
UNIVERSITY OF PADOVA

DEPARTMENT OF INFORMATION ENGINEERING
Master degree in Control Systems Engineering

Developement of a Matlab Interface for a
Vision-Guided Robotic Arm

Supervisor Master Candidate
Professor Giovanni Boschetti Valeria Bianca Fantini

Academic Year
2022–2023

ii

”The strength of your will
Leading the rising dawn
With noble elegance
Sparkling on.”

-Bloody Stream

iv

Abstract

This thesis contains the implementation of the Matlab interface used to communicate to a 6-axis
manipulator. The TM5-700 is a cooperative robot on whose arm is mounted an Eye-in-Hand
camera. This interface is then integrated into a framework where also an HTTP server is needed to
retrieve the pictures taken from the robot camera.

This vision system is then used to detect a target object to be subsequently picked up by the
robot. To do so the binocular vision system model is employed in order to retrieve the the depth
information of the 3D position of the target object. The ORB algorithm is utilized to locate the
target object from the two pictures.

Once the 3D target position is retrieved, through the Matlab interface is possible to produce a
script external to the robot that gives the robot instructions for the pick up routine.

At the end the experimental results of the deployment of the framework are presented, together
with an estimation of the depth perception error.

vii

viii

Contents

Abstract vii

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Visually guided pick up problem . 1
1.2 Thesis overview . 3

2 Theoretical background 5
2.1 Frames used and their transformation matrices . 5

2.1.1 Intrinsic matrix . 6
2.1.2 Extrinsic matrix . 8

2.2 Object Recognition algorithm . 10
2.2.1 Features, keypoints and descriptors . 10
2.2.2 ORB . 12

2.3 Depth estimation . 14
2.3.1 Focal length approximation . 14
2.3.2 Depth estimation . 17

3 Description of framework components and setup 19
3.1 TMFlow setup . 19

3.1.1 Network Node . 20
3.1.2 Listen Node . 20
3.1.3 Vision Node . 21

3.2 HTTP server . 23
3.2.1 Stereo calibration . 23
3.2.2 Server structure . 24

3.3 Matlab Interface . 27
3.3.1 Communication protocol . 27
3.3.2 TM class . 29

ix

4 Final Experiment 37
4.1 Techman TM5-700 . 37

4.1.1 Manipulator specifications . 37
4.1.2 Gripper Notes . 37

4.2 Integrating the framework’s components . 39
4.2.1 Flowchart of the whole process . 39
4.2.2 Depth estimation . 51

5 Conclusion 53

A Full Codes 55
A.1 Code: Stereo Calibration . 55
A.2 Code: HTTP Server . 57
A.3 Code: Matlab Class . 62
A.4 Code: Matlab script . 76

B Hardware Specification 79
B.1 TM5-700 Hardware specification . 79
B.2 Gripper specification . 81

References 83

Acknowledgments 85

x

Listing of figures

2.1 World to pixel transformation . 6
2.2 Binocular vision model. Picture from [1]. 8
2.3 Schematic overview of relative frames poses . 9
2.4 Image with possible recognizable features. Picture from [3] 10
2.5 Application of the ORB algorithm to recognize a given object in an image. 14
2.6 Representation of the relationship between focal length, FOV and working distance.

Picture from [4]. 15
2.7 Multiview Geometry . 17

3.1 Possible robot poses. 34

4.1 Electrical connection used. 38
4.2 Flowchart of the framework logic . 39
4.3 TMFlow program. 40
4.4 Robot camera taking two pictures in the two poses. 46
4.5 Robot orients its gripper and picks the detected object. 49
4.7 Result of consecutive depth estimations. 51

B.1 Datasheet of TM5-700 . 79
B.2 Datasheet of TM5-700 . 80
B.3 Gripper specifications . 81

xi

xii

Listing of tables

2.1 Linear relationship between camera FOV and working distance. 14

3.1 General packet format. 27
3.2 TMSCT data sub packet format . 28
3.3 TMSTA data sub packet format . 28
3.4 SubCmd field for SubCmd 01. 28
3.5 SubCmd field for SubCmd 90...99 . 29
3.6 CPERR data sub packet format . 29

4.1 Notation used to handle the gripper. 38
4.2 Gripper and object parameter list. 47
4.3 Depth estimation mean and deviation standard. 51

xiii

xiv

xv

xvi

Chapter 1

Introduction

The importance of robots in the industry field is ever increasing. One of the reasons for this is
their accuracy and durability[1] which can be useful in a very wide range of tasks: from simple
pick and place to precision welding, assembling and much more. Moreover the same arm can be
reused for different tasks simply by changing the tool or adding to it. This makes the possible
fields of deployment of such systems very large and heterogeneous.

In recent years the necessity for cooperation between robots and humans emerged as well. How-
ever, the methods required to regulate interaction and collaboration between humans and robots
have not been fully established yet. These issues are the subject of research in the fields of physical
human-robot interaction and collaborative robotics[2]. To provide incentives in this regard the
sensor-based control study field arises and flourishes.

Computer vision is another field that is evolving and growing and it finds employment as one
of the possible means that can help humans and robot coexist in the same workspace.

In this work the attention has been shifted on this type of sensor. In particular an Eye-in-Hand
camera is mounted on the robotic arm to provide vision to the system. With a vision system,
image processing and understanding follow. Although it is a complex and computationally expen-
sive field, the richness of this type of information is rather unique[2].

1.1 Visually guided pick up problem
This thesis’ objective is to build a framework for the Techman TM5-700 cooperative robot to work
through a Matlab interface in order to expand the capabilities of the robot especially in terms
of exploiting advanced visual algorithms. An HTTP server is needed to handle photos produced
by the camera mounted on the manipulator. The server is needed to run the object recognition
algorithm as well.

One of the strength point of this work is reusability: in fact by adapting the Matlab class, the
framework can be easily converted to be used by another robotic system.

1

The application that is developed in this context revolves around connecting the robot to an
external device and expanding the capabilities of the manipulator as much as possible. This is
pursued by building an interface through which is possible to give built-in robot commands but in
a script form and not in a block scheme form. The TMFlow provides only this latter option when
this thesis is written.
For this reason the main focus of the experiment is actually build this framework composed by:

- A Matlab interface that translates robot commands and transmit them to the robot;

- An HTTP server to handle images retrieved from the camera while the robot executes the
TMFlow block scheme program.

- A TMFlow program that is able to receive the commands from the Matlab interface and send
pictures to the HTTP server.

In order to test the robot external interface a pick up and place routine has been implemented.
Although in this routine the camera images are used for object detection purposes. In particular
the problem to be solved is to detect an object in the received photos and to calculate its 3D
position using a single camera.

To do this normally two cameras in fixed positions are needed. Subsequently the binocular
model is used to retrieve the depth information. But as suggested from the article [1] only one
camera can be used to retrieve the two images and successfully make the calculation to retrieve
the 3D position.

To correctly retrieve the 3D position from two images it is needed the estimation of the depth
information, normally unavailable from one single picture. With two photos is possible to apply the
binocular vision model, combine it with some geometric consideration and obtain such information.

To retrieve correctly the detected object’s pose and plan the robot movement necessary to pick
the target successfully is the purpose of solving the visually guided pick up problem.

2

1.2 Thesis overview
This thesis is organized as follows:

In the second chapter It is presented how the transformation matrices were obtained in or-
der to translate positions between the three main frames used (World, Robot and Image frames).
It is also described the two main algorithms employed for object recognition and depth estimation.

In the third chapter it is described the setup process to have all the three main components
correctly set. The main components are the TMFlow software, the HTTP server running on Visual
Studio Code and the Matlab class TM. It is also given some fundamental guidelines to use the
stereo calibration script and the Matlab class.

In the fourth chapter it is given a brief description of the manipulator and gripper involved in
the experiment. Subsequently it is described how the three main components of the framework
work together. It is presented a flowchart of the working framework as a mean of better under-
standing the context. It is also presented a description of the relevant parts of the code used in
this experiment. Finally It is presented the execution and the results of the visually guided pick
up routine. It is also shown the result of the depth estimation upon repeated trials.

Finally in the Conclusions chapter it is exposed a summary of the whole project and some ideas
for future employment of this framework.

3

4

Chapter 2

Theoretical background

In this chapter it is presented how the transformation matrices between the three main frames
are obtained. Subsequently it is given a description of the two main algorithms and the binocular
model on which the visually guided pick up routine is based.

They are used to recognize the object and derive its 3D position in the world coordinates.
In particular the ORB (Oriented FAST and Rotated BRIEF) is used to carry out the feature
matching method. The depth estimation is made through a geometric consideration.

2.1 Frames used and their transformation matrices
The adopted experimental setup is composed of the following systems:

- The table area which is intercepted by the camera. Here it is placed the World reference
frame;

- The manipulator which has its own Robot reference frame;

- The camera which is mounted on the robot arm. The camera concerns three different
reference systems, two internal to the camera and one external to it. Hence an Image
reference system, a Pixel reference system and a Camera reference frame are used.

The World frame, the Robot frame and the Camera frame are included into the Extrinsic ma-
trix calculation. The Image frame and the Pixel frame are included into the Intrinsic matrix
calculation. The composition of these two matrices gives the relation needed to translate pixel
information into 3D world information, as shown in Fig.2.1.

In this experiment context the available information is the pixel position of the object detected
through the ORB algorithm presented in 2.2. This means that in order to obtain the 3D position of
the object, the product of the Intrinsic times the Extrinsic matrix must be inverted. The problem
with this approach is that the depth information is lost in translation from 3D to 2D and so a
separate evaluation of such value is needed.

5

Figure 2.1: World to pixel transformation

2.1.1 Intrinsic matrix

The Intrinsic matrix is the transformation matrix that transforms 3D camera coordinates into
2D pixel coordinates. It is the composition of two separate transformations: the transformation
from Camera frame to Image frame and the transformation from Image frame to Pixel frame.

The Pixel reference frame has the origin placed at the top left corner of the image with the
positive x-axis pointing to the left and the y axis pointing downwards.
The 2D coordinate [Xpx, Ypx] in Fig.2.1 represents the pixel coordinate to be translated into
Image coordinate. It is useful to work with homogeneous coordinates and hence in practice the
2D coordinate becomes [Xpx, Ypx, w] The transformation from Image frame to Pixel frame consists
into a translation of the origin of the reference system from the center of the image to its top left
corner. Hence the transformation matrix is of the form:

KIP =

fx 0 cx

0 fy cy

0 0 1

 (2.1)

where the couple (fx, fy) is a scaling factor that considers going from a square pixel to a point.
The resulting three dimensional homogeneous coordinate will be [Xi, Yi, w].

The Image frame is a coordinate system that has the 3D points in the camera coordinate system
projected onto a 2D plane of a camera with a Pinhole Model. The 2D plane is what is captured
as images by the camera. It is a lossy transformation, which means projecting the points from the
camera coordinate system to the 2D plane can not be reversed.

The Xi and Yi coordinates of the points are projected onto the 2D plane. The 2D plane is at

6

f (focal-length) distance away from the camera as shown in fig. 2.2. Hence the transformation
matrix is obtained as:

KCI =

f 0 0 0

0 f 0 0

0 0 1 0

 (2.2)

As said before the transformation is lossy and so inverting this transformation produces an incor-
rect evaluation of the third coordinate. However, this information in this context is retrieved from
a separate calculation in section 2.3, instead the information about x and y is kept.

This time the input point is an actual 3D position but since it is added a dimension for homo-
geneous coordinate’s sake the coordinate will be four dimensional and in the form [Xc, Yc, Zp, 1]

where Zp is the distance between the camera lens and the target object (fig. 2.2).

All that has been proposed with regards the intrinsic matrix is true for a single camera. However
when a two camera system is involved, the evaluation of the World frame coordinate on the object
must be modified.

Referring to Fig.2.2 the following relationships are found applying the similarity theorem of the
triangles[1]:

zp =
D

|xi1|
f + |xi2|

f

(2.3)

xp =
1

2
zp(

xi1

f
− xi2

f
) (2.4)

yp = zp
yi1
f

= zp
yi2
f

(2.5)

where D is the baseline and f the focal length found at 2.3.1.
It is very important to notice that zp is not the result of the depth estimation exposed in 2.3,

as such estimate is the sum of the focal length f and Zp. Zp is highlighted in Fig.2.2.
As a result the whole Intrinsic matrix is given by:

Kintrinsic = KCIKIP (2.6)

7

Figure 2.2: Binocular vision model. Picture from [1].

2.1.2 Extrinsic matrix

The Extrinsic matrix is the transformation matrix that transforms the 3D coordinates in the
World frame into the 3D coordinate with respect to the Camera frame. In this case, as highlighted
in Fig.2.1, the extrinsic matrix is the composition of two main transformation matrices: from
World frame to Robot frame and from Robot frame to Camera frame.
For better picturing relative poses between frames figure 2.3 gives a schematic overview of the
context.

The World frame has been positioned on the table area intercepted by the two cameras. In
particular it has been measured a pre-determined 3D position through the TMFlow software and
it is hence used to obtain the transformation matrix between Robot frame and World frame. The
predetermined world frame origin will be noted as [Ox, Oy, Oz, 1]Robot.

The Robot frame has its origin at the base of the robot and the z-axis pointing upwards, oriented
as shown in fig. 2.3 with respect to the workspace area (in light blue). For convenience the World
frame has the x and y axis parallel to the ones of the Camera frame and has the z axis pointing
downwards. Hence the relative rotation between Robot frame and World frame is a rotation around
the y axis of 180 degrees. The transformation matrix from World frame to Robot frame becomes:

TWR =

−1 0 0 Ox,Robot

0 1 0 Oy,Robot

0 0 −1 Oz,Robot

0 0 0 1

 (2.7)

8

Figure 2.3: Schematic overview of relative frames poses

Since the camera is mounted on the last joint of the robot, in order to move the reference
system from camera to the flange of the robot, it is important to remember about the physical
distance between the two. Hence the transformation from the camera to Robot flange becomes:

TCaF =

1 0 0 0

0 1 0 79

0 0 1 52.2

0 0 0 1

 (2.8)

where the explicit numbers are the physical offsets of the camera in millimeters with respect the
robot flange. This transformation is a simple translation.

It is very important to notice that each set of coordinates returned from the TMFlow is the
current position of the robot flange with respect to the Robot frame and this can cause a bit of
confusion if not taken in consideration.

Hence the only frames used are the World frame, the Robot frame and the Camera frame which
has the same orientation of the World frame but different origin position. The Camera frame is
also related to the robot flange only by a rigid translation, simplifying in this way the calculations.

As a result the Extrinsic matrix appears as:

Kextrinsic = TCaFTWR (2.9)

9

2.2 Object Recognition algorithm
The term Object Recognition refers to the set of vision tasks that involve identifying objects
and their position from 2D images. We can distinguish three kinds of computer vision tasks related
to object recognition:

- The Image Classification method that can predict the type or class of an object present
in an image;

- The Object Localization method that can locate the presence of objects in a given image
and indicate their position with a bounding box;

- The Object Detection method that combines the previous two methods and hence is able
to predict the type of object present in the image and locate its position.

The specific algorithm used in this context is the ORB (Oriented FAST and Rotated BRIEF) and
it is an Object Detection algorithm. Before describing ORB, it is presented the set of instruments
vital to understand the mechanism behind this process.

2.2.1 Features, keypoints and descriptors
Features don’t have a precise definition, they are rather specific patterns or specific attributes
which are unique to an image and can be easily compared. A good example of what a feature is,
it is given by the OpenCV documentation where the image in Fig.2.4 is presented:

Figure 2.4: Image with possible recognizable features. Picture from [3]

If one tries to compare feature A (a piece of blue sky) with the image, it will be immediate to see

10

that it is impossible to understand the exact position of where feature A is placed or how it is
rotated with respect to the image. The only possible information is a very general location in the
image (one can think about the sky being above everything). A similar reasoning goes for feature
B.

It is natural now to try to find some more defined feature, for example an edge of the building
(as shown in features C and D). Now the possible matching region is considerably reduced and it
is also possible to have some information about the relative rotation of the feature with respect
the image. It is however still not quite simple to identify the exact location of the edge of the
building in either of the cases.

Finally one looks for a corner that is a strongly defined feature of the image and much more
simple to identify inside the image in terms of either position and relative rotation. This is the
fundamental intuition behind the searching of unique features of an image.

After having identified the unique features of an image (or anything that can be lead back to
a corner) the next problem is trying to describe said feature in order to find other similar patterns
in the same image. These described patterns are their pixel coordinates are the keypoints of an
image. This description can be done in a number of different ways, but what the ORB uses is a
modified version of the Harris corner detector.

The Harris corner detector finds the difference in intensity for a displacement of (u, v) in all
directions. This is expressed in the formula:

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2 (2.10)

where w(x, y) is the window function and I(x, y) is the intensity function. The function 2.10 is
then maximized and it is obtained:

E(u, v) ≈
[
u v

]
M

[
u

v

]
(2.11)

with:

M =
∑
x,y

w(x, y)

[
IxIx IxIy

IyIx IyIy

]
(2.12)

where Ix and Iy are the image derivatives in directions x and y respectively. Finally a score is
checked, it determines if a window can contain a corner or not and it is given by the following
equation:

R = det(M)− k(trace(M))2 (2.13)

where:

1. det(M) = λ1λ2;

2. trace(M) = λ1 + λ2;

11

3. λ1 and λ2 are the eigenvalues of M.

The magnitude of these eigenvalues decide whether a region is a corner, an edge or flat by the
following rule:

1. |R| small ⇒ λ1 and λ2 are small ⇒ the region is flat;

2. R < 0 ⇒ λ1 » λ2 or viceversa ⇒ the region is an edge;

3. R is large ⇒ λ1 and λ2 are large and λ1 ∼ λ2 ⇒ region is a corner.

The Harris corner detector is rotation invariant but not scale invariant, and to this problem,
D.Lowe came up with a new algorithm which extracts keypoints and compute its descriptors.
This algorithm is called SIFT but is only distantly related to ORB. It is hence described FAST
and BRIEF algorithms that constitute the basics for the ORB algorithm.

2.2.2 ORB
The ORB algorithm is a fusion of two algorithms: FAST (Features from Accelerated Segment Test)
and BRIEF (Binary Robust Independent Elementary Features).

The FAST algorithm was proposed by Edward Rosten and Tom Drummond in their paper ”Ma-
chine learning for high-speed corner detection” in 2006 (Later revised it in 2010). The feature
detecting technique used can be summarized as follows:

1. Select pixel p in the input image. This pixel has to be identified as an interest point or not.
Let its intensity be Ip;

2. Select appropriate threshold value t;

3. Consider a circle of 16 pixels around the pixel to be tested;

4. p is a corner if there exists a set of n contiguous pixels in the circle which are all brighter
than Ip + t or all darker than Ip − t;

5. High-speed test: This test examines only the four pixels above, below, to the right and
to the left of p (First above and below are tested if they are too brighter or darker. If so,
then checks to the right and to the left). If p is a corner, then at least three of these must
all be brighter than Ip + t or darker than Ipt. If neither of these is the case, then p cannot
be a corner. The full segment test criterion can then be applied to the passed candidates by
examining all pixels in the circle.

A keypoint descriptor is a summary of an nxn neighbourhood around the pixel tested p. In
particular once the size of the neighborhood is chosen, it can be subdivided and for each subsection
it is analyzed the orientation of the keypoint and mapped into an histogram.

How the orientation is analysed and in how many section is subdivided the neighborhood de-
pends on the type of algorithm that is being used. In summary descriptors can carry orientation

12

information or color intensity gradient information.

The BRIEF algorithm is a feature descriptor which doesn’t provide any method to find features.
Descriptors can be very high dimensional vectors with floating point numbers (i.e. SIFT, another
feature matching algorithm, uses 128-dimensional vectors). A memory handling problem can arise
from using these descriptors.

After compressing descriptor information into binary strings, BRIEF takes smoothed image
patches and selects a set of nd (x,y) location pairs. Afterwards pixel intensity comparisons be-
tween the selected pairs are executed which result in a binary number. Piling up all the results
from the intensity comparisons a nd-dimensional bitstring is obtained. Working with bit strings
rather than high dimensional floating point vectors makes BRIEF a fast algorithm.

As previously anticipated, ORB is a fusion of FAST and BIEF. In particular it uses FAST to find
the keypoints, it applies Harris Corner measure to find the top N points among the identified
keypoints.
Although FAST does not compute orientation information, ORB computes the intensity weighted
centroid of the patch with located corner at the center. The direction of the vector from this
corner point to centroid gives the orientation. To improve the rotation invariance, moments are
computed with x and y which should be in a circular region of radius r, where r is the size of the
patch.

Subsequently ORB uses BRIEF descriptors which unfortunately perform poorly with respect to
rotation. To compensate for this ORB rotates the BRIEF descriptors according to the orientation
information obtained from the keypoints at the previous step.
For any feature set of n binary tests at location (xi, yi) it defines a 2xn matrix called S which
contains the coordinates of these pixels. After ORB uses the orientation of the patch θ to obtain
the rotation matrix of the selected patch. It applies the matrix on S to obtain Sθ, the matrix of
the oriented patch locations.

13

The detailed code for the ORB used in this context is proposed in section A.2 where the algorithm
is integrated into the HTTP POST function. However in Fig.2.5 it is shown an example of output.

Here the training input is given by the image of the joypad box alone, which constitutes the
object to find in the other input image, called scene. The ORB algorithm firstly finds all the
points of interest (the keypoints) in the training image, assigns them an orientation and draws
them on the picture in the form of light blue circles. It does the same in the scene image.

Secondly ORB employs a matcher object which matches the keypoints in the training image with
the scene keypoints. A utility secondary function is then used to draw the red lines shown in the
picture.

Figure 2.5: Application of the ORB algorithm to recognize a given object in an image.

2.3 Depth estimation

2.3.1 Focal length approximation
Focal length is one of the key instruments to estimate correctly the 3D position of the object in
front of the camera. This information however is not present in the hardware manual of the robot.
Luckily it is given the linear relationship between FOV and working distance of the camera, as
shown in this table:

Working distance [mm] FOV (width) [mm] FOV (height) [mm]
100 96.9 72.7
300 281.6 211.2

Table 2.1: Linear relationship between camera FOV and working distance.

An initial working distance (WD) of 300mm has been chosen in order to have the view as wide as

14

possible. The relationship used to evaluate the focal length comes from trigonometric considera-
tions, for a better understanding the Fig. 2.6 illustrates the context.

Figure 2.6: Representation of the relationship between focal length, FOV and working distance. Picture from
[4].

As shown in Fig. 2.6 the relationship between the Angular Field of View AFOV
2 and FOV

2 is given
by the Pitagora theorem

AFOV = 2 ∗ tan−1(
FOVwidth

2 ∗WD
). (2.14)

FOVwidth is retrieved from table 2.1 considering WD = 300mm. Once the AFOV is obtained, the
focal length can be approximated using:

F =
H

2 ∗ tan(2 ∗AFOV)
(2.15)

where H is the camera sensor width. The latter is unknown as well and it is retrieved using:

H = Spx ∗ res (2.16)

where Spx is the size of the pixel, res is the camera resolution in one direction (in this case in the
width direction). Spx and res are evaluated using:

15

Spx =
tan(FOVwidth

2) ∗WD

Imagewidth
Imagewidth = 2592[pixel]

res =
√
(
FOVwidth

FOVheight
∗Mpx) Mpx = 5M

FOVwidth can be read from table 2.1. Mpx is the total camera resolution in mega pixel and res is
the horizontal resolution of the camera. Finally the Imagewidth is the width of the image in pixel.
The resulting focal length is

F = 2.79mm. (2.17)

16

2.3.2 Depth estimation

The depth evaluation is made by obtaining two distinct visuals of the object. In particular these
two visuals are parallel with respect to each other as shown in Fig. 2.7. This context allows to
simplify the evaluation since the y coordinate of the two cameras is the same. The only concern
is toward the x and z coordinates of the object with respect to each Image frame.

In this experiment only one camera is available, mounted on the robot arm. Hence two photos
need to be taken in two subsequent moments. The 3D positions with respect to the World frame of
the two camera visuals are known thanks to the TMFlow software that allows to retrieve current
poses of the robot, therefore also the baseline value is known. The focal length value is known at
this point after the calculation made in 2.3.1.

The 3D point of the target object with respect to the World frame is projected onto the left and
right image frames that is then translated into pixel coordinates which is actually the available
information obtained through the ORB procedure described in 2.2.

Figure 2.7: Multiview Geometry

17

The XL and XR shown in Fig.2.7 represent how much the object is distant from each respective
optical axis. This information is used to evaluate the Disparity value which represents the differ-
ence in image location of the same 3D point from two different camera angles. This important
value is used to evaluate the apparent motion in pixels for every point to produce intensity images
and depth maps.

In this case XL and XR are equal to the x coordinate of the center of the box detected through
the ORB procedure in the respective images.
From the stereo calibration step, described in section 3.2.1, the camera matrix of each camera is
obtained and it is in the form:

camera matrix =

fx 0 cx

0 fy cy

0 0 1

 (2.18)

where the couple (fx, fy) is the focal length in pixel for the directions x and y of the pixel reference
system. The couple (cx, cy) instead is the offset between the pixel reference system and the image
reference system. This couple is different from the couple (cx, cy) that is evaluated from the ORB
algorithm because that is the center of the box drawn around the detected object.

The depth estimation, Z in Fig.2.7, is obtained from:

Z =
∥Baseline ∗ fx∥

XL −XR
. (2.19)

18

Chapter 3

Description of framework components and
setup

This chapter is divided in three sections: one for each main component of this framework. It is
described the setup for each part of the framework.

Firstly it is setup the TMFlow block scheme. Secondly the stereo calibration has to be done
before starting the framework and storing the relevant information for later. Afterwards that the
HTTP server is setup and finally the Matlab script is written. A similar pattern is followed in this
chapter.

3.1 TMFlow setup
TMFlow is a graphical Human-Machine Interface (HMI). It uses blocks and line connections to
describe the flow of commands to give to the robot. This software is integrated into the robot
controller.
The logic of the program on the TMFlow is showed in 4.3. Since it is supposed to take two photos
to satisfy the binocular model exposed in section 2.3, two separate vision jobs need to be set up
in order to take and save the two photos. This is because it has been chosen to differentiate the
two photos from the (key,value) pair of each POST request.

Hence the program starts with the two vision job nodes where the robot positions itself onto
the pre-determined two 3D positions for the camera, takes the photos and sends them to the HTTP
server. Each vision node expects a json file as an answer from the server containing:

1. Image size (depends on the TM vision image source, hence the camera).

2. Image format (jpg or png formats are available).

3. box_cx: center of the box, coordinate x in pixel.

4. box_cy: center of the box, coordinate y in pixel.

19

5. box_h: height of the box, in pixel.

6. bow_w: width of the box, in pixel.

7. label: name to give to the recognised object in the box.

8. rotation: rotation of the box with clockwise notation, in degrees.

9. score: score of accuracy of the recognition, a number between 0.00 and 1.00. In this project
this evaluation is not implemented so it’s always set to 1.

10. message: optional additional message.

Hence before passing each vision node the program waits for the json file answer. After having
received the two answers the next step is connecting the robot to Matlab through the Network
Node and the Listen Node. Through the Listen Node the robot will receive the commands
from the Matlab script.
The particular nodes which revolve around the whole project are: the Network Node, the Lis-
tening Node and the Vision Node.

3.1.1 Network Node

The Network Node is used to connect the robot to external devices. To work correctly it requires
a previous setting in the Network Settings page of the TMFlow interface. But it can also be
done directly from the node by choosing the add device option. In this page it is required a
name for the external device, its ip address and its port number.

Now that the external device is setup, the Network Node can be used in the project.

To set up the node correctly it is required to enter the node and choose the previously setup
external device. After this it is required to set the node to either Receive from variable or Send to
decide between inbound or outbound traffic. In the first case messages are stored in a previously
created and then selected variable. In the second case a message is sent to the TMFlow log window
whenever this connection is established between robot and external device.

Next it is required to create and select a Connection Status. It is optional to set Extra Idle
Time to be filled with either an existing variable or a time quantity in milliseconds.

3.1.2 Listen Node

The Listen Node is used to communicate with the external devices previously connected through
the Network Node. This node establishes a socket TCPlistener and has a specific message pro-
tocol whose explanation is tightly ed to the mechanism of the TM class in section 3.3 and hence
will be focused on later.

20

The commands that will be passed to the Listen Node will be executed in order. If the com-
mand is not valid (for example a syntax error is present) an error message will be displayed in the
log window on the TMFlow interface.

The commands are divided in two categories: instant commands and commands that need to
be executed in sequence. To the first category commands like single movement commands or
InstantReadIO (section 3.3.2) which are executed instantly. Instead for the second category the
commands will be placed in a queue and will be executed in order FIFO as it happens for the PVT
commands (section 3.3.2).

To set up correctly the Listen Node it is needed to set up the settings inside the Node. The
connection timeout quantity refers to how much time in milliseconds the node waits to until a
connection with the external device is established. Setting this number to zero means that the
node waits indefinitely until the connection is established.

The Data Timeout quantity instead represents how much time in milliseconds the node waits
for data from the connection. It is very important to set this value to a number different than
zero, especially if the program to be executed is meant to loop continuously through the Listen
Node.

In addition it is recommended to set a WaitFor Node on the fail path of the Node and make
this path loop back to the Listen Node. In this way the node will continuously wait for new
commands coming from the external device.

The Listen Node has two possible exit conditions: a pass condition and a fail condition.
The pass condition is fulfilled when the ScriptExit() command is executed 3.3.2.
The fail condition is fulfilled if one the following three events has happened:

- The connection timeout is elapsed;

- The data timeout is elapsed;

- The program flow has entered the current Listen Node before the TCP listener is started
up.

3.1.3 Vision Node
The Vision Node is the principal node used to handle camera operations. This node provides the
creation of a Vision Base that corresponds to the Camera Frame in the operations of this context.
This node provides a variety of object recognition methods that work completely internally to the
robot system and whose variables are nearly inaccessible or cryptic to an external device user.

However there is also a modality which allows external detection and external classification.
The word external meaning that an external device can elaborate the camera images externally
from the TMFlow and send back a json file containing relevant information. This is the key point
that is exploited in this thesis’ project.

Detection and Classification are two different object recognition approaches. Both these

21

methods allow also photo sharing but only passing through an external HTTP server and hence it
is explained the need of this vital component to this project.

To set up this node it is needed to open the node, navigate to the Vision job setting and
here a window is opened. It is needed to navigate to Task Designer button to create the custom
vision job.
In this case it has been selected AOI-only as the application for this vision task.

From here a flowchart of the task appears with the first block used to tune camera parameters
for colour, light and focus adjustments. It is possible to add more blocks to enhance the quality
of the image. More on this can be found on the TM vision manual.

Now it is needed to add an External Detection block, it can be done by clicking on the icon of
the coordinate system with the map marker. Once the block is added it can be open.
Here it is needed to connect the HTTP. To do so, open the setting button and insert http://ip
address:port number/api/ in both the GET and POST slots. It is also needed to define a
(key,value) pair for the POST method.

Here the GET method is just used to test if the server is correctly working. However it is needed
to implement this method in the server as it will be shown in 3.2. To correctly finishing set up
the node it is needed for the POST to be actually able to send back the json file described at the
beginning of this chapter. At this point however a json with fake information will work as well.

Once the node has checked that the server is connected and responds correctly, it is possible
to move on to the last block which also enhances the quality of the output image.

Finally it is possible to save and exit the node.

22

3.2 HTTP server
For this task it is needed an external HTTP server. Since the robot is connected to the external
device through an ethernet cable an does not have access to Internet, a simple Flask HTTP server
has been chosen to fulfill this purpose.

A Flask server is defined as a server software which is capable of running HTTP requests. Flask
is a Python library which has a built-in server capable of handling such requests coming from one
or multiple devices. However this type of server is single-threaded and hence can handle only one
request at a time. Which for the current framework does not constitute a problem.

A Flask server is also capable of:

- Handling static files such as Javascript or CSS;

- Storing data in Flask sessions. It holds the data temporarily in a temporary folder mapped
to a specific ID;

- Uploading files;

- Sending Form data: The form in HTML collects the information of the required entries
and then are forwarded and stored on the server.

However before starting the server, it is needed to perform the stereo calibration because within
the POST request the object recognition algorithm is also executed. The instruments to undistort
and rectify the received images are obtained through the Stereo Calibration process.

3.2.1 Stereo calibration
In order to be able to perform depth estimation, it is necessary to perform a stereo calibration of
the cameras. In particular this process returns two important instruments:

- Stereo Maps that are needed to undistort and rectify images;

- The two camera matrices needed to build the intrinsic matrix in equation 2.1.

The procedure consists into taking two pictures at the same time of several different poses of
a calibration chessboard. These two pictures normally would be taken from two cameras with
different perspective and synced. However in this context only one camera is available mounted
on the manipulator.

This setup allowed to have the robot arm going back and fourth between the two predetermined
camera positions with precision. The pose of the calibration chessboard would only be changed
after two photos of the same pose from the two perspectives were taken. A minimum of twenty
photos is recommended where each pair of photos showcases a different pose of the chessboard.

After the photos are taken, a script to run the stereo calibration is needed. The code for this
process is presented in section A.1. Built-in methods of the OpenCV library are used.

23

Firstly the size of the chessboard and the frame are taken. In this case the chessboard has
9 square corners in the horizontal direction and 6 in the vertical direction. The frame size is
2592x1944 pixel.

After having initialized the arrays that will contain 3D object points and 2D image points,
a for loop is used to take each pair of photos and manipulate them. In particular, for each
pair of pictures the chessboard corners are found and their coordinates are stored using the
cv2.findChessboardCorners() method.

This function attempts to determine whether the input image is a view of the chessboard pat-
tern and locate the internal chessboard corners. The function returns a non-zero value if all of the
corners are found and they are placed in a certain order (row by row, left to right in every row).
Otherwise, if the function fails to find all the corners or reorder them, it returns 0.[5]

Afterwards the cv2.cornerSubPix() finds the sub-pixel accurate location of the corners. This
improves the accuracy of the pixel location of the corner in the image. Such subpixel coordinates
are stored in the 2D image points object initialised outside the loop.

The whole procedure is repeated for each pair of photos.

The cv2.calibrateCamera function finds the camera intrinsic and extrinsic parameters from
several views of a calibration pattern. The coordinates of 3D object points and their corresponding
2D projections in each view must be specified. That may be achieved by using an object with
known geometry and easily detectable feature points, such as a chessboard.[5]

The cv2.getOptimalNewCameraMatrix function the camera matrices for each camera pose is
obtained. Of course in this context the camera is the same so its intrinsic parameters are exactly
the same, however this procedure has been respected even in this setup.

The cv2.stereoCalibrate and cv2.StereoRectify methods provide the essential matrix,
the fundamental matrix and the project matrix which are used to build the stereo maps by using
the cv2.initUndistortRectifyMap function.

In fact this function computes the joint undistortion and rectification transformation and rep-
resents the result in the form of maps for the remap function that allows to apply the maps to
transform the input image. The undistorted image looks like original, as if it is captured with
a camera using the camera matrix equal to the camera matrix output of cv2.newCameraMatrix
and zero distortion. In case of a monocular camera, the new Camera matrix is usually equal to
the original camera matrix, or it can be computed by cv2.getOptimalNewCameraMatrix for a
better control over scaling.[5]

Finally the camera matrices and the stereo maps are stored in a .txt file and in an .XML file
respectively. The first will be used to build the intrinsic matrix and the latter will be used to
undistort and rectify the images received from the camera.

3.2.2 Server structure

The server script is structured as follows:

24

1. After the imports of the relevant libraries, some constants, the paths for the upload image
folder and for the optional HTML templates are present. The stereo maps are loaded at this
point as well;

2. The Flask object is initialized at the top of the script. At the bottom of the script the
method serve starts the server, taking as input the Flask object, the port number and the
name of the host;

3. The error handler attribute for the Flask object allows the server to respond to diverse error
messages without stopping the server. It is also possible to set up web pages for the various
type of errors (i.e. 404-not found...);

4. A few utility functions are implemented, such as the UndistandRect method that uses the
previously loaded stereo maps to undistort and rectify images through the built-in OpenCv
function remap;

5. It is implemented a basic GET method that upon a successful GET request, responds with a
json containing a positive message. Otherwise it answers with a json file containing a failure
message. It is used only for setting up the Vision Node as explained in section 3.1.3;

6. The POST method is implemented in order to retrieve the images from the camera sent as a
file in the received POST request from the TMFlow.
Afterwards the ORB algorithm is executed. In particular it is executed on a training image of
the object to identify and the image just received from the camera. In a similar way to what
has been done in figure 2.5 the algorithm will recognize the target object. Subsequently the
square around the object is drawn.
The attributes of this square (such as its center, its width and it height) is stored inside a
json file respecting the format:

r e s u l t = {
”message ” : ” su c c e s s ” ,
” annotat ions ” : [

{
”box_cx ” : c_x ,
”box_cy ” : c_y ,
”box_w” : width ,
”box_h ” : height ,
” l a b e l ” : ob j e c t l abe l ,
” s co r e ” : 1 . 0 ,
” r o t a t i on ” : r o t a t i o n °

}
] ,
” r e s u l t ” : ” Image” + f i l ename

}

25

This json file is then converted into a table and stored into a .txt file for Matlab to use
later.
Finally the json file is sent back to the TMFlow software, ending the POST routine and
setting the server in idle state.

26

3.3 Matlab Interface
In this section it is presented the Matlab interface developed in the context of the thesis. It
concerns mainly the new matlab class TM and some guidelines on how to use this class since it
involves establishing a separate client-server relationship between matlab and TMFlow. It is also
described the communication protocol used by the Listen Node to communicate with the external
devices.

3.3.1 Communication protocol
Before translating each robot command into a Matlab function, it is important to understand how
such commands are encapsulated, how they are sent as a data packet to the TMFlow program and
how received packets should be unpacked.

There are three kinds of possible packet that can be exchanged between the two devices:

- TMSCT packets are the basic packets used to exchange information and commands be-
tween robot and external device. They can encapsulate all the built-in commands in the
script language form;

- TMSTA packets are the packets used either by the robot or the external device to acquire
statuses or properties. The package format changes based on which type of information is
inquired;

- CPERR packets are the error packets.

All packages respect the following format:

Start byte Head. type Sep Data Len. Sep Data Sep * Checksum End Bytes
$ Header , Length , Data , * Checksum \r\n

Table 3.1: General packet format.

The header type can be one of the three possible kinds (TMSCT, TMSTA or CPERR), the
length refers to the length in bytes from the header to the third comma separator included.

The checksum is evaluated by applying an exclusive OR (XOR) of the packet on the same range
of the data length.

A short overview of the three kinds of packet is given hereafter.

27

The TMSCT packets are used to exchange commands and acknowledgement packets between
robot and external device. The packet respects the format presented in table 3.1, with the Data
field subdivided into:

ID Sep. Script
Script ID , Script Language

Table 3.2: TMSCT data sub packet format

The Script ID is an alphanumeric byte that is used to identify the particular script. With this
ID, the script is matched with its return message.

In the script field it is contained the commands in script language form, following the syntax
presented in the Expression Editor and Listen Node Manual. It is possible to fit multiple com-
mands in one packet by separating each command with the characters \r\n.

The TMSTA packets follow the packet format presented in 3.1 but with the Data field sub-
divided as follows:

Sub cmd.

Table 3.3: TMSTA data sub packet format

The statuses or properties to acquire depend on the number contained in the SubCmd field. In
particular:

- Subcmd 00 is reserved to check if the system is in script control mode or not, which means
checking whether the flow has entered the Listen Node or not;

- Subcmd 01 is reserved to check whether the QueueTag numbering is complete or not. The
QueueTag numbering command is used to concatenate several commands, for example when
piling several commands in one script to send in one package. The PVT command is an
example of command that internally uses these tags. Hence these TMSTA packets will
hold the tag number to match the command with the same tag. Their Subcmd field is
subdivided in:

SubCmd Tag Number Status
01 , 01...15 , true/false/none

Table 3.4: SubCmd field for SubCmd 01.

The Status field is not present if the message is sent from the external device;

28

- SumCmd 90...99 is reserved for the robot to send various data and its SubCmd field is
subdivided in:

SubCmd Data
90...99 , ...

Table 3.5: SubCmd field for SubCmd 90...99

The CPERR packets are the packets send by the robot to the external device to notify errors.
The CPERR respects the packet format of table 3.1 and its data field contains:

Error code
Code (00...FF)

Table 3.6: CPERR data sub packet format

The possible code errors are:

• 00 is reserved for no packet error;

• 01 is reserved for general packet error;

• 02 is reserved for checksum field error;

• 03 is reserved for header field error;

• 04 is reserved for data field error;

• F1 is reserved to the occasion in which the flow has not entered the Listen Node.

3.3.2 TM class
In order to send the commands to the robot in Script Language it is necessary to respect the
syntax of the robot commands and encapsulate such commands into TMSCT packets.
To this end a Matlab class is built where each Matlab function corresponds to a robot command.
The full code can be found in the appendix A in the code section A.3. The functions present in
the class can be divided in:

• Constructor function;

• Functions to clear the robot buffer and exit the Listen Node;

29

• Utility functions to pack and unpack the data packets;

• Functions to retrieve and send variables;

• Functions to read and write the digital inputs and outputs;

• Absolute movements functions;

• Relative movements functions.

The constructor function TM(ip, portControl) is used to initialize the TCP client object
and establish the connection between the external device and the robot. It takes as input the
IP address and the port number of the host. It does not return any output. In this case IP =
10.10.10.160 and port number = 5890 have been used.

The stop(TM) function is used to stop the robot buffer and flush it. It takes as input the TM
object.

The disconnect(TM) function is used to exit the Script mode in the robot program. This
implies exiting the Listen Node on the robot side. This command has to be used once the com-
munication with the robot is finished and when the robot needs to move on in the TMFlow script.
The function takes as input the TM object. Both these functions do not produce any output.
If the program features looping and consecutive robot connection through the listen node, it is
very important to clear the TM object once the current loop communication is ended. The
disconnect(TM) function does not clear the TM object at the moment.

The writepack(TM,head,command) function is used to encapsulate the command given as an
input in string format. It takes as inputs the TM object and a string containing the header of the
packet to be written. At first the function converts the command and the header into an unique
string named unchecked, respecting the packet protocol presented in 3.3.1.
Afterwards the function evaluates the checksum by using the checksum(TM, string) utility func-
tion. Then the $ character, the * character and the checksum value are packed together with the
unchecked string. Finally the terminator characters are added at the end of the packet and re-
turned as the output of this function.

The checksum(TM, string) is the utility function that takes as input the TM object and the
string on which the operation will be executed. It returns the value resulted from the bit-wise
XOR of the message given as input. In order to do this the message is converted from string to
double. Then the bit-wise XOR is executed. Finally the result is converted into hexadecimal and
returned from the function.

The read_message(TM, msg) is an utility function used to unpack only the data field from the
packet received from the robot and returns it. It takes as inputs the TM object and the received
message.

30

Firstly the unction finds how many $ characters are present in the message. This is because often
times the packet containing data and the acknowledgement packet are read and stored in the same
Matlab variable. This event leads to several misinterpretation of the packet if not taken care of.
Hence more than one $ character means more than one packet are present in the same Matlab
variable.

If the message contains only one packet, then it finds the index position of the * character and
selects the message from the $ character up to the last character of the Data field.
Otherwise it finds the index position of either the $ character and of the * character. The packet
that contains the relevant data arrives always first hence the message of interest will be contained
from the index position of the first $ character up to the index position of the first * character
minus 2 (because of the comma separator to be excluded from the data to be read).

Finally the remaining message is converted to double and returned from the function. It is here
converted to double because this utility function is called from the ask(TM,id) function where
the message is further processed.

The ConvertCoord(TM,A,type) is an utility function that takes the TM object, the data con-
tained in the packet received from the robot (processed from the read_message(TM, msg) and
in double format) and a type variable. The type variable depends on which kind of information
contains A: if type =′ joint′ then A contains the angles of the robot joints; if type =′ cartesian′

then A contains the cartesian pose of the robot flange.
Each four bytes of A contains a number and hence A is divided in groups of 4 bytes. Each byte

and each division is then converted from double to uint-8 format and then from char to single
format. Finally the numbers are piled up in a vector and returned from the function.

The ask(TM,id) function takes as input the TM object and an id number. It is used to retrieve
four types of specific variables based on the id input:

id = 1 : corresponds to the command used to obtain the six angles of the robot’s joints in degrees;

id = 2 : corresponds to the command used to obtain the 3D position of the robot flange with
respect to the Robot frame and the three angles for the orientation of the flange, in degrees;

id = 3 : corresponds to the command used to obtain the composite force of the flange over x, y and
z axes;

id = 4 : corresponds to the command used to obtain the composite speed of the flange over x, y
and z axes.

This division is implemented with a switch statement controlled with the id number given as input.
Each switch case is structured as follows:

1. String composition of the robot command to be encapsulated;

2. Encapsulation of the package through the writepack(TM,head,comando) utility function;

31

3. Sending the encapsulated packet through the built-in Matlab function write(connection,data,fromat);

4. Waiting for the acknowledgement message;

5. Unpacking of the received message through the read_message(TM, msg) utility function;

6. Conversion of the received message into single type either directly or through the ConvertCoord(TM,A,type)
utility function.

In order to have a reactive function, a callback function has been implemented inside the ask(TM,id).
The callback function is triggered every time a \r\n character is read. This allows to receive more
efficiently the incoming packets. Before adding this feature often it would be caught only the ac-
knowledgements packet and not the packet containing relevant data. With this strategy both the
packets are received.

Once the packets are received, they are filtered through the read_message(TM, msg) function
and eventually from the ConvertCoord(TM,A,type) function.

The ask(TM,id) function finally returns the inquired information in single format.

The ReadIO(TM, source, type, id) and WriteIO(TM, sourec, type, id, value) func-
tions are used to respectively read and write on the inputs or outputs. It is not possible however
to write on the inputs, it’s only possible to read them. The read function returns the read value
while the write function does not return any output.

The two functions take as inputs:

• The TM object;

• The source of the I/O: it can be either from the Control box or the End Module. Hence the
two possible sources are either ′ControlBox′ or ′EndModule′;

• The type of I/O: it can be input or output, analog or digital. The four possible types are
AI, AO, DI and DO;

• The id number of the selected input or output;

• The write function takes as input the value to be written on the selected output.

These two functions have also an Instant version of themselves, becoming InstantReadIO(TM,
source, type, id) and InstantWriteIO(TM, source, type, id, value). The difference is
that in the case of the first pair the commands are executed respecting the sequence of commands
that the robot has received. Instead with the instantaneous commands, they are executed as soon
as the robot receives them.

The movement commands are divided into absolute and relative movement commands. However
they all have almost the same type of inputs. The variables taken as inputs from the functions
are:

32

• TM object;

• txt: it is a character string that represents the type of coordinates that are given, the format
of the speed and the format of the movement blending. Each movement as a different set
of possible txt variable. It is always composed by three uppercase character which have
different meaning for absolute and relative movements. For absolute movements:

Motion format : C for Cartesian pose or J for joint pose;

Speed format : P for speed expressed as percentage or A for speed expressed in [mm/s];

Blending format : P for blending expressed in percentage or R for blending expressed in radius.

For relative movements:

Motion format : C for pose expressed with respect to current base, T for pose expressed with respect
to tool base or J for pose expressed in joint angles;

Speed format : P for speed expressed as percentage or A for speed expressed in [mm/s];

Blending format : P for blending expressed in percentage or R for blending expressed in radius.

• coord: the input coordinates either in Cartesian or joint angle format;

• vel: speed value. Either in mm/s or in percentage;

• Ta: maximum time interval to reach maximum velocity;

• racc: Percentage for blending movements;

• PrecPos: boolean variable. If it is set to true, the precision positioning is disabled and it
is enabled if the variable is set to false.

The set of absolute movements are:

• PTP(obj,txt,coord,vel,Ta,racc,PrecPos,conf): this command executes a point to
point movement starting from the current pose of the robot and reaching the pose given
as input. This type of movement determines the robot’s motion by calculating the angular
variation of each axis. It takes the shortest motion possible to reach the end point. The
conf variable is used to set the robot pose, following the diagram shown in fig.3.1. This
input variable is optional.
The input vector conf takes the form of 0-1,2-3,4-5 where:

0 = Right arm configuration;

1 = Left arm configuration;

2 = Upward elbow configuration;

3 = Downward elbow configuration;

4 = Non flipped wrist configuration;

33

Figure 3.1: Possible robot poses.

5 = Flipped wrist configuration;

The possible options for txt variable are: JPP or CPP.

• Circle(TM,txt,puntomezzo,puntofin,speed,Ta,racc,ArcAngle,PrecPos): this com-
mand executes a circular movement starting from the current pose of the robot, passing
through the input variable puntomezzo and reaching the destination puntofin. If non-zero
value is given to the ArcAngle variable, the TCP will keep the same pose and move from
current point to the assigned arc angle via the given pose and end pose on arc. If zero is
given, the TCP will move from current pose to end pose via the point on arc with linear
interpolation on pose.
The possible options for txt variable are: CAP or CPP;

• Line(TM,txt,coord,speed,Ta,racc,PrecPos): this command plans a straight path for
the robot flange. It starts from the current robot pose and end on the input end pose. The
possible options for txt variable are: CPP, CAP, CPR or CAR;

• PLine(obj,txt,coord,vel,Ta,racc): it is a command similar to Line but different set-
tings for movement blending. It is particularly useful when treating paths with waypoints;

34

The possible options for txt variable are: JAP or CAP;

• PVT(TM ,ps ,vs ,coord , duration): this matlab function is used to exploit the robot
PVT mode. This modality allows to plan complex robot paths with multiple points, each
with possibly different speed, acceleration and blending settings. This function encapsu-
lates three robot commands: PVTEnter(), PVTPoint() and PVTExit(). PVTEnter() and
PVTExit() are used to start and to end the PVT robot mode. The PVTPoint() is used to
specify poses, speed, acceleration (in terms of time to reach maximum velocity) and blend-
ing.
In the corresponding Matlab function is possible to give as inputs:

coord_type : it can be set to either J or C which respectively stand for Joint and Cartesian;

ps : a matrix that contains a different pose for each row in the form of x,y,z,Rx,Ry,Rz;

vs : a speed vector that contains a specified speed for each row (and hence for each point).
Speed is specified in mm/s;

duration : a vector containing in each row a specified Ta. Each time variable is specified in
milliseconds.

The set of relative movements are:

• Move_Line(TM,txt,coord,vel,Ta,racc,PrecPos): txt takes as possible values CPP, CPR,
CAP, CAR, TPP, TPR, TAP or TAR;

• Move_PLine(TM,txt,coord,vel,Ta,racc): txt takes as possible values CAP, TAP or JAP;

• Move_PTP(TM,txt,coord,vel,Ta,racc,PrecPos): txt takes as possible values CPP, TPP
or JPP ;

These commands implement the corresponding type of movement in the same way that they were
implemented for the absolute movement, despite the fact that they are relative movements.

35

36

Chapter 4

Final Experiment

4.1 Techman TM5-700
This thesis is developed in the context of employing cooperative mechanical arms for high precision
processes. Robots are typically confined in a dedicated cell that is closed to human operators.

Cooperative robots are designed to work in parallel with a human operator and hence they
frequently do not require an enclosing cell for their workspace.

4.1.1 Manipulator specifications
The TM5-700 is a 6 axis compact cobot(cooperative-robot) designed to fit into production lines.
It is provided with a built-in vision system thought to satisfy the needs of small parts assembly,
production processes in electronics and consumer goods.

It belongs to the cooperative robots family and hence it is provided with sensors to prevent
impact with the human operator. It is possible to tune the safety stops by tightening or loosening
the torque thresholds of each joint.

The robot is mounted on a moving table and is not contained in a cell. It is equipped with an
integrated operative system called TMFlow that is discussed in 3.1.
The datasheet for this robot is provided in Appendix B in fig.B.2.

4.1.2 Gripper Notes
For this application a two finger pneumatic gripper is used. It is connected to the robot’s control
box via an electromagnetic valve. The gripper specifications are presented in Appendix B in fig.
B.3 under the column VR16-60.

The gripper is controlled through a digital output that can also be controlled by the matlab
interface 3.3.

37

Value Effect on gripper
0 open
1 closed

Table 4.1: Notation used to handle the gripper.

The notation showed in the table 4.1 can be reversed if the electrovalve is left open when the
system is started. So extra attention to the gripper is needed when turning on and off the system.

In Fig.4.1 is shown the electrical scheme used to attach the gripper to the control box.

(a) Electrical interface of the control box.

(b) Electrical scheme.

Figure 4.1: Electrical connection used.

38

4.2 Integrating the framework’s components

4.2.1 Flowchart of the whole process

Before starting the framework it is given that the Stereo Calibration is already executed. Hence
the stereo maps already exist and will be loaded in the HTTP server script just before starting the
flask application. The whole process is schematically described referring to the flowchart in figure
4.2. The full code of each system is included in Appendix A.

Figure 4.2: Flowchart of the framework logic

Once the HTTP server is started it can be left running in the background on the external device.
It will wait in idle state for the incoming requests.

The TMFlow program can now be started. The logic of the program is shown in 4.3.

The robot software after positioning the manipulator on the first camera position, it will enter
the first Vision Job node. The camera takes the picture and sends a POST request to the HTTP
server containing the image. This request will also carry the (key,value) pair as: (model_id, sx).
The picture is taken at height equal to 400 mm for the robot flange. In other words the flange is

39

Figure 4.3: TMFlow program.

at height 400 mm from the table surface. The camera results at height 347,8 mm from the table
surface. The measured distance between camera and object is 286 mm. This flange height was
decided with regards to the fact that the maximum working distance of the camera is 300 mm as
reported in section 2.3.1.

Inside the POST function of the server script, the received picture will be saved onto the external
device with the name composed by the upload folder path plus image_SX upon recognizing the
pair (key,value) as (model_id, sx).

Subsequently the ORB algorithm is executed. It takes as image inputs a training image previ-
ously loaded that contains only the object to be identified and the photo received from the camera.
The ORB subroutine is shown here:

#−− ORB
#IMPORTANT_NOTE: avoid i r r e l e v a n t co rne r s in query p i c t u r e s at a l l c o s t s ! !

outputimg = queryim . copy ()
width , he ight = Image . open (UPLOAD_FOLDER + r ”\image_DX . jpg ”) . s i z e
#widthxheight p i x e l s o f query img

OpenCV uses BGR as i t s d e f au l t co l our order f o r images , matp lo t l i b uses RGB.

40

So i f p l t i s used then uncomment t h i s conver s i on
tra in im = cv2 . cvtColor (trainim , cv2 .COLOR_BGR2RGB)
queryim = cv2 . cvtColor (queryim , cv2 .COLOR_BGR2RGB)

I n i t i a t e ORB det e c t o r
orb = cv2 . ORB_create ()

f i nd the keypo ints and d e s c r i p t o r s with ORB
kp1 = orb . de t e c t (tra inim , None)
kp2 = orb . de t e c t (queryim , None)

kp1 , des1 = orb . compute (trainim , kp1)
kp2 , des2 = orb . compute (queryim , kp2)

c r ea t e BFMatcher ob j e c t
bf = cv2 . BFMatcher . c r e a t e (cv2 .NORM_HAMMING, crossCheck=False)

Match de s c r i p t o r s , knn method .
matches = bf . knnMatch (des1 , des2 , k=2)

I can a l s o mask the keypo ints by ” f i l t e r i n g ” only the best
ones ; a . k . a . the keypo ints whose d e s c r i p t o r
have low hamming d i s t anc e

Sort them in the order o f t h e i r d i s t anc e .
matches = sor t ed (matches , key = lambda x : x [:] [1] . d i s t ance)

good = []
f o r m, n in matches :

i f m. d i s t anc e < nu∗n . d i s t anc e :
good . append ([m])

Matched = cv2 . drawMatchesKnn (trainim , kp1 , queryim , kp2 ,
good , outImg=None , matchColor=(0 , 155 , 0) ,
s i ng l ePo in tCo l o r =(0 , 255 , 255) ,matchesMask=None , f l a g s =0)

kp3 = [] #c r e a t i n g an empty keypoint ob j e c t

f o r i in range (l en (good)) :
a = good [i] [0] . t r a i n Idx
idx=kp2 [a] . pt

41

key = cv2 . KeyPoint (idx [0] , idx [1] , 1)
kp3 . append (key)

output_img = cv2 . drawKeypoints (outputimg , kp3 , outputimg ,
(255 , 0 , 0) , f l a g s=cv2 .DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

The ORB returns matched keypoints and descriptors of the two photos producing a match object.
It has been selected the Hamming distance as distance criteria and the k-nearest neighbour(knn)
modality. The knn modality implies that each keypoint is matched with the best k matches. In
this case k = 2.

As explained is section 2.2, the descriptors are binary strings containing orientation information
of pixel patches. And so the matches are sorted with respect to their hamming distance. After-
wards they are further filtered in order to select only the closest pairs of keypoint and descriptor
and hence those pairs with low Hamming distance.

A short subroutine is used to localize the object. In particular from the match object two
separate pixel coordinates arrays are produced through a for loop as shown in the following script:

#−− Loca l i z e o b j e c t
obj = np . empty ((len (good) , 2) , dtype = np . f l o a t 3 2)
scene = np . empty ((len (good) , 2) , dtype = np . f l o a t 3 2)
output = np . empty ((len (good) , 2) , dtype=np . f l o a t 3 2)

for i in range (len (good)) :
obj [i , 0] = kp1 [good [i] [0] . queryIdx] . pt [0]
obj [i , 1] = kp1 [good [i] [0] . queryIdx] . pt [1]
scene [i , 0] = kp2 [good [i] [0] . t r a i n Idx] . pt [0]
scene [i , 1] = kp2 [good [i] [0] . t r a i n Idx] . pt [1]

kp3 i s used to c r ea t e an output image wi th t r a i n i n g image
and scene image one next to the o ther
for i in range (len (kp3)) :

output [i , 0] = kp3 [i] . pt [0]
output [i , 1] = kp3 [i] . pt [1]

One array is for the training image and one for the scene image. In the match object of the
training image are stored the i-th (x,y) coordinates (in pixel) of the training image which corre-
spond to the i-th (x,y) coordinates of the scene image. For the scene coordinate array is done the
opposite.

With these two coordinate sets is possible to build an Homography matrix. An Homography
matrix is a 3-by-3 matrix that represents the perspective transformation from the training image
to the scene object.

After saving the corners of the training image (and hence of the object to detected), the Ho-

42

mography matrix is used to map the training image corners onto the scene image. A box around
the detected object is drawn by using a method that takes as input two points and draws a line.
The two points are pairs of the mapped corners onto the scene image, taken two by two as shown
here:

try :
H, _ = cv2 . findHomography (obj , scene , cv2 .RANSAC)
H2 , _ = cv2 . findHomography (obj , output , cv2 .RANSAC)

except :
print (”Not␣enough␣matches␣ or ␣ zero ␣matches␣ found ! ”)
r e s u l t = {

”message ” : ”Not␣enough␣matches␣ or ␣ zero ␣matches␣ found ! ” ,
” r e s u l t ” : None

}
return r e s u l t #with t h i s re turn the s e r v e r goes back to i d l e s t a t e

#−− Get the corners from the t r a i n i n g image
obj_corners = np . empty ((4 , 1 , 2) , dtype=np . f l o a t 3 2)
obj_corners [0 , 0 , 0] = 0
obj_corners [0 , 0 , 1] = 0

obj_corners [1 , 0 , 0] = tra in im . shape [1]
obj_corners [1 , 0 , 1] = 0

obj_corners [2 , 0 , 0] = tra in im . shape [1]
obj_corners [2 , 0 , 1] = tra in im . shape [0]

obj_corners [3 , 0 , 0] = 0
obj_corners [3 , 0 , 1] = tra in im . shape [0]

#−− Here I g e t the corners o f the t r a i n o b j e c t ”mapped” on to the query image
coord ina t e s through the homography matrix
p r e v i o u s l y e va l ua t ed
scene_corners = cv2 . perspect iveTrans form (obj_corners , H)
output_corners = cv2 . perspect iveTrans form (obj_corners , H2)

#−− Draw l i n e s between the corners (the mapped o b j e c t in the scene − image_2)
cv2 . l i n e (Matched ,
(int (scene_corners [0 , 0 , 0] + tra in im . shape [1]) , int (scene_corners [0 , 0 , 1])) , \
(int (scene_corners [1 , 0 , 0] + tra in im . shape [1]) , int (scene_corners [1 , 0 , 1])) ,
(0 , 255 , 0) , 4)
cv2 . l i n e (Matched ,

43

(int (scene_corners [1 , 0 , 0] + tra in im . shape [1]) , int (scene_corners [1 , 0 , 1])) , \
(int (scene_corners [2 , 0 , 0] + tra in im . shape [1]) , int (scene_corners [2 , 0 , 1])) ,
(0 , 255 , 0) , 4)
cv2 . l i n e (Matched ,
(int (scene_corners [2 , 0 , 0] + tra in im . shape [1]) , int (scene_corners [2 , 0 , 1])) , \
(int (scene_corners [3 , 0 , 0] + tra in im . shape [1]) , int (scene_corners [3 , 0 , 1])) ,
(0 , 255 , 0) , 4)
cv2 . l i n e (Matched ,
(int (scene_corners [3 , 0 , 0] + tra in im . shape [1]) , int (scene_corners [3 , 0 , 1])) , \
(int (scene_corners [0 , 0 , 0] + tra in im . shape [1]) , int (scene_corners [0 , 0 , 1])) ,
(0 , 255 , 0) , 4)

cv2 . l i n e (output_img ,
(int (output_corners [0 , 0 , 0]) , int (output_corners [0 , 0 , 1])) , \
(int (output_corners [1 , 0 , 0]) , int (output_corners [1 , 0 , 1])) ,
(0 , 255 , 0) , 4)
(x coord ina te 0 ,0 ,0 , y coord ina te 0 ,0 , 1) ; o ther two coords a f t e r
b a c k s l a s h are the x , y o f the second po in t
cv2 . l i n e (output_img ,
(int (output_corners [1 , 0 , 0]) , int (output_corners [1 , 0 , 1])) , \
(int (output_corners [2 , 0 , 0]) , int (output_corners [2 , 0 , 1])) ,
(0 , 255 , 0) , 4)
cv2 . l i n e (output_img ,
(int (output_corners [2 , 0 , 0]) , int (output_corners [2 , 0 , 1])) , \
(int (output_corners [3 , 0 , 0]) , int (output_corners [3 , 0 , 1])) ,
(0 , 255 , 0) , 4)
cv2 . l i n e (output_img , (int (output_corners [3 , 0 , 0]) , int (output_corners [3 , 0 , 1])) , \
(int (output_corners [0 , 0 , 0]) , int (output_corners [0 , 0 , 1])) ,
(0 , 255 , 0) , 4)

#−− Saving outputimage wi th square
i f model_id == ”dx” :

output_img=cv2 . cvtColor (output_img , cv2 .COLOR_BGR2RGB)
p l t . imsave (os . path . j o i n (app . c on f i g [’UPLOAD_FOLDER’] ,

”outputDX_img . jpg ”) , output_img)
else :

output_img=cv2 . cvtColor (output_img , cv2 .COLOR_BGR2RGB)
p l t . imsave (os . path . j o i n (app . c on f i g [’UPLOAD_FOLDER’] ,

”outputSX_img . jpg ”) , output_img)

#−− Get coord inates , h e i g h t and width o f square box

44

cx = (output_corners [0 , 0 , 0]+ output_corners [1 , 0 , 0]+
output_corners [2 , 0 , 0]+ output_corners [3 , 0 , 0]) / 4

cy = (output_corners [0 , 0 , 1]+ output_corners [1 , 0 , 1]+
output_corners [2 , 0 , 1]+ output_corners [3 , 0 , 1]) / 4

box_h = np . sq r t (np . square (output_corners [0 ,0 ,0] − output_corners [3 , 0 , 0])+
np . square (output_corners [0 ,0 ,1] − output_corners [3 , 0 , 1]))

box_w = np . sq r t (np . square (output_corners [0 ,0 ,0] − output_corners [1 , 0 , 0])+
np . square (output_corners [0 ,0 ,1] − output_corners [1 , 0 , 1]))

#−− Get r o t a t i o n o f square box
theta = − np . arctan2 (H2 [0 , 1] , H2 [0 , 0])
theta = np . rad2deg (theta)

The corners of the drawn box are then used to retrieve the required box parameters such as
its center, its width and its height. These information will be packed into the json file to be sent
back to the robot.

Afterwards the rotation of the object is evaluated as:

θ =
180

π
(−atan2(

H(0, 1)

H(0, 0)
)) (4.1)

where H is the previously calculated Homography matrix.
Finally the json file is packed, sent back to the Vision Job node and saved on a .txt file to be

picked up from the Matlab script later.

This procedure is then repeated for the second photo. The distance between the two camera
positions is equal to Baseline = 81mm.

In figure 4.4 the two camera positions are shown.

After the two vision jobs are executed, the Matlab script can be executed. Inside this script the
intrinsic and extrinsic matrices are built as exposed in section 2.1. The focal length is estimated
following the procedure described in section 2.3.1.

The (x,y) coordinates of the center of the boxes are extracted from the json variables previ-
ously saved in two separate .txt files. They are converted from Pixel frame to Image frame of each
respective view by using the inverse of the Intrinsic matrix KIP .

Now the (x,y) coordinates of the two Image frames are projected onto the Image frame of the
object to be detected by using the equations 2.4 and 2.5. Using these equations actually produce
coordinates with respect to the World frame. The depth is estimated through the procedure in
section 2.3 and it is added as the third coordinate of the point found in this way and is called
[x,y,z].

45

(a) Left view (b) Right view

Figure 4.4: Robot camera taking two pictures in the two poses.

This point is now converted from World frame to Robot frame by using the extrinsic matrix
Kextrinsic derived in 2.1.2. In practice:

ObjectRobot = TCaFTWR

x

y

z

1

 (4.2)

In the meantime the program on TMFlow has reached the Listen Node and it is now ready to
receive commands from the Matlab interface.

To evaluate at which height the robot has to position the grip, a few physical measures must
be considered. Since the gripper is attached to the flange, the grip and object height parameters
must be considered:

46

Height Value [mm]
a = Gripper base 60
b = Gripper finger 40

c = Object 8

Table 4.2: Gripper and object parameter list.

In order to not make the gripper crash on the object, it has been considered half the height of
the gripper finger.

Hence the resulting height coordinate to position the gripper is given by:

height = a+
b

2
− c (4.3)

using the same variables used in table 4.2.

Finally the Matlab script connects to the robot through the TM class and sends the pick up
routine. Hereafter is shown the code that implements the robot movement:

%% Robot p i ck up rou t ine
% %−− Connect Robot−−−
s r c = TM(’ 10 . 1 0 . 1 0 . 1 60 ’ , 5 890) ;
% % −− Move above the eva l ua t ed 3D pose −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PLine (src , ’CAP’ , [des2 (1) , des2 (2) , des2 (3) , 1 79 , 0 , 0] , 2 00 , 1 00 , 1 00) ;
%−− Rotate g r i ppe r above the o b j e c t
Move_PLine (src , ’CAP’ , [0 , 0 , 0 , 0 , 0 , ro t] , 2 0 0 , 1 00 , 1 00) ;

% %−− Open gr i ppe r −−−
% % high == chiuso 1
% % low == aper to 0

Read = InstantReadIO (src , ’ ControlBox ’ , ’DO’ , 0) ;
pause (0 . 0 5)
i f Read == 1

WriteIO (src , ’ ControlBox ’ , ’DO’ , 0 , 0) ;
end
pause (0 . 0 5)

% %−− Descend
PLine (src , ’CAP’ , [des2 (1) , des2 (2) , a l t e z za , 179 , 0 , ro t] , 2 0 0 , 1 00 , 1 00) ;

% %−− Close g r i ppe r
pause (1)
WriteIO (src , ’ ControlBox ’ , ’DO’ , 0 , 1) ;

47

% %−− Move away
Move_PLine (src , ’CAP’ , [0 , 0 , des2 (3) , 0 , 0 , 0] , 2 0 0 , 1 00 , 1 00) ;
pause (5)

% %−− Go to cardboard box
PLine (src , ’CAP’ , [2 4 3 . 4 4 , −105.93 , 400 , −179 ,0 ,90] ,200 ,100 ,100) ;
pause (5)

% %−− Descend to box
PLine (src , ’CAP’ , [2 4 3 . 4 4 , −105.93 , 230 , −179 ,0 ,90] ,200 ,100 ,100) ;
pause (5)

% %−− Let go o f o b j e c t
WriteIO (src , ’ ControlBox ’ , ’DO’ , 0 , 0) ;
pause (2)

% %−− Move upwards
PLine (src , ’CAP’ , [2 4 3 . 4 4 , −105.93 , 400 , −179 ,0 ,90] ,200 ,100 ,100) ;
% pause (5)

% %−− Disconnect Robot
pause (10)
d i s connec t (s r c) ;

Firstly the TCPclient built through the TM class establishes the connection between external
device and robot.

The robot moves the gripper above the detected object (and hence the flange is still at height
equal to 400 mm). Subsequently the gripper rotates above the object of the quantity evaluated
from the POST function at section 4.1 and saved into the jsonfile (fig. 4.5a).

48

(a) Robot rotates gripper according to pre-
viously evaluated object orientation.

(b) Robot successfully grasps the object.

Figure 4.5: Robot orients its gripper and picks the detected object.

Now by reading the Digital output status it is asserted if the gripper is already open or not. If
it is closed then it is opened by writing 0 onto the digital output. Otherwise it is left open.

The robot now descends onto the object with the rotated gripper at height equal to 4.3. Once
this movement is completed the gripper is closed, properly grabbing the object (fig. 4.5b).

49

The robot then moves the object upwards and moves to a carboard box placed near the robot
and which coordinates are known (fig. 4.6a).

The robot descends with the gripper inside the box, opens the gripper and frees the object from
its grasp (fig. 4.6b). The arm now moves away in a straight upward direction (fig. 4.6c).

(a) Robot positions itself
on the box while holding the
object.

(b) Robot settles into the
box and opens the gripper
to let go of the object.

(c) Robot moves away
from placed object.

The disconnect(src) command sends the robot command ScriptExit() which exits the
Listen Node on the pass Path. Here the TMFlow program stops.

50

4.2.2 Depth estimation
In order to evaluate the precision of the depth estimation procedure, a series of 30 trials has been
conducted.

The target object has not been moved. Each trial is independent from the other because each
trial started from fresh values and fresh photos. In Fig.4.7 it is summarized the result:

Figure 4.7: Result of consecutive depth estimations.

The results of these trials can be summarized in:

Mean Standard deviation
282.35 mm 3.55 mm

Table 4.3: Depth estimation mean and deviation standard.

With these values it is demonstrated that the vision system can pick up the detected objects
with a good precision.

51

52

Chapter 5

Conclusion

This work’s objective is to build a framework in which is possible to communicate with a coopera-
tive robot through a Matlab interface. The TM5-700 robot has an Eye-in-Hand camera mounted
on its arm and in this case it is needed an HTTP server to retrieve the pictures. Hence it is shown
how to build an HTTP server with the Flask Python library.

The server is used not only to retrieve the pictures taken from the Eye-in-Hand camera but
also to detect a target object present in the pictures’ view. To retrieve the correct 3D position
it is employed the Binocular vision system model that returns a good estimation of the depth
information. Information which is impossible to retrieve from one single photo. Hence two photos
are used to apply this model.

The ORB algorithm is used for the object detection part. This algorithm returns the (x,y) pixel
coordinates of the detected object. This information together with the depth information are
translated into coordinates with respect to the Robot frame.

Finally a Matlab script is produced utilizing the TM class which represents the interface that
communicates with the robot arm. In this script the pick up routine is written and finally the
robot successfully grabs the target object.

It is shown that the depth estimation is also quite precise, producing an error of less than 4
mm on thirty consecutive trials.

This ensures the robot capability of successfully picking up the object detected through the
camera pictures and manipulated from the ORB algorithm and the Binocular vision system model.

The main strength of this work is its adaptability. In fact by adapting the TM class to another
robot communication protocol, it is possible to use the same framework for other robotic systems.

Moreover the ORB algorithm can be easily replaced by other computer vision algorithms without
re-implementing from scratch the HTTP server.

53

54

Appendix A

Full Codes

A.1 Code: Stereo Calibration

import numpy as np
import cv2 as cv
import glob
import pandas as pd

from tabulate import tabulate

chessboardSize=(9,6)

frameSize = (2592,1944)
#−− Termination criteria
criteria = (cv.TERM_CRITERIA_EPS+ cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
#−− Prepare object points , l ike (0 ,0 ,0) , (1 ,0 ,0) , (2 ,0 ,0) ,(6 ,5 ,0)
objp = np.zeros((9∗6,3), np.float32)
objp[: ,:2] = np.mgrid[0:9 ,0:6].T.reshape(−1,2)

#−− Size of each chessboard square in world coordinates and in mm
objp = objp∗21

#−− Arrays to store object points and image points from a l l the images.
objpoints = [] # 3d point in real world space
imgpointsL = [] # 2d points in image plane .
imgpointsR = [] # 2d points in image plane .

#−− Routes to l e f t and right images
imagesLeft = glob.glob(’C:\\Users\\bianc\\TMvision_TmHttp_server_sample_code\\python_example\\images\\calib_trial_400\\Left\\∗.jpg’)
imagesRight = glob.glob(’C:\\Users\\bianc\\TMvision_TmHttp_server_sample_code\\python_example\\images\\calib_trial_400\\Right\\∗.jpg’)

#−− For loop
for imL,imR in zip(imagesLeft,imagesRight):

#−− Pick pair of l e f t and right images
imgL = cv.imread(imL)
imgR = cv.imread(imR)

#−− Convert to gray both images
grayL = cv.cvtColor(imgL, cv.COLOR_BGR2GRAY)
grayR = cv.cvtColor(imgR, cv.COLOR_BGR2GRAY)

#−− Find the chess board corners
retL, cornersL = cv.findChessboardCorners(grayL, chessboardSize, None)
retR, cornersR = cv.findChessboardCorners(grayR, chessboardSize, None)

#−− If chessboard is found , add object points , image points (after refining them)
if retL and retR == True:

objpoints.append(objp)

#−− This function iteratively refines the corner locations unti l l the termination criteria is reached
cornersL = cv.cornerSubPix(grayL, cornersL, (11,11), (−1,−1), criteria)
imgpointsL.append(cornersL)

55

cornersR = cv.cornerSubPix(grayR, cornersR, (11,11), (−1,−1), criteria)
imgpointsR.append(cornersR)

#−− Draw and display the corners
cv.drawChessboardCorners(imgL, chessboardSize, cornersL, retL)
cv.namedWindow(”outputL”, cv.WINDOW_NORMAL)
cv.imshow(”outputL”, imgL)
cv.resizeWindow(”outputL”, 960, 540)

cv.drawChessboardCorners(imgR, chessboardSize, cornersR, retR)
cv.namedWindow(”outputR”, cv.WINDOW_NORMAL)
cv.imshow(”outputR”, imgR)
cv.resizeWindow(”outputR”, 960, 540)

cv.waitKey(1000)
else:

print(”No␣chessboard␣found”)

cv.destroyAllWindows()

#−− Calibration for each camera
retL, cameraMatrixL, distL, rvecsL, tvecsL = cv.calibrateCamera(objpoints, imgpointsL, grayL.shape[::−1], None, None)
newCameraMatrixL, roi_L = cv.getOptimalNewCameraMatrix(cameraMatrixL, distL, frameSize, 1, frameSize)

retR, cameraMatrixR, distR, rvecsR, tvecsR = cv.calibrateCamera(objpoints, imgpointsR, grayR.shape[::−1], None, None)
newCameraMatrixR, roi_R = cv.getOptimalNewCameraMatrix(cameraMatrixR, distR, frameSize, 1, frameSize)

#−− Stereo Vision Calibration
flags = 0
flags = cv.CALIB_FIX_INTRINSIC #with this f lag intrinsic matrices are fixed so that only
R,T, fundamental and essential matrices are evaluated

criteria_stereo = (cv.TERM_CRITERIA_EPS+cv.TERM_CRITERIA_MAX_ITER, 30 , 0.001)

retStereo, newCameraMatrixL,distL,newCameraMatrixR, distR, rot, trans, essentialMat, fundamentalMat = cv.stereoCalibrate(objpoints,
imgpointsL,imgpointsR, newCameraMatrixL, distL, newCameraMatrixR, distR, frameSize)

#−− Stero Rectification
rectifyScale = 1
rectL, rectR, projMatL, projMatR, Q, roi_L, roi_R = cv.stereoRectify(newCameraMatrixL,

distL, newCameraMatrixR, distR, grayL.shape[::−1], rot, trans, rectifyScale,(0,0))

stereoMapL = cv.initUndistortRectifyMap(newCameraMatrixL,distL, rectL, projMatL, grayL.shape[::−1], cv.CV_16SC2)
stereoMapR = cv.initUndistortRectifyMap(newCameraMatrixR,distR, rectR, projMatR, grayR.shape[::−1], cv.CV_16SC2)

#−− Saving parameters
print(”Saving␣parameters”)
cv_file = cv.FileStorage(’C:\\Users\\bianc\\TMvision_TmHttp_server_sample_code\\python_example\\stereoMap.xml’ ,

cv.FILE_STORAGE_WRITE)

cv_file.write(’stereoMapL_x’ , stereoMapL[0])
cv_file.write(’stereoMapL_y’ , stereoMapL[1])
cv_file.write(’stereoMapR_x’ , stereoMapR[0])
cv_file.write(’stereoMapR_y’ , stereoMapR[1])

cv_file.release()

CamSX = np.array([newCameraMatrixL[0][0] ,newCameraMatrixL[1][1] ,newCameraMatrixL[0][2] ,newCameraMatrixL[1][2]])
CamDX= np.array([newCameraMatrixR[0][0] ,newCameraMatrixR[1][1] ,newCameraMatrixR[0][2] ,newCameraMatrixR[1][2]])
data = {’SX’ : CamSX , ’DX’ : CamDX}
tableCam = pd.DataFrame(data, index = [’fx ’ , ’fy ’ , ’cx’ , ’cy’])

tableCam = tabulate(tableCam, headers = [’SX’ , ’DX’])

with open(’C:\\Users\\bianc\\TMvision_TmHttp_server_sample_code\\python_example\\StereoMatrices.txt’ , ’a’) as f :
f .write(tableCam)
f .close()

56

A.2 Code: HTTP Server

from flask import Flask, jsonify , g, Response, request, flash , redirect, url_for, send_from_directory, render_template
from werkzeug.exceptions import HTTPException
from waitress import serve
from PIL import Image
from werkzeug. utils import secure_filename
from matplotlib import pyplot as plt
from tabulate import tabulate

import os
import io
import cv2
import numpy as np
import datetime
import time
import socket
import requests
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

#−− Undistort and rectify images before giving them to the ORB algorithm to process
#−− Use camera parameters PREVIOUSLY evaluated by stereo calibration script
cv_file = cv2.FileStorage()
cv_file.open(r”C:\Users\bianc\TMvision_TmHttp_server_sample_code\python_example\stereoMap.xml”, cv2.FILE_STORAGE_READ)

stereoMapL_x = cv_file.getNode(’stereoMapL_x’).mat()
stereoMapL_y = cv_file.getNode(’stereoMapL_y’).mat()
stereoMapR_x = cv_file.getNode(’stereoMapR_x’).mat()
stereoMapR_y = cv_file.getNode(’stereoMapR_y’).mat()

cv_file.release()

UPLOAD_FOLDER= r”C:\Users\bianc\TMvision_TmHttp_server_sample_code\python_example\upload”
ALLOWED_EXTENSIONS= {’txt’ , ’pdf’ , ’png’ , ’jpg’ , ’jpeg’ , ’gif ’}
INDEX = r”C:\Users\bianc\TMvision_TmHttp_server_sample_code\python_example\templates\index.html”
TEMPLATE_DIR= os.path.dirname(os.path.abspath(os.path.dirname(INDEX)))
TEMPLATE_DIR= os.path.join(TEMPLATE_DIR, ’templates’)

app = Flask(__name__, template_folder=TEMPLATE_DIR)
app.config[’UPLOAD_FOLDER’] =UPLOAD_FOLDER

HOST_NAME= ’TM␣Vision␣HTTP␣Server’
HOST_PORT= 80

nu = 0.75

#==SYSTEM===
@app.errorhandler(HTTPException)
#Handle an exception that did not have an error handler associated with it , or that was raised from an error handler .
#This always causes a 500 InternalServerError .
def handleException(e):

’ ’ ’Return HTTP errors . ’ ’ ’
TRIMessage(e)
return e

#@app. errorhandler(400)
#def bad_request(e):
return render_template(”400.html”) , 400

#@app. errorhandler(404)
#def page_not_found(e):
return render_template(”404.html”) , 404

#@app. errorhandler(405)
#def method_not_allowed(e):
return render_template(”405.html”) , 405

#−− Utility functions
def TRIMessage(message):

print(f ’\n[{datetime.datetime.now(datetime.timezone(datetime.timedelta(0))).astimezone().isoformat(timespec=”milliseconds”)}]␣{message}’)

def allowed_file(filename):
return ’ . ’ in filename and \

filename. rsplit(’ . ’ , 1)[1].lower() in ALLOWED_EXTENSIONS

57

def UndistAndRect(img, stereomap_x, stereomap_y):
frame = cv2.remap(img, stereomap_x, stereomap_y, cv2.INTER_LANCZOS4, cv2.BORDER_CONSTANT, 0)
return frame

#−− GET
#by deafult the app. route expects a get request . Here an index page is put for the user to open on the pc side .
#@app. route(’/ ’)
#def index ():
return render_template(’ index . html ’)

@app.route(’/api/<string:m_method>’ , methods=[’GET’])
#dummy GET to try the connection over the TM robot side in the vision node settings
def get(m_method):

user defined method
result = dict()

if m_method== ’status’ :
result = {

”result”: ”status”,
”message”: ”im␣ok”

}
else:

result = {
”result”: ”fail”,
”message”: ”wrong␣request”

}
return result

#−− POST
@app.route(’/api/<string:m_method>’ , methods=[’POST’])
def post(m_method):

#get key/value
parameters = request.args
model_id = parameters.get(’model_id’)
TRIMessage(f ’model_id:␣{model_id}’)
headers = {’Content−type’ : ’application/json’ , ’Accept’ : ’text/plain’}
#check key/value
if model_id is None:

TRIMessage(’model_id␣is␣not␣set ’)
result={

”message”: ”fail”,
”result”: ”model_id␣required”

}
return jsonify(result)

#−− Saving image on pc
if ’ file ’ not in request. files :

flash(’No␣file␣part’)
return redirect(request.url)

file = request. files [’ file ’]
If the user does not select a f i le , the browser submits an
empty f i l e without a filename .
if file .filename == ’ ’ :

flash(’No␣selected␣file ’)
return redirect(request.url)

if file and allowed_file(file .filename):
filename = secure_filename(file .filename)
name = filename. rsplit(’ . ’)
if model_id == ”dx”:

filename = name[0] + ”_DX” + ”.” + name[1]
file .save(os.path.join(app.config[’UPLOAD_FOLDER’] , filename))
print(’File␣saved␣succesfully ’)

if model_id == ”sx”:
filename = name[0] + ”_SX” + ”.” + name[1]
file .save(os.path.join(app.config[’UPLOAD_FOLDER’] , filename))
print(’File␣saved␣succesfully ’)

#−− Image processing
#The algorithm needs to be trained to track the desired object so
#the training image is placed in the pc and le t the algorithm pick i t
trainim = cv2.imread(r”C:\Users\bianc\TMvision_TmHttp_server_sample_code\python_example\images\train_im.jpg”)

#−− The query image is picked from the robot camera and corrected
if model_id == ”dx”:

queryim = cv2.imread(UPLOAD_FOLDER+ r”\image_DX.jpg”)

58

queryim = UndistAndRect(queryim, stereoMapR_x, stereoMapR_y)
if model_id == ”sx”:

queryim = cv2.imread(UPLOAD_FOLDER+ r”\image_SX.jpg”)
queryim = UndistAndRect(queryim, stereoMapL_x, stereoMapL_y)

#−− ORB
#IMPORTANT_NOTE: avoid irrelevant corners in query pictures at a l l costs ! !
outputimg = queryim.copy()
width, height = Image.open(UPLOAD_FOLDER+ r”\image_DX.jpg”).size #widthxheight pixels of query img

OpenCV uses BGR as i ts default colour order for images , matplotlib uses RGB.
So i f plt is used then uncomment this conversion
trainim = cv2 . cvtColor(trainim , cv2 .COLOR_BGR2RGB)
queryim = cv2 . cvtColor(queryim, cv2 .COLOR_BGR2RGB)

Initiate ORB detector
orb = cv2.ORB_create()

find the keypoints and descriptors with ORB
kp1 = orb.detect(trainim,None)
kp2 = orb.detect(queryim,None)

kp1, des1 = orb.compute(trainim, kp1)
kp2, des2 = orb.compute(queryim, kp2)

create BFMatcher object
bf = cv2.BFMatcher.create(cv2.NORM_HAMMING, crossCheck=False)

Match descriptors , knn method.
matches = bf.knnMatch(des1,des2,k=2)

I can also mask the keypoints by ” f i l ter ing ” only the best
ones ; a. k .a. the keypoints whose descriptor have low distance

Sort them in the order of their distance .
matches = sorted(matches, key = lambda x: x[:] [1] .distance)

good = []
for m,n in matches:

if m.distance < nu∗n.distance:
good.append([m])

Matched = cv2.drawMatchesKnn(trainim,kp1,queryim,kp2,
good,outImg=None,matchColor=(0, 155, 0),singlePointColor=(0, 255, 255),matchesMask=None,flags=0)

kp3 = [] #creating an empty keypoint object

for i in range(len(good)):
a = good[i][0].trainIdx
idx=kp2[a].pt
key = cv2.KeyPoint(idx[0] ,idx[1],1)
kp3.append(key)

output_img = cv2.drawKeypoints(outputimg, kp3 ,0,(255,0,0),flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

#−− Localize object
obj = np.empty((len(good),2), dtype = np.float32)
scene = np.empty((len(good),2), dtype = np.float32)
output = np.empty((len(good),2), dtype=np.float32)

for i in range(len(good)):
obj[i ,0] = kp1[good[i][0].queryIdx].pt[0] #coordinata x del keypoint del le train image che corrisponde
a l l ’ i esimo keypoint nella query image− sfrutto i l match object che mappa le corrispondenze tra i due set di kypoints
nell ’ obj metto quindi le coordinate in pixel della train image con corrispondenza al la query
nell ’ oggetto scene faccio l ’opposto : salvo le coodinate in pixel della query image che corrispondono ai keypoint della train image
obj[i ,1] = kp1[good[i][0].queryIdx].pt[1]
scene[i ,0] = kp2[good[i][0].trainIdx].pt[0]
scene[i ,1] = kp2[good[i][0].trainIdx].pt[1]

kp3 is used to create an output image with training image and scene image one next to the other
for i in range(len(kp3)):

output[i ,0] = kp3[i] .pt[0]
output[i ,1] = kp3[i] .pt[1]

try:
H, _ = cv2.findHomography(obj,scene,cv2.RANSAC)
H2, _ = cv2.findHomography(obj, output, cv2.RANSAC)

except:
print(”Not␣enough␣matches␣or␣zero␣matches␣found!”)
result = {

59

”message”: ”Not␣enough␣matches␣or␣zero␣matches␣found!”,
”result”: None

}
return result #with this return the server goes back to idle state

#−− Get the corners from the training image
obj_corners = np.empty((4,1,2), dtype=np.float32)
obj_corners[0,0,0] = 0
obj_corners[0,0,1] = 0

obj_corners[1,0,0] = trainim.shape[1]
obj_corners[1,0,1] = 0

obj_corners[2,0,0] = trainim.shape[1]
obj_corners[2,0,1] = trainim.shape[0]

obj_corners[3,0,0] = 0
obj_corners[3,0,1] = trainim.shape[0]

#−− Here I get the corners of the train object ”mapped” on to the query image
coordinates through the homography matrix
previously evaluated
scene_corners = cv2.perspectiveTransform(obj_corners, H)
output_corners = cv2.perspectiveTransform(obj_corners, H2)

#−− Draw lines between the corners (the mapped object in the scene − image_2)
cv2. line(Matched,

(int(scene_corners[0,0,0] + trainim.shape[1]) , int(scene_corners[0,0,1])),\
(int(scene_corners[1,0,0] + trainim.shape[1]) , int(scene_corners[1,0,1])),
(0,255,0), 4)

cv2. line(Matched, (int(scene_corners[1,0,0] + trainim.shape[1]) , int(scene_corners[1,0,1])),\
(int(scene_corners[2,0,0] + trainim.shape[1]) , int(scene_corners[2,0,1])), (0,255,0), 4)
cv2. line(Matched, (int(scene_corners[2,0,0] + trainim.shape[1]) , int(scene_corners[2,0,1])),\
(int(scene_corners[3,0,0] + trainim.shape[1]) , int(scene_corners[3,0,1])), (0,255,0), 4)
cv2. line(Matched, (int(scene_corners[3,0,0] + trainim.shape[1]) , int(scene_corners[3,0,1])),\
(int(scene_corners[0,0,0] + trainim.shape[1]) , int(scene_corners[0,0,1])), (0,255,0), 4)

cv2. line(output_img,
(int(output_corners[0,0,0]), int(output_corners[0,0,1])),\
(int(output_corners[1,0,0]), int(output_corners[1,0,1])),
(0,255,0), 4)

(coordinata x 0,0,0 , coordinata y 0 ,0 ,1); le altre due coordinate dopo i l backslash sono x ,y del punto successivo
cv2. line(output_img, (int(output_corners[1,0,0]), int(output_corners[1,0,1])),\
(int(output_corners[2,0,0]), int(output_corners[2,0,1])), (0,255,0), 4)
cv2. line(output_img, (int(output_corners[2,0,0]), int(output_corners[2,0,1])),\
(int(output_corners[3,0,0]), int(output_corners[3,0,1])), (0,255,0), 4)
cv2. line(output_img, (int(output_corners[3,0,0]), int(output_corners[3,0,1])),\
(int(output_corners[0,0,0]), int(output_corners[0,0,1])), (0,255,0), 4)

#−− Saving outputimage with square
#i f model_id == ”dx”:
output_img. save(os . path . join(app. config [’UPLOAD_FOLDER’] , ”outputDX_img. jpg”))
#else :
output_img. save(os . path . join(app. config [’UPLOAD_FOLDER’] , ”outputSX_img. jpg”))

#−− Get coordinates , height and width of square box
cx = (output_corners[0,0,0]+output_corners[1,0,0]+output_corners[2,0,0]+output_corners[3,0,0])/4
cy = (output_corners[0,0,1]+output_corners[1,0,1]+output_corners[2,0,1]+output_corners[3,0,1])/4
box_h = np.sqrt(np.square(output_corners[0,0,0]−output_corners[3,0,0])+np.square(output_corners[0,0,1]−output_corners[3,0,1]))
box_w = np.sqrt(np.square(output_corners[0,0,0]−output_corners[1,0,0])+np.square(output_corners[0,0,1]−output_corners[1,0,1]))

#−− Get rotation of square box
theta =− np.arctan2(H2[0,1] , H2[0,0])
theta = np.rad2deg(theta)

if model_id == ’dx’ :
label = ’DX_Image’

else:
label = ’SX_Image’

#−− Piling result in json format to send back to TMFlow
Classification
if m_method== ’CLS’ :

result = {
”message”: ”No␣Classification␣method␣implemented,␣yet”
}

Detection

60

elif m_method== ’DET’ :

result = {
”message”:”success”,
”annotations”:[

{
”box_cx”: float(str(cx)),
”box_cy”: float(str(cy)),
”box_w”: float(str(box_w)),
”box_h”: float(str(box_h)),
”label”: str(label),
”score”: float(str(1.000)),
”rotation”: float(str(theta))

}
] ,
”result”: ”Image” + filename

}
Storing json in txt f i l e but as a table so that matlab can easily read i t
table = [[”label”,result[”annotations”][0][”label”]] , [”box_cx”, result[”annotations”][0][”box_cx”]] ,

[”box_cy”,result[”annotations”][0][”box_cy”]] , [”box_w”,result[”annotations”][0][”box_w”]] ,
[”box_h”,result[”annotations”][0][”box_h”]] , [”rotation”, result[”annotations”][0][”rotation”]]]

title = ”label␣values”
if model_id == ’dx’ :

with open(’C:\\Users\\bianc\\TMvision_TmHttp_server_sample_code\\python_example\\jsondx.txt’ , ’a’) as f :
f .write(’\n’)
f .write(str(title))
f .write(’\n’)
f .write(tabulate(table))
f .close()

if model_id == ”sx”:
with open(’C:\\Users\\bianc\\TMvision_TmHttp_server_sample_code\\python_example\\jsonsx.txt’ , ’a’) as f :

f .write(’\n’)
f .write(str(title))
f .write(’\n’)
f .write(tabulate(table))
f .close()

print(”json␣sent!”)

no method
else:

result = {
”message”: ”no␣method”,
”result”: None

}
with open(’json.txt’ , ’a’) as f :

f .write(’\n’)
f .write((str(result)))
f .close()

return jsonify(result)

#−− Entry point
if __name__== ’__main__’ :

check=False
try:

host_addr = ([ip for ip in socket.gethostbyname_ex(socket.gethostname())[2] if not ip.startswith(”127.”)] or
[[(s.connect((”8.8.8.8”, 53)), s.getsockname()[0] , s.close()) for s in [socket.socket(socket.AF_INET, socket.SOCK_DGRAM)]][0][1]])

check = True if len(host_addr) > 0 else False
except Exception as e:

TRIMessage(e)
if check == True:

host_addr = host_addr[−1] if len(host_addr) > 1 else host_addr[0]
TRIMessage(f ’serving␣on␣http://{host_addr}:{HOST_PORT}’)

else:
TRIMessage(f ’serving␣on␣http://127.0.0.1:{HOST_PORT}’)

serve(app, port=HOST_PORT, ident=HOST_NAME, _quiet=True)

61

A.3 Code: Matlab Class

classdef TM<handle
% classe per le funzioni di calcolo terne

properties
connessione % tcpip del robot
ip
portControl
vid % telecamera
calib % matrice calibrazione robot
t % timer
G % Gaussiane per interpolazione
GL % Gaussiane ingrandite
X
Y
sended

end

methods
function obj=TM(ip,portControl)

%Costruttore
obj.ip = ip;
obj.portControl = portControl;

% Connetto i l Techman
obj.connessione = tcpclient(obj.ip,obj.portControl);
obj.connessione.UserData = [] ;
configureTerminator(obj.connessione, ’CR/LF’);
obj.connessione.InputBufferSize=50000;
obj.connessione.OutputBufferSize=50000;

% Attivo la connessione
while obj.connessione.NumBytesAvailable == 0

pause(0.001)
end
risp = char(read(obj.connessione,obj.connessione.NumBytesAvailable));
fprintf(’Connessione␣Control␣attiva␣−␣%s\n’ ,risp(1:end−2))

end

function stop(obj)
comando = ’1,StopAndClearBuffer() ’ ;
pack = writepack(obj, ’TMSCT’ ,comando);
write(obj.connessione,pack,”string”);
pause(0.05);
answer = char(read(obj.connessione,obj.connessione.NumBytesAvailable));

end

function answer = disconnect(obj)
comando = ’1,ScriptExit() ’ ;
pack = writepack(obj, ’TMSCT’ ,char(comando));
write(obj.connessione,pack,”string”);
pause(0.05);
answer = char(read(obj.connessione,obj.connessione.NumBytesAvailable));
clear obj.connessione

end

function startTimer(obj, f ,timerCallback,timerCallback_args)
% Avvia un timer al la frequenza f
obj.t = timer;

% Definisco la callback e la modalità
obj.t.TimerFcn = {timerCallback, timerCallback_args};
obj.t.ExecutionMode = ’fixedRate’ ;

% Periodo di esecuzione del timer
obj.t.Period = 1/f ;

% Salvo i l dato
obj.t.UserData. f = f ;
obj.t.UserData.t = [] ;

% Avvio timer
start(obj.t);

end

function cs = checksum(obj,String)

62

% Funzione CheckSum
% i l checksum è un insieme di due cifre esadecimali che , vengono inviate
% assieme al pacchetto , i l robot ricalcola i l checkum per conto suo e se
% quello ricalcolato è uguale a quello ricevuto significa che i l pacchetto
% è arrivato tutto senza errori .

%function checksum = checksum(String)
% si usa uno XOR esadecimale

String_d = double(String). ’; % da char a double numerico, trasponendo
[N,M]=size(String_d); % misuro la dimensione della stringa , in modo da capire

% quante volte ripetere l ’ operazione XOR
cs = String_d(1 ,:); %primo valore del CS, ovvero primo valore della String

for i = 2:N %ripeto da 2 a N

cs(1,:) = bitxor(cs(:) ,String_d(i ,:));

end

cs=dec2hex(cs);%ritrasformo in esadecimale

if length(cs) == 1 % se i l CS risulta ad una sola cifra , ci aggiungo uno zero davanti

cs = strcat(’0’ ,cs);

end
end

function pack= writepack(obj,head,comando)
% Funzione writepack
% Preso i l comando, scrive i l pacchetto completo da spedire poi al Robot

%TO UPDATE: rimuovere i write dai comandi di movimento e includerlo in
%questo metodo

% comando è i l char array che contiene i l comando del robot
% aggiungo Header, che è TMSTA O TMSCT a seconda di quello che mi serve ,
% quasi sempre TMSCT
% ottengo la stringa che poi viene analizzata per i l checksum, da dollaro ad
% asterisco eslcusi
unchecked=char(strcat(head, ’ , ’ ,string(length(comando)), ’ , ’ ,comando, ’ , ’));

%calcolo i l checksum
%cs=TM.checksum(unchecked);
cs=checksum(obj,unchecked);
%completo i l pacchetto
pack=strcat(’$’ ,unchecked, ’∗’ ,cs);
packdouble = [double(pack) 13 10]; % aggiungo i l terminator
packf = char(packdouble); %ritraduco in char e poi in stringa
pack = packf;

end

function answer = PTP(obj,txt,coord,vel,Ta,racc,PrecPositioning,conf)
%% PTP point 2 point
%{

Effettuo il movimento Point 2 Point dal punto attuale a quello di arrivo.
per info guardare il manuale Expression−Editor−and−Listen−Node del TM.

id,PTP(0,1,2,3,4,5,6,7)

0:Nome della connessione

1: una string che definisce il formato: 3 lettere
1: Motion target format:””
J expressed in joint angles””
C expressed in Cartesian coordinate

2: Speed format:””
P expressed as a percentage

3: Blending format””
P expressed as a percentage

2: coordinate, di giunto in ordine J 1−2−3−4−5−6 in gradi
oppure cartesiane assolute: x,y,z in mm e Rx Ry Rz

3: velocità in %
le velocità scalano con quella che è la % di Progetto Listen
4: tempo per accelerare a vmax (Ta) in ms
5: unione traiettorie (in %)

63

6: Disable precise positioning (boolean)
1:true

Disable precise positioning
2:false

Enable precise positioning

7: se uso coordinate Cartesiane specifico la config del robot
in un vettore {0−1,2−3,4−5}

0:Braccio destro
1 Braccio Sinistro

2: Gomito Alto
3: Gomito Basso

4: polso NON flippato
5: polso Flippato

%}
%esempio
coord = compose(”%.4 f ”, coord);
%esprimo le coordinate contenute in ’coord ’ come string e le salvo nella
%stringa ’coo’
coo=strcat(’{’ ,string(coord(1)), ’ , ’ ,string(coord(2)), ’ , ’ ,string(coord(3)), ’ , ’ ,string(coord(4)), ’ , ’ ,string(coord(5)), ’ , ’ ,string(coord(6)), ’}’);

%se nargin>7 ho anche la configurazione e devo adattarla dal f i l e config a
% un vettore come descritto sopra .
if nargin >7

if conf.righty == 1
a=0;

else
a=1;

end

if conf.below == 1
b=3;

else
b=2;

end

if conf. flip == 1
c=5;

else
c=4;

end

% config diventa un f i l e string espresso come ’{0−1,2−3,4−5}’
config=strcat(’{’ ,string(a), ’ , ’ ,string(b), ’ , ’ ,string(c), ’}’);

% scrivo i l comando, deve risultare in char . La funzione strcat () richiede
% String o Char, per questo trasformo tutto in String
comando=char(strcat(’1,PTP(”’ ,txt, ’”, ’ ,char(coo), ’ , ’ ,string(vel), ’ , ’ ,string(Ta), ’ , ’ ,string(racc), ’ , ’ ,string(PrecPositioning), ’ , ’ ,config, ’) ’));

% esempio comando
%comando=’1,PTP(”CPP”,{400,300,300,180,0,180},10,500,50, false ,{1 ,2 ,4}) ’;

else % caso con nargin =7

comando=char(strcat(’1,PTP(”’ ,txt, ’”, ’ ,char(coo), ’ , ’ ,string(vel), ’ , ’ ,string(Ta), ’ , ’ ,string(racc), ’ , ’ ,string(PrecPositioning), ’) ’));

%esempi comando
%comando=’1,PTP(”JPP”,{61.7399,286.7598,−106.7598,90.0000,−90.0000,−28.2601},15,500,0, false) ’;
%comando=’1,PTP(”JPP”,0,0,0,0,0,0,25,500,10, false)’% anche va bene
%comando=’1,PTP(”CPP”,500,500,600,180,−1,180,10,500,1,true ,1 ,2 ,4) ’
end

pack=writepack(obj, ’TMSCT’ ,comando);
write(obj.connessione,pack,”string”);
pause(0.05);
answer=char(read(obj.connessione,obj.connessione.NumBytesAvailable)); %messaggio di ok

end

function answer=Circle(obj,txt,puntomezzo,puntofin,speed,Ta,racc,ArcAngle,PrecPos)

%% Movimento CIRCLE

64

%{

id,Cricle(1,2,3,4,5,6,7,8)
0:nome connesssione
1: una string che definisce il formato: 3 lettere

1: Motion target format:””
C expressed in Cartesian coordinate

2: Speed format:””
P expressed as a percentage

le velocità scalano con quella che è la % di Progetto Listen
”A” expressed in velocity (mm/s)

3: Blending format””
P expressed as a percentage

2: coordinate cartesiane assolute di un punto dell ’arco: x,y,x in mm e Rx Ry Rz
3: coordinate cartesiane assolute del punto finale : x,y,x in mm e Rx Ry Rz
4: velocità in % o in mm/s
5: tempo per accelerare a vmax (Ta) in ms
6: unione traiettorie (in %)
7:Arc angle(°°), If non−zero value is given, the TCP will keep the same pose and move from

current point to the assigned arc angle via the given point and end point on arc;
If zero is given, the TCP will move from current point and pose to end point
and pose via the point on arc with linear interpolation on pose.

8:Disable precise positioning (boolean)
1:true

Disable precise positioning
2:false

Enable precise positioning

%}
% i punti devono essere espressi nella forma {1,2,3,4,5 ,6}, in char , in
% modo che si possano contare le lettere
puntomezzo = compose(”%.4 f ”, puntomezzo);
puntofin = compose(”%.4 f ”, puntofin);

pm=strcat(’{’ ,string(puntomezzo(1)), ’ , ’ ,string(puntomezzo(2)), ’ , ’ ,string(puntomezzo(3)), ’ , ’ ,string(puntomezzo(4)), ’ , ’ ,string(puntomezzo(5)), ’ , ’ ,string(puntomezzo(6)), ’}’);
pf=strcat(’{’ ,string(puntofin(1)), ’ , ’ ,string(puntofin(2)), ’ , ’ ,string(puntofin(3)), ’ , ’ ,string(puntofin(4)), ’ , ’ ,string(puntofin(5)), ’ , ’ ,string(puntofin(6)), ’}’);

% scrivo i l comando, deve risultare in char . La funzione strcat () richiede
% String o Char, per questo trasformo tutto in String
comando=char(strcat(’1,Circle(”’ ,txt, ’”, ’ ,char(pm), ’ , ’ ,char(pf), ’ , ’ ,string(speed), ’ , ’ ,string(Ta), ’ , ’ ,string(racc), ’ , ’ ,string(ArcAngle), ’ , ’ ,string(PrecPos), ’) ’));

%esempio di comando
%comando=’1,Circle(”CAP”,{300,300,400,180,0,180},{200,400,400,180,0,180},25,500,10,0, false) ’;

pack=writepack(obj, ’TMSCT’ ,comando);%scrivo pacchetto

write(obj.connessione,pack, ’string ’);%invio pacchetto
pause(0.05);
answer=char(read(obj.connessione,obj.connessione.NumBytesAvailable));%risposta di ok

end

function answer=PVT(obj ,ps ,vs ,coord_type , duration)
% connessione : tcp device object
% ps : target position (in joint angles or cartesian coordiates)
% vs : target speed [mm/s] (i t wants the speed in x ,y , z , rx , ry , rz ! !)
% coord_type : ”J” (joints) or ”C” (Cartesian)
% duration : vector with duration of each movement [ms]

% PVTEnter(_)
if coord_type == ’J’

comando1=strcat(’1,PVTEnter(0)’ ,char(13));

elseif coord_type == ’C’

comando1=strcat(’1,PVTEnter(1)’ ,char(13));

else

comando1=strcat(’1,PVTEnter() ’ ,char(13));
%It is accepted by the robot and i t defaults to Joint coordinates

end
comando1 = compose(comando1 + ”\n”);

% PVTPoint(_)
% conversione punto e velocità
%throw i f sizes are different ! [later]
row = size(ps,1); %numero di righe = numero di punti da inserire
punti = [] ;
for i =1:row

65

ps_c(i ,1) = compose(”%.3 f , %.3f , %.3f , %.3f , %.3f , %.3f ”,ps(i ,1:6)); %compose returns a 1x1 string
vs_c(i ,1) = compose(”%.3 f , %.3f , %.3f , %.3f , %.3f , %.3f ”,vs(i ,1:6));
%per ogni coppia di righe punto−velocità produco un comando pvtpoint
punto=char(strcat(’PVTPoint(’ ,ps_c(i), ’ , ’ ,vs_c(i), ’ , ’ ,compose(”%.3 f ”,duration(1, i)) , ’) ’ ,char(13)));
punto = compose(punto +”\n”);
punti = strcat(punti , punto);
%bisogna farlo così altrimenti col comando precedente non lo interpreta come un andare a capo come vorrebbe invece i l robot

end
% PVTExit

comando2=’PVTExit() ’ ;
% important note : the last command in a packet of commands must not have the terminator .
% It has to be added to the whole packet and to a l l the
% other commands individually .

% Final package

comando = char(compose(comando1 + punti + comando2));
pack = writepack(obj, ’TMSCT’ ,comando);
write(obj.connessione,pack,”string”);
pause(0.05);
answer=char(read(obj.connessione,obj.connessione.NumBytesAvailable));

end

function q = ask(obj,id)

%{
Vado a Chiedere informazioni al TM sul suo stato
connessione Indica La variabile connessione che sto usando per connettermi
al TM attraverso TCP−ip

info indica invece cosa vado a chiedere: in questo informazioni sul
robot[0] , per più info leggere il capitolo 6 del manuale Expression Editor
and Listen Node

1=Coordinate Joints da 1 a 6 in gradi[J1,J2,J3,J4,J5,J6]
2=Coordinate TCP in mm e gradi [x,y,z,rx,ry,rz]
3= Forza del TCP rispetto alla base
4= Velocità assoluta del TCP in mm/s

%}
%% callbackFcn
%I l terminator CR\LF è presente al la fine di ogni pacchetto
%La callback function dcallback viene triggerata ad ogni lettura di CR\LF
%connessione .BytesAvailableFcnMode = ’terminator ’ ;
%connessione . BytesAvailableFcn = @dcallback ;
configureTerminator(obj.connessione,”CR/LF”);
configureCallback(obj.connessione,”terminator”,@dcallback);
CallbackRunning = [] ;
d=[];

%% caso 1: Coordinate Joints
switch id

case 1

comando=’1,ListenSend(90,Robot[0].Joint) ’ ;% pacchetto da inviare al TM
pack=writepack(obj, ’TMSCT’ ,comando);%funzione che scrive i l pacchetto totale
% da writepack ricevo un array di char
write(obj.connessione,pack,”string”) %invio pacchetto ; (implicit cast)
pause(0.05);
while not(obj.connessione.UserData ~= double(”ok”))

pause(0.001);
end
%− −
%msg=d((end−29):(end−6)); %tolgo ,∗CS dalla fine e conto 24 caratteri ,
% 4 caratteri per valore sono le coordinate in single (8bit∗4=32 bit))
% k = find(d == ’ , ’ ,4 , ’ last ’) ;
% msg = d(k(3)+1:k(4)−1);
% A=double(msg); % trasformo in double i vari caratteri
% %estraggo i valori dei Ji : ogni 4 caratteri (4∗8=32bit) sono i l Valore in
%Single
%− −
A = read_message(obj,d);
%− −
% J1=single ((typecast(uint8(A(1 ,1:4)) , ’ single ’))) ;
% J2=single ((typecast(uint8(A(1 ,5:8)) , ’ single ’))) ;
% J3=single ((typecast(uint8(A(1 ,9:12)) , ’ single ’))) ;
% J4=single ((typecast(uint8(A(1 ,13:16)) , ’ single ’))) ;

66

% J5=single ((typecast(uint8(A(1 ,17:20)) , ’ single ’))) ;
% J6=single ((typecast(uint8(A(1 ,21:24)) , ’ single ’))) ;
%
% q=[J1,J2,J3, J4, J5, J6];%unisco i Ji nel vettore q
%− −
q = ConvertCoord(obj,A, ’joint ’);

%% caso 2: Coordinate Robot

case 2

comando=’1,ListenSend(90,Robot[0].CoordRobot) ’ ;% pacchetto da inviare al TM
pack=writepack(obj, ’TMSCT’ ,comando);%funzione che scrive i l pacchetto totale
write(obj.connessione,pack,”string”); %invio i l pacchetto
pause(0.05);
while not(obj.connessione.UserData ~= double(”ok”))

pause(0.001)
end
%− −
% k = find(d == ’ , ’ ,3);
% asterisk = find(d == ’∗ ’ ,1);
% A = d(k(3)+1:asterisk −2);

%msg=d((end−29):(end−6)); %tolgo ,∗CS dalla fine e conto 24 caratteri ,
% 4 caratteri per valore sono le coordinate in single (8bit∗4=32 bit))
% k = find(d == ’ , ’ ,4 , ’ last ’) ;
% msg = d(k(3)+1:k(4)−1);
% A=double(msg); % trasformo in double i vari caratteri
%estraggo i valori del le coordinate : ogni 4 caratteri (4∗8=32bit) sono i l
%Valore in Single
%− −
A = read_message(obj,d);
% x=single ((typecast(uint8(A(1 ,1:4)) , ’ single ’))) ;
% y=single ((typecast(uint8(A(1 ,5:8)) , ’ single ’))) ;
% z=single ((typecast(uint8(A(1 ,9:12)) , ’ single ’))) ;
% rx=single ((typecast(uint8(A(1 ,13:16)) , ’ single ’))) ;
% ry=single ((typecast(uint8(A(1 ,17:20)) , ’ single ’))) ;
% rz=single ((typecast(uint8(A(1 ,21:24)) , ’ single ’))) ;
%
% q=[x ,y, z , rx , ry , rz];% unisco le singole coordinate
q = ConvertCoord(obj,A, ’cartesian’);

%% caso 3: TCPForce3D
case 3

comando=’1,ListenSend(90,Robot[0].TCPForce3D) ’ ;% pacchetto da inviare al TM
pack=writepack(obj, ’TMSCT’ ,comando);%funzione che scrive i l pacchetto totale
write(obj.connessione,pack,”string”)%invio i l pacchetto
pause(0.05);
while not(obj.connessione.UserData ~= double(”ok”))

pause(0.001)
end

% msg=d((end−9):(end−6)); %tolgo ,∗CS dalla fine e conto 4 caratteri ,
% % 4 caratteri per valore sono le coordinate in single (8bit∗4=32 bit))
% A=double(msg); % trasformo in double i vari caratteri
A = read_message(obj,d);
F=single((typecast(uint8(A(1,1:4)), ’single ’)));%da double a Single
q= F;

%% caso 4: TCPSpeed3D
case 4

comando=’1,ListenSend(90,Robot[0].TCPSpeed3D) ’ ;% pacchetto da inviare al TM
pack=writepack(obj, ’TMSCT’ ,comando);%funzione che scrive i l pacchetto totale
write(obj.connessione,pack,”string”);%invio i l pacchetto
pause(0.05);
while not(obj.connessione.UserData ~= double(”ok”))

pause(0.001)

end

% msg=d((end−9):(end−6)); %tolgo ,∗CS dalla fine e conto 4 caratteri ,
% % 4 caratteri per valore sono le coordinate in single (8bit∗4=32 bit))
% A=double(msg); % trasformo in double i vari caratteri
A = read_message(obj,d);
S=single((typecast(uint8(A(1,1:4)), ’single ’)));%da double a Single
q=S;

67

end

function dcallback(connessione,event)

if isempty(CallbackRunning)

CallbackRunning = true;
pause(0.05);
data=char(read(obj.connessione,obj.connessione.NumBytesAvailable));
pause(0.05);

datad = double(data);
% ind = find(datad == 13, 1, ’ f irst ’) ;
% pause(0.05);
%d = data(1:ind−5);

msg = char(data);
ind = find(data == ’ , ’ ,3, ’ first ’);
%estraggo informazione uti le
d = msg(ind(3)+1:end);

% qui elimino l ’ ultimo separatore e i l checksum
% dal messaggio
obj.connessione.UserData = double(”ok”);
okay = data(ind:end);
CallbackRunning = false ;

else

obj.connessione.UserData = double(”ok”);

end

end

end

function answer = Move_Line(obj,txt,coord,vel,Ta,racc,PrecPos)
% function answer = Move_Line(connessione,25,500,10, false)
% function answer = Move_Line([−50,0,0,0,0,0] ,25,500,10, false)
%% movimento relativo Line
%Effettuo i l movimento RELATIVO Line dal punto attuale a quello di arrivo .
%per info guardare i l manuale Expression−Editor−and−Listen−Node del TM.
%{

id,Move_Line(1,2,3,4,5,6)
0: nome connessione
1: una string che definisce il formato: 3 lettere

1: Motion target format:
”C”: expressed w.r.t current base coordinate””
T: expressed w.r.t. tool coordinate

2: Speed format:””
P expressed as a percentage
”A” expressed in velocity (mm/s)

3: Blending format””
P expressed as a percentage
”R” expressed as radius

2: coordinate cartesiane relative alla base: x,y,x in mm e Rx Ry Rz
coordinate relative al tool (single type strictly needed!!)

3: velocità in % o in mm/s
4: tempo per accelerare a vmax (Ta) in ms
5: unione traiettorie (in %) o in raggio (mm)
6: Disable precise positioning (boolean)

1:true
Disable precise positioning

2:false
Enable precise positioning

%}
%esprimo le coordinate contenute in ’coord ’ come string e le salvo nella
%stringa ’coo’
coord = compose(”%.4 f ”, coord);
%The TM flow command str ic t ly needs floating point numbers; i f inserting a
%vector of intgers the command wil l not be executed from robot
coo=strcat(’{’ ,string(coord(1)), ’ , ’ ,string(coord(2)), ’ , ’ ,string(coord(3)), ’ , ’ ,string(coord(4)), ’ , ’ ,string(coord(5)), ’ , ’ ,string(coord(6)), ’}’);

% scrivo i l comando, deve risultare in char . La funzione strcat () richiede
% String o Char, per questo trasformo tutto in String
comando=char(strcat(’1,Move_Line(”’ ,txt, ’”, ’ ,char(coo), ’ , ’ ,string(vel), ’ , ’ ,string(Ta), ’ , ’ ,string(racc), ’ , ’ ,string(PrecPos), ’) ’));

68

%esempio
%comando=’1,Move_Line(”CPP”,{−50,0,0,0,0,0},25,500,10, false) ’;
pack=writepack(obj, ’TMSCT’ ,comando);

write(obj.connessione,pack,”string”);
pause(0.05);
answer=char(read(obj.connessione,obj.connessione.NumBytesAvailable));

end

function answer=Move_PLine(obj,txt,coord,vel,Ta,racc)

% movimento Move_Pline
%{
%Effettuo i l movimento RELATIVO PLine dal punto attuale a quello di arrivo .
%per info guardare i l manuale Expression−Editor−and−Listen−Node del TM.

id,Move_PLine(1,2,3,4,5,6)

0:nome connessione
1: una string che definisce il formato: 3 lettere

1: Motion target format:
”C”: expressed w.r.t current base coordinate””
T: expressed w.r.t. tool coordinate””
J: expressed in joint angles

2: Speed format:

! anche se uso P mi da ok ma non si muove ? mode not present in the manual
”A” expressed in velocity (mm/s)

3: Blending format””
P expressed as a percentage

! anche se uso R mi da ok ma non si muove ? mode not present in the
manual
motion command parameter includes: ”CAP”, ”TAP”, ”JAP”

2: coordinate cartesiane relative alla base: x,y,x in mm e Rx Ry Rz
coordinate relative al tool

3: velocità in % o in mm/s
4: tempo per accelerare a vmax (Ta) in ms
5: unione traiettorie (in %) o in raggio (mm)

%}

coord = compose(”%.4 f ”, coord);
%The TM flow command str ic t ly needs floating point numbers; i f inserting a
%vector of intgers the command wil l not be executed from robot

%esprimo le coordinate contenute in ’coord ’ come string e le salvo nella
%stringa ’coo’
coo=strcat(’{’ ,string(coord(1)), ’ , ’ ,string(coord(2)), ’ , ’ ,string(coord(3)), ’ , ’ ,string(coord(4)), ’ , ’ ,string(coord(5)), ’ , ’ ,string(coord(6)), ’}’);

% scrivo i l comando, deve risultare in char . La funzione strcat () richiede
% String o Char, per questo trasformo tutto in String
comando=char(strcat(’1,Move_PLine(”’ ,txt, ’”, ’ ,char(coo), ’ , ’ ,string(vel), ’ , ’ ,string(Ta), ’ , ’ ,string(racc), ’) ’));

%Esempio Comando
%comando=’1,Move_PLine(”TAP”,{00,0,40,0,0,0},100,100,0)’;

pack=writepack(obj, ’TMSCT’ ,comando);

write(obj.connessione,pack,”string”);
pause(0.05);
answer=char(read(obj.connessione,obj.connessione.NumBytesAvailable));

end

function answer = Move_PTP(obj,txt,coord,vel,Ta,racc,PrecPos)
% move_PTP point 2 point
%Effettuo i l movimento RELATIVO Point 2 Point dal punto attuale a quello di arrivo .
%per info guardare i l manuale Expression−Editor−and−Listen−Node del TM.

%{
id,PTP(1,2,3,4,5,6)
0:nome connessione
1: una string che definisce il formato: 3 lettere

1: Motion target format:””
C: expressed w.r.t. current base
”T”: expressed w.r.t. tool coordinate
”J”: expressed in joint angles note: it is intended as displacement
of joints NOT reach this set of angles!!

2: Speed format:””

69

P expressed as a percentage
3: Blending format””
P expressed as a percentage

2: coordinate, di giunto in ordine J 1−2−3−4−5−6 in gradi
oppure cartesiane assolute: x,y,x in mm e Rx Ry Rz

3: velocità in %
le velocità scalano con quella che è la % di Progetto Listen
4: tempo per accelerare a vmax (Ta) in ms
5: unione traiettorie (in %)
6: Disable precise positioning (boolean)

1:true
Disable precise positioning

2:false
Enable precise positioning

7: conf: se uso coordinate Cartesiane specifico la config del robot
in un vettore {0−1,2−3,4−5} ???

0:Braccio destro
1 Braccio Sinistro

2: Gomito Alto
3: Gomito Basso

4: polso NON flippato
5: polso Flippato

%}
%esempio
coord = compose(”%.3 f ”, coord);
%The TM flow command str ic t ly needs floating point numbers; i f inserting a
%vector of intgers the command wil l not be executed from robot

%solo
%esprimo le coordinate contenute in ’coord ’ come string e le salvo nella
%stringa ’coo’
coo=strcat(’{’ ,string(coord(1)), ’ , ’ ,string(coord(2)), ’ , ’ ,string(coord(3)), ’ , ’ ,string(coord(4)), ’ , ’ ,string(coord(5)), ’ , ’ ,string(coord(6)), ’}’);

% scrivo i l comando, deve risultare in char . La funzione strcat () richiede
% String o Char, per questo trasformo tutto in String
comando=char(strcat(’1,Move_PTP(”’ ,txt, ’”, ’ ,char(coo), ’ , ’ ,string(vel), ’ , ’ ,string(Ta), ’ , ’ ,string(racc), ’ , ’ ,string(PrecPos), ’) ’));

pack=writepack(obj, ’TMSCT’ ,comando);

write(obj.connessione,pack,”string”);
pause(0.05);
answer=char(read(obj.connessione,obj.connessione.NumBytesAvailable));

end

function answer=PLine(obj,txt,coord,vel,Ta,racc)
% movimento Pline
%{

Effettuo il movimento PLine dal punto attuale a quello di arrivo.
per info guardare il manuale Expression−Editor−and−Listen−Node del TM.

id,PLine(0,1,2,3,4,5)
0:nome della connessione
1: una string che definisce il formato: 3 lettere

1: Motion target format:””
J: expressed in joint angles””
C expressed in Cartesian coordinate

2: Speed format:””
A: expressed in velocity (mm/s)

”A” expressed in velocity (mm/s)
3: Blending format””
P expressed as a percentage

2: coordinate cartesiane assolute: x,y,x in mm e Rx Ry Rz
oppure in gradi di J 1−2−3−4−5−6

3: velocità in mm/s
4: tempo per accelerare a vmax (Ta) in ms
5: unione traiettorie (in %)

%}
%esempio
coord = compose(”%.4 f ”, coord);

70

%esprimo le coordinate contenute in ’coord ’ come string e le salvo nella
%stringa ’coo’
coo=strcat(’{’ ,string(coord(1)), ’ , ’ ,string(coord(2)), ’ , ’ ,string(coord(3)), ’ , ’ ,string(coord(4)), ’ , ’ ,string(coord(5)), ’ , ’ ,string(coord(6)), ’}’);

% scrivo i l comando, deve risultare in char . La funzione strcat () richiede
% String o Char, per questo trasformo tutto in String
comando=char(strcat(’1,PLine(”’ ,txt, ’”, ’ ,char(coo), ’ , ’ ,string(vel), ’ , ’ ,string(Ta), ’ , ’ ,string(racc), ’) ’));

%esempi
%comando=’1,PLine(”JAP” ,{0 ,0 ,0 ,0 ,0 ,0} ,5 ,500 ,0) ’;
%comando=’1,PLine(”CAP”,{500,350,500,180,0,180},25,500,0)’;

pack=writepack(obj, ’TMSCT’ ,comando);

write(obj.connessione,pack,”string”);
pause(0.05);
answer=char(read(obj.connessione,obj.connessione.NumBytesAvailable));

end

function answer=Line(obj,txt,coord,speed,Ta,racc,PrecPos)
% movimento line
%{

Effettuo il movimento Line dal punto attuale a quello di arrivo.
per info guardare il manuale Expression−Editor−and−Listen−Node del TM.

id,Line(0,1,2,3,4,5,6)
0:nome connessione
1: una string che definisce il formato: 3 lettere

1: Motion target format:””
C expressed in Cartesian coordinate

2: Speed format:””
P expressed as a percentage
”A” expressed in velocity (mm/s)

le velocità scalano con quella che è la % di Progetto Listen
3: Blending format””
P expressed as a percentage
”R” expressed as radius

2: coordinate cartesiane assolute: x,y,x in mm e Rx Ry Rz
3: velocità in % o in mm/s
4: tempo per accelerare a vmax (Ta) in ms
5: unione traiettorie (in %) o in raggio (mm)
6: Disable precise positioning (boolean)

1:true
Disable precise positioning

2:false
Enable precise positioning

%}
coord = compose(”%.4 f ”, coord);
%esprimo le coordinate contenute in ’coord ’ come string e le salvo nella
%stringa ’coo’
coo=strcat(’{’ ,string(coord(1)), ’ , ’ ,string(coord(2)), ’ , ’ ,string(coord(3)), ’ , ’ ,string(coord(4)), ’ , ’ ,string(coord(5)), ’ , ’ ,string(coord(6)), ’}’);

% scrivo i l comando, deve risultare in char . La funzione strcat () richiede
% String o Char, per questo trasformo tutto in String
comando=char(strcat(’1,Line(”’ ,txt, ’”, ’ ,char(coo), ’ , ’ ,string(speed), ’ , ’ ,string(Ta), ’ , ’ ,string(racc), ’ , ’ ,string(PrecPos), ’) ’));

%esempio comando
%comando=’1,Line(”CAR”,{400,400,400,180,0,180},10,100,10, false) ’;

pack=writepack(obj, ’TMSCT’ ,comando);

write(obj.connessione,pack,”string”);
pause(0.05);
answer=char(read(obj.connessione,obj.connessione.NumBytesAvailable));

end

function I=ReadIO(obj,fonte,tipo,id)
%la funzione di ReadIO restituisce i l valore richiesto con
%i l comando che viene messo in l i s ta d’ attesa al l ’ interno del robot .

%esempio
%comando=’1,IO[”ControlBox”].DO[1] ’ ;

%connessione è i l nome della connessione
%fonte degli output , di base posso scegliere tra ”ControlBox” oppure
%”EndModule”
%tipo è DI / AI, se provo a leggere un input dovrebbe darmi errore

71

% id è i l numero di input , per i digi ta l 0−15 per g l i analog da 0 a 6
%

% scrivo i l comando, deve risultare in char . La funzione strcat () richiede
% String o Char, per questo trasformo tutto in String
comando=char(strcat(’1,ListenSend(90,IO[” ’ ,string(fonte), ’ ”]. ’ ,string(tipo), ’ [’ ,string(id), ’]) ’));
pack=writepack(obj, ’TMSCT’ ,comando);
write(obj.connessione,pack,”string”);

pause(0.05);
d=char(read(obj.connessione,obj.connessione.NumBytesAvailable));% Pacchetto contenente i l valore di output
pause(0.05);

switch tipo
case ”DI”

ind = strfind(d, ’$’);
if length(ind)<2

ind2 = strfind(d, ’TA’);
if length(ind2)>0

d=d;
else

print(”Reinviare il messaggio”)
end

else
d = d(1:ind(2)−1);

end

msg=d(13:end−6); %tolgo ,∗CS dalla fine e conto 4 caratteri ,
% 4 caratteri per valore sono le info in single (8bit∗4=32 bit))
A=double(msg); % trasformo in double i vari caratteri
I=single(uint8(A(1)));

case ”DO”
ind = strfind(d, ’$’);
if length(ind)<2

ind2 = strfind(d, ’TA’);
if length(ind2)>0

d=d;
else

print(”Reinviare il messaggio”)
end

else
d = d(1:ind(2)−1);

end

msg=d(13:end−6); %tolgo ,∗CS dalla fine e conto 4 caratteri ,
% 4 caratteri per valore sono le info in single (8bit∗4=32 bit))
A=double(msg); % trasformo in double i vari caratteri
I=single(uint8(A(1)));

case ”AI”
ind = strfind(d, ’$’);
if length(ind)<2

ind2 = strfind(d, ’TA’);
if length(ind2)>0

d=d;
else

print(”Reinviare il messaggio”)
end

else
d = d(1:ind(2)−1);

end

msg=d(13:end−6); %tolgo ,∗CS dalla fine e conto 4 caratteri ,
% 4 caratteri per valore sono le info in single (8bit∗4=32 bit))
A=double(msg); % trasformo in double i vari caratteri
I=single((typecast(uint8(A), ’single ’)));

case ”AO”
ind = strfind(d, ’$’);
if length(ind)<2

ind2 = strfind(d, ’TA’);
if length(ind2)>0

d=d;
else

print(”Reinviare il messaggio”)
end

else
d = d(1:ind(2)−1);

end

msg=d(13:end−6); %tolgo ,∗CS dalla fine e conto 4 caratteri ,
% 4 caratteri per valore sono le info in single (8bit∗4=32 bit))

72

A=double(msg); % trasformo in double i vari caratteri
I=single((typecast(uint8(A), ’single ’)));

end

end

function answer=WriteIO(obj,fonte,tipo,id,valore)
%la funzione di IstantReadIO scrive SUBITO i l valore richiesto senza
%che i l comando sia messo in l i s ta d’ attesa al l ’ interno del robot .

%esempio comando
%comando=’1,IO[”ControlBox”].DO[1]=1’;

%connessione è i l nome della connessione
%fonte degli output , di base posso scegliere tra ”ControlBox” oppure
%”EndModule”
%tipo è DO / AO, se provo a scrivere un input dovrebbe darmi errore
% id è i l numero di input , per i digi ta l 0−15 per g l i analog da 0 a 6
%

% scrivo i l comando, deve risultare in char . La funzione strcat () richiede
% String o Char, per questo trasformo tutto in String

switch tipo
case ”AI”

answer = fprintf(”Cannot write on input channel. \n”);
return

case ”DI”
answer = fprintf(”Cannot write on input channel. \n”);
return

otherwise
comando=char(strcat(’1,IO[” ’ ,string(fonte), ’ ”].Instant’ ,string(tipo), ’ [’ ,string(id), ’]=’ ,string(valore)));
pack=writepack(obj, ’TMSCT’ ,comando);
write(obj.connessione,pack);
pause(0.05);
answer=char(read(obj.connessione,obj.connessione.NumBytesAvailable));% Pacchetto contenente i l valore di output

end
end

function I=InstantReadIO(obj,fonte,tipo, id)
% Descrizione
%la funzione di IstantReadIO restituisce SUBITO i l valore richiesto senza
%che i l comando sia messo in l i s ta d’ attesa al l ’ interno del robot .

%esempio di comando che devo comporre
%comando=’1,IO[”ControlBox”].DO[1] ’ ;

% INPUT
%connessione è i l nome della connessione
%fonte degli output , di base posso scegliere tra ”ControlBox” oppure
%”EndModule”
%tipo è DI / AI, se provo a leggere un input dovrebbe darmi errore
% id è i l numero di input , per i digi ta l 0−15 per g l i analog da 0 a 6

% scrivo i l comando, deve risultare in char . La funzione strcat () richiede
% String o Char, per questo trasformo tutto in String
comando=char(strcat(’1,ListenSend(90,IO[” ’ ,string(fonte), ’ ”].Instant’ ,string(tipo), ’ [’ ,string(id), ’]) ’));
pack=writepack(obj, ’TMSCT’ ,comando);
write(obj.connessione,pack,”string”);

pause(0.05);
d=read(obj.connessione,obj.connessione.NumBytesAvailable);% Pacchetto contenente i l valore di output
d = char(d);
pause(0.05);

switch tipo
case ”DI”

ind = strfind(d, ’$’);
if length(ind)<2

ind2 = strfind(d, ’TA’);
if length(ind2)>0

d=d;
else

print(”Reinviare il messaggio”)
end

else
d = d(1:ind(2)−1);

end

msg=d(13:end−6); %tolgo ,∗CS dalla fine e conto 4 caratteri ,
% 4 caratteri per valore sono le info in single (8bit∗4=32 bit))

73

A=double(msg); % trasformo in double i vari caratteri
I=single(uint8(A(1)));

case ”DO”
ind = strfind(d, ’$’);
if length(ind)<2

ind2 = strfind(d, ’TA’);
if length(ind2)>0

d=d;
else

print(”Reinviare il messaggio”)
end

else
d = d(1:ind(2)−1);

end
%pause(0.05)
msg=d(13:end−6); %tolgo ,∗CS dalla fine e conto 4 caratteri ,
% 4 caratteri per valore sono le info in single (8bit∗4=32 bit))
A=double(msg); % trasformo in double i vari caratteri
I=single(uint8(A(1)));

case ”AI”
ind = strfind(d, ’$’);
if length(ind)<2

ind2 = strfind(d, ’TA’);
if length(ind2)>0

d=d;
else

print(”Reinviare il messaggio”)
end

else
d = d(1:ind(2)−1);

end

msg=d(13:end−6); %tolgo ,∗CS dalla fine e conto 4 caratteri ,
% 4 caratteri per valore sono le info in single (8bit∗4=32 bit))
A=double(msg); % trasformo in double i vari caratteri
I=single((typecast(uint8(A), ’single ’)));

case ”AO”
ind = strfind(d, ’$’);
if length(ind)<2

ind2 = strfind(d, ’TA’);
if length(ind2)>0

d=d;
else

print(”Reinviare il messaggio”)
end

else
d = d(1:ind(2)−1);

end

msg=d(13:end−6); %tolgo ,∗CS dalla fine e conto 4 caratteri ,
% 4 caratteri per valore sono le info in single (8bit∗4=32 bit))
A=double(msg); % trasformo in double i vari caratteri
I=single((typecast(uint8(A), ’single ’)));

end
end

function answer=InstantWriteIO(obj,fonte,tipo,id,valore)
%la funzione di IstantReadIO scrive SUBITO i l valore richiesto senza
%che i l comando sia messo in l i s ta d’ attesa al l ’ interno del robot .

%esempio comando
%comando=’1,IO[”ControlBox”].DO[1]=1’;

%connessione è i l nome della connessione
%fonte degli output , di base posso scegliere tra ”ControlBox” oppure
%”EndModule”
%tipo è DO / AO, se provo a leggere un input dovrebbe darmi errore
% id è i l numero di input , per i digi ta l 0−15 per g l i analog da 0 a 6
%

% scrivo i l comando, deve risultare in char . La funzione strcat () richiede
% String o Char, per questo trasformo tutto in String
switch tipo

case ”AI”
answer = fprintf(”Cannot write on input channel. \n”);
return

case ”DI”
answer = fprintf(”Cannot write on input channel. \n”);
return

otherwise
comando=char(strcat(’1,IO[” ’ ,string(fonte), ’ ”].Instant’ ,string(tipo), ’ [’ ,string(id), ’]=’ ,string(valore)));

74

pack=writepack(obj, ’TMSCT’ ,comando);
write(obj.connessione,pack);
pause(0.05);
answer=char(read(obj.connessione,obj.connessione.NumBytesAvailable));% Pacchetto contenente i l valore di output

end
end

function A = read_message(obj,msg)

% trovo le prime tre virgole che sono sempre presenti e so che dopo di
% quella fino al la fine del messaggio (per come arriva i l messaggio
% dalla callback di ask) trovo l ’ informazione uti le
msg = char(msg);
%k = find(msg == ’ , ’ ,3 , ’ f irst ’) ;
%prima mi assicuro che non ci sia i l messaggio di ok
numdoll = find(msg == ’$’);
if length(numdoll) == 0 || length(numdoll) == 1

ast = find(msg == ’∗’);
if length(ast) == 1

d = msg(1:ast−2);
else

aste = length(ast);
d = msg(1:ast(1,aste−1)−2);

end
else

ast = find(msg == ’∗’);
if length(ast) == 1

d = msg(1:ast−2);
else

aste = length(ast);
%l ’ ultimo dollaro sarà quello del pacchetto ok
%WIP
msg = msg(1:numdoll(1,length(numdoll)));
d = msg(1:ast(1,aste−1)−2);

end
end
%estraggo informazione uti le

%converto messaggio in double e lo restituisco
A = double(d);

end

function q = ConvertCoord(obj,A,type)

switch type
case ”joint”

J1=single((typecast(uint8(A(1,1:4)), ’single ’)));
J2=single((typecast(uint8(A(1,5:8)), ’single ’)));
J3=single((typecast(uint8(A(1,9:12)), ’single ’)));
J4=single((typecast(uint8(A(1,13:16)), ’single ’)));
J5=single((typecast(uint8(A(1,17:20)), ’single ’)));
J6=single((typecast(uint8(A(1,21:24)), ’single ’)));

q=[J1,J2,J3, J4, J5, J6];

case ”cartesian”

x=single((typecast(uint8(A(1,1:4)), ’single ’)));
y=single((typecast(uint8(A(1,5:8)), ’single ’)));
z=single((typecast(uint8(A(1,9:12)), ’single ’)));
rx=single((typecast(uint8(A(1,13:16)), ’single ’)));
ry=single((typecast(uint8(A(1,17:20)), ’single ’)));
rz=single((typecast(uint8(A(1,21:24)), ’single ’)));

q = [x,y,z, rx, ry, rz];

end

end

end
methods (Static)

answer = FT(connessione,id)
answer = SendVariables(connessione,variables)

end
end

75

A.4 Code: Matlab script

clear all
close all
clc

%% −− Offline points and Transformation matrices
chess_origin = [102, −475, 0, 179, 0, 0]; % I put chessboard on the table
camera1origin = [38, −304, 400, 179, 0, 0]; %l e f t frame
camera2origin = [−43, −304, 400, 179, 0, 0]; %right frame

% ALL these coordinates are w. r . t . ROBOT FRAME and are the FLANGE POSITIONS
Ty = trans.Y(180);

%−− From world to robot frame
TWR= [1, 0, 0, chess_origin(1); 0, 1, 0, chess_origin(2); 0, 0, 1, chess_origin(3); 0, 0, 0, 1];
TWR= Ty∗TWR;

Lty=0.079∗1000; %orizzontale (y)
Ltz=0.0522∗1000; %verticale (z)
%−− From Camera to robot flange offset
TCaF=trans.Cardano(0,Lty,Ltz,0,0,0);

%% −− Focal length evaluation
work_dist = 300;
% FOV at 300 mm of working distance
horiz_FOV = 281.6;
vert_FOV = 211.2;

img_wid = 2592; %image width in pixel
img_h = 1944;%image height in pixel

% singular pixel size
px_size_w = abs(tan(horiz_FOV/2)∗work_dist/img_wid);
px_size_h = abs(tan(vert_FOV/2)∗work_dist/img_h);

hor_asp = horiz_FOV/vert_FOV;
vert_asp = vert_FOV/horiz_FOV;

megpx = 5.00∗1e6;
a = hor_asp∗megpx;
b = vert_asp∗megpx;

rad2deg = 180/pi;
deg2rad = pi/180;

res_h = sqrt(a); %resolution of camera
res_v = sqrt(b);

%sensor size
sens_h = px_size_w∗res_h; % h for horizontal
sens_v = px_size_h∗res_v;

WD= 300;
AFOV= 2∗rad2deg∗atan(horiz_FOV/(2∗WD)); %result is in radians !

%FOCAL LENGTH
%f = fxS ∗ sens_h/img_wid
f = sens_h/(2∗(rad2deg∗tan((deg2rad∗AFOV))/2))

%% −− Reading Stereo Calibration info
%−− Reading Camera Matrices from data (comes from calibration on python)
fid = readtable(’C:\Users\bianc\TMvision_TmHttp_server_sample_code\python_example\StereoMatrices.txt’ , ’ReadRowNames’ ,true);
% from camera to Image plane
K = [f , 0, 0, 0;

0, f , 0, 0;
0, 0, 1, 0];

% from image plane to pixel
K_intr_S = [fid(1,1).Variables, 0, fid(3,1).Variables;

0, fid(2,1).Variables, fid(4,1).Variables;
0, 0, 1];

K_intr_D = [fid(1,2).Variables, 0, fid(3,2).Variables;
0, fid(2,2).Variables, fid(4,2).Variables;
0, 0, 1];

%−− Intrinsic matrices
KS = K_intr_S∗K;
KD= K_intr_D∗K;

%% −− json info

76

% Now I have to use the info in the json in order to identify the pixels
% that correspond to the object border and pick the corresponding 3D
% coordinates in the worldPoints object
json_storagedx = ”C:\Users\bianc\TMvision_TmHttp_server_sample_code\python_example\jsondx.txt”;
json_storagesx = ”C:\Users\bianc\TMvision_TmHttp_server_sample_code\python_example\jsonsx.txt”;

jsontabledx = readtable(json_storagedx, ’VariableNamingRule’ , ’preserve’);
jsontablesx = readtable(json_storagesx, ’VariableNamingRule’ , ’preserve’);

c_DX = [jsontabledx(1,2).Variables,jsontabledx(2,2).Variables,1];
c_SX = [jsontablesx(1,2).Variables,jsontablesx(2,2).Variables,1];

rot_DX = jsontabledx(5,2).Variables;
rot_SX = jsontablesx(5,2).Variables;

%−− Clearing text f i l e s
fopen(json_storagedx, ’w’);
fopen(json_storagesx, ’w’);

%% −− Evaluating depth
baseline = 81; % [mm]
%alpha = 1;%1 to use extra FOV near images edge , less than 1 and greater than 0 otherwise
fxD=K_intr_D(1,1);
fxS=K_intr_S(1,1);
S_x = c_SX(1,1);
D_x = c_DX(1,1);
disp = S_x−D_x;
z_S = abs(baseline∗fxS)/disp;
z_D = abs(baseline∗fxD)/disp;
z = abs((z_D+z_S)/2)

%% −− Building 3D coordinate of interest and pick up routine
% note : rotation on z axis given by json info about rotation !
%from pixel to image
desired_DX_t = inv(K_intr_D(1:3,1:3))∗c_DX’;
desired_SX_t = inv(K_intr_S(1:3,1:3))∗c_SX’;

%from image plane of each camera to image plane of object
zp = baseline/(abs(desired_SX_t(1,1))/f+abs(desired_DX_t(1,1))/f);
x = 0.5∗zp∗(desired_SX_t(1,1)/f−desired_DX_t(1,1)/f);
y = zp∗desired_SX_t(2,1)/f ;

desired_implane = [x;y;z]
%coordinates of point in world coordinates

des2= TCaF∗TWR∗[desired_implane;1]; % ok so this worked

% TcWR is from world to robot coordinate
% desired_implane is in world coordinate
% and then the physical offset of the distance between flange and camera is
% added

des2(3,1)=camera1origin(1,3)

%% −− Averaging rotation
if rot_DX<0 && rot_SX<0

rot_ =−mean([abs(rot_DX),abs(rot_SX)])
else

rot_ = mean([rot_DX,rot_SX])
end

%−− Keeping relative rotation in between 0 and 90 degrees
if rot_>= 90

rot = rot_ −180
elseif rot_<= −90

rot = rot_ + 180
else

rot = rot_
end

%−− Calcolo altezza
base_pinza = 60;
grip_height = 56; %[mm]
half_finger_height = 20; %[mm]
flange_to_camera_height = 48.6; % [mm]
% epsilon = abs(grip_height+half_finger_height−flange_to_camera_height);
epsilon = abs(grip_height+half_finger_height−flange_to_camera_height);
altezza = des2(3,1) − z + epsilon

%% Robot pick up routine
% %−− Connect Robot−−−

77

src =TM(’10.10.10.160’,5890);
% % −− Move above the evaluated 3D pose −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PLine(src, ’CAP’ ,[des2(1),des2(2),des2(3),179,0,0],200,100,100);
%−− Rotate gripper above the object
Move_PLine(src, ’CAP’ ,[0,0,0,0,0,rot],200,100,100);

% %−− Open gripper −−−
% % high == chiuso 1
% % low == aperto 0

Read = InstantReadIO(src, ’ControlBox’ , ’DO’ ,0);
pause(0.05)
if Read == 1

WriteIO(src, ’ControlBox’ , ’DO’ ,0,0);
end
pause(0.05)

% %−− Descend
PLine(src, ’CAP’ ,[des2(1),des2(2),altezza,179,0,rot],200,100,100);

% %−− Close gripper
pause(1)
WriteIO(src, ’ControlBox’ , ’DO’ ,0,1);

% %−− Move away
Move_PLine(src, ’CAP’ ,[0,0,des2(3),0,0,0],200,100,100);
pause(5)

% %−− Go to cardboard box
PLine(src, ’CAP’,[243.44, −105.93, 400, −179,0,90],200,100,100);
pause(5)

% %−− Descend to box
PLine(src, ’CAP’,[243.44, −105.93, 230, −179,0,90],200,100,100);
pause(5)

% %−− Let go of object
WriteIO(src, ’ControlBox’ , ’DO’ ,0,0);
pause(2)

% %−− Move upwards
PLine(src, ’CAP’,[243.44, −105.93, 400, −179,0,90],200,100,100);
% pause(5)

% %−− Disconnect Robot
pause(10)
disconnect(src);

78

Appendix B

Hardware Specification

B.1 TM5-700 Hardware specification

Figure B.1: Datasheet of TM5-700

79

Figure B.2: Datasheet of TM5-700

80

B.2 Gripper specification

Figure B.3: Gripper specifications

81

82

References

[1] J. Shaw and K. Y. Cheng, “Object identification and 3-d position calculation using eye-in-
hand single camera for robot gripper,” in 2016 IEEE International Conference on Industrial
Technology (ICIT), 2016, pp. 1622–1625.

[2] A. Cherubini and D. Navarro-Alarcon, “Sensor-based control for collaborative robots: Funda-
mentals, challenges, and opportunities,” Frontiers in Neurorobotics, vol. 14, 2021.

[3] Doxygen. “Understanding features.” (), [Online]. Available: https://docs.opencv.org/3.
4/df/d54/tutorial_py_features_meaning.html. (accessed: 30/09/23).

[4] N. Gregory Hollows. “Understanding focal length and field of view.” (), [Online]. Available:
https://www.edmundoptics.com/knowledge-center/application-notes/imaging/
understanding-focal-length-and-field-of-view/.

[5] Doxygen. “Camera calibration and 3d reconstruction.” (), [Online]. Available: https://docs.
opencv.org/4.x/d9/d0c/group__calib3d.html#ga93efa9b0aa890de240ca32b11253dd4a.
(accessed: 30/09/23).

83

https://docs.opencv.org/3.4/df/d54/tutorial_py_features_meaning.html
https://docs.opencv.org/3.4/df/d54/tutorial_py_features_meaning.html
https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-focal-length-and-field-of-view/
https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-focal-length-and-field-of-view/
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga93efa9b0aa890de240ca32b11253dd4a
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga93efa9b0aa890de240ca32b11253dd4a

84

Acknowledgments

I want to thank the Supervisor who gave me the opportunity for this thesis which was an occasion
to learn new skills and apply what I learned through the years.

I also want to thank Riccardo whose valuable tips and suggestions helped a lot in developing
this thesis.

I want to properly thank my parents who always cheered on me and believed in me, even when
I did not give myself enough credit.

I want to thank my boyfriend who stayed by my side during the majority of the university
career and who helped me believe in myself. Thank you for being the sunlight ray that you are,
and for making everything fun.

I want to thank all the girls from the second floor of the ”Collegio Sorelle della Misericordia”
with whom I shared many joyful days and made many exam sessions much lighter. I will very
much miss you all everyday of my life.

85

	Abstract
	List of figures
	List of tables
	Introduction
	Visually guided pick up problem
	Thesis overview

	Theoretical background
	Frames used and their transformation matrices
	Intrinsic matrix
	Extrinsic matrix

	Object Recognition algorithm
	Features, keypoints and descriptors
	ORB

	Depth estimation
	Focal length approximation
	Depth estimation

	Description of framework components and setup
	TMFlow setup
	Network Node
	Listen Node
	Vision Node

	HTTP server
	Stereo calibration
	Server structure

	Matlab Interface
	Communication protocol
	TM class

	Final Experiment
	Techman TM5-700
	Manipulator specifications
	Gripper Notes

	Integrating the framework's components
	Flowchart of the whole process
	Depth estimation

	Conclusion
	Full Codes
	Code: Stereo Calibration
	Code: HTTP Server
	Code: Matlab Class
	Code: Matlab script

	Hardware Specification
	TM5-700 Hardware specification
	Gripper specification

	References
	Acknowledgments

