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Abstract

This work deals with a novel robust current control scheme for Synchronous Motor
(SM) drives, based on the Model Predictive Control (MPC) theory augmented with
an Integral Action. The increased robustness is achieved through the integrator,
nevertheless the same e�ective MPC quadratic formulation is hold. The integral
action, within the prediction step of MPC, improves drastically the local accuracy
of the nominal model prediction with further advantages in terms steady-state error
for reference tracking problem. Holding all the model predictive control advantages,
the e�ectiveness of the proposed control is veri�ed by mean of simulations and test-
bed experiments.





Abstract

La tesi è stata svolta presso il Laboratorio di Azionamenti Elettrici EDLab, e si
è incentrata sullo studio e l'implementazione di un innovativo controllo predittivo
basato sul modello, in inglese indicato come Model Predictive Control (MPC), che
include un'azione integrale per ottenere un errore nullo a regime tra riferimento
e misura. Tale controllo, denominato I-MPC (Integral MPC) è risultato essere
per la prima volta applicato nell'ambito degli azionamenti elettrici. L'algoritmo
è stato pensato per un controllo di corrente di un motore sincrono trifase brush-
less sinusoidale a magneti permanenti. Questa tipologia di motore è di particolare
interesse non solo per l'attuale ricerca ma anche per il mercato degli azionamenti
industriali. Ciò è dovuto ad una serie di vantaggi rispetto ai motori a rotore av-
volto, tra tutti la maggiore e�cienza grazie all'assenza di perdite Joule di rotore.
L'obiettivo principale dell'elaborato è stato quello di evidenziare il confronto tra
il tradizionale approccio del MPC e quello invece innovativo per gli azionamenti
proposto. L'intenzione è stata quella di mostrare i vantaggi dell'azione integrale
del controllo, specialmente nel caso di variazioni dei parametri del motore. Infatti,
con l'utilizzo del MPC si ottiene un'azione di tipo proporzionale di correzione
dell'errore, e se i parametri utilizzati dal controllo non coincidono con quelli re-
ali del motore, appare un errore a regime. Si sono quindi e�ettuate delle prove
sperimentali in laboratorio su un motore a riluttanza (SyRM) per ottenere una
evidenza dell'azione integrale da parte dell'algoritmo proposto. Al �ne di avere
una panoramica dello stato dell'arte in questo argomento, è stato condotto prelim-
inarmente una ricerca di cosa attualmente viene proposto in ambito scienti�co per
gli azionamenti elettrici. Ne è emerso che la tecnica principale per ovviare ai mis-
match parametrici consiste nell'a�ancare al controllore MPC un osservatore che
dalle misurazioni stimi le variazioni dei parametri. Gli obiettivi raggiunti sono stati
messi in evidenza sia dalle simulazioni che dalle prove sperimentali. Esse sono state
condotte considerando i punti di lavoro ideali in MTPA (Max Torque Per Amps)
del motore sincrono a riluttanza. L'obiettivo principale raggiunto è stato quindi
quello di presentare un innovativo controllo predittivo per gli azionamenti elettrici
dei motori in alternata. I vantaggi principali riscontrati sono che il costo com-
putazionale rispetto ad un tradizionale MPC rimane invariato, ma rispetto alle
ricerche proposte al giorno d'oggi in ambito degli azionamenti, l'algoritmo pre-
sentato non necessita di alcun osservatore per stimare le variazioni dei parametri
o la presenza di disturbi, risultando robusto ai diversi mismatch che si possono
presentare durante il funzionamento del motore.
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1.1. INTRODUCTION TO THE MPC

depend on the known values up to instant the t and on the future inputs
u(t + kjt), k = 0...N � 1, which are those to be deliver to the system and
calculated.

2. By optimizing a determined cost function to maintain the system as close
as possible to the reference trajectory, the set of future control signals is
calculated. This criterion usually takes the form of a quadratic function of
the errors between the predicted output signal and the predicted reference
trajectory. An explicit solution can be obtained if the criterion is quadratic,
the model is linear, and there are no constraints; otherwise an iterative opti-
mization method has to be used.

3. The optimal solution u(tjt) is sent to the system whilst the next control
signals calculated are discarded, because at the next sampling instant y(t+1)
will start from the actual measurements as initial condition. Thus, the u(t+
1jt+ 1) is calculated (which in principle will be di�erent from the u(t+ 1jt)
because of the new information available) using the receding horizon concept.

In the case under analysis the MPC tracking problem is formulated using the state
space equations. This mean that the system to be controlled can be well-described
by the following linear discrete time model:

x(k + 1) = Ax(k) +Bu(k), x(0) = x0

y(k) = Cx(k)

where x(k) 2 Rn and u(k) 2 Rm denote the state and control input, respectively
and y(k) represents the system output. The receding horizon implementation is
typically formulated by introducing the open-loop optimization problem:

J(N)(x0) = min
u(.)

N�1X
i=1

kx�(k + i)� y(k + i)k2
Q +

N�1X
i=0

k∆u(k + i)k2
R+

+kx�(k +N)� y(k +N)k2
S

(1.1)

subject to:

x(k + i+ 1) = Ax(k + i) +Bu(k + i)

y(k + i) = Cx(k + i)

umin � u(k + i) � umax

ymin � y(k + i) � ymax

i = 0, ..., N � 1

(1.2)

Since N is assumed to be limited, we refer to the problem as �nite horizon problem;
otherwise, if N was in�nite, we would refer to an in�nite horizon problem. In this
case we indicate (1.1) and (1.2) as a constrained problem. It has to be solved online,
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CHAPTER 1. MODEL PREDICTIVE CONTROL: PRINCIPLES AND
ELECTRIC DRIVES APPLICATIONS

and at each iteration the receding horizon policy proceeds by implementing only
the �rst control u�N(0jx(k)) to obtain x(k + 1) = Ax(k) + Bu�N(0jx(k)). The rest
of the control sequence u�N(ijx(k)) is discarded and x(k+1) is used to update the
optimization problem. Solution of (1.1) subject to (1.2), involves the implemen-
tation of a Convex Quadratic Program (QP). Because of the constraints, solution
of the problem does not result to be analytically determined. On the contrary, a
convex optimization problem has to be solved online. For a QP many algorithms
and commercial software exist. The main consequence of using QP related to the
MPC implementation results in a high computational time. Usually, as presented
in [3], the explicit MPC with inequality constrains requires the solution of the op-
timization problem o�-line, by investigating all the physical cases of the system
behavior, leaving only the real-time task searching for the pre-computed solution.
Since the work presented focus on a novel strategy of MPC implementation, the
solution with inequality constrains is not here considered and other simpli�ed ap-
proach will be used. Summing up all the information, mains advantages of using
MPC are:

� can handle nonlinear/MIMO (Multiple Inputs Multiple Outputs) dynamics;

� can enforce constraints on inputs and outputs;

� performance is optimized.

While, on the other hand, main disadvantages are:

� it requires a simpli�ed prediction model;

� computation issues more severe than in classical linear methods.

1.2 Overview of MPC application in electric drives

In order to understand how MPC in electric drives is implemented, it results useful
a general scheme of an electric drive, which is reported in Figure 1.3.

Figure 1.3: Electric drive with closed-loop control of position and speed.

An electric drive is a drive which use an electric actuator, in most cases is an
electric machine, usually in motor operation, that performs a conversion from elec-
tric to mechanical energy. The motion control is obtained throughout the supply

4



1.2. OVERVIEW OF MPC APPLICATION IN ELECTRIC DRIVES

quantities (such as voltages, currents and frequency). In order to perform the con-
trol between the motor and the source of the electric energy it is usually inserted a
power device, usually a voltage source inverter, abled to provide the desired quan-
tities. Generally this device will be a static converter, which is composed of power
electronics devices. A more detailed description of the instrumentation will be in-
cluded in next chapters. In Figure 1.3, it is represented a closed-loop control of the
position and speed. It is also possible to have open-loop controls, but usually they
are cheaper solution but less accurate and with poorer performance with respect to
closed-loop solutions. This work focus on the torque control of a brushless motor.
Precisely, it will be presented a current control of a synchronous reluctance motor,
since the torque depends on currents. The torque reference will be a current refer-
ence, and the speed control loop will use a traditional PI (proportional Integrative)
control.

The idea of MPC is derived from a rather old approach whose �rst ideas were
published more than 30 years ago [4]. Despite its theoretical validation and consoli-
dation along the decades, the application was usually limited to rather slow system
due to the typically high computational demands. Only the recent development of
hardware with higher computational powers enables its implementation in systems
with fast dynamics, such as electric drives. Electric drives are of particular interest
in the application of MPC, because in �eld as industrial robotics and automotive
it is required to have rapid and precise signal tracking, such as the reference torque
applied to an electric motor. Since the current dynamic is responsible for the torque
dynamic and performance, a fast current-loop is required for satisfying mechanical
requirements. Basically (see Figure 1.4), an MPC current control receives as in-
puts a current reference and measured currents at instant k, and by minimizing the
cost function considering the error between reference and measure, it will predict
optimal voltages over the horizon [u � (k)u � (k + 1)...u � (k + N � 1)], but only
the �rst sample is applied by the inverter to the three-phase motor in order to
track the current reference,according to the receding horizon policy. Based on the
newly measured state x(k+1), the new optimal input u*(k+1) is then obtained for
the shifted horizon and applied, thus combining state feedback and the optimal
open-loop input sequences to e�ectively close the control loop [3].

Figure 1.4: Principles of current loop MPC with VS inverter and brushless AC motor.

Model predictive control, in most cases, is based on a discrete-time model of
the process. The main issue related to this approach is the knowledge of the pa-
rameters. The biggest challenge in MPC implementation is the non-linear behavior
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of the drive, since the control strategy needs the full and precise knowledge of the
parameters for the prediction. Without these requirements, only the MPC would
cause at least a steady-state error. In literature, di�erent approach have been used
to overcome the problem of O�set-Free-Tracking. A general di�erentiation pro-
posed in [5], consider two main categories for MPC applied to electric drives as
shown in Figure 1.5.

Figure 1.5: Comparison between two main MPC control strategies.

These two di�erent approaches refer to how the inverter is controlled. MPC
with �nite control set, basically, solve the optimization problem comparing the six
voltage vectors that the inverter can be replicated (see Chapter 3 ) and then it
applied the best vector, whose value minimizes the cost function. On the other
hand, continuous control set follows a di�erent strategy: the voltage reference is
compared with a modulator,following the Pulse-Wodth-Modulation principle that
is applied to generate switching states according to the modulation principles and
inverter topologies. The outputs of the inverter are voltages that are proportional
to the reference one and at the same fundamental frequency. This implies that
the structure of the inverter control is more complex with respect to a �nite con-
trol set but it has the advantage of having a �xed switching frequency. Many
applications of MPC in electric drives are performed by using Finite-Control-Set
MPC (FCS-MPC) as shown in [6]. In [3], for example, a design of an MPC is
applied to the control of a permanent-magnet synchronous motor (PMSM). In-
stead of implementing the traditional cascade structure of speed and control loops,
they are combined together in a single MPC that includes all the state variables of
the system. The optimization includes inequality constrains of voltages and cur-
rents, but the optimization is performed o�ine. The proposed solution consisted
in adding an integrator of the angular speed error outside the controller, the out-
put of which is used to move the speed reference. Other solutions to overcame
model parameter mismatches include a state observer. Observability of a system
consider in principle the problem of reconstructing the initial condition x0 from
n output measurements, applying a known input sequence. In [7] is proposed a
robust predictive current control for PMSM based on an Extended State Observer
(ESO). The ESO is able to estimate general disturbances including parameter un-
certainties and sensor noise. This results in an improvement of the steady state
performance of the system. However, linear observers require tuning e�ort and
have a limited bandwidth, reducing the overall control drive capabilities.
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1.2. OVERVIEW OF MPC APPLICATION IN ELECTRIC DRIVES

Despite all the purposes just presented, the main idea of this work is to present
a novel approach to the MPC control applied to the current loop of a three-phase
brushless AC motor using a voltage source inverter. A reformulation of the state
space model of the motor will introduce in order to obtain a o�set-free-tracking in
presence of a constant current reference, also in presence of parameter mismatches
due to non-linearities of the motor, without using any state observer. From now,
the new control strategy will be called as I-MPC, where the capital "I" stands for
"integral", since the reformulation e�ect achieves an integral action on the currents.
The present work is structured as follows: MPC based scheme current regulator
applied to a PMSM is described; I-MPC formulation is written and compared with
the standard one; Simulations and Experiments are shown and well commented;
Finally the thesis ends with conclusions about the work and future develops are
proposed.
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Chapter 2

Derivation of the MPC and MPC

with integral action

2.1 Introduction

In this chapter are reported the traditional MPC derivation and the novel formula-
tion of the MPC with integral action over the state of the plant, given as assumption
an horizon of N = 3 steps. It is important to notice that the higher N, the higher
the computational cost is needed to solve the optimization problem. However, a
greater value of N corresponds to a longer prediction horizon, which have positive
in�uence on the stability of the control. On the other hand, increasing to much
the horizon will not assure valuable e�ects, resulting in a control action with a
heavy computational cost without appreciable increase in performance. Following
this criterion, N=3 shows a good compromise between performance and compu-
tational cost. In this section the development of the mathematical model of the
drive dynamics and the model predictive policy is derived. It will consider a general
solution apply to a current control of a brushless AC motor, precisely to a Perma-
nent Magnet Synchronous Motor (PMSM), whose current dynamics in the time
domain can be expressed in the dq reference frame. In the following passages the
equations are reformulated in order to obtain a linear discrete state-space model
representation. Both the traditional derivation of the solution and novel strategy
are presented, in order to emphasize the di�erence and make comparisons. Writing
the linear discrete time equations of a PMSM in dq reference, it is considered the
unconstrained problem, checking the solution with limits imposed by the DC-bus.
The cost function is expressed as function of only the input increment ∆U , and
then taking the gradient the explicit optimal solution is derived. It will be shown
how the traditional MPC solution due to the minimization of the cost function,
considering the receding horizon policy, has the same structure of a proportional
state feedback control, while the so called integral version, or o�set-free track-
ing version, added an integral term that is the key element in order to deal with
disturbance and mismatch parameters.

The whole general idea behind the MPC is to select control actions over time,
which minimize a certain objective function given to the controller, possibly adopt-
ing the best feasible pattern. Terms of the cost function are weighted throughout

9
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a positive integer number. In principle, increasing the number weighting a term
of the cost function, the algorithm will try to minimize that term more than the
others. For our current control of a PMSM, the objective is to track the reference
currents, therefore the error can be penalized with a discrete quadratic cost over
the prediction horizon as follows:

J =
N�1X
i=0

kx�(k + i+ 1)� y(k + i+ 1)k2
M

M =

26664
m1 � � � 0

...
. . .

...

0 � � � mN

37775
Furthermore, it is added a term to the cost function, the so called regularization

term:
k∆u(k + i)k2

R

that it is necessary to achieve, only under certain conditions, zero-o�set between
output and tracking reference. Indeed, an equilibrium point is set when y = r and
∆u = 0 . However, the main issue is related to mismatch parameters between
model and plant. In cases such electric drives, where the control uses a simply
and linear model in most cases for computational reasons, mismatch parameters
and nonlinearities in fast dynamics appears. In this case the traditional approach
doesn't guarantee zero o�set tracking errors, while it will be demonstrated the
simple and useful idea to add an integral state. The unconstrained problem is
solved, by imposing the gradient of J equal to zero, and an explicit optimal solution
results. General derivation is before considered for both cases, then the equations
are recasting using a prediction horizon N = 3.

10



2.2. TRADITIONAL MODEL PREDICTIVE CONTROL FOR
TRACKING PROBLEM

2.2 Traditional Model Predictive Control for Track-

ing Problem

2.3 Model state derivation of a PMSM

Consider the discrete-time, linear, time-invariant system, de�ned as:

x(k + 1) = Ax(k) +Bu(k) + h(k)

y(k) = Cx(k)
(2.1)

where x � Xn,u � Um,y � Rp are the state, input, and output vectors, while
h is a disturbance, just for now it represents as an unknown disturbance. The goal
is to manipulate the electrical equations of the motor in the dq reference frame in
order to enquire a new set of equations that can be represented as (2.1). Consider
general voltage equations in dq reference frame:

ud(t) = Rid(t) + Ld
did(t)

dt
� ωme(t)Lqiq(t)

uq(t) = Riq(t) + Lq
diq(t)

dt
� ωme(t)Ldid(t) + ωme(t)Λmg

(2.2)

where:

� R is the stator phase resistance in Ω;

� Ld and Lq are the inductance of the d-axis and the q-axis respectively, in
Henry [H];

� ωme is the electrical angular speed measured in electric radiant per second
[radel/s];

� Λmg is the �ux linkage of the permanent magnets placed in the rotor that are
considered as constant value, measured in V � s.

First it is necessary to discretize the equations. Forward Eulero discretization
is considered. Using a sample time Ts, (2.2) can be written between two discrete
time step k and k+1, such that t(k+1)-t(k) = Ts:

ud(k) = Rid(k) +
Ld
Ts

�
id(k + 1)� id(k)

�
� ωme(k)Lqiq(k)

uq(k) = Riq(k) +
Lq
Ts

�
iq(k + 1)� iq(k)

�
+ ωme(k)Ldid(k) + ωme(k)Λmg

(2.3)

then it is possible to consider the current as state variable and the voltage as
the input variable of the system, obtaining an expression that give the state at the
step k+1 as function of magnitudes at the time step k:

11
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id(k + 1) =
h
1� R

Ld
Ts

i
id(k) + ωme

Lq
Ld
Tsiq(k) +

Ts
Ld
ud(k) (2.4)

iq(k + 1) =
h
1� R

Lq
Ts

i
iq(k) + ωme

Ld
Lq
Tsid(k) +

Ts
Lq
uq(k)� ωme(k)

Λmg

Lq
Ts (2.5)

Equations (2.4) and (2.5) can be easily recast in matrix form and the state
linear discrete-time model of a PMSM results:

"
id(k + 1)

iq(k + 1)

#
= A

"
id(k)

iq(k)

#
+B

24ud(k)

uq(k)

35+ h(k) (2.6)

24yd(k)

yq(k)

35 = C

24id(k)

iq(k)

35 (2.7)

in which the matrix A,B,C and h(k) have the following structure:

A =

264 1� Ts � RLd wme(k) � Ts � LqLd
�wme(k) � Ld

Lq
� Ts 1� �Ts � RLq

375 ; B =

24 Ts
Ld

0

0 Ts
Lq

35 ;

C =

"
1 0

0 1

#
; h(k) =

264 0

�wme(k) � Λmg

Lq
� Ts

375 ;

2.3.1 Tracking problem and MPC derivation

The objective of the model predictive control is to track a reference signal solving
a quadratic optimization problem. The input voltage vector at step k can be
indicated as:

u(k) = u(k � 1) + ∆u(k)

where u(k� 1) is the voltage vector applied at previous step k-1 and ∆u(k) is
the optimal solution voltage vector computed at step k. In this way we can express
the state equation (2.1) as function of ∆u(k) at step k+1 as follows:

x(k + 1) = Ax(k) +Bu(k) + h(k) (2.8)

but u(k) = u(k � 1) + ∆u(k) (2.9)

The equation (2.9) is inserted in (2.8), and we get:

x(k + 1) = Ax(k) +Bu(k � 1) +B∆u(k) + h(k) (2.10)

12



2.3. MODEL STATE DERIVATION OF A PMSM

Now it is possible to compute the equation (2.1) at step k+2:

x(k + 2) = Ax(k + 1) +Bu(k + 1) + h(k + 1) (2.11)

and u(k + 1) can be expressed as:

u(k + 1) = u(k � 1) + ∆u(k) + ∆u(k + 1) (2.12)

Substituting (2.12) in (2.11) it results:

x(k + 2) = A2x(k) + ABu(k � 1) + AB∆u(k)+

+ Ah(k) +Bu(k � 1) +B∆u(k) +B∆u(k + 1) + h(k + 1)
(2.13)

We can compute the state equation at step k+1:

x(k + 3) = Ax(k + 2) +Bu(k + 2) + h(k + 2) (2.14)

u(k + 2) assumes the following form:

u(k + 2) = u(k � 1) + ∆u(k) + ∆u(k + 1) + ∆u(k + 2) (2.15)

Finally, substituting (2.15) in (2.16) it results:

x(k + 3) = A3x(k) + A2Bu(k � 1) + A2B∆u(k) + A2h(k) + ABu(k � 1)+

+ AB∆u(k) + AB∆u(k + 1) + Ah(k + 1) +Bu(k � 1) +B∆u(k)+

+B∆u(k + 1) +B∆u(k + 2) + h(k)(k + 2)
(2.16)

So, it follows at a generic step k+i:

x(k+ i) = Aix(k) +
i�1X
j=0

h i�1�jX
t=0

AtB∆u(k+ j)
i

+
i�1X
j=0

Ai�j�1
�
Bu(k�1) +h(k+ j)

�
(2.17)

Observing equation (2.17), it is possible to �nd a generic expression that gives
the state x(k + i) as function of the initial state x(k), the input at step k-1 and
the following input increments. Considering equations (2.8), (2.13) and(2.16),we
can rearrange them obtaining a compact matrix form:

X = A � x(k) +B �∆U + C � Uold +D � h1 (2.18)

Where:

X =

2664
x(k + 1)

x(k + 2)

x(k + 3)

3775 ,A =

2664
A

A2

A3

3775 ,B =

2664
B 0 0

AB +B B 0

A2B + AB +B AB +B B

3775
13
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∆U =

2664
∆u(k)

∆u(k + 1)

∆u(k + 2)

3775 ,C =

2664
B 0 0

AB B 0

A2B AB B

3775 ,D =

2664
I 0 0

A I 0

A2 A I

3775

Uold =

2664
u(k � 1)

u(k � 1)

u(k � 1)

3775 , h1 =

2664
h(k)

h(k + 1)

h(k + 2)

3775
Now this expression of the state becomes useful for solving the optimization

problem: the cost function will include the state equations, and the goal is to
express all the terms as function of ∆U .

Note: As can be seen from the expression of h(k), it is a function of the electric
angular speed at the same step. Since the predicted speed for following steps is
unknown at time step k, it is usually considered the approximation that it is kept
constant during the prediction horizon, so we get:

h(k) ' h(k + 1) ' h(k + 2)

This assumption is justi�ed by the fact that the electric dynamics is faster than
the mechanical one, that is related to the mechanic angular speed (and thus to the
electric angular speed). This results from comparing the time constant of the two
system. The mechanic time constant has expression:

τm =
J

B

while time constant of the electric circuits of the motor are:

τed =
Ld
R
, τeq =

Lq
R

Generally, τed and τeq are of the order of milliseconds, while τm is of the order of
tenths of a second.

2.3.2 Cost Function and resolution of the unconstrained prob-

lem

As already mentioned the cost function to be minimized is:

J(∆u) =
N�1X
i=1

kx�(k + i)� y(k + i)k2
Q +

N�1X
i=0

k∆u(k + i)k2
R+

+ kx�(k +N)� y(k +N)k2
S

(2.19)

s.t. x(k + 1) = Ax(k) +Bu(k) + h(k) (2.20)

y(k) = Cx(k) (2.21)
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2.3. MODEL STATE DERIVATION OF A PMSM

where we indicate as x�(k + i) the reference output at step k+i. (2.19) and
(2.20) identi�es an unconstrained quadratic optimization problem. Precisely, since
the state equation will be included, it represents an equality constrained problem.
In this way it can be found a closed form of the solution. Each terms of (2.19)
are weighted by a term called weight index. Furthermore, it can be noticed that
usually the last prediction error between reference and output is weighted with a
di�erent index, whose value in general can be di�erent with respect to other term
of previous predictions. Also, (2.19) can be expressed in matrix form. Considering
the following passages applied with a prediction horizon N = 3, the cost function
becomes:

(X� � Y )TQ(X� � Y ) + ∆UTR∆U + (X� � Y )TS(X� � Y ) (2.22)

where we de�ne:

Q =

266666664

q1 � � � 0 0

...
. . .

...
...

0 � � � qN�1
...

0 � � � � � � 0

377777775
R =

26664
r1 � � � 0

...
. . .

...

0 � � � rN

37775 S =

26664
0 � � � 0

...
. . .

...

0 � � � sN

37775

It is required that Q and R must be semi positive de�nite, while the regular-
ization matrix R must be positive de�nite. Now we can substitute the equation
(2.18) in (2.22):

(X� �Ax(k)�B∆U � CUold �Dh1)TQ(X� �Ax(k)�B∆U � CUold �Dh1)

+ ∆UTR∆U +

(X� �Ax(k)�B∆U � CUold �Dh1)TS(X� �Ax(k)�B∆U � CUold �Dh1)

By grouping terms that don't depend on ∆U and de�ning:

Y = X� �Ax(k)� CUold �Dh1 (2.23)

it is possible to get a more compact expression:

J(∆U) = (Y �B∆U)TQ(Y �B∆U) + ∆UTR∆U + (Y �B∆U)TS(Y �B∆U)

Now computing all the calculations we get:

J(∆U) = YTQY + (B∆U)TQB∆U � 2YTQB∆U+

+∆UTR∆U+

+YTSY + (B∆U)TSB∆U � 2YTSB∆U

15
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Terms that don't depend on ∆U can be neglected, and a compact expression
results:

min
∆U

J(∆U) =
1

2
∆UTH∆U � dT∆U

with:

H = 2(BTQB+R+BTSB)

dT = 2(YTQB+YTSB)

We obtain a regular linear-quadratic expression for our penalization function
depending only on the increment control input ∆U . Now the minimization of the
function J becomes straight-forward by imposing the gradient to zero, in fact:

dJ

d(∆U)
= 0) ∆Uopt = H�1 � d (2.24)

So, taking the gradient of J with respect to ∆U we �nally �nd:

rJ = H∆U � d = 0 (2.25)

) ∆U = ∆Uopt =

266664
∆u(k)

∆u(k + 1)

∆u(k + 2)

377775
opt

= H�1d (2.26)

It is appropriate to recall the receding horizon concept that has to be applied in
order to get a closed loop control. At any time k the control solves the optimization
problem over the prediction horizon [k,k+N] and applies only the �rst input ∆u(k)
of the optimal sequence ∆U . At time k+1 it repeats the optimization over the
prediction horizon [k,k+N+1]. In the unconstrained case the optimal increment
coincides with the �rst element of the open-loop solution. The control law at time
step k that results is:

∆u(k)opt = [I 0 0]H�1d (2.27)

With the aim to show the properties of traditional MPC current control, we
can rewrite (2.27) developing d and Y terms recalling the relation (2.23):

∆u(k)opt = [I 0 0]H�1
h
(X� �Ax(k)� CUold �Dh1)TQB+

(X� �Ax(k)� CUold �Dh1)TSB
iT (2.28)

The relation (2.28) clearly points out that the receding horizon applied to an
unconstrained MPC results in a linear state feedback control. The principle algo-
rithm of the MPC is shown in Figure 2.1. The considered process is a Synchronous
Motor, and the control gives to the inverter the optimal voltage reference. The
MPC control law has been implemented in Matlab® Simulink and it is reported
in Appendix A
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i�q

u�(k) INV
Syn

MPC

x(k + 1) = Ax(k) + B∆u(k) + h

i(k)

ωme(k)

∆u�(k)

z − 1u�(k − 1)

M
+

+

x(k + 1) = Ax(k) +Bu(k) + h(k)

y(k) = Cx(k)

A =

264 1− Ts RLd wmeTs
Lq
Ld

−wmeLdLqTs 1− Ts RLq

375B =

24 Ts
Ld

0

0 Ts
Lq

35C =

241 0

0 1

35h(k) =

264 0

−wmeΛmg

Lq
Ts

375

x(k) = Ax(k − 1) +Bu− 1(k) + h(k − 1)

x(k + 1) = Ax(k) +Bu(k) + h(k)

x(k+1)−x(k) = A
�
x(k)−x(k−1)

�
+B

�
u(k)−u(k−1)

�
+h(k)−h(k−1)

x(k + 1)− x(k) = ∆x(k + 1)

x(k)− x(k − 1) = ∆x(k)

u(k)− u(k − 1) = ∆u(k)

h(k)− h(k − 1) = ∆h(k)
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we get:

∆x(k + 1) = A∆x(k) +B∆u(k) + ∆h(k) (2.33)

Consider now the state equation at k+2 step:

x(k + 2) = Ax(k + 1) +Bu(k + 1) + h(k + 1)

We proceed as made before, subtracting (2.30), and we get

x(k+ 2)�x(k+ 1) = A
�
x(k+ 1)�x(k)

�
+B

�
u + 1(k)�u(k)

�
+ h(k+ 1)�h(k)

(2.34)
With the same principle used in (2.32), (2.34) becomes:

∆x(k + 2) = A∆x(k + 1) +B∆u(k + 1) + ∆h(k + 1) (2.35)

Now we can substitute the expression of ∆x(k + 1) (2.33) in (2.35), so we can
found the state increment at step k+2 as function of the step increment at the
initial step k:

∆x(k+ 2) = A2∆x(k) +AB∆u(k) +A∆h(k) +B∆u(k+ 1) + ∆h(k+ 1) (2.36)

Repeating the same procedure just presented we can compute the expression of
the state increment at step k+3, that becomes:

∆x(k + 2) = A3∆x(k) + A2B∆u(k) + A2∆h(k) + AB∆u(k + 1)+

+ A∆h(k + 1) +B∆u(k + 2) + ∆h(k + 2)
(2.37)

A general formulation of the state increment at a generic k-step results:

∆x(k + i) = Ai∆x(k) +
i�1X
j=0

�
Ai�1�jB∆u(k + j) + Ai�1�j∆h(k + j)

�
i = 1, ..., N

(2.38)

Similar to the traditional formulation of the MPC, in this case we can rewrite the
state increment at a generic step k+i as function of the initial state increment and
input increments. It is important to point out that, looking at the expression of
vector h(k), it contains the term that indicates the back emf of the motor, and
the electric angular speed ωme(k) appears to change at each step of the prediction.
However, as already mentioned, the motor speed varies very slowly compared with
current dynamics. In other words, the time constant of the mechanical system
τm = J

B
is much greater than the time constant of the electric circuits of the motor

τed = Ld

R
, τeq = Lq

R
. This implies that over the entire prediction horizon the vector

h(k) can be assumed as constant. This assumption directly implies that:

h(k) = h(k + 1) = h(k + 2))∆h(k) = ∆h(k + 1) = ∆h(k + j) = 0

18
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Furthermore the generic expression can be reformulated in matrix form as following:

∆X = A∆x(k) +B∆U (2.39)

where:

∆X =

26664
∆x(k + 1)

...

∆x(k +N)

37775A =

26664
A

...

AN

37775B =

266666664

B 0 � � � 0

AB B � � � 0

...
...

. . . 0

A(N�1)B A(N�2)B � � � B

377777775
∆U =

26664
∆u(k)

...

∆u(k +N � 1)

37775

In our analysis with a prediction horizon N = 3 the above matrices have the
following structure:

∆X =

2664
∆x(k + 1)

∆x(k + 2)

∆x(k + 3)

3775A =

2664
A

A2

A3

3775B =

2664
B 0 0

AB B 0

A2B AB B

3775∆U =

2664
∆u(k)

∆u(k + 1)

∆u(k + 2)

3775
Now it is useful represents the output y(k+ i) as function of state increments. For
the 3 horizon steps we get:

y(k + 1) = Cx(k + 1)

but x(k + 1) = x(k) + ∆x(k + 1)

) y(k + 1) = Cx(k) + C∆x(k + 1)

y(k + 2) = Cx(k + 2)

but x(k + 2) = x(k) + ∆x(k + 1) + ∆x(k + 2)

) y(k + 1) = Cx(k) + C∆x(k + 1) + C∆x(k + 2)

y(k + 3) = Cx(k + 3)

but x(k + 3) = x(k) + ∆x(k + 1) + ∆x(k + 2) + ∆x(k + 3)

) y(k + 1) = Cx(k) + C∆x(k + 1) + C∆x(k + 2) + C∆x(k + 3)

Finally, we get the matrix form:
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Y = Xk + C∆X (2.40)

where:

Y =

2664
y(k + 1)

y(k + 2)

y(k + 3)

3775Xk =

2664
x(k)

x(k)

x(k)

3775C =

2664
C 0 0

C C 0

C C C

3775
In this way we are able to reformulate the output vector at each prediction step as
function of the initial state at step k and the state increments.

2.4.1 Cost Function and resolution of the unconstrained prob-

lem

The cost function, as in the previous analysis, is:

J(∆u) =
N�1X
i=1

kx�(k + i)� y(k + i)k2
Q +

N�1X
i=0

k∆u(k + i)k2
R+

+ kx�(k +N)� y(k +N)k2
S

(2.41)

that can be rewritten in matrix form as:

J(∆U) = (X� � Y )TQ(X� � Y ) + ∆UTR∆U + (X� � Y )TS(X� � Y ) (2.42)

with:

Q =

266666664

q1 � � � 0 0

...
. . .

...
...

0 � � � qN�1
...

0 � � � � � � 0

377777775
R =

26664
r1 � � � 0

...
. . .

...

0 � � � rN

37775 S =

26664
0 � � � 0

...
. . .

...

0 � � � sN

37775
The weight matrices must satisfy the same hypothesis assumed before. Next, we
replace (2.40) in (2.42):

J(∆U) = (X� �Xk � C∆X)TQ(X� �Xk � C∆X) + ∆UTR∆U+

+(X� �Xk � C∆X)TS(X� �Xk � C∆X)
(2.43)

Now, substituting (2.39) in (2.43) we obtain a cost function expression in terms of
∆U :

J(∆U) = (X� �Xk � CA∆x(k)� CB∆U)TQ(X� �Xk � CA∆x(k)� CB∆U)+

+∆UTR∆U+

+(X� �Xk � CA∆x(k)� CB∆U)TS(X� �Xk � CA∆x(k)� CB∆U)

20



∆U

Y = X� −Xk − CA∆x(k)

J(∆U) = (Y − CB∆U)TQ(Y − CB∆U) + ∆UTR∆U+

+(Y − CB∆U)TS(Y − CB∆U)

∆U

min
∆U

1

2
∆UTH∆U − dT∆U

2(BTCTQCB+R+BTCTSCB)

dT = 2(YTQCB+YTSCB)

rJ = H∆U − d = 0

) ∆U = ∆Uopt =

266664
∆u(k)

∆u(k + 1)

∆u(k + 2)

377775
opt

= H−1d

i�d

i�q

u�(k) INV
Syn

MPCI

∆x(k + 1) = Aδx(k) +B∆u(k) + ∆h
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ωme(k)

∆u�(k)

z − 1u�(k − 1)

M
+

+
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− −
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Chapter 3

Test bench presentation

3.1 Introduction to the test bench

The aim of this work is to present a novel strategy of current Model Predictive
Control with an integral action. The theory has been derived considering a Per-
manent Magnet Synchronous Motor using the discretized voltage equation in the
d-q reference frame. The control has been implemented on a motor that present a
very non-linear behavior. In fact, the control has been tested in a Synchronous Re-
luctance Motor (SyRM), whose characteristics are explained in this chapter. The
main di�erence with respect a PMSM is the absence of permanent magnets in the
rotor, and the electromagnetic torque , named precisely reluctance torque, is due
to a particular rotor shape that present a relevant magnetic anisotropy. Tests are
carried out using for the �rst time in EDLab the MicroLab Box, a dSpace hardware
application which is a compact development system for the laboratory with high
performance and versatility. It lets us to set up the control, test or measurement
applications. The Matlab Simulink project of the control can be implemented by
using a Real Time Interface of dSpace. Furthermore, another motor called "mas-
ter" is present. It driven by its inverter, and shafts of the two motors are connected
by a mechanical coupling. This allows to test the current (torque) control that we
implement.

3.2 General consideration about PMSM

Permanent magnet synchronous motor (PMSM)[8], also called brushless sinusoidal,
are widely used in electric drive applications, especially when high performances
are required. This because they present several advantages with respect traditional
synchronous motors since they don't need an auxiliary circuit that provide rotor
excitation because of the presence of the magnets that are placed on the rotor, and
they assure a constant magnetization. Furthermore, they don't present rotor Joule
losses, and this results in an increase of the e�ciency. These machines are formed
by a rotor where permanent magnets(PMs) are arranged concentrically creating
pole pairs (1 or more), and a stator that contains three-phase windings. Both
rotor and stator are cylindrical crown shaped, and they are made of ferroelectric
materials, and between them it is present an air gap.
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Figure 3.1: Schematic representation of a 2 poles brushless motor.

The electromechanics energy conversion that PMSMs provide are based on
the interaction between conductors placed in the stator that are current paths
and magnetic �elds created by permanent magnets. In Figure 3.1, it is reported a
schematic representation of a PMSM. In Figure 3.1a) it is pointed out the induction
�eld at the air gap produced by rotor PMs, similar to a quasi-square wave, while
in 3.1b) it is represented the sinusoidal induction �eld produced by the stator
winding of the a phase , thanks to a proper winding arrangement along the stator.
Stator contains a tree-phase winding: the three phases have the same number and
distribution of conductors, but they present a relative space displacement of 2

3
π,

and each phase have a couple of clamps that are useful to provide them power
supply from an external three-phase source.

In order to describe the behavior of the sinusoidal PMSM we can start from
the general voltage balance of the three stator phases a,b,c:

ua(t) = Ria(t) +
dλa(t)

dt

ub(t) = Rib(t) +
dλb(t)

dt

uc(t) = Ric(t) +
dλc(t)

dt

(3.1)

where ia, ib, ic are the currents that �ow through the three phases, λa, λb, λc are
linkage magnetics �uxes with each phase and R is the rotor phase resistance.

Consider hypothesis of linearity, the absence of the magnetic circuit saturation
and parasitic e�ects. By using the Clarke and Park transformation it is possible
to identi�es a new reference frame, called d-q reference frame, that rotates with an
angular speed which is assumed to be equal to the electrical angular speed wme of
the rotor. Now we can represent the three-phase stator system described by (3.1)
with a space vector which has the following components with respect to d and q
axis respectively:
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3.3. SYNCHRONOUS RELUCTANCE MOTOR

ud(t) = Rid(t) + Ld
did(t)

dt
� ωme(t)Lqiq(t)

uq(t) = Riq(t) + Lq
diq(t)

dt
+ ωme(t)Ldid(t) + ωme(t)Λmg

(3.2)

that are general voltage equations in d-q reference frame have already been pre-
sented and here are reported. The term ωme(t) refers to the electric angular speed,
that is related to the mechanical angular speed by the pole pairs:

ωme(t) = pωm(t)

Ld is the synchronous direct inductance crossed by the direct current id(t) and Lq is
the synchronous quadrature inductance crossed by iq(t), while the term ωme(t)Λmg

represents the back electromagneticforce (back-emf). From this set of equation
it is possible to derive an expression of the electromagnetic torque as result of
electromechanics energy conversion principle. If we feed the motor with three
sinusoidal currents that are at the same angular speed with respect the back-emf
and making a power balance using (3.2) multiplied by the respectively transformed
currents, the electromagnetic torque assumes the following expression:

m(t) =
3

2
pΛmgiq(t) +

3

2
p(Ld � Lq)id(t)iq(t) (3.3)

where p is the number of pole pairs. As can be seen, the torque is composed by
two terms: �rst term due to electrodynamic interaction depends only on q current,
while the second term is function of both d and q currents. Second terms is the so
called reluctance torque.

Also, the mechanical equation of the motor has to be considered, which as the
following expression:

m(t) = mL(t) +Bωm(t) + J
dωm(t)

dt
(3.4)

where:

� mL(t) is a torque disturbance in Nm;

� B represents the viscous inertia coe�cient expressed in Ns;

� ωm(t) is the mechanical angular speed in rad/sec;

� J is the inertia of the mechanical parts in Kgm2.

3.3 Synchronous Reluctance Motor

PMSM can be classi�ed in two main categories, considering the magnetic circuit
between rotor and stator of the machine:

� Isotropic motor, in which the rotor and the magnet displacement is designed
in order to have the same magnetic structure with respect the stator;
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� anisotropic motor, in which the rotor structure or the magnet displacement
such that it results a relevant magnetic anisotropy.

In an isotropic machine, the magnetic paths along d and q axis present the same
reluctance, so it holds the following relation:

Ld = Lq

so the inductances are the same along the two reference axes. In Figure 3.2, it is
reported a representation of a SPM motor. Magnets are equally placed over the
rotor and, since their permeability is comparable with air, the reluctance between
d and q axes is the same.

Figure 3.2: Magnetic �ux paths in d and q axes of a Surface Permanent Magnet.

On the other hand, anisotropic machine present di�erent magnetic paths be-
tween d and q axis, as it can be shown in Figure3.3 where is reported a rotor of an
Interior Permanent Magnet (IPM) Motors. Magnets are placed inside the rotor,
and for d-axis the inductance results in general lower than the inductance of the
q-axis, due to the fact that in q-axis �ux path pass through iron that has a higher
value of permeability.

Figure 3.3: Magnetic �ux paths in d and q axes of an IPM.

Synchronous Reluctance Motors are a particular anisotropic machine whose
rotor doesn't present magnets. The anisotropy is obtained thanks to a proper
shape design of the rotor. In Figure 3.4, it is shown an example of rotor of a SyRM
with 4 poles.

Conventionally, for a SyRM it is considered as the d-axis where the reluctance
is less grater, i.e where the rotor present iron path for the �ux linkage. In this way
for a SyRM it holds that:

Ld > Lq
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3.3. SYNCHRONOUS RELUCTANCE MOTOR

Figure 3.4: Rotor scheme of a SyRM with 4 poles (p=2).

The q axis is shifted 90 electric degree early. Electric and mechanical degrees are
linked, such as the angular speed, by the number of pole pairs such that:

θme =
θm
p

For a SyRM, due to the absence of rotor magnets, it is Λmg = 0, so the term that
represents the back emf disappears and equations 3.2 becomes:

ud(t) = Rid(t) + Ld
did(t)

dt
� ωme(t)Lqiq(t)

uq(t) = Riq(t) + Lq
diq(t)

dt
+ ωme(t)Ldid(t)

(3.5)

and the torque assumes the expression of:

m(t) =
3

2
p(Ld � Lq)id(t)iq(t) (3.6)

One of the most important concept concerning electric drives is related to the Max
Torque Per Amps (MTPA) operating region. As can be seen from the expression
(3.3) in d-q reference frame, the electromagnetic torque depends on currents value.
First, it can be notice that there is no torque without currents. In time domain it
is possible to demonstrate that this condition can be obtained if sinusoidal currents
a,b,c are in phase (considering positive torque in motor operation) or in phase op-
position with respect the relative back-electro magnetic forces (considering negative
torque).
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Referring to the SyRM in order to identify in the voltage-current plane the
MTPA conditions, it is necessary to deal with limits and operating regions of an
electric drive. Voltages and currents which can be applied to the motor must stay
within speci�ed limits, whose value can be represented by nominal values of the
machine or similar nominal values of the power supply system. In order to identify
operating regions of a SyRM we consider the sinusoidal steady-state. This means
that:

� The voltage and current of each phase is sinusoidal in time domain with
amplitude and frequency constants;

� angular speed is constant, and equal to Ω;

� also the transformed electric magnitudes in a rotating reference frame syn-
chronous with the rotor result constant, indicated as Id, Iq, Ud, Uq.

In order to satisfy the current limitation in each stator phases it must have the
root-mean-square (RMS) value lower than the nominal current Inom of the motor.
This value is related to the temperature of the conductors due to Joule losses above
which it could compromise insulating materials.

Also the stator voltage must be limited within its nominal value Unom, which
depends on the electromagnetic design of the motor. Using magnitudes in d-q
reference frame, two inequality must be satis�ed:

I2
d + I2

q � I2
N

U2
d + U2

q � U2
N

(3.7)

where:

� IN is the module of the stator currents space vector corresponding to the
RMS nominal phase current Inom. Due to the transformation used, it holds
the relation IN =

p
2Inom;

� UN is the module of the stator voltages space vector corresponding to the
RMS nominal line-to-line voltage Unom. Due to the transformation used, it
holds the relation UN =

p
2p
3
Unom.

Consider now a SyRM in steady state operation. Assuming constant values of
currents and voltages equations (3.5) becomes:

Ud = RId � ΩmeLqIq

Uq = RIq + ΩmeLdId
(3.8)

Substituting (3.8) in (3.7) and ignoring the voltage drop due to resistance which
is usually smaller in steady state condition than other terms, we get following
expressions:

I2
d +

�Lq
Ld
Iq

�2

� U2
N

Ω2
meL

2
d

I2
d + I2

q � I2
N

(3.9)
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3.3. SYNCHRONOUS RELUCTANCE MOTOR

In the Id-Iq plane the �rst equation represents family of concentric ellipses, whose
axes depend on the reciprocal of the speed. Instead of the second equation describe
a circle with radius equal to IN , centered in the origin. Furthermore, torque equa-
tion (3.6) describes a family of hyperboles for di�erent value of torque. The region
just described is shown in Figure 3.5, assuming the IPM convention (Lq > Ld). If
we assume the SyRM convention, ellipses are rotated by an angle of 90�, and the
MTPA region remain unchanged because ideally it is represented by a straight line
at 45� degrees in the d-q plane.

Figure 3.5: Operating regions of a SyRM (IPM convention).

The motor operation, at a given speed, in order to respect voltage and current
limits corresponds to an interior point of work of both current and voltage limit.
At low speed, voltage limits is very large, so in these conditions it is a good idea to
use the motor in a point of the BB' region, depending on the necessary torque, but
assuring for that torque the minimum current value. This region is the so called
Max Torque per Amps (MTPA) and minimum losses are achieved. This approach
holds until the BB' region remain within the voltage limit. In other word, referring
to 3.5 the so called basis speed ΩmeB is reached, which corresponds a point of work
whose ellipse pass through B and B'. ΩmeB represents the basis speed of the drive,
under which it is always available the nominal torque. Exceeding that speed the
point of work is provided by the intersection between the current limit circle and
the ellipse of the voltage limit at that speed. For speed greater than ΩmeP it is
convenient to work in the PP' region, that represents the region that assures the
Maximum Torque Per Voltage (MTPV).
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Table 3.1: My caption

Parameter Value u.m
R 16 Ω
Ld 1 H
Lq 0.4 H
p 2 -

For a SyRM, the expression of the ideal MTPA region is a straight line with
expression:

Iq = �Id (3.10)

with the plus sign in motor operation, while the MTPV region has the following
expression:

Iq = �Ld
Lq
Id (3.11)

3.3.1 SyRM test prototype

Figure 3.6: The SyRM used for experimental tests.

The SyRM used to test the MPC with integral action and to compare the
performance with traditional MPC is a prototype designed in EDLab, and it is
shown in Figure 3.6. On the left, it is recognized the incremental encoder, which is
used to measure speed and position of the rotor. Nominal parameters are reported
in Table 3.1. Since the motor is a prototype, nominal inductances are assumed to
be an intermediate value, considering the range of the inductance variation in all
current regime, from zero to the limit one (see Figure 3.7 ).
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3.3. SYNCHRONOUS RELUCTANCE MOTOR

Despite the previous analysis performed for operating regions, it is important to
notice that the e�ect of iron saturation isn't negligible, especially for a SyRM with
very high value of inductances. This means that the iso-torque hyperboles and
region of constant voltages di�er from those previously calculated. Consequently,
Figure 3.5 describes only an ideal case and has only qualitative purpose. In fact
in Figure 3.7 are reported Ld and Lq for di�erent operation conditions. Blue lines
refer to Ld values, while pink ones refer to Lq values. Dashed lines result from
measurements, while continuous ones results from simulation.It can be noticed
that the di�erent behaviour at low current values is due to the fact that in the
real machine, the iron has a non linear B-H characteristic. So the measurements
register an initial non linear trend of inductance values. This graph points out
the non-linearity of the motor, because inductances halved with a range of current
from zero to the nominal one. Thus, the MTPA region is not well described by the
equation (3.10).
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Figure 3.7: Values of inductances for di�erent current values of the SyRM used for

control tests.

One of the principal reason we decide to test the MPC with integral action
over this motor is represented by its non-linearities. MPC generally uses model
parameters to make state prediction and compute optimal inputs, and this is a
great opportunity to veri�ed how the control is able to face with so non-linear
behaviour of the motor.
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3.4 MicroLab Box

Figure 3.8: The MicroLabBox used for experimental tests.

MicroLabBox[9] is a compact development system for the laboratory with high
performance and versatility. More than 100 I/O channels of di�erent types make
MicroLabBox a versatile system that can be used in mechatronic research and
development areas, such as in our case electric drives control. MicroLabBox is sup-
ported by a comprehensive dSPACE software package including, e.g., Real-Time
Interface (RTI) for Simulink® for model-based I/O integration and the experiment
software ControlDesk, which provides access to the real-time application during run
time by means of graphical instruments. Equipped with BNC and Sub-D connec-
tors, the top panel MicroLabBox allows easy access to the analog I/O channels via
probes that are typically used in laboratories to o�er high analog signal quality.
By using BNC connectors it is possible to measure the three-phase currents of
the motor, its angular speed by using an encoder and all these signals are then
available for the control algorithm. Especially for electric drive application, Micro-
LabBox includes an easy con�guration and implementation of Hall sensor inputs,
incremental encoder, Resolver and Synchronous Serial Interface (SSI) interfaces as
well as PWM signal generation. In Figure 3.9, it is reported the block diagram
that explains how MicroLabBox works.

One of the main advantages of using this type of system is that it allows
a comprehensive and user-friendly Electric Motor Control Blockset available on
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3.4. MICROLAB BOX

Figure 3.9: MicroLabBox block diagram.

Simulink®. Since the control algorithm is rather simple to implement in Mat-
lab/Simulink code, it results a good strategy to test the electric drive presented in
this work. By using this Real Time Interface (RTI) Blockset The current speed,
position and angle of the electric motor are automatically calculated. Also, di�er-
ent type of sensors can be used. In order to measure all three-phase stator currents
of the SyRM, three LEM are used, and they are reported in Figure 3.10. The three
stator phase conductors pass through the LEM sensors and the voltage output
signals is sent to the MicroLabBOx using BNC connectors.

In order to load the project on the MicroLabBOx and make possible the exe-
cution each sample time Ts (that is the switching period of the inverter), Matlab
includes a compiler in C language, that creates an optimizer code ready to be exe-
cuted by the system. Generally, a Simulink project for an electric drive application
that uses a PWM strategy to control the inverter are composed by two main parts,
as reported in Figure 3.11. First set of blocks refers to the so called Watchdog, a
mandatory set of instructions that gives the enabling of the inverter, and it has
a Timer Interrupt that is usually doubled with respect the timer interrupt of the
PWM. It plays a key role in real time application because it is able to detect if
there are some issue during the execution of the principal interrupt, and it has a
priority to stop the execution.

Second set of blocks includes all the process that are performed during a sample
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Figure 3.10: Three LEM sensors for stator current measurements.

time Ts of the inverter switching frequency. Principal tasks carried out are:

� Measurement acquisitions (Bus DC,currents, angular speed, mechanical rotor
angle);

� made currents and voltages transformations, from a,b,c reference frame to
d-q reference frame, using Clark and Park transformation;

� execute the control algorithm and compute the solution;

� generate three PWM signals base on the solution that are sent to the inverter
switching control. Signals will be applied during next sample time.

In order to execute experimental tests of the control, a real time Control Desk
is available. An example is shown in Figure 3.12.

With this customizable interface it is possible for example to show on line
measurements of di�erent magnitudes, give speed and current reference to the
control or change parameters to the control as the resistance or inductance values,
in order to test the parameter sensitivity.
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3.5. INVERTER

Figure 3.11: Simulink principal control interface.

Figure 3.12: Real Time Control Desk.

3.5 Inverter

In Figure 3.13 is shown the inverter that has been employed in order to drive the
SyRM. The MicroLabBox acquires measurements each sample time and compute
the optimal input to be applied. When the input is computed, it provides to
the inverter the six commands. In fact, the MicroLabBox calculates the voltage
references for the Space Vector PWM (SVPWM), which gives the duty cycle signals
for the six gates of the inverter.

In order to give some basics about the SVPWM principle, it is reported in
Figure 3.14 a general scheme of a three-phase voltage source inverter.

As power supply, the inverter receives a constant voltage value. In our case,
this is provided by a Variac, that permits to modify the value of the constant

35



CHAPTER 3. TEST BENCH PRESENTATION

Figure 3.13: The inverter used for the SyRM drive control .

Figure 3.14: Scheme of a three-phase voltage source inverter.

voltage input from 0 V up to 350 V. In Figure 3.13 this is represented by two
voltage source series connected in the O central point. The inverter is composed
by 6 power switches, and they are connected forming three legs, one for each motor
phase. Each switch has an antiparallel diode that enable the current inversion. In
fact, usually it is used on and o� controlled switches such as IGBT (Integrated
Gate Bipolar Transistor), which are abled to conduct the current in one direction
only. These devices are suitable for drive application up to 10-15 kHz. Control-
ling the upper switches, it is possible to apply the positive voltage supply to the
respective phase motor. Each couple of switch is driven alternatively, in order to
avoid shortcircuits on the supply side. It results eight possible inverter states. The
inverter produce three voltages among the a,b,c points and the central point O on
the supply side, whose value can be +Udc

2
, �Udc

2
. Consider a generic state of the

inverter, and apply the following de�nition to the three voltage magnitudes:

u =
2

3

�
ua + ube

j 2
3
π + uce

j 4
3
π
�

(3.12)

Equation (3.12) applied to all the eight inverter states, identi�es in a complex plane
6 state vectors with amplitude of 2

3
Udc. They identify vertices of a hexagon, which

is centered into the origin of axes, as shown in Figure3.15. Two o the eight possible
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states represent the null vector.

Figure 3.15: Space vector that identify the active state of a three-phase inverter.

Each vector can be also represented by three bits, which refer to the state of the
three phases. In general, it is indicated with 1 if it is activated the upper switch of
a phase. As can be seen from Figure 3.15, the six vectors divide the hexagon into
6 region, numbered in anti-clockwise order.

General principle of the Pulse Width Modulation (PWM) refers to Figure 3.16.
First, consider a generic voltage u(t), whose value remain within �Udc

2
and +Udc

2
.

It is considered the subdivision of the time scale in intervals Ts, su�ciently small
compared to time intervals in which we register signi�cant variation of u(t). A
second voltage u(t)' trend is constructed by using the value of u(t) at each sample
time and maintaining its value constant during that Ts (Figure 3.16(a)). The
voltages u(t) and u(t)' are obviously di�erent. However, if we apply these voltages
to a RL load which has electric time constant su�ciently higher than Ts, the same
currents results. Considering a leg of the inverter, we can apply voltages that have
value +Udc

2
or �Udc

2
. The inverter can generate in a sample time the voltage which

has the mean value equal to u(t), by applying for Ton the positive value +Udc

2
,

(a) (b)

Figure 3.16: Principles of the Space Vector PWM.
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while during Toff it generates the negative value �Udc

2
, such that Ton + Toff = Ts

(Figure 3.16(b)).
Ton can be calculated by imposing the equality between the mean value of uaO

(considering for instance the leg that refers to the a-phase of the inverter) in the
time interval with the value of u(t)' in the same sample time. It results:

u(t)0 = Udc(δ �
1

2
)

where δ = Ton
Toff

is the so called duty-cycle. Regarding a generic k-interval we
obtain:

δk =
Ton
Ts

=
uk
Udc

+ 0.5 (3.13)

It results that for uaO(t) a succession of couple of positive and negative impulses,
with duration of the positive impulse that is width modulated by (3.13). This
principle can be extending to a three-phase voltage inverter drive, with the aim to
generate the following three sinusoidal voltages:

ua(t) = UM cos(ωt+ θ0)

ub(t) = UM cos(ωt+ θ0 �
2π

3
)

uc(t) = UM cos(ωt+ θ0 �
4π

3
)

(3.14)

The triad (3.14) can be represented by a space vector using (3.12). This represents
a rotating vector in the complex plan. By dividing time in small intervals of
duration Ts � 2π

ω
, we obtain a sequence of rotating space vectors, separating by a

small rotation angle. Finally, it is possible to compute the value of duty cycles at
generic instant k as [8]:

δa,k =
Ta,on
Ts

=
ua,k
Udc

+ 0.5 =
1

Udc
uα,k + 0.5

δb,k =
Tb,on
Ts

=
ub,k
Udc

+ 0.5 =
1

Udc

�
� 1

2
uα,k +

p
3

2
uβ,k

�
+ 0.5

δc,k =
Tc,on
Ts

=
uc,k
Udc

+ 0.5 =
1

Udc

�
� 1

2
uα,k �

p
3

2
uβ,k

�
+ 0.5

(3.15)

where uα,k, uβ,k are the real and imaginary part of the space vector at instant k,
respectively. The criteria of duty cycle computation described in (3.15) is named
Sinusoidal PWM, because the three duty cycles varies as sinusoids. Expression as
(3.13) will be implemented to �nd duty cycles starting from the optimal voltage
input computed in the control law of the MPC.

Finally, the test bench includes a Master Interior Permanent Magnet Motor
(IPM) that is an anisotropic synchronous motor. It is driven by a commercial
inverter. The bench is shown in Figure 3.17. The inverter allows us to perform
both the speed and torque master motor control. By directly connected the motor
shaft by a mechanical coupling, the master motor can bring in rotation the SyRM.
This permits to test our current control scheme, by giving a d-q reference current
and bypassing the speed control loop of the SyRM, which make possible to test
only the MPC/I-MPC current algorithm.
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Figure 3.17: Test bench description.

3.5.1 Note on voltage limits

As already mentioned in Chapter 2, a closed solution of the problem is obtainable
if we consider the cost function subject to the equality constrain represented by the
motor equations. If the equation 3.7 is taken into account, an inequality constrained
problem will result. In this case, it is necessary to use iterative methods in order to
�nd the optimal solution. Since the aim of this work it to present a novel strategy
belongs to the Predictive Control family, the unconstrained problem is considered
and the voltage limits are treated as follows.

The I-MPC algorithm �nd optimal reference voltages that are applied by the
inverter using the SVPWM technique. As previous reported, the maximum phase
voltage that the inverter can apply to the motor is 2

3
UDC , that refers to the six

hexagon vertices in Figure 3.15. In order to simplify the control, we can assume as
limits the circumference that is inscribed in the hexagon, with radius Ulim = UDCp

3
.

If the control �nd a voltage vector that exceed the limit, it is truncated while
maintaining the same phase. The principle is described in Figure 3.18. Using the
notation reported in the �gure1, we can write:

1NF stand for Not Feasible, while F means Feasible.
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Chapter 4

Simulations

4.1 Simulation procedure

This chapter focuses on simulations of the current MPC algorithm. The main
idea is to show di�erences between the traditional MPC formulation and the novel
strategy of the MPC with integral action. Several conditions have been considered
with the aim to make comparisons. The control law is applied as current control
loop scheme. Simulations are performed considering the SyRM parameters that has
been utilized also for the experimental tests. First it is analysed the feasibility of
including a speed loop control of the motor. Several tests are performed considering
two speed references. Subsequently, the current loop is considered by imposing the
motor speed, simulating the steady state condition. It is examined the e�ect of
mismatch parameters on both the control scheme.

In Figure 4.1 it is shown the Simulink set of blocks that are used for simulations.
In particular, we can recognize:

� the speed control loop on the left part, that includes a traditional PI control;

� the SyRM block (in orange) in d-q reference frame;

� the inverter (in green) that is modelled as a delay in Laplace domain;

� the Clarke and Park's transformation, which are used to transform the a,b,c
current and voltage magnitudes in the d-q reference frame.

In Figure 4.2 it is reported the SyRM block scheme, that represents the imple-
mentation of the voltage equations in the d-q reference frame

It can be noticed that the motor presents non-linearities due to the presence of
the cross coupling between d-q current axes.
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Figure 4.1: Simulink blocks used for simulations.

Figure 4.2: SyRM model.

4.2 Speed control loop simulations

Since the motor on which the I-MPC will be tested is a prototype, electric and
mechanic nominal parameters are not clearly known. So it is necessary to assume
in �rst analysis relative acceptable parameters, that are reported in Table4.1. Sim-
ulations that include the speed control loop consider two speed references, which
are 550 and 275 rpm respectively, while for torque step tests is considered the real
nominal speed value with the current parameters. It is used to track the speed
reference a traditional Proportional-Integral (PI) control. In Figure4.3 it is shown
the nested loop current and speed controls. The PI, receives as input the di�erence
between the reference speed and the actual speed of the motor, which identi�es
the speed error. The control generates a reference current signal that act as a
proportional correction (P) of the speed error, weighted by a coe�cient kP . Also,
the control integrates the error (I) and weights the integral with a coe�cient kI ,
in order to achieve zero steady state error after a step speed reference.

Referring to the Laplace domain, a PI control has in general the following
transfer function:

PI(s) = kI
1 + sτr
s

τr =
kP
kI

The code implementation of the PI is here reported:
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Motor Data

Pole Pair Number p 2

Phase resistance R 16 Ω

Direct inductance Ld 1 H

Quadrature inductance Lq 0.4 H

Nominal current IN 3 A(pk)

Rotor Inertia J 9.5e-4 Nms2

Viscous friction B 0.001 Nms

Voltage DC inverter UDC 300 V

Table 4.1: Motor and inverter nominal parameters.

Figure 4.3: Speed control loop of the SyRM.

f unc t i on [ id_ref , i q_re f ]=PI_speed ( omega_err , Ts , I_lim )

%% dat i
K_I=6;

5 K_P=0.1;
%% algor i thm f o r i_re f

p e r s i s t e n t omega_int

10 i f ( isempty ( omega_int ) )
omega_int=0;

end

% d i s c r e t i z z a z i o n e d i Eulero
15

omega_int=omega_int + omega_err*Ts ;

% PI con t r o l

20 i_re f=K_P*omega_err+K_I*omega_int ;
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% ant i wind�up s t a t i c o

i f i_re f >= I_lim
25 omega_int=(I_lim�K_P*omega_err ) /K_I ;

i_re f=I_lim ;
end

i f i_re f <= �I_lim
30 omega_int=(�I_lim�K_P*omega_err ) /K_I ;

i_re f=�I_lim ;
end

i_re f=K_P*omega_err+K_I*omega_int ;
35

% MTPA SRM
iq_re f = abs ( i_re f / sq r t (2 ) ) ;
id_re f = i_re f / sq r t (2 ) ;

It is pointed out that we suppose to operate in the MTPA region of the SyRM,
where id = iq. The di�culty to �nd the nominal speed of the motor due to
the relative high variations of the inductances has been overcome by considering
as nominal speed a value of 550 rpm. The nominal speed is obtained when the
voltage and current is at its limit and the nominal torque is available (point B
in Figure 3.5). It can be derived from equations (3.8) considering that in MTPA
region it is: Id = Iq = Ilimp

2
. So we give:

Ωme,B = �
p

2Ulim
LdIlim

1q
1 +

L2
q

L2
d

(4.1)

with Ulim = UDCp
3
. Referring to Figure 3.7, it is evaluated the inductances at the

current of 3A(peak) and it results a nominal speed of about 550 rpm. For each
speed step reference simulation the currents reference tracking is observed. All the
following simulations considered the following weight matrix parameters, both for
MPC and I-MPC:

q1 = q2 = 1

s1 = s2 = 1

r1 = r2 = 10�6

(4.2)

Notes about tuning these parameters will be presented in current loop simulations.

4.2.1 Speed step response

From Figure 4.4 to Figure4.9 it is shown the comparison between the use of MPC
and I-MPC considering a reference speed of 550 rpm and 275 rpm. Also, the
current dynamics are reported. As can be seen in Figure 4.4 and Figure 4.7, the
system behaviour is very similar between the two di�erent speeds. This is quite
obvious since the speed control loop is related to the mechanical motor parameters,
so the MPC and I-MPC don't point out any substantial di�erence. In this case the
speed dynamics depends also on the mechanical time constant τM = J

B
= 0.95s. It
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Figure 4.4: 550 rpm speed step response.
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Figure 4.5: Tracking d-current reference from PI speed control.
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Figure 4.6: Tracking q-current reference from PI speed control.
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Figure 4.7: 275 rpm speed step response.
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Figure 4.8: Tracking d-current reference from PI speed control.

0 0.05 0.1 0.15 0.2

t[s]

0

0.5

1

1.5

2

2.5

q
-c

u
rr

e
n

t 
[A

]

iq

iq
rif

(a) MPC.

0 0.05 0.1 0.15 0.2

t[s]

0

0.5

1

1.5

2

2.5

q
-c

u
rr

e
n

t 
[A

]

iq

iq
rif

(b) I-MPC.

Figure 4.9: Tracking q-current reference from PI speed control.
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is interesting to observe that the two control scheme developed the same current
dynamic, as shown in Figure 4.6 and Figure 4.9 for the iq currents and in Figure
4.5 and Figure 4.8 for the id currents. The current limits is required at initial
instants. In steady state condition it can be noticed that both the MPC and the
I-MPC are able to track the reference without o�sets.

These simulations are useful to show the stability of the nested current and
speed control loop, considering two reference speed values.

4.2.2 Torque step response

Another important simulation to be considered is the torque step test, that simulate
the insertion of a mechanical load to the electric SyRM drive. It is here reported
the expression of the reluctance torque of the SyRM motor:

m(t) =
3

2
p
�
Ld � Lq

�
idiq

The nominal torque in MTPA region is available at the nominal speed and peak
current. However, the nominal speed depends on motor parameters, as can be
seen from (4.1), where the voltage drops across the resistance has been neglected.
This is acceptable in case of very low value of R. In our case, where the nominal
resistance is 16 Ω, its voltage drop should be included in (4.1). Using current
parameters, the nominal torque results Nnom = 8 Nm. By using (4.1), the actual
nominal speed is with Ld = 1 H, Lq = 0.4 H it results:

ωmeN ' 75.8
radel
s

that corresponds to 360 rpm. A good compromise to perform the step torque
test is to consider e relative lower value of the nominal speed and torque, while
maintaining the voltage DC voltage of 300 V . It is chosen a speed reference of 330
rpm and a load torque of 7 Nm. The procedure is based on the following approach:
�rst, we give a speed reference to the motor. When steady state condition is
reached, it is applied the load torque

Figure 4.10 shows the comparison between the speed dynamic using the MPC
and I-MPC current algorithm respectively. It can be notice that there is no di�er-
ence between the two approaches, as already anticipated in the previous section.
Also, Figure 4.11 and Figure 4.12 point out the d-q current dynamics. This com-
parison demonstrated that the MPC and I-MPC exhibit the same behaviour after
a torque step load.

4.2.3 Speed inversion

The most crucial test that involves the speed control loop regards the motion in-
version. The simulations consider a step speed reference of 550 rpm. At a certain
time, a step reference of �550 is given to the control. The speed dynamic com-
parison between the MPC and the I-MPC is reported in Figure 4.13, while Figure
4.14 and Figure 4.15 show the d-q current dynamic. Also here, it is con�rmed the
stability of the nested control loop. In fact, both the MPC and I-MPC behave in
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Figure 4.10: Torque step T = 7 Nm at 330 rpm.
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Figure 4.11: Tracking q-current reference from PI speed control at 330 rpm with a step

torque T = 7 Nm.
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Figure 4.12: Tracking d-current reference from PI speed control at 330 rpm with a step

torque T = 7 Nm.
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Figure 4.13: Speed inversion from 550 rpm to -550 rpm.
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Figure 4.14: Speed inversion: d-current tracking.

the same way. It is interested to notice that, with a perfect match of the param-
eters between motor and control scheme, the MPC doesn't evidence any steady
state error. Apparently, the control scheme performs the same current action with
respect the I-MPC. However, next sections will show bene�ts of the novel strategy
in present of mismatch parameters.
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Figure 4.15: Speed inversion: q-current tracking.

4.3 Current dynamics

4.3.1 Tuning weight matrices

The chose of weight matrix parameters plays a key role for MPC algorithms. The-
ory of the MPC has been explained: at each time step the cost function is minimized
solving a LQP. Three weight matrices is considered: Q is related to the minimiza-
tion of the error between the current reference and the predicted current vector, R
scales the voltage increment ∆u and S refers to the last term of the predicted error.
Together, these terms in�uence the stability of the system; they act on the control
as the kP and kI coe�cients of a PI control. As results from many simulation
observations, the most important role is played by the regularization term. First,
it is pointed out that it doesn't matter the absolute value of each single weight
index, but what it counts is the relative value among the coe�cients. Following
this principle, it is considered the q indexes equal to one, and other parameters
are then tuned. One of the most important remark that has been proved during
simulations and experimental tests is the range of value that R coe�cients which
can be handled.

Consider for simplicity the cost function written for the I-MPC d-current with
a predicted horizon N = 1. Let the informal annotation we have:

h
i�d(k + 1)�

�
1� RTs

Ld

�
[id(k)� id(k � 1)]�

ωme
Lq
Ld
Ts[iq(k)� iq(k � 1)]� Ts

Ld
∆u(k)

i
q1

+
h
∆u(k)

i
r1

(4.3)

From an intuitive point of view and assuming q1 = 1, the regulation term can have
range of values that is in the of magnitudes of Ts

Ld
. In fact, R is useful to avoid

higher value of voltage variation, both in dynamics and in steady state condition.
However, a higher value of r1 and r2(for q-axis) compromise the stability because
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Figure 4.16: Tune of R coe�cients.

the optimization problem doesn't include the real voltage balance any more. So,
for a SyRM the R coe�cients are on the order of or lower than:

Ts
Ld

=
100e� 6

1
= 100e� 6

similar value is achieved considering L� q. It is interesting to observe the e�ect of
di�erent chose of r1 and r2. In order to explain how the regularization term acts
on the current control consider Figure 4.16.

It is given a current step of 1.5 A for both axis currents. The d-q axes are
treated with the same value of weight indexes. As can be seen, both for id and
iq, with a index comparable to 100e � 6 the dynamic shows oscillations. While,
decreasing its value, the overshoot is reduced and also the time rising. In fact, the
small the regulation index, the greater the voltage variation is permitted. Indeed,
chose the value of r indexes, is a compromize between current fast dynamics and
voltage ripple. On the other hand, if we consider r1, r2 almost equal to zero,
currents exhibit relevant oscillation in steady state.

Another parameter to consider is the matrix S, that weights the last prediction
error of the horizon. By considering Q indexes equal to one, r1 = r2 = 10e� 6, it
is interesting to study the e�ect of the last weight of the predicted error.
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Figure 4.17: Tune of S coe�cients.
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Figure 4.18: Zoom of d-q current dynamics for di�erent value of s1 and s2.
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It is chosen three values of S coe�cients, and it is compared the d-q current
dynamics in Figure 4.17. The weight indexes act in di�erent way: considering
id, the s1 coe�cient quite improves the rising time, while the dynamics of iq is
slightly slowed increasing its value. However, in both axes the overshoot and the
oscillations are reduced , as it is shown in Figure 4.18. Overall, S coe�cients don't
strongly a�ect the performance of the current control, due to the small horizon of
N = 3, though they improve the dynamic a bit.

4.3.2 Current step dynamics

In order to evaluate how the current MPC and I-MPC behave in dynamics, the
following procedure is used. First, it is necessary to exclude the speed control
loop, by not considering the mechanic equation of the motor. Thus, the speed is
imposed, simulating what happen in the test bench. In fact, to test the current
control of the SyRM, it is dragged by the master motor, which is controlled in speed.
Considering sinusoidal steady state condition the motor equation in d-q reference
frame is expressed by constant terms, thanks to Clarke and Park's transformations:

Ud = RId � ΩmeLqIq

Uq = RIq + ΩmeLdId
(4.4)

In MTPA regions it holds Id = Iq. It is taken into account also the voltage drop
terms. By assuming Id = Iq = Ilimp

2
, equations (4.4) can be inserted in the limit

voltage equation U2
d + U2

q = U2
lim:

(R� ΩmeLq)
2 I

2
lim

2
+ (R + ΩmeLd)

2 I
2
lim

2
= U2

lim

and solving for positive Ωme, it is found:

ΩmeN = 65
radel
s

which corresponds to about 300rpm. Giving the limit current as reference, in
Figure 4.19 it is shown the comparison between d current dynamics of the MPC
and I-MPC, while in Figure 4.19 the q-axis currents is considered. Furthermore,
Figure 4.21 and Figure 4.22 report the same simulations, considering a current
step of 1.5A for both axes. The latter simulations are performed according to the
experimental tests that are presented in the next chapter. The following tuning
parameters are considered:

q1 = q2 = 1

s1 = s2 = 2

r1 = r2 = 1e� 6

It is clear that the performance of the two control scheme in dynamics are almost
the same. It is always important to underline the fact that these simulations are
only a formal demonstration that the performances of the I-MPC is comparable
with those of the MPC. Since the motor parameters, in particular the inductances,
varies in a wide range over the operating regions, the magnitudes of Ld and Lq
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(a) MPC id dynamic.
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(b) I-MPC id dynamic.

Figure 4.19: Comparison between d-current dynamics using MPC and I-MPC, at 300

rpm and i�rif = Ilim.
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(a) MPC iq dynamic.
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(b) I-MPC iq dynamic.

Figure 4.20: Comparison between q-current dynamics using MPC and I-MPC, at 300

rpm and i�rif = Ilim.
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(a) MPC id dynamic.
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(b) I-MPC id dynamic.

Figure 4.21: Comparison between d-current dynamics using MPC and I-MPC, at 300

and i�drif = 1.5A.
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(a) MPC iq dynamic.
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(b) I-MPC iq dynamic.

Figure 4.22: Comparison between q-current dynamics using MPC and I-MPC, at 300

and i�qrif = 1.5A.

are chosen as indicative. In this case, the id current evolves with a time constant
τed = Ld

R
= 62.5ms. The limit current in MTPA is reached in less than a time

constant (Figure 4.19 (a),(b)) and also for a reference of 1.5A (Figure 4.21 (a),(b)).
On the other hand, the time constant of the q-axis τeq = Lq

R
= 25ms. It appears

from (Figure 4.20 (a),(b)) that for the q-axis both the control could be improved by
change the setting of parameters. Nevertheless, in simulation constant parameters
are assumed. In real tests the inductances present a mismatch with respect nominal
ones, due to the iron saturation. In this case it has been preferred to assume same
parameters for d and q axis in order to limit the variable parameters and so make
possible the comparison between the two schemes.

4.3.3 Parameter sensitivity

In this section it is pointed out the most important advantage of using I-MPC.
Up to now, it has been shown the comparison of the two schemes assuming that
there were perfect parameter correspondence between the motor and the control.
A (SyRM) has been chosen for the �rst implementation due to the fact that the ab-
sence of magnets simpli�es the motor equation. In particular the PM �ux linkage is
equal to zero and thus vector h. However, it is remembered that the Synchronous
Reluctance Motor presents a very non linear behavior in the operating region. In
this way, it is interesting to show how the I-MPC can overcome mismatch parame-
ters while robustly keeping the reference tracked. All the possible mismatches are
analysed. The simulations are performed in steady state condition, by imposing
the speed of the motor and giving a reference current. For the MPC, the simula-
tions consider two motor speeds, the halved value of the nominal and the nominal
one. It is quite obvious that refers to an absolute value of the nominal speed is not
properly correct. In fact, by changing the motor parameters, the nominal speed of
the drive is modi�ed. Overall, in order to make comparison, the value of the nom-
inal speed previously calculated is considered. Only in the case of R mismatches,
the value is recomputed. This is due to the fact that, if we reduce the inductance
values, the base speed increases, and so the nominal current is available to the drive
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also at a lower speed. While,by increasing the resistance value of the motor, the
base speed decreases, and the nominal current is not so longer a feasible operation
point.

4.3.4 Ld and Lq mismatch

Referring to Figure 3.7, it is known that both the inductances Ld and Lq change
of a factor even grater than 2, inside current range space of the machine. Thus,
�rst the d-axis motor inductance is halved, approximating the iron saturation.
Simulations are based on the following procedure, considering Ld but it holds also
for Lq:

� First, the Ld of the motor equations is halved to the value Ld = 0.5H ;

� two current references are considered: the current limit of 3A and the ref-
erence id = 1.5A, iq = 1.5A; always the ideal MTPA operating region is
assumed;

� for the MPC scheme, two speeds are imposed: the nominal one and a half of
the nominal speed;

� once the system reach the steady state condition, the mismatch between
current reference and measured is reported.

Simulations consider the operation point of id = 1.5A, iq = 1.5A and 300 rpm
speed because experimental results are performed in this condition. The weight
matrix parameters for both the control scheme are set as follows:

q1 = q2 = 1

r1 = r2 = 1e� 6

s1 = s2 = 1

Figure 4.23(a) and Figure 4.24(a) report the steady state condition reached giving
the limit current as reference. In Table 4.2 it is reported the current error due to a
Ld mismatch of a halved of the nominal value. As can be seen, a steady state error
using the MPC appears. Furthermore, by simulating iron saturation decreasing the
Ld value, it is interesting to observe that the error is more pronounced in the q-axis
current than in the d-axis one. This is due to the cross saturation. In fact, each
terms of the state equation written for the d-axis motor are dived by the Ld term.
So, intuitively the equation is scaled by a factor that depends on the mismatch and
the error results less accentuated. On the other hand, the Ld coe�cient appears in
the q-axis equation only in the cross coupling term Ld

Lq
id, then the MPC solves an

optimization problem that presents an o�set from the real one. In conclusion, this
o�set appears in steady state condition, and the reference is not correctly tracked.
The error indeed is more pronounced at higher speed (Figure 4.24(a)), and also
it varies assuming di�erent reference currents. For instance, considering Figure
4.24(a) and Figure 4.26(a), the steady state error for the q-current increases as
many as the current reference is higher.
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(a) MPC: id current at ωm = 32rad/s and
16rad/s.
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(b) I-MPC: id current at ωm = 32rad/s.

Figure 4.23: Comparison between the MPC and I-MPC d-axis inductance sensitivity:

id steady state current, iref = Ilim, Ld = 0.5H.

Table 4.2: Steady state current errors using MPC with Ld mismatches.

Current error [mA] Parameter mismatch Ωm = 32rad/s Ωm = 16rad/s
eid 0.153 [mA] 0.05 [mA]
eiq

Ld = 0.5[H]
40.12 [mA] 20.4 [mA]

On the contrary, observing Figure 4.23(b),Figure 4.24(b),Figure 4.25(b) and
Figure 4.26(b) it is clear that the I-MPC is able to face with this mismatch param-
eter. In fact, in all cases it brings the current to the reference with zero steady-state
error. This means that the control is robust with respect Ld parameter mismatches.

The same analysis can be performed consider the mismatch of the other induc-
tance Lq. A mismatch of 0.2 H is considered with respect the nominal value of
0.4 H. Figure 4.27 and Figure 4.28 report the comparison between the MPC and
I-MPC steady state operation. Here it is the dual situation of the Ld mismatch:
the error using the MPC registered higher value on the d-axis current due to the
cross coupling. The phenomenon is not linear with the motor speed. The I-MPC
control scheme is able to deal with Lq mismatch, obtaining zero steady state error.
It is said that the I-MPC is robust with the q-axis inductance variations.

4.3.5 R mismatch

The second parameter mismatch regards stator phase resistance. During the oper-
ation, its value can signi�cantly grow. It is known that the resistivity of a metal,
is a function of the temperature:

ρ = ρ0[1 + α(T � T0)] [Ωmm2/m]

where ρ is the resistivity, T is the temperature and ρ0 is the metal resistivity at the
reference temperature T0, usually 20�C. For copper it is ρ0 = 0, 0175 [Ωmm2/m]
The α value is the thermal coe�cient, whose value for the copper is 3.95e� 3K�1.
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(a) MPC: iq current at ωm = 32rad/s and
16rad/s.
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(b) I-MPC: iq current at ωm = 32rad/s.

Figure 4.24: Comparison between the MPC and I-MPC d-axis inductance sensitivity:

iq steady state current, iref = Ilim, Ld = 0.5H.

(a) MPC: id current at ωm = 32rad/s and
16rad/s.
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(b) I-MPC: id current at ωm = 32rad/s.

Figure 4.25: Comparison between the MPC and I-MPC d-axis inductance sensitivity:

id steady state current, idref = 1.5A, Ld = 0.5H.

(a) MPC: iq current at ωm = 32rad/s and
16rad/s.
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(b) I-MPC: iq current at ωm = 32rad/s.

Figure 4.26: Comparison between the MPC and I-MPC d-axis inductance sensitivity:

iq steady state current, iqref = 1.5A, Ld = 0.5H.
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(a) MPC: id current at ωm = 32rad/s and
16rad/s
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(b) I-MPC: id current at ωm = 32rad/s.

Figure 4.27: Comparison between the MPC and I-MPC q-axis inductance sensitivity:

id steady state current, iref = Ilim, Lq = 0.2H.

(a) MPC: iq current at ωm = 32rad/s and
16rad/s.
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(b) I-MPC: iq current at ωm = 32rad/s.

Figure 4.28: Comparison between the MPC and I-MPC q-axis inductance sensitivity:

iq steady state current, iref = Ilim, Lq = 0.2H.

(a) MPC: id current at ωm = 32rad/s and
16rad/s.
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(b) I-MPC: id current at ωm = 32rad/s.

Figure 4.29: Comparison between the MPC and I-MPC q-axis inductance sensitivity:

id steady state current, idref = 1.5A, Lq = 0.2H.
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(a) MPC: iq current at ωm = 32rad/s and
16rad/s.
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(b) I-MPC: iq current at ωm = 32rad/s.

Figure 4.30: Comparison between the MPC and I-MPC q-axis inductance sensitivity:

iq steady state current, iqref = 1.5A, Lq = 0.2H.
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(a) MPC: id current at ωm = 28.8rad/s.
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(b) I-MPC: id current at ωm = 28.8rad/s.

Figure 4.31: Comparison between the MPC and I-MPC stator phase resistance sensi-

tivity: id steady state current, iref = Ilim, R = 24Ω.

It is considered a 40% increase of the nominal resistance value, which corresponds
to a temperature rise of almost 100K.

In Figure 4.31 and Figure 4.32 it is compared the steady state operation of the
MPC and I-MPC. In this case the motor phase resistance assume value R = 24Ω,
simulating the increase of the temperature described above. Besides, it has been
considered the limit current as reference, so the nominal speed it is recomputed to
the resistance variation. It results a mechanical speed value of 28.28rad/s. Since
both state equations contain the resistive drop, a comparable steady state error
a�ects d-q currents, as shown in the Figure 4.31(a) and Figure 4.32(a). However,
Figure 4.31(b) and Figure 4.32(b) pointed out that the I-MPC can deal also with
resistive mismatches.

Figure 4.33 and Figure 4.34 replicate the experimental tests that have been
carried out (R = 24Ω) with id,ref = iq,ref = 1.5A; also it is reported a simulation
that considers the motor phase resistance doubled up to 32Ω. Also in this case, it
is possible to notice the advantages of using the I-MPC: it brings the current to
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(a) MPC: iq current at ωm = 28.8rad/s.
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(b) I-MPC: iq current at ωm = 28.8rad/s.

Figure 4.32: Comparison between the MPC and I-MPC stator phase resistance sensi-

tivity: iq steady state current, iref = Ilim, R = 24Ω.
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(a) MPC: id current at ωm = 32rad/s.
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(b) I-MPC: id current at ωm = 32rad/s.

Figure 4.33: Comparison between the MPC and I-MPC stator phase resistance sensi-

tivity: id steady state current, idref = 1.5A, R = 24Ω and 32Ω.

(a) MPC: iq current at ωm = 32rad/s.

0.5 0.6 0.7 0.8 0.9 1

t[s]

1.49

1.495

1.5

1.505

1.51

q
-c

u
rr

e
n

t 
[A

]

iq

iq
rif

(b) I-MPC: iq current at ωm = 32rad/s. .

Figure 4.34: Comparison between the MPC and I-MPC stator phase resistance sensi-

tivity: iq steady state current, iqref = 1.5A, R = 24Ω and 32Ω
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(a) MPC: id current at ωm = 32rad/s.
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(b) I-MPC: id current at ωm = 32rad/s.

Figure 4.35: Comparison between the MPC and I-MPC sensitivity: id steady state

current, idref = 1.5A, R = 24Ω, Ld = 0.5H, Lq = 0.2.
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(a) MPC: iq current at ωm = 32rad/s.
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(b) I-MPC: iq current at ωm = 32rad/s.

Figure 4.36: Comparison between the MPC and I-MPC sensitivity: iq steady state

current, iqref = 1.5A, R = 24Ω, Ld = 0.5H, Lq = 0.2.

the reference and in steady state condition it reaches zero o�set.

4.3.6 R, Ld and Lq mismatches

Another interesting test is to change all the electric parameters and observe the
e�ect of the two control scheme. In this case, the regulation weight indexes are
slightly modi�ed for both the control scheme. In fact, reducing Ld, Lq and increas-
ing R at the same time, the control action need to be adjusted, and the previous
value of r1 r2 seems to be too small. It is set r1 = r2 = 1e� 5.

In Figure 4.35 and Figure 4.36 it is shown the comparison between the MPC and
the I-MPC, assuming that both Ld and Lq are halved, while the stator resistance
is increased by 40%. As can be observed, I-MPC can deal with these mismatches
( Figure 4.35(b),Figure 4.36(b) ), while the traditional Model Predictive Control
scheme commits a signi�cant steady state error in both axes ( Figure 4.35(a),Figure
4.36(a) ).

62



4.3. CURRENT DYNAMICS

4.3.7 Current integral error

This section aims to show the di�erence between the MPC and the I-MPC in
terms of the integral error. In order to perform signi�cant simulations, the current
steady state with id,ref = iq,ref = 1 is considered. The test starts with the MPC
algorithm. After a while, a switch from the MPC to the I-MPC strategy is carried
out. During simulations, it is computed the integral error of both the d-q axis
currents. In Figure 4.37 both the motor d-q axis inductances are halved. As can
be observed, I-MPC can deal with this mismatch, in fact this case, the integral
error caused by the MPC is arrested after the switching to I-MPC strategy, while
during the MPC operation the integral error grows linearly, this because the error
is constant with respect the reference.
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(a) MPC: id current at ωm = 32rad/s.
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(b) I-MPC: iq current at ωm = 32rad/s.

Figure 4.37: MPC to I-MPC switch: Ld and Lq mismatch.

Finally, in Figure 4.38 all the mismatches are considered, by halving the d-q
axis inductances and doubling the resistive term. It is possible to notice that, after
the switch, I-MPC compensates e�ectively the steady state error in the reference
tracking. Moreover, the rise of the integral error induced by the MPC is stopped.
This means that I-MPC grants an integral action and so an unbiased tracking.
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(a) MPC: id current at ωm = 32rad/s.
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(b) I-MPC: iq current at ωm = 32rad/s.

Figure 4.38: MPC to I-MPC switch: Ld,Lq and R mismatch.
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Chapter 5

Experimental results

5.1 Introduction to experimental tests

The test bench is composed of a master motor (PMSM synchronous electric ma-
chine) directly connected to the motor under test (SyRM) with the same nominal
machine data used in simulation, as already presented in Chapter 3. The drive
has been tested experimentally using dSPACE MicroLabBox which provides the
six commands to the inverter. After initialization, the program reads the phase
currents and the mechanical speed from the encoder placed on the motor shaft.
It proceeds making Clarke and Parks transformations in order to implement the
current MPC/I-MPC and calculating the voltage references for the Space Vector
PWM (SVPWM), which gives the duty cycle signals for the six gates of the inverter
(see Figure 5.1. Both current MPC/I-MPC have been implemented with a hori-
zon length of N = 3. The choice of using this prediction horizon is a compromise
between stability and computational cost. It is worth to remember that the longer
N, the higher the computational e�ort, because matrix order grows as long as we
extend the prediction horizon. However, the stability of the control loop is related
to this parameter. Weight matrices Q, R and S have been tuned for both the
control schemes, achieving a good compromise between dynamics response during
transients and steady state stability. Tuning e�ort has been minimized by acting
only on the regulation matrix R and keeping constant the others. Performances of
the two schemes are compared in steady state and dynamics conditions. As repre-
sented in Figure 5.1, the master motor maintains the speed at 300rpm and a d-q
current reference of 1.5 A is given to the SyRM. In order to test the e�ectiveness

Figure 5.1: Scheme of the experimental test implementation.
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of the I-MPC, a change of the motor parameter is forced to the control, and it is
observed the di�erence between the MPC and the I-MPC. Overall, we concentrate
the experimental tests on the mismatch parameters; the aim is to demonstrate that
the I-MPC can a�ord these mismatches and keep the reference tracked without o�-
set. For both control schemes, it has been chosen the following weight indexes for
d and q axes respectively:

q1 = q2 = 1

s1 = s2 = 2

r1 = 8e� 5

r2 = 8e� 5

These parameters di�er from those that have been used in simulation tests.
In fact, simulations are based on simplify and linear model of the motor, and the
inverter is modelled as a simple delay in s-domain. The system behavior is quite
di�erent in experiments, and parameters have to be changed to �nd the optimal
con�guration.

5.2 Current step dynamics

First, it has been evaluated the current step response along the d and q axes.

1.74 1.76 1.78 1.8 1.82 1.84

t [s]

0

1

2

d
-c

u
rr

e
n

t 
[A

]

i
d,meas

i
d,ref

1.74 1.76 1.78 1.8 1.82 1.84

t [s]

0

1

2

q
-c

u
rr

e
n

t 
[A

]

i
q,meas

i
q,ref

Figure 5.2: Current dynamics: step response using the MPC scheme.

For the MPC control scheme, observe the Figure 5.2. It is possible to notice
that the best tuning of weight parameters, which is a compromize between low
ripple in steady state and overshoot in dynamics, does not eliminate oscillating
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step responses. Comparing with Figure 5.3, which reports the I-MPC d-q current
step response, it is clear that the MPC can't deal with variable inductances. In
fact, at the operation point of 1.5 A, the inductances vary with respect the nominal
value. In particular, after dynamics in Figure 5.3 the I-MPC achieves a zero o�set
in the q-axis current, while in Figure 5.2 a di�erence between reference and q-
axis current measurements appears. Furthermore, by comparing the two scheme
dynamics, it results that the I-MPC can be tuned in easier ways, obtaining low
ripple and overshoot at the same time.

1.52 1.54 1.56 1.58 1.6 1.62 1.64

t [s]

0

0.5

1

1.5

d
-c

u
rr

e
n

t 
[A

]

i
d,meas

i
d,ref

1.52 1.54 1.56 1.58 1.6 1.62 1.64

t [s]

0

0.5

1

1.5

q
-c

u
rr

e
n

t 
[A

]

i
q,meas

i
q,ref

Figure 5.3: Current dynamics: step response using the I-MPC scheme.

In Figure 5.4 it is shown a zoom of the current step response using the I-MPC
control scheme. Referring to Figure 3.7, the possible real value of inductances at

Iref =
q
i2d + i2q = 2.12A are:

Ld = 0.8H; Lq = 0.2H

so the electric time constant become:

τed = 50ms; τeq = 12.5ms

Observing Figure 5.4 we can derive that the rising time for the d-axis current is
11 ms approximately, about a �fth of τed, while the rising time of the q-axis current
is 9 ms, less than τeq. This means that this control scheme can compete with
similar predictive control strategy, moreover assuring a correct current tracking.
When steady state condition is reached, the motor phase currents in time domain
are almost sinusoidal, and they are reported in Figure 5.5 for the MPC and in
Figure 5.6 for the I-MPC. Due to the previous comment on the q-axis current
using the MPC, it is possible to notice that phase currents of the MPC scheme
have a higher peak value, so the reference is not correctly tracked.
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Figure 5.4: I-MPC: Zoom of Figure 5.3.
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Figure 5.5: Stator phase currents using the MPC.

Another comparison that can be done in dynamics involves the d-q voltages
applied by the inverter. The confrontation between the MPC and the I-MPC is
pointed out in Figure 5.7 and in Figure 5.8.

The dynamics using the two scheme appears to be very similar, while when
steady state is reached the I-MPC shows lower ripple on both axes.

Now it is interesting to compare the two control scheme considering current
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Figure 5.6: Stator phase currents using the I-MPC.
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Figure 5.7: Output voltages in d-q reference frame using the MPC.

dynamics and imposing to the controls a mismatch parameter. In order to simulate
the iron saturation, the inductances are augmented because the real value will be
smaller. In Figure 5.9 and Figure 5.10 are reported the current step response
assuming Ld = 2 H. Using the MPC, an error arises in the q-axis current. It
is quite obvious that the value of the error depends on the motor speed and also
on the parameter mismatch. Here it is considered a d-axis inductance of 2 Ld.
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Figure 5.8: Output voltages in d-q reference frame using the I-MPC.

On the other hand, the I-MPC presents a good dynamics compared with the one
without mismatch from nominal parameter. It exhibits d-axis current with an
increased overshoot and steady state is reached in more time compared to the one
with nominal parameters. However, the I-MPC isn't a�ected by steady state error
and it well-tracked the current reference.
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Figure 5.9: Current dynamics: step response using the MPC scheme, with control

parameter Ld = 2 H.
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Figure 5.10: Current dynamics: step response using the I-MPC scheme, with control

parameter Ld = 2 H.
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Figure 5.11: Currents dynamics: step response using the MPC scheme, with control

parameter Lq = 0.8 H.
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Figure 5.12: Current dynamics: step response using the I-MPC scheme, with control

parameter Lq = 0.8 H.

Similar considerations can be done in case of q-axis inductance and resistance
mismatches. In Figure 5.11 and Figure 5.12 it is given to the control a parameter
Ld = 0.8 H of the q-axis inductance. In particular, in Figure 5.11 it is clear that
the MPC scheme registered an o�set in the d-axis current. Also, the dynamics
of the two axes is compromised, showing extensive oscillations. While, the step
current responses using I-MPC (Figure 5.12) don't su�er from o�set in steady
state, and the dynamics is comparable to the one with nominal parameters. It is
interesting to notice that, in both control schemes, a so high mismatch of q-axis
inductance cause a delay that a�ects the rising time.

Another forced mismatch parameter analysed is the resistive one. In Chapter
4 it has been shown with simulations that a mismatch of the resistive parame-
ter a�ect both d and q axes using the MPC. Here, in Figure 5.13, this e�ect is
con�rmed. Furthermore, the q-axis current presents continuous oscillations. One
more time, the I-MPC con�rm the robustness to resistance variations, as reported
in Figure 5.14. The current response is comparable with the one that has the
nominal parameters.

Finally, putting all together, an experimental test considering all the possible
mismatches is considered in Figure 5.15 and in Figure 5.16 for the MPC and I-MPC
respectively. Also in this case the I-MPC shows a good step current response and
in steady state it tracks the reference, while the MPC scheme presents oscillations
and an o�set between the reference and the actual currents.
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Figure 5.13: Current dynamics: step response using the MPC scheme, with control

parameter R = 8 Ω.

1.22 1.23 1.24 1.25 1.26 1.27 1.28

t [s]

0

1

2

d
-c

u
rr

e
n

t 
[A

]

i
d,meas

i
d,ref

1.22 1.23 1.24 1.25 1.26 1.27 1.28

t [s]

0

1

2

q
-c

u
rr

e
n

t 
[A

]

i
q,meas

i
q,ref

Figure 5.14: Current dynamics: step response using the I-MPC scheme, with control

parameter R = 8 Ω.
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Figure 5.15: Current dynamics: step response using the MPC scheme, with control

parameter Ld = 2 H, Lq = 0.8 H , R = 8 Ω.
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Figure 5.16: Current dynamics: step response using the I-MPC scheme, with control

parameters Ld = 2 H, Lq = 0.8 H , R = 8 Ω.
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5.3 Steady state tests

It is now presented the crucial advantage of using the I-MPC algorithm. Tests
are performed in steady state conditions. It is considered the current reference
Idref� = Iqref� = 1.5A and the motor speed is imposed by the master motor at
300rpm. The motor parameter are changed online to the control after a while it
is reached the steady state operation. The aim is to demonstrated how parameter
mismatches can a�ect the tracking. First, it is considered to switch online the d-
axis inductance value which the control uses for solving the optimization problem.
The value changes from Ld = 1 H to Ld = 2 H, simulating the iron saturation.

In Figure 5.17 it is shown the sensitivity on the d-axis inductance using the
MPC. In particular, the inductance is doubled in the MPC control at the instant
2.6s.

As can be seen, the nominal parameters already causes an o�set, that is con-
spicuous on the d-axis current. It is also reported the mean value of currents,
before and after the d-axis inductance step change. It is possible to compute the
error between the real mean value and the reference as:

err_id = abs ( 1 . 5 � sum( id_meas ( t_start : t_end ) ) / l ength ( id_meas ( t_start :
t_end ) ) ) *1000

err_iq = abs ( 1 . 5 � sum( iq_meas ( t_start : t_end ) ) / l ength ( iq_meas ( t_start :
t_end ) ) ) *1000

where tstart and tend is the time interval considered for computing the mean
value. So, before the change of Ld it holds:

iderr = 44.5 mA

iqerr = 2.6 mA

After the online changes it results:

iderr = 5.4 mA

iqerr = 74.9 mA

It is clear that in presence of d-axis inductance parameter mismatches, the MPC
doesn't guarantee zero o�set in steady state. The error appears in both axes; in
particular, the mismatch a�ects the q-axis current due to the cross coupling, as
con�rm of simulations results.

On the other hand, observe the Figure 5.18. It is reported the same procedure
just presented, but it is implemented the I-MPC algorithm. At time t = 1.94 s the
d-axis inductance is doubled. This test highlights the e�ectiveness of the control
scheme integral action. The control chases and keep the reference tracked without
any o�set. This worth for both d and q axes. The only e�ect is an increasing value
of the d-current ripple.

Analogous experimental test has been involved the q-axis inductance. In this
case the value that the control uses to compute optimal voltages is augmented
online up to Lq = 0.8 H. Using the MPC scheme, the measured currents are
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Figure 5.17: MPC steady state: step change of the d-axis inductance.
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Figure 5.18: I-MPC steady state: step change of the d-axis inductance.
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Figure 5.19: MPC steady state: step change of the q-axis inductance.

reported in Figure 5.19. This mismatch a�ects both d and q axis currents. Errors
before the step change are:

iderr = 44.5 mA

iqerr = 2.6 mA

While, after the instant of 3.14s, errors between actual currents and reference
grow signi�cantly, especially for the d-current:

iderr = 545.4 mA

iqerr = 20.9 mA

Also here, it is con�rmed the simulation test that, due to the cross coupling term
in the d-axis voltage equation, the d-current is particularly a�ected by an o�set.
Conversely, the Figure 5.19 shows the d and q current trends by implementing the
I-MPC. At time instant 2.25 s the same step change of Lq is given to the control.
Also in this case there are good evidences of the I-MPC robustness. The mean
current coincides at each instant with the reference one. It is demonstrated that
this control scheme doesn't involve any o�set on the currents. Here, after the
switch of the q-inductance value, a greater ripple appears on the q-axis current;
this dually happen in the d-axis current considering a mismatch of Ld. But overall
the reference is always maintained tracked.

The last mismatch analysed is the one that involves stator phase resistance. To
simulate the heating of the motor, a lower value with respect to the nominal one
is given to the control. It is considered a halved value R = 8 Ω of the nominal
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Figure 5.20: I-MPC steady state: step change of the q-axis inductance.

parameter. Using the MPC algorithm, the step change of R occurs at time instant
3 s. The achieved results are reported in Figure 5.21. Also in this case, it is con-
�rmed that the latter control scheme can't a�ord any motor mismatch parameter.
The error before the resistance step change is the same of previous cases. After
switching, errors become:

iderr = 55.8 mA

iqerr = 7.5 mA

This demonstrated that both the currents are a�ected by an o�set, and its
value is not equally proportional, other mismatches are already present. In fact,
the d-axis nominal inductance previously causes an o�set on the d-axis current.

In Figure 5.22 it is shown another bene�t of using the I-MPC. The same step
change of resistance is here applied, but the tracking isn't a�ected by o�set at all.
Furthermore, a halved value of the resistance doesn't change the ripple in both the
d and q axis current. So it is con�rmed the robustness of the I-MPC against stator
phase resistance mismatches.

Finally, both the control are tested considering all the mismatches. The com-
parison is pointed out observing the Figure 5.23 and Figure 5.24. The I-MPC
manifests robustness to all the possible incorrect parameters. While, the MPC
pointed out o�sets in both the d and q axis current. In conclusion, we can a�rm
that this MPC with integral action is insensitive to motor parameter mismatches,
and it is capable to maintain the correct tracking reference without shows any
deviations.
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Figure 5.21: MPC steady state: step change of the stator phase resistance.
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Figure 5.22: I-MPC steady state: step change of the stator phase resistance.
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Figure 5.23: MPC steady state with all parameter mismatches.
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Figure 5.24: I-MPC steady state with all parameter mismatches.

80



5.4. NOTE ON THE PREDICTION HORIZON

5.4 Note on the prediction horizon

The prediction horizon N plays a key role in matter of the control stability. In
general, the larger N, the better the stability. However, as already mentioned,
increasing the N value causes a more than linear increase of the computational cost.
In this work it has been chosen a prediction horizon length of three steps. This
choice entails the inversion of a 6-square matrix in order to solve the optimization
problem. As �nal step of this thesis it has been tested how the I-MPC behaves
with a shorter prediction horizon of N =2. It has been considered the same current
step dynamics presented in previous section. The comparison between the two
prediction horizon lengths is presented in Figure 5.25 and in Figure 5.26. It is
interesting to notice that, with N equal to three, the current dynamics exhibit lower
oscillations and overshoot. Observing the Figure 5.25, with a prediction horizon
equal to two, the control action is maintaned; nevertheless currents present higher
overshoot and the steady state is reached after some oscillations.
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Figure 5.25: I-MPC current step dynamics with a prediction horizon length N = 2.
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Figure 5.26: I-MPC current step dynamics with a prediction horizon length N = 2.
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Conclusions and future

developments

In this work a novel MPC strategy with an Integral Action has been proposed
in the electric drives �eld for the �rst time. The new formulation of the motor
state equation is based on the use of incremental current vectors for both the input
voltage and the current state. This makes possible to overcome issues caused by
the traditional current MPC approach. In particular, the steady state error is
compensated by the integral action on the currents.

Theory validation is achieved by comparing the two scheme simulations in dif-
ferent operating conditions. In particular, it has been shown how the controls
behave in case of parameter mismatches. The proposed current I-MPC is able to
compensate the steady state error due to mismatches. This is proved by the fact
that the integral of the tracking error generated by the traditional MPC is stopped
by the I-MPC during simulation tests.

Experimental tests performed on a Synchronous Reluctance Motor con�rm the
advantages of I-MPC implementation. The current dynamics are comparable be-
tween the two control schemes in term of rising time. However, the use of I-MPC
assures the bene�ts of a correct current tracking. Furthermore, the experimental
tests pointed out the robustness of the control algorithm, because so high step
changes of the inductance parameters does not occur in real operations. Neverthe-
less, the I-MPC is able to maintain the control and keep the reference tracked. It
is important to notice that the I-MPC does not need any state observer to esti-
mate disturbances and parameter mismatches. This permits to simplify the control
scheme, while the computational e�ort is comparable to the MPC.

Future works will focus on the implementation of the control scheme in di�er-
ent Synchronous Motors, such as the PMSM. The presence of the magnets will
give the opportunity to focus the analysis on the model disturbance, represented
by the term h. Also, it will be interesting to handle the constrained optimization
problem, including the inequality constrains of voltage and current limits. The
challenge is to implement this problem in fast dynamics application, such as elec-
trical drives. Moreover, a more precise stability study will be performed; lower
values of the prediction horizon length implies lower computational cost, thus the
control algorithm results simpler to implement. However, since the MicroLabBox
permits very high computational power, an interesting analysis can be consider a
higher prediction horizon lenght (for instance equal to four, six ...). Finally, it will
be investigated all the high speed operating region, in order to test the robustness
and the performance of the control in the �ux weakening regime operation.
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Appendix A

MPC Matlab code

The Matlab code of the MPC with prediction horizon of N = 3 is reported below.
The computation of the inverse matrix H�1 is here indicated with the command
inv(H). However, the implemented code include the parametric inversion of the
matrix, in order to avoid high computational cost.

f unc t i on [Uk, duty_a , duty_b , duty_c , id_p , iq_p ] = mpc(w_me, theta_me , id ,
iq , id_r i f , i q_r i f , U_DC,Ld , Lq ,R, q1 , q2 , r1 , r2 , s1 , s2 )

% MPC equa l i t y const ra ined , p r e d i c t i v e hor i zon N =3
%current c on t r o l o f a SyRM

5

flux_mg = 0 ;
Ts = 100e�6;

%x(k+1) = A*x (k ) + B*u(k ) + h
10 % C = [1 0 ; 0 1 ] ;

a11 = 1 � Ts*R/Ld ;
a12 = w_me*Ts*Lq/Ld ;
a21 = �w_me*Ld/Lq*Ts ;
a22 = (1� Ts*R/Lq) ;

15 A = [ a11 a12 ; a21 a22 ] ;

b11 = Ts/Ld ;
b12 = 0 ;
b21 = 0 ;

20 b22 = Ts/Lq ;
B = [ b11 b12 ; b21 b22 ] ;

h = [ 0 ; �w_me* flux_mg*Ts/Lq ] ;

25 p e r s i s t e n t U_old ;
% s e t o r i g i n a l U_old to zero the
% f i r s t time t h i s func t i on i s invoked
i f isempty (U_old)
U_old = [ 0 ; 0 ; 0 ; 0 ; 0 ; 0 ] ;

30 end

%A1 = [ A; A^2; A^3 ] ;
%A
aa11 = a11 ;

35 aa12 = a12 ;
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aa21 = a21 ;
aa22 = a22 ;

%A^2
aa31 = a12*a21 + a11*a11 ;

40 aa32 = a11*a12 + a12*a22 ;
aa41 = a11*a21 + a21*a22 ;
aa42 = a12*a21 + a22*a22 ;
%A^3
ax1 = a12*a21 + a11*a11 ;

45 ax2 = a11*a21 + a21*a22 ;
ax3 = a22*a22 + a12*a21 ;
ax4 = a11*a12 + a12*a22 ;

aa51 = a11*ax1 + a12*ax2 ;
50 aa52 = a12*ax3 + a11*ax4 ;

aa61 = a21*ax1 + a22*ax2 ;
aa62 = a22*ax3 + a21*ax4 ;

A1 = [ aa11 aa12 ; aa21 aa22 ; aa31 aa32 ; aa41 aa42 ; aa51 aa52 ; aa61 aa62
] ;

55 B1 = [B ze ro s (2 , 4 ) ; (A*B +B) B ze ro s (2 , 2 ) ; (A^2*B +A*B +B) (A*B +B) B
] ;

C1 = [B ze ro s (2 , 4 ) ; A*B B ze ro s (2 , 2 ) ; A^2*B A*B B ] ;
D = [ eye (2 , 2 ) z e ro s (2 , 4 ) ; A eye (2 , 2 ) z e ro s (2 , 2 ) ; A^2 A eye (2 , 2 ) ] ;
h1 = [ h ; h ; h ] ;

60 %weight matr i ce s
Q1 = [ q1 0 0 0 0 0 ;

0 q2 0 0 0 0 ;
0 0 q1 0 0 0 ;
0 0 0 q2 0 0 ;

65 0 0 0 0 0 0 ;
0 0 0 0 0 0 ] ;

S1 = [0 0 0 0 0 0 ;
0 0 0 0 0 0 ;

70 0 0 0 0 0 0 ;
0 0 0 0 0 0 ;
0 0 0 0 s1 0 ;
0 0 0 0 0 s2 ] ;

75 R1 = [ r1 0 0 0 0 0 ;
0 r2 0 0 0 0 ;
0 0 r1 0 0 0 ;
0 0 0 r2 0 0 ;
0 0 0 0 r1 0 ;

80 0 0 0 0 0 r2 ] ;

%current a c q u i s i s t i o n
xk = [ id ; i q ] ;

85 %re f e r e n c e vec to r
r i f = [ i d_r i f ; i q_ r i f ; i d_r i f ; i q_ r i f ; i d_r i f ; i q_ r i f ] ;

Y = r i f � A1*xk � C1*U_old � D*h1 ;

90



90 %Hess ian matrix
H = 2*(B1 '*Q1*B1 +R1 +B1 '* S1*B1) ;
d = 2* ( (Y'*Q1*B1) + (Y'* S1*B1) ) ' ;

%So lu t i on o f the unconstra ined problem
95 deltaU = inv (H) *d ;

%RH
deltaUk = deltaU ( 1 : 2 ) ;
U_prec = U_old ( 1 : 2 ) ;

100 Uk1 = U_prec + deltaUk ;

%Voltage l im i t s
Ulim_star = U_DC/ sq r t (3 ) ;
i f s q r t (Uk1(1 ) ^2 + Uk1(2) ^2)>= Ulim_star && abs (Uk1(1 ) ) >= 0.00001

105

i f Uk1 (1 ) >= 0 && Uk1(2) >=0

Uk1(2) = Uk1(2) /Uk1(1 ) *Ulim_star* s q r t (1/(1+(Uk1(2) /Uk1(1) )
^2) ) ;

Uk1(1 ) = sq r t ( Ulim_star^2 � Uk1(2) ^2) ;
110 end

i f Uk1(1 ) <= 0 && Uk1(2) >=0

Uk1(2) = �Uk1(2) /Uk1(1 ) *Ulim_star* s q r t (1/(1+(Uk1(2) /Uk1(1)
) ^2) ) ;

115 Uk1(1) = �s q r t ( Ulim_star^2 � Uk1(2) ^2) ;

end

i f Uk1(1 ) <= 0 && Uk1(2) <=0
120

Uk1(2) = �Uk1(2) /Uk1(1 ) *Ulim_star* s q r t (1/(1+(Uk1(2) /Uk1(1)
) ^2) ) ;

Uk1(1 ) = �s q r t ( Ulim_star^2 � Uk1(2) ^2) ;
end

125 i f Uk1 (1 ) >= 0 && Uk1(2) <=0

Uk1(2) = Uk1(2) /Uk1(1 ) *Ulim_star* s q r t (1/(1+(Uk1(2) /Uk1(1) )
^2) ) ;

Uk1(1 ) = sq r t ( Ulim_star^2 � Uk1(2) ^2) ;

130 end

e l s e
i f s q r t (Uk1(1) ^2 + Uk1(2) ^2)>= Ulim_star && abs (Uk1(1 ) ) < 0.00001

135 i f Uk1 (2 ) > 0
Uk1(2) = Ulim_star ;

e l s e
Uk1(2) = �Ulim_star ;

end
140 end

end
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Uk = Uk1 ;
U_old = [Uk ;Uk ;Uk ] ;

145

%Current Pred i c t i on

i_pred = A*xk + B*Uk + h ;

150 id_p = i_pred (1 ) ;
iq_p = i_pred (2 ) ;

% Duty cy c l e f o r the i n v e r t e r
co = cos ( theta_me ) ;

155 sen = s i n ( theta_me ) ;
T = [ co �sen ; sen co ] ;
u_alfabeta=T*Uk;

u_alfa = u_alfabeta (1 ) ;
160 u_beta = u_alfabeta (2 ) ;

duty_a = 0 .5 + u_alfa /Ulim_star ;
duty_b = 0.5 + (�0.5* u_alfa + sq r t (3 ) /2*u_beta ) /Ulim_star ;
duty_c = 0 .5 + (�0.5* u_alfa � s q r t (3 ) /2*u_beta ) /Ulim_star ;
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I-MPC Matlab code

The Matlab code of the I-MPC with prediction horizon of N = 3 is reported below.
The computation of the inverse matrix H�1 is here indicated with the command
inv(H). However, the implemented code include the parametric inversion of the
matrix, in order to avoid high computational cost.

f unc t i on [Uk, duty_a , duty_b , duty_c , id_p , iq_p ] = IMPC(w_me, theta_me , id
, iq , id_r i f , i q_r i f , U_DC,Ld , Lq , R, q1 , q2 , r1 , r2 , s1 , s2 )

% I�MPC, equa l i t y cons t ra in , p r ed i c t i on hor i zon N =3
%current c on t r o l o f a SRM

5 %parameters g ive as input ( p o s s i b l e on l i n e change )

Ts = 100e�6; %sample time

% model s t a t e equat ion ( d i s c r e t e�time )
10 %x(k+1) = A*x (k ) + B*u(k )

A = [ (1 � Ts*R/Ld) w_me*Ts*Lq/Ld ; �w_me*Ld/Lq*Ts (1� Ts*R/Lq) ] ;
B = [ Ts/Ld 0 ; 0 Ts/Lq ] ;
C = [1 0 ; 0 1 ] ;

15

p e r s i s t e n t U_old ;
% s e t o r i g i n a l U_old to zero the
% f i r s t time t h i s func t i on i s invoked
i f isempty (U_old)

20 U_old= [ 0 ; 0 ] ;
end

%de l tax (k+1) = A1* de l tax (k ) + B1*DeltaU

25 %de l tax (k ) = x(k ) � x (k�1)
A1 = [ A; A^2; A^3 ] ;
B1 = [B ze ro s (2 , 4 ) ; A*B B ze ro s (2 , 2 ) ; A^2*B A*B B ] ;
C1 = [1 0 0 0 0 0 ;

0 1 0 0 0 0 ;
30 1 0 1 0 0 0 ;

0 1 0 1 0 0 ;
1 0 1 0 1 0 ;
0 1 0 1 0 1 ] ;

35 %current a c q u i s i t i o n s
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xk = [ id ; i q ] ;

p e r s i s t e n t x_old ;
% s e t o r i g i n a l U_old to zero the

40 % f i r s t time t h i s func t i on i s invoked
i f isempty ( x_old )
x_old = [ 0 ; 0 ] ;

end

45 Xk = [ id ; i q ; id ; i q ; id ; i q ] ;

r i f = [ i d_r i f ; i q_ r i f ; i d_r i f ; i q_ r i f ; i d_r i f ; i q_ r i f ] ;

Y = r i f � Xk � C1*A1*( xk � x_old ) ;
50

% Weigth matr i ce s

Q1 = [ q1 0 0 0 0 0 ;
0 q2 0 0 0 0 ;

55 0 0 q1 0 0 0 ;
0 0 0 q2 0 0 ;
0 0 0 0 0 0 ;
0 0 0 0 0 0 ] ;

60 S1 = [0 0 0 0 0 0 ;
0 0 0 0 0 0 ;
0 0 0 0 0 0 ;
0 0 0 0 0 0 ;
0 0 0 0 s1 0 ;

65 0 0 0 0 0 s2 ] ;

R1 = [ r1 0 0 0 0 0 ;
0 r2 0 0 0 0 ;
0 0 r1 0 0 0 ;

70 0 0 0 r2 0 0 ;
0 0 0 0 r1 0 ;
0 0 0 0 0 r2 ] ;

% Hess ian matrix
75

H = 2*(B1 '*C1'*Q1*C1*B1 + R1 +B1 '*C1'* S1*C1*B1) ;

d = 2* ( (Y'*Q1*C1*B1) + (Y'* S1*C1*B1) ) ' ;

80 % Optimal s o l u t i o n

deltaU = H\d ;

%Receding Horizon
85

deltaUk = deltaU ( 1 : 2 ) ;

% Check vo l tage l im i t s

90 Uk1 = U_old + deltaUk ;
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Ulim_star = U_DC/ sq r t (3 ) ;

95 i f s q r t (Uk1(1 ) ^2 + Uk1(2) ^2)>= Ulim_star && abs (Uk1(1 ) ) >= 0.00001

i f Uk1(1 ) >= 0 && Uk1(2) >=0 % I d i a l

Uk1(2 ) = Uk1(2) /Uk1(1 ) *Ulim_star* s q r t (1/(1+(Uk1(2) /Uk1(1) )
^2) ) ;

100 Uk1(1) = sq r t ( Ulim_star^2 � Uk1(2) ^2) ;
end

i f Uk1(1 ) <= 0 && Uk1(2) >=0 % I I d i a l

105 Uk1(2) = �Uk1(2) /Uk1(1 ) *Ulim_star* s q r t (1/(1+(Uk1(2) /Uk1(1)
) ^2) ) ;

Uk1(1 ) = �s q r t ( Ulim_star^2 � Uk1(2) ^2) ;

end

110 i f Uk1 (1 ) <= 0 && Uk1(2) <=0 % I I I d i a l

Uk1(2 ) = �Uk1(2) /Uk1(1 ) *Ulim_star* s q r t (1/(1+(Uk1(2) /Uk1(1)
) ^2) ) ;

Uk1(1 ) = �s q r t ( Ulim_star^2 � Uk1(2) ^2) ;
end

115

i f Uk1 (1 ) >= 0 && Uk1(2) <=0 %IV d i a l

Uk1(2 ) = Uk1(2) /Uk1(1 ) *Ulim_star* s q r t (1/(1+(Uk1(2) /Uk1(1) )
^2) ) ;

Uk1(1 ) = sq r t ( Ulim_star^2 � Uk1(2) ^2) ;
120

end

e l s e
125 i f s q r t (Uk1(1) ^2 + Uk1(2) ^2)>= Ulim_star && abs (Uk1(1 ) ) < 0.00001

i f Uk1(2 ) > 0
Uk1(2) = Ulim_star ;

e l s e
Uk1(2) = �Ulim_star ;

130 end
end

end

135 % Voltage vec to r Uk = [Ud; Uq ]

Uk = Uk1 ;

U_old = Uk ;
140 x_old = xk ;

%compute the cur rent p r ed i c t i on
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i_pred = A*xk + B*Uk;
145

id_p = i_pred (1 ) ;
iq_p = i_pred (2 ) ;

% duty cy c l e f o r the i n v e r t e r
150

co = cos ( theta_me ) ;
sen = s i n ( theta_me ) ;
T = [ co �sen ; sen co ] ;
u_alfabeta=T*Uk;

155

u_alfa = u_alfabeta (1 ) ;
u_beta = u_alfabeta (2 ) ;

duty_a = 0 .5 + u_alfa /Ulim_star ;
160 duty_b = 0.5 + (�0.5* u_alfa + sq r t (3 ) /2*u_beta ) /Ulim_star ;

duty_c = 0 .5 + (�0.5* u_alfa � s q r t (3 ) /2*u_beta ) /Ulim_star ;
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