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ABSTRACT 

In the recent years, the inadequacies of the traditional seismic design concept and design 

method attract more and more attention because of their possibilities to induce enormous 

casualties and property losses. Therefore, a problem has been raised about how to guarantee 

the quality of the building structures to resist collapse due to earthquake. Considering that the 

earthquake can be described as a process that uncertainties (structure and earthquake) are 

introduced to couple with non-linear variables, this paper is mainly to employ IDA method to 

analyze the earthquake uncertainties. After discussing the seismic vulnerability on 2D frame 

structure, this paper intends to study the impact of three factors (the longitudinal 

reinforcement strength, the concrete strength, and the aspect ratio of cross-section column) 

on the seismic performance of RC frame structure, especially against the influence of the 

collapse. 

First, Incremental Dynamic Analysis (IDA) – based seismic fragility curves analysis are 

introduced. 10 ground motion records with Sa(T1,5%) as the indicator for seismic action and 

θmax as the indicator for structural damages are selected. When dealing with the threshold, not 

only the simple and convenient DM rules, but also IDA method which is eligible for collapse 

critical point judgment are adopted. So a reasonable set of critical points of various levels 

can be achieved. Second, the finite element modeling method on OpenSEES-based RC plane 

frame construction is analyzed and 6-storey RC 2D frame structure is chosen for study. 

From the results, RC frame structure which are in strict accordance with current Italian code 

(NTC 2008) aspect ratio of cross-section column influence on seismic resistance is 

ambiguous on the premise of a similar axial compression ratio, elevation of concrete strength 

levels is tantamount to that of seismic resistance. With the increase in the beam-column 

longitudinal reinforcement strength, there is a higher possibility to reach IO and LS state for 

the structure with B 450C steel than FeB38k and FeB32k under the same seismic intensity. 

However, when it is about to collapse, the structure with B 450C steel shows better 

resistance ability than the other two. This research provides theoretical reference to evaluate 

the longitudinal reinforcement strength, Concrete strength, Aspect ratio of cross-section 

column on construction seismic resistance on a quantitative basis, as well as a quantitative 

reference to performance-based design of RC frame structures. 
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Chapter 1 INTRODUCTION 

1.1 SICHUAN EARTHQUAKE 

        The 2008 Sichuan Earthquake or the Great Sichuan Earthquake, measured at 8.0 Ms and 

7.9 Mw, and occurred at 02:28:01 p.m. China Standard Time at epicenter on Monday, May 12 

in Sichuan province, killed 69,195 people and left 18,392 missing. 

It is also known as the Wenchuan earthquake (Chinese: 汶川大地震; pinyin: Wènchuān 

dà dìzhèn), after the location of the earthquake's epicenter, Wenchuan County, Sichuan. The 

epicenter was 80 kilometers  west-northwest of Chengdu, the provincial capital, with a focal 

depth of 19 km. The earthquake was also felt in nearby countries and as far away as both 

Beijing and Shanghai—1,500 km. and 1,700 km. away—where office buildings swayed with 

the tremor. Strong aftershocks, some exceeding magnitude 6, continued to hit the area even 

months after the main quake, causing new casualties and damage. 

Official figures stated that 69,197 were confirmed dead, including 68,636 in Sichuan 

province, and 374,176 injured, with 18,222 listed as missing. The earthquake left about 4.8 

million people homeless, though the number could be as high as 11 million. Approximately 15 

million people lived in the affected area. It was the deadliest earthquake to hit China since the 

1976 Tangshan earthquake, which killed at least 240,000 people, and the strongest in the 

country since the 1950 Chayu earthquake, which registered at 8.5 on the Richter magnitude 

scale. It is the 21st deadliest earthquake of all time. On November 6, 2008, the central 

government announced that it would spend 1 trillion yuan (about $146.5 billion) over the next 

three years to rebuild areas damaged by the earthquake, as part of the Chinese economic 

stimulus program. 

           

Figure 1.1 Miaoziping Bridge damaged in 2008 earthquake         Figure 1.2 A bank in Beichuan after the earthquake 



 3 

Miaoziping Bridge is located where Duwen Highway (connecting Chengdu and 

Wenchuan) crosses the Zipingpu dam reservoir and Min River. In total, the structure is 1,440m 

long and consists of a three-span continuous prestressed box girder bridge with prestressed 

concrete girder approach bridges of two, four, and five spans as shown in  Figure 1.1. The first 

floors of many building were crushed during the Wenchuan earthquake. 

1.2 GREAT HANSHIN EARTHQUAKE 

The Great Hanshin earthquake occurred at 5:46 a.m. on Tuesday, January 17, 1995. This 

earthquake is also called by the following names: Kobe, South Hyogo, Hyogo-ken Nanbu. 

The 1995 Great Hanshin Earthquake had a local magnitude of 7.2. The duration was about 

20 seconds. The focus of the earthquake was less than 20km below Awaji-shima, an island in 

the Japan Inland Sea. It was one of the most devastating earthquakes ever to hit Japan.  

More than 5,500 people were killed and over 26,000 people injured. The economic loss has 

been estimated at about USD 200 billion. The proximity of the epicenter, and the propagation 

of rupture directly beneath the highly populated region, help explain the great loss of life and 

the high level of destruction. 

The cities of Kobe and Osaka are connected by an elevated highway. The earthquake caused 

several portions of the highway to collapse. Most of the deaths and injuries occurred when 

older wood-frame housed with heavy clay tile roofs collapsed. Note that homes and buildings 

are designed to be very strong in the vertical direction because they support their own static 

weight. Furthermore, many of the structures in Kobe built since 1981 had been designed to 

strict seismic codes. Most of these buildings withstood the earthquake. 

        
Figure 1.3  Bridge damaged in Hanshin earthquake             Figure 1.4 Highway damaged after the earthquake 
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EXTENT OF TREMORS 

Places ordered by distance from epicenter (or time of propagation) : 

 China (Mainland): All provincial-level divisions except Xinjiang, Jilin and Heilongjiang 

were    physically affected by the quake. 

 Hong Kong: Tremors were felt approximately three minutes after the quake, continuing for     

about half a minute. This was also the most distant earthquake known ever to be felt in Hong 

Kong. The intensity reached MM III in Hong Kong. 

 Macau: Tremors were felt approximately three minutes after the quake. 

 Vietnam: Tremors were felt approximately five minutes after the earthquake in Northern 

parts of Vietnam. The intensity was MM III in Hanoi. 

 Thailand: In parts of Thailand tremors were felt six minutes after the quake. Office 

buildings in Bangkok swayed for the next several minutes. 

 Taiwan: It took about eight minutes for the quake to reach Taiwan, where the tremors 

continued for one to two minutes; no damage or injuries were reported. The intensity was MM 

III in Taipei. 

 Mongolia: Tremors were felt approximately eight minutes after the earthquake in parts of 

Mongolia. 

 Bangladesh: Tremors were felt eight and a half minutes after the quake in all parts of 

Bangladesh. 

   Nepal:  Tremors were felt approximately eight and a half minutes after the quake. 

 India:  Tremors were felt approximately nine minutes after the earthquake in parts of  India. 

 Pakistan:  In parts of Northern Pakistan tremors were felt ten minutes after the quake. 

 Russia:  Tremors were felt in Tuva, no casualties reported. 

http://en.wikipedia.org/wiki/Administrative_divisions_of_the_People's_Republic_of_China#Province_level
http://en.wikipedia.org/wiki/Xinjiang
http://en.wikipedia.org/wiki/Jilin
http://en.wikipedia.org/wiki/Heilongjiang
http://en.wikipedia.org/wiki/Hanoi
http://en.wikipedia.org/wiki/Taipei
http://en.wikipedia.org/wiki/Northern_Areas
http://en.wikipedia.org/wiki/Tuva
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Figure 1.5 Map of epicenter of May 12, 2008 earthquake in Sichuan province, China 

The USGS provided a map of Asia in May 2008, which showed a total of 122 earthquakes 

occurring on the continent. The large red square near the center of the map depicts the 7.9 

magnitude Chengdu earthquake in Sichuan province. 

PROPERTY DAMAGE 

The earthquake left at least 5 million people without housing, although the number could 

be as high as 11 million. Millions of livestock and a significant amount of agriculture were also 

destroyed, including 12.5 million animals, mainly birds. In the Sichuan province a million pigs 

died out of 60 million in total. Catastrophe modeling firm AIR Worldwide reported official 

estimates of insurers' losses at US$1 billion from the earthquake; estimated total damages 

exceed US$20 billion. It values Chengdu, at the time having an urban population of 4.5 million 

people, at around US$115 billion, with only a small portion covered by insurance. 

The massive damage of properties and houses in the earthquake area was because China 

did not create an adequate seismic design code until after the devastating 1976 Tangshan 

earthquake. If the buildings were older and built prior to that 1976 earthquake, chances are they 

weren't built for adequate earthquake forces. 

In the days following the disaster, an international reconnaissance team of engineers was 

dispatched to the region to make a detailed preliminary survey of damaged buildings. Their 

findings show a variety of reasons why many constructions failed to withstand the earthquake. 
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The earthquake occurred in the rural part of China. Presumably, many of the buildings 

were just built; they were not designed, so to speak. There are very strong building codes in 

China, which take care of earthquake issues and seismic design issues. But many of these 

buildings presumably were quite old and probably were not built with any regulations 

overseeing them. 

Even with the five largest cities in Sichuan suffering only minor damage from the quake, 

some estimates of the economic loss run higher than US$75 billion, making the earthquake one 

of the costliest natural disasters in Chinese history. 
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1.3 Organization of the Thesis 

The structure uncertainty to resist earthquake action has been studied in this work. 

Compared to the ground motion uncertainty, the structure uncertainty does not play a leading 

role in the structural seismic performance. However, the impact of uncertainty resulting from 

the structure calculation model, structure and components size, and the strength of materials 

still cannot be ignored on the seismic performance of structures, which is very important in the 

earthquake. 

In this paper, 10 ground motions have been selected to conform to the site requirements. 

IDA analysis has been performed with a reasonable ground motion intensity index of 

random variables, through seismic vulnerability analysis of RC plane frame structure. The 

effects of three uncertainty factors (the longitudinal reinforcement strength, the concrete 

strength, and the aspect ratio) on the seismic performance of RC frame structure have been 

studied.  

The main work can be described as follows: 

The first chapter briefly introduces the historical earthquakes, the Sichuan earthquake 

(China) and Kobe earthquake (Japan). 

The second chapter introduces the dangers of earthquakes and Seismic Hazard of RC 

frame structure, including the theory of the seismic design of structure, the basic knowledge of 

the structure seismic vulnerability analysis, and the previous studies on the seismic 

vulnerability for RC buildings.  

The third chapter discusses the basic principles of IDA method and seismic vulnerability 

analysis, including the detailed discussions for the problems of the seismic vulnerability based 

on IDA method, the introduction of the concept of reliability theory to derive formulas of 

seismic vulnerability, and the description of the RC frame structure based on IDA method of 

seismic vulnerability analysis steps. 

The fourth chapter, in accordance with the current Italian code specification of basic 

analysis model for the structural design, presents the finite element modeling of RC pane frame 

structure with OpenSEES software to discuss the problems with material constitutive relation, 

the cross section of restoring force model, and the element model. For example, detailed 

instructions were given about the six story RC frame structure, to analyze the seismic 

vulnerability based on IDA method. 

The fifth chapter mainly studies the influence of the uncertainty parameters on seismic 

performance of structure, including the longitudinal reinforcement strength, the concrete 
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strength and the aspect ratio, to analyze the seismic vulnerability for the RC plane frame 

structure model based on IDA method and to evaluate the seismic performance. 

Chapter six is the conclusion and prospect of the paper. 
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Chapter 2 DEFINITION AND BACKGROUND 

2.1 Background and the scientific meaning 

Earthquake is a sudden, very strong destructive natural disaster, a strong earthquake in the 

moment can give a modern city a devastating blow. On people's lives and property caused 

serious harm. For example, in 2008 Sichuan earthquake, 2009 Indonesian earthquake, 2010 

Haiti, Chile,Yushu,Indonesia,New Zealand earthquake and the 2011 earthquake in Japan, 

particularly large earthquakes, resulting in a large number of houses destroyed and collapsed, 

bring about tens of thousands of people casualties, leading to huge economic losses and serious 

social problems.  
 

Table 2.1 Part of  major earthquakes since the 20th century 

Rank Location Magnitude 
Property 

damage USD 

1 Tohoku, Japan 9.0 122 billion 

2 GreatHanshin, Japan 6.9 100 billion 

3 Sichuan, China 8.0   75 billion 

4 Chile, Chile 8.8   27 billion 

5 Northridge, United States 6.7   20 billion 

6 Tangshan, China 7.8   19 billion 

7 Emilia, Italy 6.1   12 billion 

8 Christchurch, New Zealand 6.3   11 billion 

9 Taipei, Taiwan 7.6   10 billion 

10 San Francisco, United State 7.8  9.5 billion 

 

Destruction of all kinds of structures collapsed during the earthquake, and is the main 

cause to harm people's lives and property. According to statistics of casualties caused by 

various types of structures covering 95% of the total casualties. Therefore, study on the 

performance of the structure is one of the main objectives of structural engineering. 

RC frame structure building layout flexibility to satisfy Building requirements, 

increasingly to use in civil engineering. According to data provided by the National Bureau of 

Statistics in 2008, suffered the greatest impact in the earthquake in Sichuan, Gansu and Shaanxi 
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provinces in RC frame structure of urban residential accounted for 30%、48.3% and 33.3% of 

the total. In the earthquake, RC frame structures suffered varying degrees of damages, people's 

lives and property were caused great harm. Therefore, it is very important to study on the RC 

frame structure and analyze the seismic capacity. 

2.2 Seismic Damage of RC frame structure. 

Under the effect of strong earthquakes, the structural damage mechanism and the process 

is extremely complex, the researchers at home and abroad is still not fully use the theoretical 

and computational analysis to explain them. Therefore, summarizes the characteristics of 

typical structure in the earthquake damage, it is necessary to learn from. In wenchuan 

earthquake, beichuan county，many framework structure destruction in the city, the main 

damage is: Collapse of structure, underlying damage of the framework, the extremity of beam 

damage, the filler wall damage, etc. 

1. Collapse and underlying damage of the framework 

Figure 2.1 is an example of the whole structure collapsed. Figure 2.2 is an example of the 

collapse of the underlying framework. For the underlying framework, the upper part of housing 

construction masonry structures in the earthquake, which destroyed almost all appear in a 

different structure transition of storey. This is due to the stiffness of the frame structure and 

masonry structure quite different, due to the rigidity of the mutation, the transition layer is very 

serious in the earthquake damage, a lot of damage in the form of complete collapse, for such 

construction, housing construction in the future, we should carefully choose.  

               
Figure 2.1 Example of the whole structure collapsed           Figure 2.2 Example of collapse of the underlying 

framework                                                      
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2. Extremity of column damage 

In the earthquake, a large frame structure appeared column end damage, rather than the 

designer desired that the extremity of beam damage, which did not form a "strong column 

weak beam" yield System. The general performance of concrete spalling, stirrups out even 

fracture, column longitudinal reinforcement bending, "strong beam weak column" phenomenon 

caused Chinese scholars reflection to the 2001 version of the seismic code.  

              

Figure2.3 The extremity of column damage in the earthquake. 

3. The filler wall damage 

The main reasons of the damage of filler wall are: 

1) The lack of a reliable connection between the wall and the main structure. 

2) Between the wall and column not even placed  sufficient number reinforcement. 

3) Infill walls of brick and mortar tensile strength is low. Infilled damage phenomenon mainly 

is horizontal cracks, vertical cracks, diagonal cracks and cross cracks, etc. Shown in figure 

2.4 

                

Figure 2.4 The filler wall damage 
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2.3 Performance-Based Earthquake Engineering (PBEE) 

2.3.1 The Overview of the Performance-Based Earthquake Engineering 

Each occurrence of a strong earthquake, not only to the people's lives and property 

brought disaster, but also can expose a lot of defect of building structure design ,to provide the 

most reliable information for the further improvement of seismic design methods. After the 

2008 earthquake as our country according to the 2001 edition of the problems found "Seismic 

Design of Buildings" has been modified; 2010, based on experience and earthquake damage 

new technology to produce large earthquakes occurred in recent years in China and abroad, our 

has revised 2010 seismic design code as people in-depth study of the seismic action, seismic 

design ideas have been considered from the earliest completely rigid development of the 

structural system to the current national seismic codes in the generally accepted three level of 

seismic fortification , has made great progress, this design idea in the actual earthquake also 

verified with good seismic performance. 

Although according to design code or reinforced buildings in earthquake has caused a 

number of casualties obviously decrease, but the structure of the normal use of loss of function 

caused huge economic losses by the seismic excitation are often beyond the capacity of the 

owners, especially with the rapid economic development, the costs of renovation of the 

building's internal structure as well as high-tech equipment, etc. often exceeds the cost of the 

structure of the building itself.  

For example, the 1995 Great Hanshin 7.2M earthquake in Japan, the death of 55 people, 

economic losses of up to $ 100 billion, and the restoration and reconstruction work after the 

earthquake lasted for more than two years .1999, 7.6M earthquake occurred in Taiwan, China , 

resulting in 2405 deaths and 11,306 people were injured, the economic losses of nearly $ 10 

billion; 2010 Haiti earthquake caused 11.3 million deaths and economic losses of about $ 7.75 

billion.  

More and more instances of the earthquake disaster prompted scholars from various 

countries on the existing seismic design ideas and methods for profound review found that the 

current ideological of anti-seismic in nature to protect the lives and safety purposes, although  it 

can be guarantee structure does not collapse when a major earthquake to temporarily and to 

protect the safety of life, but the structure may have significant plastic deformation and damage, 

causing serious damage to people 's property. Because in today's society and the owners of the 

building have different levels of anti-seismic performance requirements, so the modern 

building structures not only to be able to avoid collapse, but also to meet user demand for 
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multi-level buildings. However, the boundaries between the three fortification levels rather 

vague, in the actual engineering ,the designer is difficult to control, such as damage to what 

state considered "repairable", allowing the structure to produce how much damage in the 

earthquake , these are not specifically quantified. Therefore, There are some problems for the 

existing norms in the design concept and satisfy to social needs, etc., in the further explore 

more sophisticated seismic design ideas and methods is an urgent need. 

The early 1990s, American scholar Moehle first proposed the idea Displacement Base 

Seismic Design (DBSD). he was improved based on force Design method is put forward the 

structure of the plastic deformation capacity to meet the scheduled deformation under 

earthquake excitation. DBSD theoretical is achieved by controlling the structure of the 

interlayer displacement angle limit, to be more precise evaluation of the structural response 

under seismic action. DBSD theoretical emergence and development to the Performance Based 

Seismic Design (PBSD) has laid a good foundation, the United States, Japanese scholars on the 

basis of performance-based seismic design an in-depth study and subsequently cause the States 

widespread  attention. 

Although many research institutions, scholars PBSD gives definitions are not identical, 

but are considered in the design of buildings using the term, when subject to certain seismic 

force , structural damage should not exceed its corresponding performance level. Compared to 

conventional design, performance-based seismic design concept more widely and directly meet 

the needs of individuals and society according to their own requirements for use of the building, 

and the designer can choose different ways and means to achieve these requirements, so that 

we can more easily to apply to the new structure system, new design methods  and  new 

materials, etc.  

2.3.2 The basic framework for the Performance-Based Earthquake 

Engineering (PBEE) 

Essence of the performance-based seismic design theory is an attempt to control the 

deformation of the structure, damage states and reaction design. depending on the fortification 

of its general level, the seismic performance of the structure is divided into different levels, 

depending on the specific needs and then designer according to the specific requirements of 

owner, determine a reasonable seismic performance objectives and reasonable structural 

measures.  

Performance-based seismic design elements include:  
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 Seismic fortification levels 

 Seismic performance levels 

 Seismic design 

 Anti-seismic design objectives and analysis methods 

1. Seismic fortification levels 

Seismic fortification level refers to the level of the building site in the future may be 

subjected to seismic action and can also be understood as how much should be selected as the 

seismic intensity  for structural defense objects. It is directly related to seismic safety and the 

risk of earthquake damage suffered extent of the building, usually with different return periods 

and exceedance probability of the earthquake to represent. China's 2010 edition of the code for 

seismic design of buildings used in the 89 edition and 2001 edition to keep the three-level of 

seismic fortification. and the United States U.S. FEMA273, SEAOC Vision 2000 recommends 

a four-level of seismic fortification  in the performance of design structural.  
 

Table 2.2  China's three-level of seismic fortification. 

Level of seismic 

fortification 
Meaning 

50-year 

exceedance 

probability 

Return 

period(year) 

First level 

Small earthquake 

Dose not destroy 

Moderate 

63.2% 50 

Second level 
Earthquake 

Repairable 
10% 475 

Third level 
Major earthquake 

Dose not collapse 
2%-3% 1642 

 

 

Table 2.3 U.S FEMA273 four-level of seismic fortification 

Seismic level Exceedance probability Return period(year) 

Frequent 30 year 50% 43 

Occasional 50 year 50% 72 
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Rare 50 year 10% 474 

Very Rare 100 year 10% 970 

 

 

Table 2.4  U.S SEAOC four-level of seismic fortification 

Seismic level 
50-year exceedance 

probability 
Return period(year) 

Frequent 50% 72 

Occasional 20% 225 

Rare 10% 474 

Very Rare 2% 2475 

 

2. Seismic performance levels 

Seismic performance level is expected to describe the maximum damage of buildings in a 

specific seismic design standards, we can use the structure of vulnerability, the function of 

structure and personnel security to reflect. Compared to conventional design, performance-

based seismic performance level considering the structural elements, non-structural 

components, equipment and interior decoration and other factors, making the structure more 

specific seismic performance standards, people's choice and more flexible. 

3.Seismic design 

The objective of seismic design is aimed at a certain seismic fortification levels and 

structure to achieve the desired level of seismic performance, is the premise and foundation of 

structure design process. To control the different structures and the extent of damage 

fortification non structural components under earthquake, should be made to adapt to different 

types of multi-level buildings seismic targets. Figure 2.5 is the relationship between earthquake 

performance level and earthquake design level. 
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Figure 2.5 Vision 2000 recommended seismic performance objectives for buildings(after SEAOC, 1995) 

 

4.Anti-seismic design objectives and analysis methods 

Along with the experience accumulation and the efforts of the researchers, the seismic 

design structural analysis methods are constantly developing and improving, has gone from 

static analysis to dynamic analysis, the development process from the linear analysis to non 

linear analysis . At present, the most commonly used analysis methods for seismic design of 

structures have static pushover analysis (SPO) method and incremental dynamic analysis  (IDA) 

method. 

Static pushover analysis is carried out in elasto-plastic analysis of the structure under 

lateral static monotonic loading, the method can predict the structure and components of a 

given peak response and seismic performance under seismic action, compared with the 

dynamic time history analysis, the structural analysis and calculation is simple, greatly 

reducing the amount of time, but can be approximated to obtain structure elastic-plastic  

seismic response. However, SPO adopted level loading mode does not match with the actual 

earthquake, its essence is still one kind of static analysis methods. Although there are many 

scholars have proposed a number of improved methods to try to compensate for this deficiency, 

making the method to calculate the accuracy has increased, but from an accurate description of 

the dynamic response of structures under earthquake is still a big gap. 

Due to the incremental dynamic analysis rely on a large number of the elasto-plastic time 

history of computing, computing power requirements are relatively higher , in recent years with 
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the development of computer technology the incremental dynamic analysis ( IDA )method 

began to be a large number of applications. IDA method is a kind of traditional dynamic 

elastic-plastic time history analysis method based on elasto-plastic seismic response dynamic 

parameter analysis methods , its advantages is that it can fully grasp the dynamic characteristics 

of the system, when there are a sufficient number of ground motion, this the method can reflect 

the response of structures subjected to vibrations in the time. IDA analysis results are usually 

expressed by IDA curve, IDA curve can reflect the structural system from linear elastic to 

elastic-plastic under different ground motion intensity, to the overall collapse of the whole 

response process, so you can better understand the earthquake especially strong effect on the 

performance of the structure and the characteristics of structural response anywhere the 

vibration intensity of the laws of growth and change. 

2.3.3 The relationship between the PBEE and structural vulnerability 

ATC-40 principles based on FEMA273 criteria focus on the research of assessment 

method  based structural performance in performance-based seismic design. The principles 

adopted static nonlinear analysis method to evaluate the seismic capacity spectrum and demand 

structure of the spectrum, and to simplify the method to obtain seismic vulnerability of 

structures. Therefore, the vulnerability of structure is an important part of the seismic 

performance-based design, and it is  inevitable continuation of ideas based on the performance 

of the design . 

2.4 Structural seismic vulnerability overview 

Structural seismic vulnerability refers to the probability of structure of different degree of 

damage at different levels of earthquake .From the sense of probability quantitatively 

characterize the seismic performance of engineering structures, macroscopic description of the 

relationship between ground motion intensity and extent of structural damage. Usually seismic 

vulnerability curves with respect to different performance levels of structural failure probability 

and ground motion intensity gathers, in order to describe the seismic vulnerability of structures.  

There are two commonly used methods to obtain the structural seismic vulnerability 

curves: 

 (1) The empirical method, namely, through the previous structure of the earthquake damage 

investigation statistics, describe the structure under the effect of different intensity 

earthquake damage probability curve. This approach is limited by the number of samples 
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obtained, and influenced by the experience of experts, the credibility of the research 

results are often subject to certain restrictions. 

 (2) Analysis method, namely the seismic fragility curves obtained by theoretical methods, 

typically, through a lot of time history analysis and time-history analysis of data by finite 

element numerical simulation on the structure  to obtain seismic fragility curves. 

2.5 Previous studies on seismic vulnerability for RC buildings 

The last fifteen years a large number of studies on the production of seismic fragility 

curves for RC buildings have been carried out in Europe. Several assessment procedures were 

followed; not based on EC8 Part3 though. Some of these studies, based on analytical or hybrid 

assessment methods, are presented in the following paragraphs. 

Singhal & Kiremidjian [1995] produced vulnerability curves and damage probability 

matrices for low-rise, mid-rise and high-rise RC frame structures using the Park and Ang 

damage index. The ground motion characterization parameters used are the spectral 

acceleration andthe root mean square acceleration. Nonlinear dynamic analyses were 

performed. Constrained Monte Carlo simulation techniques were used for evaluating the 

fragility curves. 

Mosalam et al. [1997] produced vulnerability curves for low-rise bare and infilled RC 

frames designed for gravity loads. Pushover analyses were performed, assuming variability of 

concrete, steel and masonry properties, in order to obtain trilinear capacity curves. The 

characteristic values were assumed to follow a lognormal distribution with assumed 

coefficients of variation. Nonlinear analysis of the trilinear SDOF systems were performed for 

800 artificial accelerograms The Monte Carlo technique was employed to sample 200 capacity 

curves for each accelerogram. Reasonable agreement was found with fragility curves obtained 

from the ATC-13 damage probability matrices (better agreement for low levels of damage). 

Dumova-Jovanoska [2000] performed non-linear dynamic analyses of a schematic 6-

storey RC frame and a 16-storey RC wall-frame structure, both with seismic design, for 240 

artificial accelerograms. The results were presented in terms of damage index vs. intensity for 

different damage states and also as damage probability matrices. 

A.Masi [2003] evaluated the seismic vulnerability of some framed structural types 

representative of post-1970 RC existing buildings in Italy, designed only to vertical loads. 

Three main types were examined: bare frames, regularly infilled frames and open ground 

storey (pilotis) frames. Each masonry panel was modelled by using plane elements having 

elastoplastic behavior. The evaluation of the seismic vulnerability was carried out on the basis 
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of a set up procedure proposed by Masi et al. (2001a). The seismic resistance was evaluated by 

means of fragility curves relevant to some structural and non-structural parameters. The 

vulnerability class of each type, according to EMS98, was defined taking into account the 

increasing damage degrees computed by applying increasing seismic intensities. A correlation 

between PGA values and EMS98 intensities, proposed by Margottini et al. (1985), was adopted. 

The seismic response was calculated through non-linear dynamic (time-history) analyses on 

bases of: normalised base shear, interstorey drift and curvature ductility demand. The 

evaluation of the ductility capacities was obtained from analytical formulations adopting 

suitable values of the ultimate deformations of materials (Calvi and Priestley 1998). The results 

shown a high vulnerability for the pilotis buildings; low vulnerability was attributed to the 

regularly infilled buildings and an intermediate seismic behavior was shown by bare buildings. 

Kappos et al. [2003], within the RISK-UE project, applied the capacity spectrum method 

on several configurations of regular RC buildings with and without infills (the case of soft 

ground storey was also examined) and with different levels of seismic design. As the capacity 

spectrum method assumes a bilinear response, when the displacement demand is higher than 

the capacity of regularly infilled frames or pilotis buildings with good seismic design, it was 

suggested to use the capacity curve for the bare frame. The uncertainty in the definition of 

damage state and the variability of the capacity were taken from HAZUS. The dispersion for all 

damage states of a given structural class was the mean of the dispersions for each damage state, 

so as to avoid intersecting fragility curves. Reference was made to the cost of replacement and 

to a damage index. The vulnerability curves were produced following the hybrid method, 

where analytical and observational capacity curves are combined. 

Milutinovic & Trendafiloski [2003], presented the vulnerability curves for buildings 

developed within the RISK-UE project. Building typologies were identified from the stock in 

the project application sites, i.e. Barcelona, Bitola, Bucharest, Catania, Nice, Sofia and 

Thessaloniki. Both empirical and analytical methods were used. Different damage scales for 

each approach were employed and a correlation between the two was proposed. For steel, wood 

and reinforced masonry structures, the HAZUS vulnerability curves were adopted. Empirical 

curves were produced from damage probability matrices. Damage probability matrices were 

produced using a vulnerability index that accounts for structural characteristics and local 

conditions (weights by expert judgement). Pushover capacity curves distinguish between 

materials of construction, construction tradition, experience and technology used, as well as 

prescribed (by code) and achieved (in practice) levels of seismic protection. The characteristic 

points of the bilinear capacity curve (period, strength, ductility) may be obtained by code 
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requirements, expert judgement, or analysis. CIMNE used the capacity spectrum method. IZIIS 

performed inelastic dynamic analysis of RC frame structures using recorded accelerograms. 

UNIGE estimated the lognormal standard deviation of vulnerability curves for masonry 

structures as a function of ductility. UTCB used the capacity spectrum method. A probabilistic 

approach (Monte Carlo for seismic input, variability of concrete and steel properties) was used 

to define the properties of low and moderate-code RC buildings and then pushover analyses 

were performed to obtain their capacity curves. A code-based approach, applicable to new 

buildings, is mentioned. Characteristic values for capacity and fragility curves for all building 

types are given. 

Erberik & Elnashai [2004] produced vulnerability curves for a 5-storey schematic flat-slab 

building with masonry infills designed according to current US seismic codes. Ten recorded 

accelerograms from various regions that were compatible with the code spectrum were selected 

and scaled to obtain all damage levels. Four limit states were assigned to the building in terms 

of interstorey drift ratio. Damage states were calculated for all elements of each storey and the 

most critical storey defined the damage state of the structure. The material uncertainty was 

treated by Monte Carlo analysis; normal and lognormal distributions were used to describe the 

statistical variation of material properties. The developed curves were compared with those in 

the literature, derived for moment-resisting RC frames and justified why using vulnerability 

curves of moment-resisting frames to assess seismic damage of flat slab buildings is non-

conservative. 

Akkar et al [2005] presented vulnerability curves for low-rise and mid-rise infilled frame 

RC buildings. Pushover analyses of 32 existing buildings in Duzce were performed to define 

the intervals of base shear capacity, period and ultimate drift of 2, 3, 4 and 5-storey buildings 

with low-level of seismic design. Nonlinear dynamic analyses were then performed for 82 

recorded accelerograms and bilinear structures with properties within the identified intervals. 

The number of stories was found to have a significant effect on the probability of exceeding the 

moderate and the severe damage limit states. Spectral displacement correlated better with peak 

ground velocity than peak ground acceleration, particularly for higher levels of damage. 

There was good agreement of the vulnerability curves with observed damage after the 

1999 Duzce earthquake. 
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Figure 2.6  Ragility curves based on HAZUS Damage Functions 

Kappos et al. [2006] produced vulnerability curves for RC frame and wall-frame buildings, 

as well as for unreinforced masonry (URM) structures, according to a hybrid method developed 

at AUTh. This method combines statistical data with appropriately processed results from non-

linear dynamic or static analyses, that permit extrapolation of statistical data to PGAs and/or 

spectral displacements for which no data are available. Vulnerability curves were derived in 

terms of PGA, as well as spectral displacement Sd. Analyses of several different RC building 

configurations were performed, representing most of the typologies of buildings in S. European 

countries. Low-rise, mid-rise and high-rise buildings were considered; each one was assumed 

to have three different configurations (bare, regularly infilled and soft ground storey building). 

Four classes of seismic design were considered: no code, low code, moderate code and high 

code. Inelastic static and dynamic time-history analyses were carried out. 

Kircil & Polat [2006] performed nonlinear dynamic analyses of representative RC 

buildings, designed with the 1975 code, using 12 artificial accelerograms with increasing 

intensity in order to define the parameters of lognormal vulnerability curves. Fragility curves 

for different steel grades were summed (sum weighted by the population of each sample) to 

provide a single curve for all buildings. A relationship was established between number of 

storeys and mean and standard deviation of the curves, so as to obtain curves for structures 

with number of storeys not in the examined range. 

Erberik [2008] studied 28 RC frame buildings that were inspected after the Düzce 

earthquake. The buildings were constructed between 1973 and 1999. Pushover analyses were 

performed to obtain the bilinear capacity curves and the distribution of their characteristic 

properties. 
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2800 nonlinear dynamic analyses of randomly sampled SDOF structures were performed 

for a set of 100 recorded accelerograms. The effect of post-yield to initial stiffness ratio 

variability (negligible), simulation (negligible) and sampling (negligible) techniques, sample 

size (negligible), limit state variability (important) and degrading hysteretic behaviour 

(important) was studied by means of parametric analyses. The predictions of the analytical 

curves were in satisfactory agreement with the observed damage. 

Özer & Erberik [2008] produced vulnerability curves for RC frame structures in Turkey. 

3-, 5-, 7- and 9-storey RC frames with poor, medium and good seismic designed were 

considered. Concrete and steel strength and modulus of elasticity were variables. Four damage 

states were introduces as slight or no damage (DS1), significant damage (DS2), severe damage 

(DS3) and collapse (DS4). The seismic demand statistics in terms of maximum interstorey drift 

ratio were obtained for different sets of ground motion records by performing non-linear time-

history analyses. Figure presents an example of fragility curves, plotted versus PGV, that were 

developed in this study. 

Polese et al. [2008] studied RC frame and masonry buildings constructed in Naples before 

seismic codes were introduced. The bilinear capacity curves of 400 RC frame buildings, with 1, 

4 and 7 storeys and varying plan dimensions were obtained by pushover curves. Sample 

buildings were generated by Monte Carlo simulation and the properties of their capacity curves 

were obtained from the database of the 400 buildings. The capacity spectrum method was 

applied for the EC8 spectrum with increasing values of peak ground acceleration. The 

variability in yield and ultimate rotation and in the evaluation of seismic demand was found to 

have a significant effect on the fragility curves. 

Rossetto & Elnashai [2005] produced vulnerability curves for low-rise infilled RC frames, 

designed with the old Italian seismic code. Building design, material properties (variability of 

concrete, steel and masonry) and ground motion were selected to be representative of the 

region. Adaptive pushover analysis was performed and a trilinear idealisation of the capacity 

curve of infilled frames was considered more representative. The performance point was 

obtained by means of nonlinear dynamic analysis of the equivalent SDOF structure, instead of 

the graphic method. Ten accelerograms are sufficient to account for ground motion variability 

(Wen & Wu, 2001). The results of the analyses were used to construct response surfaces, from 

which the vulnerability curves were produced by entering random values of material properties 

and spectral displacement to obtain the maximum drift. The analytical curves were in 

reasonable agreement with empirical curves. 
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Vacareanu et al [2004] focused on the seismic vulnerability assessment of representative 

residential RC buildings in Bucharest using HAZUS and ATC-40 methodology. The buildings 

were designed with low-level and medium-level seismic codes. A relationship was established 

between interstorey drift and Park & Ang damage index. The demand corresponded to a single 

recorded accelerogram. Monte-Calro simulation was used to calibrate the fragility function 

parameters. 
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Chapter 3 THE ANALYSIS METHOD OF STRUCTURAL SEISMIC 

RESPONSE 

3.1 Introduction 

Current earthquake engineering major mitigation measures of earthquake disaster is risk 

analysis, the specific including seismic hazard analysis, seismic vulnerability analysis and 

earthquake losses estimated three aspects. The seismic vulnerability analysis of building can be 

used before the earthquake disaster prediction, designer depend on different structure seismic 

vulnerability, and  to improve the seismic capacity of structure; At the same time can also be 

used for earthquake damage assessment.  

Provide the basis for the estimate earthquake losses, and proposed measures to avoid or 

reduce casualties and to achieve the goal of earthquake disaster reduction. Provide the basis for 

estimating earthquake losses, and put forward the measure of avoid or reduce the loss of life, 

realize the goal of protecting  and mitigating earthquake disasters. 

Structural seismic vulnerability study is actually an important part of the performance-

based design concept is based on the performance of the design ideas inevitable continuation. 

In recent years, the analysis of  seismic vulnerability based on the  IDA method becomes a hot 

spot to study and research. 

Incremental dynamic analysis  IDA method was developed by Bertero first proposed in 

1977, Vamvatsikos and Cornell was carried out systematic research and summarize it into a 

practical use.  

Now is the Federal Emergency Management Agency (FEMA) summarized using 

analytical methods as the whole structure collapsed seismic capacity assessment.  

The method can examine the structure at different intensity levels seismic demand and 

overall resistance to collapse ability to realize the structure from linear elastic to elastic-plastic, 

and then the whole process of the collapse of the entire response analysis, and comprehensive 

evaluation on the seismic performance of the structure, therefore non-linear structural analysis 

has been widely used in the earthquake. 

3.2 IDA methods and basic principles of the seismic vulnerability 

3.2.1 Incremental dynamic analysis method 

Incremental dynamic analysis (IDA) involves performing multiple nonlinear dynamic 

analyses of a structural model under a suite of ground motion records, each scaled to several 
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levels of seismic intensity. The scaling levels are appropriately selected to force the structure 

through the entire range of behavior, from elastic to inelastic and finally to global dynamic 

instability, where the structure essentially experiences collapse. Appropriate postprocessing can 

present the results in terms of IDA curves, one for each ground motion record, of the seismic 

intensity, typically represented by a scalar Intensity Measure (IM), versus the structural 

response, as measured by an Engineering Demand Parameter (EDP). 

Possible choices for the IM are scalar (or rarely vector) quantities that relate to the 

severity of the recorded ground motion and scale linearly or nonlinearly with its amplitude. The 

IM is properly chosen well so that appropriate hazard maps (hazard curves) can be produced 

for them by probabilistic seismic hazard analysis. Possible choices are the peak ground 

acceleration, peak ground velocity or Arias intensity, but the most widely used is the 5%-

damped spectral acceleration at the first-mode period of the structure. 

The EDP can be any structural response quantity that relates to structural, non-structural 

or contents' damage. Typical choices are the maximum (over all stories and time) interstory 

drift, the individual peak story drifts and the peak floor accelerations. 

3.2.2 The basic principles of the seismic vulnerability 

Seismic vulnerability refers to a certain area due to the extent of the losses caused by the 

earthquake.  

Its research object can be a single structure or a class structure, it can be a region. The 

structural seismic vulnerability refers to the structure at different intensity earthquake 

excitation, the possibility of different degrees of damage or a structure reaches a probability 

with a certain limit state (performance level). 

Seismic vulnerability can be formulated  (ground motion intensity Sa) 

      (0| Sa)=∑       (O|C)       (Z    

Where DV is a description of the structure reaches a limit state binary indicator variable, when 

DV = 0 means the structure reached the limit state. 

      (0| Sa) is the probability when the structure reaches the limit state with the 

intensity of the ground motion Sa. 

LS is the indicators of the capacity of structure. 

∑       (O|C) represents the probability of the structure reached the limit state when the 

capacity of structure is C. 
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       (Z     represents the probability when the ground motion intensity is Sa, the seismic 

responses of the structure Z is greater than the capacity of structure C. 

Every limit state has a certain critical value C, when the response of structure reaches the 

critical value is considered the structure must be damage. That is       (0|C)  = 1. Critical 

value C can be obtained from the general statistics and experimental data, when the lack of 

damage data and test data can only be obtained by theoretical analysis method (numerical 

simulation). This paper is the IDA analysis based on the analysis model, on the summary of 

IDA curves defined on the critical value corresponding to the different damage limit state. 

3.3 The problems of Seismic Fragility analysis based on IDA method 

3.3.1 How to select ground motion records 

Ground motion that earthquake ground motion, which is released by the source of seismic 

wave caused by the soil near the surface, is the cause of earthquake damage external cause, it is 

a bridge between seismic and seismic. Because of the earthquake ground motion is the non-

stationary random process with wider frequency band, the earthquake seismogenic mechanism, 

propagation medium, field condition factors, has a great deal of uncertainty, makes the seismic 

time history simulation of different ground is very difficult. According to the current of real 

seismic records, found that even with earthquakes, in the same field of different directions of 

seismic records are also different. Different ground motion inputs, displacement and internal 

force of structure is different, sometimes can reach several times or even dozens of times. 

Therefore, analysis of IDA, reasonably selected ground motion is particularly important. 

U.S. ATC-63 (2008) report gives recommendations to select 22 far field and 28 near-field 

ground motion. To select these seismic waves based on the following principles: 

(1) Selected earthquake magnitude greater than 6.5, because of the small magnitude 

earthquakes have too less energy, and the extent of damage to the structure is usually not 

enough to cause the collapse of the structure. 

(2) Venue for rock or hard soil site, American standard IBC2006 will be divided into A-F6 

class field. Class A and Class B for hard rock, a small number of strong motion records in this 

sites, E and F class for soft soil, if the structures built on soft soil, it may appear foundation 

damage in the earthquake, rather than the structure their destruction.  In this paper, we study 

the structure of using class C and D only recorded on the site seismic waves. 
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(3) Epicentral distances greater than 10 km. Near-field earthquake ground motions recorded 

with the general record is quite different. In recent years attracted the attention of national 

researchers. Its long pulse period, significant and similar pulse wave velocity peaks, making the 

increase in displacement ductility demand levels and the long-period seismic structure of short-

period structure. Studies have shown that the site should generally be nearly field and far field 

distinguish treatment, avoid seismic response of discrete too much. In summary, all ground 

motion records selected from  this paper the epicenters are greater than 10km. 

(4) Avoid from the same seismic event more than two seismic waves, have to make choice of 

seismic waves have broader applicability. 

(5) PGA greater than 0.2g , PGV greater than 15 cm/s. 

(6) Effective period seismic waves reach at least 4s. 

(7) Strong motion seismograph placed in free space or a small building on the ground floor, 

placement should be considered the structure of the building - the coupling effect of soil on the 

impact of seismic waves. 

In addition, the experience of earthquake damage, the structure of low cyclic fatigue 

structure, the cumulative effect of the structure and the experimental study have shown that the 

duration of the ground motion  has important influence on the damage of the structures . The 

study found that: 

(1) When the earthquake holding general for non-degenerate nonlinear system has little effect;  

(2) When holding for degenerative strong nonlinear system a greater impact;  

(3) The duration have a great impact for degradation or no degradation of nonlinear systems of 

the cumulative loss of the energy.Visible, the impact of the duration of earthquake for the 

structural response mainly in the nonlinear stage. Determine the duration, the most intense part 

of the ground motion records should be included in the selected duration, and generally 

duration of the ground motion greater than or equal to 10 times the basic period of the structure 

T1. 

Literature study shows that moderate height of the building, when using a relatively 

suitable and effective seismic intensity index, the 10-20 seismograms usually accurate enough 

to assess the seismic demand structure. Therefore, the paper selects 16 ground motion be in 

progress incremental dynamic analysis. 

In this paper, all models are in the second category selected venues, and U.S. seismic 

surveys Center (USGS) division on grounds similar in the S2 site,  Vs take 180 ~ 360 m/s. 

Reference ATC-63 election wave principle ,  from the PEER Strong Motion Database pick out 

10 ground motion records to meet the requirements of the velocity range and the epicenter .  
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As shown in Table 3.1The duration of earthquake taken 20s. 

Table 3.1 Analysis of the input ground motion records 

No. 
Name of ground 

motion 
Station Component 

PGA

(g) 

1 Morgan Hill    Gilroy Array #5 G03090 0.395 

2 Loma Prieta    Gilroy Array #3 G030090 0.200 

3 Superstition Hills EICentroImp.Co.Cent ICC090 0.258 

4 Westmorland Westmorland Fire WSM090 0.368 

5 Imperial Valley   117 El Centro Array #9 I-ELC270 0.215 

6 Landers   Yermo Fire Station YER270 0.245 

7 Loma Prieta   57382 Gilroy Array #4 G04090 0.212 

8 Northridge   LA-Hollywood Stor FF HOL360 0.358 

9 San Fernando   
LA-Hollywood Stor 

Lot 
PEL090 0.210 

10 Whittier Narrows   
Hollywood-Coldwater 

Can 
A-CWC270 0.250 

 

3.3.2  Scale factor and algorithm 

The Scale Factor (SF) of a scaled accelerogram,    , is the non-negative scalar   [0,+ ] 

tat produces     when multiplicatively applied to the unscaled (natural) acceleration time 

history a1. 

Note how the SF constitutes a one-to-one mapping from the original accelerogram to all 

its scaled images. A value of   =1 signifies the natural accelerogram,   <1 is a scaled-down 

accelerogram, while    >1 corresponds to a scaled-up one. 

Although the SF is the simplest way to characterize the scaled images of an accelerogram, 

it is by no means convenient for engineering purposes as it offers no information of the real 

‗power‘ of the scaled record and its effect on a given structure. Of more practical use would be 

a measure that would map to the SF one-to-one, yet would be more informative, in the sense of 

better relating to its damaging potential. 

Once the model has been formed and the ground motion records have been selected, we 

need a fast and automated way to perform the actual dynamic analyses needed for IDA. This 

entails appropriately scaling each record to cover the entire range of structural response, from 
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elasticity, to yielding, and finally global dynamic instability. Our task is made significantly 

easier by using an advanced algorithm, like hunt & fill (Vamvatsikos and Cornell, 2002a). This 

ensures that the record scaling levels are optimally selected to minimize the number of required 

runs: Analyses are performed at rapidly increasing levels of IM until numerical non-

convergence is encountered (signalling global dynamic instability), while additional analyses 

are run at intermediate IM-levels to sufficiently bracket the global collapse and increase the 

accuracy at lower IMs. The user only needs to specify the desired accuracy for demand and 

capacity, select the maximum tolerable number of dynamic analyses, and then wait for a few 

hours to get the results. Since the algorithm has been implemented in software able to wrap 

around most existing analysis programsit renders IDA almost effortless, needing no human 

supervision. 

3.3.3  Intensity measures (IM) and Damage measures (DM) 

Usually we use the IDA curves to reflect the results of IDA method , while IDA curves 

need to through the intensity measures (IM) and damage measures (DM) to describe, to 

illustrate the response of the structure with the enhance role of the external. So the most 

important to select a suitable IM and DM. There are several issues of efficiency and sufficiency 

associated with the IM selection. Since there are no directivity influenced records in our suite 

and the building is of medium height (hence first-mode dominated), the 5%-damped first-mode 

spectral acceleration Sa(T1,5%) will be our choice; it has been proven to be both efficient, by 

minimizing the scatter in the results, thus requiring only a few ground motion records to 

provide good demand and capacity estimates, and sufficient, as it provides a complete 

characterization of the response without the need for magnitude or distance information. 

Similarly, selecting a DM can be application-specific; for example, the peak storey 

accelerations are well-correlated with contents‘ damage, while the maximum peak interstorey 

drift ratio θmax is known to relate well to global dynamic instability and several structural 

performance limit-states upon which we will focus, so θmax will be our DM choice. Still, it 

cannot be emphasized enough that these choices are by no means limiting. The user can change 

his mind and reprocess the IDA data anytime by choosing a different IM or DM, without any 

need to rerun the dynamic analyses. 

3.3.4  Defining limit states 

In order to be able to do the performance calculations needed for PBEE, we need to define 

limit-states on the IDAs, three of which are going to be demonstrated: Immediate Occupancy,  
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Life Safe , and Collapse Prevention., Immediate Occupancy is violated at θmax = 1% , Life 

Safe θmax = 2% according to FEMA 350. On the other hand, Collapse Prevention is not 

exceeded on the IDA curve until the final point where the local tangent reaches 20% of the 

elastic slope (Figure 3.1) or θmax = 10%, whichever occurs first in IM terms. Finally, global 

dynamic instability happens when the flatline is reached and any increase in the IM results in 

practically infinite DM response. In our example of recordYER270, Immediate Occupancy is 

violated for Sa(T1,5%) = 0.14g or θmax = 2%, and Life Safe is violated for Sa(T1,5%) = 

0.265g or θmax = 2% while the Collapse Prevention level is exceeded if Sa(T1,5%) = 1.3g or 

θmax = 6.76 %. Finally, global dynamic instability occurs at Sa(T1,5%) = 1.5g ,which 

corresponds to θmax = + . 

 

 

Figure3.1 IDA curves with 3 limit state 

3.3.5  The Interpolation and Statistics of IDA curves 

Once the desired IM and DM values (in our case Sa(T1;5%) and θmax) are extracted from 

each of the dynamic analyses, we are left with a set of discrete points, ten for each record, that 

reside in the IM-DM plane and lie on its IDA curve, as in Figure 3.1. By interpolating them, 

the entire IDA curve can be approximated without performing additional analyses. To do so, 

we may use a basic piecewise linear approximation, or the superior spline interpolation. Based 

on the concept of natural, coordinate-transformed, parametric splines with a centripetal scheme 



 31 

for knot-selection , a realistic interpolation can be generated that accurately represents the real 

IDA curve, as shown in Figure 3.2 for record B-ICC090 of Table 1. Having the complete curve 

available, it is now possible to calculate DM values at arbitrary levels of IM, allowing the 

extraction of more IM, DM points with a minimum of computation. 

The smooth IDA curve provided by the interpolation scheme offers much to observe. 

Even forthe single record depicted in Figure 1 the IDA curve is not at all simple. It starts as a 

straight line in the elastic range but then shows the effect of yielding and slightly ―softens‖ at 

0.4g by displaying a tangent slope less than the elastic. Subsequently, it ―hardens‖, having a 

local slope higher that the elastic, and the building apparently responds with almost the same 

θmax = 5% for Sa(T1,5%) in the range of 0.51g–0.7g. Finally, it starts softening again, 

showing ever increasing slopes, i.e., greater rates of DM accumulation as IM increases, 

reaching the ―flatline‖ at Sa(T1,5%) = 1.05g, where the structure responds with practically 

―infinite‖ θmax values and numerical non-convergence has been encountered during the 

analysis. That is when the building has reached global dynamic instability, when small 

increments in the IM-level result in unlimited increase of the DM-response. 

Table 3.2 three level of limit state on IDA curve 

 IO  LS  CP 

θmax Sa(T1,5%) θmax 
Sa(T1,5

%) 
θmax 

Sa(T1,

5%) 

1.00% 0.14 2.00% 0.263 7.76% 1.3 

 

 

Figure3.2 The interpolation of the IDA curve 
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3.3.6 Theoretical derivation of seismic vulnerability analysis 

A fragility curve describes the probability of reaching or exceeding a damage state as a 

function of a chosen ground motion intensity parameter (spectral acceleration). The probability 

that the demand on the structure exceeds the structural capacity can be computed as follows: 

              

Where 

   is the probability of exceeding a specific damage state,    is the structural demand and    is 

the structure capacity. 

If the structural capacity and seismic demand are described by a log-normal distribution, 

the probability of reaching or exceeding a specific damage state will be log-normally 

distributed, which can be obtained by a log-normal cumulative probability density function as 

follows: 

     [
        ⁄  

√  
    

 
]                                      (3-1) 

Where 

   is the logarithmic standard deviation for the capacity,    is the logarithmic standard 

deviation for the demand, and [ ] is the standard normal distribution function.  

Like Cornell have done for buildings, the Engineering Demand Parameter (EDP) , Sd ,and 

Intensity Measures (IM)  can be represented by a power model: 

                                               (3-2) 

                                          (3-3) 

                                                (3-4) 

Where 

 a and b are unknown regression coefficients, and       = a,   = b, IM  is the ground motion 

intensity parameter (Sa).  The composite logarithmic standard deviation √  
    

  , known as 

the dispersion, is taken from values recommended in HAZUS 99 , √  
    

  =0.4,  [ ] is the 

standard normal distribution function, the value  checking the table of the standard normal 

distribution to determine. Obtained  the probability of corresponding to different levels of 

damage, this curve is the fragility curve of structure. 
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Chapter 4  MODEL OF RC FRAME STRUCTURE 

4.1 Introduction 

In this chapter, one six-story reinforced concrete building is properly designed considering 

gravity loads and the lateral seismic loading following the provisions of according to the 

Eurocode 8. And then the structure is modeled using the open-source software OpenSees. At 

last, the incremental dynamic analysis (IDA) is used to evaluate the minor damage, moderate 

damage and collapse risk of the frame.  

4.2 The design of RC frame structure model 

4.2.1 Engineering situation 

The RC frame in this study is designed according to the NTC-08 code. The structure is 

located  Sichuan  province  in China,  anti-seismic is 8 Magnitude (0.2g),  the site category  S2, 

the basic snow pressure is  2.3      , the basic wind pressure is 0.67     . 

When to design a RC frame structure should be consistent with the actual engineering 

situation  in order to have the engineering significance, and finite element modeling, to 

calculate the internal force, a combination of internal forces , cross-section reinforcement 

should follow the corresponding norms,  in this paper according to NTC-08 ( Italian code) 

designed. 

This study is focused on the seismic performance of the structure under horizontal seismic 

action, and some research show that the wind loads no influence on the structural 

reinforcement  for the multi-storey building structure design when the earthquake is more than 

8 Magnitude. 

According NTC-08 we take cast in place floor of cement mix, and the thickness of the 

slab is 24 cm,  the roof load is 4.9     ,  the load of intermediate floor is 6.1      , and the 

variable loads is 2.5     . 

This article is the fifth chapter comparative analysis model needs to design a basic model, 

other models are in contrast to the fondamental model changing the parameters on the basic 

model. 
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4.2.2 Design of the basic model 

The structure is a symmetrical six-story reinforced concrete building. The story height is 3 

meters for all the stories. The dimensions of the cross-sectional of beam is 400*600 mm, and 

the dimensions of the cross-sectional of column is 550*550 mm, The concrete is C25/30.The 

longitudinal reinforcement is B450C 22mm and the transverse reinforcement is 8mm .  

 

       
 

Figure 4.1 Rreinforcement beam and column 

 

The beams in all six stories are with the same section geometry and columns in all stories 

are also with the same section geometry, Ignoring the influence of the stairs and infill walls, 

etc., in order to facilitate research in this paper take 2D model to study. Figure 4.1shows the 

geometry and reinforcing details of the structure. The structure is symmetrical, thus a planar 

model is used to stand for the spatial frame in dynamic analysis. The plane model consists of a 

three-bay frame with the six stories, and the unit is mm. as shown in Figure 4.2 

         

Figure 4.2 Six-story RC frame structure plan and elevation. 
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4.3 Nonlinear Finite Element Modeling 

4.3.1 Introduction of OpenSees Software 

Modern earthquake engineering utilizes modeling and simulation to understand the 

behavior and performance of systems during earthquakes. With the support of the National 

Science Foundation, the Pacific Earthquake Engineering Research Center (PEER) has 

developed the Open System for Earthquake Engineering Simulation, OpenSees for short, as a 

software platform for research and application of simulation for structural and geotechnical 

systems. The Open System for Earthquake Engineering Simulation (OpenSees) is a software 

framework for simulating the seismic response of structural and geotechnical systems. 

OpenSees has advanced capabilities for modeling and analyzing the nonlinear response of 

systems using a wide range of material models, elements, and solution algorithms. Beams and 

columns are modeled using the Force-Based Beam-Column Element. 

4.3.2 Constitutive relations of materials 

The reinforcement adopts the Steel02 Material, which is a uniaxial Giuffre-Menegotto- 

Pinto steel material object with isotropic strain hardening. The Concrete01 Material developed 

according to the work of Karsan-Jirsa is used to model the constitutive relation of concrete. An 

important modeling characteristic is the post-peak response, which captures the strain softening 

behavior associated with concrete crushing failure. The tensile strength is not considered in this 

material, which is acceptable in numerical simulation. The confining effect of the transverse 

reinforcement to the core concrete is considered by adopting the Mander model. The typical 

hysteretic stress-strain relation of Concrete01 is shown in Figure 4.3 and Figure 4.4 

 
Figure 4.3 Concrete01 Material -- Material Parameters  and Typical Hysteretic Stress-Strain Relation of 

Concrete_1 Model. 
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Figure 4.4  Steel02 Material -- Material Parameters of Monotonic Envelope and Steel02 Material -- Hysteretic             

Behavior of Model w/o Isotropic Hardening 

 

The four parameters in Figure 4.3 are:  

 $fpc: concrete compressive strength at 28 days (compression is negative); 

$epsc0: concrete strain at maximum strength; 

$fpcu: concrete crushing strength; 

$epsU: concrete strain at crushing strength. 

4.3.3 The finite element models 

The force-based beam-column Element and fiber section are used to model the beams and 

columns. In general, the accuracy of one force-based element equals four displacement-based 

elements. In this study, one force-based element is used to model a beam or column of the 

frame. P-delta effect is also considered in this model 

4.4 Nonlinear Dynamic Analysis 

IDA is the dynamic equivalent to a familiar static pushover analysis. Given a structure and 

a ground motion, IDA is done by conducting a series of nonlinear time-history analyses. The 

intensity of the ground motion, measured using an IM, is incrementally increased in each 

analysis. An EDP, such as global drift ratio, is monitored during each analysis. The extreme 

values of an EDP are plotted against the corresponding value of the ground motion IM for each 

intensity level to produce a dynamic pushover curve for the structure and the chosen 

earthquake record.  In figure 4.5 show Peak interstory drift ratio versus storey level of model-4, 

Gilroy Array #3 station, Sa(T1) = 0.8g, and interstorey drift  θmax = 4.35%. 
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Figure 4.5 Peak interstorey drift ratio versus storey level 

4.5 Analysis result 

After completing the nonlinear time history analysis of the structure to obtain a large 

number of structural response data, researchers need to get the data, you need to make the 

appropriate post-processing work. Recorder program is the main provider of command, the 

user can customize what you want to output and analysis data are recorded, selectable output, 

recording options include: displacement, velocity, acceleration, displacement incremental of 

analysis nonlinear time history in each time, When the drive force of the rod end of each time 

unit, rod end deformation resistance section, deformation and stiffness changes, and the whole 

process over time the amount of each envelope mechanism and so on. With these data, the 

researchers could for data processing and graphics processing. 

4.6 Algorithm Analysis 

4.6.1 Single Ground Motion record of IDA curve 

In IDA, the building analytical model is subjected to a selected earthquake time history 

while tracking the response of the structure. The input ground motion is scaled to increasing 

levels of intensity until collapse occurs, as indicated by runaway interstory drifts. This process 

is repeated for all earthquake records and for each structure. In this study, the ground motion 

intensity is scaled by the spectral acceleration at the fundamental period of the structure, 

Sa(T1). Figure 6 shows IDA results for the 6-story RC structure subjected to one ground 

motion.  
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Take this example WSMS90 that observed seismograms recorded by Westmorland Fire 

station ground motion records. 

The whole analysis process is based on IDA method of seismic vulnerability detailed 

specification 

Figure 4.6 shows WSM90 earthquake recorded acceleration time history curve. 

 

 
Figure 4.6 WSM90  earthquake recorded acceleration time history curve. 

 

The WSM90 seismic records corresponding damping ratio of 5% of the elastic 

acceleration response spectrum curve in Figure 4.7. 

 
Figure 4.7 The WSM90 seismic records corresponding damping ratio of 5% of the elastic acceleration response 

spectrum curve. 

 

OpenSEES software calculated Fundamental period of the structure . T1= 1.582 s, and 

from Figure 4.62 detected by corresponding damping ratio of 5% of the spectral acceleration 

values 0.38g. Sa(T1) = 0.38g , first step we can use Sa = 0.005g, we can get the scale 

factor(SF)λ=0.005/0.38=0.0132, and multiplied the natural accelerogram by SF. and then we 

can record the Peak interstorey drift θ1. repeat the first step and increase IM by the step scale 

record, run analysis and extract DM θ2, and repeat above step, we can getθ3, …..θn until 

collapse is reached. Furthermore, to improve upon the capacity resolution, a simple 



 39 

enhancement is to add a step-reducing routine, for example bisection, when collapse (e.g. non-

convergence or with a tangent slope equal to 20% of the elastic slope) is detected, so as to 

tighten the bracketing of the Satline. This will enable a prescribed accuracy for the capacity to 

be reached regardless of the demand resolution.  

repeat 

Select an IM in the gap between the highest non-collapsing and lowest non-collapsing IM; 

scale record, run analysis and extract DM(s) 

until highest collapsing and lowest non-collapsing IM-gap< tolerance. 

When all three pieces are run sequentially, they make for a more effecient procedure, a 

hunt& fill tracing algorithm, described in detail by Vamvatsikos and Cornell , that performs 

increasingly larger leaps, attempting to bound the IM parameter space, and then ;fills in the 

gaps, both capacity and demand-wise. It needs an initial step and a stopping rule, just like the 

stepping algorithm, plus a step increasing function, a capacity and a demand resolution. The 

latter two can be selected so that a prescribed number of runs is performed on each record, thus 

tracing each curve with the same load of resources. 

Table 4.6 can show the Algorithm  for IDA curve. 
 

Table 4.6 The algorithm for IDA curve 

NO. Sa(T1) g Scale Factor θmax 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

0.005 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.5 

1.8 

2.1 

2.3 

2.5 

2.2 

0.013 

0.263 

0.526 

1.053 

1.579 

2.105 

2.632 

3.158 

3.947 

4.737 

5.526 

6.053 

6.579 

5.789 

0.04% 

0.66% 

1.28% 

2.41% 

3.64% 

4.33% 

4.39% 

4.39% 

5.18% 

6.44% 

8.42% 

14.06% 

noconverge 

10.44% 
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From above table can get 14 efficient point (θmax,Sa),These data points are plotted on a 

coordinate system DM –IM ,in Figure 4.63 to get a single IDA curve of the model-4 with 

Westmorland Fire station record. 

 
Figure 4.8  The IDA curves of the RC frame subjected to one ground motion 

 

As can be seen from Figure 4.8, IDA curve at the beginning is basically a straight line, this 

is because the structure of the initial deformation in seismic excitation in the elastic range. 

When the maximum story drift angle of about 0.04, IDA slope of the curve changes the 

maximum drift angle between 0.04to 0.045 segment curve has a relative rise phase, which is 

the stress hardening performance. Thereafter, the slope of the curve is more greatly reduced, up 

to 20% of the initial slope of the collapsed structure is in this case may be considered an edge. 

When the maximum story drift angle tends to infinity, the structure has reached a whole 

collapsed. 

Get the full IDA curve, you need to define the limits of state points on the curve IDA, IDA 

curves can be applied to performance-based earthquake engineering. In accordance with 

Chapter 3, section 3.3.4 defines three limit state point can be seen from Figure 4.8. 

When θmax = 1% , Sa(T1,5%) = 0.15g,the structure reaches IO limit state point, θmax = 

2% , Sa(T1,5%) = 0.33g the structure reaches LS limit state point, and θmax = 10% , Sa(T1,5%) 

= 2.191g, the structure reaches CP limit state point. 

4.6.2 Number of Ground Motion records of IDA curve 

ASCE/SEI 7suggests that utilizing seven or more randomly selected records provides 

enough accurate estimate of the EDPs accompanied by reduced record-to-record variability of 
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the responses. 

        Due to an IDA curve is not a good predictor of the damage of the structure, so we need to 

select a series of earthquakes recorded incremental dynamic analysis of structures, access to a 

number of IDA curves. And get WSM90 ground motion recorded excitation curve the same 

way as under the IDA, to get the IDA curve from other 9 earthquake excitation, the 10 IDA 

curves are summarized in the same IM-DM coordinate system, as shown in Figure 4.9. 

 
Figure 4.9   10 IDA curve summary of model-4 

 

Due to the shape of the IDA curve are related by the selected made ground motion records, 

The reaction of the same structure when selected a different ground motion records also have 

certain discrete, so it is necessary to use the median to summarize these different curves to 

reduce the difference in Figure 4.10. 

 

Figure 4.10 Median of IDA curves 
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Table 4.1  Summary limit state points on IDA curves 

 IO  LS  CP 

θma

x 

Sa(T1,5

%) 
θmax 

Sa(T1,

5%) 
θmax 

Sa(T1,5

%) 

1.00

% 
0.14 2.00% 0.276 

10.00

% 
1.28 

     

4.6.3 probabilistic seismic demand model 

Take logarithmic from each Intensity measure and damage measure, respectively. And 

according to the formula of the chapter 3 in the form of incremental dynamic analysis of the 

data obtained by linear regression analysis. Take ln(Sa) as independent variables and  logarithm 

of structural response ln(θmax) as the dependent variable establish the coordinate system, 

ln(θmax) – ln(Sa), and regression analysis results shown in Figure 4.11 

 

Figure 4.11  The basic model of linear regression analysis 

The probability of Seismic demand model is express: 

                 

      = a      = b 
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Table 4.2 

ln(θmax)=0.9839ln(Sa)-2.6421   

ln()=-2.6421   0.07121 

b=0.9839   0.9839 

 

4.6.4 Seismic Vulnerability Analysis 

Statistics from IDA results are used to derive a fragility curve, illustrated in Figure, which 

defines the probability of collapse as a function of the spectral intensity. The collapse fragility 

function is defined by the median and standard deviation of the ground motion intensities at 

which collapse occurs in IDA, assuming a lognormal distribution. 

By equation (3-1)  (3-2) shows that the probability of failure, Sa(T1,5%) as the 

independent variable is calculated as: 

     [
            ⁄  

√  
    

 
] 

Table 4.3 Three limit state on IDA curve 

LN(θmax)=0.9839LN(Sa)-2.6421   

ln(α)=-2.6421 α 0.07121 

b=0.9839 β 0.9839 

 

The composite logarithmic standard deviation √  
    

  , known as the dispersion, is 

taken from values recommended in HAZUS 99 , √  
    

 =0.4,  [ ] is the standard normal 

distribution function, the value  checking the table of the standard normal distribution to 

determine. Obtained the probability of corresponding to different levels of damage, this curve 

is the fragility curve of structure. The abscissa indicates the intensity of ground motion 

Sa(T1,5%), and the vertical axis represents the probability of damage state exceeded. Seismic 

fragility curves shown in Figure 4.12 
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Figure 4.12  The fragility curves of the RC frame subjected to a set of selected ground motions 

 

As can be seen from Figure 4.12, the structural from integrity of the state development to collapse 
state, fragility curves gradually become flat, the probability of failure is becoming  increasingly 
large. When Sa=0.355, the structure reached the probability of IO is 99%, LS is 73% and CP is 
0.003%. 
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Chapter 5 INFLUENCE OF STRUCTURE PARAMETERS ON 

THE SEISMIC VULNERABILITY 

5.1 Introduction 

        Based on the performance of seismic design makes the structure seismic design from the 

macroscopic qualitative targets to the concretization of the multiple target transition.  This 

chapter on four groups of RC plane frame structure based on IDA method of seismic 

vulnerability analysis, discuss the influence of the RC frame structure under different 

earthquake intensity, with different aspect ration, concrete strength, and the longitudinal 

reinforcement strength of the structure to achieve the different seismic performance level of the 

probability. So as to provide q quantitative reference for the RC frame structure based on the 

performance of seismic design. In order to meet the different levels of demand for the society 

and the owner of the building. 

5.2 Longitudinal reinforcement strength 

        According to the Italian code (NTC 2008), B 450C steel use mainly for the construction  

in  "Design of Concrete Structures" . with the need of this article, from the old building codes 

take out other 2 kinds of steel, FeB38k, FeB32k, to study the influence of Longitudinal strength 

of RC frame structure on the seismic vulnerability, this paper designed  3 RC frame structure 

according to the Italian code (NTC2008), with the different longitudinal reinforcement 

strength  ,B 450C, FeB38k, FeB32k,  in addition to the various the longitudinal reinforcement 

strength of each model and the basic properties of other materials are kept the same. The 

longitudinal reinforcement strengty take the yield stress value, due to the elastic modulus of 

steel discrete very small, in this paper take the value of unity E = 200000 MPa, the 

classification of steel and the yield stress shown in table 5.1. 

Table 5.1  The yield stress of steel and elastic modulus 

No. model Model-1 Model-2 Model-3 

steel classification B 450C FeB38k FeB32k 

       / Mpa 450 375 315 

Ecm       [     ] 200 000 200 000 200 000 

 

 



 46 

5.2.1 The analysis model based on the seismic vulnerability analysis of IDA 

method 

        Due to an IDA curve is not a good predictor of the damage of the structure, so we need to 

select a series of ground motion recorded separately for each model( model-1, model-2, model-

3) to analyze based on IDA method, access to a number of IDA curves. to get the 10 different 

IDA curve from each ground motion, the 10 IDA curves are summarized in the same IM-DM 

coordinate system, as shown in Figure 5.1 – 5.3. 

 

Figure 5.1 IDA curves of model-1 

 

 

Figure 5.2 IDA curves of model-2 
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Figure 5.3 IDA curves of model-3 

 

        Due to the shape of the IDA curve are related by the selected made ground motion records, 

The reaction of the same structure when selected a different ground motion records also have 

certain discrete, so it is necessary to use the median to summarize these different curves to 

reduce the difference. In Figure 5.4 - 5.6. 

 

 

Figure 5.4 Median of IDA curve for model-1 
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Figure 5.5 Median of IDA curve for model-2 

 

 

Figure 5.6 Median of IDA curve for model-3 
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        Define the limit of the state point on median of IDA curves, for model-1, model-2,model-

3, Respectively. Show on the table 5.2-5.4 

 

Table 5.2   3 limit state point for model-1 on median curves. 

  IO   LS   CP 

θmax Sa(T1,5%) θmax Sa(T1,5%) θmax Sa(T1,5%) 

1.00% 0.173 2.00% 0.353 10.00% 1.733 

 

 

Table 5.3    3 limit state point for model-2 on median curves. 

  IO   LS   CP 

θmax Sa(T1,5%) θmax Sa(T1,5%) θmax Sa(T1,5%) 

1.00% 0.175 2.00% 0.347 9.00% 1.619 

 

 

Table 5.4    3 limit state point for model-3 on median curves. 

  IO   LS   CP 

θmax Sa(T1,5%) θmax Sa(T1,5%) θmax Sa(T1,5%) 

1.00% 0.175 2.00% 0.355 8.00% 1.468 

 

 

        Take logarithmic from each Intensity measure and damage measure, respectively. And 

according to the formula of the chapter 3 in the form of incremental dynamic analysis of the 

data obtained by linear regression analysis. Take ln(Sa) as independent variables and  logarithm 

of structural response ln(θmax) as the dependent variable estabilish the coordinate system, 

ln(θmax) – ln(Sa), and regression analysis results shown in Figure 5.7-5.9. 
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Figure 5.7 regression analysis results on model-1 

 

 

Figure 5.8 regression analysis results on model-2 
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Figure 5.9 regression analysis results on model-3 

 

The probability of Seismic demand model is express on table 5.5-5.7. 

ln(α) = a    β = b 

 

Table 5.5 The probability of seismic demand model-4 

LN(θmax)=0.9759LN(Sa)-2.8542   

ln(α)=-2.8542 α 0.0576 

b=0.9759 β 0.9759 

 

Table 5.6 The probability of seismic demand model-5 

LN(θmax)=0.9840LN(Sa)-2.8349 

  ln(α)=-2.8349 α 0.05872 

b=0.9840 β 0.9840 

 

Table 5.7 The probability of seismic demand model-6 

LN(θmax)=0.9871LN(Sa)-2.8185 

  ln(α)=-2.8185 α 0.0597 

b=0.987 β 0.987 
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        From above table we can get each value of α , β , and then take α , β , into equation (3-1) 

obtained the failure probability of fundamental period of structure corrensponding the 

acceleration response spectrum Sa(T1,5%) in the limit state. as shown by formula (5-1)and to get 

the failure probability of the structure for each limit state. 

 

    [
  [ (  (     ))

 
  ⁄ ]

√  
    

 
]            (5-1) 

  

The failure probability of the structure for each limit state on model-1 
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The failure probability of the structure for each limit state on model-2 
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The failure probability of the structure for each limit state on model-3 
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]   (5-4) 

 

        The composite logarithmic standard deviation √  
    

  , known as the dispersion, is 

tanken from values recommended in HAZUS 99 , √  
    

  =0.4, Sc is the capacity 

parameters of structure under the different limit state.    [ ] is the standard normal distribution 

function, the value  checking the table of the standard normal distribution to determine. 

Obtained  the probability of corresponding to different levels of damage, this curve is the 
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fragility curve of structure. The abscissa indicates the intensity of  ground motion Sa(T1,5%), 

and the vertical axis represents the probability of damage state exceeded. Seismic fragility 

curves shown in Figure 5.10-5.11. 

 

 

Figure 5.10 Fragility curves of model-1 

 

 

Figure 5.11  Fragility curves of model-2 
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Figure 5.12 Fragility curves of model-3 
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5.2.2 Results analysis 

        By comparing the model-1, model-2, and mode-3, of the seismic fragility curves, found 

that, with the increase the concrete strength of RC frame structure, Basically unchanged the 

probability of the IO state , a little different of the LS state, with the same intensity earthquake.  

But on the CP limit state the probability of the 3 model are very different.  The damage of the 

structure is similar when under a small earthquake, because the deformation of the structure is 

also very small, the steel has not yet reached the state yield. And with the increase of steel 

strength, the probability of CP state  is getting lower. Means the smaller the strength of steel, 

under a great earthquake, the structure of RC frame more prone to collapse.  So the Italian code 

(NTC 2008) suggested the B 450C steel is very good to resist collapse. Compared to the 3 limit 

state of 3 model as shown in Figure 5.13 – 5.15. 

 

 

 

 
 

Figure5.13  compare the different steel strength on IO state. 
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Figure5.14  compare the different steel strength on LS state. 

 

 

 

 
 

Figure5.14  compare the different steel strength on LS state. 
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5.3 Strength of Concrete 

        To study the influence of concrete strength of RC frame structure on the seismic 

vulnerability, this paper designed  4 RC frame structure according to the Italian code 

(NTC2008), with the different strength concrete columns, C25/30,  C30/37,  C40/50, and 

C50/60, in addition to the various the concret strength of  column of each model and the basic 

properties of other materials are kept the same with basic model-4. C25/30,  C30/37,  C40/50, 

and C50/60 the concrete strength take the average value  ( 5-1) and elastic modulus  take from 

the formula(5-2), as shown in Table 5.8 

          [N/   ]                                 (5-5) 

Ecm = 22.000*   
  

+
   

 [     ]  

Where 

       the characteristic value to the average value of the cylindrical strength. 

        characteristic compressive strength of the cylindric. 

Ecm  value for design of elastic modulus. 

 

Table 5.8  The average concrete strength and elastic modulus 

No. model Model-

4 

Model-

5 

Model-

6 

Model-

7 

concrete classification C25/30 C30/37 C40/50 C50/60 

             Mpa 33 38 48 58 

Ecm       [     ] 31475 32836 35220 37277 
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5.3.1 The analysis model based on the seismic vulnerability analysis of IDA 

method 

        Due to an IDA curve is not a good predictor of the damage of the structure, so we need to 

select a series of ground motion recorded separately for each model( model-4, model-5, model-

6, model-7) to analyze based on IDA method, access to a number of IDA curves. to get the 10 

different IDA curve from each ground motion, the 10 IDA curves are summarized in the same 

IM-DM coordinate system, as shown in Figure 5.15 -5.18 

 

 

Figure 5.15 IDA curves of model-4 

 

 

Figure 5.16 IDA curves of model-5 
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Figure 5.17 IDA curves of model-6 

 

 

Figure 5.18 IDA curves of model-7 
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        Due to the shape of the IDA curve are related by the selected made ground motion records, 

The reaction of the same structure when selected a different ground motion records also have 

certain discrete, so it is necessary to use the median to summarize these different curves to 

reduce the difference. In Figure 5.19 – 5.22. 

 

 

Figure 5.19 Median of IDA curve for model-4 

 

 

Figure 5.20 Median of IDA curve for model-5 
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Figure 5.21 Median of IDA curve for model-6 

 

 

 

Figure 5.22 Median of IDA curve for model-7 
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        Define the limit of the state point on median of IDA curves, for model-4, model-5,model-

6, model-7, Respectively. Show on the table 5.9-5.12 

Table 5.9   3 limit state point for model-4 on median curves. 

 

IO 

 

LS 

 

CP 

θmax Sa(T1,5%) θmax Sa(T1,5%) θmax Sa(T1,5%) 

1.00% 0.14 2.00% 0.276 10.00% 1.28 

 

Table 5.10    3 limit state point for model-5 on median curves. 

  IO   LS   CP 

θmax Sa(T1,5%) θmax Sa(T1,5%) θmax Sa(T1,5%) 

1.00% 0.14 2.00% 0.263 7.76% 1.3 

 

Table 5.11    3 limit state point for model-6 on median curves. 

  IO   LS   CP 

θmax Sa(T1,5%) θmax Sa(T1,5%) θmax Sa(T1,5%) 

1.00% 0.165 2.00% 0.34 10.00% 1.777 

 

Table 5.12    3 limit state point for model-7 on median curves. 

  IO   LS   CP 

θmax Sa(T1,5%) θmax Sa(T1,5%) θmax Sa(T1,5%) 

1.00% 0.19 2.00% 0.375 10.00% 1.94 

 

        Take logarithmic from each Intensity measure and damage measure, respectively. And 

according to the formula of the chapter 3 in the form of incremental dynamic analysis of the 

data obtained by linear regression analysis. Take ln(Sa) as independent variables and  logarithm 

of structural response ln(θmax) as the dependent variable estabilish the coordinate system, 

ln(θmax) – ln(Sa), and regression analysis results shown in Figure 5.23-5.26. 
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Figure 5.23 regression analysis results on model-4 

 

 

 

Figure 5.24 regression analysis results on model-5 
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Figure 5.25 regression analysis results on model-6 

 

 

Figure 5.26 regression analysis results on model-7 
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Table 5.13 The probability of seismic demand model-4 

LN(θmax)=0.9839LN(Sa)-2.6421   

ln(α)=-2.6421 α 0.07121 

b=0.9839 β 0.9839 

 

Table 5.14 The probability of seismic demand model-5 

LN(θmax)=0.9805LN(Sa)-2.6526 

  ln(α)=-2.6526 α 0.070468 

b=0.9805 β 0.9805 

 

Table 5.15 The probability of seismic demand model-6 

LN(θmax)=0.966LN(Sa)-2.9594 

  ln(α)=-2.9594 α 0.05185 

b=0.966 β 0.966 

 

Table 5.16 The probability of seismic demand model-7 

LN(θmax)=0.9648LN(Sa)-3.0277 

  ln(α)=-3.0277 α 0.048427 

b=0.9648 β 0.9648 

 

 

        From above table we can get each value of α , β , and then take α , β , into equation (3-1) 

obtained the failure probability of fundamental period of structure corrensponding the 

acceleration response spectrum Sa(T1,5%) in the limit state. as shown by formula (5-1)and to 

get the failure probability of the structure for each limit state. 
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The failure probability of the structure for each limit state on model-4 
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The failure probability of the structure for each limit state on model-5 
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The failure probability of the structure for each limit state on model-6 
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The failure probability of the structure for each limit state on model-7 
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        The composite logarithmic standard deviation √  
    

  , known as the dispersion, is 

tanken from values recommended in HAZUS 99 , √  
    

  =0.4, Sc is the capacity 

parameters of structure under the different limit state.    [ ] is the standard normal distribution 

function, the value  checking the table of the standard normal distribution to determine. 

Obtained  the probability of corresponding to different levels of damage, this curve is the 
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fragility curve of structure. The abscissa indicates the intensity of  ground motion Sa(T1,5%), 

and the vertical axis represents the probability of damage state exceeded. Seismic fragility 

curves shown in Figure 5.27-5.30. 

 

 

Figure 5.27 Fragility curves of model-4 

 

 

 

 

Figure 5.28  Fragility curves of model-5 
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Figure 5.29 Fragility curves of model-6 

 

 

 

Figure 5.30  Fragility curves of model-7 
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5.3.2 Results analysis 

        By comparing the model-4, model-5, mode-6, and model-7 of the seismic fragility curves, 

found that, with the increase the concrete strength of RC frame structure, the smaller the 

probability of the IO state , LS state and CP state  with the same intensity earthquake. The 

probability of the model-4 and model-5 is very similar either in the IO state or LS state, and 

have a small difference in CP state.but the probability of the model-6 and model-7 are very 

different compared to the model-4 and model-5 in IO, LS and CP state. Means the smaller the 

strength of concrete, under the same seismic intensity, the structure more prone to slight 

damage and moderate damage, but also easier to achieve the collapse. As shown in Figure 5.31-

5.33. 

 

 

 
 

Figure 5.31  compare the different concrete strength on IO state. 

 

 

 

 

 

 

 

 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.2 0.4 0.6 0.8 1.0

D
am

ag
e

 S
ta

te
 E

xc
e

e
d

in
g 

P
ro

b
ab

ili
ty

 

IM[Sa(T1)] 

Fragility curves - IO  (Immediate Occupancy)   

Model-4

Model-5

Model-6

Model-7



 70 

 

 

 
 

Figure 5.32  compare the different concrete strength on IO state. 

 

 

 

 

 
 

Figure 5.33  compare the different concrete strength on IO state. 
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5.4  The aspect ratio of the column cross-section 

         To study the influence of the aspect ratio of the column cross-section of RC frame 

structure on the seismic vulnerability, this paper designed  3 RC frame structure according to 

the Italian code (NTC2008), with the different aspect ration of the columns cross-section and 

keep the same cross-sectional area in order to maintain constant axial compression ratio.  In 

addition to the various the aspect ratio of the column cross-section of each model and the basic 

properties of other materials are kept the same with basic model. The concrete use C25/30 and 

the steel use B 450C. The 3 aspect ration of the column cross-section as shown in Figure 5.43. 

 

     

 

Figure 5.43 The 3 aspect ration of the column cross-section 

 

5.4.1  The analysis model based on the seismic vulnerability analysis of IDA 

method 

        Due to an IDA curve is not a good predictor of the damage of the structure, so we need to 

select a series of ground motion recorded separately for each model( model-4, model-8, model-

9) to analyze based on IDA method, access to a number of IDA curves. to get the 10 different 

IDA curve from each ground motion, the 10 IDA curves are summarized in the same IM-DM 

coordinate system, as shown in Figure 5.44 – 5.46. 
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Figure 5.44 IDA curves of model-4 

 

 

 

Figure 5.45  IDA curves of model-8 
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Figure 5.46 IDA curves of model-9 

 

 

        Due to the shape of the IDA curve are related by the selected made ground motion records, 

The reaction of the same structure when selected a different ground motion records also have 

certain discrete, so it is necessary to use the median to summarize these different curves to 

reduce the difference. In Figure 5.47 – 5.49. 

 

Figure 5.47 Median of IDA curve for model-4 
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Figure 5.48 Median of IDA curve for model-8 

 

 

 

Figure 5.49 Median of IDA curve for model-9 
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Define the limit of the state point on median of IDA curves, for model-4, model-8, model-9, 

Respectively. Show on the table 5.17-5.19 

 

Table 5.17   3 limit state point for model-4 on median curves. 

 

IO 

 

LS 

 

CP 

θmax Sa(T1,5%) θmax Sa(T1,5%) θmax Sa(T1,5%) 

1.00% 0.14 2.00% 0.276 10.00% 1.28 

 

Table 5.18    3 limit state point for model-8 on median curves. 

  IO   LS   CP 

θmax Sa(T1,5%) θmax Sa(T1,5%) θmax Sa(T1,5%) 

1.00% 0.17 2.00% 0.345 10.00% 1.835 

 

Table 5.19    3 limit state point for model-9 on median curves. 

  IO   LS   CP 

θmax Sa(T1,5%) θmax Sa(T1,5%) θmax Sa(T1,5%) 

1.00% 0.185 2.00% 0.38 10.00% 2.033 

 

 

Take logarithmic from each Intensity measure and damage measure, respectively. And 

according to the formula of the chapter 3 in the form of incremental dynamic analysis of the 

data obtained by linear regression analysis. Take ln(Sa) as independent variables and  logarithm 

of structural response ln(θmax) as the dependent variable estabilish the coordinate system, 

ln(θmax) – ln(Sa), and regression analysis results shown in Figure 5.50-5.52.. 
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Figure 5.50 regression analysis results on model-4 

 

 

Figure 5.51 regression analysis results on model-8 
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Figure 5.52 regression analysis results on model-9 

The probability of Seismic demand model is express on table 5.20-5.22. 

ln(α) = a    β = b 

Table 5.20 The probability of seismic demand model-4 

LN(θmax)=0.9839LN(Sa)-2.6421   

ln(α)=-2.6421 α 0.07121 

b=0.9839 β 0.9839 

 

Table 5.21 The probability of seismic demand model-8 

LN(θmax)=0.9773LN(Sa)-2.9127 

  ln(α)= -2.9127 α 0.054329 

b=0.9773 β 0.9773 

 

Table 5.22 The probability of seismic demand model-9 

LN(θmax)=0.9649LN(Sa)-3.0075 

  ln(α)= -3.0075 α 0.049415 

b=0.9649 β 0.9649 
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From above table we can get each value of α , β , and then take α , β , into equation (3-1) 

obtained the failure probability of fundamental period of structure corrensponding the 

acceleration response spectrum Sa(T1,5%) in the limit state. as shown by formula (5-13)and to 

get the failure probability of the structure for each limit state. 
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The failure probability of the structure for each limit state on model-4 
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The failure probability of the structure for each limit state on model-5 
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The failure probability of the structure for each limit state on model-6 
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The composite logarithmic standard deviation √  
    

  , known as the dispersion, is tanken 

from values recommended in HAZUS 99 , √  
    

  =0.4, Sc is the capacity parameters of 

structure under the different limit state.    [ ] is the standard normal distribution function, the 

value  checking the table of the standard normal distribution to determine. Obtained  the 
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probability of corresponding to different levels of damage, this curve is the fragility curve of 

structure. The abscissa indicates the intensity of  ground motion Sa(T1,5%), and the vertical 

axis represents the probability of damage state exceeded. Seismic fragility curves shown in 

Figure 5.53-5.55. 

 

 

Figure 5.53 Fragility curves of model-4 
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Figure 5.54  Fragility curves of model-8 

 

 

 

Figure 5.55 Fragility curves of model-9 
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5.4.2 Results analysis 

        By comparing the model-4, model-8, and model-9 of the seismic fragility curves, found 

that, with the increase the aspect ratio of RC frame structure, The probability of the model-4 

and model-8 are substantially the same in the IO state, a little different compare to the model-9 

in the CP state, and the probability of the model-8, model-9 are very different compared to the 

model 4 in LS,CP state.  

        For example when Sa=0.4g the probability of model-4 is 92.92%, the probability of  

model-8 is 78.95%, and the probability of model-9 is smallest, about 70% in the LS state. 

Means to increase the aspect ratio of RC frame, ductility and lateral deformation capacity also 

increased, easy to form a "strong column weak beam" yield mechanism. The resistance of 

structure and structural collapse resistance increased. So the aspect of model-8 and model-9 is 

better to be used in Earthquake area. Comparing with probability of 3 models as shown in 

Figure 5.56-5.58. 

 

 

 

 
Figure 5.56  compare the different aspect ratio on IO state. 
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Figure 5.57  compare the different aspect ratio on LS state. 

 

 

 

 
 

Figure 5.58  compare the different aspect ratio on CP state. 
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Chapter 6 CONCLUSIONS AND PROSPECT 

6.1 The main results and conclusions of this paper 

This paper is mainly to study the impact of three factors (the longitudinal reinforcement 

strength, the concrete strength and the aspect ratio of cross-section column) on the seismic 

performance of RC frame structure, especially against the influence of the collapse. Through 

analyzing the seismic vulnerability based on IDA method for the 6 story RC plane frame of 

structure, the conclusions can be summarized as follows: 

1) In order to perform the performance calculations needed for Performance Based 

Engineering Earthquake (PBEE), the limit-states on the IDA curves have been defined, 

three of which are going to be demonstrated: Immediate Occupancy, Life Safe, and 

Collapse Prevention. Immediate Occupancy is violated at θmax=1% , Life Safe at θmax=2% 

according to FEMA 350. On the other hand, when the local tangent reaches 20% of the 

elastic slope (Figure 3.34) or θmax=10%, Collapse Prevention exceeds the IDA curve 

immediately. Finally, the global dynamic instability shows up when the flatline is reached 

and any increase in the IM results in practically infinite DM response. 

2) The increase of the concrete strength of RC frame structure brings no change in the 

probability of the IO state corresponding to the same intensity earthquake, although a little 

difference in the LS state. At the CP limit state, the probabilities of the 3 models are very 

different. When under a small earthquake, the damage of the structure is similar, because 

the steel has not yet reached the state yield due to the small deformation of the structure. 

Under a great earthquake, along with the increase of the steel strength, the probability in 

the CP state is getting lower, which means the smaller the strength of steel, the more prone 

to collapse for the structure of RC frame.  That is the reason that the Italian code (NTC 

2008) suggested the B 450C steel was very good to be used in the earthquake areas. 

3) Corresponding to the same intensity of earthquake, when the concrete strength of RC 

frame structure is increased, the probabilities of the IO state, LS state and CP state become 

smaller. The probability of the model-4 and model-5 is very similar either in the IO state or 

LS state, and have a small difference in CP state. However, the probability of the model-6 

and model-7 are very different compared to the model-4 and model-5 in IO, LS and CP 

states, which means the structure is more prone to collapse for small concrete strength 

when under the same seismic intensity. Therefore, the concretes C40/50, C50/60 are 
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suggested to be used in the earthquake areas. 

4) When increasing the aspect ratio of RC frame structure, the probabilities of the model-4 

and model-8 remain the same in the IO state, the probability of the model-9 is a little 

different in the CP state, and the probabilities of the model-8, model-9 are very different 

compared to the model-4 in the LS, CP states. That means it is easy to form a "strong 

column weak beam" yield mechanism when increasing the aspect ratio of RC frame, 

ductility and lateral deformation capacity. The resistance of structure and structural 

collapse resistance increase. Rectangular cross-section is better than a square cross-section, 

which is the reason that the aspect of model-8 and model-9 is better to be used in the 

Earthquake areas. 
 

 

 

6.2 Prospect 

Due to the limited research time of this work, there are still some problems left worthy to study 

further. 

 

1) Due to the large calculations numbers of IDA method, it takes much time to finish all the 

works in the OpenSEES considering the 9 related models used in this work. Although it is 

theoretically possible to do IDA analysis of 3D frame in OpenSEES, planar analysis is 

used here because of the limited time.  However, it is recommended to build 3D models to 

do simulation in the future work, which should be more accurate considering the effects of 

floorslabs and walls. 

2) When doing the IDA analysis, the thesis simplify the earthquake force into one direction, 

in fact the real force should be in multi-direction, so it is still needed to consider those 

multiple Impact Factors. 

3) This thesis only consider three impact factors to RC frame structure, which are the aspect 

ratio, the concrete strength and the longitudinal reinforcement strength. Stirrup restrain, 

seismic fortification intensity and the condition of the base are not under consideration.  
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APPENDIX   

 

Table 6.1 Normal standard distribution and the value of Probability (Model-1) 

 

 

 

 

 

 

Normal standard distribution and the value of Probability 

Sa IO(θmax=1%) LS(θmax=2%) CP(θmax=10%) Sa  Pf(θ=1%) Pf(θ=2%) Pf(θ=10%) 

0.005  -8.549  -10.282  -14.306  0.005  0.0000  0.0000  0.0000  

0.100  -1.240  -2.973  -6.997  0.100  0.1074  0.0015  0.0000  

0.200  0.451  -1.282  -5.306  0.200  0.6739  0.0999  0.0000  

0.300  1.440  -0.293  -4.317  0.300  0.9251  0.3848  0.0000  

0.400  2.142  0.409  -3.615  0.400  0.9839  0.6587  0.0002  

0.500  2.686  0.953  -3.070  0.500  0.9964  0.8298  0.0011  

0.600  3.131  1.398  -2.625  0.600  0.9991  0.9190  0.0043  

0.700  3.507  1.774  -2.249  0.700  0.9998  0.9620  0.0122  

0.800  3.833  2.100  -1.924  0.800  0.9999  0.9821  0.0272  

0.900  4.120  2.387  -1.636  0.900  1.0000  0.9915  0.0509  

1.000  4.377  2.644  -1.379  1.000  1.0000  0.9959  0.0839  

1.200  4.822  3.089  -0.934  1.200  1.0000  0.9990  0.1751  

1.400  5.198  3.465  -0.558  1.400  1.0000  0.9997  0.2884  

1.600  5.524  3.791  -0.232  1.600  1.0000  0.9999  0.4081  

1.800  5.811  4.079  0.055  1.800  1.0000  1.0000  0.5219  

2.000  6.068  4.336  0.312  2.000  1.0000  1.0000  0.6225  

2.200  6.301  4.568  0.545  2.200  1.0000  1.0000  0.7070  

2.400  6.513  4.780  0.757  2.400  1.0000  1.0000  0.7754  

2.600  6.709  4.976  0.952  2.600  1.0000  1.0000  0.8295  

2.800  6.889  5.156  1.133  2.800  1.0000  1.0000  0.8714  

3.000  7.058  5.325  1.301  3.000  1.0000  1.0000  0.9034  

3.200  7.215  5.482  1.459  3.200  1.0000  1.0000  0.9277  

3.600  7.503  5.770  1.746  3.600  1.0000  1.0000  0.9596  

3.800  7.634  5.902  1.878  3.800  1.0000  1.0000  0.9698  

4.000  7.760  6.027  2.003  4.000  1.0000  1.0000  0.9774  

4.200  7.879  6.146  2.122  4.200  1.0000  1.0000  0.9831  
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Table 6.1 Normal standard distribution and the value of Probability (Model-2) 

 

 

 

 

 

 

 

Normal standard distribution and the value of Probability 

Sa IO(θmax=1%) LS(θmax=2%) CP(θmax=10%) Sa  Pf(θ=1%) Pf(θ=2%) Pf(θ=10%) 

0.005  -8.608  -10.341  -14.101  0.005  0.0000  0.0000  0.0000  

0.100  -1.238  -2.971  -6.732  0.100  0.1078  0.0015  0.0000  

0.200  0.467  -1.266  -5.026  0.200  0.6796  0.1027  0.0000  

0.300  1.464  -0.269  -4.029  0.300  0.9284  0.3941  0.0000  

0.400  2.172  0.439  -3.321  0.400  0.9851  0.6697  0.0004  

0.500  2.721  0.988  -2.772  0.500  0.9967  0.8384  0.0028  

0.600  3.169  1.436  -2.324  0.600  0.9992  0.9246  0.0101  

0.700  3.548  1.816  -1.945  0.700  0.9998  0.9653  0.0259  

0.800  3.877  2.144  -1.616  0.800  0.9999  0.9840  0.0530  

0.900  4.167  2.434  -1.326  0.900  1.0000  0.9925  0.0924  

1.000  4.426  2.693  -1.067  1.000  1.0000  0.9965  0.1430  

1.200  4.874  3.142  -0.619  1.200  1.0000  0.9992  0.2681  

1.400  5.254  3.521  -0.239  1.400  1.0000  0.9998  0.4054  

1.600  5.582  3.849  0.089  1.600  1.0000  0.9999  0.5355  

1.800  5.872  4.139  0.379  1.800  1.0000  1.0000  0.6476  

2.000  6.131  4.398  0.638  2.000  1.0000  1.0000  0.7383  

2.200  6.366  4.633  0.872  2.200  1.0000  1.0000  0.8085  

2.400  6.580  4.847  1.087  2.400  1.0000  1.0000  0.8614  

2.600  6.776  5.044  1.283  2.600  1.0000  1.0000  0.9003  

2.800  6.959  5.226  1.466  2.800  1.0000  1.0000  0.9286  

3.000  7.129  5.396  1.635  3.000  1.0000  1.0000  0.9490  

3.200  7.287  5.554  1.794  3.200  1.0000  1.0000  0.9636  

3.600  7.577  5.844  2.084  3.600  1.0000  1.0000  0.9814  

3.800  7.710  5.977  2.217  3.800  1.0000  1.0000  0.9867  

4.000  7.836  6.103  2.343  4.000  1.0000  1.0000  0.9904  

4.200  7.956  6.223  2.463  4.200  1.0000  1.0000  0.9931  
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Table 6.1 Normal standard distribution and the value of Probability (Model-3) 

Normal standard distribution and the value of Probability 

Sa IO(θmax=1%) LS(θmax=2%) CP(θmax=10%) Sa  Pf(θ=1%) Pf(θ=2%) Pf(θ=10%) 

0.005  -8.608  -10.341  -13.807  0.005  0.0000  0.0000  0.0000  

0.100  -1.215  -2.948  -6.414  0.100  0.1121  0.0016  0.0000  

0.200  0.495  -1.238  -4.703  0.200  0.6898  0.1079  0.0000  

0.300  1.496  -0.237  -3.703  0.300  0.9326  0.4063  0.0001  

0.400  2.206  0.473  -2.993  0.400  0.9863  0.6818  0.0014  

0.500  2.756  1.023  -2.442  0.500  0.9971  0.8470  0.0073  

0.600  3.206  1.473  -1.992  0.600  0.9993  0.9297  0.0232  

0.700  3.587  1.854  -1.612  0.700  0.9998  0.9681  0.0535  

0.800  3.916  2.183  -1.282  0.800  1.0000  0.9855  0.0999  

0.900  4.207  2.474  -0.992  0.900  1.0000  0.9933  0.1607  

1.000  4.467  2.734  -0.732  1.000  1.0000  0.9969  0.2322  

1.200  4.917  3.184  -0.282  1.200  1.0000  0.9993  0.3890  

1.400  5.297  3.564  0.099  1.400  1.0000  0.9998  0.5393  

1.600  5.627  3.894  0.428  1.600  1.0000  1.0000  0.6657  

1.800  5.917  4.185  0.719  1.800  1.0000  1.0000  0.7639  

2.000  6.177  4.445  0.979  2.000  1.0000  1.0000  0.8362  

2.200  6.413  4.680  1.214  2.200  1.0000  1.0000  0.8876  

2.400  6.627  4.894  1.429  2.400  1.0000  1.0000  0.9235  

2.600  6.825  5.092  1.626  2.600  1.0000  1.0000  0.9480  

2.800  7.008  5.275  1.809  2.800  1.0000  1.0000  0.9648  

3.000  7.178  5.445  1.979  3.000  1.0000  1.0000  0.9761  

3.200  7.337  5.604  2.139  3.200  1.0000  1.0000  0.9838  

3.600  7.628  5.895  2.429  3.600  1.0000  1.0000  0.9924  

3.800  7.761  6.028  2.563  3.800  1.0000  1.0000  0.9948  

4.000  7.888  6.155  2.689  4.000  1.0000  1.0000  0.9964  

4.200  8.008  6.275  2.810  4.200  1.0000  1.0000  0.9975  
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Table 6.1 Normal standard distribution and the value of Probability (Model-4) 

 Normal standard distribution and the value of Probability 

Sa IO(θmax=1%) LS(θmax=2%) CP(θmax=10%) Sa  Pf(θ=1%) Pf(θ=2%) Pf(θ=10%) 

0.005  -8.125  -9.858  -13.881  0.005  0.0000  0.0000  0.0000  

0.100  -0.756  -2.489  -6.513  0.100  0.2248  0.0064  0.0000  

0.200  0.949  -0.784  -4.808  0.200  0.8286  0.2165  0.0000  

0.300  1.946  0.213  -3.810  0.300  0.9742  0.5844  0.0001  

0.400  2.654  0.921  -3.103  0.400  0.9960  0.8215  0.0010  

0.500  3.203  1.470  -2.554  0.500  0.9993  0.9292  0.0053  

0.600  3.651  1.918  -2.105  0.600  0.9999  0.9725  0.0176  

0.700  4.030  2.297  -1.726  0.700  1.0000  0.9892  0.0422  

0.800  4.359  2.626  -1.398  0.800  1.0000  0.9957  0.0811  

0.900  4.648  2.916  -1.108  0.900  1.0000  0.9982  0.1339  

1.000  4.908  3.175  -0.849  1.000  1.0000  0.9993  0.1980  

1.200  5.356  3.623  -0.400  1.200  1.0000  0.9999  0.3444  

1.400  5.735  4.002  -0.021  1.400  1.0000  1.0000  0.4915  

1.600  6.064  4.331  0.307  1.600  1.0000  1.0000  0.6207  

1.800  6.353  4.621  0.597  1.800  1.0000  1.0000  0.7247  

2.000  6.613  4.880  0.856  2.000  1.0000  1.0000  0.8040  

2.200  6.847  5.114  1.091  2.200  1.0000  1.0000  0.8623  

2.400  7.061  5.328  1.305  2.400  1.0000  1.0000  0.9040  

2.600  7.258  5.525  1.501  2.600  1.0000  1.0000  0.9334  

2.800  7.440  5.707  1.684  2.800  1.0000  1.0000  0.9539  

3.000  7.610  5.877  1.853  3.000  1.0000  1.0000  0.9681  

3.200  7.769  6.036  2.012  3.200  1.0000  1.0000  0.9779  

3.600  8.058  6.326  2.302  3.600  1.0000  1.0000  0.9893  

3.800  8.191  6.459  2.435  3.800  1.0000  1.0000  0.9926  

4.000  8.318  6.585  2.561  4.000  1.0000  1.0000  0.9948  

4.200  8.438  6.705  2.681  4.200  1.0000  1.0000  0.9963  
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Table 6.1 Normal standard distribution and the value of Probability (Model-5) 

Normal standard distribution and the value of Probability 

Sa IO(θmax=1%) LS(θmax=2%) CP(θmax=10%) Sa  Pf(θ=1%) Pf(θ=2%) Pf(θ=10%) 

0.005  -8.106  -9.839  -13.863  0.005  0.0000  0.0000  0.0000  

0.100  -0.763  -2.496  -6.519  0.100  0.2228  0.0063  0.0000  

0.200  0.936  -0.797  -4.820  0.200  0.8254  0.2129  0.0000  

0.300  1.930  0.197  -3.826  0.300  0.9732  0.5782  0.0001  

0.400  2.635  0.903  -3.121  0.400  0.9958  0.8166  0.0009  

0.500  3.182  1.449  -2.574  0.500  0.9993  0.9264  0.0050  

0.600  3.629  1.896  -2.127  0.600  0.9999  0.9710  0.0167  

0.700  4.007  2.274  -1.749  0.700  1.0000  0.9885  0.0401  

0.800  4.334  2.602  -1.422  0.800  1.0000  0.9954  0.0775  

0.900  4.623  2.890  -1.133  0.900  1.0000  0.9981  0.1285  

1.000  4.881  3.149  -0.875  1.000  1.0000  0.9992  0.1908  

1.200  5.328  3.595  -0.428  1.200  1.0000  0.9998  0.3343  

1.400  5.706  3.973  -0.050  1.400  1.0000  1.0000  0.4800  

1.600  6.034  4.301  0.277  1.600  1.0000  1.0000  0.6091  

1.800  6.322  4.589  0.566  1.800  1.0000  1.0000  0.7142  

2.000  6.581  4.848  0.824  2.000  1.0000  1.0000  0.7950  

2.200  6.814  5.081  1.058  2.200  1.0000  1.0000  0.8549  

2.400  7.027  5.295  1.271  2.400  1.0000  1.0000  0.8981  

2.600  7.224  5.491  1.467  2.600  1.0000  1.0000  0.9288  

2.800  7.405  5.672  1.649  2.800  1.0000  1.0000  0.9504  

3.000  7.574  5.842  1.818  3.000  1.0000  1.0000  0.9655  

3.200  7.733  6.000  1.976  3.200  1.0000  1.0000  0.9759  

3.600  8.021  6.288  2.265  3.600  1.0000  1.0000  0.9882  

3.800  8.154  6.421  2.397  3.800  1.0000  1.0000  0.9917  

4.000  8.280  6.547  2.523  4.000  1.0000  1.0000  0.9942  

4.200  8.399  6.666  2.643  4.200  1.0000  1.0000  0.9959  
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Table 6.1 Normal standard distribution and the value of Probability (Model-6) 

Normal standard distribution and the value of Probability 

Sa IO(θmax=1%) LS(θmax=2%) CP(θmax=10%) Sa  Pf(θ=1%) Pf(θ=2%) Pf(θ=10%) 

0.005  -8.681  -10.414  -14.437  0.005  0.0000  0.0000  0.0000  

0.100  -1.446  -3.179  -7.203  0.100  0.0740  0.0007  0.0000  

0.200  0.228  -1.505  -5.529  0.200  0.5900  0.0661  0.0000  

0.300  1.207  -0.526  -4.550  0.300  0.8863  0.2994  0.0000  

0.400  1.902  0.169  -3.855  0.400  0.9714  0.5670  0.0001  

0.500  2.440  0.708  -3.316  0.500  0.9927  0.7604  0.0005  

0.600  2.881  1.148  -2.876  0.600  0.9980  0.8745  0.0020  

0.700  3.253  1.520  -2.503  0.700  0.9994  0.9358  0.0062  

0.800  3.576  1.843  -2.181  0.800  0.9998  0.9673  0.0146  

0.900  3.860  2.127  -1.896  0.900  0.9999  0.9833  0.0289  

1.000  4.114  2.382  -1.642  1.000  1.0000  0.9914  0.0503  

1.200  4.555  2.822  -1.202  1.200  1.0000  0.9976  0.1147  

1.400  4.927  3.194  -0.829  1.400  1.0000  0.9993  0.2034  

1.600  5.249  3.517  -0.507  1.600  1.0000  0.9998  0.3061  

1.800  5.534  3.801  -0.223  1.800  1.0000  0.9999  0.4119  

2.000  5.788  4.056  0.032  2.000  1.0000  1.0000  0.5127  

2.200  6.019  4.286  0.262  2.200  1.0000  1.0000  0.6034  

2.400  6.229  4.496  0.472  2.400  1.0000  1.0000  0.6816  

2.600  6.422  4.689  0.666  2.600  1.0000  1.0000  0.7471  

2.800  6.601  4.868  0.844  2.800  1.0000  1.0000  0.8008  

3.000  6.768  5.035  1.011  3.000  1.0000  1.0000  0.8440  

3.200  6.923  5.191  1.167  3.200  1.0000  1.0000  0.8784  

3.600  7.208  5.475  1.451  3.600  1.0000  1.0000  0.9267  

3.800  7.338  5.606  1.582  3.800  1.0000  1.0000  0.9432  

4.000  7.462  5.729  1.706  4.000  1.0000  1.0000  0.9560  

4.200  7.580  5.847  1.824  4.200  1.0000  1.0000  0.9659  
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Table 6.1 Normal standard distribution and the value of Probability (Model-7) 

Normal standard distribution and the value of Probability 

Sa IO(θmax=1%) LS(θmax=2%) CP(θmax=10%) Sa  Pf(θ=1%) Pf(θ=2%) Pf(θ=10%) 

0.005  -8.836  -10.569  -14.592  0.005  0.0000  0.0000  0.0000  

0.100  -1.610  -3.343  -7.367  0.100  0.0537  0.0004  0.0000  

0.200  0.062  -1.671  -5.695  0.200  0.5246  0.0473  0.0000  

0.300  1.040  -0.693  -4.717  0.300  0.8508  0.2441  0.0000  

0.400  1.734  0.001  -4.023  0.400  0.9585  0.5003  0.0000  

0.500  2.272  0.539  -3.485  0.500  0.9885  0.7050  0.0002  

0.600  2.712  0.979  -3.045  0.600  0.9967  0.8361  0.0012  

0.700  3.083  1.351  -2.673  0.700  0.9990  0.9116  0.0038  

0.800  3.405  1.673  -2.351  0.800  0.9997  0.9528  0.0094  

0.900  3.690  1.957  -2.067  0.900  0.9999  0.9748  0.0194  

1.000  3.944  2.211  -1.813  1.000  1.0000  0.9865  0.0349  

1.200  4.383  2.651  -1.373  1.200  1.0000  0.9960  0.0849  

1.400  4.755  3.022  -1.001  1.400  1.0000  0.9987  0.1584  

1.600  5.077  3.344  -0.679  1.600  1.0000  0.9996  0.2485  

1.800  5.361  3.629  -0.395  1.800  1.0000  0.9999  0.3464  

2.000  5.616  3.883  -0.141  2.000  1.0000  0.9999  0.4440  

2.200  5.845  4.113  0.089  2.200  1.0000  1.0000  0.5355  

2.400  6.055  4.322  0.299  2.400  1.0000  1.0000  0.6175  

2.600  6.248  4.516  0.492  2.600  1.0000  1.0000  0.6886  

2.800  6.427  4.694  0.671  2.800  1.0000  1.0000  0.7488  

3.000  6.594  4.861  0.837  3.000  1.0000  1.0000  0.7987  

3.200  6.749  5.016  0.993  3.200  1.0000  1.0000  0.8396  

3.600  7.033  5.300  1.277  3.600  1.0000  1.0000  0.8992  

3.800  7.164  5.431  1.407  3.800  1.0000  1.0000  0.9203  

4.000  7.287  5.555  1.531  4.000  1.0000  1.0000  0.9371  

4.200  7.405  5.672  1.649  4.200  1.0000  1.0000  0.9504  
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Table 6.1 Normal standard distribution and the value of Probability (Model-8) 

Normal standard distribution and the value of Probabilitys 

Sa IO(θmax=1%) LS(θmax=2%) CP(θmax=10%) Sa  Pf(θ=1%) Pf(θ=2%) Pf(θ=10%) 

0.005  -8.714  -10.447  -14.470  0.005  0.0000  0.0000  0.0000  

0.100  -1.395  -3.127  -7.151  0.100  0.0816  0.0009  0.0000  

0.200  0.299  -1.434  -5.458  0.200  0.6175  0.0758  0.0000  

0.300  1.290  -0.443  -4.467  0.300  0.9014  0.3288  0.0000  

0.400  1.992  0.260  -3.764  0.400  0.9768  0.6024  0.0001  

0.500  2.538  0.805  -3.219  0.500  0.9944  0.7895  0.0006  

0.600  2.983  1.250  -2.773  0.600  0.9986  0.8944  0.0028  

0.700  3.360  1.627  -2.397  0.700  0.9996  0.9481  0.0083  

0.800  3.686  1.953  -2.070  0.800  0.9999  0.9746  0.0192  

0.900  3.974  2.241  -1.783  0.900  1.0000  0.9875  0.0373  

1.000  4.231  2.498  -1.525  1.000  1.0000  0.9938  0.0636  

1.200  4.677  2.944  -1.080  1.200  1.0000  0.9984  0.1401  

1.400  5.053  3.320  -0.703  1.400  1.0000  0.9996  0.2410  

1.600  5.380  3.647  -0.377  1.600  1.0000  0.9999  0.3531  

1.800  5.667  3.934  -0.089  1.800  1.0000  1.0000  0.4645  

2.000  5.925  4.192  0.168  2.000  1.0000  1.0000  0.5668  

2.200  6.158  4.425  0.401  2.200  1.0000  1.0000  0.6558  

2.400  6.370  4.637  0.614  2.400  1.0000  1.0000  0.7303  

2.600  6.566  4.833  0.809  2.600  1.0000  1.0000  0.7908  

2.800  6.747  5.014  0.990  2.800  1.0000  1.0000  0.8390  

3.000  6.915  5.182  1.159  3.000  1.0000  1.0000  0.8768  

3.200  7.073  5.340  1.317  3.200  1.0000  1.0000  0.9060  

3.600  7.361  5.628  1.604  3.600  1.0000  1.0000  0.9457  

3.800  7.493  5.760  1.736  3.800  1.0000  1.0000  0.9588  

4.000  7.618  5.885  1.862  4.000  1.0000  1.0000  0.9687  

4.200  7.737  6.005  1.981  4.200  1.0000  1.0000  0.9762  
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Table 6.1 Normal standard distribution and the value of Probability (Model-9) 

Normal standard distribution and the value of Probability 

Sa IO(θmax=1%) LS(θmax=2%) CP(θmax=10%) Sa  Pf(θ=1%) Pf(θ=2%) Pf(θ=10%) 

0.005  -8.787  -10.520  -14.543  0.005  0.0000  0.0000  0.0000  

0.100  -1.560  -3.293  -7.317  0.100  0.0594  0.0005  0.0000  

0.200  0.112  -1.621  -5.645  0.200  0.5445  0.0525  0.0000  

0.300  1.090  -0.643  -4.667  0.300  0.8621  0.2601  0.0000  

0.400  1.784  0.051  -3.973  0.400  0.9628  0.5203  0.0000  

0.500  2.322  0.589  -3.434  0.500  0.9899  0.7222  0.0003  

0.600  2.762  1.029  -2.995  0.600  0.9971  0.8483  0.0014  

0.700  3.134  1.401  -2.623  0.700  0.9991  0.9194  0.0044  

0.800  3.456  1.723  -2.301  0.800  0.9997  0.9576  0.0107  

0.900  3.740  2.007  -2.016  0.900  0.9999  0.9776  0.0219  

1.000  3.994  2.261  -1.762  1.000  1.0000  0.9881  0.0390  

1.200  4.434  2.701  -1.322  1.200  1.0000  0.9965  0.0930  

1.400  4.806  3.073  -0.951  1.400  1.0000  0.9989  0.1709  

1.600  5.128  3.395  -0.629  1.600  1.0000  0.9997  0.2648  

1.800  5.412  3.679  -0.344  1.800  1.0000  0.9999  0.3653  

2.000  5.666  3.933  -0.090  2.000  1.0000  1.0000  0.4640  

2.200  5.896  4.163  0.140  2.200  1.0000  1.0000  0.5555  

2.400  6.106  4.373  0.350  2.400  1.0000  1.0000  0.6367  

2.600  6.299  4.566  0.543  2.600  1.0000  1.0000  0.7063  

2.800  6.478  4.745  0.721  2.800  1.0000  1.0000  0.7647  

3.000  6.644  4.911  0.888  3.000  1.0000  1.0000  0.8127  

3.200  6.800  5.067  1.044  3.200  1.0000  1.0000  0.8516  

3.600  7.084  5.351  1.328  3.600  1.0000  1.0000  0.9079  

3.800  7.215  5.482  1.458  3.800  1.0000  1.0000  0.9276  

4.000  7.338  5.605  1.582  4.000  1.0000  1.0000  0.9432  

4.200  7.456  5.723  1.699  4.200  1.0000  1.0000  0.9554  

 


