_k s_{n-k} \; .$$

Per il campione n-esimo si può calcolare l'errore di predizione e_n come differenza fra il valore vero e il valore predetto:

$$e_n = s_n - \widetilde{s}_n = s_n + \sum_{k=1}^p a_k s_{n-k}$$

Il metodo dei minimi quadrati determina una stima dei parametri definendo un indice J pari all'errore quadratico medio:

$$J = \mathbf{E}\left[e_n^2\right] = \mathbf{E}\left[\left(s_n + \sum_{k=1}^p a_k s_{n-k}\right)^2\right]$$

e poi trovando il minimo di J rispetto ai parametri $a_1...a_{p}$: $a_k = \min_{a_k} J$.

Essendo J una forma quadratica, il punto di minimo globale è quello in cui si annullano le derivate parziali; sostituendo a J la sua espressione e derivando rispetto a a_k , k=1...p si ottengono p equazioni lineari:

$$\sum_{k=1}^{p} a_k R_s(i-k) = -R_s(i), \qquad 1 \le i \le p$$

dove Rs è la funzione di autocorrelazione dei dati: $R_s(i-k) = E[s_{n-k}s_{n-i}] = R_s(k-i)$.

Essendo queste equazioni della stessa forma delle equazioni di Yule-Walker si può concludere che le stime $a_1...a_p$ che minimizzano l'errore di predizione si possono trovare considerando le equazioni di Yule-Walker k=1,2,...,p, uguagliando in esse la funzione di autocorrelazione del modello con quella dei dati: $R_s(i) = R_y(i)$ e infine risolvendo tali equazioni in $a_1...a_p$. Per stimare la varianza del rumore di ingresso, si riconsidera l'uscita del modello y_n e si osserva che la differenza tra uscita del modello e la sua predizione coincide con il rumore di ingresso; per il sistema fisico la differenza tra dati e predizione coincide con l'errore di predizione. Da qui si può interpretare l'errore di predizione come una stima del rumore di ingresso, e quindi stimare la varianza del rumore di ingresso attraverso il calcolo della varianza dell'errore di predizione, che coincide con il calcolare J in corrispondenza del punto di minimo:

$$\widetilde{\sigma}_u^2 = \mathbf{E}[(s_n - \widetilde{s}_n)^2] = J_{\min}$$

Si può concludere che è possibile stimare i parametri $a_1...a_p$ e la varianza del rumore di ingresso σ_u^2 considerando le equazioni di Yule-Walker per k=0,1...p e uguagliando in esse la funzione di autocorrelazione del modello con quella dei dati; si ottengono così delle equazioni che vanno risolte nelle incognite $a_1...a_p$ e σ_u^2 . Quindi, per un modello AR, minimizzare l'errore di predizione coincide con uguagliare i primi p+1 valori della funzione di autocorrelazione del modello R_y(i) con quelli dei dati R_s(i) [21].

3.5.2 Scelta dell'ordine del modello

Fino a questo momento si è supposto noto l'ordine del modello. In realtà l'ordine non è noto a priori, ma viene anch'esso valutato dai dati. Si potrebbe pensare di costruire modelli AR di ordine crescente finché l'errore di predizione J_{min} non raggiunga un valore minimo garantendo così che il modello approssimi al meglio i dati sperimentali. Ma dalle equazioni di Levirson Durbin si può prevedere che l'errore quadratico medio J_{min} (che coincide con la varianza del rumore di ingresso) per il modello di ordine p sarà senz'altro inferiore al valore di J_{min} per il modello di ordine p-1. In altre parole, incrementando l'ordine del modello, e quindi la sua complessità, il modello approssima meglio i dati. Allora un criterio realistico è di arrestarsi all'ordine p quando il miglioramento introdotto da un modello di ordine p+1 non sia significativo, ad esempio è inferiore ad un certo ε prefissato:

$$\frac{J_{\min}^{(p+1)}}{J_{\min}^{(p)}} \ge 1 - \varepsilon$$

In alternativa, vengono spesso usati criteri di valutazione dell'ordine ottimo del modello che si basano sul criterio di parsimonia, cioè considerano contemporaneamente la capacità di un modello di approssimare i dati (J_{min}) e la sua complessità (numero di parametri), con l'obbiettivo di selezionare l'ordine del modello che è in grado di riprodurre bene i dati con un numero ridotto di parametri. Akaike ha introdotto due criteri.

Il primo sceglie l'ordine del modello AR in modo che l'indice FPE (*final prediction error*) sia minimo:

$$FPE(p) = \frac{N+p-1}{N-p-1} J_{\min}$$

dove N è il numero di campioni considerati. Da notare che il primo fattore cresce all'aumentare di p, mentre il secondo fattore diminuisce. L'ordine più appropriato del modello è dato dal valore p che minimizza l'indice FPE.

Il secondo criterio, basato sul principio di massima verosimiglianza, determina l'ordine del modello minimizzando una teorica funzione informazione. Assumendo che il processo abbia una statistica Gaussiana, l'indice da minimizzare AIC (*Akaike Information Criterion*) è:

$$AIC = \ln J_{\min} + 2(p+1)/N.$$

Anche in questo caso, il primo addendo decresce al crescere di p, mentre il secondo cresce con p, rappresentando la penalità introdotta dall'utilizzo di ordine maggiore a quello ottimo. AIC e FPE danno risultati simili se N è molto elevato [21].

3.5.3 Aspetti implementativi

In questo lavoro, per ogni acquisizione audio, elaborata con l'algoritmo di isolamento dei suoni di chiusura, sono stati stimati i coefficienti di un modello AR di ordine 20.

I coefficienti del modello auto-regressivo sono stati stimati utilizzando la function del System Identification Toolbox di Matlab:

$$Th = ar(y, N, Approach)$$

dove y è il vettore dei dati di cui stimare il modello AR; N è l'ordine del modello (in questo caso pari a 20); *Approach* è il metodo usato, in questo caso "yw" perché vengono utilizzate le equazioni di Yule-Walker; *Th* è una struttura, in questo caso viene considerato il vettore dato da *th.a*, contenente la stima dei coefficienti del modello AR.

3.6 LE RETI NEURALI ARTIFICIALI

Le reti neurali artificiali sono modelli matematici ispirati alle reti neurali biologiche, e proprio come le reti biologiche, sono ottenuti connettendo tra loro singole unita computazionali (neuroni) attraverso collegamenti pesati (sinapsi). Il comportamento esibito da tali reti mima alcuni comportamenti peculiari del cervello, tra cui le capacità di memorizzare un oggetto, richiamare dalla memoria tale oggetto partendo da una descrizione parziale (come ricordarsi una canzone partendo dalla melodia), generalizzare a partire da esempi e raggruppare oggetti in base alle somiglianze tra essi [22-24].

3.6.1 I neuroni artificiali

Il neurone artificiale è un modello matematico che calcola una funzione, detta funzione di attivazione. Gli ingressi di tale funzione modellano gli stimoli che il neurone biologico riceve dagli altri neuroni, mentre il risultato calcolato (uscita) descrive il segnale trasmesso dal neurone lungo l'assone. Quindi, la funzione di attivazione del neurone artificiale trasforma i valori dell'insieme degli ingressi (spazio degli ingressi) in corrispondenti valori nell'insieme delle uscite (spazio delle uscite) (Figura 3.14).

Figura 3.14: Schema di neurone artificiale.

Il primo modello formale (matematico) di neurone è stato proposto da McCulloch e Pitts nel 1943, ben prima che i calcolatori digitali si diffondessero. La sua funzione di attivazione può assumere due valori: neurone attivo (1) o silente (0). Anche i *pesi sinaptici*, che modellano la forza della connessione tra una coppia di neuroni possono avere solo due valori: eccitatorio (1) o inibitorio (-1). Il neurone di McCulloch e Pitts esegue la somma pesata degli stati dei neuroni a esso connessi, e, a seconda che tale valore sia maggiore o minore della soglia, assume lo stato attivo o passivo. Formalmente, lo stato del neurone *i*-esimo è descritto dalla seguente funzione di attivazione:

$$S_{i} = \begin{cases} 1, & \sum_{j} w_{ij} S_{j} \ge \theta_{i} \\ 0, & \sum_{j} w_{ij} S_{j} < \theta_{i} \end{cases}$$

dove S_k è lo stato del neurone *k*-esimo, w_{ij} è il peso del contributo dell'uscita del neurone *j* al neurone *i*, e θ_i è la soglia del neurone *i*-esimo. Le sommatorie sono estese all'insieme di neuroni che sono connessi al neurone considerato, *i*.

È evidente che il modello proposto è basato su diverse semplificazioni del neurone biologico. La cellula neurale biologica integra nel tempo i contributi (asincroni) dei neuroni connessi, mentre nel modello matematico viene utilizzata la somma dei contributi. Inoltre, l'uscita è del tipo tutto-o-niente, e non modulata nel tempo.

Sono state formulate diverse varianti del modello di McCulloch e Pitts (detto anche *a soglia*, o *a gradino*). Esse si differenziano per le diverse funzioni di attivazione adottate, dalle quali i diversi modelli di neurone prendono il nome. Ponendo, per semplificare la notazione,

$$x = \sum_{j} w_{ij} S_{j} - \theta_{i}$$

si citano le funzioni di attivazione in Tabella 3.2.

Funzione	Formula		
Segno (bipolare)	$S_i = \begin{cases} 1, & x \ge 0\\ -1, & x < 0 \end{cases}$		
Sigmoide	$S_i = \frac{1}{1 + e^{-x}}$		
Arcotangente	$S_i = \arctan x$		
Tangente Iperbolica	$S_i = \tanh \frac{x}{2}$		
Lineare	$S_i = x$		
	$\begin{cases} 1, & x \ge \tan^{-1} \alpha \end{cases}$		
Lineare a tratti (rampa)	$S_i = \begin{cases} x \tan \alpha, & 0 \le x \le \tan^{-1} \alpha \end{cases}$		
	$0, \qquad x < 0$		

Tabella 3.2: Principali funzioni di attivazione.

Tutte le funzioni riportate in Tabella 3.2 (eccetto quella lineare) sono generalizzazioni della funzione gradino: aggiungendo un parametro per modificarne la pendenza, queste funzioni possono infatti ridursi alla funzione gradino.

Sono stati considerati anche neuroni artificiali con funzioni di attivazione a simmetria radiale. Come avviene in alcuni neuroni biologici specializzati nella corteccia visiva, funzioni di questo tipo godono della proprietà di località, in quanto producono una risposta significativa solo in un intorno di un punto dello spazio degli ingressi. Questo punto è caratteristico del comportamento del singolo neurone ed è descritto dal parametro c, detto *centro* del neurone; esso rappresenta la posizione del neurone nello spazio di ingresso. L'ampiezza dell'intorno di risposta può essere modulata dal parametro σ , detto *fattore di scala*. La risposta del neurone a uno stimolo è proporzionale alla distanza, r, tra lo stimolo, s, applicato al neurone e il suo centro, c:

$$r = \|s - c\|$$

Alcune funzioni a simmetria radiale sono riportate in Tabella 3.3.

Funzione	Formula
Gaussiana	$S_i = \exp\left(-\frac{r^2}{{\sigma_i}^2}\right)$
Multiquadratica	$S_i = \sqrt{r^2 + {\sigma_i}^2}$
Thin-plate-spline	$S_{r} = r^{2} \log r$

Tabella 3.3: Funzioni di attivazione a simmetria radiale.

La funzione di attivazione utilizzata in questo lavoro è la sigmoide.

3.6.2 I modelli di rete

Come detto, le reti neurali sono un insieme di neuroni interconnessi. Lo schema dei collegamenti è spesso il fattore più caratterizzante dei modelli di rete neurale. I modelli principali di rete sono le *reti di Hopfield*, le *reti feed-forward*, le *reti ricorrenti*, le *reti competitive* e le *reti impulsive*. Il modello utilizzato in questo lavoro di tesi è il modello *feed-forward* di cui si forniranno maggiori dettagli.

Le *reti di Hopfield* sono reti completamente connesse: ogni neurone è connesso a ogni altro neurone della rete. Poiché la funzione di attivazione dei neuroni di una *rete di Hopfield* è di tipo bipolare, una tale rete con *n* neuroni è descritta dall'insieme delle soglie, $\{\theta_i | i = 1,...,n\}$ e dall'insieme dei pesi sinaptici, $\{w_{ij} | i, j = 1,...,n\}$. L'uscita del neurone in un certo istante di tempo è detta "stato" del neurone; l'insieme degli stati dei neuroni che compongono la rete definisce lo stato della rete.

Le *reti ricorrenti* sono reti multistrato parzialmente connesse in cui le risposte di uno o più strati possono essere conservate e fornite come ingresso negli istanti successivi. Il

comportamento di queste reti è quindi dinamico: l'uscita fornita da una rete a un certo istante non dipende solo dallo stimolo fornito in ingresso all'istante considerato, ma anche dalla storia passata.

La conservazione delle informazioni degli istanti precedenti è affidata a connessioni con ritardo temporale (*retroazione*). A seconda del numero di tali connessioni (eventualmente con differenti ritardi), è possibile far considerare alla rete gli effetti di istanti precedenti.

Le *reti competitive* sono modelli neurali che si auto-organizzano in modo da essere in grado di individuare gli aspetti che caratterizzano o differenziano gli esempi di un dato insieme. Esse strutturano i propri neuroni in modo che ciascuno rappresenti un sottoinsieme degli esempi presentati alla rete in apprendimento. Ogni neurone della rete è quindi in competizione con gli altri per rappresentare il maggior numero possibile di esempi simili. Lo spazio in cui sono definiti degli esempi è detto *spazio delle caratteristiche* e le sue coordinate sono dette *caratteristiche*. Una opportuna funzione distanza definita su ciascuna coppia di elementi di questo spazio definisce il grado di somiglianza tra gli elementi della coppia. Ogni neurone è definito come un elemento dello spazio delle caratteristiche.

Le *reti impulsive* sono basate su neuroni del tipo *integra-e-spara*, i quali – secondo le attuali conoscenze – ricalcano più fedelmente il comportamento dei neuroni biologici ed utilizzano una codifica di tipo temporale per passare le informazioni tra i neuroni. Si noti però che queste reti sono molto più esigenti in termini di complessità computazionale rispetto alle reti tradizionali.

Le reti *feed-forward multistrato* (Figura 3.15) sono così chiamate perché il flusso di informazioni tra i neuroni procede in modo unidirezionale. Si tratta quindi di reti parzialmente connesse nelle quali i neuroni sono organizzati in sottoinsiemi detti *strati* (*layer*). Gli strati sono ordinati e solo i neuroni di due strati consecutivi sono direttamente connessi. Il primo strato (quello che riceve gli stimoli dall'esterno) viene detto *strato di ingresso*, mentre l'ultimo strato (quello che fornisce la risposta della rete) viene detto *strato di uscita*. Gli strati intermedi vengono detti *strati nascosti* (*hidden layer*). Si può dimostrare che le reti neurali sigmoidali multistrato con almeno tre strati sono *approssimatori universali di funzioni* continue: per ogni funzione continua esiste almeno una rete di questo tipo in grado di approssimarla con un'accuratezza prefissata. Se i neuroni dello strato di uscita sono di tipo discreti; si può così realizzare la *classificazione* degli ingressi, cioè associare a ciascun ingresso un valore tra le uscite, il quale identifica la sua classe di appartenenza. Tipicamente, i

neuroni dello stesso strato hanno la stessa funzione di attivazione mentre strati diversi possono avere funzioni di attivazioni differenti.

L'uscita di ciascun neurone, *i*, del *k*-esimo strato della rete è definibile come:

$$S_{i}^{(k)} = f^{(k)} \left(\sum_{j} w_{i,j}^{(k)} S_{j}^{(k-1)} - \theta_{i}^{(k)} \right)$$

dove lo stimolo per il livello di ingresso, $S_j^{(0)}$, corrisponde agli esempi forniti alla rete, e $f^{(k)}$ è la funzione di attivazione utilizzata per lo strato *k*-esimo.

Figura 3.15: Rappresentazione schematica di una rete feed-forward multistrato.

Una particolare famiglia di reti feed-forward multistrato è costituita dalle reti a simmetria radiale (*Radial Basis Function*, RBF). Queste reti sono caratterizzate da neuroni con funzione di attivazione a simmetria radiale (spesso gaussiana). Poiché è dimostrato che anche un solo strato è in grado di approssimare ogni funzione continua con un dato grado di accuratezza, tali reti vengono in genere strutturate con un singolo strato. La funzione, *G*, realizzata da una rete RBF è quindi una combinazione lineare di funzioni radiali:

$$G(s) = \sum_{i} w_i S_i(s; c_i, \sigma_i)$$

dove $c_i e \sigma_i$ sono i parametri caratteristici dell'*i*-esimo neurone. I parametri strutturali (centri, c, e fattori di scala, σ) determinano la copertura dello spazio di ingresso da parte dei neuroni, cioè la regione dello spazio degli ingressi alla quale la rete risponde significativamente. I pesi sinaptici modellano il valore di uscita della rete in risposta agli ingressi.

3.6.3 L'algoritmo di backpropagation

Il comportamento effettivo di una rete neurale, cioè la funzione esibita all'esterno, dipende dalla configurazione dei suoi parametri. Tramite un opportuno algoritmo, detto di *apprendimento (learning)* o *addestramento (training)*, la scelta dei valori dei parametri della rete può essere effettuata a partire da un insieme di esempi del comportamento desiderato. Al termine dell'apprendimento, la rete neurale deve essere in grado di *generalizzare* il comportamento descritto dagli esempi presentati durante la fase di configurazione, cioè deve essere capace di produrre una risposta significativa anche se sollecitata da un ingresso mai utilizzato in apprendimento.

In letteratura sono stati proposti diversi algoritmi di apprendimento a secondo del modello di neurone e dello schema di collegamento adottato per strutturare la rete. Si possono individuare due categorie di algoritmi di apprendimento: l'*apprendimento supervisionato* e l'*apprendimento non supervisionato*.

Nell'*apprendimento supervisionato*, sono fornite alla rete neurale le coppie composte dall'insieme degli esempi da applicare agli ingressi della rete stessa e dai corrispondenti valori che si desidera siano prodotti in uscita. Questa modalità di apprendimento è tipicamente usata per configurare reti neurali per l'approssimazione di funzioni e per la classificazione.

Nell'*apprendimento non supervisionato*, è fornito solo l'insieme degli esempi da applicare agli ingressi ed è la rete neurale che autonomamente organizza la propria configurazione. Questa modalità di apprendimento è adatta per il *clustering* e per le memorie associative.

Tra i vari algoritmi di apprendimento si illustra di seguito il solo algoritmo di *backpropagation*, utilizzato in questo lavoro, un algoritmo di apprendimento supervisionato.

L'algoritmo detto *retropropagazione (backpropagation)* si basa sulla valutazione dell'errore commesso dalla rete neurale in funzione dei parametri della rete stessa e sulla sua diminuzione tramite una modifica dei parametri operata nella direzione del gradiente della funzione errore. Per via della necessità di calcolare il gradiente della funzione calcolata dalla rete neurale, tale tecnica può essere utilizzata solo se la funzione di attivazione dei neuroni è derivabile rispetto ai parametri da configurare. L'algoritmo modifica i parametri di configurazione in base al contributo che essi danno alla diminuzione dell'errore. A ogni passo di apprendimento, si presenta un esempio agli ingressi della rete neurale, si calcola la relativa uscita prodotta dalla rete, e la si confronta con il valore di uscita atteso. La differenza tra il valore di uscita dell'esempio e il valore di risposta della rete neurale costituisce l'errore commesso dalla rete stessa. Procedendo a ritroso dall'uscita della rete verso i neuroni più

interni, si calcola il gradiente dell'errore rispetto ai parametri dei neuroni considerati e lo si utilizza per modificare i parametri stessi in modo da far diminuire l'errore.

Come esempio si consideri la rete neurale in Figura 3.16 [8,25] nella quale x è un vettore contenente 4 neuroni di ingresso, h è un vettore contenente i 3 neuroni dell'unico strato nascosto, mentre o indica il solo neurone dello strato di uscita; w^h indicherà l'insieme delle connessioni tra primo e secondo strato, mentre w^0 indicherà le connessioni tra strato intermedio e terzo strato.

Figura 3.16: Rete *feed-forward* a struttura 4-3-1.

Si supponga che ciascun neurone ha funzione di attivazione sigmoidale:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

la cui derivata si può scrivere come:

$$\sigma'(x) = \sigma(x)(1 - \sigma(x)) \tag{2}$$

Nella rete sono presenti *n* neuroni di input $x_0, ..., x_n$ che opportunamente pesati forniranno al jesimo neurone dello strato intermedio l'input:

$$z_{j}^{h} = \sum_{i=0}^{n} w_{ij}^{h} x_{i}$$
(3)

La funzione di attivazione, per lo strato intermedio, darà in output:

$$h_j = \sigma(z_j^h) \tag{4}$$

Tali output verranno a loro volta pesati e il risultato sarà l'input dello strato d'uscita:

$$z^o = \sum_{i=0}^m w_j^0 h_j \tag{5}$$

dove m è il numero di neuroni dello strato intermedio. L'output della rete sarà:

$$o = \sigma(z^{o}) \tag{6}$$

L'errore, ovvero la differenza tra l'output ottenuto e l'output desiderato, che viene indicato con *y*, è definito dalla formula:

$$E = \frac{1}{2}(y - o)^2$$
(7)

La retro propagazione dell'errore si propone di aggiornare i pesi tramite:

$$w_i = w_i - \alpha \frac{\partial E}{\partial w_i} = w_i + \Delta w_i \tag{8}$$

in cui α è un fattore di apprendimento che può essere impostato dall'utente ma in questo algoritmo si mantiene costante. Procedendo a ritroso, si devono dapprima aggiornare i pesi delle connessioni tra strato di output e strato nascosto. Nella formula (8) la derivata dell'errore rispetto al peso della connessione può essere riscritta come:

$$\frac{\partial E}{\partial w_j^0} = \frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial z^o} \cdot \frac{\partial z^o}{\partial w_j}$$
(9)

in cui i tre fattori (deducibili rispettivamente dalla (7), (2) e (5)) si possono esplicitare nella forma:

$$\frac{\partial E}{\partial o} = -(y - o) \tag{10}$$

$$\frac{\partial o}{\partial z^o} = o \cdot (1 - o) \tag{11}$$

$$\frac{\partial z^o}{\partial w_j^o} = h_j \tag{12}$$

da cui la (9) può essere riscritta come:

$$\frac{\partial E}{\partial w_j^o} = -(y-o) \cdot o \cdot (1-o) \cdot h_j = -\delta^o h_j$$
(13)

Tornando al riferimento (8) l'aggiornamento del peso sarà:

$$\Delta w_j^o = \alpha \delta^o h_j \tag{14}$$

Completato l'aggiornamento dei pesi tra strato d'uscita e strato nascosto bisogna aggiornare i pesi dei collegamenti tra strato nascosto e strato d'ingresso: nella formula (8) la derivata dell'errore rispetto al peso della connessione si può scrivere come:

$$\frac{\partial E}{\partial w_{ij}^{h}} = \frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial z^{o}} \cdot \frac{\partial z^{o}}{\partial h_{j}} \cdot \frac{\partial h_{j}}{\partial z_{j}^{h}} \cdot \frac{\partial z_{j}^{h}}{\partial w_{ij}^{h}}$$
(15)

in cui i fattori sono deducibili dalle formule (7),(2),(5),(4) e (3) e conducono a:

$$\frac{\partial E}{\partial o} \cdot \frac{\partial o}{\partial z^{o}} = -\delta^{o} \tag{16}$$
$$\frac{\partial z^o}{\partial h_j} = w_j^o \tag{17}$$

$$\frac{\partial h_j}{\partial z_j^h} = x_i \tag{19}.$$

Sostituendo (16),(17),(18),(19) nella (15) si ottiene:

$$\frac{\partial E}{\partial w_{ij}^{h}} = -\delta^{o} \cdot w_{j}^{o} \cdot h_{j} \cdot (1 - h_{j}) \cdot x_{i} = -\delta_{j}^{h} x_{i}$$
(20)

Infine, l'aggiornamento delle connessioni tra primo e secondo strato:

$$\Delta w_{ij}^h = \alpha \delta_j^h x_i \tag{21}.$$

Una volta presentato alla rete il *training set*, si conclude un'*epoca* dell'addestramento. La decisione di reiterare il procedimento tramite una nuova epoca viene presa sulla base dell'errore totale commesso dalla rete; esso è definito come la media, su ogni elemento del training set, dell'errore definito dalla (7) ed è per questo denominato *errore quadratico medio* (*MSE*). Si capisce quindi che l'obbiettivo dell'algoritmo è la minimizzazione di *E* come funzione dei pesi. Il gradiente di E espresso nella formula (8) indica la direzione in cui l'errore cresce. Il segno meno fa sì che l'algoritmo proceda nella direzione opposta.

L'algoritmo di *backpropagation* soffre di alcuni problemi. Il più grave è l'incapacità di riuscire a evitare i minimi locali della funzione errore. Inoltre, l'algoritmo di *backpropagation* non dà garanzie sul numero di iterazioni necessarie per giungere nel minimo dell'errore. Per questi motivi, sono generalmente adottate alcune varianti dell'algoritmo di *backpropagation*, quali il *simulated annealing* e l'uso dei *momenti*.

Per problemi semplici la valutazione della capacità di generalizzazione di una rete neurale può essere di tipo qualitativo, ma problemi di reale interesse applicativo richiedono una valutazione quantitativa della soluzione ottenuta: una volta terminato l'addestramento, si deve essere in grado di fornire una misura delle prestazioni di una rete neurale. Ciò può essere ottenuto suddividendo l'insieme degli esempi disponibili in due parti: l'*insieme di apprendimento (training set)* è utilizzato per l'addestramento della rete, mentre l'*insieme di verifica (test set)* è utilizzato per valutare quanto la rete abbia correttamente appreso il training set e sia in grado di generalizzarlo adeguatamente. Questo schema può essere esteso anche per guidare la scelta del modello da adottare: si possono addestrare diversi modelli sugli esempi di training e poi valutare quale modello si comporta meglio. In tal caso, l'insieme degli esempi deve essere suddiviso in tre parti: insieme di apprendimento, *insieme di validazione (validation set)* e insieme di verifica. Il *validation set* consente di verificare quale tra i modelli

configurati con il *training set* si comporta meglio, senza impiegare né esempi già utilizzati per l'addestramento, né quelli poi usati per provarne le capacità di generalizzazione.

I problemi che tipicamente si devono affrontare nell'apprendimento sono di due tipi, apparentemente di carattere opposto: la rete neurale non riesce ad apprendere gli esempi oppure li apprende fin troppo bene. Nel primo caso, si può trattare di una scelta errata del modello di neurone, della struttura della rete neurale o del numero di neuroni; oppure gli esempi potrebbero non avere alcuna correlazione tra loro e, quindi, non ci si può aspettare che la rete neurale ne trovi una. Il secondo caso (*overfitting*) si manifesta quando il numero di parametri della rete è troppo elevato per la cardinalità dell'insieme di *training*. In tal caso, l'apprendimento può arrivare a configurare la rete neurale in modo da ricostruire perfettamente gli esempi, perdendo però la capacità di generalizzarli. Per evitare questo problema si possono usare varie tecniche, per esempio bloccare l'addestramento dopo pochi passi (*early stopping*), aggiungere rumore agli esempi di addestramento, oppure penalizzare i pesi sinaptici troppo grandi (*weight decay*).

3.6.4 Aspetti implementativi

In Matlab la creazione di una *backpropagation artificial neural* network è possibile utilizzando la function:

net = newff(MM,[DIM],{TF}, 'BTF')

in cui MM è un vettore che contiene il massimo e il minimo del training set, DIM è un vettore che specifica il numero di neuroni di ogni strato intermedio e dello strato d'uscita, TF specifica le funzioni di trasferimento di ogni strato della rete, BTF è la funzione di backpropagation training. L'output net è una variabile strutturata. Il metodo della discesa del gradiente è selezionabile tramite il comando *"traingd"*; esso si serve di sette parametri di addestramento i più importanti dei quali si possono richiamare facendo riferimento ad alcune variabili contenute in *net.trainParam* attraverso cui è possibile anche modificare alcune impostazioni dell'algoritmo scelto.

Una volta specificate eventuali variazioni ai parametri di default la rete net può essere addestrata tramite l'istruzione:

net1 = *train*(*net*,*TrS*,*TTrS*,[],[],*VS*,*TeS*)

in cui TrS,VS e TeS sono matrici contenenti rispettivamente *training, validation e test set*, TTrS è una matrice contenente gli output desiderati cui far corrispondere ogni elemento del *training set*. Il comando genera un grafico (Figura 3.17) in cui è importante osservare che la perfomance di *training set*, *validation set* e *test set* abbiano andamento simile poiché questo è segno di una corretta suddivisione dei dati.

Un più importante utilizzo del test set lo si ha attraverso l'istruzione:

out = sim(net1,TeS)

in cui *net1* è la rete addestrata. La matrice *out* dice a quale classe viene assegnato ciascun elemento del *test set*. Ovviamente, il numero di neuroni dello strato di uscita deve essere pari al numero di classi che la rete si propone di distinguere.

Le reti neurali utilizzate in questo lavoro per la classificazione degli spettri di potenza sono state implementate utilizzando il comando *traingdx* che permette di avere un fattore di apprendimento α variabile e di inserire nella formula (8) un termine chiamato *momentum* che tiene conto della variazione del peso nell'epoca precedente. Tali accorgimenti permettono una convergenza più rapida e con meno oscillazioni.

Figura 3.17: Esempio di addestramento di una rete.

Per le reti neurali utilizzate in questo lavoro per la classificazione basata sui coefficienti di un modello AR è stato utilizzato il comando *'trainlm'* che aggiorna i pesi delle connessioni secondo le regole di ottimizzazione di Levenberg-Marquardt. Tale algoritmo si propone di risolvere l'equazione:

$$(J^T J + \lambda I)\delta = J^T E$$

dove *J* è una matrice Jacobiana di dimensione *N* x *W* (*N* numero di esempi del *training set* e *W* numero totale di connessioni), λ è un fattore di smorzamento, *I* è una matrice identità, δ è il vettore contenente l'aggiornamento dei pesi (ciò che si vuole determinare) ed *E* è un vettore contenente, per ogni input, l'errore citato in formula (7). Il fattore di smorzamento è il corrispettivo del *learning rate* degli algoritmi precedentemente descritti. Avere però un fattore di smorzamento elevato equivale ad avere un *learning rate* piccolo [8].

CAPITOLO 4

CLASSIFICAZIONE DEI DATI IN VITRO

4.1 IL SET-UP SPERIMENTALE

Nella fase di acquisizione dei dati in vitro sono stati analizzati cinque diversi modelli di valvola cardiaca: Sorin Bicarbon Overline 18 mm, St. Jude Regent 19 mm, On-X 19 mm, Carbomedics Top Hat 21 mm, Medtronic Advantage 21 mm.

Per ciascun modello di protesi sono state simulate sei diverse condizioni di funzionamento: una condizione normofunzionante, una condizione patologica consistente nel blocco completo di un leaflet, tre condizioni intermedie con presenza di un panno che non interferisce con il movimento di un leaflet ma ne modifica l'inerzia, e infine una condizione in cui un trombo viene posizionato sull'housing della valvola, senza interferire con il movimento dei leaflet e senza modificarne l'inerzia. Il panno e le formazioni trombotiche sono state simulate attraverso l'uso di un materiale gommoso opportunamente sagomato. Più precisamente, il blocco completo del leaflet è stato realizzato usando un trombo costituito da 0.75 g di materiale gommoso, le tre situazioni intermedie sono ottenute attraverso l'utilizzo di trombi rispettivamente di 0.07 g, 0.15 g e 0.36 g posizionati sul lato aortico della valvola; infine il trombo posizionato sull'housing è di 0.29 g. Il peso dei trombi è determinato con la precisione al centesimo di grammo.

Il trasduttore ad alta frequenza del Myotis 3C è stato posizionato al di sopra della camera aortica dello Sheffield Pulse Duplicator al fine di ridurre le vibrazioni meccaniche in grado di interferire con la misura come in Figura 4.1.

Al fine di coprire un ampio range di condizioni fisiologiche al Pulse Duplicator sono stati impostati diversi valori per *stroke volume* e per *beat rate*. Dal prodotto di questi due parametri si ottiene il *cardiac output*, o portata. In dettaglio, in Tabella 4.1 è riportato uno schema riassuntivo delle diverse condizioni fisiologiche.

Per ciascuna delle sei condizioni di funzionamento di ogni modello di valvola sono state registrate 4 sequenze audio da 30 secondi ciascuna per ogni condizione fisiologica descritta in Tabella 4.1, per un totale di 40 sequenze audio per ogni condizione di funzionamento e quindi 240 sequenze audio per ognuno dei cinque modelli di valvola. In totale quindi sono state acquisite 1200 sequenze audio.

Figura 4.1: Posizionamento del trasduttore Myotis 3C.

#	Stroke volume [ml]	Heart rate [bpm]	Cardiac output [l/min]
1		60	3.0
2		70	3.5
3	50	80	4.0
4		90	4.5
5		100	5.0
6		60	3.6
7		70	4.2
8	60	80	4.8
9		90	5.4
10		100	6.0

Tabella 4.1: Elenco delle 10 condizioni fisiologiche simulate per ogni condizione di funzionamento di ogni modello di valvola.

D'ora in avanti ci si riferirà alla condizione normofunzionante con la sigla *Nf*, alle tre condizioni intermedie con trombo di massa 0.07 g, 0.15 g, 0.36 g rispettivamente con le sigle *I1, I2* e *I3*; la condizione con trombo sull'housing sarà indicata con la sigla *Hg* e quella con blocco completo del leaflet con *Bk*. Tali sigle saranno precedute da un'altra sigla che indica il modello della valvola. In dettaglio verrà utilizzata la sigla *Sor* per indicare la valvola Sorin Bicarbon Overline, *Sjr* per la St. Jude Regent, *On-X* per la valvola On-X, *Carb* per la valvola Carbomedics Top Hat ed infine *Med* per la valvola Medtronic Advantage.

Nelle Figure 4.2, 4.3, 4.4, 4.5 e 4.6 si riportano le immagini del posizionamento dei trombi nelle 6 diverse condizioni di funzionamento per i cinque diversi modelli di valvola.

Figura 4.2: Valvola Sorin Bicarbon Overline: posizionamento dei trombi nelle 6 condizioni di funzionamento.

Figura 4.3: Valvola St. Jude Regent: posizionamento dei trombi nelle 6 condizioni di funzionamento.

Figura 4.4: Valvola On-X: posizionamento dei trombi nelle 6 diverse condizioni di funzionamento.

Figura 4.5: Valvola Carbomedics Top Hat: posizionamento dei trombi nelle 6 diverse condizionamento di funzionamento.

Figura 4.6: Valvola Medtronic Advantage: posizionamento dei trombi nelle 6 diverse condizioni di funzionamento.

4.2 CLASSIFICAZIONE SULLA BASE DEGLI SPETTRI DI POTENZA

Ad ognuna delle 40 sequenze audio acquisite per ogni modello di valvola è stato applicato l'algoritmo di selezione dei suoni di chiusura descritto nel Capitolo3. Successivamente è stato calcolato lo spettro di potenza delle sequenze audio risultanti dalla precedente elaborazione. Per il calcolo dello spettro è stato applicato il metodo di Welch associato alla finestratura con Finestra di Hamming da 128 campioni. Con i dati a disposizione per ogni modello di valvola è stata implementata una rete neurale (la topologia della rete varia a seconda del modello) con l'obiettivo di riuscire a classificare le sei diverse condizioni di funzionamento. In dettaglio sono state implementate reti neurali con uno strato d'ingresso composto da 257 neuroni pari al numero di campioni di ogni spettro, uno strato d'uscita costituito da 6 neuroni pari al numero di classi di funzionamento e 2 strati intermedi nascosti con un numero di neuroni che varia a seconda del modello di valvola. Per tutti i modelli si è deciso di utilizzare come funzione di attivazione dei neuroni la sigmoide, come modello della rete il *feed-forward*, come algoritmo di apprendimento il *backpropagation* come descritto nel Capitolo 3.

I quattro spettri di potenza calcolati per le 4 sequenze audio per ogni condizione di *stroke volume* e *beat rate* sono stati normalizzati e suddivisi in quattro insiemi: i primi due insiemi vengono inseriti nel *training set*, il terzo nel *validation set* e il quarto nel *test set*; pertanto il *training set* è costituito da 120 spettri (2 spettri x 10 condizioni fisiologiche x 6 condizioni di funzionamento) ed è dimensione doppia rispetto al *validation set* e al *test set* che sono costituiti da 60 spettri.

Al fine di stimare l'effettiva efficienza della rete e controllare di non aver introdotto *bias* con la particolare suddivisione dei dati è stata eseguita la *K-fold cross-correlation*, cioè è stato allenato il sistema su 3 insiemi e testato sul quarto insieme rimanente per quattro volte; in dettaglio nella prima permutazione i dati sono stati suddivisi come detto sopra; nella seconda permutazione si inseriscono il quarto e il primo insieme nel *training set*, il secondo nel *validation set* e il terzo nel *test set*; nella terza permutazione, vengono inseriti il terzo e il quarto insieme nel *training set*, il primo nel *validation set* e il secondo nel *training set*, il primo nel *validation set* e il terzo insieme di spettri, nel *validation set* il quarto e nel *test set* il primo. In tal modo tutti e quattro gli insiemi vengono testati, tuttavia non si effettuano tutte le permutazioni possibili. L'efficienza e il *Mean Square Error* totale della rete è dato dalla media dell'efficienza e del MSE registrati nelle quattro permutazioni.

Gli output delle reti sono sempre valori compresi fra 0 e 1 in quanto questo intervallo è il codominio della funzione sigmoide. Quanto più l'output è vicino a 1 tanto più la rete associa

quell'elemento del test set ad una classe, di contro tanto più l'output della rete si avvicina a 0 tanto più la rete esclude l'appartenenza dell'elemento del test set a quella classe. Si noti che il valore compreso fra 0 e 1 non è la probabilità che quell'elemento appartenga alla classe considerata, perché la somma degli output relativi ad uno stesso elemento per le sei classi di funzionamento non è 1, e la rete può attribuire ad uno stesso elemento output maggiore di 0.5 per 2 classi. Pertanto non è solo importante analizzare l'output per una classe per decidere se attribuirlo a quella classe, ma è importante anche analizzare la differenza con gli output per le altre classi. Si decide di attribuire ad una classe di funzionamento quegli elementi per cui l'output della rete è maggiore di 0.4 per la classe a cui si attribuisce e la differenza con gli output per le altre classi sia maggiore di 0.3.

D'ora in poi nelle tabelle che riportano gli output della rete neurale, si decide di riportare in grassetto la corretta assegnazione, in rosso un'assegnazione sbagliata (la rete associa l'elemento ad un'altra classe di funzionamento) e in blu una mancata assegnazione (o la rete non restituisce valore maggiore di 0.4 per nessuna classe oppure la differenza fra gli output di due classi è minore di 0.3).

4.2.1 Classificazione degli spettri della valvola Sorin Bicarbon Overline

Per la valvola Sorin Bicarbon Overline è stata creata una rete neurale con topologia 257-140-60-6, cioè una rete con due strati nascosti composti rispettivamente da 140 e 60 neuroni.

In Figura 4.7 si riportano gli spettri ottenuti per le sei classi di funzionamento per questo modello di valvola. Ad una prima osservazione si può notare che per tutte le condizioni di funzionamento si registra un picco intorno a $1.7*10^4$ Hz. Nel caso della valvola normofunzionante gli spettri presentano il picco di dimensione maggiore intorno a $1.7*10^4$ Hz ed un picco di ampiezza minore attorno a 10^4 Hz. Nell'intervallo $10^4 - 1.5*10^4$ Hz gli spettri presentano delle oscillazioni in cui si distinguono due picchi di dimensione ridotta intorno a $1.1*10^4$ Hz e $1.5*10^4$ Hz. Anche nel caso della condizione *I3* si registra un picco di dimensione maggiore attorno a $1.7*10^4$ Hz ed un altro picco di ampiezza minore attorno a 1.0^4 Hz ed un altro picco per tutti gli spettri nell'intervallo $10^4 - 1.5*10^4$ Hz ma comunque si può affermare che per ogni spettro esso si presenta in tale intervallo ed è di ampiezza paragonabile a quella del picco a $1.7*10^4$ Hz. Gli spettri relativi alla condizione *I1* oltre al picco maggiore a $1.7*10^4$ Hz presentano altri tre picchi attorno a $0.9*10^4$ Hz, $1.1*10^4$ Hz e $1.4*10^4$ Hz. Per la classe *Hg* il picco a $1.7*10^4$ Hz; inoltre si registra un picco di dimensione ridotta attorno a $1.1*10^4$ Hz, inoltre si picco maggiore si presenta attorno a $1.4*10^4$ Hz; inoltre si registra un picco di dimensione za maggiore; il picco maggiore si presenta attorno a $1.4*10^4$ Hz; inoltre si registra un picco di dimensione ridotta attorno a $1.1*10^4$ Hz. Per la classe *Hg* il picco a $1.7*10^4$ Hz; inoltre si registra un picco di dimensione ridotta attorno a $1.1*10^4$ Hz.

a $1.7*10^4$ Hz è quello di ampiezza maggiore, inoltre si ha un altro picco di dimensioni inferiori attorno a $1.1*10^4$ Hz. In questo caso il picco maggiore presenta un picco molto piccolo attorno a $1.55*10^4$ Hz.

Figura 4.7: Spettri di potenza relativi alla valvola Sorin Bicarbon Overline.

CONDIZION	ONDIZIONE NETWORK OUTPUT						
		Sor_Nf	Sor_I1	Sor_l2	Sor_I3	Sor_Hg	Sor_Bk
	SV50BR60	0.9996	0.0008	0	0.0001	0.0052	0
	Sv50BR70	0.9997	0.0002	0	0.0018	0.0008	0.0002
	SV50BR80	0.9999	0.0006	0.0003	0.001	0.0002	0
	SV50BR90	0.9999	0.0004	0.0002	0.0007	0.0003	0
sor_Nf	SV50BR100	0.9997	0.0003	0.0003	0.0001	0.0002	0.0004
_	SV60BR60	0.9974	0.0044	0.0003	0.0023	0.0006	0
	SV60BR70	0.9986	0.0013	0.0004	0.0001	0.0002	0.0001
	SV60BR80	0.9996	0.0007	0.0003	0.0008	0.0002	0.0001
	SV60BR90	0.9981	0.0009	0.0006	0.0002	0.0001	0.0003
	SV60BR100	0.9693	0.0001	0.0003	0.0089	0.0008	0.0008
	SV50BR60	0	0.9999	0	0.0003	0.0001	0
	Sv50BR70	0	1	0	0.0001	0.0001	0
	SV50BR80	0	1	0	0	0.0005	0
	SV50BR90	0.0001	0.9999	0	0	0.0002	0
sor_l1	SV50BR100	0	1	0	0.0001	0.0003	0
	SV60BR60	0	0.9999	0	0	0.0001	0
	SV60BR70	0.0001	0.9998	0.0001	0.0001	0.0002	0
	SV60BR80	0.0104	0.9836	0.0001	0.0002	0	0
	SV60BR90	0.0002	0.9997	0.0001	0.0001	0.0003	0
	SV60BR100	0.0003	0.9991	0	0.0067	0.0001	0
	SV50BR60	0	0.0002	0.9986	0.0006	0.0002	0
	Sv50BR70	0.0006	0.0012	0.9966	0	0.0003	0
	SV50BR80	0	0.0001	0.9998	0.0001	0.0004	0
	SV50BR90	0	0	0.999	0.0001	0.0014	0
sor_l2	SV50BR100	0	0.0001	0.9993	0.0001	0.0014	0
	SV60BR60	0	0.0002	0.9991	0.0006	0.0003	0
	SV60BR70	0	0	0.9998	0.0013	0.0001	0
	SV60BR80	0.0001	0	0.9995	0.0013	0.0002	0
	SV60BR90	0.0001	0.0001	0.9993	0.0027	0.0001	0
	SV60BR100	0.0001	0.0001	0.9994	0.0028	0.0001	0
	SV50BR60	0.0002	0.0019	0.0009	0.9919	0	0.0001
	Sv50BR70	0.0003	0	0.0002	0.997	0	0.0024
	SV50BR80	0.0004	0.0003	0.0001	0.995	0	0.0042
	SV50BR90	0.0044	0.0006	0.0005	0.992	0	0.0001
sor_l3	SV50BR100	0	0.0008	0.0001	0.9997	0	0.0002
	SV60BR60	0	0.0002	0	0.9986	0.0001	0.0087
	SV60BR70	0	0.0001	0.0001	0.9967	0.001	0.0026
	SV60BR80	0	0.001	0.0001	0.9997	0	0.0005
	SV60BR90	0	0.0005	0	0.9998	0	0.0007
	SV60BR100	0	0.0009	0.0002	0.9996	0.0002	0.0001
	SV50BR60	0.0003	0	0.0009	0	0.9984	0.0001
	Sv50BR70	0.0001	0	0.0004	0	0.9993	0.0002
	SV50BR80	0.0004	0	0	0	0.9987	0.0007
	SV50BR90	0.0003	0	0.0001	0	0.999	0.0003
sor_Hg	SV50BR100	0.0002	0	0.0002	0	0.9992	0.0004
	SV60BR60	0.0002	0	0.0004	0	0.9994	0.0001
	SV60BR70	0.0002	0	0.0001	0	0.999	0.0004
	SV60BR80	0.0003	0	0.0001	0	0.9989	0.0007
	SV60BR90	0.0001	0	0	0	0.9988	0.0008
	3V60BR 100	0.0001	0	0.0001	0	0.9987	0.0013
	SVSUBKOU SVEODDZO	0.0003	0.0001	0.0001	0.0004	0.0006	0.9991
	SVOUBK/U	0.0002	0.0001	0.0001	0.0002	0.0006	0.9942
		0.0003	0.0001	0	0.0001	0.0007	0.9993
sor Bk		0.0001	0.0001	0	0.0004	0.0009	0.3330
SULDE		0.0003	0.0002	0.0001	0.0002	0.0007	0.9997
		0.0003	0.0002	0.0001	0.0002	0.0004	0.9900
		0	0.0002	0.0001	0.0005	0.0003	0.9990
	SVEORPOO	0	0.0002	0.0002	0.0034	0.0002	0.0002
	SV/6082100	0	0.0001	0.0005	0.0006	0.0002	0.9995
	0,0001/100	U U	0.0003	0.0000	0.0000	0.0002	0.0000

Tabella 4.2: output rete Sor 257-140-60-6. Permutazione 1.

In Tabella 4.2 si riporta l'output della rete Sor solo nel caso della prima permutazione, gli output delle altre permutazioni vengono riportati in Appendice. Nella tabella si può notare che l'output degli elementi per la classe di appartenenza è maggiore di 0.96 mentre l'output per le altre classi è sempre inferiore a 0.0089.

In Tabella 4.3 si riporta uno schema riassuntivo sul numero di assegnazioni corrette e di quelle sbagliate, il MSE nelle quattro permutazioni. Il MSE e l'efficienza complessiva della rete viene valutata mediando i valori contenuti nella Tabella 4.3.

	MSE	CORRETTI/60	ERRORI/60	NON ATTRIBUITI/60	CORRETTI (%)
PERMUTAZIONE 1	1.02243e-006	60	0	0	100
PERMUTAZIONE 2	9.87688e-007	60	0	0	100
PERMUTAZIONE 3	9.93531e-007	60	0	0	100
PERMUTAZIONE 4	1.01907e-006	60	0	0	100
Taballa	1 2. Data som MC	C mumana di assa	monioni cometto	nalla 1 nomentariani	

 Tabella 4.3: Rete sor: MSE, numero di assegnazioni corrette nelle 4 permutazioni.

Dai dati contenuti in Tabella 4.3 si evince che:

MSEmedio = 1.0057e-006

Efficienza = 100%.

4.2.2 Classificazione degli spettri della valvola St. Jude Regent

Per la valvola St. Jude Regent è stata creata una rete neurale con topologia 257-185-70-6, cioè è stata creata una rete con due strati nascosti composti rispettivamente da 185 e 70 neuroni. In Figura 4.8 si riportano gli spettri ottenuti per le sei classi di funzionamento per questo modello di valvola. Ad una prima osservazione si può notare che per le sei classi gli spettri presentano un picco predominante intorno a $1.7 * 10^4$ Hz. Inoltre gli spettri presentano un picco minore: per la classe normofunzionante si presenta nell'intervallo $0.9*10^4 - 10^4$ Hz ed è di ampiezza maggiore rispetto a quello della classe *I3* che si presenta intorno alle stessa frequenza. Per la classe *I2* il picco di dimensione minore si presenta nell'intorno di $1.1*10^4$ Hz; per la condizione *I1* invece si presenta nell'intorno di $1.4*10^4$ Hz. Per la classe di funzionamento H_g si registrano due picchi minori di ampiezza maggiore rispetto a quelli delle altre classi attorno a $1.1*10^4$ Hz. Infine per la classe *Bk* si hanno due picchi uno di ampiezza maggiore intorno a $1.1*10^4$ Hz ed uno di ampiezza maggiore intorno a $1.4*10^4$ Hz.

Figura 4.8: Spettri di potenza relativi alla valvola St. Jude Regent.

In Tabella 4.4 si riporta l'output della rete Sjr solo nel caso della prima permutazione, gli output delle altre permutazioni vengono riportati in Appendice.

CONDIZIO	ZIONE NETWORK OUTPUT						
		sjr_Nf	Sjr_l1	sjr_l2	Sjr_l3	sjr_Hg	sjr_Bk
	SV50BR60	0.9997	0.0003	0.0004	0	0.0004	0
	Sv50BR70	0.9999	0.0002	0.0001	0	0.0002	0
	SV50BR80	0.9996	0.0009	0.0001	0.0001	0.0005	0
	SV50BR90	0.9998	0.0002	0.0003	0	0.0002	0
sir Nf	SV50BR100	0.9997	0.0004	0.0003	0	0.0001	0
-	SV60BR60	0.9978	0.0009	0.0004	0.0001	0.0002	0
	SV60BR70	0.9988	0.0011	0.0015	0	0.0001	0
	SV60BR80	0.9957	0.0027	0.0014	0	0	0
	SV60BR90	0.999	0.0008	0.0005	0.0001	0.0001	0
	SV60BR100	0.9981	0.0005	0.0055	0	0.0006	0
	SV50BR60	0.0012	0.9994	0.0001	0.0007	0.0001	0
	Sv50BR70	0.001	0.9996	0	0.0009	0.0001	0
	SV50BR80	0.0002	0.9975	0.0047	0.0002	0	0
	SV50BR90	0.0002	0.9998	0.0002	0.0003	0.0001	0
sir I1	SV50BR100	0.0011	0.9976	0.0013	0.0001	0	0
• -	SV60BR60	0.0011	0.9989	0.0006	0.0001	0.0001	0
	SV60BR70	0.0004	0.9971	0.0001	0.0125	0	0
	SV60BR80	0.0002	0.9997	0.0004	0.0005	0.0001	0
	SV60BR90	0.0001	0.9974	0.0006	0.0049	0	0
	SV60BR100	0.0084	0.9935	0.0004	0.0001	0.0004	0
	SV50BR60	0.0002	0	0.9931	0	0.0122	0.0002
	Sv50BR70	0.0006	0	0.9987	0	0.0006	0.001
	SV50BR80	0.0001	0	0.9996	0	0.0001	0.0009
	SV50BR90	0.0001	0.0001	0.9994	0	0.0001	0.0003
sir I2	SV50BR100	0	0.0002	0.9992	0.0001	0	0.0003
• -	SV60BR60	0.0001	0	0.9994	0	0.0013	0.0002
	SV60BR70	0	0.0001	0.9994	0	0.0001	0.0001
	SV60BR80	0.0055	0.0003	0.9968	0.0011	0.0001	0
	SV60BR90	0.001	0.0002	0.9993	0	0.0002	0.0001
	SV60BR100	0.0037	0.0003	0.9893	0	0.0008	0.0001
	SV50BR60	0.0011	0	0.0002	0.9929	0.0001	0.0072
	Sv50BR70	0.0001	0.014	0.0002	0.7088	0	0.046
	SV50BR80	0.0001	0.0183	0.0001	0.9984	0	0.0003
	SV50BR90	0.0002	0.0004	0.0029	0.999	0	0.0002
sjr_13	SV50BR100	0.0003	0.0001	0.0003	0.9998	0	0.0002
• -	SV60BR60	0.0001	0.0024	0.0001	0.9983	0	0.0015
	SV60BR70	0.0014	0	0.0013	0.9936	0.0001	0.0016
	SV60BR80	0.0018	0	0.0014	0.6039	0	0.128
	SV60BR90	0.0003	0.0006	0.0002	1	0	0
	SV60BR100	0.0042	0.0002	0.001	0.849	0.0001	0
	SV50BR60	0	0	0	0	0.9996	0.0025
	Sv50BR70	0	0	0	0	0.9994	0.0007
	SV50BR80	0	0	0	0	0.9996	0.0005
	SV50BR90	0.0001	0.0006	0	0	0.9994	0.0002
sjr_Hg	SV50BR100	0.0001	0.0001	0	0	0.9987	0.0171
	SV60BR60	0	0.0003	0.0001	0	0.9999	0.0001
	SV60BR70	0	0.0002	0	0	0.9994	0.0006
	SV60BR80	0.0003	0.0003	0	0	0.9995	0
	SV60BR90	0.0002	0.0001	0	0	0.9993	0
	SV60BR100	0.0087	0.0062	0.0003	0	0.9854	0
	SV50BR60	0.0017	0	0	0.0001	0.0009	0.9998
	Sv50BR70	0	0	0	0.0002	0.0023	0.9999
	SV50BR80	0	0	0	0.0003	0.0002	0.9994
	SV50BR90	0.0007	0	0.0001	0.0048	0.0002	0.9995
sjr_Bk	SV50BR100	0	0	0.0021	0	0.0001	0.9998
	SV60BR60	0.0001	0	0.0006	0.0022	0.0002	0.9999
	SV60BR70	0	0.0011	0	0.0001	0.0004	0.9996
	SV60BR80	0	0.0001	0.0025	0	0.0003	0.9998
	SV60BR90	0.0001	0	0.0011	0.0001	0.0003	0.9999
	SV60BR100	0.0001	0.0006	0	0.0004	0.0002	0.9998

 Tabella 4.4: output rete Sjr 257-185-70-6. Permutazione 1.

Nella Tabella 4.4 si può notare che l'output per la classe di assegnazione supera sempre 0.848, eccetto che in un caso in cui è 0.60; l'output per le altre classi è sempre inferiore a 0.128.

In Tabella 4.5 si riporta uno schema riassuntivo sul numero di assegnazioni corrette e di quelle sbagliate, il MSE nelle quattro permutazioni. Il MSE e l'efficienza complessiva della rete viene valutata mediando i valori.

	MSE	CORRETTI/60	ERRORI/60	NON ATTRIBUITI/60	CORRETTI (%)
PERMUTAZIONE 1	1.14162E-006	60	0	0	100
PERMUTAZIONE 2	1.14975E-006	58	2	0	96.67
PERMUTAZIONE 3	0.00370147	58	0	2	96.67
PERMUTAZIONE 4	0.00803667	57	0	3	95
Tabella	4.5: Rete sjr: MSE	e numero di asse	gnazioni corrette	nelle 4 permutazior	ni.

Dai dati contenuti in Tabella 4.5 si possono calcolare il valore medio del MSE e l'efficienza complessiva:

MSEmedio = 0.0029; Efficienza = 97.085%.

4.2.3 Classificazione degli spettri della valvola On-X

Per la valvola On-X è stata creata una rete neurale con topologia 257-150-70-6, cioè è stata creata una rete con due strati nascosti composti rispettivamente da 150 e 70 neuroni.

In Figura 4.9 si riportano gli spettri ottenuti per le sei classi di funzionamento per questo modello di valvola. Per tutte le condizioni di funzionamento il picco di dimensione maggiore degli spettri di potenza si registra a $1.7*10^4$ Hz; fa eccezione il caso Hg in cui si registra un picco di uguali dimensioni a $1.2*10^4$ Hz. Nel caso Nf e nel caso Bk si nota la presenza di un secondo picco di ampiezza inferiore, più netto nel caso Bk ad $1.1*10^4$ Hz, meno evidente nel caso Nf ad $1.1*10^4$ Hz o $1.2*10^4$ Hz. Nei casi II ed I3 non si riescono a distinguere in modo evidente i picchi compresi nell'intervallo $1*10^4$ - $1.5*10^4$ Hz.Infine nel caso I2 si possono osservare due picchi a $1.1*10^4$ Hz ed $1.4*10^4$ Hz.

Figura 4.9: spettri di potenza relativi alla valvola On-X.

In Tabella 4.6 si riporta l'output della rete On-X solo nel caso della prima permutazione, gli output delle altre permutazioni vengono riportati in Appendice.

Nella tabella si può notare che l'output per la classe di assegnazione supera sempre 0.89, mentre l'output per le altre classi è sempre inferiore a 0.0296.

CONDIZIONE			NETWORK C	ETWORK OUTPUT			
		On-X_Nf	On-X_I1	On-X_l2	On-X_I3	On-X_Hg	On-X_Bk
	SV50BR60	1	0	0	0.0002	0.0001	0
	Sv50BR70	0.9998	0	0	0.0001	0.0002	0
	SV50BR80	0.9999	0	0.0005	0	0.0002	0
	SV50BR90	0.9968	0.0004	0.0029	0	0.0004	0
On-X Nf	SV50BR100	0.9906	0.0015	0.0023	0	0.0006	0
	SV60BR60	0.9977	0.0008	0.0002	0	0.0166	0
	SV60BR70	0.9994	0.0001	0.0001	0	0.0022	0
	SV60BR80	0.9982	0.0015	0	0	0	0.0001
	SV60BR90	0.9947	0.0018	0	0.0001	0	0.0007
	SV60BR100	0.9918	0.0051	0	0	0.0013	0.0001
	SV50BR60	0	0.9926	0.0022	0.0016	0.0001	0
	Sv50BR70	0.0036	0.8916	0	0.0001	0.0001	0.0028
	SV50BR80	0.0026	0.9064	0	0.0047	0	0.0041
	SV50BR90	0.0001	0.9999	0	0.0001	0	0
On-X I1	SV50BR100	0.0001	0.9981	0	0.0296	0.0002	0
•	SV60BR60	0.0129	0.9799	0.0003	0.0002	0.0001	0
	SV60BR70	0.0005	0.9913	0.0002	0.0154	0	0.0001
	SV60BR80	0.0005	0.9946	0.0001	0.0018	0.0001	0
	SV60BR90	0.0001	0.9988	0.0003	0.0029	0.0002	0
	SV60BR100	0.0001	0.9993	0.0002	0.0007	0.0004	0
	SV50BR60	0.0003	0.0007	0.9974	0	0.0002	0
	Sv50BR70	0	0.0003	0.9994	0	0.0005	0
	SV50BR80	0	0.0001	0.9999	0	0.0001	0
	SV50BR90	0.0001	0	0.9859	0.0009	0	0
On-X 12	SV50BR100	0.0001	0.0001	0.9995	0	0.0001	0
•	SV60BR60	0.0001	0.0025	0.9972	0	0.0001	0
	SV60BR70	0	0	0.999	0.0007	0.0001	0
	SV60BR80	0.0001	0.0002	0.9986	0	0.0002	0
	SV60BR90	0.0001	0	0.9994	0.0002	0.0001	0
	SV60BR100	0.0002	0	0.9987	0.0001	0.0001	0
	SV50BR60	0.0002	0.0001	0.002	0.9997	0.0004	0.0001
	Sv50BR70	0.0037	0	0.0005	0.9943	0.0011	0
	SV50BR80	0.0001	0.0002	0.0002	0.9999	0.0007	0
	SV50BR90	0.0008	0	0.0002	1	0.0009	0
On-X I3	SV50BR100	0.0013	0	0	0.9999	0.0002	0
	SV60BR60	0.0004	0.0005	0	0.9965	0.0003	0
	SV60BR70	0.0001	0.0001	0.0011	0.9935	0.001	0
	SV60BR80	0.0001	0.0001	0.0019	0.9988	0.0004	0
	SV60BR90	0.0018	0	0.0004	0.9951	0.0011	0
	SV60BR100	0	0.0084	0.0006	0.9753	0.0225	0
	SV50BR60	0.0002	0.0001	0.0001	0	0.9999	0
	Sv50BR70	0.0002	0.0001	0	0.0061	0.9933	0.0003
	SV50BR80	0.0002	0	0	0	0.9998	0.0005
	SV50BR90	0	0.0007	0	0	0.9999	0.0004
On-X Hq	SV50BR100	0.0003	0	0	0.0001	0.9997	0.0004
_ 0	SV60BR60	0.0004	0	0.0001	0.0002	0.9998	0.0001
	SV60BR70	0.0003	0	0	0	0.9998	0.0013
	SV60BR80	0.0001	0.0001	0	0	0.9998	0.0005
	SV60BR90	0.0001	0.0001	0	0	0.9997	0.0004
	SV60BR100	0.0001	0.0002	0	0.0025	0.9935	0.0005
	SV50BR60	0.0002	0.0001	0	0.0004	0.0003	0.9985
	Sv50BR70	0.0032	0.0009	0	0.0001	0.0001	0.9953
	SV50BR80	0.0006	0	0	0.0004	0.0006	0.9996
	SV50BR90	0.001	0	0	0.0007	0.0004	0.9988
On-X_Bk	SV50BR100	0.0018	0.0001	0	0.0003	0.0005	0.9993
_	SV60BR60	0.0002	0	0.0002	0.0001	0.0008	0.9979
	SV60BR70	0.0001	0.0002	0.0001	0.0003	0.0002	0.9997
	SV60BR80	0.0007	0.0002	0	0	0.0003	0.9996
	SV60BR90	0.0004	0.0002	0	0.0002	0.0003	0.9993
	SV60BR100	0.0007	0.0004	0	0.0002	0.0001	0.9992

Tabella 4.6: output rete On-X 257-150-70-6 Permutazione 1.

In Tabella 4.7 si riporta uno schema riassuntivo sul numero di assegnazioni corrette e di quelle sbagliate, il MSE nelle quattro permutazioni.

	MSE	CORRETTI/60	ERRORI/60	NON ATTRIBUITI/60	CORRETTI (%)
PERMUTAZIONE 1	1.13074e-006	60	0	0	100
PERMUTAZIONE 2	1.11019e-006	58	0	2	96.67
PERMUTAZIONE 3	4.02206e-006	60	0	0	100
PERMUTAZIONE 4	1.09821e-006	57	2	1	95

 Tabella 4.7: rete On-X: MSE e numero di assegnazioni corrette nelle 4 permutazioni.

Dalla Tabella 4.7 si calcolano:

MSEmedio = 1.8403e-006

Efficienza = 97.92%.

4.2.4 Classificazione degli spettri della valvola Carbomedics Top Hat.

Per la valvola Carbomedics Top Hat è stata creata una rete neurale con topologia 257-150-70-6, cioè è stata creata una rete con due strati nascosti composti rispettivamente da 150 e 70 neuroni.

In Figura 4.10 si riportano gli spettri ottenuti per le sei classi di funzionamento per questo modello di valvola. Da una semplice osservazion si può notare che anche nel caso della valvola Carbomedics per tutte le condizioni di funzionamento il picco di ampiezza maggiore si presenta a $1.7*10^4$ Hz. Nel caso *Nf* e *I1* non si distinguono altri picchi. Nel caso *I2* si registra la presenza di un picco di dimensione minore a $1.2*10^4$ Hz. Gli spettri per la condizione di funzionamento *I3* presentano due picchi di dimensione esigua a $1.25*10^4$ Hz e $1.5*10^4$ Hz. Nel caso *Hg* si evidenzia la presenza di un picco di ampiezza abbastanza elevata a $1.3*10^4$ Hz e un piccolo di piccola ampiezza a $1.1*10^4$ Hz. Infine nel caso *Bk* si distinguono due picchi a $1.1*10^4$ Hz e $1.25*10^4$ Hz; tuttavia non si riesce a distinguere bene un picco intorno a $1.5*10^4$ Hz.

Di seguito in Tabella 4.8 si riporta l'output della rete Carb solo nel caso della prima permutazione; per le altre tabelle si rimanda all'Appendice.

Dalla tabella si nota che l'output per la classe di assegnazione è sempre maggiore di 0.97 e l'output per le altre classi è sempre inferiore a 0.0336.

Figura 4.10: spettri di potenza relativi alla valvola Carbomedics Top Hat.

CONDIZIONE			NETWORK O	UTPUT			
		Carb_Nf	Carb_I1	Carb_l2	Carb_I3	Carb_Hg	Carb_Bk
	SV50BR60	0.9994	0.0005	0.0009	0	0.0001	0
	Sv50BR70	0.9995	0.0023	0.0002	0	0.0001	0
	SV50BR80	0.9964	0.0341	0.0001	0	0.0001	0
	SV50BR90	0.9994	0	0.0009	0.0001	0.0001	0
Carb_Nf	SV50BR100	0.9997	0.0004	0	0.0012	0.0002	0
	SV60BR60	0.9972	0.0001	0.0381	0	0	0
	SV60BR70	0.9894	0.0002	0.0006	0.0007	0.0009	0
	SV60BR80	0.9989	0.0003	0.0019	0	0	0
	SV60BR90	0.9861	0.0006	0.0254	0.0001	0	0
	SV60BR100	0.972	0.0336	0	0.0028	0.0013	0
	SV50BR60	0.0004	0.998	0	0.0001	0.012	0.0001
	Sv50BR70	0.0021	0.9951	0	0.0001	0.0005	0.004
	SV50BR80	0.0001	0.9998	0	0.0003	0.0005	0
	SV50BR90	0.0004	0.9994	0	0.0001	0.0038	0.0001
Carb_l1	SV50BR100	0.0002	0.9939	0	0.0001	0.0048	0.0003
	SV60BR60	0.0001	0.999	0	0.0009	0.0006	0.0018
	SV60BR70	0.0024	0.9887	0	0.0014	0.0014	0.0005
	SV60BR80	0.0013	0.9961	0	0.0003	0.0003	0.0015
	SV60BR90	0.0002	0.9987	0	0.0003	0.0012	0.0021
	SV60BR100	0.0002	0.9994	0	0.0004	0.0052	0
	SV50BR60	0.0036	0.0001	0.9977	0	0.0002	0
	Sv50BR70	0.0019	0.0022	0.9994	0	0	0
	SV50BR80	0.001	0.0001	0.9999	0	0	0.0006
	SV50BR90	0.0007	0	0.9996	0	0	0.0019
Carb_l2	SV50BR100	0.0011	0	0.9949	0.0038	0	0
	SV60BR60	0.0014	0	0.9928	0.0062	0	0.0001
	SV60BR70	0.0009	0	0.9994	0.0004	0	0.0001
	SV60BR80	0.0023	0	0.9934	0.0006	0	0.0001
	SV60BR90	0.0011	0.0001	0.9993	0	0	0.0005
	SV60BR100	0.0016	0.0011	0.9895	0.0034	0	0
	SV50BR60	0.0014	0.0002	0.0003	0.9989	0.0009	0
	Sv50BR70	0.001	0.0001	0.0002	0.9998	0.0007	0.0001
	SV50BR80	0.0002	0.0006	0.0001	0.9997	0.0003	0.0002
	SV50BR90	0.0002	0	0.0026	0.9987	0.0007	0.0001
Carb_l3	SV50BR100	0.0003	0.0001	0.0011	0.9995	0.0005	0.0001
	SV60BR60	0.0004	0.0004	0.0008	0.9996	0.0003	0
	SV60BR70	0.0003	0	0.0004	0.9994	0.0007	0.0002
	SV60BR80	0.0002	0	0.0001	0.9997	0.0012	0.0004
	SV60BR90	0.0001	0.0001	0.0001	0.9987	0.0005	0.0063
	SV60BR100	0.0001	0	0.0027	0.9845	0.0005	0.0038
	SV50BR60	0.0701	0	0	0.0001	0.9998	0.0001
	SV50BR70	0	0.001	0	0	0.8934	0.298
	SV50BR80	0.0044	0.0001	0.0007	0	0.9959	0.001
O ante la la	SV50BR90	0.0023	0.0001	0.0002	0	0.9978	0.0004
Carb_Hg	SV50BR100	0.0007	0	0.0002	0	0.9998	0.0005
	SV60BR60	0.002	0.0001	0.0001	0	0.9999	0.0001
	SV60BR70	0.0006	0.0001	0.0001	0	1	0.0003
	SV60BR80	0.0003	0.0004	0	0	0.9999	0.0006
	SV60DR90	0.0069	0.0006	0 0028	0	0.9943	0.0001
	SVOUDRIUU SV/508Den	0.0001	0.0003	0.0028	0	0.3333	0.0007
		0.0001	0.0003	0.0001	0.0002	0,0002	0.9999
		0	0.0001	0	0.0002	0.0002	0.9999
		0	0.0004	0.0001	0	0.0001	0.3333
Carb Bk	SV300K90 SV/5080100	0	0.0001	0.0001	0	0.0008	0.3333
	SV/60RP60	0	0	0.0017	0.0002	0.0001	0.3333
	SV00DR00	0 0002	0	0.1000	0.0002	0.0002	0.3007
	SV60BR20	0.0002	0	0.0120	0	0.0001	0.3344
	SV60BR00	0	0	0.001	0	0.0020	0.9062
	SV60BR100	0	0.0021	0	0.0011	0.001	0.9885

 Tabella 4.8: output rete Carb 257-150-70-6. Permutazione 1.

In Tabella 4.9 si riporta uno schema riassuntivo sul numero di assegnazioni corrette e di quelle sbagliate, il MSE nelle quattro permutazioni.

	MSE	CORRETTI/60	ERRORI/60	NON ATTRIBUITI/60	CORRETTI (%)
PERMUTAZIONE 1	2.94183e-006	60	0	0	100
PERMUTAZIONE 2	1.19972e-006	59	0	1	98.33
PERMUTAZIONE 3	1.1102e-006	58	1	1	96.67
PERMUTAZIONE 4	1.14264e-006	59	1	0	98.33
PERMUTAZIONE 1 PERMUTAZIONE 2 PERMUTAZIONE 3 PERMUTAZIONE 4	2.94183e-006 1.19972e-006 1.1102e-006 1.14264e-006	60 59 58 59	0 0 1 1	0 1 1 0	100 98.3 96.6 98.3

 Tabella 4.9: rete Carb: MSE e numero di assegnazioni corrette nelle 4 permutazioni.

Dai valori contenuti in Tabella 4.9 si calcolano:

MSEmedio = 1.5986e-006

Efficienza = 98.33%.

4.2.5 Classificazione degli spettri della valvola Medtronic Advantage

Per la valvola Medtronic Advantage è stata creata una rete neurale con topologia 257-150-70-6, cioè è stata creata una rete con due strati nascosti composti rispettivamente da 150 e 70 neuroni.

In Figura 4.11 si riportano gli spettri ottenuti per le sei classi di funzionamento per questo modello di valvola. Anche per questo modello di valvola si può notare la presenza del picco maggiore a $1.7*10^4$ Hz. Per la condizione *Nf* non si distingue nettamente un altro picco di dimensione inferiore, ma guardando attentamente si può supporre l'esistenza di due picchi rispettivamente a $1.25*10^4$ Hz e $1.6*10^4$ Hz. Gli spettri relativi alle condizioni *I1* ed *I3* hanno un andamento simile: gli spettri relativi alla condizione *I1* presentano un picco pari a quello massimo a $1.25*10^4$ Hz ed un picco di ampiezza inferiore a $1.6*10^4$ Hz; gli spettri relativi alla condizione *I3* presentano un picco quasi pari a quello massimo a $1.25*10^4$ Hz e un picco di dimensione inferiore a circa $1.5*10^4$ Hz. Nel grafico relativo alla condizione *Hg* si può notare un picco a $1.25*10^4$ Hz. Infine nella condizione *Bk* dall'andamento degli spettri non si riesce a distinguere alcun picco oltre a quello massimo, ma guardando attentamente ci si potrebbe aspettare la presenza di uno o due picchi nell'intervallo $10^4 -1.5*10^4$ Hz; ma non si riesce a dire nulla con più precisione. In Tabella 4.10 si riporta l'output della rete Med solo nel caso della prima permutazioni, per gli altri output si rimanda all'Appendice.

Figura 4.11: spettri di potenza relativi alla valvola Medtronic Advantage.

Dalla tabella si nota che l'output per la classe di assegnazione è sempre maggiore a 0.91 e l'output per le altre classi è sempre inferiore 0.1771.

CONDIZIONE			NETWORK O	UTPUT			
		Med_Nf	Med_I1	Med_I2	Med_I3	Med_Hg	Med_Bk
	SV50BR60	0.9933	0.001	0.0001	0.0196	0.0001	0.0007
	Sv50BR70	0.9977	0.0046	0.0017	0.0005	0.0001	0.0005
	SV50BR80	0.9962	0.0056	0.0054	0.0001	0	0.0006
	SV50BR90	0.9538	0.0377	0.0015	0.0024	0	0.0001
Med Nf	SV50BR100	0.9973	0.0071	0.0013	0.0002	0.0001	0.0002
	SV60BR60	0.9976	0.0049	0.0007	0.0008	0.0001	0.0002
	SV60BR70	0.9865	0.0031	0.0006	0.0009	0.0061	0.0014
	SV60BR80	0.9918	0.0137	0.0099	0	0.0002	0.0008
	SV60BR90	0.9798	0.0055	0.0014	0.0005	0.0064	0.0013
	SV60BR100	0.9969	0.0034	0.0034	0.0001	0.0004	0.002
	SV50BR60	0.0012	0.9983	0.0063	0.001	0	0.0002
	Sv50BR70	0.0028	0.9703	0	0.1771	0.0002	0.0001
	SV50BR80	0.0012	0.9973	0.0003	0.004	0.0005	0.0003
	SV50BR90	0.0136	0.9735	0.0003	0.0048	0.0001	0.0003
Med_I1	SV50BR100	0.0001	0.9803	0.0041	0.0906	0.0004	0.0001
	SV60BR60	0.004	0.9963	0.0021	0.0016	0.0009	0
	SV60BR70	0.0003	0.9986	0.0015	0.0015	0.0045	0.0001
	SV60BR80	0.0001	0.9994	0.0013	0.0007	0.0003	0.0001
	SV60BR90	0.0003	0.9991	0.0012	0.001	0.0004	0.0001
	SV60BR100	0.0058	0.9937	0.0032	0.0002	0	0.0003
	SV50BR60	0	0.0005	0.9882	0.0075	0.0012	0.0172
	Sv50BR70	0.0011	0.0008	0.9393	0.0008	0.0294	0.0063
	SV50BR80	0.0059	0.0001	0.9909	0.0003	0.0028	0.0053
	SV50BR90	0.0027	0.0003	0.9968	0.0001	0.0019	0.0129
Med_l2	SV50BR100	0.0229	0.0006	0.9971	0.0001	0.0001	0.0033
	SV60BR60	0.0075	0.0002	0.9975	0.0001	0.0004	0.009
	SV60BR70	0.0033	0.0004	0.9973	0	0.0006	0.0135
	SV60BR80	0.0064	0.0002	0.9162	0.0001	0.0404	0.008
	SV60BR90	0.0008	0.0002	0.9983	0.0001	0.0015	0.0096
	SV60BR100	0.0071	0.0002	0.9988	0	0.0001	0.0037
	SV50BR60	0.0011	0	0.001	0.9833	0.074	0.002
	Sv50BR70	0.0185	0.0001	0.0002	0.9996	0.0001	0.0003
	SV50BR80	0.0037	0.0008	0.0003	0.9978	0	0.0006
	SV50BR90	0.0002	0.0004	0.0001	0.9994	0.0006	0.0009
Med_I3	SV50BR100	0.0002	0.0009	0.0006	0.9992	0.0007	0.0005
	SV60BR60	0.0002	0.0044	0.0046	0.9993	0.0012	0.0001
	SV60BR70	0	0.0534	0.0048	0.9755	0.0006	0.0004
	SV60BR80	0	0	0.0152	0.9994	0.0004	0.0014
	SV60BR90	0	0	0.0018	0.9996	0.0019	0.0016
	SV60BR100	0	0	0.0029	0.9979	0.02	0.0021
	SV50BR60	0.0004	0.0007	0.0456	0.0003	0.952	0.0133
	Sv50BR70	0.0145	0.0002	0.016	0.0003	0.9822	0.0158
	SV50BR80	0.0017	0.0004	0.0005	0.0054	0.9992	0.0043
	SV50BR90	0.0043	0.0004	0.0008	0.0049	0.993	0.0108
Med_Hg	SV50BR100	0.0026	0.0002	0.0004	0.0036	0.9935	0.0123
	SV60BR60	0.0018	0.0005	0.0003	0.0019	0.999	0.0049
	SV60BR70	0.0015	0.0016	0.0015	0.0015	0.9945	0.0042
	SV60BR80	0.0019	0.0007	0.0004	0.0052	0.993	0.007
	SV60BR90	0.0021	0.0004	0.0003	0.0076	0.9968	0.0144
	SV60BR100	0.0025	0.0002	0.0002	0.0051	0.9965	0.0232
	SV50BR60	0.0124	0.0085	0.0001	0.0002	0	0.9457
	Sv50BR70	0.0006	0.0579	0.0001	0	0	0.9992
	SV50BR80	0.002	0.0151	0.0008	0.0001	0	0.9953
	SV50BR90	0.0018	0.0011	0.0001	0.0017	0	0.9989
Med_Bk	SV50BR100	0.0007	0.0011	0.0009	0.0014	0	0.9995
	SV60BR60	0.001	0.0008	0.0009	0.0029	0.0001	0.9963
	SV60BR70	0.0001	0.0001	0.0013	0.0123	0.0006	0.9994
	SV60BR80	0.0011	0.0001	0.0008	0.0046	0.0001	0.9994
	SV60BR90	0.0012	0	0.0051	0.0027	0.0001	0.9993
	SV60BR100	0.0091	0	0.0009	0.0013	0.0001	0.9987

 Tabella 4.10: output rete Med 257-150-70-6. Permutazione 1.

In Tabella 4.11 si riporta uno schema riassuntivo sul numero di assegnazioni corrette e di quelle sbagliate, il MSE nelle quattro permutazioni.

	MSE	CORRETTI/60	ERRORI/60	NON ATTRIBUITI/60	CORRETTI (%)
PERMUTAZIONE 1	6.45625e-005	60	0	0	100
PERMUTAZIONE 2	2.40175e-005	57	0	3	95
PERMUTAZIONE 3	1.05351e-006	58	0	2	96.67
PERMUTAZIONE 4	1.14112e-006	58	0	2	96.67
	111 11120 000	20	0	-	20101

 Tabella 4.11: rete Med: MSE e numero di assegnazioni corrette nelle 4 permutazioni.

Dai dati contenuti in tabella 4.11:

MSEmedio = 2.26936e-005

Efficienza = 97.085%.

4.2.6 Rete complessiva

Dopo aver analizzato i 5 diversi modelli di valvole, è stata creata una rete neurale unica in grado di distinguere le diverse condizioni di funzionamento e le diverse marche. In dettaglio, è stata addestrata una rete neurale a 257 ingressi e 30 uscite (6 condizioni di funzionamento x 5 marche). La rete contiene solo uno strato intermedio nascosto con 70 neuroni.

Per ogni marca di valvola e per ognuna delle 6 condizioni di funzionamento sono state considerate 4 acquisizioni audio, e sono state suddivise in 4 insiemi disgiunti. In particolare gli spettri relativi a 2 acquisizioni vengono inseriti nel *training set*, 1 nel *validation set* e 1 nel *test set*. Per quanto detto si comprende che per ogni marca di valvola 120 spettri vengono inseriti nel *training set*, 60 nel *validation set* e 60 nel *test set*; giacché le marche sono 5, in conclusione, il *training set* dell'intera rete è costituito da 600 spettri, il *validation test* da 300 e il *test set* da 300. Pertanto l'output della rete relativo alla classificazione degli elementi del *test set* è una tabella costituita da 30 colonne, pari al numero di classi in cui si intende classificare gli spettri, e 300 righe, una per ciascuno spettro classificato. L'output della rete è riportato suddiviso in 6 tabelle in Appendice.

Il MSE è pari a 0.102771, pertanto è nettamente superiore rispetto a quelli delle reti più piccole messe a punto per i singoli modelli.

Si è deciso di attribuire ad una classe gli output maggiori di 0.40, con la condizione che gli output per le altre classi siano di 0.3 più piccoli rispetto all'output della classe di attribuzione. In tabella si sono evidenziate in grassetto le corrette attribuzioni, in blu le mancate assegnazioni e in rosso le assegnazioni sbagliate, cioè i casi in cui lo spettro è stato attribuito ad una altra classe.

	NUMERO	PERCENTUALE
SPETTRI CLASSIFICATI CORRETTAMENTE	206	68.67%
SPETTRI CLASSIFICATI ERRONEAMENTE	0	0%
SPETTRI NON CLASSIFICATI	94	31.33%
TOTALE	300	100%

In Tabella 4.12 si riporta il numero di classificazioni corrette ed errate.

 Tabella 4.12: Numero di spettri classificati correttamente, erroneamente e non classificati.

4.3 CLASSIFICAZIONE SULLA BASE DELLA STIMA DI UN MODELLO AR

Ogni sequenza audio acquisita in vitro è stata elaborata con l'algoritmo di isolamento dei suoni di chiusura e successivamente, per ogni sequenza audio, sono stati stimati i coefficienti di un modello AR che lo approssima di ordine 20.

I coefficienti sono stati utilizzati come parametri per la classificazione attraverso l'utilizzo di reti neurali. In particolare sono state create reti neurali con uno stato d'ingresso contenente 21 neuroni (pari al numero di elementi del vettore restituito dalla function '*ar*'), un solo strato intermedio con un numero di neuroni che varia a seconda del modello e uno strato d'uscita costituito da 6 neuroni pari al numero delle classi di rischio a cui si vogliono assegnare gli elementi. I quattro vettori contenenti i coefficienti del modello AR calcolati per le 4 sequenze audio per ogni condizione di *stroke volume* e *beat rate* sono stati suddivisi in quattro insiemi: i primi due insiemi vengono inseriti nel *training set*, il terzo nel *validation set* e il quarto nel *test set*. Le reti utilizzate per questo tipo di classificazione, a differenza di quelle in cui si classificavano gli spettri e si usava il comando '*traingdx*' di Matlab, sono state addestrate utilizzando il comando '*trainlm*'. Anche in questo caso gli output della rete sono valori compresi fra 0 e 1 e si decide di assegnare ad una classe gli elementi del *test set* con output per quella classe maggiore di 0.4 e differenza con gli output per le altre classi maggiore di 0.3.

4.3.1 Classificazione sulla base dei coefficienti del modello AR per la valvola Sorin

Per la valvola Sorin è stata addestrata una rete neurale con uno strato intermedio costituito da 17 neuroni. In Figura 4.12 si riportano le stime dei coefficienti del modello AR; si noti che la

scala dell'asse verticale non è uguale per tutti i grafici. Pertanto da una prima ispezione visiva si può notare che l'andamento è simile, ma ciò che cambia è l'ampiezza delle curve.

Figura 4.12: Andamento dei coefficienti del modello AR per la valvola Sorin Bicarbon Overline.

In Tabella 4.13 si riporta l'output della rete neurale, il cui MSE registrato alla fine dell'addestramento è 0.001379. Nella tabella sopra si può notare che non ci sono assegnazioni sbagliate, per cui l'efficienza è del 100%.

CONDIZIONE		NETWORK OUTPUT						
		Sor Nf	Sor I1	Sor I2	Sor I3	Sor Ha	Sor Bk	
	SV50BR60	0.7859	0.0053	0.0175	0	0.0037	0.0145	
	Sv50BR70	0.9868	0.0042	0.0009	0	0.014	0.0011	
	SV50BR80	0.9996	0.0243	0	0	0.0013	0.0001	
	SV50BR90	0.9997	0.001	0	0	0.0186	0.0002	
sor Nf	SV50BR100	0.9999	0.0025	0	0	0.0115	0.0003	
_	SV60BR60	0.9996	0.153	0	0	0.0001	0.001	
	SV60BR70	0.9996	0.0101	0	0.0026	0.0004	0.0003	
	SV60BR80	0.9997	0.0054	0	0	0.0114	0.0002	
	SV60BR90	0.9999	0.0017	0	0	0.0082	0.0001	
	SV60BR100	0.9944	0.0037	0.0625	0	0.0011	0	
	SV50BR60	0	0.9752	0.0168	0.0251	0	0.0013	
	Sv50BR70	0.0008	0.996	0.0081	0.0003	0	0.0009	
	SV50BR80	0.0022	0.9959	0.0078	0.0001	0.0001	0.0004	
	SV50BR90	0.0043	0.9987	0.0027	0	0.0001	0.0004	
sor_l1	SV50BR100	0.0032	0.9985	0.0006	0	0.0001	0.0006	
	SV60BR60	0.003	0.9895	0.0012	0.0008	0	0.0006	
	SV60BR70	0.0318	0.9846	0.0005	0.0001	0	0.0014	
	SV60BR80	0.0452	0.9782	0.0001	0	0.0001	0.0017	
	SV60BR90	0.0423	0.9803	0.0004	0	0	0.0009	
	SV60BR100	0.0132	0.9921	0.0016	0	0	0.0036	
	SV50BR60	0	0.0229	0.9998	0.0094	0.0011	0.0001	
	Sv50BR70	0	0.0142	0.9976	0.0081	0.0016	0.0001	
	SV50BR80	0.0001	0.009	0.9984	0.0176	0.0006	0.0001	
sor_l2	SV50BR90	0	0.0014	0.9727	0.1039	0.0081	0.0001	
	SV50BR100	0.0008	0.0037	0.9889	0.0014	0.0064	0	
	SV60BR60	0.0002	0.02	0.9979	0.0083	0.0005	0	
	SV60BR70	0	0.0013	0.9985	0.0018	0.013	0	
	SV60BR80	0.0051	0.0041	0.9964	0.0025	0.001	0	
	SV60BR90	0.0026	0.0032	0.9956	0.0009	0.002	0	
	SV60BR100	0.0193	0.0026	0.958	0.0015	0.0021	0.0001	
	SV50BR60	0.0201	0.0024	0.0007	0.9798	0.0001	0.0013	
	Sv50BR70	0.0001	0.0002	0.0058	0.9988	0.0005	0.0053	
	SV50BR80	0.0054	0	0.0011	0.9942	0.001	0.0032	
	SV50BR90	0.0223	0.0001	0.001	0.9968	0.0027	0.0003	
sor_I3	SV50BR100	0.0036	0	0.0007	0.9992	0.0165	0.0001	
	SV60BR60	0.002	0.0001	0.0127	0.9672	0.002	0.0002	
	SV60BR70	0	0.0002	0.0235	0.9882	0.0087	0.0003	
	SV60BR80	0.0012	0.0001	0.0213	0.9906	0.0016	0.0003	
	SV60BR90	0.0037	0	0.0018	0.9971	0.0269	0.0001	
	SV60BR100	0.0009	0.0008	0.0066	0.9765	0.0035	0.0001	
	SV50BR00	0.0005	0	0.0014	0.0031	0.9791	0.0003	
	SV50DR70	0.003	0	0.0011	0	0.9712	0.0005	
	SV50BR00	0.0004	0	0.0002	0.0001	0.9651	0.0049	
sor Ha	SV50BR90	0.0001	0.0001	0.007	0	0.9920	0.0003	
soi_ng	SV60BR60	0	0.0018	0.0007	0 0002	0.9763	0.0215	
	SV60BR70	0.0002	0	0.0001	0.0002	0.9755	0.0013	
	SV60BR80	0.0001	0	0.0002	0	0.9967	0.001	
	SV60BR90	0.0000	0	0.0000	0	0.9905	0.0003	
	SV60BR100	0.0201	0.0003	0.001	0	0.9749	0.0011	
	SV50BR60	0	0.0211	0,0001	0.0422	0,001	0.9798	
	Sv50BR70	0.0008	0	0	0.1551	0.1889	0.9915	
sor_Bk	SV50BR80	0.0002	0	0	0.002	0.0083	0.9968	
	SV50BR90	0	0,0007	0	0.0005	0,0015	0.9995	
	SV50BR100	0	0,0022	0	0.0005	0,0012	0.9993	
	SV60BR60	0.0009	0.0002	0	0	0.004	0.9988	
	SV60BR70	0	0,0045	0	0	0,0006	0.9996	
	SV60BR80	0.0027	0.0039	0	0	0.0008	0.9979	
	SV60BR90	0.1593	0.0001	0	0	0.0078	0.8994	
	SV60BR100	0.0102	0.0007	0	0	0.004	0.9949	

Tabella 4.13: output rete sor 21-17-6.

4.3.2 Classificazione sulla base dei coefficienti del modello AR per la valvola St. Jude

In Figura 4.14 si riporta l'andamento dei coefficienti del modello AR: si noti che la scala dell'asse verticale non è uguale per tutti i grafici.

Figura 4.13: Andamento dei coefficienti del modello AR per la valvola St. Jude Regent.

Per la valvola St. Jude è stata creata una rete neurale con topologia 21-18-6. In Tabella 4.14 se ne riporta l'output. Il MSE registrato è 0.000237156. Vengono classificati correttamente il 93.33% degli elementi mentre il restante 6.67% non viene assegnato ad alcuna classe.

CONDIZIONE		NETWORK OUTPUT					
		sjr_Nf	sjr_l1	Sjr_l2	sjr_l3	sjr_Hg	sjr_Bk
	SV50BR60	0.9847	0.0015	0	0.0117	0	0.0001
	Sv50BR70	0.9928	0.0003	0	0.0134	0	0.0004
	SV50BR80	0.9925	0.0023	0	0.0076	0.0001	0.0001
sjr_Nf	SV50BR90	0.9933	0.0003	0	0.0093	0	0.0006
	SV50BR100	0.9953	0.0001	0	0.0037	0.0001	0.0019
	SV60BR60	0.9919	0.0019	0	0.0063	0.0001	0.0002
	SV60BR70	0.9738	0.0001	0	0.0196	0	0.0081
	SV60BR80	0.9789	0.0001	0	0.0249	0	0.0089
	SV60BR90	0.993	0.0002	0	0.0119	0	0.0099
	SV60BR100	0.9655	0.0001	0	0.0276	0	0.009
	SV50BR60	0.0003	0.2883	0.0001	0.0285	0	0.4199
	Sv50BR70	0	0.9903	0	0.0353	0	0.8256
	SV50BR80	0	0.9967	0	0.0487	0	0.0378
	SV50BR90	0.0007	0.9964	0	0.0101	0	0.0054
sjr_l1	SV50BR100	0.0002	0.9964	0	0.0017	0.0003	0.0099
	SV60BR60	0.0001	0.9947	0	0.0006	0.0003	0.1313
	SV60BR70	0.0003	0.9899	0	0.0032	0.0001	0.0083
	SV60BR80	0.0004	0.9519	0	0.0008	0	0.219
	SV60BR90	0.0003	0.9901	0	0.0026	0	0.0081
	SV60BR100	0.0034	0.9967	0	0.0008	0	0.0016
	SV50BR60	0	0.0012	0.8791	0.0011	0.0601	0.0001
	Sv50BR70	0	0.0001	0.8681	0.0038	0.1245	0.0001
sjr_l2	SV50BR80	0	0	0.9847	0.0623	0.0251	0.0003
	SV50BR90	0	0.0001	0.9743	0.0186	0.0135	0.0001
	SV50BR100	0	0.0001	0.9842	0.0108	0.0154	0.0001
	SV60BR60	0	0.0006	0.8524	0.0012	0.0691	0.0005
	SV60BR70	0	0.0001	0.9961	0.0122	0.0109	0.0003
	SV60BR80	0	0.0019	0.9602	0.0214	0.0013	0.0004
	SV60BR90	0	0.0003	0.9765	0.0114	0.0025	0.0024
	SV60BR100	0	0	0.7538	0.0679	0.0012	0.0082
	SV50BR60	0	0.2736	0.0146	0.8123	0	0.0078
	SV50BR70	0.0835	0.0007	0.0028	0.9894	0	0.0008
	SV50BR80	0.0048	0.0057	0.0053	0.9842	0	0.0003
	SV50BR90	0.001	0.0006	0.0136	0.9917	0	0.0008
sjr_i3	SV50BR100	0.0373	0.0019	0.0078	0.95	0	0.0015
	SV60BR60	0.0498	0.0004	0.0041	0.9914	0	0.0001
	SV60BR70	0.0001	0.8493	0.0013	0.9787	0	0.0007
	SVOUDROU	0.0009	0.0926	0.0009	0.9707	0	0.0101
	SV00DR90	0.0002	0.2720	0.0023	0.9620	0	0.0020
	SV60BR100	0.0095	0.0024	0.003	0.995	0 0004	0.0002
	SV50BR00	0	0.0027	0.0001	0	0.9994	0.0018
	SV50BR80	0	0.0001	0.0010	0	0.999	0.0008
	SV50BR00	0	0.0001	0.002	0	0.008/	0.0023
oir Ha	SV/50BR100	0	0.0001	0.0002	0	0.3304	0.0314
Si_ig	SV60BR60	0	0.0008	0.0061	0	0.9699	0.0421
	SV60BR70	0	0.0001	0.0004	0	0.9992	0.0023
	SV/60BR80	0	0.0001	0.0004	0	0.9905	0.0027
	SV60BR90	0	0.0003	0.0024	0	0.9847	0.0059
	SV60BR100	0	0.0002	0.0301	0	0.9911	0
	SV50BR60	0.0019	0.1972	0	lo lo	0.0038	0.9992
sjr_Bk	Sv50BR70	0.002	0.0113	0	0.0001	0.002	0.9984
	SV50BR80	0.0013	0.0088	0	0.0004	0.0007	0.999
	SV50BR90	0.1244	0.0028	0	0.0002	0.0033	0.8553
	SV50BR100	0.0001	0.0692	0	0.0041	0	0.9953
	SV60BR60	0	0.2436	0	0.0005	0.0046	0.8315
	SV60BR70	0.0049	0.0001	0	0.0007	0.0056	0.9985
	SV60BR80	0	0.0049	0.3777	0.0105	0.0017	0.6761
	SV60BR90	0	0.0104	0.0615	0.0073	0.0041	0.8639
	SV60BR100	0	0.0035	0.0038	0.0027	0.0101	0.9991

Tabella 4.14: output della rete sjr 21-18-6.

4.3.3 Classificazione sulla base dei coefficienti del modello AR per la valvola On-X

In Figura 4.15 si riporta l'andamento dei coefficienti del modello AR: si noti la scala non uguale per tutti i grafici dell'asse verticale.

Figura 4.14: Andamento dei coefficienti del modello AR per la valvola On-X.

Per la valvola On-X è stata creata una rete neurale con topologia 21-18-6. In Tabella 4.15 se ne riporta l'output. Il MSE registrato è 0.000850724. Vengono classificati correttamente il 95% degli elementi mentre il restante 5% non viene assegnato ad alcuna classe.

CONDIZIONE		NETWORK OUTPUT						
		On-X Nf	On-X I1	On-X I2	On-X I3	On-X Ha	On-X Bk	
	SV50BR60	0.9978	0.0056	0	0.0211	0.0027	0	
	Sv50BR70	0.5693	0.0022	0	0.0002	0.34	0	
	SV50BR80	0.9969	0.0131	0.0007	0.0041	0.0061	0.0003	
	SV50BR90	0.977	0.0262	0.0068	0.0008	0.0122	0	
On-X Nf	SV50BR100	0.9829	0.0065	0.0179	0.0011	0.007	0	
_	SV60BR60	0.7978	0.0002	0.0001	0.0001	0.5249	0	
	SV60BR70	0.9875	0.0008	0.0003	0.0008	0.0371	0	
	SV60BR80	0.9487	0.1016	0.0001	0.0128	0	0.0268	
	SV60BR90	0.9897	0.0397	0	0.0664	0.0001	0.005	
	SV60BR100	0.9891	0.0068	0	0.0046	0.0044	0	
	SV50BR60	0.0062	0.9931	0.0027	0.0001	0.0202	0.0011	
	Sv50BR70	0.0002	0.9953	0.0001	0.0201	0.0009	0.0002	
	SV50BR80	0.0249	0.8737	0.0001	0.0272	0.0033	0.0057	
	SV50BR90	0.0118	0.9668	0.0031	0.0023	0.0033	0.002	
On-X_I1	SV50BR100	0.0019	0.9509	0.001	0.0004	0.0069	0.0023	
	SV60BR60	0.0012	0.9094	0.0009	0.0204	0.0015	0	
	SV60BR70	0.1199	0.8738	0.0014	0.0025	0.0025	0.0015	
	SV60BR80	0.0031	0.948	0.0005	0.0098	0.0053	0.003	
	SV60BR90	0.0023	0.8414	0.0146	0.1072	0.0034	0.0004	
	SV60BR100	0.0029	0.8588	0.2438	0.002	0.0048	0.0014	
	SV50BR60	0.0067	0	0.5129	0.632	0.0019	0	
	Sv50BR70	0.0006	0.0015	0.9915	0.0371	0.011	0.0017	
	SV50BR80	0.0009	0.0031	0.996	0.008	0.0079	0.0022	
	SV50BR90	0.0036	0.0127	0.9372	0.0144	0.0108	0.0036	
On-X_l2	SV50BR100	0.0063	0.0067	0.986	0.0165	0.0023	0.0057	
	SV60BR60	0.0016	0.0037	0.9627	0.5032	0.0013	0.0004	
	SV60BR70	0.0004	0.0046	0.9728	0.2938	0.0066	0.0005	
	SV60BR80	0.0058	0.0105	0.9908	0.0198	0.0031	0.0014	
	SV60BR90	0.0054	0.0112	0.9872	0.0063	0.0049	0.0029	
	SV60BR100	0.0054	0.0047	0.965	0.0303	0.0028	0.0069	
	SV50BR60	0.0169	0.0236	0.0039	0.9919	0.0001	0.0007	
	Sv50BR70	0.0215	0.0353	0.0019	0.9864	0.0004	0.0002	
	SV50BR80	0.0069	0.132	0.0064	0.9776	0.0004	0.0004	
	SV50BR90	0.0413	0.0089	0.0027	0.997	0.0004	0.0004	
On-X_I3	SV50BR100	0.075	0.0202	0.0022	0.9955	0.0002	0.0006	
	SV60BR60	0.0055	0.0254	0.0006	0.9759	0.0008	0	
	SV60BR70	0.001	0.0164	0.0077	0.9847	0.0118	0.0002	
	SV60BR80	0.0022	0.0476	0.0149	0.9566	0.0049	0.0005	
	SV60BR90	0.0045	0.0223	0.0084	0.8702	0.0246	0.0004	
	SV60BR100	0	0.0525	0.024	0.8894	0.0418	0.0001	
	5V50BK60	0.0241	0.0005	0.0003	0.0004	0.98/2	0	
	SV50BR70	0.0345	0.0005	0	0.0002	0.9799	0	
	SV50BR80	0	0.0043	0.0021	0.0092	0.998	0	
	SV50BR90	0.0001	0.0024	0.0114	0.0035	0.9956	0	
Оп-л_пу	SVSUBRIUU	0.0003	0.0196	0.0085	0.0013	0.9764	0.0015	
	SV60BR60	0.0045	0.0003	0.004	0.0207	0.9937	0 0001	
	SV60BR70	0.0021	0.0008	0.0028	0.0259	0.99	0.0001	
	SVOUDROU	0	0.0100	0.0002	0.0204	0.990	0.0003	
	SV60BR100	0 0001	0.1000	0.0017	0.0117	0.0011	0 0042	
	SV50BR 100	0.0006	0.0221	0.0001	0	0.0044	0.0042	
	Sv50BR00	0.016	0.1341	0.00/1	0.0001	0.0044	0.9968	
On-X_Bk	SV50BR70	0.0037	0.0270	0.0041	0.0001	0.0007	0.9902	
	SV50BR00	0.0037	0.0034	0.001	0.0221	0.0022	0.3552	
	SV/508R100	0.0174	0.0272	0.0012	0.0221	0.0012	0.1432	
	SV60BR60	0.0006	0.2137	0.0012	0.0010	0.00034	0.995	
	SV60BR70	0.0003	0.0464	0.0002	0.0372	0.0055	0.9112	
	SV60BR80	0.0007	0.0254	0.001	0	0.0273	0.9996	
	SV60BR00	0.0018	0.0047	0.0004	0	0.0149	0.9991	
	SV60BR100	0.0077	0.0219	0.0003	0	0.0036	0.9989	
	2.002.000				1 -			

Tabella 4.15: output rete On-X 21-18-6.

4.3.4 Classificazione sulla base dei coefficienti del modello AR per la valvola Carbomedics

In Figura 4.15 si riporta l'andamento dei coefficienti del modello AR.

Figura 4.15: Andamento dei coefficienti del modello AR per la valvola Carbomedics.

Per la valvola Carbomedics è stata creata una rete neurale con topologia 21-17-6. In Tabella 4.16 se ne riporta l'output. Il MSE registrato è 1.87722e-008. Vengono classificati correttamente il 98.33% degli elementi mentre il restante 1.67% non viene assegnato ad alcuna classe.
CONDIZIONE			NETWORK O	UTPUT			
		Carb_Nf	Carb_l1	Carb_l2	Carb_I3	Carb_Hg	Carb_Bk
	SV50BR60	1	0	0	0	0	0
	Sv50BR70	1	0.0001	0	0	0	0
	SV50BR80	1	0	0	0	0	0
	SV50BR90	1	0	0	0	0	0
Carb Nf	SV50BR100	1	0	0	0	0	0
_	SV60BR60	1	0	0	0	0	0
	SV60BR70	1	0	0	0	0	0
	SV60BR80	1	0	0	0	0	0
	SV60BR90	1	0	0	0	0	0
	SV60BR100	1	0	0	0	0	0
	SV50BR60	0	1	0	0	0	0
	Sv50BR70	0	1	0	0	0	0
	SV50BR80	0	1	0	0	0	0
	SV50BR90	0	1	0	0	0	0
Carb I1	SV50BR100	0	1	0	0	0	0
<u>-</u>	SV60BR60	0	1	0	0	0	0
	SV60BR70	0	1	0	0	0	0
	SV60BR80	0	1	0	0	0	0
	SV60BR90	0	0.0286	0	0	0.0023	0
	SV60BR100	0	1	0	0	0	0
	SV50BR60	0.0096	0	0.9995	0	0	0
	Sv50BR70	0	0	1	0	0	0
	SV50BR80	0	0	1	0	0	0
	SV50BR90	0	0	0.9998	0	0	0
Carb 12	SV50BR100	0	0	1	0	0	0
····	SV60BR60	0	0	0.9999	0	0	0
	SV60BR70	0	0	1	0	0	0
	SV60BR80	0	0	1	0	0	0
	SV60BR90	0	0	1	0	0	0
	SV60BR100	0	0	1	0.0002	0	0
	SV50BR60	0	0	0	1	0	0
	Sv50BR70	0	0	0	1	0	0
	SV50BR80	0	0	0	1	0	0
	SV50BR90	0	0	0	1	0	0
Carb I3	SV50BR100	0	0	0	1	0	0
	SV60BR60	0	0	0	1	0	0
	SV60BR70	0	0	0	1	0	0
	SV60BR80	0	0	0	1	0	0
	SV60BR90	0	0	0	1	0	0
	SV60BR100	0	0	0	1	0	0
	SV50BR60	0	0	0	0	1	0
	Sv50BR70	0	0	0	0	1	0
	SV50BR80	0	0	0	0	1	0
	SV50BR90	0	0	0	0	1	0
Carb Hq	SV50BR100	0	0	0	0	1	0
	SV60BR60	0	0	0	0	1	0
	SV60BR70	0	0	0	0	1	0
	SV60BR80	0	0	0	0	1	0
	SV60BR90	0	0	0	0	1	0
	SV60BR100	0	0	0	0	1	0
	SV50BR60	0	0	0	0	0	1
	Sv50BR70	0	0	0	0	0	1
	SV50BR80	0	0	0	0	0	1
	SV50BR90	0	0	0	0	0	1
Carb Bk	SV50BR100	0	0	0	0	0	1
_	SV60BR60	0	0	0	0	0	1
	SV60BR70	0	0	0	0	0	0.9999
	SV60BR80	0	0	0	0	0	1
	SV60BR90	0	0	0	0	0	1
	SV60BR100	0	0	0	0	0	1

Tabella 4.16: output rete Carb 21-17-6.

4.3.5 Classificazione sulla base dei coefficienti del modello AR per la valvola Medtronic

Figura 4.16: andamento dei coefficienti del modello AR per la valvola Medtronic Advantage.

Per la valvola Medtronic Advantage è stata creata una rete neurale con topologia 21-19-6. In Tabella 4.17 se ne riporta l'output. Il MSE registrato è 7.41681e-006. Vengono classificati correttamente il 98.33% degli elementi mentre il restante 1.67% viene classificato in modo errato.

CONDIZIONE		NETWORK OUTPUT						
		Med Nf	Med I1	Med I2	Med I3	Med Hq	Med Bk	
	SV50BR60	1	0	0	0	0	0	
	Sv50BR70	0.9997	0	0	0	0	0	
	SV50BR80	0.9815	0	0	0	0	0	
	SV50BR90	1	0	0	0	0	0	
Med Nf	SV50BR100	1	0	0	0	0	0	
	SV60BR60	1	0	0	0	0	0	
	SV60BR70	1	0	0	0	0	0	
	SV60BR80	1	0	0	0	0	0	
	SV/60BR90	1	0	0	0	0	0	
	SV/60BR100	1	0	0	0	0	0	
	SV/50BR60	0	1	0	0	0	0	
	SV50BR70	0	1	0	0	0	0	
	SV50BR80	0	1	0	0	0	0	
	SV50BR00	0	1	0	0	0	0	
Mod 11	SV50BR90	0	1	0	0	0	0	
wed_11	SVSOBRIOU	0	1	0	0	0 0091	0	
	SV00BR00	0	1	0	0	0.0081	0	
	SV60BR70	0	1	0	0	0	0	
	SV60BR80	0	1	0	0	0	0	
	SV60BR90	0	0.9998	0	0	0	0	
	SV60BR100	0.9986	0.0604	0	0	0	0	
	SV50BR60	0	0	1	0	0	0	
	Sv50BR70	0.0043	0	1	0	0	0	
	SV50BR80	0	0	1	0	0	0	
	SV50BR90	0	0	1	0	0	0	
Med_l2	SV50BR100	0	0	1	0	0	0	
	SV60BR60	0	0	1	0	0	0	
	SV60BR70	0	0	1	0	0	0	
	SV60BR80	0	0	1	0	0	0	
	SV60BR90	0	0	1	0	0	0	
	SV60BR100	0	0	1	0	0	0	
	SV50BR60	0	0	0	0.9999	0	0	
	Sv50BR70	0	0	0	0.9998	0	0	
	SV50BR80	0	0	0	1	0	0	
	SV50BR90	0	0	0	1	0	0	
Med_I3	SV50BR100	0	0	0	1	0	0	
	SV60BR60	0	0	0	0.9987	0	0	
	SV60BR70	0	0	0	1	0	0	
	SV60BR80	0	0	0	1	0	0	
	SV60BR90	0	0	0	1	0	0	
	SV60BR100	0	0	0.0001	1	0	0	
	SV50BR60	0	0	0	0	1	0	
	Sv50BR70	0	0	0.0007	0	1	0	
	SV50BR80	0	0	0	0	1	0	
	SV50BR90	0	0	0	0	0.817	0	
Med_Hg	SV50BR100	0.019	0	0	0	0.9789	0	
-	SV60BR60	0	0	0	0	1	0	
	SV60BR70	0	0	0	0	1	0	
	SV60BR80	0	0	0	0	1	0	
	SV60BR90	0.0002	0	0	0	0.5966	0	
	SV60BR100	0	0	0	0	0.9736	0	
	SV50BR60	0	0	0	0	0.3259	0.9712	
	Sv50BR70	0	0	0	0	0	1	
	SV50BR80	0	0	0	0	0	1	
	SV50BR90	0	0	0	0	0.0004	1	
Med Bk	SV50BR100	0	0	0	0	0	1	
	SV60BR60	0	0	0	0	0	1	
	SV60BR70	0	0	lo lo	0	0	1	
	SV60BR80	0	0	0	0	0	1	
	SVEORPOO	0	0	0	0	0	1	
	SV6088100	0	0	0	0	0	1	
	3 VOUDR 100	V	U	U	U	V	1	

Tabella 4.17: output rete Med 21-19-6.

In conclusione si noti che la performance della classificazione basata sui coefficienti stimati di un modello AR risulta simile a quella basata sulla classificazione degli spettri di potenza; tuttavia presenta il vantaggio di utilizzare reti di dimensione minore.

CAPITOLO 5

CLASSIFICAZIONE DEI DATI IN VIVO

Dopo aver messo a punto le reti neurali per la classificazione dei dati in vitro, esse sono state utilizzate per la classificazione dei segnali in vivo. In particolare è stato acquisito il segnale fonocardiografico appoggiando sui pazienti la sonda del Myotis 3C sotto il plesso subxifoideo o fra il quarto e quinto spazio intercostale come suggerito dal costruttore. Sono stati monitorati 49 pazienti ricoverati nei reparti di Cardiologia e Cardiochirurgia del Policlinico Universitario di Padova, oppure seguiti presso il Servizio di Prevenzione e Terapia della Trombosi dell'Ospedale dei Colli di Padova.

Tutti i pazienti considerati sono portatori di un'unica protesi valvolare meccanica in posizione aortica: 45 hanno una protesi St. Jude Regent (ID 1-45), 3 pazienti una protesi Sorin Bicarbon Overline (ID 46-48), 1 paziente una valvola Carbomedics (ID 49). È da segnalare inoltre che i pazienti 13 e 21 sono stati sottoposti ad indagine due volte, il paziente 13 dopo 4 giorni dall'intervento e dopo 6 giorni, mentre il paziente 21 nel 2008 e poi nel 2010.

Per tutti i pazienti sono state acquisite 3 o 4 sequenze audio da 30 secondi ciascuna. Tali sequenze sono state processate con l'algoritmo di selezione dei suoni di chiusura. Come fatto per i dati in vitro, le sequenze audio date come risultato dall'algoritmo di selezione dei suoni di chiusura sono state utilizzate per il calcolo dello spettro o per la stima dei coefficienti del modello AR. Pertanto anche per i dati in vivo è stata eseguita la classificazione in entrambi i modi.

5.1 CLASSIFICAZIONE SULLA BASE DEGLI SPETTRI

Come specificato sopra, per ogni paziente sono state effettuate 3 o 4 acquisizioni che sono state elaborate attraverso l'algoritmo di selezione dei suoni di chiusura e successivamente è stato calcolato lo spettro utilizzando il metodo di Welch associato alla finestratura con finestra di Hamming da 128 campioni. Dopo aver normalizzato gli spettri, per cercare di limitare la variabilità intra-operatore è stato calcolato lo spettro medio e se ne è effettuata anche la classificazione.

In Figura 5.1 si riportano gli spettri medi normalizzati dei pazienti con valvola St. Jude Regent, in Figura 5.2 gli spettri medi normalizzati dei pazienti portatori di valvola Sorin Bicarbon Overline e in Figura 5.3 lo spettro medio normalizzato dell'unico paziente a cui è stata impiantata una valvola Carbomedics.

Figura 5.1: Spettri medi normalizzati dei pazienti con valvola St. Jude Regent.

Figura 5.2: Spettri medi normalizzati dei pazienti con valvola Sorin Bicarbon Overline.

Figura 5.3: Spettro medio del paziente con valvola Carbomedics.

In Tabella 5.1 si riporta l'output della rete neurale per quanto concerne la classificazione degli spettri delle singole acquisizioni e degli spettri medi dei pazienti con valvola St. Jude Regent.

PAZIENTE		Nf	1	12	13	Hg	Bk
	Acquisizione 1	0.0001	0.0025	0	0.9939	0.0001	0.0022
	Acquisizione 2	0.0003	0.0253	0	0.9981	0	0.0001
1	Acquisizione 3	0.0002	0.0563	0	0.9755	0 0001	0.001
	Spettro Medio	0.0001	0.0018	0	0.9963	0.0001	0 0002
	Acquisizione 1	0	0.0227	0.013	0	0	0.782
	Acquisizione 2	0.0001	0.3902	0.0003	0.0056	0	0.2928
2	Acquisizione 3	0	0.6948	0.0015	0.0023	0	0.1356
	Acquisizione 4	0.0001	0.9326	0.0004	0.0003	0	0.2115
	Spettro Medio	0	0.6173	0.001	0.0005	0	0.3021
		0.0006	0 007	0	0.5252	0.0015	0.0251
3		0.0002	0.007	0	0.0113	0.0002	0.0455
5	Acquisizione 4	0.0001	0.0007	0.0001	0.0344	0.0001	0.1173
	Spettro Medio	0.001	0.0015	0	0.0817	0.0001	0.0157
	Acquisizione 1	0.0072	0.0057	0.0005	0	0.0002	0.6464
	Acquisizione 2	0.0001	0.0074	0	0	0.0007	1
4	Acquisizione 3	0.0003	0.0018	0	0	0.0003	0.9998
	Acquisizione 4	0.0001	0.0017	0	0	0.0007	1
	Spettro Medio	0.0003	0.0023	0	0 463	0.0004	0.9999
		0.0001	0.0001	0.0001	0.403	0.0056	0
5	Acquisizione 3	0.0001	0.0002	0.0001	0.453	0.004	0
Ū	Acquisizione 4	Ő	0.0002	0.0003	0.5909	0.0248	0 0
	Spettro Medio	0	0.0002	0.0002	0.5448	0.0194	0
	Acquisizione 1	0	0.6247	0.1349	0.0032	0.0014	0
	Acquisizione 2	0.0001	0.2333	0	0.2998	0.0015	0
6	Acquisizione 3	0.0003	0.0289	0.0001	0.9439	0.0014	0
	Acquisizione 4	0.0002	0.2564	0.0001	0.6692	0.0011	0
		0.0001	0.2467	0.0001	0.0205	0.0018	0
		0.0470	0.8434	0.0104	0.0001	0.0004	0
7	Acquisizione 3	0.0292	0.9708	0.0001	0.0005	0.0001	Õ
	Acquisizione 4	0.3941	0.198	0.0016	0.0004	0.0008	0
	Spettro Medio	0.17	0.4611	0.0119	0.0005	0.0003	0
	Acquisizione 1	0.0006	0.004	0.0001	0.9304	0.0008	0
	Acquisizione 2	0.0002	0.0016	0	0.9852	0.0015	0
8	Acquisizione 3	0.0192	0.031	0.0001	0.2919	0.0011	0
	Spettro Medio	0.0001	0.0004	0.0002	0.9671	0.0019	0
		0.0002	0.0020	0.0001	0.0009	0.0013	0
	Acquisizione 2	0.0012	0.9995	0.0001	0.0001	0.0001	0.026
9	Acquisizione 3	0.0021	0.8801	0	0.6838	0.0002	0
	Acquisizione 4	0.0001	0.014	0.0001	0.7034	0.0003	0
	Spettro Medio	0.0012	0.9967	0	0.0019	0.0001	0
	Acquisizione 1	0.0001	0.9827	0.0001	0.0004	0	0.16
10	Acquisizione 2	0.0009	0.9998	0.0001	0.0001	0.0001	0.0001
10	Acquisizione 3	0 0002	0.9908	0.0001	0.0023	0	0.0015
	Spettro Medio	0.0001	0.9996	0.0001	0.0002	Ő	0.0009
	Acquisizione1	0	0	0.0017	0.997	0.0035	0
	Acquisizione2	0	0.0001	0.0064	0.9921	0.0015	0
	Acquisizione3	0	0.0001	0.0014	0.9971	0.0009	0
11	Acquisizione4	0	0.0004	0.0079	0.9907	0.0018	0
	Acquisiziones	0.0019	0.0003	0	0.0016	0.0133	0
	Spettro Medio	0.0000	0.0043	0 0004	0.9916	0.0034	0
	Acquisizione1	0.0003	0.0001	0.0002	0.9999	0.0002	0
12	Acquisizione2	0.0001	0.999	0.0001	0.0012	0	0.0108
	Acquisizione3	0.0001	0.9988	0	0.0032	0.0001	0.0093
	Spettro Medio	0.0001	0.9944	0.0003	0.0115	0	0.0037
	Acquisizione1	0.0013	0.1193	0.0004	0.0165	0.0007	0
	Acquisizione2	0.0541	0.0001	0.0098	0	0.0002	0.2897
	Acquisizione3	0.0111	0.0054	0.0002	0.0008	0	0.1200
13	Spettro Medio	0.0164	0.0007	0.0016	0.0009	0	0.0435
	Acquisizione1	0	0.6703	0	0.02	0.0002	0.0349
	Acquisizione2	0.0073	0.0273	0.0016	0	0	0.1359
	Acquisizione3	0	0.0412	0.0001	0.0289	0	0.0772
	Acquisizione4	0	0.9754	0	0.0002	0.0001	0.0109
	Spettro Medio	0.0001	0.6332	0.0001	0.0004	0	0.0558
	Acquisizione1	0.076	0.0001	0.0005	0.0079	0.0001	0
14	Acquisizione3	0.0005	0.0120	0.0001	0.2075	0.0001	0
1 17	, 10401012101100	0.0010	0.0010	0.0001	0.0202	0.0001	0

	Acquiciziono4	0.001	0 0002	0.0001	0 0024	0.0001	0
	Acquisizione4	0.001	0.0092	0.0001	0.3034	0.0001	0
	Acquisiziones	0.001	0.0092	0.0001	0.9034	0.0001	0
	Spettro Medio	0.0027	0.051	0.0001	0.3964	0.0001	0
	Acquisizione1	0.0004	0.9406	0.0001	0.0008	0.0001	0.0504
	Acquisizione2	0.0005	0.9459	0	0 0192	0.0001	0.0053
15	Acquisiziono3	0.0000	0 0/21	0	0.0031	0.0007	0.0000
13	Acquisiziones	0.0031	0.9421	0	0.0031	0.0002	0.0206
	Acquisizione4	0.0007	0.8032	0.0005	0.0036	0.0001	0.0033
	Spettro Medio	0.001	0.9418	0	0.0034	0.0001	0.0125
	Acquisizione1	0	0.0009	0	0.9999	0.0001	0
16	Acquisizione2	0	0.0001	0	0.9999	0.0001	Ō
	Acquisiziono3	0	0.0001	0	1	0.0001	Õ
	Acquisiziones	0	0.0001	0		0.0001	0
	Spettro iviedio	0	0.0003	0	1	0.0001	0
	Acquisizione1	0	0.0024	0	0.9942	0.0005	0.0036
	Acquisizione2	0.0001	0.0026	0	0.8895	0.0002	0.3455
17	Acquisizione3	0	0.001	0	0.8522	0.0009	0.8096
	Acquisizione4	0 0008	0.0234	ů Ú	0.8189	0.0008	0.0017
	Acquisizione4	0.0008	0.0234	0	0.0103	0.0000	0.0017
	Spettro Medio	0.0001	0.0031	0	0.9724	0.0005	0.0293
	Acquisizione1	0.0004	0	0.0001	0.9942	0.0001	0
	Acquisizione2	0.0008	0	0.0001	0.9875	0.0002	0
18	Acquisizione3	0.0004	0	0.0001	0.9979	0.0001	0
	Acquisizione4	0	Õ	0.0005	0 0088	0.0002	Õ
	Acquisizione4	0 0000	0	0.0000	0.3300	0.0002	0
	Spettro Medio	0.0003	0	0.0002	0.9964	0.0001	0
	Acquisizione1	0.0005	0.9566	0	0.0001	0.0001	0.5719
	Acquisizione2	0.0001	0.9722	0	0.0006	0.0001	0.3241
19	Acquisizione3	0.0001	0.9736	0	0.0015	0.0001	0.2176
	Acquisizione	0.0001	0.8056	ů 0	0.0010	0.0001	0.4408
	Acquisizione4	0.0002	0.0950	0	0.0005	0.0001	0.4400
	Spettro Medio	0.0002	0.9554	0	0.0004	0.0001	0.4569
	Acquisizione1	0	0.9926	0.009	0.0107	0.0004	0
	Acquisizione2	0	0.9678	0.0032	0.0339	0.0008	0.0001
20	Acquisizione3	0	0.9095	0.032	0.1293	0.0005	0
	Acquisizione4	Ő	0.805	0.0043	0.2505	0.0005	Õ
	Spottro Modio	0	0.000	0.0045	0.2333	0.0005	0
	Spettro Medio	0	0.9303	0.0095	0.0764	0.0006	0
	Acquisizione1	0.0075	0.9993	0.0002	0.0001	0	0.0001
	Acquisizione2	0	0.9826	0.1349	0.0029	0.0003	0
	Acquisizione3	0.0025	0.9995	0.0015	0	0.0002	0.0001
	Acquisizione4	0.0005	0 9978	0.0258	0 0002	0.0002	0
21	Spottro Modio	0.0000	0.0059	0.0200	0.0002	0.0002	0
21	Spettro Medio	0.0002	0.9930	0.1074	0.0001	0.0002	0
	Acquisizione1	0.0001	0.7807	0.0001	0	0	0.9784
	Acquisizione2	0.0002	0.7923	0.0003	0	0	0.9597
	Acquisizione3	0	0.9097	0.0007	0	0	0.8551
		0.0004	0 8021	0 0004	0	0	0 9742
	Spettro Medio	0.0001			•	0	0.01 12
	Spettro Medio	0.0001	0.301/	0.0001	0.0504	0.0002	0.0001
	Acquisizione1	0.0001	0.3014	0.0001	0.0594	0.0002	0.0001
22	Acquisizione1 Acquisizione2	0.0001 0.0011 0.0013	0.3014 0.1871	0.0001	0.0594 0.1005	0.0002 0.0002	0.0001
22	Acquisizione1 Acquisizione2 Acquisizione3	0.0001 0.0011 0.0013 0.0011	0.3014 0.1871 0.0773	0.0001 0 0.0004	0.0594 0.1005 0.5202	0.0002 0.0002 0.0006	0.0001 0 0
22	Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022	0.3014 0.1871 0.0773 0.0927	0.0001 0 0.0004 0.0001	0.0594 0.1005 0.5202 0.1136	0.0002 0.0002 0.0006 0.0002	0.0001 0 0 0
22	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017	0.3014 0.1871 0.0773 0.0927 0.0024	0.0001 0 0.0004 0.0001 0	0.0594 0.1005 0.5202 0.1136 0.9998	0.0002 0.0002 0.0006 0.0002 0.0005	0.0001 0 0 0
22	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017	0.3014 0.1871 0.0773 0.0927 0.0024 0.0003	0.0001 0 0.0004 0.0001 0 0	0.0594 0.1005 0.5202 0.1136 0.9998	0.0002 0.0002 0.0006 0.0002 0.0005 0.0005	0.0001 0 0 0 0
22	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017	0.3014 0.1871 0.0773 0.0927 0.0024 0.0003	0.0001 0 0.0004 0.0001 0 0 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998	0.0002 0.0002 0.0006 0.0002 0.0005 0.0006 0.0006	0.0001 0 0 0 0 0
22	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018	0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001	0.0001 0 0.0004 0.0001 0 0 0.0002	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991	0.0002 0.0002 0.0006 0.0002 0.0005 0.0006 0.0007	0.0001 0 0 0 0 0 0
22	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002	0.0001 0 0.0004 0.0001 0 0 0.0002 0.0002	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951	0.0002 0.0002 0.0006 0.0002 0.0005 0.0006 0.0007 0.0006	0.0001 0 0 0 0 0 0 0 0 0
22	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016	0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002	0.0001 0 0.0004 0.0001 0 0 0.0002 0.0002 0.0004 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996	0.0002 0.0002 0.0006 0.0002 0.0005 0.0006 0.0007 0.0006 0.0005	0.0001 0 0 0 0 0 0 0 0 0 0 0
22 23	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione1	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313	0.3014 0.3014 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0002	0.0001 0 0.0004 0.0001 0 0 0.0002 0.0002 0.0004 0 0.00011	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007	0.0002 0.0002 0.0006 0.0002 0.0005 0.0006 0.0007 0.0006 0.0005 0.0005	0.0001 0 0 0 0 0 0 0 0 0 0 0 0
22 23	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione4 Acquisizione4 Spettro Medio Acquisizione1 Acquisizione2	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0002 0.0405 0.9697	0.0001 0 0.0004 0.0001 0 0 0.0002 0.0002 0.0004 0 0.00011 0.0003	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042	0.0002 0.0002 0.0006 0.0002 0.0005 0.0006 0.0007 0.0006 0.0005 0.0005	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione2	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0405 0.9697 0.9213	0.0001 0 0.0004 0.0001 0 0 0.0002 0.0004 0 0.0002 0.0004 0 0.00011 0.0003 0.0002	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9956 0.0007 0.0042 0.002	0.0002 0.0002 0.0006 0.0005 0.0006 0.0007 0.0006 0.0006 0.0005 0.0004 0.0001	0.0001 0 0 0 0 0 0 0 0 0.0057 0.004
22 23 24	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione3	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0002 0.0405 0.9697 0.9913 0.2252	0.0001 0.0004 0.0004 0.0001 0 0.0002 0.0004 0 0.0004 0 0.00011 0.0003 0.0002 0.0002	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002	0.0002 0.0002 0.0006 0.0005 0.0006 0.0007 0.0006 0.0005 0.0006 0.0005 0.0004 0.0001	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4	0.0001 0.0011 0.0013 0.0012 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0002 0.0405 0.9697 0.9913 0.9863 0.9863	0.0001 0 0.0004 0.0001 0 0 0.0002 0.0004 0 0.0004 0 0.00011 0.0003 0.0002 0.0003 0.0002	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075	0.0002 0.0002 0.0006 0.0002 0.0005 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24	Spettro Medio Acquisizione1 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione1 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671	0.0001 0 0.0004 0.0001 0 0 0.0002 0.0004 0 0.00011 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9951 0.9996 0.0007 0.0042 0.002 0.002 0.0075 0.0018	0.0002 0.0002 0.0006 0.0002 0.0005 0.0006 0.0007 0.0006 0.0005 0.0005 0.0004 0.0001 0.0001	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione1 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0	0.0001 0.0004 0.0004 0.0001 0 0.0002 0.0004 0 0.0004 0 0.0003 0.0003 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449	0.0002 0.0002 0.0006 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione1 Acquisizione1 Acquisizione2	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0.0002 0.0004 0 0.0004 0 0.0003 0.0002 0.0003 0.0003 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9951 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348	0.0002 0.0002 0.0006 0.0005 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione1 Acquisizione3	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0.0002 0.0004 0 0.0001 0.0003 0.0004 0 0.0004 0 0.0004	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0012 0.0001	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione2 Acquisizione3 Acquisizione3	0.0001 0.0011 0.0013 0.0012 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0002 0.0405 0.9697 0.9913 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0 0 0.0002 0.0004 0 0.0004 0 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004 0 0 0.0004	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4419	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0005 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0012 0.0001 0.0001	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione1 Acquisizione1 Acquisizione3 Acquisizione3 Acquisizione3 Acquisizione3 Acquisizione4	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0003 0.0004 0 0.0001 0.0002 0.0004 0 0.0002 0.0004	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418	0.0002 0.0002 0.0006 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione1 Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0405 0.9697 0.9913 0.9863 0.9863 0.98671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0.0002 0.0004 0 0.0001 0.0003 0.0003 0.0003 0.0003 0.0004 0 0.0001 0.0002 0.0004 0 0.0004 0 0.0004 0 0.0004 0 0.0004 0 0.0004 0 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.0075 0.0042 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5996	0.0002 0.0002 0.0006 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione1 Acquisizione1 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0012 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.963 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004 0 0 0.0001 0.0002 0.0004 0 0 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0002 0.0003	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione1 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0012 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0405 0.9697 0.9913 0.9633 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0 0 0.0002 0.0004 0 0.0004 0 0.0001 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004 0 0.0001 0.0002 0.0004 0 0.0001 0.0002 0.0004 0 0.0001 0 0.0002 0.0004 0 0.0002 0.0003 0.0002 0.0004 0 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0004 0 0.0002 0.0003 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0002 0.0003 0.0002 0.0004 0 0.0002 0.0003 0.0002 0.0004 0 0.0003 0.0002 0.0004 0 0 0.0004 0 0 0.0003 0.0002 0.0004 0 0 0.0003 0.0004 0 0 0.0003 0.0004 0 0 0.0004 0 0 0.0003 0.0002 0.0004 0 0 0.0003 0.0002 0.0004 0 0 0.0003 0.0002 0.0004 0 0.0003 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0003 0.0002 0.0004 0.0004 0.00001 0.0004 0.0001 0.0004 0.0001 0.0001 0.0004 0.0001 0.000	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.00031 0	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0018 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004 0 0.0001 0.0002 0.0004 0 0.0004 0 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0.0001 0.0002 0.0002 0.0002 0.0004 0.0001 0.0001 0.0002 0.0001 0.0007 0.0007 0.00176	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0	0.0002 0.0002 0.0005 0.0006 0.0005 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0012 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione1 Acquisizione1 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.9663 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0 0.0002 0.0004 0 0.0001 0.0003 0.0004 0 0.0003 0.0004 0 0.0003 0.0004 0 0.0001 0 0.0004 0 0.0004 0 0.0004 0 0.0004 0 0.0004 0 0.0004 0 0.0004 0 0.0004 0 0.0002 0.0004 0 0.0004 0 0.0004 0 0 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0	0.0002 0.0002 0.0006 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.00031 0 0.0004 0.0004	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0012 0.0017 0.0017 0.0018 0.0013 0.0016 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0.0002 0.0002 0.0004 0 0.0001 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0 0.0001 0.0002 0.0004 0 0.0004 0 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0 0.0002 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.00031 0 0.0004 0.0004 0.0004 0.0004 0.0004	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione1 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0012 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0002 0.0405 0.9697 0.9697 0.9913 0.9697 0.9697 0.9683 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0.0002 0.0004 0 0.0004 0 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004 0 0.0001 0.0001 0.0001 0.0002 0.0004 0 0.0004 0 0.0004 0 0.0002 0.0004 0 0.0004 0 0.0002 0.0004 0 0.0002 0.0002 0.0003 0.0002 0.0002 0.0003 0.0002 0.0003 0.0002 0.0004 0 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0004 0 0.0003 0.0002 0.0004 0 0.0002 0.0003 0.0002 0.0004 0 0.0002 0.0003 0.0002 0.0004 0 0 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0004 0 0.0002 0.0002 0.0003 0.0002 0.0004 0 0.0002 0.0003 0.0002 0.0004 0 0.0002 0.0003 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0004 0 0.0001 0.0002 0.0004 0 0.0001 0.0002 0.0004 0 0.0001 0.0002 0.0004 0 0.0001 0.0002 0.0004 0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0011 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00176 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0011 0.0012 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.00	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.99951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.00031 0 0.0004 0.0005 0.0004 0.0001 0.0002 0.0002 0.0004 0.0002 0.0004 0.0001 0.0002 0.0004 0.0002 0.0004 0.0001 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione3 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione1 Acquisizione1 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0.0002 0.0004 0 0.0004 0 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004 0 0.0001 0.0002 0.0004 0 0.0004 0 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0001 0.0001 0.0002 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.000	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9956 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.00031 0 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione1 Acquisizione1 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0003 0.0004 0 0.0003 0.0004 0 0.0001 0.0002 0.0004 0 0.0004 0 0.0004 0 0.0007 0.00176 0.00128 0.0062 0.0017	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.00031 0 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0008	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26 27	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione2 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0012 0.0017 0.0017 0.0018 0.0013 0.0016 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0003 0.0003 0.0002 0.0003 0.0004 0 0 0.0001 0 0.0001 0 0.0001 0 0.0002 0.0004 0 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0004 0 0.0002 0.0004 0 0.0004 0 0.0007 0.0007 0.0007 0.0007 0.0017 0.0007 0.0017 0.0007 0.0017 0.0007 0.0017 0.0017 0.0007 0.0017 0.0017 0.0007 0.0017 0.0017 0.0017 0.0007 0.0017 0.0002	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.00031 0 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0008 0.0005 0.0008 0.0005	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26 27	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0012 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0002 0.0405 0.9697 0.9913 0.9697 0.9913 0.9683 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0 0.0002 0.0004 0 0.0004 0 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004 0 0.0001 0.0002 0.0004 0 0.0001 0.0002 0.0004 0 0.0007 0.0176 0.001 0.0128 0.0062 0.0017 0.0002 0.0002 0.0002	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.99951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.00031 0 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0008 0.0008 0.0009 0.0009	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26 27	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione3 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0018 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0 0.0002 0.0004 0 0.0004 0 0.0001 0.0002 0.0003 0.0002 0.0003 0.0002 0.0004 0 0.0001 0 0.0001 0 0.0001 0 0.0007 0.0007 0.00176 0.001 0.00128 0.0062 0.0017 0.0002 0.0002	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004 0.0005 0.0004 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0.0005 0.0005 0.0007 0.0005 0.0007	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26 27	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione1 Acquisizione1 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0018 0.0013 0.0016 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0 0.0002 0.0004 0 0.0004 0 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004 0 0.0001 0 0.0001 0 0.0001 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0004 0 0.0002 0.0002 0.0004 0 0.0002 0.0001 0.0002 0.0001 0.0007 0.00176 0.0001 0.0002 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9956 0.0007 0.0042 0.007 0.0042 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0008 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26 27	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione2 Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0012 0.0017 0.0017 0.0018 0.0013 0.0016 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0 0.0002 0.0002 0.0004 0 0.0001 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0 0.0001 0 0.0001 0 0.0001 0 0.0007 0.0017 0.00128 0.0062 0.0007 0.0017 0.0002 0.0002 0.0001 0 0.0017 0.0002 0.0002 0.0001 0.0001 0 0.0001 0 0.0001 0 0 0.0002 0.0002 0.0002 0.0003 0.0002 0.0004 0 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.00031 0 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0005 0.0005 0.0004 0.0001 0.0005 0.0004 0.0005 0.0005 0.0005 0.0005 0.0007 0.0005 0.0004 0.0001 0.0001 0.0005 0.005	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26 27 28	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione3 Acquisizione4 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0012 0.0017 0.0017 0.0018 0.0013 0.0016 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0002 0.0002 0.0405 0.9697 0.9913 0.9697 0.9913 0.9683 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004 0 0.0001 0.0002 0.0004 0 0.0001 0.0002 0.0004 0.0001 0.0002 0.0004 0.0001 0.0002 0.0004 0.0001 0.0002 0.0004 0.0001 0.0002 0.0004 0.0001 0.0002 0.0004 0.0001 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0001 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0004 0.0002 0.0002 0.0002 0.0002 0.0004 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0002 0.0001 0.0002 0.0001 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001 0.0002 0.0002 0.0001 0.0002 0.0002 0.0001 0.0002 0.0002 0.0001 0.0002 0.0001 0.0002 0.0002 0.0001 0.0002 0.0002 0.0001 0.0002	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.00031 0 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0004 0.0005 0.0008 0.0009 0.0007 0 0.0007 0 0.0007 0 0.0007 0 0.0007 0 0.0009 0.0007 0 0.0007 0 0.0009 0.0007 0 0.0007 0 0.0009 0.0007 0 0.0007 0 0.0009 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0009 0.0007 0.0007 0.0009 0.0007 0.0007 0.0007 0.0009 0.0007 0.0	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26 27 28	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione3 Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.9863 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0004 0 0.0001 0 0.0001 0 0.0001 0 0.0007 0.0007 0.00176 0.0017 0.0001 0.00128 0.0002 0.0007 0.00176 0.0017 0.0002 0.0007 0.00176 0.0017 0.0002 0.0007 0.00176 0.0017 0.0002 0.0007 0.0001 0.0007 0.0007 0.0007 0.0001 0.0001 0.0007 0.0007 0.0001 0.0001 0.0007 0.0007 0.0001 0.0001 0.0007 0.0007 0.0001 0.0001 0.0007 0.0001 0.0001 0.0007 0.0001 0.0001 0.0001 0.00002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001 0.0002 0.0002 0.0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0007 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0004 0.00031 0 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0008 0.0009 0.0007 0 0.0001 0.00000 0.00000 0.00000 0.000000 0.00000000	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26 27 28	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione1 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.3014 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004 0 0.0001 0 0.0001 0 0.0001 0 0.0007 0.0007 0.0007 0.0007 0.0007 0.00176 0.001 0.00128 0.0002 0.0002 0.0004 0 0.0001 0 0.0001 0 0.0002 0.0004 0 0 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0002 0.0002 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.007 0.0042 0.007 0.0042 0.007 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0005 0.0006 0.0007 0.0006 0.0007 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0004 0.0004 0.0004 0.0004 0.0005 0.0008 0.0009 0.0005 0.0008 0.0009 0.0007 0 0.0001 0.0005 0.0005 0.0005 0.0005 0.0004 0.0005 0.0005 0.0005 0.0001 0.0	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
22 23 24 25 26 27 28	Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Spettro Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione3 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione2 Acquisizione3 Acquisizione4 Spettro Medio Acquisizione4 Spettro Medio Acquisizione3 Acquisizione4 Spettro Medio Acquisizione3 Acquisizione3 Spettro Medio	0.0001 0.0011 0.0013 0.0011 0.0022 0.0017 0.0017 0.0018 0.0013 0.0016 0.0313 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3014 0.3014 0.1871 0.0773 0.0927 0.0024 0.0003 0.0001 0.0002 0.0405 0.9697 0.9913 0.9863 0.9671 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0004 0.0004 0.0001 0 0 0.0002 0.0002 0.0004 0 0.0001 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0004 0 0.0001 0 0.0007 0.0007 0.0017 0.00128 0.0062 0.0017 0.0002 0.0002 0.0017 0.00128 0.0062 0.0017 0.0002 0.0002 0.0016 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0594 0.1005 0.5202 0.1136 0.9998 0.9998 0.9991 0.9951 0.9996 0.0007 0.0042 0.002 0.0075 0.0018 0.449 0.348 0.1599 0.4418 0.5906 0.159 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0002 0.0002 0.0005 0.0005 0.0006 0.0007 0.0006 0.0007 0.0006 0.0005 0.0004 0.0001 0.0001 0.0001 0.0001 0.0002 0.0004 0.0002 0.00031 0 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0008 0.0009 0.0009 0.0009 0.0007 0 0.0001 0.0005 0.0009 0.0009 0.0007 0.0000 0.0009 0.0009 0.0009 0.0007 0.0009 0.0001 0.0001 0.0009 0.0009 0.0009 0.0009 0.0009 0.0001 0.0001 0.0009 0.0009 0.0009 0.0009 0.0009 0.0001 0.0001 0.0009 0.0009 0.0009 0.0009 0.0001 0.0001 0.0001 0.0009 0.0009 0.0001	0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0

	Acquisizione2	0.644	0	0.0002	0.2511	0.0002	0.0002
29	Acquisizione3	0.1918	0.0001	0.0028	0.0236	0	0.0077
	Acquisizione4	0.8593	0.0004	0	0.0049	0.0001	0.0001
	Spettro Medio	0.6926	0	0.0001	0.176	0.0002	0.0002
20	Acquisizione1	0.0004	0	0.0115	0.9601	0.0007	0
30	Acquisizione2	0.0004	0	0.0508	0.8881	0.0011	0
	Acquisiziones	0.0006	0.0001	0.0005	0.9975	0.0002	0
		0.0003	0 0685	0.0082	0.9072	0.0005	0.0524
21	Acquisizione i	0.0001	0.9005	0	0.003	0 0001	0.0534
31	Acquisizione3	0	0.9909	0 0006	0.0008	0.0001	0.0413
	Spettro Medio	0	0.0334	0.0000	0.0003	0	0.0213
	Acquisizione1	0,000	0.0100	0.0001	0.9906	0.0285	0.0401
32	Acquisizione2	0.0004	0 0002	0	0.8421	0.0200	Õ
	Acquisizione3	0.0009	0	Ő	0.4193	0.0207	Õ
	Spettro Medio	0.0011	0	0	0.8907	0.0184	0
	Acquisizione1	0.0194	0.8552	0	0.4193	0.0004	0
33	Acquisizione2	0.0451	0.479	0	0.3429	0.0006	0
	Acquisizione3	0.0246	0.5896	0	0.6399	0.0004	0
	Spettro Medio	0.0329	0.6522	0	0.4482	0.0005	0
	Acquisizione1	0.0009	0.994	0	0.0018	0	0.0145
34	Acquisizione2	0.0031	0.9981	0	0.0002	0.0001	0.0247
	Acquisizione3	0.0045	0.9896	0	0.0025	0	0.004
	Spettro Medio	0.0021	0.9964	0	0.0008	0	0.0119
	Acquisizione1	0	0.0002	0.0001	0.9999	0.0001	0
35	Acquisizione2	0	0	0.0006	0.9994	0.0001	0.0001
	Acquisizione3	0	0.0001	0.0086	0.9961	0	0
	Spettro Medio	0	0	0.001	0.9993	0	0.0001
26	Acquisizione	0.0308	0.0016	0	0.2248	0.0098	0 002
30	Acquisizione3	0.2103	0.0002	0	0.0002	0.0012	0.002
	Spettro Medio	0.0705	0	0	0.0233	0.0000	0.0018
		0.0027	0.012	0.0057	0.0007	0.0014	0.0010
37	Acquisizione2	0.001	0.0014	0.0038	0.9304	0.0002	õ
	Acquisizione3	0.0025	0.0122	0.0018	0.5853	0.0002	õ
	Spettro Medio	0.0034	0.0071	0.0024	0.5611	0.0002	0
	Acquisizione1	0.0021	0.2522	0	0.7504	0	0.0001
38	Acquisizione2	0.0622	0.0041	0	0.8086	0	0
	Spettro Medio	0.0093	0.0753	0	0.8051	0	0
	Acquisizione1	0.0001	0.4552	0.0016	0.0137	0	0.0004
39	Acquisizione2	0.0002	0.5829	0.0002	0.0002	0	0.0479
	Acquisizione3	0	0	0.1367	0.9854	0.0001	0.0004
	Spettro Medio	0	0.0859	0.0052	0.0263	0	0.0008
10	Acquisizione1	0.8/11	0.0015	0	0.0091	0.0009	0
40	Acquisizione2	0.7982	0.0022	0	0.0074	0.0006	0.0001
	Spottro Modio	0.700	0.0093	0	0.0046	0.0006	0
		0.0001	0.0031	0 0002	0.0037	0.0000	0.0166
41		0.0001	0.9566	0.0002	0.0037	0	0.0765
	Acquisizione3	õ	0.4834	0.0011	0.0398	Õ	0.0442
	Spettro Medio	0	0.9529	0.0004	0.0062	0	0.0387
	Acquisizione1	0.0047	0.007	0.0001	0.6574	0.0004	0
42	Acquisizione2	0.0034	0.0091	0	0.6409	0.0005	0
	Acquisizione3	0.0011	0.0005	0.0002	0.9166	0.0007	0
	Spettro Medio	0.0023	0.0016	0	0.8445	0.0005	0
	Acquisizione1	0	0.0644	0.8243	0.0611	0	0
43	Acquisizione2	0	0.0888	0.4839	0.034	0.0001	0.0001
	Acquisizione3	0	0.1928	0.1587	0.0076	0	0.0013
	Spettro Medio	0	0.0815	0.5729	0.0264	0	0.0001
	Acquisizione1	0.002	0.9986	0.0002	0.0003	0	0.0004
44	Acquisizione2	0.0013	0.9972	0.001	0.0001	U	0.0024
	Spettre Media	0.0001	0.9988	0.0009	0.0014	0	0.0002
		0.0000	0.0097	0.0009	0.0003		0.0000
45	Acquisizione?	0.0001	0.0007	0.0033	0.0037	0.0003	0
75	Acquisizione3	0.0001	0.0144	0.0004	0.9613	0.0002	0
	Acquisizione 4	0.0001	0.0378	0.0008	0.8216	0.0002	õ
1	Spettro medio	0.0001	0.0136	0.0007	0.9297	0.0003	Õ

Tabella 5.1: Classificazione degli spettri dei pazienti con valvola St. Jude Regent.

Nella Tabella 5.1 sono evidenziate in grassetto le assegnazioni ad una classe. Osservando i dati contenuti nella tabella si può notare che per 23 pazienti si ha una classificazione netta in quanto sia gli spettri delle singole acquisizioni, sia lo spettro medio vengono attribuiti alla stessa classe. A questo gruppo va aggiunta la prima acquisizione del paziente con ID 21, sottoposto a monitoraggio 2 volte: sono state fatte 4 acquisizioni nel 2008 e poi altre 3 nel 2010; gli spettri relativi ai dati del 2008 vengono tutti classificati come condizione *I1*, mentre gli spettri relativi ai dati del 2010 sono classificati contemporaneamente in 2 classi diverse. Poiché sono acquisizioni fatte in giorni diversi sia per il paziente 13 che per il 21 si considerano distinte le due acquisizioni, come se si avessero 2 pazienti in più e pertanto si considerano anche due spettri medi per ogni paziente.

Date le considerazioni sopraesposte, si può affermare che nel 51.06% (((23+1)/(45+2)*100) dei casi si ha una classificazione netta da parte della rete.

Tuttavia bisogna tener presente che le acquisizioni in vivo rispetto a quelle in vitro sono affette dall'errore dovuto all'operatore. Infatti, mentre nelle acquisizioni in vitro la sonda del Myotis 3C è tenuta ferma da un sostegno messo sempre nella stessa posizione e mantenuta immobile durante i 30 secondi, nelle acquisizioni in vivo la sonda ad alta frequenza è tenuta dall'operatore che durante l'acquisizione può effettuare movimenti involontari e può pertanto cambiare l'orientazione e la posizione della sonda causando lo strofinamento della stessa sul torace del paziente. Al fine di ridurre la variabilità intra-operatore, sono stati mediati gli spettri; è pertanto più corretto valutare le prestazioni della rete sulla classificazione degli spettri medi e non sulle singole acquisizioni.

Per questo motivo si riporta in Tabella 5.2 la classificazione dei pazienti sulla base degli spettri medi e si evidenziano in grassetto le assegnazioni, in blu le mancate assegnazioni, cioè quei casi in cui la rete presenta un output maggiore di 0.4 per una classe e differenza con gli output per le altre classi minore di 0.3. Dalla tabella si può notare che 38 spettri medi vengono assegnati ad una classe, 3 spettri medi vengono assegnati contemporaneamente a due classi, 6 spettri non vengono assegnati ad alcuna classe, cioè hanno output minore di 0.4 per tutte le classi di rischio. In Tabella 5.3 si riporta uno schema riassuntivo col numero di assegnazioni corrette e il numero di pazienti assegnati ad ogni classe.

PAZIENTE	Nf	I1	I2	I3	Hg	Bk
1	0.0002	0.0134	0	0.9963	0	0.0002
2	0	0.6173	0.001	0.0005	0	0.3021
3	0.001	0.0015	0	0.0817	0.0001	0.0157
4	0.0003	0.0023	0	0	0.0004	0.9999
5	0	0.0002	0.0002	0.5448	0.0194	0
6	0.0001	0.2487	0.0001	0.6285	0.0018	0
7	0.17	0.4611	0.0119	0.0005	0.0003	0
8	0.0002	0.0028	0.0001	0.9554	0.0013	0
9	0.0012	0.9967	0	0.0019	0.0001	0
10	0.0001	0.9996	0.0001	0.0002	0	0.0009
11	0	0	0.0004	0.9916	0.0034	0
12	0.0001	0.9944	0.0003	0.0115	0	0.0037
13 a	0.0164	0.0007	0.0016	0.0009	0	0.0435
13 b	0.0001	0.6332	0.0001	0.0004	0	0.0558
14	0.0027	0.051	0.0001	0.3964	0.0001	0
15	0.001	0.9418	0	0.0034	0.0001	0.0125
16	0	0.0003	0	1	0.0001	0
17	0.0001	0.0031	0	0.9724	0.0005	0.0293
18	0.0003	0	0.0002	0.9984	0.0001	0
19	0.0002	0.9554	0	0.0004	0.0001	0.4569
20	0	0.9363	0.0095	0.0784	0.0006	0
21 a	0.0002	0.9958	0.1674	0.0001	0.0002	0
21 b	0.0001	0.8021	0.0004	0	0	0.9742
22	0.0022	0.0927	0.0001	0.1136	0.0002	0
23	0.0016	0.0002	0	0.9996	0.0005	0
24	0	0.9671	0.0004	0.0018	0.0001	0.0015
25	0.0821	0	0.0001	0.5906	0.0002	0.0055
26	0	0.499	0.0128	0	0.0001	0.0318
27	0	0.999	0.0016	0.0005	0.0007	0.0004
28	0.0001	0.8373	0	0.9777	0.0001	0
29	0.6926	0	0.0001	0.176	0.0002	0.0002
30	0.0003	0	0.0082	0.9872	0.0005	0
31	0	0.9796	0.0001	0.0015	0	0.0401
32	0.0011	0	0	0.8907	0.0184	0
33	0.0329	0.6522	0	0.4482	0.0005	0
34	0.0021	0.9964	0	0.0008	0	0.0119
35	0	0	0.001	0.9993	0	0.0001
36	0.2586	0	0	0.0537	0.0014	0.0018
37	0.0034	0.0071	0.0024	0.5611	0.0002	0
38	0.0093	0.0753	0	0.8051	0	0
39	0	0.0859	0.0052	0.0263	0	0.0008
40	0.8509	0.0031	0	0.0058	0.0006	0
41	0	0.9529	0.0004	0.0062	0	0.0387
42	0.0023	0.0016	0	0.8445	0.0005	0
43	0	0.0815	0.5729	0.0264	0	0.0001
44	0.0006	0.9981	0.0009	0.0003	0	0.0008
45	0.0001	0.0136	0.0007	0.9297	0.0003	0

 Tabella 5.2: Classificazione spettri medi per pazienti con valvola St Jude Regent.

	PAZIENT	I ASSEGNATI
CLASSI	NUMERO/47	PERCENTUALE
Nf	2	4,25%
I1	17	36,17%
I2	1	2,13%
I3	17	36,17%
Hg	0	0
Bk	1	2,13%
ТОТ	38	80,85%

Tabella 5.3: Schema riassuntivo sulla classificazione degli spettri medi dei portatori di valvola St. Jude.

Si riportano nelle Tabelle 5.4 e 5.5 la classificazione dei singoli spettri e degli spettri medi per i pazienti con protesi Sorin.

PAZIENTI		Nf	I1	I2	I3	Hg	Bk
	Acquisizione1	0.9768	0.1609	0	0.0264	0.0007	0.0001
46	Acquisizione2	0.9562	0.1123	0	0.0905	0.0012	0
	Acquisizione3	0.0976	0.2064	0	0.2536	0.0011	0.0003
	Spettro Medio	0.6955	0.2992	0	0.3525	0.0007	0
	Acquisizione1	0.9499	0.0004	0.0011	0.0001	0.0004	0.3974
47	Acquisizione2	0.9557	0.0003	0.0011	0.0001	0.0006	0.3484
	Acquisizione3	0.9486	0.0002	0.0013	0.0001	0.0006	0.4243
	Spettro Medio	0.9546	0.0002	0.0012	0.0001	0.0005	0.4252
	Acquisizione1	0.7291	0.0002	0	0	0.4461	0.0133
48	Acquisizione2	0.997	0.0016	0.0001	0	0.0768	0.0035
	Acquisizione3	0.1705	0	0.0001	0	0.9207	0.1363
	Spettro Medio	0.6845	0.0001	0.0001	0	0.8052	0.0403

Tabella 5.4: Classificazione degli spettri per pazienti con valvola Sorin.

PAZIENTI	Nf	I1	I2	I3	Hg	Bk
46	0.6955	0.2992	0	0.3525	0.0007	0
47	0.9546	0.0002	0.0012	0.0001	0.0005	0.4252
48	0.6845	0.0001	0.0001	0	0.8052	0.0403

Tabella 5.5: Classificazione degli spettri medi per pazienti con valvola Sorin.

Dalla Tabella 5.4 si può osservare che solo 1 paziente su 3 viene classificato in modo netto, cioè gli spettri relativi alle varie acquisizioni e lo spettro medio vengono tutti classificati allo stesso modo; dalla Tabella 5.5 si può dedurre che 2/3 dei pazienti vengono classificati come classe *Nf* e sono pari al 67%, mentre un paziente viene assegnato contemporaneamente a 2 classi.

Infine in Tabella 5.6 si riporta la classificazione del paziente 49, portatore di protesi valvolare Carbomedics sicuramente poco funzionante come confermato dall'eco-doppler effettuato nella stessa giornata in cui è stato acquisito il segnale fono cardiografico: è stata riscontrata la presenza di panno sulla valvola di dimensioni tali da dover procedere con la sostituzione della protesi. Come si nota dalla Tabella 5.6 il paziente è stato assegnato alla classe I3, ovvero la classe di rischio più severa fra le tre intermedie; questo costituisce una forma di validazione di questo risultato. Per quanto riguarda il problema della validazione dei risultati si rimanda al paragrafo 5.3.

PAZIENTI		Nf	I1	I2	I3	Hg	Bk
	Acquisizione 1	0.258	0	0	0.9977	0.0472	0
	Acquisizione 2	0.7623	0	0	0.9986	0.0004	0
49	Acquisizione 3	0.2983	0	0	0.9968	0.0015	0
	Acquisizione 4	0.4513	0	0	0.9999	0.0004	0
	Spettro Medio	0.5792	0	0	0.999	0.0072	0

Tabella 5.6: Classificazione del paziente con protesi Carbomedics.

5.2 CLASSIFICAZIONE SULLA BASE DEI COEFFICIENTI DEL MODELLO AR

Come fatto per i dati in vitro, anche per i segnali audio acquisiti sui pazienti ed elaborati attraverso l'algoritmo di selezione dei suoni di chiusura è stato stimato un modello AR di ordine 20. I coefficienti di tale modello sono stati utilizzati per attribuire i pazienti a una delle 6 classi di rischio. Inoltre è stata anche calcolata la media dei coefficienti delle diverse acquisizioni. Si riportano le medie dei coefficienti dei modelli AR stimati per ogni paziente a cui è stata impiantata una valvola St. Jude Regent in Figura 5.4, Sorin in Figura 5.5 e Carbomedics in Figura 5.6.

Figura 5.4: Media dei coefficienti dei modelli AR stimati per ogni paziente con valvola St. Jude Regent.

Figura 5.5: Media dei coefficienti dei modelli AR stimati per ogni paziente con protesi Sorin.

115

Figura 5.6: Media dei coefficienti dei modelli AR stimati per il paziente con valvola Carbomedics.

In Tabella 5.7 si riporta l'output della rete per quanto riguarda la classificazione sulla base dei coefficienti dei modelli AR stimati sulle singole acquisizioni, e sulla base della media dei coefficienti. In Tabella 5.8 si riporta solo la classificazione in base alla media dei coefficienti dei modelli stimati per ogni paziente e in Tabella 5.9 lo schema riassuntivo sul numero di assegnazioni.

PAZIENTE		Nf	1	12	13	Hg	Bk
	Acquisizione 1	0.1288	0	0.995	0.7224	0	0.0003
	Acquisizione 2	0.0001	0	0.9989	0.0064	0	0.0309
1	Acquisizione 3	0	0	0.7922	0.0008	0	0.8117
	Acquisizione 4	0.0002	0	0.9994	0.0401	0	0.0025
	Medio	0.0004	0	0.9952	0.0246	0	0.0312
	Acquisizione 1	0	0.0003	0.0047	0	0	0.9997
	Acquisizione 2	0	0.0014	0.0157	0.0003	0	0.9999
2	Acquisizione 3	0	0	0.9988	0	0	0.9576
	Acquisizione 4	0	0.0006	0.0007	0.0005	0	1
	Medio	0	0.0009	0.0005	0.0009	0	1
	Acquisizione 1	0.0282	0	0	0	0	0.2956
	Acquisizione 2	0	0.0003	0.0023	0	0	0.9976
3	Acquisizione 3	0	0.0094	0.0005	0	0	0.4445
	Acquisizione 4	0	0.0018	0	0.0002	0	1
	Medio	0	0.0011	0.0006	0	0	0.9886
	Acquisizione 1	0.0274	0.9528	0	0	0	0
	Acquisizione 2	0	0.9981	0.0001	0	0	0.0083
4	Acquisizione 3	0	0.9977	0.0001	0	0	0.0003
	Acquisizione 4	0	1	0	0	0	0.0002
	Medio	0.0001	0.9989	0.0001	0	0	0.0007
	Acquisizione 1	0.0002	0.0205	0.0012	0	0	0.9762
	Acquisizione 2	0.0002	0.1373	0.0009	0	0	0.8367
5	Acquisizione 3	0.0001	0.001	0.0011	0	0	0.9991
	Acquisizione 4	0.0003	0.0171	0.0006	0	0	0.9838
	Medio	0.0002	0.016	0.001	0	0	0.9856
	Acquisizione 1	0	0	1	0.0001	0	0
	Acquisizione 2	0	0	0.0012	0	0.0047	0.9807

6	Acquisizione 3	0	0	0.9834	0.0005	0.0001	0.0003
	Acquisizione 4	0	0	0.851	0.0061	0.0087	0
	Medio	0	0	0.3834	0.0003	0.0101	0.0015
	Acquisizione 1	0.9998	0.0013	0	0.0003	0	0
	Acquisizione 2	0.9998	0.001	0	0.0009	0	0
7	Acquisizione 3	0.9997	0.0004	0	0.0009	0	0
	Acquisizione 4	0.9998	0.0013	0	0.0006	0	0
	Medio	0.9998	0.0011	0	0.0006	0	0
	Acquisizione 1	0	0	0.0041	0	0	1
•	Acquisizione 2	0.0002	0	0.043	0	0	1
8	Acquisizione 3	0.9998	0.0013	0	0.0005	0	0
	Acquisizione 4	0.0006	0	0.0101	0	0	0.9919
		0.0074	0.0002	0.0031	0	0	0.0374
		0.0002	0.0469	0.0001	0	0	0.5071
٩		0	0.0003	0.0008	0	0	0.9975
3		0	0	0.0003	0	0	1
	Medio	0	0	0 0006	0	0	1
		0	0	0.0000	0	0	0.001
	Acquisizione 2	0	0	0.7303	0 0034	0	1
10	Acquisizione 3	0	0	0 1077	0.0004	0	0 9998
10	Acquisizione 4	0	0	0.0689	0 0005	0 015	0.039
	Medio	0	0	0.2789	0	0	0.9969
	Acquisizione1	0	0	0.2745	0	0	0.9974
	Acquisizione2	0	0.0001	0.8226	0	0	0.9554
	Acquisizione3	0	0	0.4093	Ō	0	0.998
11	Acquisizione4	0	0	0.9895	0	0	0.9898
	Acquisizione5	0	0	0.1606	0.0001	0	0.9906
	Acquisizione6	0	0	0.7674	0	0	0.9939
	Medio	0	0	0.7514	0	0	0.9952
	Acquisizione1	0	0.0001	0.998	0.001	0	0.0038
12	Acquisizione2	0	0.0106	0.0004	0.1604	0	0.1393
	Acquisizione3	0	0.0004	0.0004	0.4881	0	0.0843
	Medio	0	0.0033	0.002	0.1297	0	0.4806
	Acquisizione1	0	0.001	0.9984	0.0001	0	0.007
	Acquisizione2	0	0.0013	0	0	0	1
	Acquisizione3	0.0001	0.0424	0.0012	0	0	0.9704
	Acquisizione4	0	0	0.0026	0	0	1
							0 007E
13	Medio	0	0.0038	0.0003	0	0	0.9975
13	Medio Acquisizione1	0	0.0038	0.0003	0 0.001	0 0.0057	0.9975
13	Medio Acquisizione1 Acquisizione2	0 0 0	0.0038 0 0.0001	0.0003 0 0	0 0.001 0.0015	0 0.0057 0	0.9975 0.9944 0.3426
13	Medio Acquisizione1 Acquisizione2 Acquisizione3	0 0 0 0	0.0038 0 0.0001 0.0005	0.0003 0 0 0.2978	0 0.001 0.0015 0	0 0.0057 0 0	0.3426 0.2364
13	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4	0 0 0 0	0.0038 0 0.0001 0.0005 0.9929	0.0003 0 0.2978 0	0 0.001 0.0015 0 0	0 0.0057 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273
13	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio	0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053	0.0003 0 0.2978 0 0	0 0.001 0.0015 0 0 0.0002	0 0.0057 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708
13	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1	0 0 0 0 0 0.9981	0.0038 0 0.0001 0.0005 0.9929 0.0053 0	0.0003 0 0.2978 0 0 0	0 0.001 0.0015 0 0 0.0002 0.0016	0 0.0057 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708
13	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2	0 0 0 0 0 0 0 0.9981 0.959	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0 0.0001	0.0003 0 0.2978 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0016 0.0024	0 0.0057 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0
13	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4	0 0 0 0 0 0.9981 0.959 0.0004	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001	0.0003 0 0.2978 0 0 0 0 0 0.0014	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604	0 0.0057 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186
13	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione5	0 0 0 0 0 0.9981 0.959 0.0004 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0.0401	0.0003 0 0.2978 0 0 0 0 0.0014 0.0001	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604	0 0.0057 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0
13	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione5 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0.0401 0.0401	0.0003 0 0.2978 0 0 0 0 0.0014 0.0001 0.0001	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001
13	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0.0401 0.0401 0 0	0.0003 0 0.2978 0 0 0 0 0 0.0014 0.0001 0.0001 0.0001	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1
13	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0 0.0008	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997
13	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione5 Medio Acquisizione1 Acquisizione2 Acquisizione3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0 0.0401 0 0 0 0.0005 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0 0.0008 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683
13 14 15	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0.0401 0 0 0.0005 0 0 0.0005 0 0 0 0.0005 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0.0008 0 0 0.0008	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049
13 14 15	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0.0401 0 0 0.0005 0 0.2076 0.0004	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.0046 0.0025	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998
13	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione5 Medio Acquisizione1 Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0.0401 0 0 0.0005 0 0.2076 0.0004 0.0004 0.0001	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.0046 0.0025 0.0008	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1
13 14 15 16	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione3 Acquisizione3 Acquisizione4 Acquisizione1 Acquisizione3 Acquisizione3 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione1 Acquisizione2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0.0005 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0.0001 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0002 0.0024 0.9604 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.0046 0.0025 0.0008 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1
13 14 15 16	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0005 0 0.0005 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0.0008 0 0.0046 0.0025 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998
13 14 15 16	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione2 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione3 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0.0005 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0002 0.0024 0.896 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.0046 0.0025 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1
13 14 15 16	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione5 Medio Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione3 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0.0401 0 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0.0008 0 0.0046 0.0025 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 0.9998 1 0.99962
13 14 15 16	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione1 Acquisizione3 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0.0401 0 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0002 0.0024 0.896 0.9604 0.9604 0.9604 0.9604 0.9604 0.9604 0.9604 0.0008 0 0.0008 0 0.00046 0.0025 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 0.9998 1 0.9998 1 0.9998 1 0.99962 0.82
13 14 15 16 17	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione3 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0.0401 0 0 0.0405 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.9604 0.9604 0.9604 0.9604 0.9604 0.0008 0 0.0008 0 0.00046 0.0025 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 0.9998 1 0.9998 1 0.9998 1 0.99962 0.82 0.9913
13 14 15 16 17	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione1 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Acquisizione4 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0.0401 0 0.0401 0 0.0401 0 0.0005 0 0.2076 0.0004 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.9604 0.9604 0.9604 0.9008 0 0.0008 0 0.0008 0 0.00046 0.0025 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 1 0.9998 1 0.9962 0.82 0.9913 0.9985
13 14 15 16 17	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione3 Medio Acquisizione4 Medio Acquisizione3 Acquisizione4 Acquisizione3 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4 Acquisizione4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0.0401 0 0.0401 0 0.0401 0 0.0005 0 0.2076 0.0004 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.9604 0.9604 0.9604 0.9604 0.9604 0.0008 0 0.0008 0 0.00046 0.0025 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 1 0.9998 1 0.9962 0.82 0.9913 0.9985 0.946
13 14 15 16 17	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione2 Acquisizione3 Medio Acquisizione2 Acquisizione3 Medio Acquisizione3 Acquisizione4 Medio Acquisizione4 Medio Acquisizione4 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0401 0 0.0401 0 0 0.0401 0 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0014 0.0001 0.0001 0.0003 0.9909 0.0007 0.0002 0.00019 0 0.1756 0.0027 0.8328 0.999 0.9762 0.0033 0.9965 0.0038	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.9604 0.9604 0.7052 0 0 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 0.9998 1 0.9962 0.82 0.9913 0.9985 0.946 0.6015
13 14 15 16 17	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione4 Medio <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.00046 0.0025 0.0008 0 0 0 0 0 0.0001 0 0 0.0001 0 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 0.9998 1 0.9962 0.82 0.9913 0.9985 0.946 0.6015 0.9833</th>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.00046 0.0025 0.0008 0 0 0 0 0 0.0001 0 0 0.0001 0 0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 0.9998 1 0.9962 0.82 0.9913 0.9985 0.946 0.6015 0.9833
13 14 15 16 17 18	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione1 Acquisizione3 Acquisizione4 Acquisizione3 Acquisizione4 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione2 Acquisizione3 Acquisizione4 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0 0.0001 0 0.0401 0 0 0.0401 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.9604 0.7052 0 0 0.0008 0 0 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 0.9998 1 0.9962 0.82 0.9913 0.9985 0.946 0.6015 0.9833 0.0289
13 14 15 16 17 18	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione1 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione3 Acquisizione4 Medio Acquisizione4 Medio Acquisizione4 Medio Acquisizione4 Medio Acquisizione2 Acquisizione3 Acquisizione4 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0.0005 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.9604 0.7052 0 0 0.0008 0 0 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.99683 0.9049 0.9998 1 1 0.9998 1 0.9962 0.82 0.9913 0.9985 0.946 0.6015 0.9833 0.0289 0.0009
13 14 15 16 17 18	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione1 Acquisizione2 Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione5 Medio Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione4 Medio Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0.0005 0 0 0.0005 0 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.00046 0.0025 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 0.9962 0.82 0.9913 0.9985 0.9946 0.6015 0.9833 0.0289 0.0009 0.4576
13 14 15 16 17 18	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione1 Acquisizione2 Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0.0401 0 0 0.0401 0 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.0008 0 0 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 0.9998 1 0.9962 0.82 0.9913 0.9985 0.9946 0.6015 0.9833 0.0289 0.0009 0.4576 0
13 14 15 16 17 18	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione4 Medio Acquisizione4 Acquisi	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0.0401 0 0.0401 0 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0014 0.0001 0.0001 0.0001 0.0002 0.0019 0 0.1756 0.0027 0.8328 0.999 0.9762 0.0033 0.9965 0.0038 0.0066 0.0012 0.0001 0.0026 0.9996 0.9995	0 0.001 0.0015 0 0.0002 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.0008 0 0 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 0.9998 1 0.9962 0.82 0.9913 0.9985 0.9946 0.6015 0.9833 0.0289 0.0009 0.4576 0 0
13 14 15 16 17 18 19	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione3 Acquisizione1 Acquisizione1 Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione4 Medio Acquisizione2 Acquisizione4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0.0005 0 0.0005 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0014 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0001 0.0002 0.0019 0 0.1756 0.0027 0.8328 0.999 0.9762 0.0033 0.9965 0.0038 0.0012 0.0026 0.9996 0.9995 1	0 0.001 0.0015 0 0.0002 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0002 0.0008 0 0 0.0002 0.0008 0 0 0.0002 0.0008 0 0 0.0002 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 1 0.9998 1 0.9998 1 0.9998 1 0.9998 1 0.9998 1 0.9998 0.9913 0.9946 0.9913 0.9946 0.9946 0.9945 0.9946 0.9833 0.0289 0.0009 0.4576 0 0 0 0 0 0 0 0 0 0 0 0 0
13 14 15 16 17 18 19	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0.0005 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0014 0.0001 0.0001 0.0001 0.0001 0.0002 0.0007 0.0002 0.0019 0 0.1756 0.0027 0.8328 0.999 0.9762 0.0033 0.9965 0.0038 0.0066 0.0996 0.9995 1 1 1	0 0.001 0.0015 0 0.0002 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0 0.0008 0 0 0.0008 0 0 0.0002 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 1 0.9998 1 0.9962 0.82 0.9913 0.9962 0.82 0.9913 0.9985 0.946 0.6015 0.9833 0.0289 0.0089 0.0089 0.0289 0.0089 0.0289
13 14 15 16 17 18 19	Medio Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione2 Acquisizione3 Acquisizione4 Acquisizione3 Acquisizione4 Acquisizione5 Medio Acquisizione1 Acquisizione2 Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio Acquisizione3 Acquisizione4 Medio	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0038 0 0.0001 0.0005 0.9929 0.0053 0 0.0001 0 0.0001 0 0.0005 0 0.0005 0 0.2076 0.0004 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0003 0 0.2978 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.001 0.0015 0 0.0002 0.0002 0.0016 0.0024 0.896 0.9604 0.9604 0.7052 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0.0008 0 0 0.0008 0 0 0.0008 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0057 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9975 0.9944 0.3426 0.2364 0.0273 0.9708 0.0001 0 0.1186 0 0 0.0001 1 0.9997 0.9683 0.9049 0.9998 1 1 0.9998 1 1 0.9998 1 0.9962 0.82 0.9913 0.9962 0.82 0.9913 0.9985 0.946 0.6015 0.9833 0.0289 0.009 0.4576 0 0 0 0 0 0 0 0 0 0 0 0 0

	Acquisizione2	0	0	0.0022	0.0001	0	0.9987
20	Acquisizione3	0	0.0005	0.0005	0.0035	0	0.9965
	Acquisizione4	0	0.0004	0	0.0291	0	0.9964
	Medio	0	0.0001	0.0022	0.0001	0	0.9988
	Acquisizione1	0	0.9973	0.0001	0.113	0	0
	Acquisizione2	0	0.9475	0.0004	0.0306	0	0.0336
	Acquisizione3	0	0.38	0	0.0002	0	0.9996
24	Acquisizione4	0	0.2798	0	0.0104	0	0.999
21		0	0.9616	0 0022	0.0037	0	0.1156
	Acquisizione?	0	0 0071	0.9932	0	0	0.950
	Acquisizione3	0	0.0071	0.0009	0	0	0.3783
	Medio	0	0	0.9117	0	0	0.9777
	Acquisizione1	0	0	0	0	0	1
22	Acquisizione2	Õ	Õ	Ő	Õ	Ő	1
	Acquisizione3	0	0	0	0	0	1
	Medio	0	0	0	0	0	1
	Acquisizione1	0.0001	0.9833	0.0001	0.0001	0	0
	Acquisizione2	0	0.998	0	0.1571	0	0
23	Acquisizione3	0	0.8129	0	0.1023	0	0
	Acquisizione4	0	0.9996	0	0.1772	0	0
	Medio	0	0.9957	0	0.0436	0	0
	Acquisizione1	0	0.0023	0.0106	0.0004	0	0.9935
	Acquisizione2	0	0	0.0073	0.0726	0	0.9959
24	Acquisizione3	0	0	0.0063	0.0735	0	0.9979
	Acquisizione4	0	0.0068	0.018	0	0	0.9947
	IVIEdio	0	0.0001	0.0157	0.0018	0	0.9992
	Acquisizione1	0	0	0.0001	0	0	0.9999
25	Acquisizione3	0	0	0.0003	0.0008	0	0.9997
25		0 0006	0 0001	0.0017	0	0	0.9995
	Medio	0.0000	0.0001	0.002	0	0	0.9997
	Acquisizione1	0.0089	0.9805	0	0	0	0.0003
	Acquisizione2	0	0.9957	Ő	0.0108	0	0.0002
26	Acquisizione3	0.0241	0.9622	0	0	0	0
	Acquisizione4	0.0096	0.1669	0	0	0	0
	Medio	0.0006	0.9291	0	0	0	0.0001
	Acquisizione1	0	0.976	0	0.0003	0	0.9291
	Acquisizione2	0	0.9998	0	0.0011	0	0.0032
27	Acquisizione3	0	1	0	0.0093	0	0.0012
	Acquisizione4	0	0.9997	0.0006	0	0	0.0057
	Medio	0	1	0	0.0015	0	0.001
20	Acquisizione1	0 7612	0 0102	0.0007	0	0	1
20	Acquisizione2	0.7013	0.0192	0 0005	0.0002	0	0 0175
	Medio	0 0001	0.0015	0.0003	0.0121	0	0.9907
	Woald	0.0001	0.0010	0.0011	•	0	
	Acquisizione1	0	0 0044	0.0001	0 2995	0	0.0009
	Acquisizione1 Acquisizione2	0 0.0001	0.0044 0	0.0001 0.0444	0.2995 0.8462	0 0	0.0009
29	Acquisizione1 Acquisizione2 Acquisizione3	0 0.0001 0.0001	0.0044 0 0.0001	0.0001 0.0444 0.9998	0.2995 0.8462 0.0056	0 0 0	0.0009 0.0021 0.0002
29	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4	0 0.0001 0.0001 0	0.0044 0 0.0001 0	0.0001 0.0444 0.9998 0.0002	0.2995 0.8462 0.0056 0.9242	0 0 0 0	0.0009 0.0021 0.0002 0.0016
29	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio	0 0.0001 0.0001 0 0	0.0044 0 0.0001 0 0.0002	0.0001 0.0444 0.9998 0.0002 0.0003	0.2995 0.8462 0.0056 0.9242 0.8727	0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015
29	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1	0 0.0001 0.0001 0 0 0	0.0044 0 0.0001 0 0.0002 0.0025	0.0001 0.0444 0.9998 0.0002 0.0003 0.999	0.2995 0.8462 0.0056 0.9242 0.8727 0	0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131
29 30	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2	0 0.0001 0.0001 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0025 0.0001	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1	0.2995 0.8462 0.0056 0.9242 0.8727 0 0	0 0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572
29 30	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3	0 0.0001 0.0001 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0025 0.0001 0.0001	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0	0 0 0 0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858
29 30	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio	0 0.0001 0.0001 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0025 0.0001 0.0001 0.0001 0.0002	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0		0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971
29 30	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione3 Medio Acquisizione1	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0025 0.0001 0.0001 0.0002 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1
29 30 31	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione2	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0025 0.0001 0.0001 0.0002 0 0.0214 0	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0 0.0002	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0		0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588
29 30 31	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0025 0.0001 0.0001 0.0002 0 0.00214 0 0	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0		0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1
29 30 31	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione1	0 0.0001 0.0001 0 0 0 0 0 0 0 0.0004 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0002 0.0001 0.0001 0.0002 0 0 0.0214 0 0 0 0.0038	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.001	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9958
29 30 31 32	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione2 Acquisizione3 Medio Acquisizione3 Medio Acquisizione1 Acquisizione2	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0.0004 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0025 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0038 0.805	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0002 0.001 0.0001	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9588 1 1 0.9952 0
29 30 31 32	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione3	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0002 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0038 0.805 0.337	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0002 0.0001 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9958 1 0 0
29 30 31 32	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Medio	0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0002 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0038 0.805 0.337 0.9738	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9958 1 0 0 0 0 0.0011
29 30 31 32	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3	0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0001 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0038 0.805 0.337 0.9738 0.9978	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9958 1 1 0.9952 0 0 0 0.0011 0.0023
29 30 31 32 33	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione3 Medio Acquisizione1 Acquisizione1 Acquisizione1	0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0025 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0038 0.805 0.337 0.9738 0.9978 1	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9952 0 0 0.0011 0.0023 0.0001
29 30 31 32 33	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione3 Medio Acquisizione1 Acquisizione1 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione3	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0025 0.0001 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0214 0 0 0.0038 0.805 0.337 0.9738 0.9978 1 0.9996	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9952 0 0 0.0011 0.0023 0.0001 0.0013
29 30 31 32 33	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione2 Acquisizione1 Acquisizione3 Medio	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0025 0.0001 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0214 0 0 0.0038 0.805 0.337 0.9738 1 0.9996 0.9996 0.9996	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0009 0.0021 0.002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9588 1 1 0.9952 0 0 0.0011 0.0023 0.0001 0.0013 0.0008
29 30 31 32 33	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione2 Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione1 Acquisizione2 Acquisizione1 Acquisizione3 Medio	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0025 0.0001 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0214 0 0 0.0038 0.805 0.337 0.9738 1 0.9996 0.9996 0	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9588 1 1 0.9952 0 0 0.0011 0.0023 0.0001 0.0013 0.0008 1
29 30 31 32 33 34	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione2 Acquisizione2 Acquisizione2 Acquisizione2 Acquisizione2 Acquisizione2 Acquisizione2 Acquisizione2 Acquisizione2	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0025 0.0001 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0238 0.805 0.337 0.9738 1 0.9978 1 0.9996 0.9996 0 0 0	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9952 0 0 0 0.0011 0.0023 0.0001 0.0013 0.0008 1 1
29 30 31 32 33 34	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione1 Acquisizione1 Acquisizione3 Medio Acquisizione2 Acquisizione3 Medio Acquisizione2 Acquisizione2 Acquisizione2 Acquisizione2 Acquisizione3 Medio	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0025 0.0001 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0214 0 0 0.0038 0.805 0.337 0.9738 1 0.9978 1 0.9996 0.9996 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9952 0 0 0 0.0011 0.0023 0.0013 0.0008 1 1 0.9926
29 30 31 32 33 34	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione3 Medio Acquisizione2 Acquisizione3 Medio Acquisizione2 Acquisizione2 Acquisizione2 Acquisizione3 Medio	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0025 0.0001 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0214 0 0 0.0038 0.805 0.337 0.9738 0.9978 1 0.9996 0.9996 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0009 0.0021 0.002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9952 0 0 0 0.0011 0.0023 0.0013 0.0001 0.0013 0.0008 1 1 0.9926 1 0.9926 1 0.9926 1 0.9926 1 0.9926 1 0.9926 1 0.9926 0 0.9926 0 0.9926 0 0.9926 0 0.9926 0 0.9926 0 0.9926 0 0.0011 0.0023 0.0011 0.0023 0.0011 0.0023 0.0011 0.0023 0.0011 0.0023 0.0011 0.0023 0.0011 0.0023 0.0011 0.0023 0.0011 0.0023 0.0011 0.0023 0.0013 0.00023 0.00013 0.00023 0.00013 0.00013 0.00013 0.00023 0.00013 0.00023 0.00013 0.00025 0.00013 0.00025 0.00013 0.00025 0.00013 0.00025 0.00013 0.00025 0.00013 0.00025 0.00013 0.00025 0.00013 0.00025 0.00025 0.00012 0.00025 0.00013 0.00025 0.00025 0.00012 0.00025 0.00013 0.00025 0.00025 0.00013 0.00025 0.00025 0.00025 0.00012 0.00025 0.00025 0.00012 0.00025 0.00025 0.00012 0.00025 0.00012 0.00025 0.00012 0.00025 0.00012 0.00025 0.00012 0.00025 0.00012 0.00025 0.00025 0.0005
29 30 31 32 33 34	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione2 Acquisizione3 Medio Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0025 0.0002 0 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0214 0 0 0.0038 0.805 0.337 0.9738 0.9978 1 0.9996 0.9996 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9952 0 0 0 0.0011 0.0023 0.0001 0.0013 0.0003 1 1 0.9926 1 0.9995
29 30 31 32 33 34 35	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione2 Acquisizione3 Medio	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0025 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0214 0 0 0.0238 0.805 0.337 0.9738 0.9978 1 0.9996 0.9996 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9952 0 0 0 0.0011 0.0023 0.0001 0.0013 0.0008 1 1 0.9926 1 0.9995 1 0.9955 0 0 0 0 0 0 0 0 0 0 0 0 0
29 30 31 32 33 34 35	Acquisizione1 Acquisizione2 Acquisizione3 Acquisizione4 Medio Acquisizione1 Acquisizione2 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione1 Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio Acquisizione3 Medio	0 0.0001 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0044 0 0.0001 0 0.0002 0.0002 0.0001 0.0001 0.0001 0.0002 0 0.0214 0 0 0.0214 0 0 0.0038 0.805 0.337 0.9738 0.9978 1 0.9996 0.9996 0.9996 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0001 0.0444 0.9998 0.0002 0.0003 0.999 1 0.1426 0.9963 0 0.0002 0.0002 0.0002 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2995 0.8462 0.0056 0.9242 0.8727 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0009 0.0021 0.0002 0.0016 0.015 0.3131 0.5572 0.9858 0.8971 1 0.9588 1 1 0.9952 0 0 0 0.0011 0.0023 0.0001 0.0013 0.0008 1 1 0.9926 1 0.9965 0.9965 0.0072

1	1 A · · · · A	•	0 0000	0 0000	0 40 44	•	0.0544
	Acquisizione1	U	0.0026	0.0038	0.1044	U	0.8511
36	Acquisizione2	0	0	0.7839	0	0	0.9973
	Acquisizione3	0	0	0.2291	0	0	0.9995
	Medio	0	0	0.975	0	0	0.9815
	Acquisizione1	0	0.034	0.0015	0.0078	0	0.9992
37	Acquisizione2	0	0.0005	0.0092	0.0015	0	0.9991
	Acquisizione3	0	0.0016	0.0032	0.026	0	0.9978
	Medio	0	0.0038	0.0032	0.011	0	0.9977
	Acquisizione1	0.9274	0.0042	0	0.0001	0	0
38	Acquisizione2	0.8122	0	0.0005	0.5639	0	0.0013
	Medio	0.9759	0	0.0001	0.0099	0	0
	Acquisizione1	0.7409	0	1	0.678	0	0
39	Acquisizione2	0.9538	0	1	0.9122	0	0
	Acquisizione3	0.955	0	1	0.9163	0	0
	Medio	0.9446	0	1	0.9035	0	0
	Acquisizione1	0.0002	0.7618	0.0004	0	0	0.1961
40	Acquisizione2	0	0	0	0	0	1
	Acquisizione3	0	0	0	0	0	1
	Medio	0	0.0004	0.0001	0	0	0.9999
	Acquisizione1	0.9983	0	0.0012	0.4647	0	0.0001
41	Acquisizione2	0.3687	0	0.9993	0.9177	0	0
	Acquisizione3	0.0036	0	0.9997	0.0928	0	0.0027
	Medio	0.4814	0	0.8599	0.8397	0	0
	Acquisizione1	0	0.0002	0.0005	0	0	1
42	Acquisizione2	0	0.9934	0.0028	0	0	0.0773
	Acquisizione3	0	0.9226	0.0022	0	0	0.4561
	Medio	0	0.668	0.003	0	0	0.8114
	Acquisizione1	0.2642	0	0.0001	0.2705	0	0
43	Acquisizione2	0.0425	0	0.0001	0.9698	0	0
	Acquisizione3	0	0.0004	0.0006	0.5853	0	0.0034
	Medio	0.0018	0	0.0002	0.8922	0	0
	Acquisizione1	0	0.9999	0	0.0001	0	0.0015
44	Acquisizione2	0	0.5857	0.0817	0	0	0.0046
	Acquisizione3	0	0.0015	0.2133	0	0	0.7284
	Medio	0	0.9911	0	0.0009	0	0.5402
	Acquisizione1	0.0002	0.7228	0.0004	0	0	0.0018
45	Acquisizione2	0	0.9761	0.0011	0	0	0.048
	Acquisizione3	0	0.2973	0.0024	0	0	0.7332
	Acquisizione 4	0	0.5098	0.0031	0	0	0.6815
	Medio	0	0.8452	0.0015	0	0	0.1553

Tabella 5.	7: Classificazion	e sulla	base de	i coefficienti	del	modello	AR	stimato	per	ogni	acquisizione	per	i
pazienti con	n valvola St. Jude	•											

PAZIENTE	Nf	I1	I2	I3	Hg	Bk
1	0.0004	0	0.9952	0.0246	0	0.0312
2	0	0.0009	0.0005	0.0009	0	1
3	0	0.0011	0.0006	0	0	0.9886
4	0.0001	0.9989	0.0001	0	0	0.0007
5	0.0002	0.016	0.001	0	0	0.9856
6	0	0	0.3834	0.0003	0.0101	0.0015
7	0.9998	0.0011	0	0.0006	0	0
8	0.0074	0.0002	0.0031	0	0	0.6574
9	0	0	0.0006	0	0	1
10	0	0	0.2789	0	0	0.9969
11	0	0	0.7514	0	0	0.9952
12	0	0.0033	0.002	0.1297	0	0.4806
13 a	0	0.0038	0.0003	0	0	0.9975
13 b	0	0.0053	0	0.0002	0	0.9708
14	0.0008	0	0.0001	0.7052	0	0.0001
15	0	0.0004	0.0002	0.0025	0	0.9998
16	0	0	0.0027	0	0	1
17	0	0	0.9965	0	0	0.946
18	0.0146	0	0.0026	0	0	0.4576
19	0.8873	0	0.9998	0.993	0	0
20	0	0.0001	0.0022	0.0001	0	0.9988
21 a	0	0.9816	0	0.0037	0	0.1158
21 b	0	0	0.9117	0	0	0.9777
22	0	0	0	0	0	1
23	0	0.9957	0	0.0436	0	0
24	0	0.0001	0.0157	0.0018	0	0.9992
25	0	0	0.0018	0	0	0.9997
26	0.0006	0.9291	0	0	0	0.0001
27	0	1	0	0.0015	0	0.001
28	0.0001	0.0015	0.0071	0	0	0.9907
29	0	0.0002	0.0003	0.8727	0	0.015
30	0	0.0002	0.9963	0	0	0.8971
31	0	0	0.001	0	0	1
32	0.0036	0.9738	0	0	0	0.0011
33	0	0.9996	0	0	0	0.0008
34	0	0	0.0001	0	0.0001	1
35	0	0	0.1013	0	0.0001	0.9978
36	0	0	0.975	0	0	0.9815
37	0	0.0038	0.0032	0.011	0	0.9977
38	0.9759	0	0.0001	0.0099	0	0
39	0.9446	0	1	0.9035	0	0
40	0	0.0004	0.0001	0	0	0.9999
41	0.4814	0	0.8599	0.8397	0	0
42	0	0.668	0.003	0	0	0.8114
43	0.0018	0	0.0002	0.8922	0	0
44	0	0.9911	0	0.0009	0	0.5402
45	0	0.8452	0.0015	0	0	0.1553

Tabella 5.8: Classificazione sulla base della media dei coefficienti dei modelli AR stimati per ogni acquisizione di ogni paziente con valvola St. Jude.

	PAZIENT	I ASSEGNATI
CLASSI	NUMERO/47	PERCENTUALE
Nf	2	4,25%
I1	9	19,15%
I2	1	2,13%
I3	3	6,38%
Hg	0	0
Bk	22	46,81%
ТОТ	37	78,72%

Tabella 5.9: Schema riassuntivo sulla classificazione in base alle medie dei coefficienti dei modelli AR per pazienti portatori di valvola Sorin.

Dalle tabelle riportate si può notare che solo 4 pazienti (21a, 26, 27, 44) vengono classificati allo stesso modo con entrambi i metodi. Questo vuol dire che la classificazione dei dati in vivo dipende molto dal tipo di algoritmo utilizzato per classificare. Ciò che balza subito agli occhi nella Tabella 5.9 è il notevole numero di casi classificati come patologici. Questo non è un dato rassicurante ed è indice di una classificazione non affidabile, poiché la condizione patologica è l'unica diagnosticata con certezza anche da eco-doppler e non si hanno a disposizione note mediche a conferma della gravità del quadro clinico per questi pazienti; inoltre, ovviamente, non è possibile che quasi la metà dei pazienti sia nella condizione di dover subire un intervento di sostituzione valvolare! Pertanto da una analisi veloce delle tabelle si potrebbe dedurre che i metodi di classificazione portano a risultati diversi e, a rigor di logica, sono più affidabili i risultati ottenuti con il metodo di classificazione basato sugli spettri di potenza.

Nella Tabella 5.10 si riportano i risultati per i pazienti a cui è stata impiantata una protesi Sorin. I risultati danno una prova dell'inaffidabilità dei risultati della classificazione, poiché tutti e tre i pazienti vengono inseriti in una classe di rischio molto severa, ovvero quella Hg. Anche questo risultato deve, quindi, suscitare qualche dubbio sull'aderenza alla realtà dei risultati ottenuti.

PAZIENTI		Nf	I1	I2	I3	Hg	Bk
	Acquisizione1	0.0013	0.0001	0	0.0064	0.9998	0.0458
46	Acquisizione2	0.0011	0.0001	0	0.0064	0.9997	0.067
	Acquisizione3	0.0029	0.0001	0	0.0007	0.9899	0.4566
	Medio	0.0016	0.0001	0	0.0031	0.9987	0.1795
	Acquisizione1	0	0.8461	0.2518	0	0.9995	0.0008
47	Acquisizione2	0.0004	0.033	0.0006	0	0.9992	0.004
	Acquisizione3	0	0.7806	0.3377	0	0.9993	0.0008
	Medio	0	0.5064	0.0652	0	0.9995	0.001
	Acquisizione1	0.0008	0.0004	0	0.0005	1	0.0018
48	Acquisizione2	0.0007	0.0028	0	0	0.9999	0.0181
	Acquisizione3	0.0297	0.0008	0	0.1376	0.9984	0.0006
	Medio	0.0012	0.0006	0	0.0002	1	0.0011

Tabella 5.10: Classificazione sulla base dei coefficienti dei modelli AR stimati per ogni acquisizione per ogni paziente con valvola Sorin.

Infine si riportano i risultati relativi al paziente 49 con valvola Carbomedics.

PAZIENTI		Nf	I1	I2	I3	Hg	Bk
	Acquisizione 1	0.0231	0.6692	0.0259	0.0584	0.0003	0.0004
	Acquisizione 2	0.0064	0.7151	0.0013	0.264	0.0293	0
49	Acquisizione 3	0.0057	0.149	0.0053	0.0997	0.2109	0.0001
	Acquisizione 4	0.0149	0.9198	0.0014	0.1887	0.055	0
	Medio	0.0098	0.7052	0.003	0.143	0.0329	0

 Tabella 5.11: Classificazione sulla base dei coefficienti del modello AR stimato per ogni acquisizione per il paziente con valvola Carbomedics

Anche il risultato ottenuto per il paziente con valvola Carbomedics conferma quanto detto, poiché il paziente 49 è l'unico su cui si sa certamente che sulla valvola è presente un trombo che ne compromette il perfetto funzionamento e che quindi deve essere sostituita: attribuire una classe indice di una severità lieve come quella II è certamente un risultato errato.

5.3 IL PROBLEMA DELLA VALIDAZIONE DEI RISULTATI

Il problema principale che si pone nell'analisi dei dati in vivo è il problema della validazione. In dettaglio, attraverso l'analisi descritta si sono attribuite 6 diverse classi di rischio; per validare i risultati ci sarebbe bisogno di conferma da parte clinica. Ebbene, attualmente il "gold standard" nella diagnosi di formazioni trombotiche sulle valvole cardiache è l'ecodoppler, ma tale strumento è in grado di diagnosticare solo una condizione già patologica e non permette di distinguere le condizioni intermedie che in questo lavoro sono state denominate I1, I2 e probabilmente non permette di distinguere neanche la I3. Si è provato quindi a trovare una correlazione fra i risultati ottenuti dalla classificazione basata sugli spettri di potenza e un altro parametro clinico che fornisce solo una indicazione indiretta della funzionalità della valvola, l'INR.

Ogni paziente a cui è stata impiantata una protesi valvolare meccanica deve sottoporsi a terapia anticoagulante a vita (TAO). Il Warfarin (Coumadin 5 mg) e l'Acenocumarolo (Sintrom 1 o 4 mg) sono farmaci che ostacolano la coagulazione del sangue agendo contro la vitamina K. Quest'ultima è necessaria alla formazione (che avviene nel fegato) di importanti fattori della coagulazione.

Attualmente la metodologia diagnostica standard per il monitoraggio del paziente a cui è stata impiantata una valvola cardiaca meccanica prevede prelievi del sangue ogni una/due settimane circa per calibrare la terapia anticoagulante: l'esame di controllo è il "tempo di protrombina": si misura il tempo necessario alla formazione del coagulo quando il sangue è messo a contatto con apposite sostanze; la risposta viene di regola espressa come INR. In questo modo si evita, da una parte, che il sangue diventi troppo viscoso favorendo coaguli e di conseguenza la formazione di trombi, e dall'altro si evita il rischio opposto di emorragie.

Il problema dell'utilizzo dell'INR è che si tratta di una misura indiretta della predisposizione alla coagulazione (è solo un indice di come la terapia anticoagulante sta funzionando); inoltre subisce facilmente variazioni considerevoli in dipendenza da altri fattori che spesso dipendono dal paziente. Ad esempio è importante assumere il farmaco a stomaco vuoto, lontano dai pasti; in questo modo l'assorbimento è più regolare e ci sono meno fluttuazioni nell'effetto terapeutico. Altra cosa importante è fare attenzione all'assunzione di nuovi farmaci o sospensione di farmaci già utilizzati: questo può cambiare l'effetto dell'anticoagulante. In aggiunta è importante l'alimentazione: i cibi ricchi di vitamina K ostacolano l'effetto dell'anticoagulante; questi cibi sono: l'insalata, gli spinaci, il radicchio, il pomodoro, i finocchi. Teoricamente questi alimenti vanno evitati pur essendo possibile consumarne una quantità modesta tutti i giorni, senza particolari consegenze. Il finocchio cotto, i peperoni, le melanzane, i funghi hanno invece un effetto modesto e possono essere consumati; anche il pomodoro cotto perde buona parte della vitamina K e può essere consumato. Anche il fegato è un alimento ricco di vitamina K: meglio mangiare altri tipi di carne; devono essere evitati anche i cereali integrali. È comprensibile quindi che questo parametro vari facilmente a seconda della dieta del paziente e che quindi un tentativo di validare i risultati ottenuti nella classificazione attraverso di esso potrebbe non dare gli esiti sperati.

Per i pazienti con ID compreso fra 30 e 48, escluso il 45, sono stati analizzati i valori dell'INR registrati nell'anno precedente al prelievo. Per ogni paziente sono stati acquisiti i valori dell'INR, la data di ogni prelievo, la dose di Coumadin o Sintrom (il Sintrom è assunto solo dal paziente 41, e differisce dal Coumadin perché gli effetti del Coumadin si vedono dopo 48 ore, mentre quelli del Sintrom dopo 24 ore) prescritta per le settimane successive ad ogni prelievo e il range consentito. Per quanto concerne il range consentito, esso non è uguale per tutti i pazienti: infatti fra i 18 pazienti analizzati 3 pazienti hanno range pari a [2,0-3,0] e sono quelli con ID pari a 33,41 e 48.

Ci si aspetta che i pazienti classificati come *I3*, *Hg*, e *Bk*, appartenendo a classi di rischio più severe, abbiano l'INR tendenzialmente più basso mentre i pazienti a cui è stata attribuita la classe normofunzionante e quella *I1* presentino valori di INR tendenzialmente più alti. In Tabella 5.12 si riporta l'attribuzione di questi pazienti alle diverse classi.

ID Pazient	e		CLASSIFI	CLASSIFICAZIONE SPETTRI MEDI					
	Nf	11	12	13	Hg	Bk	nessuna		
30				~					
31		~							
32				~					
33							~		
34		~							
35				~					
36							~		
37				~					
38				~					
39							~		
40	>								
41		~							
42				~					
43			~						
44		~							
46	>								
47	>								
48							~		

Tabella 5.12: Classificazione degli spettri medi.

Nella Tabella 5.13 sono riportati il numero di valori dell'INR al di fuori del range. Per quanto detto prima guardando la tabella ci si aspetta che i pazienti 30, 32, 33, 35, 36, 41, 46 siano attribuiti alla classe *I3*, mentre il 34,42 siano classificati come normofunzionanti o *I1*.

	NUMERO	PRELIEVI		PERCENTUALE	PRELIEVI
ID PAZIENTE	тот	OLTRE RANGE	SOTTO RANGE	OLTRE RANGE	SOTTO RANGE
30	17	3	9	17,65	52,94
31	15	3	3	20	20
32	13	1	4	7,69	30,77
33	15	0	8	0	46,67
34	11	3	1	27,27	9,09
35	14	2	5	14,29	35,71
36	13	0	3	0	23,07
37	11	2	3	18,18	27,27
38	13	2	2	15,38	15,38
39	12	2	3	16,67	25
40	17	5	3	29,41	17,65
41	17	4	8	23,53	47,06
42	13	4	0	30,77	0
43	17	3	5	17,65	29,41
44	17	2	6	11,76	35,29
46	17	1	7	5,88	41,17
47	14	2	3	14,29	21,43
48	14	3	2	21,43	14,29

Tabella 5.13: Numero di prelievi al di fuori del range di riferimento.

Confrontando le tabelle 5.12 e 5.13 effettivamente si può notare che i pazienti 30, 32, 35 sono realmente classificati come *I3*; i pazienti 33 e 36 non sono stati classificati mentre si riscontra un errore per i pazienti 41 e 46. Il 41 viene classificato come *I1*, mentre il paziente 46 viene classificato come normofunzionante ed è quindi in particolare contraddizione con le aspettative. Per quanto concerne i pazienti 34 e 42: il paziente 34 viene classificato, come ci si aspettava, quindi appartenente alla classe *I1* mentre per il 42 si riscontra l'errore opposto a quello del 41: viene cioè erroneamente classificato come *I3*. Per gli altri pazienti guardando solo la percentuale di valori fuori range non si riesce a stabilire una netta tendenza ad avere valori sopra o sotto l'intervallo consentito. Pertanto, in base alle aspettative e considerando solo quelli che erano stati classificati, se si dovesse validare la classificazione degli spettri medi, in base a quanto detto, si avrebbe una classificazione corretta di 4 pazienti su 7, cioè del 57%.

È stata calcolata la media pesata dei valori di INR, utilizzando come pesi la dose di anticoagulante in mg assunta dal paziente nel periodo precedente al prelievo. In particolare è stata utilizzata la seguente formula:

$$INR_efficace = \frac{\sum_{i=2}^{N} inr(i) \cdot terapia(i-1)}{\sum_{i=1}^{N-1} terapia(i)}$$

dove inr(i) è il valore misurato nell'i-esimo prelievo,terapia (i-1) è la dose di anticoagulante orale in mg assunta dal paziente nel periodo successivo al prelievo (i-1)esimo fino al giorno del prelievo i-esimo, N è il numero di prelievi effettuati nell'ultimo anno prima dell'acquisizione del segnale audio con il Myotis. Per rendere confrontabili i valori di INR dei pazienti con range diverso pari a 2,0-3,0 anziché 2,5-3,5 per i 3 pazienti con range diverso il valore di INR_efficace ottenuto con la formula sopra è stato diviso per 2 e moltiplicato per 2.5. In Figura 5.14 si riportano i valori ottenuti; sono stati utilizzati colori diversi a seconda della classe a cui erano stati assegnati gli spettri medi.

Figura 5.14: Valori medi dell'INR.

In Figura 5.14 si può notare che i valori dei pazienti 30, 32, 35, 37 che erano stati assegnati alla classe *I3* hanno valori di INR_efficace simili, pari a circa 2.8. In modo coerente con le aspettative per i pazienti attribuiti alla classe *I1* l'INR_efficace è maggiore di quello della classe *I3* e per il paziente 40, attribuito alla classe normofunzionante è maggiore di quello della classe *I1*. Si potrebbe dividere il grafico in zone diverse di assegnazione; in particolare si potrebbero distinguere diversi intervalli di INR_efficace per le diverse classi di assegnazione come illustrato in Figura 5.15. In dettaglio si potrebbe scegliere di assegnare alla classe *Nf* i valori di INR_efficace maggiori di 3.19,alla classe *I1* quelli compresi fra 2.95 e 3.19; alla classe *I2* i valori compresi fra 2.82 e 2.95, alla classe *I3* i valori compresi fra 2.4 e 2.82 e, infine, alle classi *Hg* e *Bk* i valori al di sotto di 2.5,

Figura 5.15: Classi di assegnazione.

In base a quanto riportato in Figura 5.15 si potrebbe desumere che i pazienti 38, 41, 44, 46, 47 sono stati classificati in maniera sbagliata. L'assegnazione erronea dei pazienti 46 e 47 è possibile in quanto avere una valvola perfettamente normofunzionante è altamente improbabile. Tra gli spettri che non erano stati assegnati ad alcuna classe, si potrebbero assegnare alla classe *I3* i pazienti 33 e 36, alla classe *I1* il paziente 39.

Come già detto il tentativo di correlare i dati con questo parametro clinico potrebbe essere fuorviante a causa delle oscillazioni, dovute ad esempio all'alimentazione, che tale parametro potrebbe subire.

La validazione più attendibile dei risultati si avrebbe con l'esito dell'ecocardiografia transesofagea; tuttavia è facilmente comprensibile che questo tipo di validazione non sia facilmente effettuabile vista l'invasività dell'esame.

CAPITOLO 6

CONCLUSIONI

La necessità di sviluppare un sistema per il controllo della funzionalità delle protesi valvolari cardiache meccaniche, che consenta un monitoraggio più efficace, rapido, non invasivo, eventualmente gestibile dal paziente a domicilio, è il motivo che ha portato ad analizzare il "suono" prodotto dalle protesi medesime per trarne informazioni utili ad identificare eventuali malfunzionamenti e, in particolare, a diagnosticare precocemente le formazioni trombotiche. . In questo lavoro si è cercato di mettere a punto delle reti neurali per la classificazione degli

spettri di potenza del segnale fonocardiografico di 5 diversi modelli di valvole meccaniche. Inoltre si è cercata una via alternativa alla classificazione sulla base degli spettri di potenza stimando un modello auto-regressivo del segnale fonocardiografico e utilizzando i coefficienti di tale modello per addestrare le reti neurali.

Per quanto concerne la classificazione dei dati in vitro, si sono ottenuti ottimi risultati con entrambi i tipi di rete neurale in quanto l'efficienza delle reti per tutte le valvole in entrambi i metodi ha sempre superato il 95%. Per quanto riguarda, invece, la classificazione dei dati in vivo si sono ottenuti risultati migliori con le reti neurali basate sugli spettri di potenza.

Benché entrambi i metodi di classificazione riescano ad assegnare ad una classe circa l'80% dei pazienti (80.85% dalla rete basata sugli spettri, 78.72% da quella basata sui modelli AR), il primo tipo di reti è preferibile al secondo poiché quest'ultimo assegna classi di rischio poco rispondenti alla realtà. Il problema ancora aperto è la validazione dei risultati della classificazione dei dati in vivo, poiché per questo si rende necessaria la conferma da parte clinica.

Attualmente il "gold standard" per la diagnosi di formazioni trombotiche sulle valvole cardiache meccaniche è l'eco-doppler effettuato con cadenza annuale. Tale esame non permette però di distinguere condizioni trombotiche intermedie che, al contrario, il segnale fonocardiografico ha permesso di classificare. Per cercare di validare i risultati si è provato a correlarli con il valore dell'INR registrato nell'ultimo anno, ma questo valore non è un indice diretto della funzionalità valvolare. Si potrebbe, nel futuro, provare a correlare i risultati della classificazione con i valori di un altro prelievo ematico, il D-dimero, che è il prodotto di degradazione della fibrina. Un ulteriore sviluppo per il miglioramento della classificazione sia in vitro che in vivo potrebbe essere l'estensione della banda di frequenze analizzate.

In dettaglio, come strumento per acquisire il segnale fonocardiografico è stato utilizzato il Myotis 3C; tale strumento ha una bassa frequenza di campionamento, per cui si può ricostruire lo spettro solo fino a 22050 Hz; è stato però dimostrato in letteratura che gran parte dell'informazione del segnale fonocardiografico cade nell'ultrasuono (Figura 6.1) [26]; pertanto l'utilizzo di uno strumento che permetta di indagare frequenze fino ai 100 kHz potrebbe apportare notevoli miglioramenti all'indagine in corso.

Figura 6.1: Analisi in frequenza del suono di chiusura di una valvola cardiaca meccanica bileaflet correttamente funzionante

Se all'ampliamento della banda di frequenze analizzate si unisse anche un aumento della risoluzione spettrale probabilmente si otterrebbero risultati ancora migliori.

In realtà la risoluzione in frequenza non molto elevata, in questo lavoro, ha rappresentato un compresso fra due esigenze diverse: da un lato avere maggiore informazione sul contenuto in frequenza del segnale fonocardiografico, che richiederebbe quindi un alta risoluzione, e dall'altro lato avere uno stima *smooth* dello spettro in grado di favorire la *pattern recognition* che comporta invece una bassa risoluzione spettrale.

Sicuramente riuscire ad aumentare anche la risoluzione spettrale potrebbe portare dei miglioramenti. Ad esempio si potrebbe utilizzare l'algoritmo messo a punto per la selezione dei suoni di chiusura per selezionare il singolo suono e in seguito calcolarne lo spettro con alta risoluzione in frequenza per capire come esso cambi di battito in battito e, in quel caso, usare reti di dimensioni minori sfruttando i parametri ottenibili dalla maggiore informazione. Benché presenti i limiti sopra menzionati, è indiscutibile che l'analisi del segnale

fonocardiografico permetta di distinguere - con certezza in vitro e probabilmente anche in

vivo - condizioni che gli attuali strumenti diagnostici non riescono ad evidenziare. È utile evidenziare come la parallela analisi delle pressioni non abbia condotto a risultati soddisfacenti nella distinzione delle stesse condizioni di funzionalità valvolare, fatta eccezione per quella di leaflet completamente bloccato (Figura 6.2). Pertanto il parametro definito dai medici come *gradiente transvalvolare* non permette di riconoscere la presenza di eventuali formazioni trombotiche in via di sviluppo. Al contrario, il suono consente di identificare anche piccole formazioni, permettendo una diagnosi precoce della presenza di panno e/o trombo, quando ancora sia possibile intervenire con la sola terapia farmacologica.

Figura 6.2: Salto di pressione transvalvolare (media ±standard deviation) al variare delle condizioni simulate.

APPENDICE

OUTPUT DELLE RETI PER LA CLASSIFICAZIONE IN VITRO

CONDIZIO	NE		NETWORK C	UTPUT			
		Sor_Nf	Sor_I1	Sor_l2	Sor_I3	Sor_Hg	Sor_Bk
	SV50BR60	0.9923	0.0502	0	0.0004	0.0015	0
	Sv50BR70	0.9997	0.0004	0	0.0001	0.0007	0.0007
	SV50BR80	0.9999	0.0002	0.0001	0.0012	0.0002	0
	SV50BR90	0.9999	0.0012	0	0	0.0006	0.0001
sor_Nf	SV50BR100	0.9996	0.0006	0.0001	0.0001	0.0004	0.0003
	SV60BR60	0.9908	0.0063	0.0005	0.0005	0.0003	0
	SV60BR70	0.9986	0.0015	0	0.0005	0.0002	0.0002
	SV60BR80	0.9993	0.0003	0.0001	0.0001	0.0003	0.0013
	SV60BR90	0.9988	0.0004	0.0008	0.0002	0.0007	0.0011
	SV60BR100	0.9918	0.0009	0.0064	0.0012	0.0005	0
	SV50BR60	0.0001	0.9984	0.0006	0.0001	0.0007	0
	Sv50BR70	0.0001	0.9999	0	0	0.0009	0
	SV50BR80	0.0001	1	0	0	0.0013	0
	SV50BR90	0.0002	0.9999	0	0	0.0008	0
sor_l1	SV50BR100	0.0001	1	0	0	0.0009	0
	SV60BR60	0	0.9999	0.0002	0.0001	0.0005	0
	SV60BR70	0.0016	0.9978	0	0.0002	0.0004	0
	SV60BR80	0.0005	0.9986	0	0.0002	0.0003	0
	SV60BR90	0.0002	0.9999	0	0.0001	0.0006	0
	SV60BR100	0.0001	0.9997	0	0.0002	0.0004	0
	SV50BR60	0	0.0001	0.9985	0.0007	0.0002	0
	Sv50BR70	0.0003	0.0012	0.9989	0	0.002	0
	SV50BR80	0.0002	0	0.9999	0.0006	0.0002	0
	SV50BR90	0.0001	0	0.9998	0.0005	0.0001	0
sor_l2	SV50BR100	0.0003	0.0003	0.9986	0.0013	0.0001	0
	SV60BR60	0.0001	0	0.9999	0.0009	0.0001	0
	SV60BR70	0.0001	0.0002	0.9988	0.0009	0.0001	0
	SV60BR80	0.0001	0.0002	0.9997	0.0007	0.0001	0
	SV60BR90	0	0.0009	0.9992	0.0007	0.0001	0
	SV60BR100	0.0006	0.0001	0.9994	0.0011	0.0001	0
	SV50BR60	0.0007	0.0001	0.0006	0.9806	0	0.0023
	Sv50BR70	0.0077	0.0002	0.0002	0.8323	0.0001	0.0016
	SV50BR80	0	0.0007	0.0288	0.9921	0	0.0001
	SV50BR90	0	0	0.0001	0.9995	0.0001	0.0007
sor_l3	SV50BR100	0	0.0282	0.0002	0.965	0.0001	0
	SV60BR60	0	0.0008	0.0001	0.9994	0	0.0005
	SV60BR70	0	0.0002	0.0012	0.9993	0	0.0001
	SV60BR80	0	0	0.0007	0.9986	0.0002	0.0009
	SV60BR90	0	0.0002	0.0006	0.9997	0.0001	0.0001
	SV60BR100	0	0.0008	0.0042	0.9989	0.0001	0
	SV50BR60	0.0268	0.003	0.0001	0	0.9862	0.0001
	Sv50BR70	0.0003	0	0.0002	0	0.9992	0.0012
	SV50BR80	0.0002	0	0.0001	0	0.9995	0.0006
	SV50BR90	0.0002	0.0001	0.0001	0	0.9994	0.0012
sor_Hg	SV50BR100	0.0007	0	0.0001	0	0.9994	0.0004
	SV60BR60	0.0029	0.0001	0.0007	0	0.9989	0.0001
	SV60BR70	0.0006	0.0001	0.0001	0	0.9994	0.0005
	SV60BR80	0.0002	0	0.0001	0	0.9995	0.0014
	SV60BR90	0.0001	0	0	0	0.9996	0.0015
	SV60BR100	0.0001	0	0.0001	0	0.9996	0.0011
	SV50BR60	0.0003	0	0	0.0001	0.0009	0.9988
	Sv50BR70	0.0002	0	0.0001	0.0004	0.0003	0.9978
	SV50BR80	0.0004	0	0.0001	0.0001	0.0004	0.9987
	SV50BR90	0.0001	0	0.0001	0.0001	0.0004	0.9997
sor_Bk	SV50BR100	0.0001	0	0	0.0002	0.0004	0.9996
	SV60BR60	0	0	0.0001	0.0029	0.0001	0.9991
	SV60BR70	0	0	0.0001	0.0005	0.0002	0.9996
	SV60BR80	0	0	0.0008	0.0002	0.0002	0.9998
	SV60BR90	0	0	0.0019	0.002	0.0004	0.9904
	SV60BR100	0	0	0.0007	0.0002	0.0001	0.9998

A.1 OUTPUT RETE SOR

 0
 0
 0.0007
 0.0002
 0.0001
 0.9998

 Tabella A.1: output rete sor 257-140-60-6. Permutazione 2

CONDIZION	IE		NETWORK OUTPUT							
		Sor_Nf	Sor_I1	Sor_l2	Sor_I3	Sor_Hg	Sor_Bk			
	SV50BR60	0.9982	0.005	0.0002	0	0.0012	0			
	Sv50BR70	0.999	0.0013	0	0	0.0007	0.0005			
	SV50BR80	0.9994	0.0012	0.0001	0.002	0.0001	0.0001			
	SV50BR90	0.9929	0.0215	0	0.0013	0.0001	0.001			
sor_Nf	SV50BR100	0.999	0.0032	0	0.0004	0.0002	0.0003			
_	SV60BR60	0.9984	0.0003	0.0002	0.0042	0.0002	0.0001			
	SV60BR70	0.9931	0.0014	0	0	0.0002	0.0123			
	SV60BR80	0.9957	0.0096	0	0.0042	0.0001	0.0001			
	SV60BR90	0.9977	0	0.0004	0.0002	0.0012	0.0013			
	SV60BR100	0.9796	0.0002	0.006	0.0001	0.0015	0			
	SV50BR60	0	0.9997	0.0009	0.0001	0.0004	0			
	Sv50BR70	0.0001	0.9998	0	0.0001	0.0001	0			
	SV50BR80	0	0.9998	0.0002	0	0.0007	0			
	SV50BR90	0.0522	0.9855	0	0	0.0004	0.0002			
sor I1	SV50BR100	0	0.9999	0.0001	0	0.0007	0			
_	SV60BR60	0.0001	0.9999	0.0001	0	0.0003	0			
	SV60BR70	0.0002	0.9984	0	0.0014	0.0001	0			
	SV60BR80	0.0012	0.9996	0	0.0001	0.0001	0			
	SV60BR90	0.0013	0.9944	0.0001	0.0047	0.0001	0			
	SV60BR100	0.0005	0.9975	0.0007	0.001	0.0001	0			
	SV50BR60	0	0.0003	0.9989	0.0001	0.0027	0			
	Sv50BR70	0.0002	0.0001	0.9996	0.0005	0.0005	0.0001			
	SV50BR80	0.0002	0	0.9996	0.0001	0.0013	0			
	SV50BR90	0.0001	0.0001	0.9991	0.0004	0.0005	0.0001			
sor_l2	SV50BR100	0.0001	0.0003	0.9995	0.0004	0.0002	0.0001			
_	SV60BR60	0.0001	0	0.9998	0.0001	0.0007	0.0001			
	SV60BR70	0.0005	0.0001	0.9984	0.0012	0.0003	0.0002			
	SV60BR80	0.0016	0.0004	0.9987	0.0001	0.0002	0.0003			
	SV60BR90	0.0001	0.0001	0.9996	0.0002	0.0003	0.0002			
	SV60BR100	0.0001	0.0002	0.9997	0.0002	0.0002	0.0001			
	SV50BR60	0.0001	0.0008	0.0001	0.9988	0	0.0007			
	Sv50BR70	0.0001	0.0003	0.0002	0.9999	0	0.0009			
	SV50BR80	0	0.0003	0.0454	0.9754	0.0001	0			
	SV50BR90	0.0024	0.0009	0.0001	0.9991	0	0.0002			
sor_l3	SV50BR100	0.0001	0.0005	0.0001	0.9999	0.0001	0			
	SV60BR60	0	0.0004	0.0002	0.9997	0.0002	0			
	SV60BR70	0.0001	0.0001	0.0009	0.9999	0.0001	0			
	SV60BR80	0	0	0.0023	0.9951	0.0008	0.0001			
	SV60BR90	0	0.0022	0.0003	0.9997	0.0001	0			
	SV60BR100	0	0.0001	0.0001	0.9979	0.0003	0.001			
	SV50BR60	0.0129	0	0.0008	0	0.9947	0.0001			
	Sv50BR70	0.0007	0	0.0002	0	0.9993	0.0004			
	SV50BR80	0.0005	0	0.0002	0	0.9993	0.0002			
	SV50BR90	0.0013	0	0.0001	0	0.9989	0.0004			
sor_Hg	SV50BR100	0.0009	0	0.0002	0	0.9991	0.0004			
_	SV60BR60	0.0008	0	0.0004	0	0.9989	0.0002			
	SV60BR70	0.0011	0	0.0002	0	0.999	0.0004			
	SV60BR80	0.0011	0	0.0001	0	0.9992	0.0005			
	SV60BR90	0.0004	0	0.0002	0	0.9991	0.0007			
	SV60BR100	0.0006	0	0.0001	0	0.9991	0.0005			
	SV50BR60	0.0006	0	0.0003	0.0001	0.001	0.9405			
	Sv50BR70	0.0014	0	0	0	0.0009	0.9982			
	SV50BR80	0.0002	0	0	0.0001	0.0013	0.9992			
	SV50BR90	0.0002	0	0	0	0.001	0.9994			
sor_Bk	SV50BR100	0	0	0	0.0006	0.001	0.9994			
	SV60BR60	0	0	0	0.001	0.001	0.9992			
	SV60BR70	0	0	0	0.0012	0.0011	0.9993			
	SV60BR80	0	0	0.0004	0.001	0.0009	0.9992			
	SV60BR90	0	0	0.0005	0.0004	0.0008	0.9991			
	SV60BR100	0	0	0.0008	0.001	0.0003	0.9992			

Tabella A.2: output rete sor 257-140-60-6. Permutazione 3

CONDIZION	NE		NETWORK O	UTPUT			
		Sor_Nf	Sor_I1	Sor_l2	Sor_I3	Sor_Hg	Sor_Bk
	SV50BR60	0.9984	0.0047	0.0003	0	0.0004	0.0001
	Sv50BR70	0.998	0.0005	0	0.0002	0.0003	0.0008
	SV50BR80	0.999	0.0012	0.0001	0.0017	0.0002	0
	SV50BR90	0.9994	0.0014	0	0	0.0001	0.0005
sor Nf	SV50BR100	0.9962	0.0021	0.0001	0	0.0002	0.003
_	SV60BR60	0.9999	0.0003	0.0002	0	0.0007	0.0001
	SV60BR70	0.9983	0.0012	0.0001	0	0.0002	0.0016
	SV60BR80	0.9989	0.0006	0.0002	0	0.0002	0.0026
	SV60BR90	0.9994	0	0.0002	0.0003	0.0004	0.0028
	SV60BR100	0.9694	0.0002	0.0027	0.0001	0.0021	0.0008
	SV50BR60	0	0.7503	0.1961	0.0054	0.0002	0
	Sv50BR70	0.0001	0.9978	0	0	0	0.0001
	SV50BR80	0.0001	0.9999	0	0	0.0001	0
	SV50BR90	0.0029	0.9939	0	0	0.0001	0
sor_l1	SV50BR100	0.0002	0.9997	0	0.0001	0	0
	SV60BR60	0.0004	0.9983	0	0	0.0001	0.0001
	SV60BR70	0	0.9999	0	0.0001	0.0001	0
	SV60BR80	0.0002	0.9989	0	0.0004	0	0
	SV60BR90	0.0001	0.9992	0	0.0038	0	0
	SV60BR100	0.0002	0.9983	0.0001	0.0013	0	0
	SV50BR60	0	0.001	0.9993	0.0001	0.0004	0
	Sv50BR70	0	0.0015	0.9991	0.0005	0.0002	0
	SV50BR80	0	0.0002	0.9996	0.0002	0.0007	0
	SV50BR90	0	0.0002	0.9997	0.0002	0.0004	0
sor_l2	SV50BR100	0	0.0002	0.9993	0.0014	0.0002	0
	SV60BR60	0	0.0001	0.9997	0.0005	0.0003	0
	SV60BR70	0.0001	0	0.9991	0.0008	0.0002	0.0003
	SV60BR80	0.0062	0	0.9911	0.0006	0.0001	0.0004
	SV60BR90	0.019	0	0.8354	0.0059	0.0001	0.0015
	SV60BR100	0.152	0	0.835	0.0011	0.0001	0.0007
	SV50BR60	0.0229	0	0.0007	0.9578	0	0.003
	Sv50BR70	0.0001	0.0001	0.0002	0.9991	0	0.0067
	SV50BR80	0	0.0038	0.0001	0.9995	0	0.0012
	SV50BR90	0	0.0007	0.0001	1	0	0
sor_l3	SV50BR100	0.0001	0.0023	0.0001	0.9999	0	0.0001
	SV60BR60	0	0.0003	0.0001	1	0	0.0002
	SV60BR70	0	0.0011	0.0002	0.9987	0.0001	0.0004
	SV60BR80	0	0.0007	0.0001	1	0.0001	0.0001
	SV60BR90	0	0.0025	0.0003	0.9999	0.0001	0.0004
	SV60BR100	0	0.0007	0.0003	1	0	0.0001
	SV50BR60	0.0002	0.0002	0.0004	0	0.9989	0.0003
	Sv50BR70	0	0.0001	0.0006	0	0.9996	0.0003
	SV50BR80	0	0.0002	0.0005	0	0.9995	0.0003
	SV50BR90	0	0.0003	0.0002	0	0.9992	0.0005
sor_Hg	SV50BR100	0.0001	0.0002	0.0001	0	0.999	0.0006
	SV60BR60	0	0.0005	0.0003	0	0.999	0.0003
	SV60BR70	0	0.0003	0.0002	0	0.9993	0.0005
	SV60BR80	0	0.0002	0.0002	0	0.9993	0.0005
	SV60BR90	0	0.0003	0.0002	0	0.9992	0.0008
	SV60BR100	0	0.0002	0.0003	0	0.9995	0.0006
	SV50BR60	0.0001	0	0.0002	0.0002	0.0043	0.9981
	Sv50BR70	0.0011	0.0001	0	0	0.0003	0.9966
	SV50BR80	0.0004	0	0	0.0001	0.0004	0.9991
	SV50BR90	0.0001	0.0001	0	0.0001	0.0005	0.9993
sor_Bk	SV50BR100	0	0.0001	0	0.0001	0.0009	0.9995
	SV60BR60	0	0.0002	0	0.0096	0.0003	0.9868
	SV60BR70	0.0002	0	0	0.0002	0.0009	0.9982
	SV60BR80	0	0.0001	0.0001	0.0252	0.0005	0.9907
	SV60BR90	0	0	0.0016	0.0042	0.0003	0.9979
	SV60BR100	0	0.0001	0.0001	0.0001	0.0004	0.9994

 Tabella A.3: output rete sor 257-140-60-6 Permutazione 4

A.2 OUTPUT RETE SJR

CONDIZIONE		NETWORK OUTPUT					
		sjr_Nf	sjr_l1	sjr_l2	sjr_l3	sjr_Hg	sjr_Bk
sjr_Nf	SV50BR60	0.9998	0	0.0002	0.0017	0.0001	0
	Sv50BR70	0.9995	0.001	0.0001	0.0008	0.0001	0
	SV50BR80	0.9999	0.0004	0.0001	0	0.0014	0
	SV50BR90	0.9999	0.0004	0.0001	0.0001	0.0003	0
	SV50BR100	1	0.0001	0.0002	0.0001	0.0002	0
	SV60BR60	0.9696	0.0013	0.002	0.0094	0	0
	SV60BR70	0.9849	0.0044	0.0005	0.0001	0.0002	0
	SV60BR80	0.977	0.009	0.0003	0.0054	0	0
	SV60BR90	0.9959	0.0018	0.0003	0.0004	0.0001	0
	SV60BR100	0.9981	0.0033	0.0002	0.0001	0.0008	0
sjr_l1	SV50BR60	0.0007	0.9976	0.0008	0.0005	0	0
	Sv50BR70	0.0003	0.9998	0	0.0033	0	0
	SV50BR80	0.0018	0.999	0.0001	0.0012	0	0
	SV50BR90	0.0008	0.9998	0.0001	0.0001	0	0
	SV50BR100	0.0018	0.9994	0.0003	0	0	0
	SV60BR60	0.0018	0.9903	0.0052	0.0002	0	0
	SV60BR70	0.0004	0.9997	0.0003	0.0001	0	0
	SV60BR80	0.0001	0.9999	0.0001	0.0001	0	0
	SV60BR90	0.0007	0.9941	0.0026	0.0004	0	0
	SV60BR100	0.0002	0.9915	0	0.0511	0	0
sjr_l2	SV50BR60	0.0001	0.0001	0.9995	0	0.0005	0.0019
	Sv50BR70	0.0001	0.0001	0.9998	0	0.0002	0.0002
	SV50BR80	0	0.0001	0.9921	0	0	0.0035
	SV50BR90	0	0	0.9998	0	0	0.0002
	SV50BR100	0	0.0003	0.9998	0	0	0
	SV60BR60	0	0.0003	0.9999	0	0.0008	0
	SV60BR70	0	0.0001	1	0	0.0002	0
	SV60BR80	0.0001	0.0003	0.9992	0	0.0001	0
	SV60BR90	0.0026	0.0002	0.9993	0	0.0007	0.0001
sjr_l3	SV60BR100	0.0008	0.0012	0.9989	0	0.0004	0
	SV50BR60	0.0011	0.0001	0	0.9965	0	0.0026
	SV50BR70	0.0001	0.0006	0	0.9933	0	0.0289
	SV50BR80	0	0.0021	0	0.9997	0	0.0005
	SV50BR90	0	0.0001	0.0001	0.9984	0	0.0026
	SV50BR100	0.0008	0.0002	0.0021	0.9968	0	0
	SV60BR60	0.0001	0.0001	0	0.9998	0	0.0017
sjr_Hg	SV60BR70	0	0.0007	0	0.9974	0	0.001
	SV60BR80	0.0001	0.0001	0.0001	0.9987	0	0.0028
	SV60BR90	0.0001	0.0001	0	1	0	0
	SV60BR100	0.0004	0.0001	0	1	0	0 0007
	SV300R00	0 0021	0 0059	0.0001	0	0.9991	0.0007
	SV30BR70	0.0021	0.0056	0.0003	0	0.9912	0 0002
	SV50BR00	0.0001	0	0	0	0.9997	0.0003
	SV50BR90	0.0004	0 0001	0	0	0.9996	0.0004
	SV60BB60	0.0014	0.0001	0 0002	0	0.9901	0.0004
	SV60BR00	0.0001	0.0001	0.0002	0	0.9907	0 0000
	SV60BR80	0.0001	0	0	0	0.9909	0.0009
	SV60BR90	0.0000	0 0004	0 00000	0	0.9909	0.0004
	SV60BR100	0.0001	0.0004	0.0000	0	0.9929	0.0004
sjr_Bk	SV/508R60	0.0000	0.0003	0.0013	0	0.0004	0 0001
	Sv50BR70	0.0003	0.0001	0	0 0008	0.0004	0.0008
	SV/50BR80	0	0	0	0.0000	0.0002	0.0000
	SV/50BR00	0,0001	0	0	0.0007	0.0002	0.9994
	SV/50BR100	0.0001	0.0005	0,0001	0.0003	0.0001	0.000-
	SV60BR60	0.0013	0.0000	0.0001	0.0121	0	0.999
	SV60BR70	0.0001	0	0.0002	0.9751	0	0.000
	SV60BR80	0,0001	0	0.0004	0.0002	0,0001	0.9993
	SV60BR90	0	n n	0.0019	0.0002	0.0001	0.9999
	SV60BR100	0	0	0	0.0005	0	0.9999

 Tabella A.4: output rete sjr 257-185-70-6. Permutazione 2
CONDIZIO	NE		NETWORK	OUTPUT			
		sjr_Nf	Sjr_l1	sjr_l2	sjr_l3	sjr_Hg	sjr_Bk
	SV50BR60	0.9796	0.01	0.0031	0.0161	0.089	0
	Sv50BR70	0.9873	0.0184	0.0012	0.015	0.0097	0.0003
	SV50BR80	0.9914	0.0074	0.0028	0.0107	0.0168	0.0005
	SV50BR90	0.9864	0.0026	0.0099	0.0223	0.0364	0.0001
sir Nf	SV50BR100	0.9923	0.0011	0.0549	0.0073	0.0284	0.0009
• -	SV60BR60	0.9785	0.0048	0.0043	0.0179	0.0117	0.0059
	SV60BR70	0.9493	0.0008	0.0262	0.0257	0.0403	0.0023
	SV60BR80	0.9496	0.0078	0.0191	0.0182	0.0047	0.0026
	SV60BR90	0.871	0.0206	0.0079	0.0344	0.006	0.0045
	SV60BR100	0.9277	0.0006	0.0305	0.0353	0.0832	0.0021
	SV50BR60	0.0096	0.6273	0.0023	0.0218	0.005	0.1065
	Sv50BR70	0.0114	0.8457	0.0027	0.0944	0.0005	0.1581
	SV50BR80	0.0071	0.9722	0.0012	0.0553	0.0007	0.0704
	SV50BR90	0.007	0.9624	0.0043	0.0119	0.0006	0.1228
sjr_l1	SV50BR100	0.0068	0.9639	0.0153	0.0028	0.0005	0.0646
-	SV60BR60	0.0129	0.9216	0.0022	0.0378	0.0009	0.0534
	SV60BR70	0.0064	0.9488	0.0078	0.0045	0.0011	0.0538
	SV60BR80	0.0099	0.9533	0.0064	0.0168	0.0004	0.0302
	SV60BR90	0.0048	0.9931	0.0023	0.0527	0.0004	0.0024
	SV60BR100	0.0111	0.9717	0.0023	0.0094	0.0041	0.003
	SV50BR60	0.0169	0.0004	0.9662	0.0031	0.0134	0.1132
	Sv50BR70	0.0325	0.0027	0.8892	0.0013	0.0038	0.2953
	SV50BR80	0.0117	0.0048	0.9289	0.0014	0.0026	0.1704
	SV50BR90	0.0088	0.0249	0.9761	0.0033	0.0007	0.0188
sjr_l2	SV50BR100	0.0043	0.0164	0.9727	0.0023	0.0012	0.0685
-	SV60BR60	0.0228	0.0007	0.9921	0.0003	0.0078	0.0867
	SV60BR70	0.0151	0.01	0.9813	0.0112	0.0014	0.0068
	SV60BR80	0.0125	0.0027	0.9853	0.0049	0.0027	0.0149
	SV60BR90	0.0151	0.0037	0.8872	0.0434	0.0035	0.0032
	SV60BR100	0.0093	0.0119	0.9547	0.0145	0.0023	0.0021
	SV50BR60	0.0191	0.0294	0.0067	0.9739	0.0013	0.0003
	Sv50BR70	0.0275	0.023	0.0087	0.9693	0.001	0.0005
	SV50BR80	0.0516	0.0147	0.0088	0.9693	0.0014	0.0006
	SV50BR90	0.0527	0.0019	0.032	0.9721	0.0036	0
sjr_l3	SV50BR100	0.0324	0.0204	0.0065	0.9815	0.0012	0.0002
	SV60BR60	0.0334	0.0054	0.0334	0.9614	0.0013	0.0002
	SV60BR70	0.0152	0.007	0.0322	0.9854	0.0016	0.0005
	SV60BR80	0.0163	0.0085	0.0195	0.9879	0.0015	0.0005
	SV60BR90	0.0261	0.1127	0.0013	0.8265	0.0133	0.0015
	SV60BR100	0.0131	0.3883	0.0019	0.7937	0.003	0.0009
	SV50BR60	0.0212	0.0007	0.0323	0.0026	0.7697	0.0005
	Sv50BR70	0.0035	0.0004	0.0111	0.0004	0.9867	0.004
	SV50BR80	0.008	0.0018	0.0018	0.001	0.9685	0.003
	SV50BR90	0.0337	0.0004	0.0037	0.0014	0.9615	0.0071
sjr_Hg	SV50BR100	0.0078	0.0007	0.0008	0.002	0.9862	0.0116
	SV60BR60	0.0069	0.0013	0.0277	0.002	0.9544	0.0002
	SV60BR70	0.0083	0.0003	0.006	0.0003	0.9734	0.0093
	SV60BR80	0.02	0.0002	0.0061	0.0003	0.977	0.0177
	SV60BR90	0.0212	0	0.0287	0.0012	0.9393	0.0903
	SV60BR100	0.1741	0	0.1728	0.0209	0.8662	0.0005
	SV50BR60	0.0426	0.0515	0.0012	0.0029	0.0179	0.9207
	Sv50BR70	0.0019	0.0174	0.0068	0.0006	0.2958	0.8847
	SV50BR80	0.0044	0.2016	0.0033	0.0002	0.0178	0.9803
	SV50BR90	0.0176	0.071	0.0103	0.0005	0.0115	0.9482
sjr_Bk	SV50BR100	0.0265	0.1518	0.0062	0.0041	0.0045	0.8932
	SV60BR60	0.0108	0.0708	0.205	0.0001	0.0049	0.8085
	SV60BR70	0.0157	0.2673	0.0154	0.0052	0.0053	0.4489
	SV60BR80	0.0349	0.0004	0.783	0.0004	0.0341	0.8948
	SV60BR90	0.0085	0.2341	0.0794	0.0004	0.0011	0.8306
	SV60BR100	0.0284	0.0064	0.0053	0.0057	0.0131	0.9718

 Tabella A.5: output rete sjr 257-185-70-6 Permutazione 3

CONDIZIC	DNE		NETWORK C	UTPUT			
		sir Nf	sjr I1	sjr I2	sir 13	sjr Hq	sjr Bk
	SV50BR60	0.9946	0.0467	0.0111	0.022	0.0401	0.0021
	Sv50BR70	0.995	0.05	0.03	0.025	0.0188	0.0018
	SV50BR80	0.9853	0.0228	0.0165	0.029	0.0226	0.0071
	SV50BR90	0.984	0.0106	0.0202	0.0167	0.1508	0.0019
sir Nf	SV50BR100	0.9891	0.0117	0.0317	0.0276	0.0212	0.0095
- / =	SV60BR60	0.9667	0.0194	0.0139	0.0328	0.0142	0.0304
	SV60BR70	0.9486	0.0088	0.0088	0.0527	0.0168	0.0499
	SV60BR80	0.82	0.0245	0.0178	0.0839	0.015	0.0356
	SV60BR90	0.9176	0.0231	0.0053	0.1033	0.0262	0.0116
	SV60BR100	0.9517	0.0178	0.0199	0.0609	0.0272	0.0052
	SV50BR60	0.0513	0.5806	0.0117	0.0726	0.007	0.0872
	Sv50BR70	0.0132	0.5052	0.0154	0.2625	0.0022	0.165
	SV50BR80	0.0128	0.8896	0.0061	0.1504	0.0028	0.1129
	SV50BR90	0.0075	0.9111	0.0133	0.0263	0.0052	0.2046
sjr_l1	SV50BR100	0.0169	0.8214	0.0096	0.0724	0.0032	0.1947
-	SV60BR60	0.0253	0.8175	0.0048	0.0769	0.0043	0.2378
	SV60BR70	0.0274	0.8659	0.0202	0.0129	0.0054	0.2228
	SV60BR80	0.0271	0.8539	0.0117	0.0802	0.0042	0.085
	SV60BR90	0.0505	0.941	0.0144	0.0864	0.015	0.0043
	SV60BR100	0.0289	0.8509	0.031	0.2298	0.0246	0.0011
	SV50BR60	0.024	0.0135	0.7778	0.0405	0.0121	0.1351
	Sv50BR70	0.1294	0.0143	0.6845	0.0123	0.0078	0.1843
	SV50BR80	0.012	0.1351	0.7974	0.0336	0.0107	0.0332
	SV50BR90	0.0124	0.0629	0.9373	0.0092	0.014	0.0824
sjr_l2	SV50BR100	0.0068	0.0812	0.8658	0.0369	0.0098	0.0669
-	SV60BR60	0.0114	0.0291	0.8772	0.0219	0.0214	0.0782
	SV60BR70	0.0107	0.0815	0.9736	0.0116	0.0265	0.0169
	SV60BR80	0.0584	0.0267	0.8521	0.0323	0.0116	0.0224
	SV60BR90	0.0348	0.0179	0.6347	0.0662	0.0117	0.0511
	SV60BR100	0.028	0.0054	0.8268	0.0789	0.0182	0.0232
	SV50BR60	0.0223	0.014	0.0064	0.9853	0.008	0.0046
	Sv50BR70	0.0226	0.037	0.0117	0.962	0.0042	0.0088
	SV50BR80	0.0316	0.0426	0.0107	0.9568	0.0059	0.0081
	SV50BR90	0.0205	0.0208	0.1469	0.9444	0.0034	0.0021
sjr_l3	SV50BR100	0.0288	0.0203	0.0184	0.9778	0.0065	0.0039
	SV60BR60	0.0159	0.0811	0.0332	0.9589	0.005	0.0021
	SV60BR70	0.0112	0.0287	0.0204	0.9678	0.0049	0.0077
	SV60BR80	0.007	0.038	0.0269	0.9749	0.0044	0.0064
	SV60BR90	0.0087	0.0158	0.0302	0.9873	0.0063	0.0032
	SV60BR100	0.1051	0.4766	0.0047	0.4469	0.0083	0.0143
	SV50BR60	0.0042	0.0017	0.0245	0.0064	0.9952	0.0265
	Sv50BR70	0.0063	0.011	0.0078	0.0072	0.9856	0.0107
	SV50BR80	0.0054	0.0012	0.0099	0.0047	0.9823	0.0152
	SV50BR90	0.0167	0.0007	0.0051	0.0294	0.971	0.0173
sjr_Hg	SV50BR100	0.005	0.0037	0.0022	0.0662	0.9864	0.0033
	SV60BR60	0.014	0.0015	0.0121	0.0106	0.9563	0.0462
	SV60BR70	0.0077	0.0003	0.0089	0.0142	0.9762	0.0278
	SV60BR80	0.0045	0.0009	0.0095	0.009	0.9846	0.0127
	SV60BR90	0.0174	0.0001	0.0244	0.01	0.9475	0.0386
	SV60BR100	0.0695	0.0002	0.0394	0.0359	0.9749	0.0097
	SV50BR60	0.0991	0.0583	0.0022	0.0171	0.0065	0.9394
	Sv50BR70	0.0167	0.01	0.0023	0.0625	0.0652	0.8318
	SV50BR80	0.0436	0.0961	0.0043	0.0073	0.01	0.9468
	SV50BR90	0.1005	0.0289	0.0038	0.0131	0.011	0.9337
sjr_Bk	SV50BR100	0.0542	0.1232	0.009	0.0169	0.0049	0.885
	SV60BR60	0.083	0.1984	0.0425	0.0028	0.0034	0.9085
	SV60BR70	0.0316	0.0676	0.0122	0.0211	0.011	0.8129
	SV60BR80	0.0294	0.1174	0.0879	0.0077	0.0071	0.7297
	SV60BR90	0.0021	0.1324	0.3659	0.0191	0.0104	0.409
	SV60BR100	0.0186	0.3866	0.0053	0.1164	0.0027	0.6785

Tabella A.6: output rete sjr 257-185-70-6 Permutazione 4

A.3 OUTPUT RETE ON-X

CONDIZIONE			NETWORK C	UTPUT			
		On-X_Nf	On-X_I1	On-X_I2	On-X_I3	On-X_Hg	On-X_Bk
	SV50BR60	0.9999	0	0	0.0002	0	0
	Sv50BR70	0.9999	0	0.0014	0.0001	0	0
	SV50BR80	0.9995	0	0.0028	0	0.0003	0
	SV50BR90	0.9911	0.0139	0.0007	0	0.0002	0
On-X_Nf	SV50BR100	0.5073	0.2351	0.0003	0	0.0002	0
	SV60BR60	0.9998	0.0004	0.0001	0	0.0011	0
	SV60BR70	0.9971	0.0018	0.0023	0	0.0001	0
	SV60BR80	0.9965	0.0373	0	0	0	0
	SV60BR90	0.9931	0.0008	0.0001	0.0001	0.0001	0.0013
	SV60BR100	0.0603	0.9892	0	0	0.0003	0
	SV50BR60	0.0003	0.9043	0	0.021	0.0022	0
	Sv50BR70	0.0002	0.8026	0	0.001	0.0003	0.019
	SV50BR80	0.0027	0.9953	0	0.0002	0.0004	0.0002
	SV50BR90	0.0001	1	0	0.0001	0	0
On-X_I1	SV50BR100	0.0004	0.2753	0	0.3561	0.0001	0
	SV60BR60	0.0001	0.9946	0.0002	0.0281	0.0001	0
	SV60BR70	0	0.9997	0.0002	0.0001	0.0001	0
	SV60BR80	0.0001	0.9997	0	0	0.001	0.0001
	SV60BR90	0.0007	0.9991	0	0.0002	0.0007	0
	SV60BR100	0.0011	0.9969	0	0.0459	0.0006	0
	SV50BR60	0.0012	0.0004	0.9986	0	0.0004	0.0001
	Sv50BR70	0	0.0004	0.9997	0	0.0002	0.0004
	SV50BR80	0.0024	0.0477	0.9156	0	0	0
	SV50BR90	0.003	0	0.9984	0	0.0003	0
On-X_I2	SV50BR100	0.0004	0	0.9976	0.0003	0.0001	0.0002
	SV60BR60	0.0049	0	0.9989	0	0.0006	0.0004
	SV60BR70	0.0029	0	0.9981	0	0.0006	0.0001
	SV60BR80	0.0008	0.0001	0.9986	0	0.0002	0.0001
	SV60BR90	0.0046	0	0.9979	0.0004	0.0001	0
	SV60BR100	0.0006	0	0.9947	0.0007	0.0013	0.0001
	SV50BR60	0	0	0.0238	0.9032	0.0028	0.021
	SV50BR70	0.0001	0.0086	0.0002	0.9959	0.0001	0.0001
	SV50BR80	0	0.0002	0.0002	1	0.0004	0
0 × X 10	SV50BR90	0	0.0008	0.0001	1	0.0004	0
On-X_I3	SV50BR100	0	0.0001	0.0003	0.9999	0.0005	0
	SV60BR60	0	0.0002	0.0003	0.9999	0.0007	0
	SV60BR70	0	0.0036	0.0001	0.9869	0.0038	0.0008
	SV60BR80	0.0015	0	0.0002	0.9995	0.0004	0
	SV60BR90	0.0001	0.0001	0.0004	0.9997	0.0002	0
	SV60BR 100	0.0002	0.0001	0.0002	0.9996	0.0007	0
	SV50DR00	0.0001	0 0004	0	0.0001	0.9990	0
	SV50BR70	0.0001	0.0004	0	0.0032	0.9094	0
	SV50BR00	0,0003	0	0	0.0000	0.999	0
On-X Ha	SV50BR100	0.0005	0.0001	0	0.0003	0.9979	0 0002
OII-A_IIg	SV50DR100	0 0006	0.0001	0	0.0014	0.9979	0.0002
	SV60BR70	0.0000	0	0	0,0002	0.9998	0
	SV60BR80	0.0004	0	0	0.0002	0.9997	0
	SV60BR90	0.0001	0.0001	0	0.0002	0.9997	0.0001
	SV60BR100	0.0001	0.0004	0	0.00012	0.9992	0.0001
	SV50BR60	0.0041	0	0.0001	0.0001	0.0006	0.9998
	Sv50BR70	0.0002	0.0105	0.0001	0	0.0001	0.998
	SV50BR80	0.0008	0	0.0001	0.0001	0.0008	0,9976
	SV50BR90	0	0.0001	0.0002	0.0004	0.0009	0.9988
On-X Bk	SV50BR100	0.0002	0.0001	0	0.0007	0.0008	0.9983
	SV60BR60	0	0	0.0055	0.0027	0.0009	0.9988
	SV60BR70	0	0 0	0.006	0.0002	0.0007	0.9993
	SV60BR80	0.0005	0	0.0001	0.0001	0.0005	0.9999
	SV60BR90	0.0008	0	0.0001	0.0001	0.0007	0.9999
	SV60BR100	0	0.0275	0	0	0.0004	0.998

 Tabella A.7: output rete On-X 257-150-70-6 Permutazione 2

CONDIZIONE			NETWORK C	DUTPUT			
	_	On-X Nf	On-X I1	On-X I2	On-X I3	On-X Ha	On-X Bk
	SV50BR60	0.9783	0.0002	0	0.0003	0.0002	0.0134
	Sv50BR70	0.9988	0.0001	0 0004	0.0001	0.0002	0.0001
	SV50BR80	0.9964	0.0008	0.0036	0.0001	0.0004	0.0001
	SV50BR90	0.9986	0.0005	0.0081	0.0001	0.0002	0
On-X Mf	SV/50BR100	0.0000	0.0003	0.0001	0	0.0002	0
	SV/60BP60	0.0001	0.0001	0.0030	0	0.0004	0
	SV00BR00	0.9991	0 0096	0.001	0	0.0003	0
	SV00BR70	0.9901	0.0000	0.003	0	0.0002	0 0076
	SVOUDROU	0.9903	0.0001	0.0004	0	0.0018	0.0076
	SV60BR90	0.9796	0.5337	0.0001	0	0.0002	0.0006
	SV60BR100	0.9406	0.0018	0	0.0005	0.0069	0.0008
	SV50BR60	0	0.9749	0.0001	0.0003	0.0035	0.1084
	SV50BR70	0.0001	1	0.0002	0.0002	0.0013	0
	SV50BR80	0.0015	1	0.0001	0	0.001	0
	SV50BR90	0.003	0.995	0.0001	0.0083	0.0003	0.0002
On-X_I1	SV50BR100	0.0001	1	0.0002	0.0006	0.0006	0
	SV60BR60	0.004	0.9996	0.0004	0.0001	0.0004	0
	SV60BR70	0.064	0.9989	0.002	0	0.0005	0
	SV60BR80	0.0007	0.9999	0.0001	0.0001	0.0004	0.0002
	SV60BR90	0.0008	0.9986	0.0038	0.0014	0.0009	0
	SV60BR100	0.0096	0.9996	0.0027	0	0.0001	0
	SV50BR60	0	0.0008	0.9988	0.0003	0.0002	0.0016
	Sv50BR70	0.0001	0.0007	0.9991	0.0001	0.0001	0.0022
	SV50BR80	0.0004	0.0004	0.9993	0.0003	0	0.0004
	SV50BR90	0.0001	0.0016	0.9882	0.0156	0.0001	0.0001
On-X_l2	SV50BR100	0.0005	0.0027	0.9994	0	0.0001	0.0002
	SV60BR60	0.0006	0.0002	0.9972	0.0003	0.0001	0.0004
	SV60BR70	0.0003	0.0009	0.9975	0.0004	0.0001	0.0002
	SV60BR80	0.0006	0	0.9981	0.001	0.0006	0.0004
	SV60BR90	0.0061	0	0.995	0.0016	0.0001	0.0002
	SV60BR100	0.0008	0.0001	0.9972	0.0027	0.0001	0.0003
	SV50BR60	0.0002	0	0.0022	0.8478	0.0034	0.1318
	Sv50BR70	0.0004	0.001	0.0008	0.9977	0.0041	0.0002
	SV50BR80	0.0003	0.0005	0.0006	0.9996	0.0008	0.0001
	SV50BR90	0.0003	0.0001	0.0019	0.9999	0.0002	0.0001
On-X_I3	SV50BR100	0.0003	0.0003	0.0017	0.9997	0.0005	0.0001
	SV60BR60	0	0.3966	0.002	0.9623	0.0005	0
	SV60BR70	0	0.0402	0.002	0.9941	0.0015	0.0001
	SV60BR80	0.0003	0.0001	0.0027	0.999	0.0004	0.0005
	SV60BR90	0.0001	0.0196	0.0005	0.9893	0.0018	0.0001
	SV60BR100	0.0003	0.0007	0.001	0.9989	0.0001	0.0001
	SV50BR60	0.0021	0.0004	0.0007	0.0001	0.9951	0.0001
	Sv50BR70	0.0112	0.0015	0	0.0085	0.9294	0
	SV50BR80	0.0038	0.0001	0.0002	0.0044	0.9393	0.0001
	SV50BR90	0.001	0.0002	0.0002	0.0004	0.9983	0.0001
On-X Hg	SV50BR100	0.0008	0.0001	0.0001	0.0005	0.9986	0.0004
- 0	SV60BR60	0.0006	0	0.0002	0.001	0.9992	0.0005
	SV60BR70	0.0024	0.0001	0	0.0001	0.9993	0.0006
	SV60BR80	0.0017	0	0.0001	0.0003	0.9989	0.001
	SV60BR90	0.0005	0.0046	0.0001	0.0001	0.9991	0.0001
	SV60BR100	0.0004	0.0003	0.0001	0.0003	0.9986	0.0002
	SV50BR60	0.0029	0	0.0001	0.0004	0.003	0.9991
	Sv50BR70	0.0005	0.0001	0.0004	0.0004	0.0007	0.9986
	SV50BR80	0.0005	0.0002	0.0003	0.0008	0.0008	0.9974
	SV50BR90	0.0001	0.0001	0.0006	0.0021	0.0009	0.9977
On-X Bk	SV50BR100	0.002	0	0.0001	0.0006	0.0013	0.9996
5 _	SV60BR60	0.0003	0	0.0003	0.0045	0.0026	0.9979
	SV60BR70	0.0000	0	0.012	0.0182	0.0015	0.9943
	SV60BR80	0.0006	0.0005	0,0001	0.0008	0.0008	0.9965
	SV60BR90	0.0013	0.0001	0	0.0002	0.0018	0.9995
	SV60BR100	0	0.1861	0.0001	0.0007	0.0009	0.9699

 Tabella A.8: output rete On-X 257-150-70-6. Permutazione 3

CONDIZION	F		NETWORK				
CONDIZION	E	On-X Mf	001P01	On-X 12	On-X 13	On-X Ha	On-X-Bk
	SV/50BR60	0.8564		0.0001	0.0003	0.0007	0.0008
	Sv50BR70	0.9966	0.0026	0.0004	0.0000	0.0001	0.0000
	SV50BR80	0.9971	0	0.0015	0.0001	0.0002	0
	SV50BR90	0.9987	0	0.0079	0	0.0001	0
On-X_Nf	SV50BR100	0.9978	0.0001	0.0025	0	0.0008	0
_	SV60BR60	0.997	0.0004	0.002	0	0.0021	0
	SV60BR70	0.9994	0.0001	0.0006	0	0.0012	0
	SV60BR80	0.9936	0.0001	0	0	0	0.01
	SV60BR90	0.9968	0.0008	0.0001	0	0	0.0029
	SV60BR100	0.9999	0.0005	0	0	0.0001	0
	SV50BR60	0.0001	1	0	0	0.0001	0
	Sv50BR70	0.0003	1	0	0	0.0002	0.0003
	SV50BR80	0.0002	0.9999	0	0	0.0001	0.0001
	SV50BR90	0	1	0	0.0007	0.0001	0
On-X_I1	SV50BR100	0.004	0.9995	0	0	0	0
	SV60BR60	0.0189	0.8554	0.0001	0.0002	0.0004	0
	SV60BR70	0.8529	0.1173	0.0003	0	0	0
	SV60BR80	0.3519	0.0181	0.0002	0.0002	0.0002	0.0002
	SV60BR90	0.8998	0.0236	0.0089	0	0	0
	SV60BR100	0.0002	1	0.0004	0	0.0005	0
	SV50BR60	0	0	0.9995	0.0001	0.0025	0.0051
	SV50BR70	0	0	0.9998	0	0.0001	0.0009
	SV50BR80	0	0.0001	0.9998	0.0001	0.0001	0.0002
On-X 12	SV50BR90	0	0	0.9990	0.0001	0.0001	0.0003
011-7_12	SV50BR100	0	0 0001	0.9999	0 0002	0.0001	0.0003
	SV60BR70	0 0001	0.0001	0.999	0.0002	0 0001	0.0001
	SV60BR80	0.0001	0	0.3337	0.0002	0.0001	0.0004
	SV60BR90	0.0002	0	0.921	0.0000	0.0001	0.001
	SV60BR100	0.0001	0	0.9997	0.0002	0.0001	0.0002
	SV50BR60	0	0.0002	0.0008	0.9997	0.0004	0
	Sv50BR70	0	0.0027	0	0.9995	0.0006	0
	SV50BR80	0	0.0022	0.0004	0.9999	0.001	0
	SV50BR90	0.0002	0	0.0019	0.999	0.0002	0
On-X_I3	SV50BR100	0	0.0003	0.0001	0.9998	0.0015	0.0001
	SV60BR60	0	0.0002	0.0008	0.9997	0.0004	0
	SV60BR70	0.0014	0	0	0.9804	0.0006	0.0001
	SV60BR80	0.0004	0	0.0003	0.9901	0.0011	0
	SV60BR90	0	0.0014	0.0012	0.998	0.0018	0
	SV60BR100	0	0.0002	0.0003	0.9988	0.0016	0
	SV50BR60	0.0001	0	0.0008	0.0002	0.9892	0.0001
	Sv50BR70	0	0.0001	0	0.0013	0.9996	0.0001
	SV50BR80	0	0.0001	0	0.0001	0.9999	0.0002
	SV50BK90	0	0.0001	0	0.0001	0.9997	0.0001
UII-A_Hg	SVOUDKIUU	0	0	0	0.0001	0.3333	0.0005
	SV00DR00	0	0	0	0	0.9999	0.0011
	SV60BR70	0	0	0	0 0001	0.9999	0.0003
	SV60BR00	0 0001	0	0	0.0001	0.3333	0.0008
	SV60BR100	0.0001	0.0001	0	0.001	0.9957	0.0002
	SV50BR60	0.0002	0	0.0001	0.0016	0.0003	0.9972
	Sv50BR70	0.0041	0	0.0001	0.0005	0.0002	0.9975
	SV50BR80	0.0035	0	0.0002	0.0077	0.0002	0.9963
	SV50BR90	0	0	0.0005	0.0011	0.0002	0.9991
On-X_Bk	SV50BR100	0.0006	0	0.0003	0.0006	0.0002	0.9995
_	SV60BR60	0.0004	0	0.0002	0.0013	0.0002	0.9995
	SV60BR70	0.0001	0	0.0005	0.0004	0.0005	0.9995
	SV60BR80	0.003	0	0.0002	0.0003	0.0001	0.9973
	SV60BR90	0.0006	0	0.0001	0.0002	0.0003	0.9993
	SV60BR100	0.0002	0	0.0001	0.0001	0.0002	0.9994

Tabella A.9: output rete On-X 257-150-70-6. Permutazione 3

A.4 OUTPUT RETE CARB

CONDIZIONE			NETWORK C	UTPUT			
		Carb_Nf	Carb_l1	Carb_l2	Carb_I3	Carb_Hg	Carb_Bk
	SV50BR60	0.9995	0.0001	0	0	0.0002	0.0003
	Sv50BR70	0.9997	0.0031	0	0	0.0006	0.0001
	SV50BR80	0.998	0.0001	0.0049	0	0	0.0001
	SV50BR90	0.9998	0	0	0	0	0.0001
Carb_Nf	SV50BR100	0.9991	0.0001	0.0012	0	0	0
	SV60BR60	0.996	0	0.0001	0.0011	0	0
	SV60BR70	0.9977	0.0002	0.0001	0	0	0
	SV60BR80	0.9994	0.0001	0.0001	0	0	0
	SV60BR90	0.9992	0.0001	0.0002	0	0	0.0001
	SV60BR100	0.9981	0.0278	0	0	0	0
	SV50BR60	0	1	0	0.0001	0.0001	0.0002
	Sv50BR70	0.0077	0.9642	0	0	0.0002	0.0007
	SV50BR80	0.01	0.9982	0	0.0001	0.0003	0
	SV50BR90	0.0003	0.9999	0	0	0.0001	0
Carb_l1	SV50BR100	0.0006	0.9995	0.0001	0	0	0.0001
	SV60BR60	0.002	0.9998	0	0	0	0.0001
	SV60BR70	0.0001	0.9993	0	0.0003	0.0001	0.0001
	SV60BR80	0	0.9997	0	0.0001	0.0009	0.0001
	SV60BR90	0.0001	0.9929	0	0	0.0004	0.0006
	SV60BR100	0	0.9978	0	0	0.0001	0.0033
	SV50BR60	0.0001	0	0.9999	0	0.0002	0.0032
	Sv50BR70	0.0001	0.0001	0.9999	0	0.0001	0.0005
	SV50BR80	0.0003	0.0003	0.9999	0	0	0.001
	SV50BR90	0.0005	0	1	0	0	0.0034
Carb_l2	SV50BR100	0.0009	0	0.9999	0	0	0.0001
	SV60BR60	0.0002	0	0.9984	0.0121	0	0
	SV60BR70	0.0004	0	0.999	0.0009	0	0.0001
	SV60BR80	0.0004	0.0002	0.9979	0.0004	0	0.0001
	SV60BR90	0.0001	0	0.9992	0.0004	0	0.0003
	SV60BR100	0.0004	0.0005	0.9968	0	0	0.0004
	SV50BR60	0.0003	0.0275	0.0001	0.9844	0	0
	Sv50BR70	0.003	0.0001	0.0003	0.9981	0.0001	0
	SV50BR80	0.0001	0.0005	0.0004	0.9991	0	0.0001
	SV50BR90	0.0002	0.0001	0.0014	0.9994	0	0
Carb_I3	SV50BR100	0.0001	0	0.0006	0.9999	0	0.0001
	SV60BR60	0.0002	0.0001	0.0006	0.9996	0	0
	SV60BR70	0.0002	0	0.0002	0.9999	0	0.0001
	SV60BR80	0.0002	0	0	0.9999	0.0001	0.0006
	SV60BR90	0.0001	0	0.0001	0.9996	0.0001	0.0014
	SV60BR100	0.0001	0	0.0002	0.9987	0	0.0014
	SV50BR60	0.0006	0.0008	0	0.0001	0.9996	0
	Sv50BR70	0	0.9161	0	0	0.8951	0.0001
	SV50BR80	0.0005	0.0003	0	0	0.9934	0.0004
	SV50BR90	0	0.0018	0	0	0.998	0.0002
Carb_Hg	SV50BR100	0	0	0	0	0.9993	0.0023
	SV60BR60	0	0.0001	0	0	0.9995	0.0027
	SV60BR70	0	0.0001	0	0	1	0.0003
	SV60BR80	0	0.0003	0	0	0.9998	0.0001
	SV60BR90	0.0013	0.0001	0	0	0.9995	0
	SV60BR100	0.0002	0.002	0	0	0.9997	0
	SV50BR60	0	0.0281	0	0	0	0.9837
	SV50BR70	0	0.0015	0	0.0001	0.0002	0.9979
	5V50BR80	0	0.0001	0	0.0009	0	0.9992
Contra Dia	SV50BK90	0	0	0.0012	0	0.0007	0.9998
Carb_BK	5V50BR100	0	0	0	0	0.0002	1
	SV60DDZ0	0	0.0170	0	0.0004	0.0001	0.9999
	SVOUBK/U	0.0001	0.0178	0	0.0006	0.001	0.013
	SV60DD00	0	0	0	0.0010	0.0003	0.9998
	SV60DD400	0	0	0	0.0013	0.0009	0.90/1
1	3V00BK100	U	U	U	U	0.0012	0.9982

 Tabella A.10: output rete Carb 257-150-70-6. Permutazione 2

CONDIZIONE			NETWORK C	DUTPUT			
		Carb_Nf	Carb_I1	Carb_l2	Carb_I3	Carb_Hg	Carb_Bk
	SV50BR60	0.9974	0	0.0002	0	0.0991	0
	Sv50BR70	0.9996	0.0002	0.0002	0	0.0011	0
	SV50BR80	0.9996	0.0003	0.0001	0	0.0003	0
	SV50BR90	0.9999	0.0002	0	0	0.0004	0
Carb Nf	SV50BR100	0.9999	0.0008	0	0	0.0004	0
	SV60BR60	0.9952	0.0005	0.0002	0	0.0001	0.0003
•	SV60BR70	0.9971	0.0001	0.0007	0.0022	0.0005	0
•	SV60BR80	0.9992	0.0001	0.0005	0.0001	0.0001	0
•	SV60BR90	0.9991	0.0001	0.0008	0.0005	0.0005	0
-	SV60BR100	0.999	0.0003	0.0006	0.0005	0.0002	0
	SV50BR60	0.0015	0.998	0.0005	0	0.0006	0
-	Sv50BR70	0.0023	0.9999	0	0.0001	0	0
	SV50BR80	0.0116	0.9977	0	0.0001	0.0008	0
·	SV50BR90	0.0007	0 9935	0	0.0003	0.0007	0.0002
Carb I1	SV50BR100	0.0005	0.9997	0.0001	0.0000	0.0002	0.0002
Gang_II	SV60BR60	0.0000	0.9963	0.0001	0.0002	0.0002	0.0002
·	SV60BR70	0.0017	0.0000	0.0001	0.0002	0	0.0006
·	SV/60BR80	0.0002	0.0008	0	0.0002	0.0001	0.0000
	SV60BR00	0.0001	0.9967	0	0.005	0.0001	0.0010
	SV/608P100	0.000	0.0007	0	0.0003	0.0002	0.0007
	SV/508P60	0.0001	0.3351	0 0037	0.0002	0.0001	0.0007
	Sv50BR00	0.0002	0 0002	1	0	0.003	0.0033
	SV50BR70	0.0004	0.0002	0 0000	0	0.0001	0.0002
-	SV50BR00	0.0038	0.0004	0.9999	0	0	0.0003
Carb 12	SV50BR90	0.0007	0.0001	0.999	0	0 0001	0.0037
	SVEOPPEO	0.0008	0	0.9997	0 0025	0.0001	0.0002
-		0.0012	0 0001	0.9957	0.0035	0.0002	0.0001
·	SV60BR70	0.0013	0.0001	0.9965	0.0007	0.0001	0.0001
-	SVOODROU	0.002	0.0004	0.9966	0.0005	0	0 0003
-	SV608P100	0.001	0.0001	0.9996	0	0	0.0003
	SVOUDRIUU	0.0044	0.0004	0.9990	0 9602	0	0.0001
-		0.0024	0.005	0.1964	0.0005	0	0
-	SV50DR70	0.0019	0.0003	0.0005	0.9995	0.0001	0
-	SV50DR00	0.0002	0.0002	0.0004	0.9997	0.0001	0
Carb 12	SV50BR90	0.0013	0.0019	0.0000	0.9923	0.0001	0
	SVSUBRIUU	0.0003	0.0005	0.0009	0.9994	0.0001	0
-		0.0004	0.0002	0.0026	0.999	0.0002	0
·	SV60BR70	0.0002	0.0001	0.001	0.9991	0.0002	0.0001
-	SVOODROU	0.0001	0	0.0000	0.9991	0.0001	0.0004
·	SV60BR90	0	0	0.0001	0.9994	0.0001	0.0036
	SV60BR100	0	0	0.0003	0.9969	0.0001	0.0085
·	5V300K00	0.0004	0.0204	0	0	0.9969	0
·	SV30BR70	0.0001	0.0003	0 0001	0	0.9727	0.0044
·	SV30BR60	0.0001	0.0007	0.0001	0	0.9991	0.0001
Carb Ha	SV50DR90	0.0001	0.0002	0.0008	0	0.9720	0.0004
Carb_ng	SVOUDRIUU	0	0.0009	0.0003	0	0.9771	0.0009
	SV60BR60	0	0	0	0	0.9983	0.01
·	SV60BR70	0	0	0	0	0.9997	0.0006
·	SV60BR60	0	0	0	0	0.9999	0.0004
	SV60DD400	0.0002	0.0002	0.0009	0	0.3967	0.0001
	3V00BK100	0	0	0.0003	0.0047	0.3333	0.0002
	SVOUBKOU	0	0.4450	0.0004	0.0017	0	0.0231
	5V50BR/U	0	0.1459	0	0.0099	0	0.9895
	SVSUBK8U	0	0.3492	0.0000	0.0032	0 0001	0.0407
Carb Dk	SVSUBK9U	0	0	0.0003	0.0001	0.0001	0.3333
	5V50BR100	0	0	0.0002	0	0.0005	0.9998
	SVOUBKOU	0	0	0.0002	0.0040	0.0016	0.9996
	SVOUBR/U	0	0	0.0003	0.0012	0.0004	0.9985
	21002200	Ű	0	U	0.0003	0.0065	0.9988
	SV60BR90	0	0	0	0.0071	0.0003	0.9825
	SV60BR100	0	0	0	0	0.0007	0.9999

 Tabella A.11: output rete Carb 257-150-70-6. Permutazione 3

CONDIZIONE			NETWORK O	UTPUT			
		Carb_Nf	Carb_l1	Carb_l2	Carb_l3	Carb_Hg	Carb_Bk
	SV50BR60	0.8979	0.0001	0.0005	0	0.1351	0
	Sv50BR70	0.9999	0.0016	0	0	0.001	0
	SV50BR80	0.9999	0.0006	0	0	0.0001	0
	SV50BR90	0.9996	0.0047	0	0	0	0
Carb_Nf	SV50BR100	0.9996	0.0005	0.0003	0.0001	0	0
	SV60BR60	0.9993	0.0001	0.0023	0.0001	0	0
	SV60BR70	0.9889	0.0016	0.0013	0.0025	0	0
	SV60BR80	0.9988	0	0.0003	0.0002	0.0001	0
	SV60BR90	0.9983	0.0005	0.0011	0	0.0006	0
	SV60BR100	0.9996	0.0002	0.0001	0.0001	0.0005	0
	SV50BR60	0.0001	0.0038	0.0002	0	0.9528	0.021
	Sv50BR70	0.0005	0.9996	0	0.0006	0.0002	0
	SV50BR80	0	0.9989	0	0.0003	0.0018	0.0003
	SV50BR90	0.0006	0.9881	0	0.0006	0.0011	0.0007
Carb_l1	SV50BR100	0	0.9995	0	0.0002	0.0002	0.0008
	SV60BR60	0	0.9992	0	0.0008	0.0001	0.0003
	SV60BR70	0	0.9889	0	0.0001	0.0003	0.017
	SV60BR80	0.0001	0.9998	0	0.0006	0.0006	0.0001
	SV60BR90	0.0004	0.9992	0	0.0008	0.0003	0
	SV60BR100	0	0.9953	0	0.0001	0.0029	0.0011
	SV50BR60	0	0	0.9979	0	0.0061	0.0187
	Sv50BR70	0.0003	0	0.9999	0	0	0
	SV50BR80	0.0005	0.0007	0.9988	0	0	0
0	SV50BR90	0.0008	0.0003	0.9997	0	0	0.0001
Carb_12	SV50BR100	0.0009	0	0.9999	0	0	0
	SV60BR60	0.0024	0.0017	0.9691	0.0028	0	0
	SV60BR70	0.0167	0	0.909	0.018	0	0
	SV60BR80	0.0094	0.0001	0.9519	0.0106	0	0
	SV60PP100	0.0037	0.0002	0.9951	0.0002	0	0
	SV60BR 100	0.0008	0 0004	0.9998	0.0001	0	0
	SV50BR00	0.0015	0.0004	0.005	0.9952	0	0
	SV50BR70	0.0005	0.0001	0.0000	0.9997	0	0
	SV50BR00	0.0003	0.0001	0.0037	0.9976	0	0
Carb 13	SV/50BR100	0.0002	0.0001	0.001	0.9995	0	0.0001
Ourb_15	SV60BR60	0.0002	0.0002	0.0006	0.0000	0	0.0001
	SV60BR70	0.0000	0.0002	0.0000	0.000	0	0.0001
	SV60BR80	0.0001	0	0.0003	0.9996	0	0.0007
	SV60BR90	0	0	0.001	0.995	0	0.005
	SV60BR100	0	0	0.0016	0.9967	0	0.000
	SV50BR60	0.0008	0,0009	0	0	0.9551	0.0075
	Sv50BR70	0.0001	0	0.0005	0	0.9968	0.0007
	SV50BR80	0	0.002	0.0001	0	0.9977	0.0036
	SV50BR90	0.0001	0.0002	0.0004	0	0.997	0.0014
Carb Ho	SV50BR100	0.0001	0.0017	0.0003	0	0.9995	0.0001
	SV60BR60	0.0145	0.0015	0.0003	0	0.9627	0
	SV60BR70	0.0001	0.0009	0	0	0.9998	0.0006
	SV60BR80	0.0073	0.0002	0	0	0.9983	0.0001
	SV60BR90	0	0	0.0002	0	0.9997	0.0011
	SV60BR100	0	0.0022	0.0035	0	0.999	0
	SV50BR60	0	0.0001	0.0002	0	0.0001	1
	Sv50BR70	0	0.004	0	0.0008	0	0.9979
	SV50BR80	0	0	0	0.0633	0	0.9987
	SV50BR90	0	0	0.0034	0	0.0036	0.9999
Carb_Bk	SV50BR100	0	0	0.0002	0	0	0.9999
	SV60BR60	0	0	0.0018	0	0.0234	0.9973
	SV60BR70	0	0.0172	0	0	0.0448	0.9198
	SV60BR80	0	0	0.0057	0	0.0124	0.9799
	SV60BR90	0	0	0.0134	0	0.0439	0.9686
	SV60BR100	0	0	0	0	0.0022	0.9998

Tabella A.12: output rete Carb 257-150-70-6. Permutazione 4

A.5 OUTPUT RETE MED

CONDIZIONE	E		NETWORK O	UTPUT			
		Med_Nf	Med_I1	Med_l2	Med_I3	Med_Hg	Med_Bk
	SV50BR60	0.994	0.0001	0.0004	0.0014	0	0.0032
	Sv50BR70	0.9993	0.0009	0.0005	0.0001	0	0.0011
	SV50BR80	0.9857	0.0012	0.0187	0.0005	0	0.0007
	SV50BR90	0.9912	0.0147	0.0059	0.0001	0	0.0003
Med_Nf	SV50BR100	0.9978	0.0016	0.0153	0	0	0.0011
	SV60BR60	0.9995	0.0036	0.0002	0.001	0	0.0003
	SV60BR70	0.9958	0.0116	0.0007	0.0002	0.0008	0.0002
	SV60BR80	0.9451	0.0021	0.0205	0.0002	0.0019	0.0003
	SV60BR90	0.9822	0.0075	0.0008	0.0012	0.0069	0.0002
	SV60BR100	0.9977	0.0041	0.0028	0.0003	0.0003	0.0001
	SV50BR60	0.0063	0.9983	0.0015	0	0	0.0004
	Sv50BR70	0.0003	0.9992	0	0.0018	0.0001	0.0009
	SV50BR80	0.0007	0.9983	0	0.0014	0	0.0006
	SV50BR90	0.0009	0.9787	0.0002	0.0257	0	0.0002
Med_l1	SV50BR100	0.0002	0.9749	0.0003	0.0878	0	0.0002
	SV60BR60	0.0001	0.998	0.0003	0.0052	0	0.0002
	SV60BR70	0.0001	0.9993	0.0004	0.0016	0.0002	0.0001
	SV60BR80	0.0001	0.9996	0.0013	0.0002	0	0.0005
	SV60BR90	0.0002	0.9996	0.0005	0.0001	0	0.0006
	SV60BR100	0.0021	0.9995	0.0001	0	0	0.008
	SV50BR60	0	0.0009	0.9814	0.0066	0.0034	0.0021
	Sv50BR70	0.0003	0.004	0.9969	0.0005	0.002	0.0004
	SV50BR80	0.0025	0.001	0.9982	0.0001	0.0005	0.0004
	SV50BR90	0.0004	0.0039	0.9977	0.0001	0.0032	0.0004
Med_I2	SV50BR100	0.0011	0.0003	0.9965	0.0001	0.0016	0.0012
	SV60BR60	0.0053	0.0002	0.9995	0.0001	0	0.0013
	SV60BR70	0.001	0.0001	0.9961	0.0001	0.0019	0.003
	SV60BR80	0.0014	0.0006	0.9805	0.0001	0.0365	0.0008
	SV60BR90	0.0001	0.0005	0.9994	0	0.0012	0.002
	SV60BR100	0.0021	0.0007	1	0	0	0.002
	SV50BR60	0.0001	0	0.0032	0.8943	0.0283	0.0031
	SV50BR70	0.0006	0.0005	0.0032	0.9961	0.0013	0.0001
	SVSUBROU	0.0002	0.0004	0	0.9996	0	0.0007
Mod 13	SV50BR90	0	0.0001	0.0001	0.9998	0.0001	0.0018
weu_is	SV50BR 100	0	0.001	0.0001	0.9900	0.0014	0.0013
	SV608870	0	0.0002	0.0098	0.9999	0.0001	0.0002
	SV60BR80	0	0.0019	0.0013	0.9997	0.0001	0.0003
	SV60BR00	0	0	0.0115	0.9996	0.0001	0.0027
	SV60BR100	0	0.0001	0.0103	0.9967	0.0107	0.0011
	SV50BR60	8900.0	0.0001	0.0001	0.0017	0.9997	0.0000
	Sv50BR70	0.0009	0.0001	0.4668	0	0.2826	0.0113
	SV50BR80	0.0002	0.0009	0.0006	0.0011	0.9995	0.0029
	SV50BR90	0.0014	0.0001	0.0004	0.0035	0.9983	0.0034
Med Ha	SV50BR100	0.0007	0.0007	0.0002	0.0022	0.9994	0.0022
-	SV60BR60	0.0007	0.0004	0	0.0041	0.9992	0.005
	SV60BR70	0.0003	0.0029	0	0.0041	0.9989	0.0022
	SV60BR80	0.0015	0.0012	0.0001	0.0018	0.9995	0.0015
	SV60BR90	0.0006	0.0009	0.0001	0.001	0.9995	0.0033
	SV60BR100	0.0038	0.0003	0	0.0047	0.9992	0.0035
	SV50BR60	0.0016	0.0014	0	0	0.0001	0.9986
	Sv50BR70	0.0001	0.0004	0	0.0015	0	0.9985
	SV50BR80	0.0001	0.0382	0	0.0018	0	0.9833
	SV50BR90	0.0007	0.0004	0	0.255	0.0055	0.1834
Med_Bk	SV50BR100	0.003	0.0018	0.0001	0.0008	0	0.9038
	SV60BR60	0.3122	0	0	0.0043	0.0067	0.181
	SV60BR70	0.0001	0	0.0003	0.004	0.0004	0.9766
	SV60BR80	0	0	0.0053	0.0012	0.0001	0.9968
	SV60BR90	0.0001	0	0.0083	0.0028	0	0.994
	SV60BR100	0	0	0.0079	0.0038	0	0.9993

 Tabella A.13: output rete Med 257-150-70-6. Permutazione 2

CONDIZIONE			NETWORK O	UTPUT			
		Med_Nf	Med_I1	Med_l2	Med_I3	Med_Hg	Med_Bk
	SV50BR60	0.9997	0.0008	0	0.0002	0	0.0031
	Sv50BR70	0.9998	0.0001	0	0.0002	0	0.0007
	SV50BR80	0.9997	0.0001	0	0.0001	0	0.0001
	SV50BR90	0.9994	0.001	0	0.0001	0.0004	0
Med_Nf	SV50BR100	0.9992	0.0006	0.0004	0.0001	0.0002	0
	SV60BR60	0.9999	0.0005	0	0.0001	0.0004	0
	SV60BR70	0.9995	0.0007	0	0	0.0019	0
	SV60BR80	0.999	0.0014	0.0004	0	0.0005	0
	SV60BR90	0.9999	0.0004	0	0.0001	0.0001	0
	SV60BR100	0.9992	0.0005	0.0006	0.0001	0	0
	SV50BR60	0.1234	0.5414	0.0002	0	0.0055	0
	Sv50BR70	0	0.9994	0	0.0005	0.0001	0
	SV50BR80	0.0001	0.9997	0	0	0.0001	0
	SV50BR90	0.0004	0.9989	0	0.0001	0.0001	0
Med_I1	SV50BR100	0	0.9639	0.0023	0.006	0	0
	SV60BR60	0.0001	0.999	0.0001	0.0002	0.0018	0
	SV60BR70	0	0.9995	0.0002	0.0005	0.0005	0
	SV60BR80	0	0.9997	0.0001	0.0001	0.0004	0
	SV60BR90	0	0.9998	0	0.0001	0.0005	0
	SV60BR100	0.0001	0.9998	0	0	0.0005	0
	SV50BR60	0	0	0.9962	0.0133	0.0005	0.0009
	SV50BR70	0.0002	0	0.9998	0.0008	0.0001	0
	SV50BR80	0.0001	0	1	0.0002	0	0.0002
Mad 10	SV50BR90	0.0024	0	0.9994	0.0001	0.0001	0
wed_iz	SV50BR100	0.0038	0	0.9994	0.0001	0	0
	SV60BR60	0.0005	0	0.9999	0	0	0.0001
	SV60BR70	0.0004	0	0.9990	0 0001	0.0003	0.0001
	SVOUDROU	0.0002	0	0.0000	0.0001	0.0001	0.0001
	SV60BR90	0.0034	0 0004	0.9999	0.0001	0.0008	0.0002
	SV60BR100	0.0034	0.0004	0.9998	0.9678	0 0007	0.0118
	Sv50BR70	0.0031	0	0.0007	0.9996	0.0007	0.0001
	SV/50BR80	0.0001	0	0.0001	0.9994	0	0.0001
	SV/50BR90	0.0002	0	0.0001	0.9995	0	0.001
Med 13	SV50BR100	0	0	0.0001	0.9984	0.0013	0.0004
incu_ic	SV60BR60	0	0	0.0008	1	0	0
	SV60BR70	0	0.018	0.0012	0.9319	0.0001	0
	SV60BR80	0	0	0.0001	0.9999	0.0001	0.0001
	SV60BR90	0	0	0.0001	0.9999	0.0002	0.0004
	SV60BR100	0	0	0.0026	0.9998	0.0003	0.0001
	SV50BR60	0.0001	0	0.0002	0.0007	0.9996	0.0001
	Sv50BR70	0	0	0.7489	0.0013	0.4766	0
	SV50BR80	0.0001	0	0.0013	0.0038	0.9851	0.0001
	SV50BR90	0.0004	0	0.0001	0.0003	0.9944	0.0002
Med_Hg	SV50BR100	0	0	0.0001	0.0007	0.9993	0.0009
	SV60BR60	0.0005	0	0	0.0001	0.9998	0.0002
	SV60BR70	0.0001	0.0001	0.0005	0.0005	0.9963	0
	SV60BR80	0.0001	0.0001	0	0.0004	0.9995	0.0002
	SV60BR90	0.0007	0	0	0.0002	0.9999	0.0037
	SV60BR100	0.0008	0	0	0.0008	0.9978	0.0016
	SV50BR60	0	0.0017	0.0001	0.0003	0	0.9742
	Sv50BR70	0	0.0001	0	0.0012	0	0.9995
	SV50BR80	0	0	0	0.0009	0	0.9999
	SV50BR90	0	0.0001	0	0.0002	0	0.9999
Med_Bk	SV50BR100	0.0001	0	0	0.0002	0.0004	0.9998
	SV60BR60	0.0003	0	0.031	0.0002	0.0139	0.0615
	SV60BR70	0	0	0.0002	0.0036	0	0.9991
	SV60BR80	0	0	0.0058	0.0001	0	0.9999
	SV60BR90	0	0	0.0038	0.0154	0.0005	0.9932
	5V60BR100	0	0	0	0.0011	0	0.9999

Tabella A.14: output rete Med 257-150-70-6. Permutazione 3

CONDIZIONE			NETWORK O	JTPUT			
		Med_Nf	Med_I1	Med_l2	Med_I3	Med_Hg	Med_Bk
	SV50BR60	0.797	0.0002	0	0	0	0.537
	Sv50BR70	0.999	0.0013	0.0001	0	0	0.0006
	SV50BR80	0.9996	0.0026	0.0001	0	0	0.0002
	SV50BR90	0.9996	0.0004	0.0001	0	0	0.0001
Med Nf	SV50BR100	0.9993	0.0004	0.0033	0	0	0.0005
_	SV60BR60	0.9987	0.0054	0.0001	0	0.0001	0.0002
	SV60BR70	0.9991	0.0004	0.0003	0	0.0005	0.0002
	SV60BR80	0.9935	0.0007	0	0	0.0027	0.0005
	SV60BR90	0.9997	0.0008	0.0001	0	0.0003	0.0002
	SV60BR100	0.9998	0.0002	0.0003	0	0.0001	0.0001
	SV50BR60	0.0029	0.9816	0.0003	0	0	0.027
	Sv50BR70	0.0001	0.9877	0	0.0025	0	0.0019
	SV50BR80	0.0022	0.9999	0	0	0	0.0019
	SV50BR90	0.0004	0.9994	0	0.0003	0	0.0002
Med_I1	SV50BR100	0	0.9956	0.0021	0.0028	0	0.0001
_	SV60BR60	0.0001	0.9997	0	0.0001	0.0007	0
	SV60BR70	0	0.9995	0.0002	0.0002	0.0004	0
	SV60BR80	0	0.9999	0	0	0.0006	0
	SV60BR90	0	0.9997	0	0	0.0024	0
	SV60BR100	0.0009	0.9998	0	0	0.0002	0.0003
	SV50BR60	0	0	0.994	0.007	0	0.013
	Sv50BR70	0.0001	0	0.9996	0.0001	0	0.0005
	SV50BR80	0.0003	0	0.9998	0	0.0001	0.0005
	SV50BR90	0.0009	0	0.9999	0	0	0.0003
Med_l2	SV50BR100	0.0002	0	0.9999	0	0.0001	0.0003
	SV60BR60	0.0005	0	0.9999	0	0	0.0004
	SV60BR70	0.0005	0	0.9863	0	0.0144	0.0009
	SV60BR80	0.0003	0	0.9901	0	0.0122	0.001
	SV60BR90	0.0002	0	0.9999	0	0.0001	0.0006
	SV60BR100	0.0007	0	1	0	0	0.0003
	SV50BR60	0.0053	0	0.0031	0.2851	0	0.0644
	Sv50BR70	0.0001	0	0.0002	0.9999	0	0.0001
	SV50BR80	0.0005	0.0001	0	0.9996	0	0
	SV50BR90	0	0	0	0.9999	0.0009	0
Med_I3	SV50BR100	0	0	0	0.9999	0.0019	0
	SV60BR60	0	0.0001	0.0005	1	0	0
	SV60BR70	0	0.076	0.0013	0.9486	0	0
	SV60BR80	0	0	0.0003	1	0.0002	0
	SV60BR90	0	0	0.0002	1	0.0002	0
	SV60BR100	0	0	0.0002	1	0.0023	0
	SV50BR60	0.0001	0.0001	0	0.0002	1	0.0005
	Sv50BR70	0.001	0	0.0004	0.0021	0.9987	0.0001
	SV50BR80	0.0028	0	0.0001	0.0007	0.9923	0.0008
	SV50BR90	0.0004	0.0001	0.0003	0.0011	0.9686	0.0004
Med_Hg	SV50BR100	0.0127	0	0	0.0001	0.9997	0.0004
	SV60BR60	0.0006	0.0001	0	0.0003	0.9999	0.0005
	SV60BR70	0.0008	0.0001	0	0.0002	0.9999	0.0003
	SV60BR80	0.0005	0.0004	0	0.0001	0.9996	0.0003
	SV60BR90	0.0006	0.0001	0	0.0005	0.9999	0.0005
	SV60BR100	0.0001	0.0002	0	0.001	0.9999	0.0015
	SV50BR60	0	0	0.0008	0.1327	0	0.9756
	Sv50BR70	0.0003	0.0034	0.0068	0	0	0.9999
	SV50BR80	0.0005	0.0001	0.0003	0	0	1
	SV50BR90	0	0	0.0007	0	0	1
Med_Bk	SV50BR100	0.0001	0.0001	0.0004	0	0	1
	SV60BR60	0.0002	0.0001	0.0004	0.0023	0	0.9999
	SV60BR70	0	0.0004	0.0134	0	0	1
	SV60BR80	0	0.0001	0.0001	0	0	1
	SV60BR90	0	0.0002	0	0.0001	0.0012	0.9998
	SV60BR100	0	0	0	0.0002	0	1

 Tabella A.15: output rete Med 257-150-70-6. Permutazione 4

A.6 OUTPUT RETE COMPLESSIVA

		med	0.0043		0.0045	0.0044	0.0045	6000	0.0074	0:0099	0:000	100	2000.0	60000	0.0018	0.0017	0.0014	0.0009	0.0023	0.0185	0.0409	0.0145	0.0166	0.0117	0.0125	0.0053	0.0064	19101	0.0012	0.0029	0.0013	0.0024	0.0035	0.0012		740010	00	0.0122	0.0459	0.0172	0.0154	29000 99000	0.0035
		carb	0.0009		0000	0008	0.0029		0000	0000	0.0012	0.0002	8	0000	0	0.001	0.0001	0000	0.0028	19000	0.0042	0.0217	0.0252	0.0229	0.0662	0.0166	19000	997010	0.0032	0.0021	0.0121	0.0083	0.0107	0.0057	0.0108	0.201	0.0521	0.0288	0.1563	0.0491	0.0679	0.0897	0.095
	¥	0N-X	0.0191	tinn 10083	0.0142	0.0555	0.0479	0.063	0.027	0.0184	0.0078	0.0914	0.0317	81700	0.0191	0.0028	0.0062	0.0037	0000	8000	-	•	0	0	0	0.0003	00013		71000	0.0049	0.0128	0.0357	0.0419	99900	0.0082		0000	0.0008	-	0000	0000	0000	0.0051
		SOF	0.0216	00477	0.0157	0.0177	0.0178	2/0010	0.0077	0.0049	0.0069	0.008	0.085	0.064	0.0088	0.0471	0.0395	0.0728	0.0404	0.0047	0.0219	0.014	0.0462	0.0216	0.1657	0.03	60000	EDUUUU	0.0182	0.0096	0.0149	0.0066	0.002	89	0.0188	0000	1000	0	0	0	0	70000	0.0002
		sjr	002	91000	0.0148	0.0937	0.141	0.0942	0.0737	0.0693	0.0212	0.0411	6690	//9000	0.0052	0.023	0.0373	0.0367	0.0034	0.0061	0.0026	0.0075	0.0019	0.0006	0.0005	0.0087	10000	0.0016	0.4109	0.1739	0.111	0.1658	0.0566	0.1605	0.1346	0.0014	00014	0.0013	0000	0.004	1000	0.0015	0.0041
		med	0.0471	00354	0.0366	0.0466	0.1769	981 n 1980 0	0.1447	0.1735	0.0013	0.0085	0.0015	00046	0000	0.0014	0.0026	0.0027	0.0037	0.0061	0017	0.1662	0.1336	0.2404	0.1072	0.1073	0.1333	0.0349	0.0761	0.0773	0.0746	0.097	0.1051	0.0878	0.1387	0.0030	0.002	0.0019	0.0031	0.0015	800	9/7nn	0.0231 0.0078
		carb	0.006	9000	0.004	0.0005	0.0008	9000	0.0006	0.004	800	00000	0000	9000	0.0001	0.0003	0.0003	0.0003	0.0058	0.0042	0.0101	0.0938	0.0394	0.0226	0.016	0.0051	0:0041	0.0249	0.0081	0.0046	0.0046	7000	0.0033	0.0028		0.0002	0.0477	0.0321	0:017	0.0346	96/010	0.0352	0.0164
	БЦ	X-U0	0.002		0.0002	0.0009	0000	9000 0000	0.0004	0.0002	0000	0:001	0.065	0.0112	0.0047	0.0092	0.0061	0.0088	0.0003	0000	7000	0.013	0.0017	0.0269	0.0036	0.003	0.004	0.0001	0.0256	0.0212	0.0274	0.018 0.048A	0.0104	0.0311	0.0216	CUUU	0.0002	0.0002	0000	0.0002	0000	5000 0000	0.0006
		SOL	50000		0000	0.0001	0.000		0.001	0000	0.0063	0.0002	2000	70000	0.0002	0.0002	0.0002	0.0001	0.0029	88000		120010	0.0023	0.0016	0.0021	0.0002	00000		70000	0.0002	0000		0000	0000		0.0364	00081	0.008	0.0105	0.0122	0.0186	79000	0.002
		sjr	0.0059	\$100	0.0064	0.0085	0.0129	90000	0.0231	0.0413	0.0027	0.0034	0.0094	0.0331	0.0025	0.0561	0.0361	0.0453	0.1252	0.0358	0.2372	0.4067	0.2408	0.0713	0.0543	0.0261	0.0282	0.0048	0.048	0.0352	0.0034	0.0034	0.0013	0.0208	0.0081	95000	0.0023	0.0028	0.004	0.0018	80	7001	0.001
		med	0.0018	87000	0.0018	0.0012	0.0016	0.0012	0.001	8000	00003	0001	<u>)</u>	0000	0000	0.0003	0.0002	0.0002	0.003	0.0107	0.0125	2000	0.0237	0.061	0.1591	0.0065	0.0031	0.0231	0.0011	0.0039	0.0047	0.006	0.0072	0.0041	0.0066	0.095	0.0116	0.0081	0.0903	0.0103	0.0153	0.0075	0.0126
		carb	0.0022	8000	0.0016	0.003	0.0129	tinnn 0000	0.0028	60000	0.000	0000	-		0	-	-	-	-	0.004		0	0	0	0.0001	0.0037	970070		41000	60000	0.0394	00400 09000	0.1205	0.0061	0.0319	000	0.0022	0.001	2000:0	0.0004	8000	00133	0.0685
	<u>.</u>	0N-X	0.1409	890U	0.1249	0.103	0.0712	900	0.0669	0.0746	0.2839	0.1444	0.1142	0.0493	0.1324	0.051	0.0697	0.0413	0.0357	0.2451	0.0713	0.0325	0.0298	0.024	0.0337	0.0316	0.0316	0.0010	0.0674	0.1069	0.0699	0.0689 0.0645	0.0692	0.0434	0.0488	0.066B	0.0628	0.074	0.0404	0.0504	106010	9/9000	0.0612
		SOF	0.0126		0.0124	0.0102	0.0071	7/INN	0.0135	0.0262	0.0134	0.0429	0.0676	0023	0.076	0.0341	0.0483	0.0461	0.2328	0.0016	0.0034	0.0025	0.0022	0000	0.0013	0.0025	10000	0.000r	0.0015	00000	0.004	90000	0000	60000	9000	0,000	0000	0.0001	0000	0000		0000	0.0002
		sjr	0.0251	0.0359	0.0236	0.0635	0.0897	0.1115	0.0919	0.0318	0.0011	0.0101	0.0119	0.0715	0.0037	0.0419	0.0347	0.0559	0.0002	0.008	0000	0.006	0.0004	0.0001	0.0003	0.1276	0.1631	500 to	84700 0.0398	0.0205	0.0654	0.0764	0.0218	0.2492	0.1338			0	-	-	-		0.0001
		med	0.006	0007	00013	0.0014	0.0014	1000	0.0021	0000	0.0003	0.0016	20000	6000	0.0032	0.0014	0.0008	0000	0.0001	0000	0.006	0000	0.0003	0.0005	0.0003	0.0044	6/00/0	/E/00	0.0013	0.002	0.0138	0.0216	0.0476	0.0057	0.0106	0.0118	0.0429	0.0616	0.0702	0.0477	0.028	0.0916	0.0464
		carb	0.011	tellun Follor	0.0074	0.0187	0.0478	5010	0.018	0.0136	0.006	0.0037	0000	5000	0000	0.0013	0.0022	0.0032	0.0002	2000:0	800	0.0138	0.0127	0.0329	0.0182	0.0252	0.0182	EZIUU.U	0.1466	0.1217	0.2443	0.1528	0.1514	0.2113	0328	TUUU	60000	0.0005	0000	0.0002	90000	70000	0.0116 0.0013
F	2	0N-X	0.0295	800	0.0168	0.0138	0.0135	0.0061	0.0158	0.0421	0.1011	0.1166	0.1155	0.0279	0.0223	0.016	0.0357	0.0288	0.1893	0.0073	62000 0002	0.0537	0.0113	0.0052	0.0019	0.0034	90000	0.001	00222	0.011	000	0.0039	0.0033	0.0022	00026	0002	970076	0.0031	0.0002	0.0016	970078	0.0054	0.0087
UTPU		SOF	0000		0	0.0001	-		0	1000	0.0022	0000	/90010	0.0025	0.0188	0.0035	0.0031	0.0031	0.0068	0000	0.001 0.001	8700	0.0046	0.0169	0.0055	-	-	-	1000	0.008	0000	0000	0	0.0002		-		-	0000	-	-		
ORK		sjr	0.0534	91400	0.0731	0.0821	0.1006	0.1968	0.2233	0.3589	0.0018	0.0408	820010	9000 9000	0.0032	0.007	0.0109	0.0084	0.008	1/20010	8000	1000	00004	0000	0.0001	0.0175	0.0576	0.0077	0.0148	0.0205	86000	0.024	0.0274	0.0131	0.0155	TUUU U	87000	0.0092	80000	0.0026	82000	79000	0.0077
NETW		med	0		0	0	•	- 0	0	0	-	-	-	- 0	0	-	0	0	-	0	-	• •	-	0.0002	0.0001	0	- 8		- 0	0	0000	0.000	0.0005	-		700070	0.024	0.0247	0.1958	0.0544	0.0373	192010	0.028
		carb	0.0617	0.0997	0.0633	0.0312	0.0899	0.0488	0.0919	0.1417	0.0085	0.0026	9000	0.0023	00003	0.0017	0.0019	0.0016	0.0161	0.3112	0.1582	0.2035	0.1457	0.0328	0.1066	0.3092	0.2133	R990.0	0.0134	0.0156	0.0076	0.0099	88000	0.0139	2001	962U U	0.0253	0.0162	0.0123	0.0159	0.036	0.0197	0.0214 0.0312
	-	X-U0	0.0168	5/IIII	0.0325	0.0134	0.0151	0.0259	0.044	0.0739	0.0049	89000		9000 9000	0.0059	0.0197	0.0125	0.0105	0.0172	0.2256	0.2771	68900	0.0511	0.0107	0.0164	0.0852	0.0852	0.2/98	9000	0.0087	00023	0000	0.0052	0.0047	0.0039	UNBUI	0.0496	0.0555	0.0254	0.0805	0.0612	0.0292	0.0116 0.0389
		SOF	0.013		0.0057	0.0032	0.0017	A90010	0.0052	0.0091	0.0323	0.0164	0.0726	10027	0.1146	0.112	0.0768	0.0782	0.0308	0.006	0.0064	0.0035	0.0022	000	0.0005	0.0018	0.0015		5000	0.0006	<u>100</u>		0	0000	0000			0	-	-	-		
		sjr	0.0755	8/00 10/28/	0.0648	0.0979	0.1061	0.1098	0.0715	0.0412	0.0439	0.0689	0.0535	0.0492	0.0239	0.0352	0.0379	0.0397	0.0034	0.0276	0.0075	000	0.0002	0.002	0.0027	0.0487	0.058	0.0020	875110 0.0693	0.0437	000	0.1124	0.114	0.0634	0.0785	0.0155	0.0194	0.0125	0.0072	0.0062	0.0119	0.0189	0.0466
		med	0.004		20000	0.0003	8000	70000	0000	0.0004	0.001	0000	-	- 0	0	0	0	-	0.0001	0.0167	0.0012	2000	0.0002	0.0001	0.0002	0.000	0000	0.1419	- 0	0.0001	000	0000	0.0016	0		0.7149	0.9513	0.9636	0.6863	0.9755	0.9388	0.9459	0.5972
		carb	0.0159	/67U U	0.0093	0.0504	0.0627	7/Inn	0.0137	0.0034	0.0641	0.0376	0.1044	0.2507	0.0165	0.0935	0.087	0.1302	0.0015	0.0031	0.0024	0.0049	0.0041	0.0054	0.0079	0.0182	0.0174	0.0004	0.5434	0.3116	0.4934	0.3438	0.1196	0.5845	0.4337		8000	0.0002	0.0001	-	0.0002	/IMIN	0.0024
	f	X-U0	0.006	9000	0.005	0.0004	00004	¥0000	0.0005	0.0006	0000	0000	8	40000	0.0013	0.0003	0.0004	0.000	0.0006	0000		8	80	0000	0.0002	<u>800</u>	8		70000	0.0002	0000		0000	0.0002			1000	0.0001	0.0002	0.001	000		0.0002
		SOL	2060.0	0.0526	0.0607	0.127	0.0298	0.0318	0.0343	0.0321	0.7214	0.7101	0.9427	C68870	0.7359	0.8438	0.863	0.894	0.0993	0.0027	0.0012	1000	0.0004	0.000	0.0001	0.0054	0.0067		0.1783	0.0619	0.0217	0.0118	0.0016	0.0783	0013 0013	2700-0		-	-	-	-		00
		sjr	0.8107	0.7559	0.7457	0.6911	0.7575	0.6299	0.7819	0.8855	0.0203	0.2875	0.0732	0.0367	0.0082	0.0255	0.0697	0.0425	0.0025	0.0345	0.0054	00000	0.0005	0	0.0002	0.0664	0.1021		0.0138	0.0165	0:0073	0.0126	0.0108	0.0188	0.0152	0000	0000	0.0001	-	-		0000	0.0007
			SV50BR60	SV5UBH/U	3V50BR90	V50BR100	V60BR60	VIBUBIK/U	V60BR90	V60BR100	SV50BR60	SV50BR70	V/50BR80	V50BR100	V60BR60	V60BR70	SV60BR80	V60BR90	V60BR100	SV50BR60	SV50BR70	SV50BR90	V50BR100	V60BR60	SVB0BR70	V60BR80	SV60BR90	VAUBH1UU	SV50BR70	SV50BR80	SV50BR90	V50BR100	V60BR70	V60BR80	V60BR90	VENBREN	V50BR70	SV50BR80	SV50BR90	V50BR100	V60BR60	SV60BR80	SV60BR90 V60BR100
	ZIONE		55			sjr				N				Sor Sor					S			- 103	S X-U0									carb								S			
	CONDI.																				1		Ŧ												1								

Tabella A.16: output rete complessiva. Condizione di funzionamento Nf

CONDIZIO	Щ			₹					Ξ					12				_	<i>с</i>				£					≚		
		sjt	SOF	X-U0	carl	med	sjr	SOL	0N-X	carb	med	sjr	SOL	X-U0	carb	med	sji s	0I 0I	-X ca	rb me	d sjr	SOL	0N-X	carb	med	sjr	SOF	0N-X	carb	med
	SV50BR60	0 0.094	10000	7 0.0002	0.025	1000	5 0.160E	0.0003	0.0483	0:0503	-	0.1512	-	0.0056	0.0114 0	1.0105 0.	0345 0.0	015 0.0	582 0.0	JB5 0:00	0.016	1 0.000	0:0014	0.0035	0.0849	0.2381	<u>100</u>	0.0603	0.003	0.0087
	SV50BR7C	0.034	13 0.000	9 0.0002	0.186	8 0.000	7 0.2536	0.0001	0.0053	0.0164	0.0001	0.061	-	0.0012	0.1223 (0.0273	1693 0.0	005 0.0	407 0.18	00.0	19 0.0027	7 0.0001	0.0074	0.0032	0.1037	0.3409	0.0032	0.1291	0.011	0.0048
	SV50BR80	0 0.014	12 0.00 Å	4 0.0002	0.222	00000	8 0.2597		9000	0.0164	0000	0.0318	0	0000	0.077 (0 000	1409 0.0	0.0	412 0.1	158 0.000	24 0.003	1 0.0001	0.0076	9000	0.0535	0.3117	90000	0.0624	0.0165	0.0044
	SV50BR90	0 0.025	2 0.000	6 0.0002	000	7 0.013	7 0.2574	0	0.0143	0.012	0.0004	0.0956	0	0.0012	0193	0.0882	00 6820	00	525 0.19	04 0.000	22 0.001	000	0.0022	0.0026	0.0401	0.1107	0000	0.2255	0000	0.0073
sjr	SV50BR10	10 0.024	14 0.001	1 0.0002	0.046	6 0.007	7 0.240£		0.0165	0.0196	0.0002	0.0647	0	0.0016	0.0202	0.0464 0.	004 0.0	006 0.0	549 0.1	07 0:00	18 0.0023	00000	0.0023	0.0037	0.0434	0.1445	0.0013	0.1184	0.0112	0.0062
	SV60BR6L	0	0.005	1 0.0002	0.25	9 0.000.	7 0.1867	0	0.0062	0.0162	0.0001	0.0226	-	0.0014	0.079 (1.0205 0.	1007 0.0	006 0.0	403 100	.0010 696	19 0.0048	20000	6/00/0	0.0071	0.0504	0.2914	0.068	0.0464	0.0167	0.0029
	SV60BR7C	0 000	10001	8 0.0002	0.014	8 0.0061	8 0.1599	0.0001	0.0494	0.0339	0000	0.1635	-	0.0024	0.0074 0	0.0246 0.	0263 0.0	013 0.0	543 0.0	171 0.000	20010 60	00000	60000	0.0031	0.0506	0.1517	60000	10007	0.004	0.08
	SV60BR80	0000	80.00	6 0.0002	310.0	8 0.010	8 0.2044	-	0.0328	0.0292	0.0001	0.1786	-	0.0043	90000	10182 0	.013	001	00 669	23 0.00	2900:0 20	2 0:0002	<u>10</u>	0.0045	0.0608	0.3113	0.0005	0.2232	0.0046	0.0106
	SV60BR90	00	10 001	90001	990	3 0.006	3 0.236t		000	0.0165	0.001	0.0234	_	0.0014	0.0155	0.082	0189 0.0	0.0	0.0	329 0:00	18 0.004	70000	0.0034	0.0119	0.0144	0.1762	0.001	0.0463	0.0113	0.0106
	SV60BR10.	000	8000	0000	000	4 0.003	9 0.122%	00000	0.2305	0.0536	-	0.0641	_	0.0038	0.0014	0.0157 0.	0088	011 0.0	331 0.00	002 000	1 0.036	1 0:000	80000	0.0089	0.0092	0.0849	0.0005	0000	0.0011	0.097
	SV50BR60	000	8 0.01	2 0.0018	80		0.005	0.9257	0.0603	0.002	-	0.0017	0.0193	0.0029	1000	0	0075 0.1	162 0.0	464	200	21 0.0149	00000	0000	0.001	0.0006	0.005	0.033	0.0002	-	0.04
	SV50BR7L	0.016	51 0.092	80000 6	000	2	0.012£	9 0.9519	0.1138	0:0039	-	0.0078	0.008	0.0111	8000	0	0.0	1364 0.0	800	000	080:0 20	0.000	0000	0.003	0.0012	0.0012	0.029	0.005	-	0.0511
	SV50BR80.	8	13 0.019.	9 0.0013	8	0	780010	0.9756	0.186	0.0049	_	0.0035	0.0256	0.0056	1000	0.000	0088	1326 0.0	† 22	8	12 0.053	0000	0.0012	0.005	0000	800	0.0172	000	0	0.2409
	SV50BR90	8	7 0.057.	200001 82	8	2 0	0.010;	0.9473	0.158	0.0066	-	0.0059	0.003	0.0204	2000	0 2000	0105 0.	0.0	33	8	0.130		8000	0.004	0.0013	0.0007	0.0216	0.0002	-	0.0622
80I	SV5UBR1U		610.0 14	90000 8			0.0100	0.9774	0.20/6	0.0021		89000	0.0266	0.0136		0.14		1219 U.1 N24 D.0	122		15 0.032		0.0007	0.006	0,000	00014	0000			0.1912 0.reno
	SVADBR7C		14 DIRE	1000 A			41010	0.918	0.0514			TUD24	1000	9000				10 PM			1000 T		JU	0000	0.001	# 0000	10014	100		
	SV60BR80	0000	11 0.211	9 0.0005	0006	4	0.0146	0.7242	0.0624	0.0027		0.0087	0.0077	0.0548	8000	9000	00	1429 0.0	523	000	12 0.093	0.000	0.0013	0.005	0.0026	0.008	0.0233	0.0015	0	8000
	SV60BR90	0 0.002	24 0.072	5 0:000	00	6	0.0082	0.833	0.0483	0.0016	0	0.0042	0.0289	0.0483	800	0 2000	0025 0.0	1302 0.1	8	000	12 0.026	0000	70000	0.0015	0.001	0.0011	0.0107	0.0017	0	0.0159
	SV60BR10	0 0.026	31 0.07E	5 0.0017	000	1 0.000	1 0.0081	0.8153	0.0516	0.0042	_	0.016	0.0164	0.1305	8000	0.000	0028 0.0	0.1	921 0	000	01 0.032	7 0:000	0.0004	0.0006	0.0041	0.002	0.0101	0.005	0	0.0174
	SV50BR60	0000	1000 1000	2 0	100	3 0.036	9 0.034£	0:003	0.6573	0.0892	0.004	0.0271	0.0004	0.093	0000	0.005	00	004 0.1	026	000	0.386	1 0.0136	0:004	0.432	0.0161	0.1427	-	0.0006	0.0014	0.123
	SV50BR7C	0 0:00	15 0.000	10001	000	7 0.054	4 0.0595	5 0.0001	0.3983	0.0099	0.0007	0.1042	0	0.0028	0000	1,2533 0.	000 010	0.0 7000	31 0.0	JOE 0:00.	11 0.006	90000	0.0008	0.0151	0.0113	0.0131	0	0.0175	0.0011	0.0422
	SV50BR80	0 0.011	18 0.000	16 0.0002	000	9 0.027	1 0.0547	0:0001	0.347	0.0349	0.0002	0.2577	-	0.0047	0.0012	0.067 0.	0027 0.0	017 0.0	545 0.0	01 0:00	0.016 0.016	0000	0:0004	0.0084	0.0387	0.0414	0000	0.0231	0.0013	0.031
	SV50BR90	000	0000 #	μ 0	000	1 0.136	1 0.0241	0.0002	0.8011	0.0731	0.003	0.0311	0.0001	0.0031	1000	0 62201	001	004 0.1	028	000	14 0.075	900.0	0.0002	0.0826	0.0038	0.0079	0	0000	0.0013	0.1704
11 on-x	SV50BR10	10 0.003	31 000	9 0.0001	0000	2 0.006	1 0.0326	00000	0.5551	0.0893	-	0.0222	0.0002	60000	6000	10001	0012 010	0.1	8	8	9 0.110	0000	10000	0.0234	0.0116	0.0215	0000	00000	0.0022	0.0366
	SV60BR60	0000	34 0.000	10000 9	000	1 0:007	6 0.015£	0:0007	0.3732	0.3623	-	0.0105	0.0002	0.008	0.005 (1.0014 0.	0012 0.0	014 0.0	848 0.0	01 0.00	8 0.200	2 0:0016	0.0002	0.0288	0.0403	0.0116	0.0075	0.0001	0.0108	0.016
	SV60BR7C	0 0.000	12 0.008	1 0:0001	000	8 0.001;	2 0.0264	5 0.0026	0.2761	0.1087	0	0.068	0.0002	0.0042	0.0009	10018 0.	0105 0.0	1032 0.0	842 0.00	101 0.000	88 0.146	70007	0.0006	0.0026	0.027	0.0316	0.0057	0.0014	0.001	0.0134
	SV60BR80	0.31	16 0.018	γ 0.0002	0.015	4 0:000	3 0.023:	960008	0.2061	0.0845	0	0.0376	0.003	0.0061	2900.0	0.0014 0.	0136 0.0	047 0.0	345 0.0	101 0.00 <u>0</u>	51 0.160	/00010 /	0.0011	0.0021	0.0249	0.0195	0.0158	6000	2000	0.013
	SV60BR90	000	29 0:00	7 0:002	8	0000	1 0.004	5 0.0629	1 0.2474	0.0277	-	0.0014	0.0041	800	300	0 2000	0021 0.0	0.0	165	0.02	76 0.250	10000	800	0.008	0.0058	0.005	0.0682	0	7000	0.1067
	SV60BR10.	0.00	10000	15 0.0002	8	7 0.000	5 0.004	9 0.0145	0.1854	0.0277	-	0.0005	0.0044	800	3000	0000	000	0028	2	- 0:02	14 0.082	4 0.001	0.0023	0.0015	0:004	0.002	0.0404	-	8000	0.1441
	SV50BR8L	8	20 20 20 0000 20	16 0.0002	Ő	17 0.006	6 0.008	0.001	0.0396	0.5371	0.002	0.006	0.006	0.0354	0.0151	0000	000	012 0.0	783 0.0	JO6 0.02	81 0.057	1 0.0067	0000	0.1144	0.0981	0.0046	0.0272	0	0.1831	0.0062
	SV50BR7L		2000				2 0.010.	0.0006	0.127	0.5999		0.0016	800	0.0139	00049			100	906	107 0.018	33 0.129 [.]	4 0.0029		0.0178	0.0505	0.081	0.0761	-	0.0855	0.0091
	SV5UBH8L		7000	1 U.UUU4	inni -	4 U.UUZ		9 UUU45	97770	0.6664	=	1977N N	nuuu	0.0493	2000 N		nu au				03 U.264			/71010	0.1564	/9000	0.0141	inni,	0.0185	1210.0
	SV5UBHSI		4 UUU				10.013.		1487	9	-	4.000 o	/nmn	50000	50000	7 m			10 IC		77 N. 1.352	14000 0	Subur 1	0.0411		855	917NN		/7000	9710 0
Call				70000 0		2 0.001.	7 0.0175		40 I I I I I I I I I I I I I I I I I I I	0.6420		07000	70000					100/E 0.1		100 tu		7+nnin o uuut		1000 0	#1 60	8000	210.0 0.012			0.00E7
	SV60BR7C	000	100	10000	600	5 0002	4 0.0397	00002	962010	0.4223		0003	0000	800	2900				57 00	117 0.00	10069	0002	0000	0.0379	0.0533	000	9000	, 800	82200	0.0028
	SV60BR80	0 0.019	39 0.004	4 0.0002	0.026	8 0.001	3 0.027	0.0005	0.0565	0.6068	0	0.0023	0.0002	0.018	0.0232 (0.000	0031 0.0	012 0.0	84 0.0	JOB 0.013	32 0.135	1 0.0037	0.0002	0.0369	0.0718	0.0229	0.0526	0.0001	0.1038	0.0041
	SV60BR90	0 0.08	37 0.001	8 0:0002	000	2 0.007	5 0.016	0.0008	0.148	0.6804	0	0.0051	0.0001	0.0443	0.0065	0.0002	0007 0.0	1026 0.1	111 0.00	103 0:00	88 0.155	3 0.004/	0:0001	0.0251	0.0636	0.0107	0.0169	0.0001	0.0529	0.0092
	SV60BR10.	10 0.019	32 0.006	1 0.0002	0.010	7 0.001;	2 0.0166	9 0.0017	0.0891	0.5233	-	0.0035	0.0003	0.0198	0.0085	0.0002	0028	002 0.(93 0.0	0.0	0.210	7 0.0036	0.0002	0.0218	0.0461	0.0138	0.0341	0	0.0323	0.0091
	SV50BR60		0	2000	8	2 0.003.	4 0.009	0	8000	0000	0.6183	-	0.004	0.00	0000	158	_	00	133 0.0	JO5 0.013	91 0.000	2 0.013	0.0427	0.0581	0.0075	0.00	0	0	0.0206	0.0585
	SV50BR7L		0	6000	8	0 0.002	5 0.003	0	0.0003	0.0005	0.7718	-	0.0012	0.00	0.0072	820	_	00	96 0.0	J33 0.06	9 0:000	9 0.027	0.0253	0.0616	0.0105	0.001	0.0012	-	0.1335	0.0441
	SV50BR8L		0	60000	8	0.008	1 0:004		0.0006	0.0009	0.8707	0	0.0005	0.008	0.0135	10322	0	0	199 0.0	127 0.02	9000	1 0.0042	0.017	0.0164	0.019	0	8000	0	0.0771	0.0109
	SV50BR90		0	10000	8	1 0.077	8 0.005.	0	000	0.0022	0.8258	0.0001	0.001	0.004	2900.0	8/601	00	001	362 0.00	J32 0.06	9000	0.0038	0.0046	0.0058	0.0161	0	0.0002	0	0.086	0.0
mec	SV50BR10.			0.0012	8	0.007	9002 9	0	0.0015	0.006	0.8217	0.001	0.000	0.0002	0.0136	10765	0	00	135 0.0	11. 0.11	0000	0.001	0.0421	0.0023	0.0201	-	0000	0	0.0113	0.0166
	SV6UBH6L			7100.0		17 N.U56	390010 Z		SIUUU	8900	0.9311	1000	Luuuu	0.000	1.023	6/90			0.0 022	104 0.09	.0000 S		ASUU U UUUSA	/110/0	1000	-	70000		0.1168	8710.0
	SVOUDIK/L	- 	э с	0.0018	3	ninin 7	/ 0.001		AUUUU 0 0000	AU00 0	0.94.00	inni •	7000	/000	1020	0/00 •~~~		n .		100 Dia	ہ د ب		0.0100	00000	Contraction of the second seco	- c	in ma	⇒ ¢	1970	0.003
	SVOUDING.		> c	0.000	30	7000	2 0.0045		0,000	0.000E	C12C.U		0.0004	0.000	C/IU/0	1021		U 00	1/1 1/1	140 U.U.4(o c g c	U.UU0/	0/7N'N	0,000	70200 U	- -	7nnnn		0.000	0.0100
	SV60BR10		- -	0.0016	10	0000	4 0.0071	0	0.0025	0.0083	0.9252	0.0001	0.0001	90000	0.0049	10001		00 JOO	000 160	110 U.U. 130 0.130	0 0 0 0	01006	700010	0.0173	0.0416	- o	0.0001	. 0	0.2542	0.0203

Tabella A.17: output rete complessiva. Condizione di funzionamento I1

CONDIZIO	Ш			ĥ					Ξ					12					3				Нg					Ŗ		
		sji	1 SOI	X-U0	carb	med	sjr	Sol	X-00	carb	med	sjr	SOL	0N-X	carb	med	sjr s	0I 0	1-X Ca	rb me	d sjr	SOL	0N-X	carb	med	sjr	SOL	0N-X	carb	med
	SV50BR6L	0.03	15 0.006.	2 0.0004	0000	1 0:000	5 0.0699	9 00000	9 0.0241	0.0146	0.0001	0.1882	0.001	0.0113	0.0354 (0.0173 0.	0245 0.0	026 0.0	716 0.0	000 180	90 0 00	0000	0.0038	0.0044	0.1756	0.2105	00000	0.0939	0.0014	0.0054
	SV50BR7L	100 0.	58 0.004	4 0.0004	0000	9 0.001;	1 0.0694	1 0.0002	2 0.0382	0.0133	10000	0.278	-	0.0063	0.0172 (0.0289 0.	0341 0.0	029 0.0	576 0.0	00.0	0.007	0000	0000	0.0021	0.1417	0.144	0000	0.1273	0.0012	0.0046
	SV50BR8L	800	51 0.000	9 0.0004	. 008	9 0.004	9 0.1095	0000	1 0.0493	0.0097	0.0002	0.3993	-	0.0066	0.0064	0.1257 0	.026	023 0.0	547 0.0	186 0.00	77 0.002	0000	0.002	0.0021	0.0888	0.1126	0.0002	0.3349	0.0014	0.0099
	SV50BR90	30 0.02	11 0.000	5 0.0004	0.004	1 0.0173	3 0.1012	2 0:0001	1 0.0516	0.0043	0.0004	0.4671	0	0.0022	0.003	0.2503 0	.014 0.0	021 0.	5 3 0.0	201 0.00	7 0.001	0000.0	1 0.0017	0.0015	0.0363	0.0595	0.0001	0.4742	0.0009	0.0107
sji	SV50BR10	00	52 0.000.	4 0.0004	. 0.007	3 0.010t	3 0.1046	0000	1 0.0527	0.0062	0.0003	0.3485	0	0.0014	0.0037	0.279 0.	0295 0.0	018 0.0	474 0.0	275 0.00	1 0.001	000	0.0019	0.0021	0.0394	0.0573	0.0002	0.3244	0.0017	0.008
	SV60BR6L	8	81 0.000	3 0.0003	0000	5 0.012.	2 0.082	0	0.0211	0.0024	0.008	0.1477	0	0.0027	0.021	0.1516 0.	0.64	10 00	88	327 0.00	2 0.001	8	89000	0.002	0.037	0.0559	0000	1976.0	0.0016	0.068
	SV60BR7L			200003		0.010	20003		0.0856	0.0075	0000	0338		0.0021	0.0027	0.2226	0177 01	120	501	139 000	1 0.002		0.0015	8,000	8	0.0418	0000	0.2291	0001	
	SV6UBH8L		10000 80		9000	1007 B	3 UU84	Ĩ		9990 O		0.31/6		0.0042	0.0065	0.044/	10 FZ90	10 10 10 10 10 10		119 000	90 0 00 M			6000	0.114/	0.0641	////	96/III	/1000	0.0126
	SVBUDH3L						2 0.0355		1001.U	0.000		SICIO U 2002 U	- c	0.011E				10 7/n						47000	0,1363	0.0573		0.0743		0.0100
	CV/EDEDED								NCUU I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.000	0 0252	0.0110				10 10 10	31년 111 111 111 111		0001			1200.0		1000		0.0016		100
	SV50BR70							16200	15000				0.9352	70107					3 8				00371	0000	• =		JUU		-	0.1216
	SV50BR80		000	2 0,000	8		70000	0.0136	9 0.0015	0000	0	0.002	0.9632	0.0219	1000	1000		151 00	213		0000	0002	9 0.0597	29000	0.0001	0.0015	1000	0000		0.0141
	SV/50BR90	2	0000	3 0.0004	8	4 0.000	1 0.0006	00006	0.004	0.0004	0.001	0.0001	0.7789	1620.0	0	0006	0	256 0.0	218	000	0.009	9000	1 0.007	0.005	0:001	2000.0	0.0011	0.0002	0000	0.0332
801	SV50BR10	8	0:001	1 0.0005	80	0	0.000	3 0.0207	7 0.0032	0.0005	0000	0.0001	0.872	0.0239	-	0.0004	000	B14 0.0	134	0.00	0.010	900;0	0000	0.0084	0.0002	0.0007	0.0013	0.0001	0	0.0323
	SV60BR6L		0.001	2 0.0007		2 0	0.000	202010 E	7 0.0024	0.0002	100	0.0002	0.8643	0.0205	-	0007	0	1479 0.0	8	000	000E	0.002	7 0.0135	0000	0000	0.006	0000	0.0002	0	0.0242
	SV60BR7L		0.008	80000	88	6	0000	0.0211	1 0.0017	0.0002	0	0.001	0.9037	0.034	0.001	0000	00	395 0.0	8	0.0	0.007	0.001	2 0.0225	0000	0.003	20000	0.0032	0.0002	0.001	8
	SV60BR8L		200.0	5 0.008	8	2	0000	118010	0000	0.000	0	0.0001	0.8535	0.0932	0.0001	0002	00	90 100	12	000	0.010	1000	9 0:0076	0.0071	0.003	0.0013	0.0016	0.003	0	0.01
	SV60BR9L		0.013.	2 0.0009	0.0	6	0.0	0.035	5 0.0038	0.000	0	0.0001	0.8373	0.0231	0.0002	0003	00	645 0.0	28	0.00	0.015	0000	9 0.0194	0.0025	0.0005	0.0016	0.0125	0.003	0.001	0.06
	SV60BR10.		1900:0	5 0:001	0.0	0	0000	3 0.0146	0.0026	90000	-	0.0002	0.882	0.0259	0.0003	1000	00	00 308	88	8	13 0.0190	9000 8000	9 0.0226	88000	00	0.0019	0.0064	0.0001	0.0001	6000
	SV50BR6L	80	08 0.146.	2 0.0003	8800	6 0.000.	1 0.0077	7 0.0281	1 0.015	0.0118	0	0.0018	0.0377	0.827	0.0054 (0.0001	0001 0.0	0:0 0:00	546	0.00	0.316	4 0.002	8 0.0017	0.0447	0.0214	0.0387	0.0088	0.0009	0.001	0.0014
	SV50BR7L	000	03 0.081;	2 0.0002	0.015	10000 9	2 0.0075	9 0.0052	2 0.0095	0.0074	0.001	0.0017	0.0984	0.843	0.0062 (0002	000	00 890	919 (0.00	0.222	4 0.004	8 0.0045	0.0989	0.0212	0.075	0.0018	0.0016	0.001	0.007
	SV50BR8L	8	04 0.034	9 0.0002	000	2000	20010	7 0.0016	800.0 8	0.0148	000	0.0011	0.0464	0.9619	0.0015	2000	00	1168 0.0	915	0	0.114	8 0.011	0.0004	0.1609	0.0127	0.0327	0.0011	0.0015	0.0025	0.0034
	SV50BR90	8	09 0.040	3 0.0003	00	9 0.001	5 0.007A	0.002	0.0066	0.019	0.001	0.0012	00088	0.9254	0.0015	10001	0	174 0.1	8	000	01 0.065	8 0.011	2000	662010	0.0111	0.0218	0.0017	0.0013	0.0026	0.0049
12 on:	SV50BR10.	000	38 0.1273	3 0.0004	Ĩ	0.000	3 0.0083	3 0.0196	0.0184	0.0227	0	0.0062	0.0201	0.8439	0.0038	0.0001	100	03 01 01	8	000	0.231	000	90000	0.025	0.02	0.0408	0.0065	0.0022	0.0009	0.0026
	SV60BR6L	000	21 0.114	5 0.0002	0.011	1 0.0002	2 0.0095	9 0.005	5 0.0228	0.0213	0	0.0039	0.0241	0.8209	0.0051	0.0001 0.	000 000	1182 0.0	742 (0.00	01 0.403	0000	0:001	0.0553	0.0203	0.0919	0.0066	0.0014	0.0016	0.0019
	SV60BR7L	000 02	08 0.091;	2 0.0003	0.013	2 0.0000	5 0:0102	2 0:0052	2 0.0055	0.011	0	0.0008	0.0505	0.8692	0.0029 (00001	000	165 0.1	81	0:00	01 0.088	9 0:006	9 0.0011	0.0431	0.0075	0:0376	0.0077	0.0022	0.0022	0.0026
	SV60BR80	80	41 0.081	1 0.0005	0000	8 0.000	3 0.0101	1 0.004	0.0125	0.0344	0.001	0.0049	0.0106	0.8464	0.0113	0.0002 0.	0001 0.0	153 0.1	174 (0.00	0.087 12 0.087	0.002	0.0008	0.0378	0.0632	0.0366	0.0044	0.0019	0.0032	0.0018
	SV60BR90	000	26 0.154	3 0.0002	0.011	4 0.000	5 0.0130	00048	9 0.0239	0.0324	-	0.0072	0.0085	0.695	0.0025	0.0002	1000	091	8		01 0.227	0.004	0000	0.0494	0.0187	0.0994	0.0018	0.0018	0.0019	0.0029
	SV60BR10.				7		0000		0.0106	0.0276		0.0029	0.0173	0.7682	0.0089			20 10	<u>8</u>		0.106		0.0012	96/070	0.0417	0.0524	10000	0.0012	20000	1000
	SV50BR6L		0000	6 0.0002	0.23	0000	1 0.012	0000	96000	0.0074	0000	0.0035	0.0022	990	0.7176	0.0131	500			007 0.03	76 0.029		0.1837	0000	0.2803	0.0402	0.0029	0.0002	0.0129	2900.0
	SV5UBH/L		46 UU11				77010			U.UBU9	num1	0.0064	8000 0	1118	0.602/	0 /7000				100 000 000			2 U.U214		0.4235		ULL00	7000.0	9#ZN:N	Almin
	SV5UBH0L			0 U.UUU4	177.0 1	4 U.UUU.	107010 7		790000	GIZUU	amin	#cnnin	70000	t mus	0.000	0.0145 2520	10 /9IN	700							96/70	67010	9100	/00000	0.0313	1700.0
100	SV5UBK9(10000 sc	4 U.UUU3	0110		0.1176		79000	0.011C	77000	0.014	0.0004	70012	0.6095	0.040% U.	/700		0.0 12/	9010 U10			0 U.1232	9000 U	0.7715	0.007	0.002	CUUUU	77971	9700 0
3	SVRDRRF				19	1000	3 0 1056		0000	0.0125	1000	0.0131			0.504	0.046 0	10 10 10		70 90F	761 0.01	2000	3 È	0.0134	000	0.2123	10054	0.005	10774	0.0477	
	SV60BR7C	00	81 0.000	4 0.0004	0.10	0.002	0.08		0.0049	0.0155	0.0013	0.0214		00028	0.4789	0 378 0	0174 0.0	002	228 228	743 0.01	6 0.002		0.0126	0.0051	0.282	0.0599	0.0025	0.0148	0.0288	0.008
	SV60BR80	00	22 0.001t	5 0.0004	0.167	9 0.000£	5 0.0715	0	0.0051	0.0184	0.0005	0.0194	0	0.0032	0.4392	0.0246 0.	0444 0.0	00	478 0.1	454 0:011	0.002	000	0.0119	0.004	0.2791	0.0584	0000	0.0098	0.0231	0.0021
	SV60BR90	8	36 0.000t	5 0.0003	0.116	5 0.001.	1 0.0415	0	0.0094	0.0158	0.0009	0.0114	0.0001	0.0027	0.4882	0.0279 (0.01 0.0	001	00 600	325 0.05	3 0.004	1000 1000 1000 1000	0.0212	0.0058	0.2457	0:0306	0000	0.0027	0.0203	0.008
	SV60BR10		14 0.000.	7 0.0003	600	1000	5 0.098;	-	0.0058	0.0163	2000.0	0.0415	-	0.0022	0.3763	0.0326	200	00 200	616 0.1	222	10000	8	0.0115	70000	0.2965	0.1182	0.0019	6000	0.0186	0.0051
	SV/50BR6L	글	0000	1 0.0003	0004	9 0.002.	3 0.017:	0	0.0811	0.0115	0.0076	0.0027	8000	60000	0.024	0.3825	100	00	923	000 000	91 0.002	000	00163	0.0630	0.0521	0.0013	0.0002	0000	0.0139	0.071
	SV/50BR7L		16 0.000	1 0.0003	0000	8 0.010.	2 0.123	-	0.0137	0.008	0.0036	0.0223	0	8000	0.0772	0.402 0.	0181 0.0	002	0.2	513 0.01	0000	800	2 0.0077	0008	0.0723	0.0176	800	0.0274	880	0.008
_	SV50BR8L	8	18 0.000	1 0.0002	9000	3 0.038	1 0.0802	0	0.0821	0.0075	0.0016	0.1024	0	60000	62000	.5138 0.	9005	100	501 00	661	500	800	0.0028	880	0.0361	0.0172	0.0002	0.0481	0.0059	0.0194
+	SV50BR90		74 0000	0.0003	380	4 0.026	5 0.1071		0.0362	0.0056	0.0018	0.1651	0	80000	20100	.5509 0	0139	700	100	851 0.00	00000	80	0.0031	0.004	0.0459	0.0187	0000	0.1072	00088	0.0176
me	SV5UBR1U			nuuu .		3 U.188			9///10		Rennin 1	0.1485	-	AUUUA	0.002F	0.75/6 U.	0116 UL	10 SU0		0000 BS1			2 U.UU24	9000	0.0143			1.062	0,00G	0.0164
_	2 KODDHOL		ې م	0.000		VAND	b UUDU	- -	0.1342		/70000	9221 I		2000	40000	0.032			0.0 eth					ìnnn	1970.0	annn a	mn	0.0412	ann a	0.00 b
	SVBUBK/L		0000 W	C DINUA	2000	5 UUU35	4 U.U/5		0.0347	0.000	0.00164	0.1407		1001	0.0147	0.6605 U.	UU 2000	400 Ku	200 Mg	201 DUU	7000 H		97NNN	07000	/970 U	nn716	70000	0.04%	n meg	0.000
	SV60BR90		20000 FL	5 0.0004		0000	1 0.0666		0.106	0.0057	0001	0 1845	, c	2000	U NAS	0 6689 0	500 600	10 10 10	300 547	145 0.00	86 0.001			U0047	770 U	001	UUU	0.0315	n nn25	0.0182
	SV60BR10		0000 10	1 0.0005	0000	7 0.0360	9 0.0371	0000	0.1984	0.0038	0.0019	0.2478	, 0	0000	00008	.8231 0.	0041 00	200	21 C	0.0	4 0:000	0000	0.0017	0000	0.0172	0.0022	0	0.0174	0:001	0.0193

Tabella A.18: output rete complessiva. Condizione di funzionamento 12

	med	0.0065	0.0103	00100	0.004	0.0105	86000	1000	00075	0008	1000	0.0012	600010	0.0014	0.0026	2000	8000	000	0.004	/900:0	8800	0.0131	290010	0.035	0.0375	0.0109	0.0114	0.0176	0.0094	750000			9000	0.0028	00031	8	0.0047	0.0064	0.0247	0.0319	0.027	0.0404	0.023	0.0244	0.1306	0.0337
	carb	0.0006	0.0005	0.001	0.0018	90000	0.000	+ 1000	0015	0.0239	10000	0.0003	0.0003	0.0002	0.0002	Annu	80000	0.0002	0.0001	0.0024	0.0132	900	0.0182	0.0022	0.0021	0.0023	0000	0.0015	6000	99000	+7000	0.0754	0.0603	0.0546	0.0802	0.1296	0.1786	0.0023	0.2803	0.2586	0.1598	0.0909	0.1464	0.0429	0.0182	0.0254
BK	0N-X	0.002	0.0107	0.0013	0.0102	0.0302	0.0196	0.010	0.0769	0.0072	10000	0.008	0.001	0.0009	00003	Suuu Suuu	0000	0000	0.0003	0.0068	0.0002	00005	0000	0.0004	0000	00000	1000	0000	0000	0.0077	0.075	6200	0.1011	0.0796	0.072	0.0621	0.029	10000	0	0	0	0	0	0	, 0	0
	SOL	0.0219	0.014	0.0065	0.0252	0.0076	0.0103	n ma	2 BUU	0.0284	0.0645	0.0706	0.1239	0.0336	0.0257	9101) 10080	0.0666	0.0324	0.0204	0.0021	0.0161	0.0056	0.094	0.0025	0.0012	0.0012	0.008	0.0013	0000	7000 U	C700.0	6100 U	0.0015	0.0029	0.0014	0.0021	8000		0.0066	0.0013	0.0064	0.0015	0.0014	2000.0	0.0028	0.0029
	sjr	0.0573	0.1639	0.0659	0.091	0.0667	0.1219	0.005	0.1013	0.1811	10000	60000	0.0012	0.0019	200010	2000	20000	0.0004	0.0002	0.1504	000	0.0143	0.0117	0.0109	88000	0.0241	0.0344	0.0116	0.002	0.1389	0.001	0.681	0.0678	0.0709	0.0546	0.0315	0.019	0.0052	0.0001	0	-	0	0.0001	0 UUU	0000	0.0006
	med	0.0391	0.0514	0.0663	0.0661	0.0352	0.0293	10630	0.651	0.1806	100 O	0.0001	0.0004	0.0002		UUU1	0.0002	0.0001	0	0.0171	0.0085	0.0067	00108	0.0092	0.0028	0.0222	0.0105	0.0055	0.0054	U. 1862	2 8	3	0.1697	0.1595	0.1305	0.0818	600	0.0153	0.0124	0.0123	0.0379	0.0203	0.0164	0.0166	0.0319	0.0424
	carb	00000	0000	<u>100</u>	0.0013	0000	0000	710010	0013	0008	100	0.0002	0.0003	0.0003	0000		0000	0.0002	0.0003	100	0.0147	0.0116	0.0202	0.0109	0.0116	0.0198	0.0047	820	0008	0,000	0000	CTUU	800	0.0027	0.0041	6000	9000	19000	0.0028	0003	0.0063	0.0099	0.0119	0.0055	0.0068	0.0076
Рg	0N-X	0.0061	0.0099	0.006	0.0189	0.0109	0.0108	DUNU	0 MB9	00014	0000	0.0003	0.0002	90000	00002		1000	1000	0.0001	0.0021	0.0024	9000	00038	0000	0.0005	0.0025	0.0055	0.0065	0.012	2000		Sum Sum	0.0026	0.0031	0000	0.0045	0.0028	0.0102	0.0065	0.021	0.1303	0.0663	0.0689	0.0827 N 2496	0.1557	0.2195
	SOI	0	0	0	0	0		- -		0000	1000	0000	0.0002	0000	0000	0.0014	800	0.0002	0.0003	0.0015	0.0025	8000	8	0.0025	7000	0.0018	0.0014	9000	62000	innin		JUUU	1000	<u>1000</u>	<u>1000</u>	0.0002		8000	0.0017	0.0132	0.0064	0.0028	0.003	0.0024	0.0011	0.0006
	sjr	0.0428	0.0322	0.0045	0.0067	0.0045	800	271010		0.0144	Ð	0.0053	0.0133	0.0163	0.0102	7,000	0.0153	0.0118	0.0038	0.0517	0.0173	0.0352	0.0141	0.0468	0.0189	0.0514	0.1009	0.0688	0.0127	0,000 G		7000	0000	0.0004	70000	0.000	0000	0.0082	0.0003	0.000	1000	90000	0.0003	0.002	0.008	9000
	med	000	0.0007	0.0011	0.0014	0.0009	0.0005	1001	UW	0.0051	2000	0.0001	0000	0.001	- 2000		10000	0.001	0	0.0018	0.0277	0.0191	0.0313	0.0114	0.0089	0.0053	0.0064	0.0072	0.0586	0000 0	000		0.008	0.0097	0.0096	0.0212	0.0304	0.3692	0.9622	0.8762	0.821	0.7823	0.7219	0.3261	0.844	0.7147
	carb	0.0009	0.0024	0.02	0.017	0.0111	0.0019	70000	0.0156	1000	-	0	0	-			0		0	0.0003	00006	0.002	20000	0000	0.001	1000	-	-		0074/N	16226	8/7/0	0.7218	0.7764	0.7184	0.8873	0.7725	100037	0.0023	0.0045	0.0007	0.0014	0.0045	0.0026		0.0001
13	0N-X	0.0153	0.0172	0.0262	0.0177	0.0247	0.0175	0.0184	0008	0008	1/2010	0.0467	0.0631	0.0449	0.0239	77#010	6800	0.0272	0.0129	0.1764	0.1369	86	0.2466	0.2199	0,288	0.2114	0.276	0.2024	0.1906	0.0420	0.0400	0,007	0.0454	0.042	0.0435	0.0413	0.051	0.1212	0.2135	0.0974	0.0627	6/9010	0.0664	0.0471 0.1971	0.1042	0.1271
	SOL	0.008	0.0046	0.0027	0.0022	0.0027	9000	7000	5000	0.0013	0.842	0.905	0.8658	0.8773	0.9733	10/6.0	0.9623	0.9742	0.9758	0.0013	0.0004	7000	80	0,008	0.0011	00008	1000	90000	80000				8000	0000	0.002	000	0000	0000	0.0001	0000	0.0001	000	0.0001		, 0001	0.0001
	sjr	0.7985	0.8134	0.6558	0.8407	0.7011	0.8337	0.8164	6890	0.226	20000	0.0001	0.0002	0.0002	0.0001		0000	0.0001	0	0.0014	0.0014	8000	0.004	0.0005	0.0001	0.000	0.0012	0.0002	0.0002	6/900		0.0764	0.0243	0.0464	0.0222	0.0185	0.0053	0.0057	0	0	0	0	-		0.0001	0.0002
	med	0.0131	0.0122	0.0692	0.0301	0.0638	0.0268	0.020	0.0574	0.0028	1000	0.0001	10001	0001	0000	D MM	10000	0000	0.0002	0.0013	0.0023	0.0022	0.0022	0.0013	0.0029	0.0025	0.0012	0.0033	00041	0.007E	C 100.0	0.087	0.0856	0.0656	0.1122	0.1385	0.1612	2000	1/0010	0.025	0.0101	0.0178	0.0368	0.0404	0.0148	0.0173
	carb	0.0162	0.0307	0.0235	0.0667	0.0237	0.0143	1000	1010	0.1261	-	0	1000	-			0	-	0	0.0071	0.0108	0.0065	600	0.0024	0.005	0.0061	970076	0.0014	0.0041	0.1520	0.080	0.1723	0.1619	0.195	0.1322	0.1935	0.1119	0,1085	0.0134	0.0028	0.0152	0.0173	0.0286	0.0189	0.0136	0.0668
12	0N-X	0.0012	0.0012	0.008	0.006	0.008	60000		S S S	0.0024	80	0.0378	0.0561	0.0161	0.0094	0.01/4	110:0	/90010	0.0045	0.0263	0.0042	0.0042	900 000	0.0077	0.0077	0.0215	8600	96000	0.0026	/10010		0.0016	0.0017	0.0016	0.0014	0.0012	0.0016	710000	0000	10000	0.0002	<u>)</u>	0.0001	800	,0001	0.0001
	SOI	0.0001	0.0001	0	0000	0					82010	16/010	0.0397	0.1108	0.0606	0104	0.0274	0000	0.0529	0.0003	0.0005	9000	8	90006	0000	60000	1000	0.0034	0000		- -	. –		-	0			0000	0.0004	2000.0	0.0053	0.0012	60000	00008	0.0209	0.0053
	sjr	0.0583	0.0909	0.1048	004	0.0831	0.1088	0.0735	0.1043	20000	1000	0.0002	0.0005	0.0003	0.0002	7000	0000	0000	0.0001	0.0182	00000	000	0.0012	0.0046	0.0037	0.0072	0.0104	0.0023	10000		10033	UDRF V	00683	0.0283	0.0251	8	0.0109	# 9000'0	0	0	0	0	0		, 0	0.0001
	med	-	0	0	0	0				, 0	-	0	0	0			0	0	0	-	-	0	<u>100</u>	0	0000	0000	-	-	0000	9000	U UUU	5000	0.0022	0.0013	0.0024	/90010	0.0118	10000	0.0133	0.1528	0.0636	0.1449	0.1291	0480	0:0016	0.0007
	carb	0.0227	0.016	0.0139	0.0086	0.0068	0.0077	0.010	10137	0.1711	9000	000	0.002	0.0013	000	0,000	00004	0.0012	0.0003	0.0385	0.0662	0.0376	0.045	0.0662	0.034	0.0311	0.029	0.0131	0.0108	0.0120	0.00.0	0.0173	0.018	0.0202	0.0161	0.0101	0.014	0.0547	0.0185	0.0044	0.0026	0.0025	800	0000	0:0044	0.0045
Г	0N-X	0.0384	0.0213	0.0198	0.0066	0.0154	0.021	3 8	0.076	00100	19200	0.0042	6700.0	0.0092	0.0127	/////	0.0176	0.0167	0.0105	0.0499	0.0386	0.0695	0.0285	0.1247	0.1686	0.0946	0.1141	880	0.0273		2000	UNG6	8900	0.0028	0.004	0.0016	00029	0.0234	0.0065	0.0024	0.001	0.0016	0.0018	1000	0.0102	0.0109
	SOL	0.0248	0.0178	0.0031	0.0037	0.0055	0.0173	300	1018	80000	0.1238	0.0279	0.0497	0.0176	0.0146	0.0015	0.0206	0.0185	0.0247	0.0004	0.000	800	0000	00000	0.0004	0.000	0.0015	0.0005	0000			-	0	-	0		-	,000	0	0	0	-	-	-	, 0.0001	0.0001
	sir	0.0631	0.1039	0.1264	0.0986	0.119	0.0973	0.11#1	01/1949	0.1299	180	100	0.0019	0.0005	0.0001	7000	0.0002	0000	0.0001	0.0627	0.0311	0.0284	0.0271	0.0237	0.0244	0.0179	0.0238	0.0121	0.0104	1.2005	1 717R	6100	0.2249	0.2247	0.2051	0.2244	0.1783	000	0.0043	0.0023	0.0012	0.0017	0.0029	10031	0.0016	0.0036
	med	-	0	0.0001	-	0			, IMU	0003	-	0	0	-	- 200	nmn	-	0	0	0.0012	<u>1000</u>	61000	0003	0.0027	0.0149	0.0026	8000	0.0016	0.0016	0.005		1010	0.0123	0.0053	0.013	0.0181	0.0654	00000	0.0472	0.0111	0.0006	0.0045	0.0044	0.0025	0.0002	0.0002
	carb	0.1296	0.1814	0.0976	0.374	0.1486	0.1502	7001 N	0.1158	0.1226	800	00004	80000	90000	10000		1000	1000	0	0.049	0.0534	0.0428	0.0412	0.0065	10000	0.0126	0.0322	0.0146	0.0348	0.4043		Unand Manual Man	0.0528	0.0859	0.0805	0.0968	0.085	0.1772	0.0027	1100.0	0.0036	0.0014	0.0062	0.0014	0:0059	0.0361
Nf	0N-X	0.000	0.000	0.0004	0.0004	0.0004	80000			9000	8200	0.0048	0003	0.0052	1/0010	/mm	89000	0.0055	0.0043	0.0001	0.0002	1000	20000	0000	0.0002	0.0002	1000	1000	00000			7000	0000	90000	0000	0.004	0.0004	0000	8000 0	0.0014	0.0014	80000	0.0011	0.0013	0000	0.0004
	Sor	0.1971	0.147	0.0229	0.0802	0.0453	0.1551 0.05	UND U	10021	0.0072	0.0205	0.0662	0.0994	0.0502	0.0111	790010	0.0055	0.0047	0.0039	0.0382	0005	Stool O	0.0042	0.0052	0.0027	2900.0	0.025	0.0064	0.0016				0.0002	0.0004	0.0002	0.000	0001	70000	0	0	0	-	-		, 0	0.0001
	sjr	0.1169	0.1476	0.0743	0.066	0.0661	0.0972	0.067	UP31	0.1707	1,000	0.0009	0.0048	7000	0.0002	90000	0.0013	10000	0.0001	0.02	0.0021	0.0022	0.0013	0.0059	0.0034	0.0024	0.003	0000	00002	07010	0.060	10137	0.0237	0.0252	0.0107	0.0057	0.0047	0.0021	10000	-	_	-	-		, o	0
		V50BR60	V50BR70	V50BR80	V50BR90	50BR100	V60BR60	VOUUTVO	VENERGI	60BR100	V50BR60	V50BR70	V50BR80	V50BR90	/50BR100	VAUEHAU	V60BR80	V60BR90	60BR100	V50BR60	V50BR70	V50BR80	V50BR90	50BR100	V60BR60	V60BR70	V80BR80	VEDBR90	/60BR100		/SOBRA	V50BR90	50BR100	V60BR60	V60BR70	V60BR80	V60BR90	V50BR60	V50BR70	V50BR80	V50BR90	50BR100	VBDBR60	VEOBR70	VBOBR90	60BR100
ONE		50	ن ا	ن	ŝ	sjr	S D	2 6	0 63	n co	ъ Г	ئة ا	8	ν	Sor Sor	n 6:	n (S)	ò	ŝ	0ú	S	S	ŝ	on-x S\	S	S	8	S I	50	00	50	5 63	carb SV	ν	0	S I	S S	5 60	히	ن ا ا	3 S	med S/	S	0 K.	מו	ŝ
CONDIZ																								<u></u>																						

Tabella A.19: output rete complessiva. Condizione di funzionamento I3

CONDIZIO	Ä			₹					-					2				<u></u>					ਞ					番		
		sit	20I	X-00	carb	med	sjr	SOI	X-00	carb	med	sjr	Sol	01-X	arb	led	I SO	-0) -1)	cart	med	sit	Sol	X-U0	carb	med	sir	Sor	X-U0	carb	med
	SV50BRE		0.0026	0	0.0135	880	0.0023	0000	0.0255	69000	-	0.0002 1	0.2058 0.	0.789 0.1	008	100	8	14 0.033	0	0.0018	0.5873	003	0.0238	0.1195	0.0054	0.0254	0.0024 0	10001	0012	0743
	SV50BR7	2000	12 0.0184	10000	000 000	0000	1/100:0	880	0.0344	0.0504	-	0.0011	0.0119 0.	0767 0.1	100	000 010	004 0:00	11 0.064	-	0.0014	0.5238	0.0104	0.0056	0.1618	0.0204	0.089	0.0073 0	0	0107 0.	999
	SV50BR6	80 0.00	% 0.004X	80	0.0032	0.0014	7000 0000	0.0026	0.1241	0.234	-	1 69000	0.0034 0.	1576 0.0	0017 0.0)00 100	000	71 0.067	0	0.0013	0.7238	0.013	90000	0.0784	0.0348	880	0.0039	0	0084	0132
	SV50BR5	90 0:00	7 0.0053	0.0002	0.0164	0000	0.0049	0.0035	0.0604	0.2226	-	0.0018	0.0026 6	000	0083 0.0	001	016 0.00	49 0.040	2 0	0.0045	0.5119	0.0041	0.00	0.0387	0.0536	0.0152 0	0.0594	0	0.56	0045
si	r SV50BR11		2 0.004 8 0.0067	0000	0.0044	0.0013	0.0061	0.0031	0.1218	0.3974 0.118		0.0044	0 0000	1335 0.1	0062 01C		004	72 0.069 78 0.076	00	0.0022	10910 10910	0.0047	0.0002	0.0433	0.0732	0.0167	0.0186		0224 0. MMA 0.	0063
	SV60BR7	200	8 0.0152	10000	00051	0000	0000	0003	860	0.1364		00021	1.0044 0.1	0872 01	0115 0.0			000 90	0	0.002	0.4813	00042	0.0015	0.0445	0.0442	900	9000		0133	199
	SV60BR6	80 0.024	9 0.0025	0.0002	0.0019	0.0012	0.0046	0.01	0.2088	0.4106	0	0.0132 [10011 0.	0080	0035 0.0	1001 0.0	80	85 0.082	0	0.0037	0.6133	0.003	0.0002	0.012	0.068	0.0142 0	0.0139 0	100	043	1024
	SV60BR5	90 0:004	18 0.0051	0.0001	0.0076	0.0004	0.0068	0.0089	0.1208	0.1374	0	0.0084	0.004 0.	0627 0.1	0.0 9600	JOCZ 0.0	000 600	G8 0.075	0	0.0026	0.5854	0.0018	<u>190</u>	0.02	0.0589	0.0356 (0.0112 0	001	0024 0	0153
	SV60BR11	00 0.008.	6 0.0804	0.0002	0.0485	0	0.0093	0.0319	0.0473	0.0267	-	0.0092 (0.0029	0179 0.1	0177 0.0	003 0.0	263 0.01	74 0.027	2 0	0.0012	0.374	0.0003	0.0054	0.0033	0.0367	0.0264 0	0.0774 0	0002	0000	0022
	SV50BR6	00000	100007	0000	0.0007	0.0249	0.0365	0	0.0123	0.0417	0.0001	0	0.0013 0.	0027	0.0	002	0.0	18 0.125	0000 8	2 0.0025	0.0145	0.7486	0.0002	9000	0	0.0166 0	0.0005	0	0412 0	0883
	SV50BR7	70 0.000.	12 0.0007	0000	0.0017	0.0229	0.049	0	0.0125	0.0257	0.0001	-	0.0005 0.	0004	0.0) 200	0.0	13 0.051	2000	7 0.0042	0.0033	0.9182	0.0003	0.0023	0	0.0025 (0.0008	0	0370	2900
	SV50BR6	0000	11 0.0031	0000	0.0081	0.0463	0.0599		0.0042	0.0328	-	-	0.0001	100	0.0	100	8	00 0049	2000	9 0.017	0.0024	0.9084	0000	0.0032	-	0.0021	0017	0	0.000	6000
COL	SV50BR5	0 00	1 0.002		0.008	0.0438	0.0382	-	0.0062	0.0342			0.0001 1.0001	800		800		02 0.044 DA D.044	0000 6	9 0.0131 7 0.0100	0.0071	0.9412	0.004	0.0079			0011			1001 1002
ne l	SV60BR6		M 00018	88	6400	0.0246	00369	0	0021	0.0375	00		10000	6200			38	/900 90		5 0.0018	0.023	0.9645	90000	00143		2000	9000		000	9992
	SV60BR7	20000	11 0.0017	00001	0.0048	0.009	0.0415	0	0.0082	0.0432	0.0001	0).0002 0.	000	0:0	000	8	000	000	5 0.0129	0.0052	0.9546	0000	0000	0	0.0017	100.0	0	0486	100
	SV60BR6	80 0:00	1 0:0017	10000	0.0063	0.037	0.0472	0	0.0067	0.0422	0		0.0002 0.	0002	0.0	900	000	00 0.006	2000	4 0.0136	0.0045	0.9482	0.0003	0.0066	0	0.0023	0.001	0	0652 0.	1100
	SV60BR5	90 0.000	1 0:001	0000	0.0017	0.0673	0.0384	0	0.0075	0.035	0.0001	-).0001 D.	0002	0.0) 2007	000	06 0.035	9000	3 0.0088	0.0029	0.9086	0.0001	0.0036	0	0.0012 0	0.0011	0	0731 0	200
	SV60BR11	000 0000	00007	0000	0.0012	0.0812	0.0503	0	0.0066	0.0532	0.0001	-	.0001 0.	0002	0.0	004	0.0	06 0.033	2 0.004	9 0.0164	0.0038	0.9336	0.0001	0.0038	0	0.0019 0	0.0012	0	1128 0.	6000
	SV50BR6	0	0.001	80000	0.0576	-	90000	0	90000	0.0002	0.004	-	0.1401 0.	1000	0427 0.0	3052	000	01 0.024	6000	1 0.1377	0.0042	0.0013	0.8797	0.0018	0.0048	0.001	0.0067	0	0152 0.	8
	SV50BR/		0000	00000	0.4286	-	0.0065	0	0.0025	0.0004	2000.0	00001	0.0078 0.0	001	3132 0.0	1965 0.0	8	0.067	600	5 0.2753	00031	800	0.7792	88	0.0135	0.0024 0	29000	0	0195	0065
	SV50BRE		000	2000.0	0.0827	-	0.0028	0	0000	0.001	0.0171	-	0.0117 0.	0003	1224 0.0	1954		0.074	8	3 0.0913	0.0015	0.005	0.8792	0.0066	0.0316	8000	0008	0	0145 0.	996
	SV50BR6	8	000	0.001	0.0677	-	000	0	0.0014	0	2000		0.0365	10 10	0268 0.0	0473		0.052	-	2 0.1349	0.0016	6000	0.9524	20000	0.086	0.001	0018		034	0128
-no PH	x SV50BR1(8	0000	0.0006	0.1436	-	0.0029	-	0000	10000	9000	-	0.0197 D.	0002	.125 0.0) 1040		0.064	0000 6	2 0.054	0.0022	10000	0.9431	200.0	0.0184	0000	0.0012	0	0 9600	9800
	SV60BRE	0	0000	80000	0.1598	-	0.0013	0	0.005	0000	0.0028	0	0.0683	0 8003	1253 0.0	0149	000	01 0.041	8	1 0.0554	0.003	0.0004	0.9544	0.0036	0.0161	0.0004	2000	0	0105	996
	SV60BR/		0000	0:001	0.096	-	0.003	-	10000	1000	0.0113		0.0153 0.		1317 0.0	99 89 89 89		01 0050		4 0.0836	<u>18</u>	0000	0.9175	0001	0.0211		0015		0101	0082
	SVOUBHE		'nmn	90000	010010		Suu a	- -	71000						10 79/N			/90'0		3 U.T.UZ		gmmn	17/8.0	omu a	0.0120		omn o		n 76m	890 1990
	SYOUDRS SYRDDAL		n nnn		0.0427		470000	-			117000				U//# DU			201.0		2 U.133/			0,0101		6/IUU		0000		0213 0	
	SV50BR6	- 			UUU	0000	2000			0.0117	UUU					1960		01 0 117				- 60/20 U	0000		0000			, IUI	2 I I I	0117
	SV50BR7		0	0000	0.0015	0.0275	0000		0.0153	0.1513	000		10004 0.1	0127 0.1	000 000			00 00	1000	7 0.0284	8	0.0297	0000	0.4954	0.041	0 1100	6100		0	860
	SV50BR6	8	0.0005	00001	0.0297	0000	0.0105	0	0.0135	0.0058	0.003	0.0001	0.0076 G	10	0316 0.0	0104 0.0	00 100	01 0.031	2000 2	1 0.0028	0.0468	0.006	0.0405	0.8353	0.0449	0.0274 0	0003	0	0641	1027
	SV50BR6	8	0000	0000	1/100.0	6000	0.0079	0	0.0132	0.0268	9000	0.0001	0.0034 0.	0033	0194 0.0	1043	8	01 0.075	2000	2 0.0153	0.0249	00138	0.0072	0.778	0.0795	0.0183	2000	0	1396	8
call	b SV50BR11			0000	0008	0.0605	0.012	0 000	0.0174	0.015	0.0774	0000	0.0007	036	0302 010	9/10		0.047		5 0.006	0.0112	69000	0.0047	0.888	60/00	0.0324			1716	0542
	SV60BR7					0.0613	0.0119		1000	2000	10098				1015 D.D	100		900		00012	00715	00271	2000	0.9066	000	0.0657				199
	SV60BR6	0	0000	0.0001	0.0039	0.0146	0.0083	0	0.0085	0.0074	0.0218	0000).0026 0.	0028 0.1	0.78 0.	0	0.00	01 0.037	0000	3 0.006	0.019	0.0391	0.0088	0.8647	0.0189	0.0192 (0.0001	0 10001	1397 0	9638
	SV60BR5	0	0000	0000	0.0231	960010	00363	-	0.016	0.0574	00039	0.0008	0.0002	0136 0.1	0602 0.0)156 0.0	00	01 0.058	2 0:00	4 000	0.083	0.0042	003	0.5277	0.0642	00238	9000	0 2000	2082 0	883
	SV60BR11			0000	800	88	88		0000	0.0042	0.0497		010016	0124	0026 0.0			01 0.019		2 0.0079	7900	00282	880	10/1/0	0.0151	0003			28 28 29	1654
	SV5UBHC			5000 C	/07010		7090.0	70000	0.0566	907N.N	9000	0.0645		in gam	10 9/90	182/ UUU		Ub U.U44		7 0.002/	0.W/4	70000	1900	0.0233	//qc:n	n.158	n gnnn		n esm	89
	SV50BR/	1000	2000		0.008		0.1173		0.0561	0.0597	0000	0.3084		0002	100		117 0:00	16 0.047	000	5 0.0007	0.012		0001	0000	0.3159	0.2601	4000	1078	88	0113
	SV5UBHE		N UUU5	Sumo	0000		0.0042	70000	0 0 0 0 0 0	7,500.0	1000	9990		UID Dec C	321/ 01	119/ M0		UN 0.04/	/ UU15	/7000 0	7700	inn a	/9000	8000		9770	U UM3	000		
1044	A CARDEDI	700 0017		MUUU		#70000	0.0114	NUUU		40000		100140			1385 0.0	1010 7200		10 0.000		10100 V	10.00	0,000	2000	7400	0.5017	0,010				+ 100
	SV60BR6	50 0024	.3 0.0066	10000	1890	0000	0.0322	20000	00220	0.149		0.0275	10002 0.1	0.088	2394 00	00 100	101 000	13 0060	2000 2	2 0.0043	1990		0.0024	0.0234	0.5775	0.1162	1900	0012		0010
	SV60BR7	70 0003	9 0:000	0.0004	0.0428	0.0016	0.044	0	0.0113	0.0518	0.0016	0.0174 (10001 0.	0126 0.	2869 0.0	1206 0.01	257 000	01 0.06	0.042	5 0.0086	0.0055	0000	0.0042	100	0.5145	0.0683	0.0012 0	0.028	0716 0.	0028
	SV60BR6	80 0.006	2 0.0015	0.0004	0.0811	0000	0.0376	0.0001	0.0123	0.0868	0.0004	0.0088 (0.0001	0103 0.2	2665 0.0	1084 0.0	105 0.00	04 0.05	0.026	4 0.0113	0.0102	0.0004	0.0039	0.0224	0.3433	0.0407 0	0.0066 0	0 6000	0041	0019
	SV60BR5	90 0.021	1 0:0072	0.0002	0.0885	0000	0.0539	0.001	0.0159	0.0728	0.001	0.0292 (0.0002 0.	0206 0.	1932 0.0	00 880	124 0.00	09 0.066	20010 6	9 0.0031	0.0266	0003	0.0039	0.0239	0.3707	0.2181 0	0002	0.005 0.	0197 0.	003
	SV60BR11	01010	1 <u>2</u> 0.0151	0.0003	0.0758	0.0002	0.0433	0.0006	0.0252	0.1364	-	00831).0002 0.	0159 0.	1238 0.0	JO15 0.0	000 688	22 0.052	9000	2 0.0031	0.0538	0.0002	0.0019	0.0094	0.2787	0.1376	0.013 0	0 220	0119 0	0027

Tabella A.20: output rete complessiva. Condizione di funzionamenti Hg

	med	0.004	0.0232	0.0087	000	0.0131	0.0062	0.005		1900	0.0066	0000	88	0003	71000	00043	0.0025	6000	0.0132	0.016	0.0086	0.0084	/90010	0.0046	0.0047	0.0027	0008 0000	000	0.0054	0.0108	<u>800</u>	77000	1000	00100	0.0023	0.0059	76000	1/100	0.9403	0.9923	0.9819	0.9276	0.9816	0.409/	0.8022	9.0	0.7743
	carb	0.0037	0.0127	0.0077	0.0031	8	0.0022	84000	8000	0.0127	0.0219	0.0667	0.023	0.0407	0.4747	0.0128	0.0123	0.0018	0002	0.0014	00000	0000	0003	0.0019	0.0023	0.0012	0000	0.0022	0.0016	100	0.482	0.8812	07000	0.7207	0.2368	0.1395	0.294	0 8036	8000	0000	1000	0.0012	0000	ŝin o	0000	-	0000
Bk	0N-X	0.0122	0.0051	0.0512	0.1978	0.2865	0.2054	79100	1900 G	8000	0.1536	-	1000	_			0	-	-	0.0001	0.7629	0.3466	0.6718	0.5802	0.7353	0.7048	0.8494	0.6501	0.6704	0.6036	-		∍⊂		0.0014	0.0006	100	70000	0	0	-	-	0	am a	1000 U	1000	0
	SOL	0.0051	-	000	100	800	0000	/Amn) min	7000	0.002	0.869	0.7972	0.9381	0.9399 A AAE	0.8077	0.9519	0.9603	0.936	0.9037	0.0002	00008	0000	0000	0000	00016	0.0002	0000	0000	800	860	7700	#7000		0000	0.001	80	- Mu	-	-	0000	0000	1000	unu augus	0000	0.0062	0.0017
	sjr	0.5605	0.5536	0.5697	0.5657	0.4602	0 20	C00C.U	899	0.1452	0.3975	0.0029	88	0.0024	1700.0	0.000	0000	0.0004	0.0004	0.0011	0.1136	0.1126	0.1852	0.0781	0.0402	0.1877	0.1191	0.0662	0.0982	0.1994	0000	0.000	0.000	00016	0.0056	0.0066		/90018	0000		0	0.0003	0000	0.0201	10107	90000	0.0006
	med	0.3028	0.0132	0.0253	0.1457	0.0688	0.0531	2/01/0	0.19/8	0.1623	0.2249	0.0106	0.0092	0.0043	8000 0	2000	0.0014	0.0002	0.0006	0.0014	0.0233	0.0886	0.0741	0.0297	0.0146	0.0282	0.021	89	0.0341	0.0687	0.1251	10134	0140	0/700	0.1195	0.061	0.02	77700	0000		-	0.0013	0000	0.01%	0.0042	10000	0.0014
	carb	0.0061	0.4742	0.0721	0.0034	8900	0.0069	/11/0	8/mn		0.0054	0.0014	0.0017	0000	71000	6000	0000	0000	0.0002	0.0003	100	0000	0.0013	0.0013	0.008	0.0018	0.0011	0.001	0.0012	0.0013	0.0149	1.0268	800	0.2368	0.0276	0.056	6088	0.3206	5000	2100.0	8000	0.1039	0.0143	0.138/	0.0813	0.0012	0000
Hg	0N-X	0.0034	0.0024	0.0064	0.0019	0:0011	0.0011	0.01/4	17000		0.0072	0000	60000	0.0002	innin	0000	0.0003	0.0006	0.0013	0.0026	0.0012	1000	0.0023	0.0024	0.0023	10000	0.0014	0.0018	0.0015	80000	10000			0000	00033	0.0351	80	9000	1000	0.0022	0.0048	0.0029	0.0022	AUUU9	n 0022	1000	0.0004
	SOL	0.0002	0.0129	20000	1000	0000	0000	70000			500	8	2000	8000		6000	0000	0000	80000	0.0008	0000	0000	0.0001	<u>1000</u>	0000	10000	<u>1000</u>	<u>100</u>	<u>1000</u>	1000	2000	0.01/2	8000	2/010	60000	0.0012	8	9000	00731	002	00033	0.0032	00013	0006	10043	0000	0001
	sjr	0.1223	0.1142	0.0129	0.0185	16000	0.0106	8400	8000	610019	0.0021	0.0439	0.0649	0.0423	11001	0.1077	0.0512	0.0461	0.0663	0.1129	100:0	0.0002	0.0008	90000	0.0002	000	90000	90000	2000.0	0.0031	0.0044	qmnn	9700 U	0001	60000	0.0005	9000	52000	0000	1000	0000	0.0049	0.0019	0.00/6	0.0191	00139	0.0329
	med	0.0005	0000	0.0004	00004	0.005	0000		Alluna	6000	0.0019	0000	0.0132	0.0206	70IN:N	00118	0.0121	0.0034	0.0118	0.0184	0.0004	00007	0.0012	0.0012	0.0018	90000	0000	<u>10</u>	8000	70000	88	U.199/	190/ 190/	/96010	0.0186	0.042	0.0951	0.1711	0000	00051	0.0017	0.0077	0000	0.0212	0.015	0.0123	0.0321
	carb	0.0022	0.0002	0.0065	0.0105	0.005	0.0049	10000	0.054	0.1591	0.3624	0000	800	0000		7000	0	0	-	0	0.0211	0.021	0.1574	0.092	0.1737	9699	0.0378	0.0984	0.0653	0.0159	0.005	0.0459	0.0015	£/000	0.1352	0.0224	0.0132	/9000	-	0	0	0	-		- 0	, 0	0
13	0N-X	0.043	0.1029	0.0736	0.0668	0.0677	1900	0.0516	/100/1	0.0416	999	0.0294	0.028	0.024	0,000	0.027	0.0208	0.0244	0.0311	0.0369	0.0671	0.0614	0.0691	0.0675	0.0501	0.0682	0.0709	0.0496	0.0603	0.0579	16/00	1494 0000		0.0749	0.0674	0.1227	0.0916	9119 191	00211	0000	0.0036	0.0199	0.0785	0.2042	n.2023	00400	0.0853
	SOL	0.0039	0.0002	0.0002	000	600	0.0019	71000	/nmn	600	8000	0.0234	00081	0.0162	77700	005	0.0800	0.1924	0.0673	0.0228	0.0019	1000	0.0009	0.0014	100	0.0028	0.0029	0.0013	0.0019	0.0029	0000	70000		7000	0000	0	-	n Mu	1000	0000	-	0.0004	8000	E Superiore	2000 U	0.002	100.0
	sjr	0.0551	1000	80	0034	1110	0.0102	0.1563	11011	6900	0.0765	0.0067	0.0249	8800	Sum o	000	0.0014	1000	0.0002	0.0006	0.0076	0.0478	0.0154	0.0121	0.0071	0.0116	0.0041	1800.0	96000	0.0176	700 v	- 1000			0.0002	0000	-			0	0	-	0000	1000	10002	1000	0.0027
	med	000	00031	0.0264	900	0.0255	0.088		0.0232	7990 0	0.025	-	<u>100</u>	1000 -		1000	0	0	-	0	0.1014	0.06	0.0662	88600	0.2876	0.0287	0.095	0.1553	90600	0.0438	5000	87M 0	2000	57000	0.0443	0.0734	0.0437	4000	0000	0.2447	0.6017	0.0256	0.0206	0.005/	0017	00041	0.0031
	carb	0.1085	0.0019	0.0122	0.0219	0.0061	0.003	U.IUM	9990 O	0.0248	63	66000	00	0.0085	6000	0.0043	0.0013	0.0002	0.0005	0.0018	0.003	0.003	0.0323	0.0144	0.0075	0.0188	8000	19000	19000	9000	0.0211	0.0029	00001	0.0326	0.1357	0.1286	0.0489	407NIN	-	0	0	0.0003	0.0002	/9000	0.0012	3000	0.0002
12	0N-X	6010	0.0676	0.0084	0.0113	0008	0.0052	7900 0	1000	300	0.0027	600	890	0002	tuuut	9000	0.0014	0.008	0.0007	0.0011	0.0046	0.0059	0.0042	0.0042	0.0027	0.0171	0.0122	0.0034	00069	0.0059	0.0044	ç în	tunu	7000	0.0112	0.0028	0.0019	0067	0000	10000	-	0.0007	10000	0.0116	1000	0001	0.0004
	SOF	0.0002	0.004	0000	-	-	0	e uuuu	-	-	-	800	0000	8000	7000 U	3000	0000	0.0077	0.0094	0.0115	-	-	0	-	0	0	0	-	-	-	800	-		800	0	0.0001	0000		1000	0.0029	0.0017	0.0052	90008	0.UU&	00187	0.0249	2000.0
	sjr	0.111	0.0096	0.0414	0.2257	0.2555	0.2812	00000	0.1403	0.2611	0.0662	90000	00000	0000	70000	0000	0.0002	10000	10001	0.0002	0.3445	0.3703	0.2369	0.1596	0.1952	0.1131	0.3407	0.2626	0.2563	0.4729	8000		7000 U		80	0.0006	<u>)</u>	Sumu	10000	10000	-	-	0.0002	6900 V	t 800	0.005	0.0024
	med	-	90000	8000	-	0000	000 000	-	7000 0	0.0012	0000	-	-	-		- 0	-	-	-	-	0000	0000	0.0006	90000	0.0015	0000	90000	8000	90000	0000	/000	90000		0000	0.0631	0.062	0.0682	0035	2000	0.0288	0.1012	0.0017	8000	1	0.000	0	-
	carb	0.0941	0.0379	0.0111	0.0365	0.0249	0.0179	/91010	Cano a	800	0.0196	0.2159	0.0755	0.1181	0.250/	0,106	0.0417	0.0052	0.0101	0.017	0.0029	0.0152	0.0065	0.0029	0.0013	0.0022	0.0014	0.0029	0.006	0.0121	0.2685	2007 0	0.43U/	00221	0.0184	0.0039	180010	0.0124 0.7799	0008	0000	0000	0.0031	10000	0.0234	0.0111	0.0021	0.0446
Ч	0N-X	0.0219	0.0549	0.0179	0.0258	0.0501	0.0794	/90000	8,000	191010	0.0031	0.0096	0.0075	0008	7/MU0	0.0274	0.0122	0.019	0.0233	0.0237	0.026	0.0038	0.0094	0.011	0.0098	0.0056	0.0129	0.0153	0.0146	0.0889	0.0148	0,0058	/77N'N	0.0025	0.0046	0.0025	0002	Ramin	0.2948	0.0438	0.0161	0.0613	0.1027	997010	0.0423	0.091	0.4324
	SOF	0.0019	0	0	0000	000	0000	aunu o	-	-	-	0.0023	0.0019	0.0016	/0000	0.0072	0.0083	0.0102	0.0088	0.0098	-	0003	0	-	0	000	0	-	0	0000	-	_	∍∣∝	• •	0	0	-	-	0000	0.017	0.0037	0.0051	0.0106	0.000	0.0072	0.2067	0.0668
	sjr	0.0714	0.0766	0.1518	0.1736	0.1771	0.1282	19900	70770	0.1522	0.25	0.0189	0.0211	0.021		00134	0.0082	0.0033	0.0037	0.0063	0.194	0.1303	0.266	0.1682	0.2047	0.1624	0.1529	0.1728	0.1734	0.1726	0.0103	11/24/0	2010.0	90000	0.0394	0.0251	0.0141	0.0165	0000	0.0194	0.0186	0.0124	791010	0.0116 0.0406	001	00157	0.0198
	med	0.0001	0.0299	6007	0.001	0.0094	880	-	e nue		0.0012	800	000	0000		0000	0000	0000	0000	0.0002	0.0272	0.0026	0.0137	0.0153	0.0686	0.0031	0.0321	880	0.021	86000	0.0015	0.1983	0770 D	0022	0.1045	0.0251	800	1110 1117	00789	0.0127	0.0172	8000	0.0016	8	, 100	0000	0000
	carb	0.1029	0.0126	0.0491	0.0434	0.0121	0.0095	0.41U/	7/5UU	/9000	0.1807	0.0264	0.1532	0.0445	1/10/0	00163	00	0.0036	0.0074	0.0231	0.0068	0.0112	0.0214	000	0.0115	0.0611	18000	0.003	0.0116	0000	0000			97000	880070	0.0286	0.0123	/9000	-	0	0	1000	0000	auuu a	7#0000	0.0023	0.004
Nf	X-U0	0.0002	-	000	0000	<u>100</u>	0000		7000		8000	0000	0000	000	70000	0000	0.0002	0000	0000	0.0002	0.0002	0000	0.0003	8000	0000	1000	7000 0	8000	800	8000				70000	8000	0.000	300		0000	0000	0000	0000	0000		1000	0000	0.0002
	Sol	0.0647	0.0032	0.0035	0.0103	000	0.0025	0.004	Eluu a	2000	0.002	0.0295	0.0676	0000	71010	00136	0.0068	1000	0000	0.0013	000	0.0029	0.0007	000	0.0004	0.0084	0:0016	0.005	000	0.0015	0006				10000	0.0001				0	-	0	0000	50045	00016	0.0023	0.008
	sjr	0.1671	10000	0.005	0.1634	0.0419	0.0285	8 III 8	6/1010	5/6010	89	0.183	0000	0.0948	0.1007	00691	0.0453	2900:0	0006	0.0059	0.0632	0.1927	0.0821	0.0319	0.0194	0.047	0.0338	0.0321	0.0502	0.1654			7000		0000	-	-	n Mu	-	0	-	-	-		0000	0000	0.0023
		SV50BR60	SV50BR70	SV50BR80	SV50BR90	V50BR100	SV60BR60	s'vouer/u	SVOUBHBU	SV6UBR9U	V60BR100	SV50BR60	SV50BR70	SV50BR80		SV60BR60	SV60BR70	SV60BR80	SV60BR90	%60BR100	SV50BR60	SV50BR70	SV50BR80	SV50BR90	V50BR100	SV60BR60	SV60BR70	SV60BR80	SV60BR90	W60BR100	SV50BR60	SV5UBH/U	NENDING	V50BR100	SV60BR60	SV60BR70	SV60BR80	SYNUBHSU VIENBRAND	3V50BR00	3V50BR70	3V50BR80	SV50BR90	V50BR100	SVAUBHAU	WINDERED .	SV60BR90	%60BR100
ZIONE						sjr		-							- 6					S					on-x S					5			- 0	carb	1.00			- 01					ben	19		1	0
CONDI2																									菕																		+	+			

Tabella A.21:output rete complessiva. Condizione di funzionamento Bk

BIBLIOGRAFIA

- [1] BUTANY J.,AHLUWALIA M.S., MUNROE C.,FAYET C.,AHN C.,BLIT P.,KEPRON C.,CUSIMANO R. J.,LEASK R. L., "Mechanical heart valve prosthesis identification and evaluation",Cardiovascular Pathology, 2003:12; 1-22.
- [2] DI BELLO C., BAGNO A., "*Interazione tra biomateriali e tessuti*", Patron Editore, 2009, Capitolo 10 : 153-173.
- [3] ANZIL F., "Approccio al monitoraggio fonocardiografico di valvole cardiache meccaniche", Relazione di progetto, Università di Padova, a.a.2006-2007.
- [4] BLOME-EBERWEIN S.A., MROWINSKY D., HOFMEISTER J., HETZER R., "Impact of mechanical heart valve prosthesis sound on patiens' quality of lyfe", Ann Thorac Surg. 1996; 61(2):594-602.
- [5] FRITZSCHE D., EITZ T., MINAMI K., REBER D., LACZKOVICS A., MEHLHORN U., HORSTKOTTE D., KÖRFER R., "Digital frequency analysis of valve sound phenomena in patiens after prosthetic valve surgery: its capability as a true home monitoring of valve function", Journal of Heart Valve Disease 2005; 14:657:663.
- [6] FRITZSCHE D., EITZ T., LACZKOVICS A., LIEBOLD A., KNAUT M., MATSCHKE K., SAGIE A., MEHLHORN U., HORSTKOTTE D., KÖRFER R., "Early detection of mechanical heart valve disfunction using a new home monitoring device", The Annals of Thoracic Surgery 2007; 11:29-37.
- [7] LICCIARDELLO C., "Classificazione fonocardiografica di valvole cardiache meccaniche bileaflet con reti neurali artificiali", tesi di laurea specialistica, Università di Padova, a.a. 2008-2009.

- [8] CAMBI A., "Classificazione di formazioni trombotiche su valvole cardiache meccaniche bileaflet con reti neurali artificiali", tesi di laurea specialistica, Università di Padova, a.a. 2009-2010.
- [9] GUYTON A. C., HALL J.E., *Fisiologia Medica*, EdiSES, Seconda edizione, anno 2002, capitoli 9,22,23.
- [10] GANONG W. F., *Fisiologia medica*, Piccin, nona edizione italiana, 2001, capitoli 28,29 : 523-550.
- [11] CABIN H. S., BENDER J. R., BALDWIN J. C., ELEFTERIADES J. A., KNOPF G., *Heart book*, Yale University School of Medicine (1992), 3-10, 167-176, 313-330.
- [12] BADAK M. I., OZKISACIK E. A., BOGA M., GURCUN U., DISCIGIL B., Replacement of a Bjork-Shiley Delrin Aortic valve still functioning after 25 years (case report), Tex Heart Inst, 2004: 31; 303-5.
- [13] KALYANI N., MURALEEDHARAN C. V., BHUVANESHWAR G. S., Developments in mechanical heart valve prosthesis, Sadhana, 2003, Vol. 28, Parts 3 & 4, pp. 575-587.
- [14] <u>www.sjmprofessional.com/Products/intl/Heart-Valve-Replacement/St-Jude-Medical-Regent.aspx</u> (ultima consultazione 9/09/2010)
- [15] ØVRUM E., TANGEN G., *Acute leaflet arrest in St Jude Medical Regent aortic valve*, Journal of Thoracic and Cardiovascular Surgery, 2005, 129:1446.
- [16] <u>www.sorinbiomedica.com</u> (ultima consultazione 09/09/2010)
- [17] <u>www.onxlti.com/onxlti-hv-proact.html</u> (ultima consultazione 09/09/2010)
- [18] <u>www.carbomedics.com/professional_products_top.asp?from=int</u> (ultima consultazione 09/09/2010)

- [19] MAISANO F., MICHEV I., DENTI P., ALFIERI O., COLOMBO A., *Transfemoral Transcatheter aortic valve implantation using the balloon expandable sapien transcatheter heart valve device*, Multimedial manual of cardiothoracic surgery; 2007.
- [20] BARBARO V., DANIELE C., GRIGIONI M., Descrizione di un sistema a flusso pulsatile per la valutazione delle protesi cardiache valvolari, Rapporti ISTISAN 91/7, Istituto Superiore di Sanità, Laboratorio di Ingegneria Biomedica, Roma (1991).
- [21] TOFFOLO G.M., Elaborazioni di segnali biologici, Slides del corso, Università degli Studi di Padova, A.A. 2008-2009.
- [22] HERTZ J., KROGH A., PALMER R. G., Introduction to the Theory of Neural Computation, Addison-Wesley Publishing Company, 1991.
- [23] FLOREANO D., MATTIUSSI C., Manuale sulle reti neurali, Il Mulino, 2002.
- [24] FAUSETT L., Fundamentals of Neural Networks: Architectures, Algorithms and Applications, Prentice Hall, 1994.
- [25] SAMBO F., Apprendimento automatico e reti neurali, Slides del corso, Università di Padova, a.a. 2009/2010.
- [26] WU C., HERMAN B. A., RETTA S. M., GROSSMAN L. W., LIU J., HWANG N. H. C., On the closing sounds of a mechanival heart valve, Annals of Biomedical Engeneering, 2005; 33:743-750.

RINGRAZIAMENTI

Alla fine di questo lavoro vorrei fare un ringraziamento particolare al prof. Andrea Bagno per la fiducia riservatami, per la sua disponibilità, gentilezza e attenzione: grazie a lui la realizzazione di questo lavoro è stata possibile.

Inoltre vorrei ringraziare chi ha condiviso con me questa lunga esperienza, chi mi è stato vicino e chi ha creduto in me, chi mi ha spinto ad andare avanti, chi ha avuto fiducia nelle mie capacità anche quando io l'avevo persa. Per questo un enorme grazie ai miei genitori per avermi sostenuto in questi cinque anni e per avermi permesso di studiare, per avermi incoraggiato ad andare sempre avanti nonostante le difficoltà sia con le parole che con il loro esempio. Un grazie di cuore a Domenico, la persona più comprensiva del mondo, sempre in grado di regalarmi un sorriso; mi è sempre stato accanto e ha condiviso con me ogni momento di questa esperienza senza mai tirarsi indietro: le risate, le soddisfazioni, i pianti, i malumori, i dubbi.

Infine un ringraziamento speciale va al "mio più grande sostenitore", a colui che nemmeno una volta negli ultimi 25 anni ha avuto il dubbio che io non ce la potessi fare e spero vivamente che anche dal cielo riesca a gioire con me in questa giornata che tanto avevamo sognato insieme e che continui a indicarmi la via giusta come ha sempre fatto: grazie nonno Pietro.