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Abstract

Even though tumor originates from clones of cells, it develops a substantial

intratumor heterogeneity in terms of cellular morphology, gene expression,

proliferative and metastatic potential. Due to this heterogeneity, diagnostic and

prognostic gene expression cancer signatures often fail in the evaluation of bulk

gene expression tumor profiles. Moreover, the internal organization of tumors

has potential consequences on treatment response and resistance. Therefore,

discerning the complexity of both composition and internal structure could

provide a valid step towards the understanding of tumor biology.

Spatial transcriptomics is a new approach in the analysis of transcriptomes that

allows the analysis of gene expression level in the intact tissue, maintaining the

spatial information.

During my thesis project I worked in the application of cancer gene expression

signatures on spatial breast cancer transcriptome data, highlighting how the

resulting panel of spatially resolved cancer gene expression scores provide

powerful information in tumor data interpretation.
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1 Introduction

1.1 The human cancers

Cancer is a disease defined by an abnormal growth of cells caused by genetic

alterations impacting the gene expressions that lead to an unbalanced condition

between cell proliferation and cell death. The dysregulation of gene expression

enables cancer cells to acquire, also, invasion ability, leading to the formation of

metastasize in distant sites. The alteration of gene expression can occur by direct

modification of DNA, such as gene mutations, translocations, amplifications,

deletions, loss of heterozygosity or through mechanisms resulting in abnormal

gene transcription or translation. In particular, there are some genes that have

relevant importance, if mutated, in the triggering of the tumor establishment:

proto-oncogenes and oncosuppressors.

The vast majority of proto-oncogenes encode for proteins that generally control

cell proliferation, apoptosis or both. The products of proto-oncogenes can be

many, but they are mainly transcription factors, chromatin remodelers, growth

factors and growth factor receptors, signal transducers, apoptosis regulators ecc.

Once alterated, the proto-oncogene becomes an oncogene that confers a growth

advantage and increased survival of cells carrying such alterations .

On the other hand, oncosuppressor genes, as the name suggests, are genes

involved in the opposition of those mechanisms that induce tumor generation.

Tumor suppressor genes are involved in DNA damage repair, inhibition of cell

division, induction of apoptosis and suppression of metastasis. Therefore, the

loss of a oncosuppressive function would result in the initiation and progression

of cancer. Both oncosuppressors and oncogenes have crucial roles in tumor

formation, infact, most carcinomas are initiated by the loss of function of a

tumor-suppressor gene, followed by alterations in oncogenes and

tumor-suppressor genes.

Despite many specificities across the different types of cancers, mainly defined

by the different driver genes and tissue of growth, cancers share many traits and

ways of action that have been summarized in the famous reviews by Hanahan

and called “hallmarks of cancers”. The most updated list of all cancer hallmarks

are reported in Figure 1.
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Figure 1: The hallmarks of cancer. Figure credits to Hannan, Hallmarks of Cancer: New

Dimensions, Cancer Discovery (2022).

During the transformation and tumor progression of a normal cell toward the

neoplastic state, the cell acquires several capabilities that can be categorized in:

sustainment of proliferative signaling, evasion of growth suppressors, resistance

to cell death, capability of replicative immortality, angiogenesis, tumor promoting

inflammation, avoiding immune destruction, invasion and metastasis [1].

One of the cancer hallmarks is the establishment of a tumor microenvironment

(TME) supportive of tumor traits, TME refers to the healthy cellular environment

in which tumors establish and develop. The TME is determined by different

components: blood vessels, immune cells, extracellular matrix (ECM), fibroblasts,

lymphocytes, bone marrow-derived inflammatory cells, and signaling molecules.

The TME includes, also, non-malignant cells that play a protumorigenic role in the

phases of carcinogenesis.

The first component of TME are endothelial cells, which play a key role in tumor

development and tumor cell protection from the immune system. Angiogenesis

is a key process for the sustainment of the tumor mass and nutritional support

for tumor growth. Cancer cells are able to induce the production of growth

factors and stimulate new vasculature from preexisting vessels or derived from

endothelial progenitor cells.
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Another important component of TME are the immune cells such as

granulocytes, lymphocytes, and macrophages, involved in the inflammatory

reactions promoted by the tumor. The most prominent immune cell type in the

TME is the macrophage that can suppress antitumor immune mechanisms and

promote the escape of tumor cells into the circulatory system. Fibroblasts

present in the TME are called cancer associated fibroblasts (CAFs) which, with the

extracellular matrix, influence the migration of cancer cells by altering the

physical properties and composition of the surrounding area of the tumor.

The acquisition of specific tumor abilities jointly with a supportive TME allows

the establishment of the malignant state and the limitless growth with

self-mantainment of the tumor. In this perspective, the evaluation of the

presence of hallmarks in a tumor sample can be useful to characterize the

neoplastic disease and, since hallmarks are defined by peculiar gene expressions,

they can be studied through the definition of cancer gene expression signatures.

Cancer is a major public health problem worldwide and is the second leading

cause of death, following cardiovascular disease. The survival rate of cancer

patients varies abundantly between cancer types, available treatment and stage

of diagnosis, fluctuating between 20% and 80%. Anyway, it remains far away

from the statistics we hope for. Cancer treatments are not always effective and

the onset of the proper therapeutic approach remains a challenging step. In

conclusion, the overall situation highlights the incomplete understanding of the

disease and the necessity of new techniques to characterize and investigate it in

a deeper way.

1.2 Cancer gene expression signatures

The vast majority of tumor classificators are mainly established through an

anatomo pathological evaluation, and it is based on phenotypic features such as

the size of the tumor, some histological characteristics, such as the presence of

tumor histotypes, the degree of spread, or the grade of nuclear atypia of cancer

cells, i.e. the status of the cell transformation These morphological aspects,

supported by clinical information, are used to classify patients and determine the

most likely to benefit therapy. Unfortunately, in most cases a significant minority

of patients do not respond to the treatment or show no meaningful

improvements, highlighting the need for features able to capture more efficiently

patient predictive specificities that are invisible to traditional classification

approaches [2, 3].
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Only recently, the possibility to investigate genetic aberrations of tumors brought

by sequencing technologies in clinics provided additional hints for the

classification of specific tumors and they are helpful in therapy choice.

It is widely recognised that new biomarkers predicting the likelihood of therapy

response, or of its toxicity, are essential to allow us to better tailor treatments.

Paramount is the identification of dynamic markers, in addition to predictive

tools, that seek to shed light on the evolution of tumors over time and with

treatment. In this scenario tumor gene expressions can further help in

characterizing tumor specific ability and established or emergent

therapy-relevant pathway signals.

The presence or the effects of all the cancer hallmarks described in the previous

paragraph can be measured by using gene expression of cancer biopsies and

through these quantitative traits many information about cancer ongoing

processes can be captured.

Gene expression is a valid representation of cellular activity, while one single

aberrant gene does not have enough power to define a biological state, but a set

of genes can be helpful in determining cell process activities. In this context gene

expression signatures are defined by a pattern of gene expressions, found unique

in a specific biological scenario [2].

It has been demonstrated that in cancer gene expression signatures can be a

useful classification system. In addition to increasing the understanding of the

molecular mechanisms of the tumor, the signatures can be used as diagnostic,

prognostic or predictive markers. Intuitively, a diagnostic signature is used in the

identification of a specific clinical condition, aiming to simplify the diagnosis

process. Prognostic markers help in the estimation of the most likely outcome of

the cancer disease in an untreated situation. Therefore, prognostic signatures are

used in the classification of patients with high risk of metastasis formation and so

valids candidates for adjuvant therapy, such as chemotherapy, radiation and

immunotherapy. On the other hand, predictive signatures provide information on

the likely advantage gained from therapy. Such markers are useful to stratify

patients and select the most proper therapeutic approach based on the benefits

likely to be obtained [4].

One of the main problems in the use of omic technologies in clinics is the

intra-tumor heterogeneity. In bulk transcriptome analysis all transcriptomes of all

cells in the sample are analyzed together, as a consequence, specific features of

different cell types are partially masked. In particular, cancer bulk transcriptome

analysis results provide an estimation on the average behavior of cancer cells,

losing all the cell differences that determine tumor heterogeneity. Moreover, it
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has been demonstrated that these results have strong dependence on the piece

of tumor sampled, suggesting that single bulk transcriptome analysis can lead to

underestimation of the tumor genomics landscape [5].

Initially, cancer cells have been portrayed as a quite homogeneous cell

population until the further progression of the tumor in different metastases.

However, in many tumors hyperproliferation and genetic instability lead to the

accumulation of multiple genetic differences that drives distinct clonal

subpopulations in the same mass. Due to these clonal heterogeneity, many

human tumors contain regions characterized by various degrees of

differentiation, proliferation, vascularity, inflammation and invasiveness. In

addition, human tumors show a repertoire of recruited apparently normal cells

that enrich even more tumor complexity and intra-tumor heterogeneity since

they have a different spatial location in the tissues [1].

In the end, the intra-sample tumor heterogeneity could hamper the efficacy of

gene expression signatures, and in general of all the tumor biomarkers evaluated

through a single biopsy. On the other hand, the study of intra-sample tumor

heterogeneity of biomarkers can help to capture sample traits essential for

prognostic and predictive evaluation. Nowadays, intra-sample tumor

heterogeneity of gene expressions can be accessed with the state-of-the-art

spatial transcriptomics technologies.

1.3 Spatial transcriptomics

Spatial transcriptomics is a technology that introduces the spatial information in

transcriptome analysis. The occurrence of this new strategy allows to maintain

positional information during transcriptional analysis, obtaining for one sample

thousands of expression profiles spatially distributed in the tissue.

The first spatial transcriptomics technology has been proposed in 2016, in the

following years some improvements in the technical approach have been

implemented till the coronation of spatial transcriptomics as Nature’s Method of

the Year 2020.

The firsts and the currently more popular spatial technologies imply the

definition of the key structure called “spot”. One spot refers to the round area

that is actually able to sample mRNA molecules from the tissue. These spots

-sometimes called features- change in their characteristics among different

technologies but, in general, they are made up by a multitude of oligonucleotides

able to hybridize with the mRNA released from the tissue. Independently from

the technology, spatial transcriptome profiles are always linked to the histological
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image of the tissue, which is necessary to

get the morphological information and

locate the several spots profiles in the

tissue.

Figure 2: Spatial transcriptomics capture spot.

Figure credits to Ji, Multimodal Analysis of

Composition and Spatial Architecture in Human

Squamous Cell Carcinoma, Cell (2020) [6].

Resolution analysis varies based on the technology applied, from 20 cells

(belonging to the same “spot”) up to a fine subcellular resolution.

The integration of spatial information brings multiple advantages in gene

expression analysis. First, maintaining spatial information, clearly, gives the

possibility to identify the distribution of gene expression together with the cell

types inside a tissue and keep track of their relative position. Second, spatial

information can also be used as a criteria to share information between adjacent

spots. For example, depending on the expression profile detected, each cell (or

spot) can be categorized and those with similar profiles are assigned to the same

group. Due to technical limitation or simply by experimental imprecision there

can be cells (or spots) without clear identity or behavior. Assuming that it is likely

that close cells belong to the same group type, the spatial information can be

exploited to infer information based on the neighborhood.

Moreover, it is known that the internal structure of tissue matters, such as the

correlation between the type of immune cells and their organization in the tumor

mass and TME and the disease progression [7, 8]. Thanks to spatial technologies

we can understand the internal organization of a tissue, thus in tumor sample

analysis we can use specific spatial information as a criteria to stratify patients

and move towards a proper therapeutic approach.

Currently, there are two main categories of spatially resolved technologies:

Next-Generation Sequencing-based and images-based approaches. The first one’s

process, before NGS, encodes spatial information in the transcriptome, instead

the second one exploits the hybridization and imaging of probes directly onto the

tissue [9].

Here below a review of the main spatial transcriptomics technologies available.

1.3.1  10x Genomics Visium

10x Genomics Visium is by far the most known and common technology for

spatial transcriptomics. A Visium Spatial Gene Expression Slide has multiple
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capture areas, each one of 6.5 x 6.5 mm2, covered by 5000 spots. Each spot has a

diameter of 55 µm and the distance center-to-center between them is 100 µm. A

single Visium spot is made by millions of capture probes, each composed by

sequencing primers, spot-unique spatial barcode, UMI and a poly-dT tail.

Depending on the size of capture spots, 10x Visium is not a single cell resolution

technology: according to the type of tissue each spot covers 5-20 cells.

This technology can work both with fresh frozen and Formalin-Fixed

Paraffin-Embedded tissue samples. FFPE is a common type of preservation of

specimens in which the tissue is first fixed in formalin and then embedded in a

paraffin wax block. This kind of conservation enables to preserve the structure of

the tissue and makes it easy to cut in slices the sample. A 10 µm thick slice of the

tissue is obtained by cryosection (or though microtoming FFPE samples) which is

then laid on the capture area and then permeabilized to allow the release of the

mRNA, which is retained on the slide by the poly-dT binding tail. The following

step is the extension reaction to generate a barcoded sequencing-ready library.

The subsequent sequencing reveals the transcriptome content and its location

onto the tissue, codified by the unambiguous barcode.

Figure 3: 10x Genomics Visium Spatial capture slides. Figure from “Visium Spatial Gene

Expression.”10xGenomics.(https://www.10xgenomics.com/products/spatial-gene-expres

sion).

1.3.2 Slide Seq

Several new methods and strategies to collect mRNAs from tissue have been

proposed. Slide Seq (2019) is another technology for spatial high-resolution

genome-wide expression analysis. This approach takes inspiration from the

Drop-seq method for single cell RNA-seq, using similar DNA barcoded

microparticles.

Slide seq entails the formation of a monolayer of beads, named “puck”, onto a

rubber-coated glass coverslip. One puck has a diameter of 3 mm and consists of
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roughly 70,000 barcoded beads. At first, the beads’ barcode is uniquely

determined via SOLiD sequencing-by-ligation chemistry, in order to match each

unique barcode with a spatial location. Then, a 10 µm thick slice of fresh-frozen

tissue is laid on the puck, the tissue is permeabilized and the mRNAs released are

captured by the beads for preparation of 3’-end barcoded libraries.

Since the diameter of the beads is 10 µm, the resolution of this technique is

comparable to the sizes of individual cells. The authors subsequently presented

Slide seq V2 (2021), which is an improvement of Slide Seq in terms of sensitivity,

maintaining the same technical approach [10].

Figure 4: Schematic array generation and sample preparation procedure developed for

Slide-seq. Figure credits to Rodriques, Slide-seq: A scalable technology for measuring

genome-wide expression at high spatial resolution, Science (2019) [10].

1.3.3 HSDT

High-definition spatial transcriptomics (2019) is another technique for spatial

tissue profiling, providing a further improvement in resolution. HSDT, similar to

Slide-seq, involves 2 μm diameter uniquely barcoded beads which are deposited

onto an array of hexagonal wells. The array has a dimension 5.7 mm x 2.4 mm

(13.7 mm2) in which there are more than 1.4 million wells with a 2.05 μm

diameter. To ensure that all hexagonal wells will contain one bead, this

technology reaches the production of almost 3 millions of beads.

After the deposition and the decoding of beads spatial location, a frozen tissue

section is placed on the array of beads. As in the previous technologies, the

tissue is permeabilized to capture the RNAs for the subsequent transcriptome

analysis [11].

Figure 5: Schematic workflow of HSDT technology. Figure credits to Vickovic,

High-definition spatial transcriptomics for in situ tissue profiling, Nature Methods, (2019)

[11].
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1.3.4 DBiT-seq

Another proposal applying a substantially different strategy in the application of

barcodes is Deterministic Barcoding in Tissue sequencing (2020). DBiT-seq is a

spatial omics sequencing technique able to map both mRNAs and proteins onto

tissue slices. Rather than removing mRNA molecules from the tissue to label

them with a spatial barcode, DBiT-seq links barcodes to molecules directly in

tissue, avoiding potential lateral diffusion during the releasing of mRNAs.

This approach entails microfluidic channels to deliver two sets of barcodes on the

tissue: the first set defines parallel stripes of barcodes, the second set defines

orthogonal stripes, compared to the first one, creating an intersecting grid of

spatial barcodes combination. The DBiT-seq microfluidic device has 50 parallel

channels with a width down to 10 μm, which defines the dimension of the pixels

of the technology, in which authors declared to reach the detection, on average,

of 2000 genes. Thanks to the dimension of the microfluidic channels that defines

the barcoding, this technology can be considered to have a single cell resolution

[12].

Figure 6: Schematic workflow of DBiT-seq. Figure credits to Liu, High-Spatial-Resolution

Multi-Omics Sequencing via Deterministic Barcoding in Tissue, Cell, (2020) [12].

1.3.5 PIXEL seq

Polony (a contraction of "polymerase colony", also called a DNA cluster) indexed

library-sequencing (PIXEL seq) spatial transcriptomics is another technology that

aims to improve the spatial barcoding efficiency. PIXEL seq entails the generation

of “continuous” polony oligos arrayed across a gel surface: templates containing

reverse transcription primers and spatial index are seeded on the gel surface and

then amplified to dsDNA polonies. Then follows the digestion of the dsDNA

which exposes the RT primers.

Differently from the previous technologies, PIXEL seq uses a crosslinked PAA gel

(customizable size e.g. 6 × 30 mm2) without pre-defined feature boundaries, such

as beads or spots. Each feature is defined by spatial index polony sequencing by

sequencing-by-synthesis chemistry, obtaining features with center-to-center

distance of 1 µm. PIXEL seq is able to capture more than 1000 unique molecular

identifiers in 10 μm2 area, attaining ≤ 1 µm resolution. 90% of the overall gel area
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is covered by barcoded oligos and compared to solid surface, PAA gel allows 10 to

30-fold higher oligo capturing efficiency [13].

Figure 7: Scheme of PIXEL-seq-based spatial transcriptome analysis. Figure credits to Fu,

Continuous Polony Gels for Tissue Mapping with High Resolution and RNA Capture

Efficiency, bioRxiv, (2021) [13].

1.3.6 Seq Scope

Another step towards high resolution is made by Seq Scope technology (2021):

0.6 μm average center-to-center distance between features. Seq scope is based

on illumina amplification of spatial barcode RNA capture molecules on a solid

support, creating up to 150 clusters in 100 μm2. The procedure consists of two

sequencing steps: the first sequencing generates a spatial map of barcodes each

one associated to its XY coordinates; the second one is performed on the

captured mRNA molecules, after the laying of the tissue slice on the solid support

and the permeabilization of it [14].

Figure 8: Seq scope technology overview. A. Schematic representation of the HDMI-oligo

library structure for 1st-Seq. B. Solid-phase amplification of different HDMI-oligo

molecules on the flow cell surface. C. Illumina sequencing by synthesis determines the

HDMI sequence and XY coordinates of each cluster. D. Then, HDMI oligonucleotide

clusters are modified to expose oligo-dT, the RNA-capture domain. E. HDMI-array

captures RNA released from the overlying frozen section. F. Then, cDNA footprint is

generated by reverse transcription. G. After that, secondary strand is synthesized using

random priming method. H-I. Finally, adaptor PCR generates the sequencing library for

13



Anna Corrà                                                                                                 Master’s thesis

2nd-Seq, where paired-end sequencing reveals cDNA sequence and its matching HDMI

barcode. J. HDMI-array contains up to 150 HDMI clusters in a 100 μm2 area. Figure

credits to Cho, Microscopic examination of spatial transcriptome using Seq-Scope, Cell

(2021) [14].

1.3.7 Stereo Seq

The currently highest resolution spatially resolved transcriptomic technology is

Stereo Seq (Spatio-Temporal Enhanced REsolution Omics-sequencing, 2021): it

relies on DNA nanoball (DNB) containing random barcode sequences, placed

500/715 nm far from each other. The support surface of Stereo seq technology is

a modified silicon chip photolithographically etched with a grid of 220 nm

diameter spots, where DNB are deposited. Each DNB, labeled with random

barcode, is generated by rolling circle amplification and allows a spatial barcode

pool size of 425, larger than eads based technologies.

At first the array is microphotographed, and sequenced to link each coordinated

identity (CID) to its spatial location. Then, molecular identifiers (MID) and polyT

oligonucleotides are ligated to each DNB. This strategy allows the generation of

50, 100, 200 mm2 containing barcoded spots at higher density than other

previous methods. Notably, the author developed DNB patterned array chips till

the dimension of 42.25

cm2 for potential

application to a whole

section of the human

brain [15].

Figure 9: Schematic

representation of the

Stereo-seq procedure.

Figure credits to Chen, Large

field of view-spatially

resolved transcriptomics at

nanoscale resolution,

bioRxiv, (2021) [15].

1.3.8 GeoMx

Lastly, as 10x Genomics, also Nanostring have proposed its spatial technology:

the GeoMx Digital Spatial Profiler (2020). It combines both image analysis for

morphological delineation and the application of NGS sequencing for the
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decoding of barcodes and transcripts identification. The first step is the design of

specific complementary target sequences linked to a barcode through a

photocleavable linker; it follows the incubation with a panel of fluorescent

antibodies and the complementary probe sequences. Fluorescent tagged

antibodies, that determine the morphology of the tissue, are used to select the

area of interest on which UV light is applied inducing the releasing of barcodes. A

microcapillary aspirates those oligos and NanoString nCounter or Illumina NGS is

used to determine and quantify them. The GeoMx probes panel allows the

detection of up to 18.000 genes simultaneously and the selected area of interest

can go down to the resolution of 10 μm.

GeoMx also enables the detection of proteins with the same procedure using,

instead of complementary sequences, antibodies conjugated with the

photocleavable linker and identificative barcode [16]. Overall, Nanostring spatial

technology recalls the Laser Capture Microdissection approach, in which the

selected area of interest is physically removed using laser from the tissue for

subsequent sequencing analysis.

Figure 10: GeoMx workflow. Figure credits to Bergholtz, Best Practices for Spatial

Profiling for Breast Cancer Research with the GeoMx® Digital Spatial Profiler, Cancers

(2021) [16].

Merfish and seqFISH belong to a different category of spatially resolved

technologies: they rely on single molecule in situ imaging methods using targeted

combinatorial FISH labeling.

1.3.9 MERFISH

MERFISH (2015) stands for multiplexed error-robust FISH, it is a technique that

allows the decoding of 100 up to 1000 targeted RNA species, with subcellular

resolution. This approach identifies RNA molecules thanks to an error-robust

encoding scheme of in situ hybridization probes. Each target transcript is

associated with one specific binary code for its identification. That binary code

comes from the presence or absences of fluorescence signals detected during

the hybridization of design probes. Sequential images are taken and, in parallel,

15



Anna Corrà                                                                                                 Master’s thesis

multiple fluorescent signals are collected, which are subsequently translated in 0

and 1. The error-robust encoding scheme of hybridization allows to recognise

possible missed fluorescence

signals or hybridization, keeping

the correct identification of

transcripts [17].

Figure 10: MERFISH workflow. Figure

credits to Chen, Spatially resolved,

highly multiplexed RNA profiling in

single cells, Science, (2015) [17].

1.3.10 seqFISH+

seqFISH+ (2019) works with the same approach: the identification of RNAs is

based on sequential fluorescence in situ hybridization and decoding of images.

seqFISH+ improved the encoding strategy using primary target genes probes and

readout probes defining an encoding system of 60 pseudocolors. The primary

gene probe core is composed of a complementary sequence to the target gene,

while the two tails remain howerhanging. Each tail has two complementary

regions to the readout probes, so it has the possibility to hybridize with 4

different readout probes, which are linked to a specific fluorescent color. After 20

rounds of hybridizations and readouts, the combination of colors obtained is

decoded, allowing the detection of up to 24000 genes [18].

Figure 12: seqFISH+ schematic pseudocolor coding. Linus Eng, Transcriptome-scale

super-resolved imaging in tissues by RNA seqFISH+, Nature (2019) [18].
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1.3.11 STARmap

Another type of image-based approach is Spatially-resolved Transcript Amplicon

Readout mapping (STARmap, 2018), which involves rolling amplification and in

situ sequencing. STARmap starts with the hybridization of SNAIL probes to target

mRNAs, ligation and amplification of it in the tissue creating a cDNA SNAIL

amplicon.

STARmap aim’s is to give a portrait of the gene expression spatially distributed in

the threedimenstioanl space, which is obtained by the embedding of the cDNA

amplicon in a tissue hydrogel setting. Amine-modified nucleotides are spiked into

the rolling-ciciel ampicon reaction and copolymerized with acrylamide

monomers to form a stable crosslinked hydrogel-DNA amplicon network. Each

SNAIL probe contains a 5 base gene-specific identifier which, once amplified, can

be readout by fluorescence in situ sequencing. STARmap has single cell resolution

and is able to identify and map up to 1000 genes in each section, over six imaging

circles [19].

Figure 13: Schematic representation of STARmap technology approach. Figure credits to

Wang, Three-dimensional intact-tissue sequencing of single-cell transcriptional states,

Science (2018) [19].

1.4 Spatial transcriptomics data general properties

Due to its quasi-single cell resolution, spatial transcriptomics data presents

common characteristics with single cell transcriptomics data, both in terms of

magnitude and distribution of count values.

The features of single cell data have been well documented in the work of

Lahnemann et al. [20] in “Eleven grand challenges in single-cell data science”, in

which the authors outlined several prickliness of single cell data. Based on the

similarity between spatial and single cell, those considerations can be

equivalently applied on spatial transcriptomics data.

17



Anna Corrà                                                                                                 Master’s thesis

Spatial data are characterized by a high level of sparsity defined by a large

fraction of zeros in the count matrix. Those zero observations are defined as

“dropouts” that usually conflate two distinct types of zero values: true and

artificial zeros. True zeros are those observations that indicate biologically true

absence of expression, while artificial zeros are due to genes that are expressed

but not detected by the sequencing technology. Those artificial zeros are

attributed to technical limitations and can be either systematic (e.g. specific

mRNA degradation) or can occur by chance (e.g. barely expressed transcripts that

sometimes will be detected and sometimes not). Beyond biological variation in

the number of unexpressed genes, these proportions of artificial zeros

considerably contribute to the level of sparsity of the data [20].

In addition, spatial expression count values represent the number of expression

counts collected in one spot covering a few cells, as a consequence the number

of detected genes and counts will be restricted. The low count values along with

the large fraction of zeros give spatial transcriptomics data highly susceptibility to

technical noise.

Spatial information gives the possibility to handle sparsity and denoising spatial

data by the construction of a smoothing method based on neighbors

information. Smoothing methods mainly allow the sharing of gene counts

between close spots resulting in a reduction of zeros observation and in an

increase of counts expression values.

1.5 Computational analysis of spatial transcriptomics data

From the release of spatial transcriptomics technology in 2018, several specific

spatial transcriptome analyses have been developed. At the beginning, the type

of analysis was very similar to the approach used with single-cell data, with the

additional spatial visualization of the results on a tissue slice. More recently have

been developed different packages that exploit the spatial information more

fruitfully, including it in smoothing methods and different steps during the

analysis. Below, it’s reported an overview of how some of those packages

propose to integrate spatial information in the analysis and how to overcome

noise and sparsity of data.

1.5.1 stLearn

stLearn is a python package developed for the analysis of spatial transcriptomics

data. This software, as inputs, needs the gene expression count matrix

distributed in the tissue slice, the spatial coordinates of those counts and the

image of the tissue. stLearn allows to integrate gene expression, spatial location
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and tissue morphology in one comprehensive analysis that, as well as detecting

cell types, include the possibility to find regions with high cell-to-cell interactions

and to reconstruct cell trajectories.

The strength of stLearn is the effective usage of spatial information in the

analysis of expression data by the implementation of Spatial Morphological gene

Expression normalization (SME normalization). It’s an within-tissue normalization

step, performed upstream of all the analysis, based on morphological similarity

and neighborhood smoothing. Spatial information implies the definition of a

neighbor area for each spot (or cell), which includes the set of those spots (or

cells) within a given radius d. Morphological similarity is a value considered as

“distance” between neighbor spots proportional to the similarity between the

morphology of their underlying tissue. The features that define the morphology

of the H&E images of the tissue are extracted by a convolutional neural network

(CNN) model, widely used for image classification. Based on the assumption that

close and morphologically similar spots are more likely to cover the same cell

types and so to have similar gene expression profiles, stLearn applies on each

spot the neighbor smoothing. The neighbor smoothing is a gene expression

values adjustment in which the expression value of one specific gene in a central

spot is summed up to the mean of the expression values of that gene in the

neighbor spots, weighted on the morphological similarity.

As previously mentioned, spatial gene expression data is characterized by a large

amount of zero counts, in this way a zero-expression value will be maintained in a

spot only if all the surrounding spots have zero counts too. By applying the SME

normalization, stLearn allows the sharing of information between spots,

leveraging the spatial knowledge that only spatial technologies are able to

provide.

stLearn can be applied on different type of spatial input data such as 10x Visium

(and older ST), Slide-seq, MERFISH and seqFISH, but the SME normalization does

not apply to image-based technology, which have not a predefined subsetting of

the tissue slice [21].

Figure 14: stLearn integration of H&E image through deep learning approach. Figure

credits to Pham, stLearn: integrating spatial location, tissue morphology and gene
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expression to find cell types, cell-cell interactions and spatial trajectories within

undissociated tissues, bioRxiv, (2020) [21].

Currently, there are other packages that are designed for spatial data that offer

the possibility to exploit spatial information in the analysis. However, they

propose approaches that use the spatial information in a more marginal way

than the stLeran approach.

1.5.2 Giotto

Giotto is an R package drawn for spatial transcriptomics data analysis and

visualization that allows the characterization of tissue composition, spatial

expression pattern and cellular interaction. Giotto works with different spatial

input data coming from different spatial technologies and single-cell RNAseq data

can be integrated for spatial cell-type enriched analysis.

This package uses spatial location, clearly, in the visualization of the results

projected on the tissue section and integrates it in the analysis with the

implementation of two types of structures: grid and network. For those spatial

technologies with single molecule resolution (MERFISH, seqFISH+), Giotto

proposes a spatial grid for pooling together those expression values located close

to each other. With this approach the gene expression level of cells within each

box grid are averaged for further analysis. Alternatively, for single cell resolution

data, Giotto builds a neighborhood network, that is a graphical representation of

neighbor cells linked one to the other through edges. These two structures are

used in the detection of spatial

coherent gene expression, proximal

cell types, staptial co-expression

pattern and discrete domains [22].

Figure 15: Schematic representation of

Giotto spatial analysis. Figure credits to

Dries, Giotto: a toolbox for integrative

analysis and visualization of spatial

expression data, Genome Biology, (2021)

[22].

1.5.3 spaGCN

Also spaGCN is a package that integrates gene expression, spatial location and

histology. SpaGCN is a python package developed for the analysis of spatial
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transcriptomic data, whose focus is to identify spatial domain and spatially

variable genes. It is applicable to both in-situ transcriptomics with single-cell

resolution and spatial barcoding based transcriptomics data.

First of all, spaGCN integrates spatial location and histology information building

an undirected weighted graph to represent the relationship between all spots.

The edge weight between two spots is defined by the euclidean distance

between them, calculated on the two spatial coordinates (x, y) and a third

dimension (z). The third dimension z is given by the information extracted from

the histology image under the spot: spaGCN calculates z based on the mean and

variance of the colors of the spots under consideration. Larger variance will be

translated with higher z values. In this way the undirected weighted graph

represents the spatial dependency of the data, deriving both form spatial

location and histology features.

Then, in the process of the identification of spatial domain, this software utilizes

graph convolutional layers to aggregate gene expression information from

neighbor sports, according to the specific edge weight. As well as stLearn,

spaGCN in this way implements the sharing of gene expression information

between spots based on spatial location and weighted on the morphology of the

tissue [23].

Figure 16: Overview of spaGCN workflow. Figure credits to Hu, SpaGCN: Integrating gene

expression, spatial location and histology to identify spatial domains and spatially

variable genes by graph convolutional network, Nature Methods, (2021) [23].

1.5.4 BayesSpace

BayesSpace is an R package developed for increasing quality and resolution in the

analysis of spatial transcriptomics data. BayesSpace implements a complex

Bayesian statistical model in which it leverages neighbor information to increase
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the resolution up to subspot level. Each spot is translated into an hexagonal spot,

thus an hexagonal grid is defined that naturally determines the neighborhood

structure. The approach entails the subdivision of each hexagonal spot into six

sub-spot whose gene expression level is estimated through Markov chain Monte

Carlo. The prediction of each sub-spots expression is based on the estimated

expression level of the neighbor subplots, maintaining fixed the observed gene

expression of the complete spot.

Also the clustering method proposed by the authors highlights the integration of

spatial information: neighboring spots are encouraged to belong to the same

cluster.

With this approach the authors demonstrate that BayesSpace outperforms the

results of other spatial analysis methods in the clustering and recognition of the

tissue layers, being extremely close to the manual annotation [24].

Figure 17: Representation of the Bayespace subsection of 10x Visium spots grid. Figure

credits to Zhao, BayesSpace enables the robust characterization of spatial gene

expression architecture in tissue sections at increased resolution, bioRxiv, (2020) [24].

1.5.5 STUtility

STUtility is an R package developed for 10x Visium data analysis and visualization.

Differently from previous packages, it allows the user to visualize consecutive

stacked images to get an holistic 3D view of the tissue. STUtility uses the spatial

information implementing the spatial autocorrelation: it’s an analysis for the

identification of genes with clear spatial expression patterns. First, a connection

network for each capture-spot is created, which links each spot with its

neighbors, defined as the set of spots within a radius of 150 µm. This network is

used to compute the spatial lag vector for each gene, which is defined by the

summed expression of that gene across the neighbors spots to the spot under

consideration. STUtility calculates the Pearson correlation between the lag vector

(of a specific gene) and the expression count vector (for the specific gene in the

central spot), which then is used to determine the spatial correlation across the

whole tissue [25].
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Figure 18: STUtility identification of

neighbor spots in the computation

of spatial correlation. Figure

credits to Bergenstrahle, Seamless

integration of image and molecular

analysis for spatial transcriptomics

workflows, BMC Genomics, (2020)

[25].

Even though this is far from the approach of integrating spatial location and

morphological features, this can represent a good starting point for the

development of a more complex approach or usage of the spatial information.

1.5.6 Sliding window approach

Another potential inspiring approach can be the implementation of the sliding

window by Andrew L. Ji et al. for spatial correlation analysis. In this study spatial

correlation indicates if, defined one central spot, the expression of a gene in the

surrounding spots is correlated to the expression level of the “anchoring” gene in

the central spot. The authors reasoned that simple correlation between genes

across spots could miss this type of expression

correlation, between the set of adjacent spots.

Therefore, they calculated average gene

expression considering one central spot and its

surrounding ones, and moving one spot

further across the whole tissue. With this

sliding window approach they generate a

matrix of average gene expression that can be

correlated with any “anchoring” gene of

interest [6].

Figure 19: Representation of the sliding window

concept across the slide spots. Figure credits to Ji,

Multimodal Analysis of Composition and Spatial

Architecture in Human Squamous Cell Carcinoma,

Cell (2020) [6].
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2 The Aim and Rationale of My Project Thesis

The project of my thesis was focused on developing a pipeline dedicated to

explore the possible application of the existing cancer gene expression signatures

to spatial transcriptomic data. As far as we know at the time of this writing, this is

the first time that someone is trying to address this task. We retain that the

application of cancer expression signatures in a spatial context could be an

advantageous tool to better investigate tumor samples in clinics, where cancer

gene expression signatures could be used to monitor treatment efficacy and

patient prognosis. Additionally, this practice could provide useful information on

the intra-sample heterogeneity of signatures, which is one of the highest causes

of failure of gene expression biomarkers when translated into clinical practice.

To achieve this task, first I explored, studied and collected the latest spatial

technologies proposed in literature, as well as the spatial analysis packages,

especially designed to address the sparsity problem of these data. Therefore, I

obtained an overview on the current spatial transcriptome data and analyses.

Then since the focus of my project was on cancer, I collected all the publicly

available spatial transcriptomic data related to human cancers, which were

mainly studied with the 10x Genomics Visium technology, and I analyzed all of

them. The analysis of my thesis includes the application of a standard pipeline for

the analysis of spatial data and the calculation of multiple cancer gene expression

signatures on these samples. I provided in the following chapters the results of

my analysis applied to a 10x Visium data of a human breast ductal carcinoma

sample taken as a case study. The sample was analyzed using more than 40 gene

expression signatures, some of them provided interesting hints for a deeper

understanding of the tumor biopsy.
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3 Materials and Methods

3.1 The 10x Genomics Visium data of a human breast ductal

carcinoma sample

For demonstration purposes, the 10x Genomics provides a large set of publicly

available spatial transcriptomic data. The 10x Visum dataset contains data

obtained by the analysis of both healthy and cancerous tissues, from mouse and

human patients. For each sample 10x Genomics provides the raw input files: the

FASTQs, the histologic image (TIFF format) and the coordinate and information

about the spots. 10x Genomics also provide a standard analysis which include the

alignment of the sequenced read to the gene set (the BAM file), and multiple

pre-molecule read information, the filtered and raw count matrix, and also some

results of a basic analysis performed with their proprietary software called Space

Ranger - a set of analysis pipelines that exclusively process Visium Spatial Gene

Expression data.

Even if I explored the vast majority of the available sample, for demonstration

purposes all the analysis presented in this thesis was carried out on the spatial

transcriptomic experiment of the sample called “Human Breast Cancer: Ductal

Carcinoma In Situ, Invasive Carcinoma (FFPE)”. This data comes from a 73 years

old asian woman following the Visium spatial gene expression protocol for

Formalin-Fixed Paraffin-Embedded specimens, which gives the possibility to

perform spatial Visisum analysis not only to fresh frozen samples.

The sequencing of these data is obtained using Illumina NovaSeq sequencer with

a depth of 32,524 reads per spot, for a total amount of almost 82 Million of

Reads. 2,518 out of 5,000 spots have been identified under the tissue and the

median number of genes detected per spot are 5,244 [26].

3.2 Software and tools used by the analysis procedure

The data previously described has been downloaded from the 10x website

(https://www.10xgenomics.com/) where it has been processed using Space

Ranger software version 1.3.0. Space Ranger, the proprietary software of 10x

Genomics, is a set of analysis pipelines that process Visium Spatial Gene

Expression data. It has been used for the demultiplexing of the Visium-prepared

raw base call (BCL) files generated by Illumina sequencers into FASTQ files. This

task is accomplished by a wrapper around Illumina's bcl2fastq with additional

features that are specific to 10x Genomics libraries and a simplified sample sheet

format. Finally, Space Ranger takes a microscope slide image and FASTQ files and
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performs alignment, tissue detection, fiducial detection, and barcode/UMI

counting. The pipeline uses the Visium spatial barcodes to generate

feature-barcode matrices, determine clusters, and provide the gene expression

matrix.

Then, following the anatomopathologist instructions about the analysis of the

histologic image, the manual annotation of the spots of the spatial data have

been provided using the Loupe Browser interface. Loupe Browser (Version 3.0,

10x Genomics) is a desktop application that provides programming free

interactive visualization functionality to analyze data from different 10x

Genomics solutions. Loupe Browser allows the user to easily interrogate different

views of the Visium Spatial Gene Expression data. In addition to the downstream

visualization and annotation capabilities, Loupe Browser offers support for

manual alignment of fiducial frame and tissue selection upstream of running

Space Ranger pipeline.

R (Version 4.2.1) is a language used for computing and graphics. I performed all

the analysis supported by RStudio integrated development environment (Version

2022.2.2, build 485). The vast majority of R packages used by the analysis

procedure belong to the Bioconductor platform (Version 3.15). Bioconductor is

an open source and open development software repository that hosts a wide

selection of analysis tools for computational biology and bioinformatics. The

compatibility of my analysis with the Bioconductor environment is strategic for

its usability and distribution. Thus, in my analysis I used the class of data and

utilities provided by the R package SpatialExperiment (Version 1.6.1) to efficiently

work with spatial transcriptomics data in the R Bioconductor environment. The

package provides an object of class S4 to store expression matrix, sample and

genes annotations, spatial coordinates, images, and image metadata.

SpatialExperiment also includes a specialized constructor function that I used to

load the data from the 10x Genomics Visium platform into a SpatialExperiment

object [27].

The first step in the analysis of the breast cancer spatial transcriptomics data has

been the normalization of the raw counts. The normalization applied on the

spatial data, based on the previously mentioned similarities to single cell

transcriptomic data, is the one implemented in the single-cell designed package

scater (Version 1.24.0). The R package scater offers a collection of analysis tools

for single-cell RNA-seq gene expression data suitable also with the

SpatialExperiment object [28].
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The visualization of the spot annotation and the signature score distribution

among spots have been performed using ggspavis (Version 1.2.0). ggspavis is an

R package designed for the visualization of spatially resolved transcriptomics

data, enabling in particular the display of 10x Visium spots arrangement [29].

Finally, I used signifinder (Github), an under development R package that allows

me to compute a collection of cancer gene expression signatures on

transcriptomics data. signifinder is an R package currently present and

downloadable from Github. Github is an internet hosting service for software

development and version control.

In my work I used and I had the opportunity to contribute to a private version of

signifinder which is still under development. To manage the multiple versions of

the package, I used Git (Version 2.25.1) to access the latest package version and

to maintain updated the package status. Git is a free and open-source version

control system used to handle code projects efficiently: is used to track changes

in the source code, enabling multiple developers to work together. The access to

the main signifinder repository from which I cloned locally the signifinder was

managed through a Gitlab interface.

Despite the data complexity and the thousands of computational operations

required by the entire procedure, thanks to the efficiency of the data storage and

the chosen tools the entire procedure can be run on a workstation. The one used

for the development is equipped with Ubuntu 20.04.5 LTS type 64-bit, has 15,5

GiB of RAM and 8 processors Intel® Core™ i7-6700 CPU.
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4 Results and Discussion

4.1 The analysis procedure

In the following paragraphs, the analysis procedure I applied and developed for

the gene expression signature applications into the spatial transcriptomic

experiments are presented step by step. The spatial transcriptomic analysis field

is rapidly evolving and standard procedures and many analyses are not stable,

therefore here below I also reported some points of discussion whenever

different strategies can be considered.

4.1.1 The choice of the programming language of the analysis: the R

language and the Bioconductor platform

In order to analyze spatial data through computational analysis and apply

designed spatial packages it’s necessary to store the data in a programmatic data

object that encloses all the useful information compatible with the analysis

strategy. To this purpose we used the R language jointly with packages available

at the Bioconductor platform.

R is a free statistical software which provides a wide variety of statistical and

graphical techniques. The R language is one of the most widely-used and

powerful programming languages in bioinformatics, especially in the analysis of

gene expression data.

Bioconductor is a free, open source and open development software repository

that hosts a wide selection of analysis tools developed in the R programming

environment. The project of Bioconductor is to develop and disseminate free

open source software that facilitates rigorous and reproducible analysis of data

from current and emerging biological assays. Bioconductor's main goal is to

create a durable and flexible software environment by which statistical

researchers can explore and interact fruitfully with shared data resources and

algorithms. Bioconductor pipelines and analysis packages stand some rules and

standardizations which aim is the simplification of data acquisition, management,

transformation, modeling, combining different data sources and developing new

modeling strategies. Being compatible with Bioconductor standards is generally

considered a goal for the usability, reproducibility and distribution of a new

software or an analysis procedure.

In the spatial transcriptomic context, Bioconductor proposes a data structure to

store in one single object the necessary information of a spatial transcriptomic

experiment coming from whatever technology. The constructed object is then

used as a starting point to perform the vast majority of the analysis on spatial
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transcriptomics data. The Bioconductor object dedicated to spatial transcriptomic

experiments is called SpatialExperiment. SpatialExperiment is an extension of the

SingleCellExperiment object, which is dedicated to store the single cell data.

4.1.2 Data loading: the Spatial objects data

After read alignment and quantification procedures, the reads, therefore the

expression levels, can be assigned to genes, and following the spatial barcodes

reads, and therefore the expression levels, can be assigned to each single spot

with a specific spatial coordinate. The obtained expression matrix can be loaded

into a SpatialExperiment object.

In a SpatialExperiment object are stored the spatial gene expression matrix, along

with the row data and the column data, the spatial coordinates of the

expressions, the image of the tissue slice and other image metadata.

Figure 20: Bioconductor SpatialExperiment object structure. Figure credits to Righelli,

SpatialExperiment: infrastructure for spatially-resolved transcriptomics data in R using

Bioconductor, Bioinformatics, (2022) [27].

A SpatialExperiment can be manually constructed, loading manually every single

piece of information in the specific data slot or, only for the 10x Genomics Visum

data, can be used a specialized construction function.

The core of the object is the assay, or multiple assays, which consist in a matrix

with gene names on the rows and spot identifiers on the columns fulfilled by the

gene expression counts. As previously mentioned, spatial gene expression

counts, as well as single cell expression matrix, have a high degree of sparsity,

therefore the count values are saved in the dgcMatrix. The dgcMatrix is a class of

sparse numeric matrices that allows to compress efficiently the aboundat
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fraction of zeros count information. Then in the SpatialExperiment object there is

a section for eventual row and column metadata, respectively rowData and

colData. Additionally, linked to the colData there is also the spatialCoords section

in which the spatial location of each spot in the image tissue is stored. Lastly,

images and image metadata can be saved into the SpatialExperiment object.

In my pipeline, I decided to work with Bioconductor analysis and therefore to

start the analysis with the loading of spatial transcriptomic data into the

SpatialExperiment object.

As a worth of mention an alternative way of working with spatial experiments

outside the Bioconductor environment is using the Seurat objects. Seurat is an R

package designed for single-cell analysis and then adapted for the analysis and

visualization of spatial transcriptomics data. Also Seurat proposes its own Spatial

Seurat object class that can be automatically constructed for 10x Visium by a

specific building function. As SpatialExperiment, the Seurat spatial object

contains the expression matrix in the dgcMatrix format and different sections for

all the information provided by the 10x Genomics.

4.1.3 Data preprocessing and normalization procedure of spatial

transcriptomic data

The preprocessing step includes a spot selection procedure to filter out those

spots with no or few genes quantified. Generally, the spots not covered by tissue

do not show having reads; these include spots outside the tissue margins, holes

or scratches of the tissue slice. Therefore, overlaying the spot coordinates of the

expression matrix with the tissue image, all the spots not covered by tissue were

removed from the analysis even if they show some reads because they are

considered due to aspecific hybridization event.

As it happens for spots lying outside the tissue, it can also happen that spots

covered by tissue show low read counts. This can due to (i) technical problem of

the hybridization of RNA into the library probes of the spatial transcriptomic

slide, or (ii) it can due to specific tissue/cell type or conditions which have few

amount of mRNAs to be captured (e.g. necrotic or some connective tissues);

these spots are respectively considered low quality data or unuseful outliers of

the distribution and are removed. Empirical threshold based on data distribution

and histologic information is generally chosen to identify these spots.

Once having the matrix with only the reliable spots, the normalization of read

counts was performed. The techniques for the quantification of mRNA

abundance introduce systematic sources of variation that can alter the amount of
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mRNAs detected. Consequently, an essential first step in most mRNA-expression

analyses is normalization, through which systematic variations are adjusted to

make expression counts comparable across genes and samples or cells. There are

two classes of normalization. One is the within-sample normalization to adjust

gene-specific features, such as GC content and gene length. The other one is the

between-sample normalization methods adjusted for sample-specific features,

such as sequencing depth. The application of a between-sample normalization in

the case of spatial transcriptomic data aims to remove artificial differences

between total counts of spots, based on the fact that each spot has the same

sequencing depth.

Compared to other transcriptomic data, the spatial data, as presented in the

introduction of this thesis, present some peculiarities that can affect the success

of the normalization procedure. The vast majority of spatial transcriptomics

technologies, or at least the widely used such as the 10x Genomics Visium

technology, is based on capture area of a fixed size divided equally in thousands

of spots. Each spot retains the mRNA content of the overlaid tissue and the

amount of cells within a spot. Thus, the transcriptional output given by a spot

depends on the cell type, state, and the overall local tissue morphology.

Specifically, the spot area of a 10x Visium experiment can contain from 5 to 20

cells; they therefore can show large differences in mRNA quantities. Given this

precondition, which is an intrinsic and unsolvable issue of the spatial technology,

normalization procedure in spatial transcriptomic data is still considered a

challenge and even its application is a matter of debate. Given the similarity

between the spatial and single-cell data distribution, standard procedures

applied to spatial transcriptomic data the normalizations developed for

single-cell data while others, such as Saiselet et al. in the work “Transcriptional

output, cell-type density, and normalization in spatial transcriptomics” (Journal of

Molecular Cell Biology, 2020) [30] explored and questioned if normalization in

spatial data is necessary.

In fact, the authors stated that normalization could bias the differences in read

counts between spots because the total counts per spot are biologically

informative and reflect relevant quantitative and qualitative features of tissue

morphology.

In our case study, as well as in all spatial and not-spatial transcriptomic data,

different normalization procedures including the use of unnormalized data, can

affect the results and this point will certainly require an in-depth analysis in the

future.
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4.1.4 The gene expression signatures: the signifinder R package

Signifinder is an under development R package that allows the user to compute a

collection of cancer gene expression signatures on transcriptomics data.

Signifinder can be found publicly available at

https://github.com/CaluraLab/signifinder.

Currently, signifinder contains 46 signatures collected from tumor literature,

providing an easy and fast way to obtain a fast implementation of signature

scores for each sample. The standard analysis procedure of signifinder requires

the submission of a gene expression data matrix from microarray or

RNA-sequencing to signature dedicated functions. Through these functions

signature scores will be calculated based on the expression of the genes and the

algorithm defined by the signature. The output obtained is generally a single

and/or multiple scores per signature that is added to the colData slot of a

SummarizedExperiment object, the Bioconductor object used to store expression

data. In signifinder additional functions are implemented to interpret, visualize

and also to compare signatures scores between different samples.
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Figure 21: signifinder development and workflow overview. A: shows the schema for the

signifinder development: following a set of stringent criteria, the lists of genes and

algorithms for signature computation have been collected and implemented in

dedicated functions. B: shows a typical signifinder workflow that starts with expression

data and, without any other type of prior knowledge, the user can get and compare the

sample scores for single or many signatures.

Signifinder and its collected signatures, has been developed to work with bulk

transcriptome data, but there is no technical limitation to work with other types

of transcriptome data such as single cell or spatial data. Signifinder takes the
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expression matrix data provided (genes on the rows and samples on the

columns), applies the signature algorithm and returns the resulting score for each

sample. Equivalently, a score can be computed for each single-cell or quasi-single

cell transcriptome returning multiple scores, one of each transcriptome or spatial

spot.

To apply gene expression signature to spatial experiment I used a modified

version of signifinder that can work with SpatialExperiment objects considering

every single spot as if it was an independent sample.

4.1.5 Data visualization

In order to visually appreciate the spatial transcriptomics results in an actual

spatial context I used the R package ggspavis (Version 1.2.0). This very recent

package released in 2022 provides useful and clear visualization functions of

spatially resolved transcriptomics data stored in SpatialExperiment format. One

of the main functions of the package “plotSpots” allows the visualization of the

spatial distributed spots in different dimensions and colors depending on their

annotation, categorization or relative assigned scores.

4.1.6 Attempts to deal with the “zeros” problem

The results obtained from the previous signatures seem to be biologically

meaningful and in agreement with what it's known about cancer. However, all

the signatures I applied to the spatial transcriptomic data signatures have been

designed and validated on bulk transcriptome data which substantially differs

from spatial data. As previously explained, spatial data are characterized by a

large amount of zero expression values which define the sparsity of the data.

Those zeros can represent a true zero expression of a gene or it can be a

consequence of a miss detection of an expressed gene due to technical

limitations. All together the zeros values represent 75% of the spatial data and

the signatures, designed for bulk data, do not take into account this aspect in the

computation of scores, which can bring mathematical challenges. For example,

for those signatures that involve the computation of the geometric mean the

amount of zeros expression values is highly relevant. The geometric mean of a n

set of values is given by the nroot of the multiplication of those n numbers,

therefore each zero value should be discarded in the set of expression values

considered. As a consequence, this is not relevant if the dataset has a very low

percentage of zero expression, otherwise, if the amount of zero is high a large

amount of data should be discarded and the obtained score will be strongly

biased. On the other hand, if the distribution of zeros is equivalent in all the
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spots belonging to the same type of tissue, the resulting score might be

comparable and relevant anyway. As mentioned in the background session, some

approaches that aim to impute artificial zeros have been proposed for spatial

data. Generally, they try to reduce the number of zeros and increase the counts

values of each spot leveraging the spatial information, resulting in the

implementation of spatial smoothing algorithm. As well, I tried to apply a similar

adjustment on the count values of the spatial gene expression data under

consideration. The adjustment applied is way simpler than the complex approach

implemented by the spatial packages as stLearn or spaGCN but it can be an

approach to handle spatial data.

Two simple ideas have been implemented to see if spatial data can actually gain

improvements in terms of zero abundance and signature score distribution. The

consecutive rows of capture spots that define the grid of Visium technology are

staggered one to the other, arranged in a way that makes it easy to define triads

of close spots as shown in the figures below.

Figure 22: A. non overlapping selection of triad of spots. B. overlapping selection of triad

of spots.

In the first adjustment type (Figure 22A) the expression profiles of the spots in a

triad are summed up and the resulting profile is assigned to each of the spots

constituting the triad. The following step is to consider the subsequent upside

down triades of spots, repeat the procedure, and so on for the whole grid of

spots.

The second adjustment type (Figure 22B) mimics the idea of the sliding window:

the first step is considering one triad of spots, then the three expression profiles

are summed up and assigned only to the spot on the top of the triangle. The next

triad is defined by moving one spot further in the line and repeating the sum and

the assignment along the whole grid.

An open question remains on the handling of the edge spots in the adjustment of

the expression counts. The methods applied take for granted that one spot has

its neighbor triad with transcriptional information, but in the case of edge spots

along the border of the tissue this is not a valid approach. It may seem a marginal
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problem but the number of edge spots rapidly increases when, like in the case

presented below, there are empty or excluded areas inside the tissue. The

challenge occurs when there are no close profile spots to sum and the edge spots

remain unchanged by the adjustment with a lower total count and highest

number of zeros.

4.2 The case study

4.2.1 Human ductal breast cancer

Breast cancer is a disease in which breast cells starts to hyperproliferate. A

healthy female breast is made up of 12-20 sections called lobes, each one made

up of many smaller lobules which define the glands that produce milk in nursing

women. Lobes and lobules are connected by milk ducts that carry the milk to the

nipple. These breast structures are generally where the cancer begins to form.

Less commonly, breast cancer can begin in the stromal tissues, which include the

fatty and fibrous connective tissues of the breast.

Breast cancer can arise from the cells of the epithelium of the ducts or from the

cell of the lobules in the granular tissue of the breast. Initially, the cancerous

growth is confined to the duct or lobule, defined as “in situ”, having the potential

to spread. Over time, the in situ cancer may progress to invade the surrounding

breast tissue becoming an invasive breast cancer. It can spread in the nearby

lymph nodes originating regional metastasis or to other organs of the body

establishing distant metastasis. There are two common types of breast cancer:

invasive ductal carcinoma and invasive lobular carcinoma depending which types

of cells start to become neoplastic.

Breast cancer is one of the most common cancers worldwide and, although it can

affect both women and men, only 0.5 -1% of breast cancer diagnoses occur in

men. Breast cancer is mainly diagnosed in women over 40 years and its risk

increases with age, obesity and unhealthy life habits as harmful use of alcohol

and tobacco. Invasive ductal carcinoma is the most common type of breast

cancer, making up nearly 70- 80% of all breast cancer diagnoses both in women

and men. Most breast cancers are sporadic, but 5% to 10% of the cases are

thought to be hereditary caused by a predisposition principally due to mutations

in the tumor suppressor genes BRCA1 and BRCA2.

4.2.2 Histologic reading of the sample

10x Genomics data includes a high definition histological image of the tissue slice

used in the spatial analysis, in this case a breast carcinoma, reported below.
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Figure 23: H&E image provided by 10x Genomics.

We submitted the image for a professional histopathological reading to the

anatomopathologist Gennaro Esposito (IOV, Istituto Oncologico Veneto I.R.C.C.S.,

Padova). Based exclusively on the morphological characteristic of the cells, tissue

and cells can be categorized. The healthy breast is mainly composed of stromal

cells which are fibroblasts, immune cells, adipocytes and endothelial cells, along

with extracellular matrix (ECM) components, the most abundant of which is

collagen I.

In Figure 24 we can find the areas with specific tumor properties, mainly

delimiting the tumoral tissue from the healthy regions, they are highlighted in

red, blue and black lines.

(i) The multiple neoplastic areas, highlighted in red, can be seen in the sample. In

this section the tumor areas are localized inside the duct, as expected by this

type of tumor since its origin in the basement membrane of a breast duct and it

generally invades the inner part of the duct.
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(ii) Tumor masses are surrounded by fibrous tissue, delimited in blue, which is

identified as cancer associated fibroblasts (CAFs). CAFs are generally found in the

cancer stroma and are the major component of it. Fibroblasts around tumor

mass contribute to its proliferation, invasion capabilities and metastasis through

the secretion of several growth factors, cytokines, chemokines, and degradation

of extracellular matrix (ECM) proteins. In the rest of the tissue have been

recognised adipocytes, blood vessels and some small aggregation of

lymphocytes.

(iii) As can be appreciated in the figure, multiple necrotic areas are present and

are indicated in black. In the figure the necrotic cells are mainly located inside the

regions labeled as tumor, which is a peculiar feature of advanced solid tumors

and is associated with poor prognosis of cancer patients. Generally the inner cells

of solid tumors display insufficient blood irroration which is translated into

oxygen and nutrient deprivation leading to necrotic death. Recently necrosis has

been recognised not as an accident consequence of tumor growth, but as a

programmed cell death with a tumor-promoting potential. Other tissue

structures have been recognised as adipocytes, lymphocytes and blood vessels

respectively indicated in

Figure 24 in green, light

blue and orange.

Figure 24: Professional

histopathological reading

of the H&E image, with

colors to indicate different

areas of the biopsy:

neoplastic areas (red),

necrotic areas (black),

cancer associated

fibroblast (blue),

adipocytes (green),

lymphocytes (light blue),

blood vessels (orange).

Using CellRanger, the proprietary software of the 10x Genomics, we can easily

translate the histologic annotations to each spot of the spatial transcriptomic

grid, along with the tissue border. The result of this procedure can be found in

Figure 25. Thus, each spot of the capture area has been annotated as: tumor,

necrosis, lymphocytes, CAFs, blood vessels, adipocytes and stroma. The

assignment has been performed manually for each spot, and for those spots

located on the edges of different adjacent sections the label was defined by the
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structure that covers the major area of the spot. The annotation “stroma”, which

enclose different cell types, was used when multiple cell types underlie the same

spot.

This procedure gives an “identity” to each spot of the capture area, in this way

this information can be automatically read and considered by the analysis

procedure.

Figure 25: Manual transfer of the histological annotation of the tissue slice of the 10x

Ductal Breast Cancer Sample into the spots of the capture area using the 10x software

Loupe Browser.

4.2.3 Expression data analysis

The spots not covered by tissue do not generally show RNA counts, they appear

as lacking in the figures and were not considered in the analysis, these include

spots outside the tissue margins, and holes or scratches of the tissue slice.

Sometimes, these spots show very low tissue counts due to aspecific

hybridization of RNA into the library probes; these spots are generally considered

of low quality and removed. Specifically in this sample we have 2518 spots

showing at least one count in one gene. The vast majority of these low count
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spots correspond to necrotic areas, dead cells do not have mRNAs or the vast

majority is too degraded to be linked by the slide library probes. Thus all the

spots with very low counts or annotated as necrotic, have not been taken into

account in the analysis. The small amount of transcript sampled in that area can

also be due to the possible diffusion of mRNAs from other cells during the

permeabilization of the tissue. As a consequence, those spots have been

removed before normalization of the row counts.

The normalization applied is the one suggested for single cells transcriptome data

that is applicable to the SpatialExperiment object, which consists in the log

normalization of the row counts proposed by the single-cell analysis package

scater. Normalization aims to remove the differences between total counts of

spots imputed to the technical variation in RNA capture, thus obtaining

comparable spots in terms of counts and gene expression levels.

A
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B

Figure 26: A. total amount of gene expression counts per spot before normalization. B.

total amount of gene expression counts per spot after normalization.

It is clear in the plots above (Figure 26) how the normalization applied makes the

total count of each spot more uniform across the tissue. However the total

counts can not be forced to be identically distributed between all the spots

because the density of cells in the tissue is not homogeneous, while by

construction the spot areas always have the same size, therefore spots covering

different numbers of cells could collect largely different amounts of transcripts.

4.2.4 Computation of pancancer signatures

Signifinder contains a collection of tumor-specific and pancancer signatures

(signatures that can be used in all types of cancers). All the signatures that I

applied to this Visium experiment of breast cancer are listed and described in

table 1, they are all the pancancer signatures.

Signature Topic Description Reference

CellCycle_Lundberg cell cycle It is a representative of general
cell-cycle activity and could be
applied to any tissue sample.
Higher scores represent a worse
prognosis.

[31]
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Signature Topic Description Reference

MitoticIndex_Yang cell cycle The mitotic-index is constructed
from genes that have been highly
validated as being cell proliferation
markers. The score reflects the
fraction of dividing cells in a
sample and can be used as a
predictors of normal/cancer status.

[32]

CIN_Carter chromosomal
instability

The score characterizes aneuploidy
in tumor samples based on
coordinated aberrations in
expression of genes localized to
each chromosomal region. Higher
the score higher the total level of
chromosomal aberration. Net
overexpression of this signature
was predictive of poor clinical
outcome in six cancer types.

[33]

Hypoxia_Buffa hypoxia A highly prognostic signature. The
score increasement reflects
hypoxia activity.

[34]

ImmunoScore_Roh immune
system

The score is based on expression of
genes involved in cytolytic
markers, HLA molecules , IFN-γ
pathway genes, chemokines, and
adhesion molecules. It is used to
investigate immune activation in
tumor microenvironment, higher
the score higher the immune
system activation in relation to
tumor rejection.

[35]

Table 1: Computed signatures.

Once the score signature function is applied on spatial data matrix we obtain a

score for each expression profile of each spot, which is stored in the colData of

the SpatialExperiment object.

Those scores can be plotted on the “spot” image codified by a color scale in order

to obtain a visual representation of the distribution of the results all over the

tissue slice.
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In the following paragraphs a selection of signatures mapped on the spatial data,

along with the signature explanation and results discussion.

Cell cycle signature

The main distinctive character of tumor tissue is the uncontrolled growth of cells,

so the dysregulation of the cell cycle is one of the key markers of the tumoral

tissue. Lundberg et al. [31] proposed a cell cycle signature based on 463 cell-cycle

related genes collected from KEGG, HGNC and Cyclebase. The cell cycle signature

score (CCS score) is calculated considering the mean expression values of the

selected genes, and is used in pan-cancer analysis and represents the marker of

cell cycle activation and cell proliferation.

Figure 27: CellCycle signature score distribution all over the spots.

The distribution of the CellCycle score all over the tissue spots depict multiple

intense-red regions and other more extended orange-yellow areas. As we

expected, the higher scores are attributed to those spots covering the tumoral

area, while the rest of the stroma displays an overall lover resulting scores

highlighting an increased cell cycle activity in the fast replicating tumor cells.
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Mitotic index signature

Cancer risk in somatic tissue is correlated to the rate of stem cell division, thus a

marker able to approximate stem cell divisions in a tissue can be useful to

individuate high probability of cancer triggering. Yang et al. [32] developed a

mathematical model able to approximate mitotic clock in both normal and

cancer tissue, demonstrating that this mitotic-like clock is universally accelerated

in cancer, precancerous lesions and normal epithelial cells exposed to a major

carcinogen. The mRNA based mitotic signature is calculated on the mean of the

expression level of 9 genes, related to the proliferation, and reflects the rate of

division in the tissue.

Figure 28: Mitotic index signature score distribution all over the spots.

The distinctive characteristic of tumors is the abnormal proliferation of cells

which, as a direct consequence, increases the number of accumulated cell

divisions. Therefore, in the resulting plot of the mitotic index above, on average,

the spots with higher scores are those labeled as tumor.
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Chromosome instability signature

One of the most consistent characteristics of human solid tumors is chromosomal

instability (CIN) which results from errors in chromosome segregation during

mitosis. Carter et al. [33] constructed the CIN signature based on the expression

level of genes consistently associated with aneuploidy. The authors reasoned that

aneuploidy is a consequence of chromosomal instability and so aneuploidy

correlated genes might provide insight into molecular mechanisms underlying

chromosomal instability. Genes found correlated to aneuploidy by the authors

have been ranked and the top 70 correlated genes are used in the calculation of

the CIN signature score. This signature is based on the normalized sum of the

gene expression count of those 70 genes, mainly involved in the faithful

replication and segregation of chromosomes.

Figure 29: Chromosomal instability signature score distribution all over the spots.

As the mitotic index, also the chromosomal instability is one direct consequence

of the uncontrolled proliferation of tumor cells, indeed the above plot displays a

similar score distribution with the mitotic index plot. In Figure 29 can be

appreciated multiple dark red spots distributed in a subpart of the tumor
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annotated area highlighting a non homogenous distribution of this signature

inside the tumor mass and tantalizingly suggesting that tumor cells can be

divided in two classes of stable and unstable tumor cells.

Hypoxia signature

Low level of oxygen is another major feature of solid tumors that favors tumor

progression. Hypoxia, both in normal and neoplastic tissue, induces a molecular

response that stimulates the growth of new vasculature, essential for nutrient

supply and dissemination of neoplastic cells. Buffa et al. [34] propose a Hypoxia

signature built on 49 genes that the authors found consistently co-expressed with

the low level of oxygen in multiple cancers. The signature score is based on the

median expression of those selected genes and is used to investigate the hypoxia

level in the tissue.

Figure 30: Hypoxia signature score distribution all over the spots.

The hypoxia signature score shows a clear separation between tumor and

non-tumoral tissue; indeed the results show almost the total of the tumors

sports with high scores. Tumor tissue of this sample seem to be strongly

46



Anna Corrà                                                                                                 Master’s thesis

characterized by low levels of oxygen and this is also confirmed from an

histologic point of view by the large areas of tumor necrosis. Low level of oxygen

could stimulate angiogenesis and the block of which is the target of multiple

anticancer adjuvant therapies. Hypoxia sign is calculated on the median

expression of 9 hypoxia related genes which, supposedly, are activated only in

the tumor tissue and the CAFs region surrounding it.

Immune system signature

Immune system and cancer present a complex relationship that defines the

balance between the immune surveillance and immune escape, which leads to

cancer progression. The Immune signature proposed by Roh et al. [35] is based

on 41 immune related genes selected for melanoma. This score depends on the

expression of genes associated with immune activation in the TME and can be

used to evaluate the activation state of the immune system in cancer. The

immune signature, valid as pan-cancer signature, is defined by the geometric

mean of gene expression counts of those 41 immune related selected genes.

Figure 31: ImmunoScore signature distribution all over the spots.
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In the figure above is reported the distribution of the immunoScore in which the

lower score region corresponds to the neoplastic area, while the rest of the spots

shows a higher score level. The ImmunoScore is calculated on the expression of

immune related genes which reflects the immune response of the tissue to the

tumor offense. Generally, a higher and active immune response, especially within

the tumor tissue, is linked to a good prognosis. On the other hand, in this case

the tumor area is characterized by a lower ImmunoScore than the surrounding

tissue, which can be a hint of an advanced tumor state, in line with all the other

observations. The study of localization and activity of the immune system cells

are of paramount importance especially in the context of immunotherapies,

having the information that immune cells are present and active outside of the

tumor borders can be an interesting information that can be used in a clinical

path for the immunotherapy choice.

4.2.5 Smoothing approaches on the case study data

As mentioned before, spatial gene expression data are fulfilled by zero counts.

The large amount of zero counts, true or artificial, covers 75% of this case study

data. The total quantity of zeros define the high level of sparsity of the data

which could bring challenges in the application of already existing analysis tools

not specifically designed for spatial data. The idea to exploit spatial information

to overcome the zero amount problem has been already implemented through

different and complex approaches integrating both morphological information

and spatial location.

To my case study I implemented and applied two different smoothing

approaches, both based on the selection of adjacent tris of spot and the union of

their total counts, as represented in the preceding Figure 22. The first one entails

the selection of a triangle of three spots, the sum up of their counts and then the

reassignment of the resulting merged counts to all three sports. This method is

defined as the non-overlapping method because one spot belongs to only one

triad. On the other hand, in the second adjustment method, indicated as the

overlapping triad adjustment, one spot belongs to multiple triads, mimicking the

idea of the sliding window.

Once applied both two smoothing methods the calculation of the signatures

have been performed again and below it’s reported the chromosomal instability

signature score distribution.
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A

B

Figure 32 : A. Chromosomal instability signature score distribution after the non

overlapping triad adjustment counts method. B. Chromosomal instability signature score

distribution after the overlapping triad adjustment counts method.
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With both two methods applied the overall distribution of the signature score

remains unchanged which is a sign that the changes applied have not distorted

the data. Then, in both plots it can be appreciated that the area with higher score

seems to be more extended compared with the unsmoothed data, which is a

common result obtained from two different “adjustment actions”.

In the first case we select three spots and we merge their information without

sharing it with the other neighbors spots, so basically we are incorporating a triad

of spots, increasing the total spot count but decreasing the resolution of the

transcriptional pictures. Indeed, we obtain a lower resolution averaged score

distribution, in which equal score tirad spot can be easily recognised.

In the second case we sum up three close spot transcription profiles allowing the

sharing of counts between subsequent triads. The reassignment of the merged

profiles is performed to only one spot at the time, aiming to maintain the initial

resolution of the technology. The direct result of this sharing is a more blended

appearance of the score distribution that makes the high score areas look more

extended.

In terms of zero abundance reduction both methods are almost equivalent: on

average 12950 genes have zero counts values per spot before adjustment,

instead after it the average zero count genes per spot decrease to 9950.

Differently from what we expect, the reduction in zero abundance is not that

strong because, generally, a gene with zero count in a spot tends to have zero

count also in its neighbors spots.

Although those are preliminary results, these approaches are helpful in the

reduction of zeros in the spatial gene expression data. Currently, we are working

on the application of the smoothing approaches previously presented in the

introduction chapter, that seems to strongly solve the problem of the zeros

abundance.

50



Anna Corrà                                                                                                 Master’s thesis

5 Conclusions and Future Perspectives

The main topic of my thesis project is the new spatial technology approach for

which several analysis tools are under development. The current diffusion of

spatial transcriptomics technologies is bringing up to light all the possible

advantages of its application, both in research and in clinical practice. For

example, the ability to read tumor biopsies, not only based on the morphology of

the tissue, but also based on the transcriptional information, could provide a

better interpretation of tumor subtypes. Proper recognition of tumor subtypes

leads to precise stratification of patients and adequate treatment selection.

However, intuitive and user-friendly tools that can allow the medical personnel to

perform this analysis are still missing.

This thesis project represents one first step into the application and adaptation of

gene expression cancer signatures on spatial transcriptomics data, aiming to

provide effective interpretation strategies through knowledge and algorithms

designed for bulk analysis. To do this, we applied signifinder, an R package for the

computation of a compendium of gene expression cancer signatures. The results

obtained by the application of signifinder are biologically meaningful and display

an overall agreement between each other. Altogether, the results of the

signature highlight an advanced tumor state with poor prognosis markers, such

as the high level of hypoxia and the low immune response in the tumor area.

Currently, signifinder provides several functions for the computation of

signatures on bulk data with additional functions for the interpretation and

comparison of final scores. The future step will be the full adaptation of

signifinder to work with spatial data by the integration of analysis functions

specifically designed to work with it. For example, the addition of smoothing

functions in the package could give the user the possibility to adjust the count

distribution, compare the impact of it and evaluate the best results. As previously

presented, few articulated methods that integrate the morphology of the tissue

slice in the smoothing method have been already proposed in the stLearn and

spaGCN packages [21, 23]. One easier way to reproduce this type of approach

could be the integration of the histological annotation of spots covering the

tissue as a criterion to share the counts of a spot with its neighborhood.

Anyway, several open questions remain unsolved. First of all, about the

normalization step there are differing opinions, arguing if it is actually required in

the analysis of spatial data [30]. In addition, smoothing methods aim to

overcome the issue of zero abundance and low counts values through the
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adjustment of total counts, leveraging spatial information. Regardless how

reasoned and motivated the adjustment may be, it will inevitably remain a

modification of the original data with the possible introduction of artifacts.

Linked to the adjustment strategy, another unsolved issue remains the handling

of border spots which are not surrounded by other tissue spots.

All things considered, due to the promising advantages and cutting edge

applications of spatial transcriptomics technologies, it is, with no doubt, worthy

to persevere in the development of spatial analysis and interpretation softwares.
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