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Sommario 

Nel contesto dell'esperimento in via di sviluppo RFX-mod2, questo lavoro mira 

attentamente a valutare possibili condizioni critiche nella ricostruzione in tempo 

reale dei parametri di plasma (mediante il calcolo di momenti di ordine inferiore 

della densità di corrente toroidale), ogni qualvolta il nuovo set dei sensori di 

campo magnetico poloidale dovesse presentare un guasto. 

La valutazione viene eseguita su tre scariche sperimentali di RFX-mod e due 

simulate numericamente per future operazioni di RFX-mod2. Queste presentano 

varie forme plasma, con nullo singolo superiore, nullo singolo inferiore, limiter ed 

a triangolarità negativa. Questo viene fatto per verificare se la forma del plasma e 

le caratteristiche dell’equilibrio in qualche modo influenzino la ricostruzione dei 

parametri in tempo reale. 

Sono state analizzate tutte le possibili configurazioni comprese tra 1 e 12 sensori 

guasti, fornendo una panoramica completa della validità del metodo di 

ricostruzione mediante i momenti della densità di corrente toroidale in ogni 

possibile scenario. Quindi, è stata eseguita un'ulteriore analisi presentante del 

rumore all’interno delle misure su alcune configurazioni chiave, per dimostrare la 

robustezza del metodo stesso. 

Il lavoro è organizzato come segue. La prima sezione fornisce un'introduzione 

riguardante la natura della fusione termonucleare e illustra le soluzioni più 

promettenti per il suo sviluppo. In particolare, si descriverà la fusione a 

confinamento magnetico in configurazione tokamak, fornendo una panoramica dei 

principi di funzionamento. 

La seconda sezione approfondisce gli aspetti riguardanti il problema 

magnetostatico e fornisce le informazioni relative alla soluzione del problema 

free-boundary di equilibrio. In particolare, viene introdotto il codice FRIDA per la 

soluzione numerica del problema magnetostatico. I dati forniti dall’output del 

codice serviranno quindi per ricavare le misure virtuali dei sensori di campo 

magnetico di RFX-mod2. 

La terza sezione fornisce un modello per la ricostruzione dei parametri di plasma a 

partire dalle misure dei sensori di RFX-mod2: il calcolo dei momenti della densità 

di corrente toroidale di ordine inferiore. L'obiettivo è capire come ricostruire i 

parametri di plasma, ossia la corrente totale di plasma e la posizione del centroide, 

quando è presente un numero ridotto di misure, come accade nelle applicazioni 

reali. 

La quarta sezione fornisce una descrizione dell'esperimento RFX-mod2, 

considerando le principali differenze rispetto al suo predecessore RFX-mod. 

Particolare attenzione viene data alla descrizione delle operazioni tokamak. 



 

La quinta sezione illustra gli equilibri utilizzati in questo lavoro, scelti tra diverse 

forme di plasma come precedentemente accennato. 

Infine, il sesto capitolo fornisce i risultati dell'analisi della ricostruzione dei 

parametri di plasma considerando il potenziale guasto di diversi sensori di campo 

poloidale RFX-mod2. In particolare sono state analizzate tutte le combinazioni di 

sensori guasti a seconda delle loro posizioni nella macchina. 

  



 

Abstract 

In the context of the in-development RFX-mod2 experiment upgrade, this work 

carefully aims to evaluate possible critical conditions in real-time plasma 

parameters reconstruction (by means of computation of lower-order moments of 

toroidal current density), whenever the new set of poloidal magnetic field sensors 

would encounter some failures. 

The evaluation is performed on three experimental RFX-mod discharges and two 

numerically defined for future RFX-mod2 operations. Among them, various types 

of plasma shapes are present, with upper single null, lower single null, limiter 

plasma and negative triangularity. This is done to verify whether plasma shape 

and equilibrium characteristics might affect real-time parameters reconstruction. 

All the possible configurations between 1 and 12 faulty sensors have been 

analysed, giving a complete overview of moment reconstruction method 

behaviour in every possible scenario. Then, a further noise analysis has been 

performed over some key configurations, to prove the robustness of the method 

itself. 

The work is organized as follows. The first section provides an introduction 

concerning the nature of thermonuclear fusion and illustrates the most promising 

solutions for its development. In particular, it will be described the magnetic 

confinement fusion configuration appealed as tokamak, giving an overview of the 

operating principles. 

The second section deepens the aspects of the magnetostatic problem and 

provides the informations concerning the solution of the free-boundary 

equilibrium problem. In particular, is introduced the FRIDA code for the numeric 

solution of the magnetostatic problem. Data retrieved by the code output will then 

be utilized to obtain virtual measurements on RFX-mod2 magnetic sensor set. 

Third section provides a model for plasma parameters reconstruction from the 

magnetic sensors of RFX-mod2: the computation of lower order moments of the 

toroidal current density. The focus is put on understanding how to retrieve reliable 

plasma parameters, i.e. total plasma current and centroid position, when a reduced 

number of measurement is present, as happens in practical applications. 

Fourth section gives a description of the RFX-mod2 experiment, considering the 

main differences between its predecessor RFX-mod. Particular attention is given 

in describing the tokamak operations. 

Fifth section illustrates the equilibria utilized in this work, chosen among different 

plasma shapes as previously mentioned. 



 

Finally, the sixth chapter provides the results of the analysis of plasma parameters 

reconstruction considering the potential failure of several RFX-mod2 poloidal 

field sensors. In particular, all combinations of faulty sensors are analysed 

according to their positions in the machine. 
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SECTION 1 

1 Introduction 
 

1.1 World energy problem 

Anthropogenic emissions of carbon dioxide and other greenhouse gasses are the 

primary driver of climate change. The energy sector must be at the front line of 

efforts to tackle climate change since the combustion of fossil fuels contributes 

around two-thirds of global emissions of global greenhouse gas emissions and the 

bulk of 𝐶𝑂2 emissions [1]. A great reduction of fossil fuels usage to generate 

electricity is mandatory contextually with a sustained and complete shift to clean 

energy technologies based on low-carbon sources of energy. 

In the last decades, the use of renewable energy sources like hydropower, 

photovoltaic and wind energy has signed a drastic growth, passing from 0.7 TW 

installed power in 2000 up to 2.70 TW in 2020 (Fig. 1.1) [2]. However, these 

sources have intrinsic limits in available power (for hydropower) and variability 

(for solar and wind), suggesting that other kinds of clean generation strategies 

must be found; specially to guarantee a baseload generation support [3]. Solar and 

wind, in fact, are not suitable for baseload generation due to their intrinsic 

variability, and hydropower has limits on installed capacity, depending mainly on 

the geographical location. 

 

Fig. 1.1: Renewables installed power 2000-2020 [2] 

In this context nuclear power can be seen as a concrete possible solution to world 

energy problem. Many ways of extracting energy directly from atomic nuclei can 

be exploited and, depending on the type of process, one could refer to nuclear 

fission or nuclear fusion. The first relies in the rupture of heavy atomic nuclei 

while fusion, instead, extracts energy from the merging of light atomic nuclei. 
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The amount of energy released in nuclear reactions is related to the strong nuclear 

interaction that holds atomic nuclei together. This energy between the single 

nucleus formants can be quantified and expressed in terms of energy per single 

nucleon (Fig 1.2) [4], or binding energy per nucleon. The presented curve shows 

how light and heavy nuclei are bound weakly than intermediate elements. This 

condition arises from a geometric competition between the strong short-range 

nuclear force and the weak long-range Coulomb force. 

 

Fig. 1.2 Binding energy per nucleon 

Binding energy per nucleon has a maximum around 56Fe (being it actually the 

most stable nucleus in nature). On the left side of the graph there are lighter 

atomic nuclei which primary could intervene in fusion reactions, and, on the right 

side, heavier nuclei that could most probably undergo fission reactions. 

In all these processes the energy is extracted by the mass defect between the 

reactants and the products, obeying the famous Einstein’s relation: 

𝐸 = 𝑚𝑐2 

Hence the mass of the reactants is higher than the mass of the products and the 

mass defect is released in the process under the form of kinetic energy of the 

products and/or electromagnetic radiation. 

In the last century, one particular kind of nuclear reaction has been exploited: the 

fission of uranium-235. This process has concrete advantages in terms of 𝐶𝑂2 

emissions and baseload generation, therefore it should have a key role in our near-

future generation scenario. However, it presents severe drawbacks that could set 

limits in its exploitation. In particular, nuclear fission suffers of fuel depletion, 

like fossil fuels [5], and presents various safety aspects that make it unattractive. 

Among them: the waste product handling, the possibility of having an exponential 
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reaction and the potential production of nuclear weapons by enriching nuclear 

fuel. This inevitably leads to a small penetration of nuclear power in our energy 

generation scenario (Fig. 1.3) [1] (even though it could have a huge potential in 

baseload support substituting fossil-fuels plants [3]). 

 

 

Fig. 1.3 Energy generation by power source 2014-2021 [1] 

 

1.2 Thermonuclear Fusion 

The other kind of nuclear reaction is the nuclear fusion and, contrary to nuclear 

fission, it requires a set of more extreme environmental conditions to allow the 

reaction to occur. The main challenge that has to be faced in order to accomplish 

fusion on a large scale, and possibly making it commercially available, is 

overcoming the electrostatic repulsion forces that acts against the merging of the 

nuclei.  

1.2.1 Coulomb potential 

In order to achieve nuclear fusion reactions, the nuclei must have sufficiently high 

energies to overcome the repulsive Coulomb barrier (Eq. 1.1), whose associated 

Coulomb force diverts the particle orbits and greatly reduces the likelihood of a 

nuclear reaction. This is the strategy behind all current fusion research. 

 𝑊 = 
𝑍1𝑍2𝑒

2

4𝜋휀0𝑟𝑚
 (1.1) 

In Eq. (1.1), 𝑍1 and 𝑍2 are the atomic numbers of the interacting nuclei, 𝑒 is the 

unit charge and 𝑟𝑚  is the distance between nuclei’s centres at which attractive 

nuclear forces becomes dominant (Fig. 1.4). 
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Fig 1.4 Coulomb, nuclear and total potential 

Coulomb barrier is therefore proportional to 𝑍2, meaning that light atomic nuclei 

could more likely intervene in fusion reactions. This fact suggests a preferable 

choice in reactants as the elements present in the leftmost part of Fig. 1.2. 

Nuclear fusion already happens in nature, in the core of all the stars of the 

universe, fusing 𝐻1
1 nuclei (i.e. protons) in a chain reaction until an helium atom is 

obtained (or in older stars other processes involving heavier nuclei up to 𝐹𝑒56, 

then fusion becomes no more energy-convenient causing the death of the star). In 

this case the reaction is possible thanks to gravity that compresses the hot core to 

extremely high densities, pressures and temperatures bringing the nuclei close 

enough that Coulomb potential barrier is overcomed. This is called inertial 

confinement fusion. 

The fusion of protons in the Sun is possible because of the extreme conditions in 

its centre: pressures of about 150 billion bar and temperatures of 15 M°C, caused 

by the gravitational forces from a mass that is about 330,000 times larger than that 

of the Earth. 

The core of our Sun is esteemed to have a density of 160 𝑔/𝑐𝑚3, a value that 

cannot be replicated on Earth. Nevertheless, inertial confinement can be 

performed in laboratory through a different way involving an intense 

bombardment of a target by means of powerful lasers; several experiments are 

studying the feasibility of this fusion approach. 

A different and much more promising approach to fusion is the Magnetic 

Confinement Fusion (MCF). This relies on rising the temperature of the reactants 

up to thermonuclear temperatures (e.g. 100 million °C), when the kinetic energy 

of the thermal particles is enough to overcome the electrostatic repulsion and 
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bring the nuclei close enough to fuse; the resulting process is called 

thermonuclear fusion. At these temperatures the fuel is fully ionized, becoming a 

plasma, a high-temperature collection of electrons and ions that can be dominated 

by electromagnetic forces. In fact, plasma is a hot core of gas that tends to 

expand; magnetic fields and currents must exist in order to balance this expansion 

force with the final aim to confine the particles at a desired location in the vacuum 

chamber of the MCF experiment. 

1.2.2 Fusion reactions and approaches 

A key parameter to define the feasibility of a nuclear reaction is the cross-section 

𝜎. This has the dimension of an area and is linked to the probability that a nuclear 

reaction could happen, more precisely it depends on the interaction time of the in 

a determined area. 

 

Fig 1.5: Cross-section of main fusion reactions as a function of temperature (i.e. energy) 

[keV] 

 

 𝐷1
2 + 𝑇1

3 → α + n + 𝐸𝐷𝑇 𝐸𝐷𝑇 = 17,6 MeV (1.2) 

 𝐷1
2 + 𝐷1

2 → 𝑇1
3 + p + 𝐸𝐷𝐷′ 𝐸𝐷𝐷′ = 4,03 MeV  

 𝐷1
2 +𝐷1

2 → 𝐻𝑒2
3 + n + 𝐸𝐷𝐷" 𝐸𝐷𝐷" = 3,27 MeV  

 𝐷1
2 + 𝐻𝑒2

3 → α + p + 𝐸𝐷𝐻𝑒 𝐸𝐷𝐻𝑒 = 18,3 MeV  

 𝐻𝑒2
3 + 𝐻𝑒2

3 → α + 2p + 𝐸𝐻𝑒𝐻𝑒 𝐸𝐻𝑒𝐻𝑒 = 12,86 MeV  

 𝑝 + 𝐵5
11 → 3α + 𝐸𝑝𝐵 𝐸𝑝𝐵 = 8,7 MeV  
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Comparing experimental cross-section data (Fig. 1.5), the simpler reaction which 

could be experimented (Eq. 1.2) is the deuterium-tritium reaction (D-T) as it 

presents the highest 𝜎 to accomplish the fusion. 

The release of 17,6 𝑀𝑒𝑉  corresponds to 3,52 𝑀𝑒𝑉  per nucleon, which 

macroscopically is equivalent to 338 ⋅ 106𝑀𝐽 𝑘𝑔⁄  of fuel. 

Nevertheless, despite D-T reaction presents the highest cross-section, it suffers 

from the tritium supply point of view. In fact, since tritium is a radioactive isotope 

with a half-life of only about 12 years, there is no natural tritium to be found on 

Earth. A solution for the tritium demand could be found in using a widely 

available on Earth isotope of lithium ( 𝐿𝑖6) , which could breed tritium by 

absorbing a neutron [6]. 

Alternatively, a full D-D reaction could minimize the fuel problem, since 

deuterium is naturally present in our planet and could be majorly found linked to 

oxygen in the so called “heavy water”. A fraction of just 0.0156% (1 atom in 

6420) of 𝐻2 is deuterium, but considering a planetary scale, it results in a quite 

abundant element [7].  However, as shown in Fig 1.3, the DD cross-section 

impose even more critical conditions to sustain a fusion reaction of this kind. 

Another important aspect to be considered in thermonuclear fusion experiments, 

is the neutron production. This is fundamental to extract thermal energy by its 

braking in the first wall, but, at the same time, it requires a sophisticated structure 

in order to handle material activation and radiation damage resulting from high-

energy neutrons. 

There exist reactions that do not produce neutrons, hence all the products could be 

confined within magnetic fields. This particular aneutronic reactions, like p-𝐵11, 

D-𝐻𝑒3 or 𝐻𝑒3-𝐻𝑒3 may help simplify the containment structure, but drawbacks 

regarding the small cross-section and fuel supply (helium-3) are still present. 

1.2.3 Power balance in magnetic confinement fusion 

A simple analysis to assess the conditions to sustain a thermonuclear fusion 

reaction relies in the evaluation of a 0D power balance [8]. 

Considering the D-T reaction of MCF, a first hypothesis of no net power output is 

set, which implies that power input equals power output (assuming that reagents 

that have incurred in a fusion reaction could not be confined) 

 𝑃𝑖𝑛 = 𝑃𝑜𝑢𝑡 (1.3) 

 

Power input 𝑃𝑖𝑛 consists of two terms: external power 𝑃𝑒𝑥𝑡, used to sustain the 

reaction, and 𝑃𝑁, the nuclear power produced by fusion itself, which contributes to 
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plasma heating. The latter depends on the D-T reaction cross-section 𝜎  and 

temperature (expressed as particles velocity 𝑣 ). Relations can be written as 

follows: 

𝑃𝑖𝑛 = 𝑃𝑁 + 𝑃𝑒𝑥𝑡,          𝑃𝑁 = 
𝑛2

4
〈𝜎𝑣〉𝐸𝐷𝑇 

where 𝐸𝐷𝑇 is the energy released by the DT reaction (Eq. 1.2) and 
𝑛2

4
〈𝜎𝑣〉 is the 

reaction rate. The latter is defined as 〈𝜎𝑣〉𝑛1𝑛2, where 〈𝜎𝑣〉 is the average value of 

the product between cross-section and particles velocity, and it can be 

demonstrated to present a maximum when 𝑛1 = 𝑛2 =
𝑛

2
. 

Power output is then composed by transport losses 𝑃𝑇 , that depends on the energy 

confinement time 𝜏𝐸 , and bremsstrahlung losses 𝑃𝐵 , that are due to irradiation 

generated by acceleration of charged particles. 

𝑃𝑜𝑢𝑡 = 𝑃𝑁 + 𝑃𝑇 + 𝑃𝐵,              𝑃𝑇 =
3𝑛𝑘𝑇

𝜏𝐸
,            𝑃𝐵 = 𝑏𝑛

2√𝑇 

The final assumption is that 𝑃𝑒𝑥𝑡 = 휂𝑃𝑜𝑢𝑡 , where 휂  is the efficiency of energy 

conversion system. 

The power balance equation (1.3) can be solved with respect to the term 𝑛𝜏𝐸 , 

leading to 

𝑛𝜏𝐸 = 
3𝑘𝑇

1
4 (

휂
1 − 휂)

〈𝜎𝑣〉𝐸𝐷𝑇 − 𝑏√𝑇
 

This relation presents a minimum of the 𝑛𝜏𝐸  product with respect to the 

temperature, representing an optimal working point. An even better parameter to 

describe whether thermonuclear fusion could happen, is found in the triple 

product 𝑛𝜏𝐸𝑇, and its minimum takes the name of ignition criterion. 

Recalling what stated before about the Sun core, it is clear that a density 𝑛 =

160
𝑔

𝑐𝑚3 is not practicable, but what the ignition criterion tells us is that the others 

two parameters of the triple product 𝑛𝜏𝐸𝑇  can be chosen appropriately to 

overcome feasibility issues. In fact, rising the temperature, the density parameter 

can be dropped down to values of practical interest for plasma handling. 

𝑇 ≈ 20 𝑘𝑒𝑉,    𝑛 ≈ 1020𝑚−3,    𝜏𝐸 ≈ 1𝑠 

1.3 Plasma Magnetic Confinement 

The simplest magnetic field geometry for MCF is a straight cylinder. However, 

this geometry has the problem that plasma particles could escape from both ends. 

This escaping can be greatly reduced by forming two “magnetic mirrors”, which 



1 Introduction 

8 
 

simply means that the field strength is increased at both ends using additional 

magnetic coils. 

The obvious solution to prevent end losses, is to wind the cylinder onto itself: in 

other words, to have a configuration with a toroidal shape. 

Given a cylindrical coordinates reference system (𝑟, 𝜙, 𝑧), we define the z-axis to 

be positioned on the axis of symmetry of the torus (Fig. 1.6). This way, an 

assumption of axisymmetry could be stated and we can refer to the poloidal plane 

(𝑟, 𝑧) for any angle 𝜙. 

 

Fig 1.6: Cylindrical coordinates for MCF 

To practically obtain confinement in this type of geometry, a set of magnetic coils 

(Fig. 1.7a) around the toroidal vacuum chamber has to produce a field in the 

toroidal direction 𝜙 , the so-called Toroidal Field coils (TF). However, such a 

system of coils generates a magnetic field that is stronger near the machine's 

vertical symmetry axis, because at that position the coils are much closer to each 

other than in the outer part of the torus. This causes a vertical drift of the particles 

that finally leads to charge build-up and a consequent plasma loss. This drift can 

be compensated if the magnetic field lines, instead of being simply circular, are 

wound around the torus in such a way that the drift in the outer part of the 

trajectory compensates that in the inner part. The “amount of field-line winding” 

around the torus is called the rotational transform. After a certain number of turns 

around the torus, the field line has covered a surface, called the magnetic surface 

(Fig. 1.7b); every such surface is characterized by a winding number, called the 

safety factor 𝑞, equal to the number of turns the field line makes in the toroidal 

direction per turn in the cross-sectional poloidal direction. 
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(a) (b) 

Fig. 1.7: (a) MCF coil configuration, (b) magnetic surfaces [9] 

Moreover, a set of coils disposed in the toroidal direction generates magnetic field 

in the poloidal plane 휃, the Poloidal Field coils (PF). A special set of poloidal 

field coils called Ohmic Heating coils or Magnetizing coils (M) are placed within 

the torus to induce the plasma current by transformer effect with a big flux swing. 

The remaining active PF coils, instead, provides horizontal stability, generating 

forces on the plasma and preventing its natural outward displacement. 

The two main magnetic configurations based on an induced current-carrying 

plasma are the Tokamak and the Reversed Field Pinch (RFP). 

1.3.1 Tokamak 

The most remarkable magnetic configuration in MCF experiments is the Tokamak 

[8], [9]. This is an axisymmetric configuration with a large toroidal magnetic field 

produced by external TF coils and a significant toroidal current flowing in the 

plasma itself. The poloidal component of the magnetic field is generated by the 

plasma current which is induced by transformer action of the M coils. The related 

inductive voltage (i.e. loop voltage) drives and sustains the plasma current along 

the plasma torus (the secondary of the transformer). The Tokamak configuration 

is characterized by a prevalence of the toroidal magnetic field component 𝐵𝜙 with 

respect to the poloidal one, produced by external coils, over the 𝐵𝜃  one, 

practically about 10 times higher: 

 𝐵𝜙 ≈ 10𝐵𝜃 (1.4) 

1.3.2 Reversed Field Pinch 

The reversed field pinch (RFP) [10], [11] is a particular kind of toroidal pinch 

configuration in which the plasma is still confined by a combination of a poloidal 

and toroidal magnetic field, but the magnitude of toroidal field is comparable with 

the poloidal one (Fig. 1.8). Toroidal field in RFP is in fact mainly generated by a 

combination of poloidal plasma currents and currents flowing in external coil, 

thus allowing the utilization of simpler and cheaper TF coils. Poloidal field, 

instead, is mainly produced by the induced toroidal plasma current. 
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Fig. 1.8 Toroidal (𝐵𝜙) and poloidal (𝐵𝜃) magnetic field profiles in RFP and Tokamak
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SECTION 2 

2 Plasma equilibrium in axisymmetric 

conditions 

Plasma is described by Magneto Hydro Dynamics (MHD) theory [13], where, for 

simplicity, the existence of different particles (𝑒−, 𝑖+) is neglected, and plasma is 

treated as a single conducting fluid. Maxwell equations give reason of the 

interaction with external fields, and Navier-Stokes equation model fluid 

dynamics. 

To further simplify the model, plasma is treated as ideally conductive, leading to 

what is called ideal MHD. The quantities involved are the electric field 𝑬 ; 

magnetic field 𝑩; current density 𝑱; fluid velocity 𝒗; pressure 𝑝; mass density 𝜌𝑚. 

 

 
𝜕𝜌𝑚
𝜕𝑡

+ ∇(𝜌𝑚𝒗) = 0 (2.1) 

 𝜌𝑚
𝑑𝒗

𝑑𝑡
= 𝜌𝑬 + 𝑱 × 𝑩 − ∇𝑝 (2.2) 

 
𝑑

𝑑𝑡
(
𝑝

𝜌𝑚
𝛾 ) = 0 (2.3) 

 𝑬 + 𝒗 × 𝑩 = 0 (2.4) 

 ∇ × 𝑩 =  𝜇0𝑱 (2.5) 

 ∇ × 𝑬 =  −
𝜕𝑩

𝜕𝑡
 (2.6) 

 ∇ ⋅ 𝑩 = 0 (2.7) 

 

From this set of equations, it is possible to derive a further simplification that 

focuses solely on plasma equilibrium, considering a condition where inertial 

effects could be neglected and net force acting on the plasma is zero. 
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2.1 The Grad-Shafranov equation 

Plasma equilibrium relies on two main assumptions: 

- All quantities are time-independent: 𝜕/𝜕𝑡 = 0 

- Plasma is assumed to be static: 𝒗 = 0 

 

The second one imposes that Eq. (2.4) becomes: 

𝑬 = 0 

furthermore simplifying Eq. (2.2). 

The set of equations (2.1-7), hence, can be reduced to 

 

 

𝑱 × 𝑩 = ∇𝑝 

∇ × 𝑩 =  𝜇0𝑱 
∇ ⋅ 𝑩 = 0 

(2.8) 

 

Consider a generic cylindrical coordinate system (𝑟, 𝜙, 𝑧) as shown in figure 1.3. 

In this reference system the problem of the ideal MHD equilibrium for the plasma 

configuration is addressed. 

 

Referring to a generic poloidal plane (𝑟, 𝑧) as shown in Fig. 2.1, 

 

Fig. 2.1 Poloidal plane (𝑟, 𝑧) 
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Eq. (2.7) can be written as 

1

𝑟

𝜕

𝜕𝑟
 (𝑟𝐵𝑟) +

𝜕𝐵𝑧
𝜕𝑧

= 0 

 

and a function 𝜓(𝑟, 𝑧) ∶  ℝ2  →  ℝ , that takes the name of normalized poloidal 

flux function, is so defined such as the two components of the poloidal field can be 

expressed as follows: 

 

 𝐵𝑟 = −
1

𝑟

𝜕𝜓

𝜕𝑧
 , 𝐵𝑧 = 

1

𝑟

𝜕𝜓

𝜕𝑟
   (2.9) 

 

Considering 𝒖𝜙 as toroidal unit vector, the total magnetic field can be written as 

the vectorial sum of toroidal component 𝐵𝜙 and poloidal component 𝐵𝜃: 

 𝑩 = 𝐵𝜙𝒖𝜙 + 𝑩𝜃 (2.10) 

  

with 𝑩𝜃 = 
1

𝑟
(∇𝜓 × 𝒖𝜙)  

 

Current density can also be written as the vectorial sum of toroidal and poloidal 

components. 

 

 𝑱 = 𝐽𝜙𝒖𝜙 + 𝑱𝜃 (2.11) 

 

and a similar parametrization, as what was done for the magnetic field, could be 

implemented also for the poloidal current density; so a function 𝑓(𝑟, 𝑧), defined 

as 𝑓 =  
𝑟𝐵𝜙

𝜇0
 , is introduced as: 

 𝐽𝑟 = −
1

𝑟

𝜕𝑓

𝜕𝑧
 , 𝐽𝑧 = 

1

𝑟

𝜕𝑓

𝜕𝑟
   (2.12) 

 

Then, from Ampere’s law (2.5): 
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 𝐽𝑟 = −
1

𝜇0

𝜕𝐵𝜙

𝜕𝑧
 , 𝐽𝑧 = 

1

𝜇0

1

𝑟

𝜕

𝜕𝑟
 (𝑟𝐵𝜙)  (2.13) 

 

Assumed to be 𝑓 = 𝑓(𝜓) and 𝑝 = 𝑝(𝜓), it could be stated that: 

 

 𝑱 × 𝑩 = ∇𝑝 → 𝐽𝜃 × 𝒖𝜙𝐵𝜙 + 𝒖𝜙𝐽𝜙 × 𝐵𝜃 = ∇𝑝 (2.14) 

 
1

𝑟
(∇𝑓 × 𝒖𝜙) × 𝒖𝜙𝐵𝜙 + 𝒖𝜙𝐽𝜙 ×

1

𝑟
(∇𝜓 × 𝒖𝜙) = ∇𝑝 (2.15) 

 
−𝐵𝜙

𝑟
∇𝑓 + 

−𝐽𝜙

𝑟
∇𝜓 = ∇𝑝 (2.16) 

 𝐽𝜙 = 𝑅
𝑑𝑝

𝑑𝜓
+ 𝐵𝜙

𝑑𝑓

𝑑𝜓
 (2.17) 

The toroidal magnetic field component can be eliminated thanks to the relation 

𝑓 =  
𝑟𝐵𝜙

𝜇0
 

 𝐽𝜙 = 𝑅
𝑑𝑝

𝑑𝜓
+
𝜇0
𝑟
𝑓
𝑑𝑓

𝑑𝜓
 (2.18) 

 

and toroidal current density can be eliminated using Ampere’s law (2.5): 

 

𝜇0𝐽𝜙 = 
𝜕𝐵𝑟
𝜕𝑧

− 
𝜕𝐵𝑧
𝜕𝑟

 

 

then substituting (2.9): 

 

𝜇0𝐽𝜙 = 
1

𝑟

𝜕2𝜓

𝜕𝑧2
− 

𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜓

𝜕𝑟
) 

 

At this point the Grad-Shafranov equation (GSE) is obtained. 

 

 

1

𝑟

𝜕2𝜓

𝜕𝑧2
− 

𝜕

𝜕𝑟
(
1

𝑟

𝜕𝜓

𝜕𝑟
) =  −𝜇0𝑟

2𝑝′(𝜓) − 𝜇0
2𝑓(𝜓)𝑓′(𝜓) 

 

(2.19) 
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Introducing then the Shafranov operator 

 

∆∗# = 
1

𝑟

𝜕2#

𝜕𝑧2
− 

𝜕

𝜕𝑟
(
1

𝑟

𝜕#

𝜕𝑟
) 

 

eq. (2.21) can be written in a more compact form 

 

 
∆∗𝜓 = −𝜇0𝑟

2𝑝′ − 𝜇0
2𝑓𝑓′ 

 
(2.20) 

The constant value contours of the solution 𝜓(𝑟, 𝑧) give the shape of the magnetic 

surfaces on the poloidal plane. 

 

 

Fig. 2.2: Magnetic flux surfaces 

 

 

This fact descends from the momentum equation of the system (2.8). Since ∇𝑝 is, 

by definition, perpendicular to the 𝑝 = const contours, it follows that 𝑱 and 𝑩 are 

orthogonal to the pressure gradient, so 

 

𝑩 ⋅ ∇𝑝 = 0   and         𝑱 ⋅ ∇𝑝 = 0 
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The first relation implies that the pressure is constant along magnetic field lines 

and therefore on the magnetic surfaces. The second relation implies that the 

pressure is constant along current density lines, and therefore such lines lie onto 

the magnetic surfaces. Since 𝑓 is also constant along current density lines, we can 

conclude that 𝜓, 𝑓 and 𝑝 are all constant on the magnetic surfaces. 

 

From these considerations the definition of plasma boundary can be extrapolated, 

as it is usually referred to be the Last Closed Flux Surface (LCFS). It represents 

ideally the limit flux surface within which is present a plasma current density. In a 

real environment, this statement is not true, since transport losses are present and 

the LCFS is continuously crossed by plasma particles. 

According to this definition, it is possible to show that there are two possibilities:  

- the plasma boundary touches the wall of the vacuum chamber (limiter 

plasma) (Fig. 2.3a) 

- the plasma boundary does not touch the wall of the vacuum chamber 

(diverted or x-point plasma) (Fig. 2.3b) 

 

In the latter case, the poloidal flux function has a saddle on the plasma boundary; 

near this point, the field line is “x” shaped, and therefore this point is called the x-

point (or null point, since the magnetic field is zero). This solution is found 

imposing to the GSE the condition of ∇𝜓 = 0  in the x-point. Diverted 

configuration is usually preferable to the limiter one because allows to exploit 

more available volume in the vacuum chamber (reducing the investments costs) 

and reduces drastically the plasma-wall interaction. 

 

 

 (a)   (b) 

 

Fig 2.3: (a) Limiter plasma, (b) Diverted plasma 
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2.2 FRIDA Code – a tool for the numerical solution of the 

GSE 

 

The solution of the GSE (2.20) presents various challenges, it depends on non-

linear parameters and plasma boundary, i.e. the plasma domain, is not known a 

priori. For this reason, the problem can be addressed as free-boundary problem. In 

order to obtain a solution of practical interest, an iterative numeric solution is 

preferable to an analytical one. The basic principle of the numeric solution of the 

GSE relies on providing a tentative solution 𝜓0(𝑟, 𝑧), so computing backwards 

the 𝑝𝑖(𝜓)  and 𝑓𝑖(𝜓)  parameters and thus finding a new solution 𝜓(𝑟, 𝑧) . The 

procedure is so iterated to convergence. For this work, the newly developed 

FRIDA (Free-boundary Integro-Differential Axisymmetric) code has been used 

[14]. 

The magnetostatic equilibrium problem can be written as: 

 

𝐿(𝜓) =  − 𝜇0𝐽𝜙(�⃗� ) 

𝜓(�⃗� )|[𝑟=0] = 0 

lim
‖𝒓‖→∞

𝜓(�⃗� ) = 0 

(2.21) 

Where 𝐿(𝜓) = ∇ ⋅ (
1

𝑟
∇𝜓) = Δ∗, �⃗� = (𝑟, 𝑧)  and 𝜓(�⃗� )  is the poloidal flux per 

radian defined as  

𝜓(𝒓) =  
1

2𝜋
∫ (∇ × 𝑨) ⋅ 𝒏 𝑑𝑆
𝑆𝜙(𝒓)

, 

where 𝑨 is the magnetic vector potential and 𝑆𝜙(�⃗� ) is the circular surface centred 

on the z axis ad obtained by rotating a certain point �⃗�  around the z axis. 

The domains of the problem are: 

- vacuum internal region Ω𝑣 , the vacuum region available to the plasma 

(vacuum chamber) 

- vacuum external region Ω𝑣
∗ , a narrow region which encircles Ω𝑣 and not 

available to the plasma (due to computational reasons) 

- plasma domain Ω𝑝 

- coils region Ω𝑐 = ∪𝑖=1
𝑁𝑐 Ω𝐶𝑖, the region of the 𝑁𝑐 active coils 

- 𝜕Ω is the boundary of the computational domain 

The source term 𝐽𝜙(𝒓) assumes different definitions depending on the region: 

 𝐽𝜙(𝒓) = 

{
 
 

 
 
𝐽𝑝(�⃗� , 𝜓) = 𝜆 [𝑟

𝑑𝑝(𝜓)

𝑑𝜓
+
𝑓(𝜓)

𝜇0𝑟

𝑑𝑓(𝜓)

𝑑𝜓
]

𝐽𝐶𝑖
0

 
In Ω𝑝 

In Ωc𝑖 

elsewhere 

(2.22) 



2 Plasma equilibrium in axisymmetric conditions 

18 
 

where the profiles 𝑝(𝜓), 𝑓(𝜓) are given in terms of normalized poloidal flux 

(𝜓 =
𝜓−𝜓𝑎

𝜓𝑏− 𝜓𝑎
) , where 𝜓𝑎  and 𝜓𝑏  are the fluxes at magnetic axis and plasma 

boundary respectively. 

 

Fig 2.4: FRIDA Computation domains Ω𝑣 , Ω𝑣
∗ , Ω𝑐 and Ω𝑝 

From a rigorous point of view, the computational domain is [𝑟, 𝑧] ∈ [0 × ∞,

−∞ ×∞] , but a limited-bounded domain is required to solve the problem 

numerically. For this reason a limited region of vacuum, which surrounds the 

plasma region without intersecting or overlapping the active conductors, is 

considered. An example of this configuration is shown in Fig. 2.4, where the 

limited computational domain Ω𝑑  =  Ω𝑣 ∪ Ω𝑣
∗  is highlighted. From a 

mathematical point of view, this means that the regularity conditions at infinity 

expressed by (2.21) can be replaced with: 

𝜓(�⃗� )|𝜕Ω = �̂� 

The BCs on 𝜕Ω impose to find a suitable coupling method with the FEM block, 

hence, the total flux at the boundary can be split into: 

 �̂�(�⃗� , 𝜓) = �̂�𝑝(�⃗� , 𝜓)  + �̂�𝑐(�⃗� ) (2.23) 

where �̂�𝑝 , �̂�𝑐  are the contributions of the plasma and the external coils, 

respectively. The total flux at the boundary depends both on the known total value 

𝐼𝑝 and on the current density distribution, which is a non-linear function of 𝜓: for 

this reason �̂�(�⃗� , 𝜓) is also non-linear and depends on 𝜓. The contribution of the 

external coils, instead, is fixed and depends only on the geometry and the current 

in the external coils. 

The typical way to reduce the computation on the unbounded domain to a limited-

bounded domain relies on the analytical Green’s function [15]. 
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Equation (2.23) is treated recalling the fundamental solution of eq. (2.21), also 

known as Green function of 𝐿(𝜓), giving the integral formulation of the Boundary 

Element problem: 

 
�̂�𝑝(�⃗� , 𝜓) =  ∫ 𝐺(�⃗� 𝒃, �⃗� )𝐽𝑝(�⃗� , 𝜓)𝑑Ω

Ω𝑝

 
(2.24) 

 �̂�𝑐(�⃗� ) =  ∑∫ 𝐺(�⃗� 𝒃, �⃗� )𝐽𝐶𝑖𝑑Ω
Ω𝑝

𝑁𝑐

𝑖=1

 (2.25) 

Where �⃗� 𝒃 ∈  𝜕Ω, Ω𝐶𝑖 is the i−th active coil, 𝑁𝑐 is the total number of active coils 

and 𝐺(�⃗� , �⃗� ’) is the Green’s function: 

 𝐺(�⃗� , �⃗� ′) =  
𝜇0√𝑟𝑟′

2𝜋𝑘(�⃗� , �⃗� ′)
[(2 − 𝑘2(�⃗� , �⃗� ′))𝐾(𝑘(�⃗� , �⃗� ′)) − 2𝐸(𝑘(�⃗� , �⃗� ′))] (2.26) 

with 

 𝑘2(�⃗� , �⃗� ′) =  
4𝑟𝑟′

(𝑟 + 𝑟′)2 + (𝑧 − 𝑧′)2
 (2.27) 

And 𝐾(𝑘), 𝐸(𝑘) are the complete elliptic integrals of the first and second kind, 

respectively: 

 𝐾(𝑘) =  ∫
1

√1 − 𝑘2 sin2 휃
𝑑휃

𝜋/2

0

 (2.28) 

 𝐸(𝑘) =  ∫ √1 − 𝑘2 sin2 휃 𝑑휃
𝜋/2

0

 (2.29) 

Recalling the domain subdivisions presented above, the additional region Ω𝑣
∗ , 

forbidden to the plasma, is intended to avoid singularities on integral (2.24 - 

�̂�𝑝(�⃗� , 𝜓)). By doing this, the mesh nodes of the FEM formulation of Ω𝑝, which 

are the sources of (2.24), and the boundary nodes never coincide. 

FEM approach is so treated with a Quadratic Lagrangian Element method, by 

means of the GMSH code [16], a versatile tool for domains discretization. The 

basis function used in this context is 

 𝑤(�⃗� ) = 𝑎1𝑟
2 + 𝑎2𝑧

2 + 𝑎3𝑟𝑧 + 𝑎4𝑟 + 𝑎5𝑧 + 𝑎6 (2.30) 

Considering the whole mesh nodes, and, for each node, the triangles sharing the 

same node (local support); 𝜓(𝑤(�⃗� ), �⃗� ) and 𝐽𝑝(𝑤(�⃗� ), �⃗� , 𝜓) can be computed. 

 

𝜓(�⃗� ) =  ∑(∑𝑤𝑗
𝒊(�⃗� )

𝑵𝒆
𝒊

𝒋=𝟏

)𝜓𝑖

𝑵𝒏

𝒊=𝟏
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𝐽𝑝(�⃗� , 𝜓) =  ∑(∑𝑤𝑗
𝒊(�⃗� )

𝑵𝒆
𝒊

𝒋=𝟏

)𝐽𝑝(𝜓𝑖)

𝑵𝒏

𝒊=𝟏

  

Where 𝑁𝑛 is the number of mesh nodes and for each 𝑖-th node 𝑁𝑒 nodes forming 

the local support are present. 

The current density can be obtained from the profiles of the pressure and the 

poloidal current function 𝑓 , or through a suitable parametrization. In the 

following, we will set: 

 𝐽𝜙(�⃗� , 𝜓) = 𝜆𝑔(𝜓,𝜓𝑎, 𝜓𝑏) (2.31) 

where the current density function 𝑔(𝜓,𝜓𝑎 , 𝜓𝑏) can be defined as: 

 𝑔(𝜓,𝜓𝑎 , 𝜓𝑏) = 𝑟
𝑑𝑝(𝜓)

𝑑𝜓
+
𝑓(𝜓)

𝜇0𝑟

𝑑𝑓(𝜓)

𝑑𝜓
 (2.32) 

or 

 𝑔(𝜓,𝜓𝑎 , 𝜓𝑏) = [
𝑟𝛽0
𝑅0

+ 
(1 − 𝛽0)𝑅0

𝑟
] (1 − 𝜓

𝛼𝑀
)
𝛼𝑁

 (2.33) 

depending on the available informations, knowing that, in eq. (2.33), 𝑅0 is the 

machine major radius and the parameters 𝛼𝑀, 𝛼𝑁  and 𝛽0  have to be chosen 

properly to match the values of plasma internal inductance 𝑙𝑖 and poloidal 𝛽𝜃.  

At this point the final system of equation can be obtained, as The GSE could be 

written in weak form by means of a weighted residual approach 

 

∫
1

𝑟
∇𝑤(�⃗� ) ⋅ ∇𝜓(�⃗� )𝑑Ω

Ω𝑑

−∫
1

𝑟
𝑤(�⃗� ) ⋅

∂�̂�(�⃗� )

𝜕𝒏
𝑑𝑆

𝜕Ω

= ∫ 𝜇0𝑤(�⃗� )𝐽𝜙(�⃗� )𝑑Ω
Ω𝑑

 
(2.34) 

where 𝑤(�⃗� ) is a scalar test function. Then considering �̂� as defined in eq. (2.23), 

substituting the source term with (2.31) and knowing 𝜓𝑎 and 𝜓𝑏, the imposition 

of the total plasma current leads to: 

 

∫
1

𝑟
∇𝑤(�⃗� ) ⋅ ∇𝜓(�⃗� )𝑑Ω

Ω𝑑

+∫
1

𝑟
∇𝑤(�⃗� ) ⋅ ∇�̂�(�⃗� )𝑑Ω

Ω𝑑

= 𝜆∫ 𝜇0𝑤(�⃗� )𝑔(𝜓, 𝜓𝑎, 𝜓𝑏)𝑑Ω
Ω𝑑

  
(2.35) 

 
�̂�𝑐(�⃗� ) + 𝜆∫ 𝐺(�⃗� , �⃗� 𝒑)𝑤(�⃗� )

Ω𝑝

𝑔(𝜓,𝜓𝑎 , 𝜓𝑏)𝑑Ω = �̂�(�⃗� ) (2.36) 

 
max
Ω𝑝

{𝜓} =  𝜓𝑎 
(2.37) 
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max

𝜕Ω𝑣
−∪ Ω𝑣0

{𝜓} = 𝜓𝑏 
(2.38) 

 
𝜆∫ 𝑤(𝒓)

Ω𝑝

𝑔(𝜓,𝜓𝑎 , 𝜓𝑏)𝑑Ω = 𝐼𝑝 
(2.39) 

where 𝜕Ω𝑣
− is the portion of 𝜕Ω𝑣 where  �⃗� ⋅ ∇𝜓 < 0, with �⃗�  unit vector outgoing 

from 𝜕Ω𝑣  and Ω𝑣0 is the region inside Ω𝑣  where the poloidal magnetic field 

vanishes. 

The discrete version of the system (2.35-39) can be written in matrix form by 

defining a vector of unknowns 𝑥 = [𝝍, �̂�, 𝜓𝑎, 𝜓𝑏 , 𝜆]
𝑇
: 

 

[
 
 
 
 
𝑲 𝑲𝒃𝒄 0 0 −𝜇0𝒊(𝑥)
0 𝑬 0 0 −𝐺𝑏𝑝𝒊(𝑥)

𝜒𝑎(𝑥) 0 −1 0 0

𝜒𝑏(𝑥) 0 0 −1 0
0 0 0 0 𝐼𝑡(𝑥) ]

 
 
 
 

[
 
 
 
 
𝝍

�̂�
𝜓𝑎
𝜓𝑏
𝜆 ]
 
 
 
 

=  

[
 
 
 
 
0
�̂�𝒄

0
0
𝐼𝑝 ]
 
 
 
 

     (2.40) 

 

where 𝝍, �̂� are the discrete counterparts of 𝜓, �̂� and 𝑬 is the identity matrix. The 

matrix blocks 𝑲(𝑖, 𝑗) and 𝑲𝒃𝒄(𝑖, 𝑗) are defined as: 

 
𝑲(𝑖, 𝑗) =  ∫

1

𝑟
∇𝑤𝑖∇𝑤𝑗𝑑Ω

Ω𝑖𝑗

, 𝑖, 𝑗 ∈ 𝑁𝑑 
(2.41) 

 
𝑲𝒃𝒄(𝑖, 𝑗) =  ∫

1

𝑟
∇𝑤𝑖∇𝑤𝑗𝑑Ω

Ω𝑖𝑗

, 𝑖 ∈ 𝑁𝑑  , 𝑗 ∈ 𝑁𝑏 
(2.42) 

where Ω𝑖𝑗  =  Ω𝑒
𝑖 ∩ Ω𝑒

𝑗
.  

The term 𝑖(𝑥)  is the vector of discrete currents, whose elements 𝐼𝑖(𝑥), 𝑖 =

1, . . . , 𝑁𝑛  are obtained by integrating the source function 𝑔(𝜓
𝑖
, 𝜓𝑎 , 𝜓𝑏) on the 

mesh elements: 

 𝐼𝑖(𝑥) = 𝐼𝑖(𝝍,𝜓𝑎 , 𝜓𝑏) =  ∫ (∑𝑤𝑗
𝑖(�⃗� )

𝑁𝑒
𝑖

𝑗=1

)𝑔(𝜓
𝑖
, 𝜓𝑎 , 𝜓𝑏)𝑑Ω

Ω𝑒
𝑖

 (2.43) 

while 𝐼𝑡 is the total current: 

𝐼𝑡(𝑥) =  ∑𝐼𝑖(𝑥)

𝑁𝑛

𝑖=1

 

Elements 𝜒𝑎(𝑥) and 𝜒𝑏(𝑥), are vectors of weights to identify the positions of the 

magnetic axis and the XP/limiter points respectively in terms of 𝜓. Since ψ is 

parameterized in terms of quadratic basis functions, the weight vector 𝜒𝑎(𝑥) is 

different from zero only on the triangle containing the magnetic axis, with weights 

equal to the values of each node’s basis function on �⃗� 𝑎. The same holds for 𝜓𝑏 
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and 𝜒𝑏(𝑥). To search for these points a proper algorithm is set to find where 

‖∇𝜓‖ = 0 

Substituting the term 𝜆𝑖(𝑥) from the FEM block 

𝜆𝑖(𝑥) =  
1

𝜇0
(𝑲𝜓 + 𝑲𝑏𝑐�̂�) 

Into the BEM block, we get 

−
1

𝜇0
𝑮𝑏𝑝𝑲𝝍+ (𝑬 − 

1

𝜇0
𝑮𝑏𝑝𝑲𝑏𝑐) �̂� − �̂�𝑐  

 

Thus, the system (2.43) becomes: 

 

[
 
 
 
 
𝑲 𝑲𝒃𝒄 0 0 −𝜇0𝒊(𝑥)

�̂� �̂�𝒃𝒄 0 0 0
𝜒𝑎(𝑥) 0 −1 0 0

𝜒𝑏(𝑥) 0 0 −1 0
0 0 0 0 𝐼𝑡(𝑥) ]

 
 
 
 

[
 
 
 
 
𝝍

�̂�
𝜓𝑎
𝜓𝑏
𝜆 ]
 
 
 
 

=  

[
 
 
 
 
0
�̂�𝒄

0
0
𝐼𝑝 ]
 
 
 
 

     (2.44) 

 

Furthermore, it can be written in a more compact form as: 

 𝑨(𝑥)𝒙 = 𝒃   (2.45) 

being 𝑨(𝑥) the coefficients matrix of (2.44), 𝒙 the vector of unknowns and 𝒃 the 

vector of known terms. 

The problem is non-linear because the source term 𝐼𝑡(𝑥) in Ω𝑝  is a non-linear 

function of the solution 𝒙 , and because the plasma domain, delimited by the 

plasma boundary, is not known a priori 

The article [14] proposes three methods to solve the system, but in this case only 

Newton-Raphson (NR) scheme is used to find the zero of 

 𝑭(𝑥) = 𝑨(𝑥)𝒙 − 𝒃 = 0   (2.46) 

NR scheme is more stable and reliable than the other methods proposed, like 

Picard and Newton-Krylov, if a suitable initial guess is given, and has, under 

certain assumptions, a quadratic convergence. Moreover, a relaxed (or damped) 

NR algorithm is used in order to guarantee better convergence (Fig. 2.5): 

 

𝑱𝑭(𝒙𝑘)𝒉𝑘+1 = −𝑭(𝒙𝑘) 

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒉𝑘+1 
(2.47) 

where 𝑱𝑭 is the jacobian matrix and the relaxation parameter 𝛼𝑘 is suitably chosen 

at every iteration to avoid an overshoot of the solution, especially during the very 

first iterations when the change between two following steps is quite important. 

�̂� �̂�𝒃𝒄 
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Fig 2.5: Impact on the relaxation parameter on the convergence: standard NR (top) and 

relaxed (bottom). In the middle results are presented 

For this specific problem, 𝑱𝑭(𝑥𝑘), defined as 𝑱𝑭(𝑥𝑘) =  
𝜕𝑭(𝒙𝑘)

𝜕𝒙𝑘
 can be written into 

two terms: 

𝑱𝑭(𝑥𝑘) = 𝑱′𝑭(𝑥0) + 𝑱"𝑭(𝑥𝑘) 

one dependent only on the geometry of the problem and the other instead changes 

at each iteration. This way the fixed part can be calculated once and then stored, 

saving time and lowering the computational cost of the method (Fig. 2.6). 

 

Fig. 2.6: Sparsity pattern of terms 𝑱′𝑭(𝑥0) and 𝑱"𝑭(𝑥𝑘)
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SECTION 3 

3 A method for plasma parameters 

reconstruction 

In this section the goal is to derive a suitable model for plasma parameters 

reconstruction by means of the moments of toroidal current density. These are 

particularly useful because their values are related to key parameters of a plasma 

discharge, such as the total plasma current, position and shape aspects. 

These informations are crucial for active control, meaning that a fast and flexible 

method to obtain them is mandatory. For this purpose, as it will be shown, 

moments evaluation could be performed directly from magnetic diagnostics 

measurements present in real devices, making possible the real-time evaluation of 

key plasma values. 

Before deepening the moments computation, it is useful to report how magnetic 

field generated by an axisymmetric loop current can be computed, since it will be 

extensively used when calculating the moments of toroidal current density. 

3.1 Poloidal field in a generic point of space 

Considering a generic poloidal plane (𝑟, 𝑧) , poloidal field sources can be 

considered as toroidal axisymmetric current loops. This way they can be 

visualized as a point in the poloidal plane, and relations among them can be 

written referring to poloidal coordinates only. A generic circular coil with radius 𝑎 

enjoying of axial symmetry and crossed by the induction field �⃗� (𝑟, 𝜙, 𝑧) in a 

generic point of space, has the following components: 

 
𝐵𝑟(𝑟, 0, 𝑧) =  

2𝜇0𝐼𝑧

2𝜋𝑟√𝑧2 + (𝑎 + 𝑟)2
[−𝐾(𝑘) + 𝐸(𝑘)

𝑎2 + 𝑟2 + 𝑧2

(𝑎 − 𝑟)2 + 𝑧2
] 

(3.1) 

𝐵ϕ(𝑟, 0, 𝑧) ≡ 0 

 
𝐵𝑧(𝑟, 0, 𝑧) =  

2𝜇0𝐼

2𝜋√𝑧2 + (𝑎 + 𝑟)2
[𝐾(𝑘) + 𝐸(𝑘)

𝑎2 − 𝑟2 − 𝑧2

(𝑎 − 𝑟)2 + 𝑧2
 ] 

(3.2) 

Where 𝐾(𝑘) and 𝐸(𝑘) are the complete elliptic integrals of first and second kind 

defined in (2.28-29), and 𝑘 is linked with problem’s geometry: 

 𝑘2 = 
4𝑎𝑟

(𝑎 − 𝑟)2 + 𝑧2
 (3.3) 

This representation of magnetic field is particularly useful, meaning that, for any 

toroidal current, magnetic field can be easily computed for any point in the 
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poloidal plane. Since magnetic probes used in this work (illustrated in Sections 4 

and 6) are placed along a circumference measuring the magnetic field with respect 

to the tangential and normal components, a suitable parametrization has to be 

chosen to obtain desired projections from the (𝑟, 𝑧) components. 

Let: 

 (ζ) = (𝛾1(휁), 𝛾2(휁)) (3.4) 

With 𝛾  a closed curve in the poloidal plane (𝑟, 𝑧) , with 휁 ⊂ [0,1]  normalized 

curvilinear abscissa. This allows to calculate the �⃗� 𝜃 components with respect to 

the curve 𝛾: 𝐵𝑡, 𝐵𝑛 (tangent and normal components). Given such versors defined 

as: 

 
𝒕 =  

1

‖𝛾(𝜁)‖
(𝛾1

′(휁), 𝛾2
′(휁)) , �⃗⃗� =  

1

‖𝛾(𝜁)‖
(𝛾2

′(휁), −𝛾1
′(휁)) 

(3.5) 

We obtain  

𝐵𝑡(𝑟, 𝑧) = �⃗� 𝜃 ⋅ 𝒕 =  
1

‖𝛾(휁)‖
(𝐵𝑟(𝛾(휁))𝛾1

′(휁) + 𝐵𝑧(𝛾(휁))𝛾2
′(휁)) 

𝐵𝑛(𝑟, 𝑧) = �⃗� 𝜃 ⋅ �⃗⃗� =  
1

‖𝛾(휁)‖
(𝐵𝑟(𝛾(휁))𝛾2

′(휁) − 𝐵𝑧(𝛾(휁))𝛾1
′(휁)) 

 

3.2 Moments of toroidal current density 

Considering the plasma domain 𝛺𝑝  ∈ (𝑟, 𝑧) , as defined for FRIDA in par. 2.2, let 

𝛺𝑑 be generic domain such that 𝛺𝑝 ⊆  Ωd. 

The n-th order moment of the plasma toroidal current density is defined as the 

following integral calculated over domain 𝛺𝑑 [17]: 

 
𝑞𝑛 = ∫ 𝜒𝑛(𝑟, 𝑧)𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧

Ω𝑑

 
(3.6) 

 

Weight function  𝜒𝑛(𝑟, 𝑧)  it’s a n-th order polynomial that’s solution of the 

homogeneous GSE equation: Δ∗𝜒𝑛(𝑟, 𝑧) = 0, which has the following expression: 

 𝜒𝑛(𝑟, 𝑧) = 𝑟𝑛 ∑ (−4)−𝑘
(𝑛 − 2)!

𝑘! (𝑘 + 1)! (𝑛 − 2𝑘 − 2)!
[
𝑧

𝑟
]
𝑛−2𝑘−2

⌊
𝑛
2
⌋−1

𝑘=0

 (3.7) 
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where ⌊#⌋ is the function 𝑓𝑙𝑜𝑜𝑟(#). 

An extensive description on the method to obtain this formulation is given in [17] 

The lower-order moments 𝑛 =  0, 1, 2  allow to determine the fundamental 

quantities for the plasma, respectively the current 𝐼𝑝 and the coordinates of the 

position of the plasma centroid (𝑟𝑝, 𝑧𝑝) . For polynomials of higher order, 

moments provide information on elongation of skew 𝜅𝑠𝑘  and vertical 𝜅𝑣 , 

respectively, and upper triangularity 𝛿𝑢𝑝 and lower 𝛿𝑑𝑜𝑤𝑛. Indeed, featuring (3.7) 

for orders n = 0, ..., 6 we obtain: 

𝜒0 = 1    ⟹ 𝑞0 = ∫ 𝜒0(𝑟, 𝑧)𝑗𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧 = 𝐼𝑝Ω𝑑
  

𝜒1 = 𝑧    ⟹ 𝑞0 = ∫ 𝜒1(𝑟, 𝑧)𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧 = 𝑧𝑝𝐼𝑝Ω𝑑
 

𝜒2 = 𝑟2    ⟹ 𝑞0 = ∫ 𝜒1(𝑟, 𝑧)𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧 = 𝑟𝑝
2𝐼𝑝Ω𝑑

 

𝜒3 = 𝑟2𝑧    ⟹ 𝑞0 = ∫ 𝜒3(𝑟, 𝑧)𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧 = 𝜅𝑠𝑘
3 𝐼𝑝Ω𝑑

 

𝜒4 = 𝑟2𝑧2 −
1

4
𝑟4  ⟹ 𝑞0 = ∫ 𝜒4(𝑟, 𝑧)𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧 = 𝜅𝑣

4𝐼𝑝Ω𝑑
 

𝜒5 = 𝑟2𝑧3 −
3

4
𝑟4𝑧   ⟹ 𝑞0 = ∫ 𝜒5(𝑟, 𝑧)𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧 = 𝛿𝑢𝑝

5 𝐼𝑝Ω𝑑
 

𝜒6 = 𝑟2𝑧4 −
3

2
𝑟4𝑧2 +

1

8
𝑟6  ⟹ 𝑞0 = ∫ 𝜒6(𝑟, 𝑧)𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧 =  𝛿𝑑𝑜𝑤𝑛

6 𝐼𝑝Ω𝑑
 

 

In this work, we will focus just on the first three moments with 𝑛 = 0, 1, 2. The 

zeroth order moment gives directly the total plasma current, while the centroid 

can be extracted with the following integral and discrete relations: 

𝑟𝑝 = √
∫ 𝑟2𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧Ω𝑑

∫ 𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧Ω𝑑

⟶√
∑ 𝑖𝑝0,𝑘𝑟𝑘

2𝑛𝑝
𝑘=1

∑ 𝑖𝑝0,𝑘
𝑛𝑝
𝑘=1

 

𝑧𝑝 =
∫ 𝑧𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧Ω𝑑

∫ 𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧Ω𝑑

⟶
∑ 𝑖𝑝0,𝑘𝑧𝑘
𝑛𝑝
𝑘=1

∑ 𝑖𝑝0,𝑘
𝑛𝑝
𝑘=1

  

However, in a real environment, the input term of the moment computation should 

be the poloidal magnetic field, since this is the data one could dispose from 

magnetic measurements. For this reason, it is useful to express the (3.6) in 

function of the desired B-field components. Consider a positively oriented closed 

curve 𝛾(휁) – as defined in (3.4) – such that 𝛾(휁) = 𝜕Ω𝑑 and 𝛾(휁) ∈ 𝐶1 
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∫
1

𝜇0𝑟
(𝜓Δ∗𝜒𝑛 − 𝜒𝑛Δ

∗𝜓)𝑑𝑟𝑑𝑧
Ω𝑑

= ∫ −
1

𝜇0𝑟
(𝜒𝑛Δ

∗𝜓)𝑑𝑟𝑑𝑧
Ω𝑑

  

= ∫ 𝜒𝑛(𝑟, 𝑧)𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧
Ω𝑑

 =  𝑞𝑛 

Exploiting the second Green’s identity it is possible to go from the integral over 

Ω𝑑 to a surface integral through the curve 𝛾(휁) = 𝜕Ω𝑑. So we’ll obtain 

𝑞𝑛 = ∫
1

𝜇0𝑟
(𝜓Δ∗𝜒𝑛 − 𝜒𝑛Δ

∗𝜓)𝑑𝑟𝑑𝑧
Ω𝑑

 

= ∫
1

𝜇0𝑟
(𝜓∇𝜒𝑛 − 𝜒𝑛∇𝜓) ⋅ �⃗⃗�  𝑑𝛾

∂Ω𝑑

 

 
= ∫

1

𝜇0𝑟
(𝜓

∂𝜒𝑛
∂�⃗⃗� 

− 𝜒𝑛
∂𝜓

∂�⃗⃗� 
) 𝑑𝛾

∂Ω𝑑

 
(3.8) 

At this point the function 𝜉𝑛(𝑟, 𝑧) ∶  ℝ
2  → ℝ , conjugated of the 𝜒𝑛(𝑟, 𝑧) 

function, is introduced, such as: 

 

𝜕

𝜕𝑟
(
𝜉𝑛
𝜇0𝑟

) = −
1

𝜇0𝑟
 
𝜕𝜒𝑛
𝜕𝑧

 (3.9) 

 

𝜕

𝜕𝑧
(
𝜉𝑛
𝜇0𝑟

) =
1

𝜇0𝑟
 
𝜕𝜒𝑛
𝜕𝑟

 (3.10) 

That implies the following result: 

 ∇ (
𝜉𝑛
𝜇0𝑟

) ⊥  
1

𝜇0𝑟
∇𝜒𝑛 (3.11) 

and as the unit vectors are defined: 

∫
1

𝜇0𝑟
∇𝜒𝑛�⃗⃗�  𝑑𝛾

𝛾

= ∮ ∇ (
𝜉𝑛
𝜇0𝑟

) 𝒕  𝑑𝛾
𝛾

 

Therefore, the integral (3.8) becomes: 

𝑞𝑛 =  ∫ 𝜓∇(
𝜉𝑛
𝜇0𝑟

) 𝒕  𝑑𝛾
𝛾

− ∫
1

𝜇0𝑟
𝜒𝑛∇𝜓 �⃗⃗�  𝑑𝛾

𝛾

 

where integrals over 𝛾 indicates respectively a circuitaiton and a flux. 

writing: 

 ∇ (
𝜉𝑛
𝜇0𝑟

) = 𝜓∇ (
𝜉𝑛
𝜇0𝑟

) + (
𝜉𝑛
𝜇0𝑟

)∇𝜓 (3.12) 



3 A method for plasma parameters reconstruction 

29 
 

and accounting the fact that integration domain is simply connected, and that such 

vector field is conservative, the line integral along a close path of the first term of 

the (3.12) is always zero. Therefore, being the poloidal flux defined as (2.9) the 

term 𝑞𝑛 becomes: 

𝑞𝑛 = −∫ (
𝜉𝑛
𝜇0𝑟

) ∇𝜓𝒕  𝑑𝛾
𝛾

− ∫
1

𝜇0𝑟
𝜒𝑛∇𝜓 �⃗⃗�  𝑑𝛾

𝛾

 

= −∫
𝜒𝑛
𝜇0
(Bz𝛾2

′ + 𝐵𝑟𝛾1
′) 𝑑휁

1

0

+ ∫
𝜉𝑛
𝜇0
(Bz𝛾1

′ + 𝐵𝑟𝛾2
′) 𝑑휁

1

0

 

 
= −

1

𝜇0
∮𝜒𝑛B⃗⃗ 𝜃 ⋅ 𝒕  𝑑𝛾
𝛾

− 
1

𝜇0
∫𝜉𝑛B⃗⃗ 𝜃 ⋅  �⃗⃗�  𝑑𝛾
𝛾

 
(3.13) 

The first integral is a line integral along the curve 𝛾, and the second one a surface 

integral through the same closed curve. 

The moment 𝑞𝑛  has been defined involving a closed curve in anticlockwise 

direction. Moving clockwise, the relation becomes: 

 
𝑞𝑛 = 

1

𝜇0
∮𝜒𝑛B⃗⃗ θ ⋅ 𝒕  𝑑𝛾
𝛾

+ 
1

𝜇0
∫𝜉𝑛B⃗⃗ 𝜃 ⋅  �⃗⃗�  𝑑𝛾
𝛾

 
(3.14) 

A useful consideration on this last (3.16) equation can be focusing on the moment 

𝑞0. This leads to compute the weights 𝜒0 = 1 and  𝜉0 = 0 so the relation becomes 

𝑞0 = ∫ 𝜒0(𝑟, 𝑧)𝐽𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝑧 = 𝐼𝑝 = 
1

𝜇0
∮�⃗� 𝜃 ⋅ 𝒕 ⃗⃗ 𝑑𝛾
𝛾Ω𝑑

 

That is exactly the integral formulation of the Ampere’s Circuital Law. Hence the 

quantity 𝑞𝑛, through the relation (3.7), represents a generalization of the idea of 

search for information about a current by evaluating the components 𝐵𝑡, 𝐵𝑛 of the 

induction field generated by it along a curve 𝛾 which concatenates it. In particular, 

is clear how Ampere's law is a particular case of moment calculation for the 

degree 𝑛 =  0 . The term 𝑞𝑛  can give gradually different information on the 

position and shape of the current of plasma according to the choice of different 

weights 𝜒𝑛, 𝜉𝑛, and consequently different linear combinations of the terms 𝐵𝑡, 𝐵𝑛.  

 

3.2.1 Computation of the moments of the current density for 

realistic applications 

When a limited number of probes is considered, which commonly happens when 

realistic devices are considered, the computation of the moments of the current 

density cannot be performed by the definition (i.e. eq. (3.14)) because of the 

discrete line integral on such a low number of points. This would mean to assume 
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the value of 𝐵𝑚𝑒𝑎𝑠 constant along the path between two calculation points (the 

sensors). For this reason, an optimization method, as introduced in [17], is used to 

solve the problem of computing the moments of the current density for realistic 

cases. 

The moment 𝑞𝑛  is written as a linear combination of the induction field 

measurements. This implies that, known the resulting moments in a high number 

of reference cases, the weight coefficients for the linear combination of the 

measurements could be found solving an optimization problem. Ideally, if a 

suitably high number of reference configurations are considered, these optimal 

weights will be independent from the plasma current configuration. 

Considering a generic moment 𝑞𝑛  of a plasma configuration, relation (3.6) is 

written as follows: 

 𝑘𝑛1𝑚1 + 𝑘𝑛2𝑚2 +⋯+ 𝑘𝑛14𝑚14 = 𝐼𝑝 (3.15) 

 

With 𝑚ℎ (ℎ = 1,…𝑁𝑠) induction field measured by the h-th sensor. Vector 𝒌𝑛 

contains 𝑁𝑠  weights, one for each measure of the 𝑁𝑠  sensors, which linear 

combination with the respective measurements, allows to reconstruct the moment. 

In order to compute the coefficients, the following configuration is considered. A 

plasma cross-section composed of 𝑁𝑝 = 𝑁𝑚𝑒𝑠ℎ equivalent filamentary conductors 

is considered, giving 𝑁𝑝 scenarios. Each scenario is so composed by the presence 

of one single filament that carries unitary current. Therefore, for every single loop, 

the moments of order 0, 1 and 2 are computed as: 

𝑞0,𝑖 = 𝐼𝑝,𝑖 = 1 

𝑞1,𝑖 = 𝑧𝑖𝐼𝑝,𝑖 = 𝑧𝑖 

𝑞2,𝑖 = 𝑟𝑖
2𝐼𝑝,𝑖 = 𝑟𝑖

2 

 

with 𝑖 = 1,… ,𝑁𝑝 and (𝑟𝑖, 𝑧𝑖) the poloidal coordinates of each filament. Hence the 

relation (3.15) can be used to write the system for every scenario: In matrix form: 

𝑮𝑝,𝑠𝒌𝐼𝑝 = 𝟏 

𝑮𝑝,𝑠𝒌𝑧𝑝 = 𝒛𝒑 

𝑮𝑝,𝑠𝒌𝑟𝑝 = 𝒓𝒑
𝟐 

being 𝑮𝑝,𝑠  ∈ ℝ
𝑁𝑝× 𝑁𝑠 the matrix giving, for each filament, the measurements on 

each sensor, with 𝑁𝑠 number of sensors. 
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The result can’t be computed exactly, being 𝑁𝑝 ≠ 𝑁𝑠: therefore, a least square 

solution is found writing the problems in the form 

 

min
𝑲𝑰𝒑

‖𝑮𝑝,𝑠𝒌𝐼𝑝 − 𝒃𝐼𝑝‖
2

 

min
𝑲𝒛𝒑

‖𝑮𝑝,𝑠𝒌𝑧𝑝 − 𝒃𝑧𝑝‖
2

 

min
𝑲𝒓𝒑

‖𝑮𝑝,𝑠𝒌𝑟𝑝 − 𝒃𝑟𝑝‖
2

 

(3.16) 

where 𝒃 indicates the vector of the known terms and ‖#‖2 is the Euclidean norm. 

Since problem is ill-conditioned, a Truncated Singular Value Decomposition 

(TSVD) is required, through which some regularity of the solution can be gained. 

However, some data-fit might be lost in the process, and some fine-tuning on the 

truncation index parameter 𝑘𝑡 has to be performed. 

The SVD decomposition of the matrix 𝑮𝑝,𝑠 leads to 

 𝑮𝑝,𝑠 = 𝑼𝑺𝑽𝑇 (3.17) 

with 𝑼 ∈ ℝ𝑁𝑝× 𝑁𝑝 , 𝑽 ∈ ℝ𝑁𝑠× 𝑁𝑠  and 𝑺 ∈ ℝ𝑁𝑝× 𝑁𝑠  extension of the square matrix 

𝑺∗ = 𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎𝑁𝑠)  setting to zero all the terms of the matrix outside the 

diagonal of 𝑺∗. 

From eq. (3.17) is possible to obtain the solution vector for least squares problem: 

 𝒌 = 𝑽𝑺+𝑼𝑇𝒃 =  ∑
(𝑼𝑇𝒃)(𝑖)

𝜎𝑖
𝐯𝐢

𝑁𝑠

𝑖=1

 (3.18) 

The SVD solution is not sufficiently regular because the sets of coefficients are 

too sensitive with respect to the position and the value of the currents. This 

happens because the problem is ill-conditioned, as already stated. To gain more 

regularity on the solution, the aforementioned truncation index 𝑘𝑡 is introduced, 

so that the first 𝑘𝑡 greater singular values are retained, and the remaining smaller 

ones are disregarded. Therefore, the solution becomes: 

 𝒌 = 𝑽𝑘𝑡𝑺𝑘𝑡
+ 𝑼𝑘𝑡

𝑇 𝒃 =  ∑
(𝑼𝑘𝑡

𝑇 𝒃)(𝑖)

𝜎𝑘
𝐯𝐢

𝑁𝑠

𝑖=1

 (3.19) 

where 𝑼 ∈ ℝ𝑁𝑝× 𝑘𝑡 , 𝑽 ∈ ℝ𝑁𝑠× 𝑘𝑡  and 𝑺 ∈ ℝ𝑘𝑡× 𝑘𝑡  diagonal matrix composed by 

diag(𝜎1, … , 𝜎𝑘𝑡). 

From the experimental analysis it was seen that, for the RFX-mod2 set of sensors, 

a 𝑘𝑡 = 8 is the best compromise between precision and regularity of the solution. 

In Sec. 6 the computation will be carried out with an even smaller number of 

sensors, hence the utilized rule for calculating the truncation index is 𝑘𝑡 =

𝑐𝑒𝑖𝑙(
𝑁𝑠

2
) (+1 if 𝑁𝑠 even). 
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SECTION 4 

4 The RFX-mod2 Experiment 
 

4.1 Introduction 

RFX-mod [18] was a toroidal device, with minor radius of 0.46𝑚  and major 

radius of 2𝑚 , designed to operate as RFP with plasma current up to 2𝑀𝐴 . 

Similarly to a tokamak, the RFP carries a toroidal plasma current confined by an 

equilibrium magnetic field whose main components are toroidal and poloidal. 

Contrarily to a tokamak, the RFP confines the same plasma current with an 

average toroidal field which is ten times smaller than that in a tokamak (poloidal 

and toroidal magnetic fields are comparable in amplitude). Furthermore, the 

toroidal magnetic field produced by the external coils is extremely small 

compared to the one in a tokamak, of the order of some 𝑚𝑇 during the flat-top 

reversal phase in a typical 𝑀𝐴 RFP plasma discharge, since the field is mainly 

produced through a self-organization process by currents flowing in the plasma 

itself. Thanks to its flexibility, RFX-mod experiment has been operated both as an 

RFP and a tokamak. In fact, the toroidal field circuit can provide toroidal 

magnetic field far in excess of that needed for RFP operation. Therefore, ohmic 

tokamak operations were performed in the past involving circular plasma 

discharges with toroidal field up to 0.55 𝑇 and plasma current up to 100 𝑘𝐴. The 

same engineering flexibility on the other magnet system, the field shaping circuit, 

allowed to perform shaped tokamak operations with different shapes of plasma 

poloidal cross sections and current up to 60 𝑘𝐴.  

One of the key parameters for the stability of RFP plasma operations is the 

distance between the passive stabilizing conductor, consisting of a copper shell 

3 𝑚𝑚 thick, and the plasma. Based on the wide evidences of the experimental 

activity of RFX-mod, an upgrade of the experiment, dubbed RFX-mod2 [19] is 

presently in its manufacturing phase. It consists in the removal of the highly 

resistive Inconel vacuum vessel (VV) in order to bring the highly conductive 

passive stabilizing shell (PSS) as close as possible to the plasma. In particular, the 

shell/plasma radius ratio will reduce from 𝑏/𝑎 = 1.11  to 𝑏/𝑎 = 1.04 , thus 

widening the chamber minor radius to 0.49𝑚 , and the stainless-steel support 

structure will be made vacuum-tight (Fig 4.1a). A detailed description of the 

conducting structures of RFX-mod2 is reported in the next paragraph where 

comparisons with respect to RFX-mod are also provided. 

4.1.1 Passive conductors 

The RFX-mod PSS was a copper toroidal structure, 3 mm thick, surrounding the 

VV and providing MHD stabilization of RFP plasma in short time scale. This 
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conductive shell was provided with an electrical discontinuity in both toroidal and 

poloidal direction. 

In RFX-mod2, due to the removal of the vessel, the PSS will be deeply modified 

[20] in order to sustain the new first wall and considering that a wide system of in-

vessel diagnostics have to operate in vacuum conditions.  

Concerning the vacuum toroidal support structure (VTSS), this is being 

manufactured starting from the already existing RFX-mod stainless steel toroidal 

structure, which presents, as the PSS, two poloidal and two toroidal insulated gaps 

[20] [21]. The gaps have to be insulated since the new structure has also the 

function of maintaining the vacuum condition. 

 

Fig: 4.1: (a) RFX-mod2 cross-section highlighting new structural radiuses, (b) isometric 

view [20] 

 

 

Fig 4.2: VTSS – mechanical support and vacuum vessel, (a) four parts exploded, (b) 

top/bottom halves exploded [21] 
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4.2 RFX-mod2 tokamak magnet system 

RFX-mod2 magnet system [22] has not been changed from the previous RFX-

mod design and it is constituted by two set of windings: the Toroidal Field 

winding (TFW) and the Poloidal Field windings (PFW). The TFW system 

consists of 48 coils uniformly distributed along the toroidal direction dedicated to 

produce the toroidal magnetic field necessary for tokamak operations, up to a 

maximum magnetic field of 0.7 T. The PFW is constituted by two set of coils: the 

Field Shaping winding (FSW), devoted to provide the equilibrium field, and the 

Magnetizing winding (MW), inducing the loop voltage necessary to sustain the 

plasma current. 

 

Fig 4.3 Toroidal Field coils 

 

Fig 4.4: (a) Magnetizing / Ohmic heating coils, (b) Field Shaping coils 

Moreover, a set of Saddle coils (SC), distributed along torus surface, are meant to 

provide a radial field component for stabilization purposes. 

In the following we will focus solely on Tokamak operations, providing a brief 

description of the magnet system requirements for both limiter and diverted 

plasma discharges. 

4.2.1 Poloidal field circuit 

The poloidal field circuit is constituted by the previously introduced set of 

windings, the FSW and MW, properly connected for different plasma scenario 
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operations. The standard RFP and circular tokamak operation circuit is 

represented in Fig. 4.5. 

 

Fig. 4.5: RFX-mod2 poloidal field circuit 

 

In RFX-mod2 the MW constitute four sectors each connecting different magnets 

as described by Tab. 4.1 (numeration of MW can be seen in Fig. 4.6). 

 

 

 

 

 

Tab. 4.1: RFX-mod2 PFW circuit sectors with MW coils interconnections 

S 

Sector 
MW in series 

1 1 5 9 13 17 

2 2 6 10 14 18 

3 3 7 11 15 19 

4 4 8 11 16 20 
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Fig. 4.6: RFX-mod2 poloidal section: coils and passive conductive structures 

During the operations, a flux swing is generated by decreasing the current in the 

MW inducing the necessary loop voltage, to initiate and drive the plasma 

discharge. 

FSW [23] are formed by eight couples of coils which are top/down symmetric and 

each one is connected in series with the correspondent symmetrical with respect to 

the equatorial plane (Fig. 4.6.). Each coil presents 24 turns, so that 

electromagnetic L and M parameters guarantee a build-in balance of the voltage 

induced in the FSW and in the MW sectors (parallel connected Fig. 4.5). 

Single null operations require to break the equatorial plane symmetry and to 

reverse few currents in order to obtain both lower single null (LSN) or upper 

single null (USN) configurations with either positive or negative triangularity 

[24].  

 

Plasma density (particles) up to 8·1018 m-3 

Max plasma temperature 20 M°C 

Max. toroidal field 0.7 T 

Max. plasma current 200 kA 

Current rise time 200 ms 

Flat-top time ~1 s 

Discharge time ~1,2 s 

Tab 4.2: RFX-mod2 tokamak specifications 
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4.2.2 Saddle coils 

RFX-mod2 is equipped with a system of 192 Saddle Coils (SC) for active MHD 

control (Fig. 4.7) for both RFP and circular tokamak operations. They are 

arranged in 48 toroidal positions within each one 4 coils are located. These last 

ones are disposed with top/bottom and left/right symmetry guaranteeing a 

production of a radial magnetic field up to 50 𝑚𝑇 DC and 3.5 𝑚𝑇 at 100 Hz. In 

shaped tokamak discharges, the inner-outer SC are operated in order to provide 

the horizontal component of the magnetic field needed for the vertical 

stabilization. 

 

 

Fig 4.7: Saddle Coils 

 

4.3 RFX-mod2 magnetic diagnostic system 

The magnetic diagnostic system of RFX-mod2 is constituted by different 

magnetic sensors to fully characterize the plasma magnetic configuration. 

Among the magnetic sensors, Pick-up coils are the main ones of interest for the 

purpose of this article. They are constituted by a wire loop which, being crossed 

by magnetic field, displays an induced loop voltage according to Faraday’s law. 
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Fig 4.8: Pick-up coil circuit scheme 

Considering the circuit shown in Fig. 4.8 and being 𝑆 the loop surface and Γ its 

boundary, it stands: 

휀(𝑡) = ∮𝐸 ⋅ 𝒕 𝑑𝑙
Γ

 

= − ∫𝐵 ⋅ 𝒏 𝑑𝑙
𝑆

  

Exploiting this relation, the induced voltage in the loop is evaluated, and from 

that, the B-field is extrapolated. However non-ideality effects or capacitive 

couplings could lead to the circulation of a current in the loop, thus weakening the 

accuracy of the measurement. 

Since the pick-up coil can evaluate the magnetic field normal to S, other two coils 

are implemented in the device, so that all the three spatial components of B could 

be measured. 

For the purpose of this work, from the pick-up coils used in RFX-mod2, will be 

accounted the poloidal field components that corresponds to the tangential and 

normal field with respect to the sensor circumference detailed in Tab 4.3. 
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(a) (b) 

Fig. 4.9: RFX-mod2 pick-up coil: (a) Sketch, (b) Physical sensor 

 

The upgrade from RFX-mod to RFX-mod2 will bring some important 

improvements in the pre-existent set of magnetic sensors. In particular, the new 

set of pickup coils will be made up of 12 staggered poloidal arrays of 14 three-

axial pickup coil sensors each. 

Considering the machine centre being located at 

𝑟𝑀𝐶 = 1.995 𝑚 

𝑧𝑀𝐶 = 0 𝑚 

RFX-mod2 pick-up coils are located on a circumference of: 

𝑟𝑝𝑖𝑐𝑘𝑢𝑝 = 0.5085 𝑚 

and 

휃𝑝𝑖𝑐𝑘𝑢𝑝 =  6.43 + 𝑘 ⋅ 25.71,  with 𝑘 = 0,… , 13 

𝜙𝑝𝑖𝑐𝑘𝑢𝑝 =  18 + 𝑙 ⋅ 30°,  with 𝑙 = 0,… , 11 

 

Sensors are located in the inner part of the PSS, protected from the plasma by the 

graphite tiles of the first wall.  Fig.10 shows the position of the pickup coils 

among the RFX-mod2 geometry, while Tab 4.3 provides their coordinates. 
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Fig. 4.10: RFX-mod2 sensors location on the poloidal plane 

 

ID r [m] z [m] θ [m] 

1 2.500 0.057 6.43 

2 2.426 0.270 32.14 

3 2.266 0.431 57.86 

4 2.052 0.505 83.57 

5 1.827 0.480 109.29 

6 1.635 0.360 135.0 

7 1.515 0.168 160.71 

8 1.490 -0.057 186.43 

9 1.564 -0.272 212.14 

10 1.724 -0.432 237.86 

11 1.938 -0.505 263.57 

12 2.163 -0.480 289.29 

13 2.355 -0.360 315.0 

14 2.475 -0.168 340.71 

 

Tab. 4.3 coordinates of the RFX-mod2 pickup coils 
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SECTION 5 

5 Plasma Equilibria in RFX-mod2 
 

Along this work five plasma equilibria have been considered: three are computed 

from RFX-mod experimental data of past tokamak discharges, while the others 

were numerically defined for future RFX-mod2 operations [24]. 

Equilibria are calculated availing of the FRIDA code presented in Par. 2.2. The 

inputs of the computation are the currents circulating in the active coils (i.e. MW, 

FW and SC) and global plasma parameters. Active coils follow the numeration of 

the RFX-mod2 PFW mentioned in par. 4.2.1 (Fig. 4.6 /Tab. 4.1), thus the MW 

will be addressed recalling the sector subdivision. Plasma parameters are the total 

plasma current and current density profile parameters 𝛼𝑀, 𝛼𝑁, 𝛽0, as defined in 

(2.33). For all equilibria 𝑅0 = 1.995 𝑚 parameter is the machine major radius. 

The FRIDA code provides the solution of the equilibria giving as result the 

poloidal flux map and the plasma current map. For the purpose of this work, it is 

useful to evaluate the current on the output mesh nodes, since they will be utilized 

for the reconstruction of the magnetic field in the positions of the new RFX-mod2 

set of magnetic field sensors. 

Other output parameters, like centroid position, total plasma current and plasma 

boundary will be useful as references for the sensitivity analysis performed in next 

section. In particular, the centroid position and total plasma current will be used as 

references to calculate the errors with respect to the parameters that will be 

calculated with the moments computation presented in par 3.2.1. Plasma boundary 

will instead be used as a meter of comparison to evaluate whether failures in 

certain sensors positions may lead to coarser reconstructions. 

In the following are reported the errors on parameters reconstruction by means of 

the moments method without considering failures in the sensor set (i.e. 

considering all the 14 sensors). 

  



5 Plasma Equilibria in RFX-mod2 

44 
 

5.1 Shot 39122 

 

Active Currents [kA]  

S1 -3.344 

S2 -5.424 

S3 -7.314 

S4 -4.923 

F1 -0.07 

F2 -1.266 

F3 0.612 

F4U 2.344 

F4L 0 

F5U -2.248 

F5L 0 

F6 -0.653 

F7 -0.351 

F8 0.346 

SC 1 0.015 

SC 2 0.015 
 

Plasma Parameters 

𝐼𝑝 63.34 kA 

𝛼𝑀 0.9662 

𝛼𝑁 1.0529 

𝛽0 0.7885 

 

Moment Reconstructed Parameters 

(14 sensors) 

𝑖𝑝% 0.19 % 

ΔCentroid 0.115 𝑐𝑚 
 

 

 

 

 

 

Fig. 5.1 Shot 39122 equilibrium results: (a) Poloidal flux per radian*, (b) Plasma current 

density 

 

 

*  Black dashed line: experimental boundary. 



5 Plasma Equilibria in RFX-mod2 

45 
 

5.1 Shot 36922 

 

Active Currents [kA]  

S1 -2.429 

S2 -4.345 

S3 -4.627 

S4 -5.265 

F1 -0.309 

F2 -1.694 

F3 1.257 

F4U 2.149 

F4L 0 

F5U -1.970 

F5L 0 

F6 -0.441 

F7 -0.319 

F8 0.206 

SC 1 0.006 

SC 2 0.006 
 

Plasma Parameters 

𝐼𝑝 58.24 kA 

𝛼𝑀 1.2846 

𝛼𝑁 0.9985 

𝛽0 0.3000 

 

Moment Reconstructed Parameters (14 

sensors) 
𝑖𝑝% 0.17 % 

ΔCentroid 0.055 𝑐𝑚 
 

 

 

 

 

 

Fig. 5.2 Shot 36922 equilibrium results: (a) Poloidal flux per radian*, (b) Plasma current 

density 

 

 

*  Black dashed line: experimental boundary. 
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5.1 Shot 37829 

 

Active Currents [kA]  

S1 -0.249 

S2 -2.094 

S3 -4.128 

S4 -2.945 

F1 -0.290 

F2 -1.652 

F3 1.156 

F4U 0 

F4L 1.944 

F5U 0 

F5L -1.695 

F6 -0.392 

F7 -0.275 

F8 0.204 

SC 1 -0.001 

SC 2 0.001 
 

Plasma Parameters 

𝐼𝑝 58.24 kA 

𝛼𝑀 1.3237 

𝛼𝑁 1.1998 

𝛽0 0.1000 

 

Moment Reconstructed Parameters 

(14 sensors) 

𝑖𝑝% 0.17 % 

ΔCentroid 0.076 𝑐𝑚 
 

 

 

 

 

Fig. 5.3 Shot 37829 equilibrium results: (a) Poloidal flux per radian*, (b) Plasma current 

density 

 

 

 

*  Black dashed line: experimental boundary. 
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5.1 Shot DEMO-like 𝜹𝑳 

 

Active Currents [kA]  

S1 -0.176 

S2 -0.176 

S3 -0.176 

S4 -0.176 

F1 -2.337 

F2 -3.168 

F3 -0.004 

F4 -1.191 

F5 -1.313 

F6 -0.772 

F7 -0.354 

F8 -0.226 
 

Plasma Parameters 

𝐼𝑝 89.16 kA 

𝛼𝑀 1.0810 

𝛼𝑁 1.0170 

𝛽0 0.4890 

 

Moment Reconstructed Parameters 

(14 sensors) 

𝑖𝑝% 0.16 % 

ΔCentroid 0.006 𝑐𝑚 
 

 

 

 

 

 

 

 

Fig. 5.4 Shot 𝛿𝐿 equilibrium results: (a) Poloidal flux per radian*, (b) Plasma current 

density 
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5.1 Shot Negative Triangularity – L-mode (𝑵𝑻𝑳) 

 

Active Currents [kA]  

S1 -1.231 

S2 -2.740 

S3 -3.684 

S4 -2.179 

F1 0.338 

F2 -0.286 

F3 -1.031 

F4U -2.266 

F4L 0 

F5U 1.936 

F5L 0 

F6 0.250 

F7 -1.019 

F8 0.014 
 

Plasma Parameters 

𝐼𝑝 61.05 kA 

𝛼𝑀 0.5014 

𝛼𝑁 1.0985 

𝛽0 0.6801 

 

Moment Reconstructed Parameters 

(14 sensors) 

𝑖𝑝% 0.18 % 

ΔCentroid 0.061 𝑐𝑚 
 

 

 

 

 

 

Fig. 5.5 Shot 𝑁𝑇𝐿 equilibrium results: (a) Poloidal flux per radian*, (b) Plasma current 

density 
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SECTION 6 

6 Analysis of plasma parameters 

reconstruction, considering the 

potential failure of RFX-mod2 

poloidal field sensors  

In this section, the goal is to analyse the robustness of the moment reconstruction 

method presented in Section 3, considering several fault conditions of the 

magnetic sensors. In particular, the focus is on evaluating which could be the most 

impacting fault configurations in plasma parameters reconstruction. Thus, a 

sensitivity analysis on the magnetic reconstruction of plasma parameters in 

several RFX-mod2 equilibria is presented considering the impact of sensor 

failures in different configurations. Then, the robustness of the model is tested 

against the presence of noise in the measurements. 

The results could be of particular interest for the plasma control system. Since 

real-time active control is based on data retrieved from discharge parameters, it is 

mandatory that a suitable reconstruction method should be sufficiently accurate, 

even in fault conditions. 

6.1 Analysis Procedure 

In this section, different sets of sensors from the future magnetic sensor system of 

RFX-mod2 experiment will be used for the reconstruction of the main plasma 

parameters. 

In first place, the equilibria presented in Section 5 are characterized with FRIDA 

code and the reference parameters (i.e. plasma centroid position and total plasma 

current) are evaluated. Then, with suitable Green matrices, synthetic 

measurements on RFX-mod2 pick-up coil positions are computed and a 

reconstruction of 𝑛 = 0, 1, 2,  moments, with the method presented in par. 3.2.2, is 

performed. The synthetic field components are mapped from (𝑟, 𝑧) coordinates 

system to a local one with tangential and normal components (𝑡, 𝑛), which is 

related to the measurement directions of each sensor. The moment computation 

has been performed considering only the tangential component 𝐵𝑡 , which is 

higher in magnitude with respect to the normal one. 

The impact of sensor failures is considered in the computation of the moments for 

different plasma equilibria, with particular focus in trying to find the most critical 

configurations in terms of higher errors on plasma parameters reconstruction. 

Moreover, the impact of noise on sensor measurements will be quantified for 



6 Analysis of plasma parameters reconstruction, considering the potential failure of RFX-

mod2 poloidal field sensors 

50 
 

some of the considered sensor failure configurations and for different plasma 

equilibria. 

In order to define the possible configurations of faulty sensors, a characteristic 

angle is defined. Then, the relation between this angle and the error on the 

computed centroid and total plasma current is evaluated. The analysis shows a 

strong correlation between errors and few equilibrium parameters such: 

 the position of the FRIDA centroid with respect to the machine centre 

 the plasma-first-wall distance (PL-FW) 

 the amplitude of magnetic field 𝐵𝑡 measured by the sensors, with respect 

to the normal component. This is meant to assess whether the magnitude 

of the tangential component may bias the sensitivity of the sensors. 

In the following, we will refer to a reference polar coordinate system derived from 

the one presented in Section 2 and represented in Fig. 2.1: the origin is the 

machine centre, MC: (𝑟𝑀𝐶 = 1.995; 𝑧𝑀𝐶 = 0) , and the poloidal angle 휃  is 

counted counterclockwise, as show in Fig 6.1: 

 

Fig. 6.1: Pick-up coils reference system 

Computation of moments is performed for all the possible combinations of sensor 

failures, from one to 12 faulty sensors, which means that they are not considered 

in the moments computation (“turned off”). 

Given 𝑛 = 14 total number of sensors and let 𝑘 be the number of faulty sensors, 

the combination of sensors to analyse are the simple combinations of 𝑘  of 𝑛 

elements 

 𝑪 =  (
𝑛

𝑘
) =  

𝑛!

𝑘! (𝑛 − 𝑘)!
 (4.6) 
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For each combination, the characteristic angle of the sensors is computed, 

representing the “direction” in which the sensor failure is considered. 

For each equilibria, the position of the centroid is calculated by means of the 

FRIDA code. Considering the reference system of Fig 6.1, the angle between 

FRIDA centroid and MC will be accounted as reference direction. 

The computation of the characteristic angle considers the position of the FRIDA 

centroid with respect to the MC, thus giving more importance to the 

measurements in the reference direction. This allows to take into account the 

higher probability of having higher errors when faults happen in the FRIDA 

reference direction.  

The procedure for the calculation of the characteristic angle can be found in 

Section A of the Appendix. 

The results of the various combinations depending on the number of faulty 

sensors 𝑘 are here presented. Data are ordered by the characteristic angle in the 

reference system of Fig 6.1; then, and PL-FW distance and 𝐵𝑛 𝐵𝑡⁄  are plotted 

against 휃; in order to highlight relevant regions. 

Two configurations, the best and the worst case for centroid reconstruction, are 

analysed with respect to several noise percentages in the poloidal field 

measurements, for each number of faulty sensors. This allows to verify the 

capability of the moment method for properly reconstruction of plasma 

parameters under several disturbances conditions. 

The noise is generated starting from a timestamp seed (“simdTwister” fast 

algorithm) [25] to ensure that for every computation the error will result always 

different: in fact, starting from a fixed seed, could lead to patterns in the noise 

generation and therefore make the algorithm not random. 

Since the noise generated is between 0 and 1, this value is added to another 

random term but this time with negative sign, making it to fall in the range [-1, 0]. 

So, as wanted the sum of the two terms is a random value 𝑟 ∈ [−1, 1]. 

The new value of the magnetic field on sensor positions can thus be calculated: 

 𝑩𝒕  =  𝑩𝒕  +  𝒏% ∗  ‖𝑩𝒕𝒏‖ ∗ 𝑟 (4.7) 

where ‖𝑩𝒕‖ is the 2-norm of the vector of measured field along the tangential 

component, 𝒏%  = 𝑙 ⋅ 0.002 , with 𝑙 = 1,… , 20 , and 𝑟 ∈ [−1, 1]  is a random 

number. 

It is important to mind that the 𝒏% values refer to the maximum noise values, and 

since 𝑟 ∈ [−1, 1], the actual added noise value won’t correspond exactly to 𝒏%. 

Due to this fact, for every percentage of noise, the calculation of the moments is 

carried out 100 times, and a statistical analysis is performed on the data (Fig. 6.2). 
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Average values of the centroid distance from 0%-noise centroid position, and 

error with respect to 0%-noise plasma current are computed, and the result are 

shown in the following paragraph. 

 

Fig 6.2: Noise computation example: Shot 39122, 7 failed sensors best case (1, 4, 5, 6, 8, 

9, 11 OFF), 100 values distribution with 1% noise 

 

6.2 Results 

In the following paragraph will be reported the most relevant results of the 

analysis. In first place, considerations with just one faulty sensor are reported, 

since it is a very useful limit case to assess the changes in plasma reconstructed 

parameters for each empty position in the sensor set. In Fig 6.3-6.7 are reported 

the centroid distances from FRIDA reference for each faulty sensor with a 

colormap scale; in particular, Fig 6.3a-6.7a display the distance in terms of the 

characteristic angle calculated as Appendix, (banally the sensor angle with respect 

to the MC for this limit case). 

The procedure shows that higher errors (i.e. worst reconstructions) are obtained 

when faults occur in the reference direction, where PL-FW distance is lower, and, 

less preponderantly, where is present a higher magnitude of 𝐵𝑡 over 𝐵𝑛. In Fig. 

6.3b-6.7b colormap is shown over the very sensor position, to better visualize the 

most critical positions to have fault in the sensor set, and it is clear how, for 

different equilibria, the worst positions relate to the plasma shape as described. 

An exception in this PL-FW criterion is seen in the region of the null point, where 

a close distance between plasma and first-wall is present, but parameters can be 

reconstructed with a quite high accuracy. This can be explained by the fact that 

the tangential component of magnetic field has a minimum in amplitude as 

required by X-point configurations. 
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Shot 39122 

 
 

Fig. 6.3a: Shot 39122 Centroid distance 

in function of angle of the broken sensor. 

Exact position of the sensor in reported 

in 4.2b. The lower graph reports the PL-

FW distance and the absolute value of 

the quantity of the poloidal 𝐵𝑛 𝐵𝑡⁄  

Fig 6.3b: Shot 39122 Sensor positions 

with ΔCentroid colormap over. 

 

 

Shot 36922 

 
 

Fig. 6.4a: Shot 36922 Centroid distance 

in function of angle of the broken sensor. 
Fig 6.4b: Shot 36922 Sensor positions 

with ΔCentroid colormap over. 
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Shot 37829 

  
Fig. 6.5a: Shot 37829 Centroid distance 

in function of angle of the broken sensor. 
Fig 6.5b: Shot 37829 Sensor positions with 

ΔCentroid colormap over. 

 

 

Shot DEMO-like 𝛿𝐿 

  

Fig. 6.6a: Shot 𝛿𝐿 Centroid distance in 

function of angle of the broken sensor. 
Fig 6.6b: Shot 𝛿𝐿 Sensor positions with 

ΔCentroid colormap over. 
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Shot Negative Triangularity (L-mode) - 𝑁𝑇𝐿 

 
 

Fig. 6.7a: Shot 𝑁𝑇𝐿 Centroid distance in 

function of angle of the broken sensor. 
Fig 6.7b: Shot 𝑁𝑇𝐿 Sensor positions with 

ΔCentroid colormap over. 

 

 

The following graphs (Fig. 6.8-12) shows angular distribution of calculated 

parameters accounting the characteristic angle of the faulty sensor set. For each 

set of faulty sensors, their characteristic angle is computed with the 

aforementioned method, thus errors on plasma parameters are placed in the 

corresponding angle of the reference system (Fig. 6.1). The same pattern as the 

case considering the failure of one sensor is repeated along other configurations 

when increasing the numbers of failures; being clear that, in some cases, when the 

characteristic angle is located near the reference direction, parameters maybe 

result still well reconstructed. This fact is due to compensations between sensors 

in opposite positions (i.e. symmetric configurations). Nevertheless, worst 

configurations results when sensors fail in reference direction. 

To highlight these worst directions, the upper bound of configurations’ angular 

distribution is put in evidence and, as expected, the peak of the highest error 

values is located in proximity of the reference direction. In particular, is 

interesting to notice how, for different equilibria, the peak of displacements 

matches the angle of FRIDA centroid with remarkable precision. 

The same results are displayed also on polar plots (Fig. 6.8-12 (b,d,f)) for a better 

visualization. Other configurations with different numbers of faulty sensors have 

been reported in Section B.1 of the Appendix. 
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Shot 39122 

 

 

 

Fig. 6.8a: Shot 39122 – Reference Parameters Fig 6.8b: Shot 39122 – Reference 

Parameters (polar plot) 
  
  

  
Fig. 6.8c: Shot 39122 – 1 sensor off Fig 6.8d: Shot 39122 – 1 sensor OFF 

(polar plot) 
  
  

  
Fig. 6.8e: Shot 39122 – 7 sensors off Fig 6.8f: Shot 39122 – 7 sensors OFF 

(polar plot) 
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Shot 36922 

 

 

 

Fig. 6.9a: Shot 36922 – Reference Parameters Fig 6.9b: Shot 36922 – Reference 

Parameters (polar plot) 
  
 

 
 

  
Fig. 6.9c: Shot 36922 – 1 sensor off Fig 6.9d: Shot 36922 – 1 sensor OFF 

(polar plot) 
  
  
  

  
Fig. 6.9e: Shot 36922 – 7 sensors off Fig 6.9f: Shot 36922 – 7 sensors OFF 

(polar plot) 
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Shot 37829 

 

 

 

Fig. 6.10a: Shot 37829 – Reference Parameters Fig 6.10b: Shot 37829 – Reference 

Parameters (polar plot) 
  
  

  
Fig. 6.10c: Shot 37829 – 1 sensor off Fig 6.10d: Shot 37829 – 1 sensor 

OFF (polar plot): Centroid distance 

from reference 
  
  

  
Fig. 6.10e: Shot 37829 – 7 sensors off Fig 6.10f: Shot 37829 – 7 sensors 

OFF (polar plot): Centroid distance 

from reference 
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Shot DEMO-like 𝛿𝐿 

 

 

 

Fig. 6.11a: Shot 𝛿𝐿 – Reference Parameters Fig 6.11b: Shot 𝛿𝐿  – Reference 

Parameters (polar plot) 
  
  

  
Fig. 6.11c: Shot 𝛿𝐿 – 1 sensor off Fig 6.11d: Shot 𝛿𝐿  – 1 sensor OFF 

(polar plot): Centroid distance from 

reference 
  
  

  
Fig. 6.11e: Shot 𝛿𝐿  – 7 sensors off Fig 6.11f: Shot 𝛿𝐿  – 7 sensors OFF 

(polar plot): Centroid distance from 

reference 
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Shot 𝑁𝑇𝐿 

 

 

 

Fig. 6.12a: Shot 𝑁𝑇𝐿 – Reference Parameters Fig 6.12b: Shot 𝑁𝑇𝐿– Reference 

Parameters (polar plot) 
  
  

  
Fig. 6.12c: Shot 𝑁𝑇𝐿 – 1 sensor off Fig 6.12b: Shot 𝑁𝑇𝐿  – 1 sensor OFF 

(polar plot): Centroid distance from 

reference 
  
  

 
 

Fig. 6.12e: Shot 𝑁𝑇𝐿  – 7 sensors off Fig 6.12f: Shot 𝑁𝑇𝐿  – 7 sensors OFF 

(polar plot): Centroid distance from 

reference 
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6.2.1 Configurations overview 

Until it was shown each graph representing the distribution of the calculated error 

on plasma parameters in function of the characteristic angle, and has been shown 

how the fault of a sensor in the reference direction (or a sensor in a region where 

plasma-first-wall distance is very low) could lead to a coarser reconstruction of 

plasma current and centroid position. 

Now, instead, all the configurations represented in the plot against 휃  are 

considered at once and attributed to the respective number of faulty sensors. Due 

to the relatively big amount of data some graphical simplifications are performed. 

For each equilibrium a confidence plot has been produced (Fig 6.13). These 

represent, for each number of faulty sensors, the mean value of plasma parameters 

(solid line) and the interval between minimum and maximum value between all 

the configuration of the case (coloured area). 

Furthermore, a box-plot has been adopted to better frame up parameters 

distribution as the number of faulty sensors increases (Fig 6.14). On each box, the 

central mark indicates the median, and the bottom and top edges of the box 

indicate the 25th and 75th percentiles, respectively. The whiskers extend up to one 

interquartile length, being 𝑤𝑚𝑎𝑥 = 𝑞75 + (𝑞75 − 𝑞25)  and 𝑤𝑚𝑖𝑛 = 𝑞25 − (𝑞75 −

𝑞25). Percentiles are extremely useful in this case because can quantify the value 

under which is located a certain percentage of data, making it useful to evaluate, 

in a real case, the entity of plasma parameter errors, relying solely on the number 

of faulty sensors. 

Both the types of graphs show a steeper slope of the upper bound with respect to 

the lower one. The lower bound represents the best reconstructions for each 

number of faulty sensors, in particular, it is shown how centroid (Fig. 6.13a) can 

be reconstructed with remarkable precision even when a low number of working 

sensors is present. This could happen under the condition of having the sensors 

almost equally distributed (i.e. in a symmetric sensors configurations). 

The upper bound represents the worst configurations and can be seen that centroid 

displacement follows an almost linear behaviour. Error on plasma current instead 

does not increase linearly with the number of faulty sensors (Fig. 6.13b). 

In this section is reported only the case for Shot 39122. Graphs concerning other 

equilibria are similar (errors show similar behaviours and magnitudes) with 

respect to the ones shown in Fig. 6.13-14 and thus can be found in section B.2 of 

the Appendix. 
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Shot 39122 

 

 

[cm] 
n. Mean Min. Max. 

1 0.29 0.02 0.85 

2 0.50 0.01 2.17 

3 0.78 0.02 4.07 

4 1.03 0.02 5.78 

5 1.37 0.02 7.56 

6 1.74 0.04 9.31 

7 2.36 0.02 11.28 

8 2.86 0.06 12.65 

9 3.80 0.10 13.87 

10 4.65 0.16 14.99 

11 6.66 0.41 16.34 

12 8.04 0.68 16.80 
 

Fig. 6.13a: Shot 39122: ΔCentroid (range plot vs. n. of 

faulty sensors) 
 

 

 

 

 

 

[%] 
n. Mean Min. Max. 

1 0.43 0.18 0.80 

2 0.72 0.18 1.99 

3 1.10 0.24 3.84 

4 1.53 0.34 5.95 

5 2.11 0.49 8.29 

6 2.81 0.73 10.88 

7 3.82 1.23 14.58 

8 5.05 1.74 18.38 

9 6.92 2.28 23.46 

10 9.48 4.07 29.16 

11 14.03 7.23 36.92 

12 21.23 12.97 44.64 
 

Fig. 6.13b: Shot 39122: 𝐼𝑝 error (range plot vs. n. of 

faulty sensors) 
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[cm] 
n. Median 75 pc 25 pc 

1 0.13 0.53 0.09 

2 0.48 0.68 0.14 

3 0.64 0.93 0.41 

4 0.76 1.43 0.50 

5 1.03 1.89 0.62 

6 1.46 2.26 0.77 

7 1.96 3.25 1.08 

8 2.38 3.83 1.38 

9 3.35 5.17 1.94 

10 4.03 6.31 2.40 

11 6.26 9.25 3.75 

12 7.61 11.35 4.60 
 

Fig. 6.14b: Shot 39122: ΔCentroid (Box-plot) 

 

 

 

[%] 
n. Median 75 pc 25 pc 

1 0.38 0.66 0.28 

2 0.70 0.83 0.46 

3 0.98 1.25 0.77 

4 1.33 1.97 1.03 

5 1.90 2.52 1.40 

6 2.55 3.40 1.90 

7 3.44 4.60 2.65 

8 4.61 6.05 3.55 

9 6.34 8.01 5.04 

10 8.61 10.97 7.01 

11 12.68 15.97 10.69 

12 19.15 24.68 15.94 
 

Fig. 6.14b: Shot 39122: 𝐼𝑝 error (Box-plot)  
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6.2.2 𝚫Centroid vs. 𝑰𝒑 error relation 

Another interesting behaviour that has been found, is the gradual non-linearity of 

the plasma current error with respect to the correspondent centroid error of the 

faulty sensor set, while increasing the number of broken sensors. 

To better visualize the results a linear fit and a cubic one has been chosen: the 

linear one is applied from 1 to 8 sensors off, and cubic fit is applied from 4 to 14 

sensors off. This illustrates well the gradual sharpening of the characteristic. 

Right away (Fig. 15-17) are reported three examples concerning Shot n. 39122, in 

particular cases with 1, 7 and 11 faulty sensors. Other cases and, respectively, 

considering other equilibria, are reported in Section B.3 of the Appendix. 

 

Shot 39122 

 

Fig. 6.15: Shot 39122 – 1 sensor off: Δ𝐶 𝑣𝑠 𝑖𝑝% 

 



6 Analysis of plasma parameters reconstruction, considering the potential failure of RFX-

mod2 poloidal field sensors 

65 
 

 

Fig 6.16: Shot 39122 – 7 sensors off: Δ𝐶 𝑣𝑠 𝑖𝑝% 

 

 

Fig 6.17: Shot 39122 – 11 sensors off: Δ𝐶 𝑣𝑠 𝑖𝑝%  
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6.2.3 Noises analysis results 

In the configurations that have been chosen to be analysed against noisy 

measurements, tangential component of the poloidal magnetic field has been 

added by 20 different amounts of noise values, with which the moment 

computation has been repeated 100 times each. Plasma parameters retrieved from 

moment calculation are then used to find the errors with respect to the case 

without noise. For each noise level the mean error 𝜇 and standard deviation 𝜎 are 

computed. The choice of changing the reference parameter for the error 

calculation is guided by the fact that noise contribution won’t be so drastic when 

referring to FRIDA parameters, especially in worst configurations, where errors 

due to faults are dominant. 

Knowing that the minimum value that could be measured by RFX-mod2 pick-up 

coils is 0.1 𝑚𝑇, noise levels has been chosen from 0.2% and 4% of the RMS of 

the magnetic field measured by the sensors. In absolute terms it is equal to ~0.2 

to ~4 𝑚𝑇.  

The errors on both plasma parameters grow linearly with the noise level, as shown 

in Fig 6.18-19. It is found an error of centroid position from 0%-noise condition 

between ~0.8 𝑐𝑚  and ~1.5 𝑐𝑚  (mean values), considering 4 % noise (~4𝑚𝑇), 

having a standard deviation 𝜎 scaling from 0.4 𝑐𝑚, for 1 faulty sensor, to 𝜎 ≈

0.1 𝑐𝑚 with 12. As regards current error against 0%-noise case, the range span 

from ~1% to ~1.5% at the highest noise level (𝜎 ≈ 0.53 %). 

Right away (Fig 6.18-19) are reported the results for the shot n. 39122, for 1 and 7 

faulty sensors. Results for other shots, for same sensor numbers, could be found in 

the appendix at B.4, as they present similar behaviours, and similar magnitudes. 
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Shot 39122 (1 sensor off) 

 

 
Fig. 6.18a: Shot 39122, 1 sensor off, best case, noise analysis 

 

 

 
Fig. 6.18b: Shot 39122, 1 sensor off, worst case, noise analysis 
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Shot 39122 (7 sensors off) 

 

 
Fig. 6.19a: Shot 39122, 7 sensors off, best case, noise analysis 

 

 

 
Fig. 6.19b: Shot 39122, 7 sensors off, worst case, noise analysis 
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Conclusions 
 

The purpose of this work was to verify whether plasma parameters reconstruction 

could be sufficiently effective in condition of the fault of one or more sensors. All 

the possible failure configurations have been analysed to give a complete 

description of the scenario. 

What emerged by the analysis is a strong equilibrium-dependent correlation 

between accuracies of reconstructed parameters and positions of the faulty 

sensors. The main equilibrium parameter that affects the moment computation is 

the position of the FRIDA equilibrium centroid with respect to the machine 

centre, meaning that losing sensors that are closer to the direction of FRIDA 

centroid with respect to the machine centre lead to a coarser reconstruction. This 

fact can be explained reminding that RFX-mod2 pick-up coils are placed along a 

circumference centred exactly in the machine centre, while plasma presents a 

current density distribution that is not centrosymmetric. Thus performing the 

moment computation by means of a set of measurements not uniformly 

distributed, could lead to higher errors. In fact, the worst configurations are 

exactly the most asymmetric ones. Conversely, symmetric configurations preserve 

some accuracy, thanks to compensations of sensors in opposite positions. 

Another parameter that influences negatively the loss of a sensor in a determined 

area is the plasma-first-wall (PL-FW) distance. The smaller is this quantity, the 

worse would be the loss of a sensor in that region. This parameter relates to the 

previous one because, in a tokamak equilibrium, the plasma centroid is located in 

the opposite direction of the x-point with respect to the machine centre (as regards 

single null configurations) and in the same direction of limiter point for limiter 

plasmas. This translates in a smaller PL-FW distance in the direction of the 

plasma centroid with respect to the machine centre. Moreover, smaller PL-FW 

distance indicates a closeness between plasma and sensors, thus the presence of a 

higher current density near calculation points (i.e. higher magnetic field), makes 

them more sensitive. As regards the null point, the PL-FW is actually small, 

nevertheless we don’t observe severe errors in parameters reconstruction when 

turning off sensors in this area. This behaviour is due to the smaller intensity of 

the magnetic field in that region of space, de facto reducing the sensor’s 

contribution in the moment computation. 

Another interesting correlation that has been found is that, having a higher 

number of faulty sensors, the plasma current error grows faster than correspondent 

centroid displacement. This behaviour has then been found also looking at error 

ranges in function of the number of faulty sensors. Focusing on the upper bound, 

i.e. the worst configurations for each number of faulty sensors, the error on 
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centroid position follows an almost linear behaviour, while plasma current error 

doesn’t increase linearly. 

Considering the lower bound, instead, could be confirmed how symmetrical 

sensor configurations could well reconstruct plasma parameters, even in the 

condition of high number of sensor failures. 

As regards the noise analysis, plasma parameters showed a linear increase with 

respect to the noise level: centroid just displaces between 0.8 𝑐𝑚 and 1.5 𝑐𝑚 with 

4 % noise (mean values, with 𝜎 ≈ 0.4 𝑐𝑚 for 1 faulty sensor till 𝜎 ≈ 0.1 𝑐𝑚 for 

configurations with 12 broken sensors), while current error span from ~1% to 

~1.5% at the highest noise level (𝜎 ≈ 0.53 %). These values show how noise 

won’t be the main constraint in the context of having a low number of working 

sensors. In fact, having too many inactive sensors, noise error results neglectable, 

thus the plasma parameters error is almost entirely attributable to the faults. Noise 

displacements, indeed, becomes relevant only when plasma parameters errors due 

to faulty sensors are lower than the noise displacement range, depending on the 

noise level. 

To summarize, the computation of centroid position and plasma current by means 

of TSVD-optimized moment method, is preponderantly affected by the most 

asymmetric sensors configurations and the most inaccurate results are found when 

faults occur in the regions closer to reference centroid (i.e. reference direction), 

and smaller plasma-first-wall distance. For symmetric configurations, instead, the 

presence of noise could affect the quality of reconstruction, but, since the 

displacement is relatively small at a high noise percentage, it should not be 

considered as main constraint for practical applications. 

Data obtained in this work could be then compared with real data that will be 

produced in RFX-mod2 for validation and/or verify, whether some of the sensors 

are unavailable, the order of magnitude of the accuracy in parameters 

reconstruction.  

Since this analysis has availed only of the tangential component measured by 

magnetic field sensors, a possible extension of this work would be to involve the 

use of the 𝐵𝑛  component, since the new RFX-mod2 pick-up coils are bi-axial. 

Then, the time domain could be introduced, deepening what could happen when 

the passive conductors contributions are present, or rapid plasma displacements 

would occur. In these cases, one should focus on whether the rapid local variation 

of the magnetic field may lead to trivial reconstructions, or whether the number of 

sensors would remain adequate for real-time performances. 
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A. Characteristic angle of faulty sensors 

The following procedure is meant to compute a direction towards which could be 

attributed the failure of the RFX-mod2 poloidal field sensors. Since the plasma 

does not display a prefect symmetry with respect to the machine centre, a suitable 

model is necessary to assess its displacement inside the vacuum chamber. 

Evidence has shown that plasma parameters reconstruction, in the case of the loss 

of one or more sensors, finely depends on the positions that are not covered by 

magnetic measurements. A critical parameter that affects plasma parameters 

reconstruction in sensors failure conditions is the position of the FRIDA centroid 

reference, meaning that sensors in its direction have a higher impact if a failure 

would occur. Thus, a proper weighting metric has to be set up to account this fact. 

A.1 Procedure sequence 

Knowing the position of the reference centroid (from FRIDA code) and the 

machine centre (MC), an ellipse can be build considering these two points as its 

foci, being 𝑐 the distance between these two ones. 

Being 𝑐 the focal distance and considering its length scale, the minor axis 𝑏 is 

chosen properly and kept fixed at 4 𝑐𝑚 . With this strategy, if an equilibrium 

presents a limit case of a centroid coinciding with the machine centre, the ellipse 

reduces to a circumference of radius 𝑏. 

 

   

Fig. A.1: Ellipse model with highlighted foci 
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In the figures of this Appendix section is presented an example for the Shot n. 

39122 equilibrium, with calculated centroid: (𝑟𝑐 = 2.055, 𝑧𝑐 = −0.04)  and the 

failed sensors are: 2, 3, 7, 8, 12 from the Tab 4.3 numeration. 

This set has been chosen to highlight the grouping method that will be presented 

further on. 

The 14 poloidal field sensors of RFX-mod2, are located on a circumference 

centred on the machine centre, thus the points individuated by the interception of 

the perimeter of the ellipse and the straight line that connect each sensor with the 

machine centre can be easily calculated. 

 

 

Fig. A.2 Crossing points of the MC-Sensors directions with the ellipse perimeter 

 

The distance between each one of these points and the MC will play a key role in 

the determination of the characteristic angle, and it is clear that sensor that are 

located on the opposite side of the ellipse with respect to the MC will provide 

more weight in the final computation (since they have a longer distance towards 

the MC). 

At this point, the set of faulty sensors is introduced. The scheme that lead to the 

characteristic angle starts with the arrangement of the sensors in groups of 

“nearby” sensors. If there are sensors that are, at most, three-steps consecutive, 

they are part of one group. This is done to emphasize the effect of losing sensors 
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that are close to each other, meanwhile the effect of distant failed sensors 

compensate in a certain way. 

 

Fig. A.3: Perimeter points corresponding to the off-sensors (2,3,7,8,12) 

Done this, the physical barycentre of those perimeter points of each group is 

found. 

 

Fig. A.4: Group barycentres {2,3}, {7,8} are signed with ‘+’ 
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The distances between group barycentres and isolated points with respect to the 

MC are then computed, minding that, to emphasize the effect of sensors failures 

in close positions, distances towards barycentres are multiplied by the number of 

sensors of their relative group. 

 

 

 

Fig. A.5: Distances of the calculated points with respect to the MC 

 

 

Longest distance is taken, and, on its direction, all the other distances are 

projected. If the sum of all the projections is smaller than the longer distance, 

than, according to the reference system of Fig 6.1, the characteristic angle is the 

angle corresponding to the direction of longer distance itself, otherwise an 

addition of ±𝜋 is provided, depending on the quadrant. 
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Fig. A.6: Marked with the star is the direction which corresponds the 

characteristic angle 

 

 

 (a) 

(b) 

Fig. A.7 (a) Sensors turned off in the ellipse example with relative calculate centroid with 

the moments method, (b) angle of the calculated centroid with respect to the FRIDA 

reference 
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A.2 Code Listing (MATLAB) 

A.2.1 Ellipse function 

Inputs: 

- rc, zc: FRIDA calculated centroid coordinates 

- thc: FRIDA calculated centroid angle 휃𝑐 with respect to the MC 

- ths: Sensor’s angles 휃𝑠,𝑛, 𝑛 = 1,… ,14 

Output 

- ELL: Data structures with 𝑟, 𝑧 coordinates of ellipse, 휃𝑒of perimeter points 

with respect to the MC and coordinates 𝑟, 𝑧 of perimeter points in the 

direction MC-sensors 
 

function [ELL] = fun_weightEll(rc, zc, thc, ths) 
    % Build an ellipse with foci: Machine Centre MC and FRIDA 

Centroid 
    % maintain constant b = 4 cm 

  
    % FIND ELLIPSE 
    xc = (rc+1.995)/2; 
    yc = (zc)/2; 

  
    c = norm([abs(rc-1.995) abs(zc)]); 
    b = .04; 
    a = sqrt(c^2+b^2); 
    t = linspace(0, 2 * pi, 200);        % Absolute angle 

parameter 
    X = a * cos(t); 
    Y = b * sin(t); 
    r = xc + X * cos(thc) - Y * sin(thc); 
    z = yc + X * sin(thc) + Y * cos(thc); 

     
    % VALUES ON SENSOR DIRECTION 
       % Compute angle between perimeter and machine centre 
    for i = 1:length(r) 
        th(i) = fun_RefCM([r(i) z(i)], [1.995 0]); 
    end 

     
    rs = zeros(1,14); 
    zs = zeros(1,14); 
    % Compare th with sensor angle and search for 0 crossing 

minumum difference 
    for k = 1:length(ths) 
        tmp = abs(th-ths(k)); 
        mmp = min(abs(th-ths(k))); 
        l = find(tmp==mmp); 
        rs(k) = r(l); 
        zs(k) = z(l); 
    end 

     
    ELL.R = r; 
    ELL.Z = z; 
    ELL.rs = rs; 
    ELL.zs = zs; 
    ELL.th = th; 
end 
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A.2.2 Characteristic angle function 

Inputs: 

- ind_sens: Row vector of broken sensors’ indices 

- ELL: Data structure as defined in A.2.1 

- ths: Sensor’s angles 휃𝑠,𝑛, 𝑛 = 1,… ,14 

Output 

- the: Characteristic angle of broken sensors 

 

function [the] = fun_thetaEquiv(ind_sens, ELL, ths) 

  

% Group sensors that are closer than 3 units so to calculate 

centroid of 

% ellipse points in their directions 

  

  

c = nchoosek(ind_sens, 2); 

diff = abs(c(:,1)-c(:,2)); 

% Must account for the closeness of sensors 1 and 14 

% if sensor's difference is greater than 11, then we are in that 

range 

k_11 = diff >= 11; 

diff(find(k_11)) = 14 - diff(find(k_11)); 

  

k_3 = diff <= 3; 

c_3 = c(find(k_3),:); 

ind_groups = 0; 

groups = {}; 

  

e_3 = unique(sort(c_3))'; 

if isempty(e_3) == 0 

    ind_groups = 1; 

    g = []; 

    g = [g; e_3(1)]; 

    groups{ind_groups} = g; 

    for i = 1:length(e_3)-1 

        if e_3(i+1)-e_3(i) <= 3 

            g = [g; e_3(i+1)]; 

            groups{ind_groups} = g; 

        else 

            g = []; 

            g = [g; e_3(i+1)]; 

            ind_groups = ind_groups + 1; 

            groups{ind_groups} = g; 

        end 

    end 

     

    % reconnect groups carrying 1-14 

gg = []; 

for i=1:length(groups) 

    gg = [gg; groups{i}]; 

end 

mm = min(gg); 

MM = max(gg); 

if ((mm <= 3) && (MM > 11)) 

    if 14-(MM-mm)<=3 

        for i=1:length(groups) 
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            if any(ismember(groups{i}, mm)) 

                rec_m = i; 

            end 

            if any(ismember(groups{i}, MM)) 

                rec_M = i; 

            end 

        end 

        if rec_m ~= rec_M 

            groups{rec_m} = [groups{rec_m}; groups{rec_M}]; % 

reconnect close sensors of different indices 

            groups(rec_M) = []; 

        end 

    end 

end 

  

% Find  groups centroid 

ng = length(groups); 

bg = zeros(ng,3); 

thd_all = []; 

for i = 1:ng 

    bg(i,1) = sum(ELL.rs(groups{i}))/length(groups{i}); 

    bg(i,2) = sum(ELL.zs(groups{i}))/length(groups{i});    

    bg(i,3) = fun_RefCM([bg(i,1) bg(i,2)], [1.995 0]); 

     

    % multilply by number of sensor in group to enhance their 

contribute 

    thd_all(i,1) = norm([abs(bg(i,1)-1.995) 

abs(bg(i,2))])*length(groups{i}); 

    thd_all(i,2) = bg(i,3); 

    thd_all(i,3) = i; 

         

end 

end 

  

ng = length(groups); 

  

% Now consider isolated sensors and the centroids of found groups 

% These are placed for sure at an angular distance >75° (3 

sensors) 

  

ce = unique(sort(c));   % isolated sensors 

e_n3 = []; 

for i=1:length(ce) 

    if isempty(e_3) == 1  

        if isempty(ismember(e_3, ce(i))) 

            e_n3 = [e_n3 ce(i)]; 

        end         

    else 

        if ismember(e_3, ce(i)) == 0 

            e_n3 = [e_n3 ce(i)]; 

        end 

    end 

end 

th_iso = ths(e_n3); 

  

for i=1:length(e_n3) 

   thd_all(ng+i,1) = norm([abs(ELL.rs(e_n3(i))-1.995) 

abs(ELL.zs(e_n3(i)))]); 

   thd_all(ng+i,2) = th_iso(i); 

   thd_all(ng+i,3) = e_n3(i); 

end 
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% Along these angular directions compute the CM->Ellipse distance 

and evaluate 

% the major one 

  

majdir = max(thd_all(:,1)); 

i_maj = find(thd_all(:,1)==majdir); 

  

% Consider the direction correspondent to the major distance, so  

% calculate the sum of the projections of the other distances 

along this 

% direction 

  

eq_dir = thd_all(i_maj,2); 

% if i_maj>ng 

%    i_maj = thd_all(i_maj,3);  

% end 

other_dir = thd_all(find(thd_all(:,1)~=majdir),2); 

proj_dist = zeros(length(other_dir),1); 

  

% Calcolate projections on main direction 

for i = 1:length(other_dir) 

    if eq_dir < pi/2 

        if (abs(other_dir(i)-eq_dir) < pi/2 && other_dir(i)<pi) || 

(other_dir(i)>=eq_dir+3*pi/2) 

            if other_dir(i)>=eq_dir+3*pi/2 

                proj_dist(i) = thd_all(i,1)*cos(abs(eq_dir+(2*pi-

other_dir(i)))); 

            else 

                proj_dist(i) = thd_all(i,1)*cos(abs(eq_dir-

other_dir(i))); 

            end 

        else 

            proj_dist(i) = -thd_all(i,1)*cos(abs(eq_dir+pi-

other_dir(i))); 

        end 

    elseif eq_dir >= pi/2 && eq_dir < pi 

        if abs(other_dir(i)-eq_dir) < pi/2 

            proj_dist(i) = thd_all(i,1)*cos(abs(eq_dir-

other_dir(i))); 

        else 

            if other_dir(i)>=eq_dir+pi/2 

                proj_dist(i) = -thd_all(i,1)*cos(abs(eq_dir+pi-

other_dir(i))); 

            else 

                proj_dist(i) = -thd_all(i,1)*cos(abs(pi-

eq_dir+other_dir(i))); 

            end 

        end 

    elseif eq_dir >= pi && eq_dir <= 3*pi/2 

        if abs(other_dir(i)-eq_dir) < pi/2 

            proj_dist(i) = thd_all(i,1)*cos(abs(eq_dir-

other_dir(i))); 

        else 

            if other_dir(i)>=eq_dir+pi/2 

                proj_dist(i) = -thd_all(i,1)*cos(abs(eq_dir-

pi+(2*pi-other_dir(i)))); 

            else 

                proj_dist(i) = -thd_all(i,1)*cos(abs(eq_dir-pi-

other_dir(i))); 

            end 



Appendix 

80 
 

        end 

    elseif eq_dir >= 3*pi/2 && eq_dir < 2*pi 

        if (abs(other_dir(i)-eq_dir) < pi/2 && other_dir(i)>pi) || 

(other_dir(i)<=eq_dir-3*pi/2) 

            if other_dir(i)<=eq_dir-3*pi/2 

                proj_dist(i) = thd_all(i,1)*cos(abs(2*pi-

eq_dir+other_dir(i))); 

            else 

                proj_dist(i) = thd_all(i,1)*cos(abs(eq_dir-

other_dir(i))); 

            end 

        else 

            proj_dist(i) = -thd_all(i,1)*cos(abs(eq_dir-pi-

other_dir(i))); 

        end 

    end 

end 

  

sum_proj = sum(proj_dist); 

  

% compare this sum with the major distance calculated before and 

depending 

% on the result chose properly in which direction consider the 

characteristic 

% angle 

  

if abs(sum_proj)>majdir % assume that, if equals, characteristic 

angle is the 

% one of major distance 

    if eq_dir>=0 && eq_dir<pi 

        the = eq_dir+pi; 

    else 

        the = eq_dir-pi; 

    end 

else 

    the = eq_dir; 

end 

  

 

end 
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B Plasma Parameters reconstruction results 

B.1 Angular dependent results 

Shot 39122 

  
Fig. B.1a: Shot 39122 – 2 sensors off Fig B.1b: Shot 39122 – 2 sensors 

OFF (polar plot): Centroid distance 

from reference 

  
Fig. B.1c: Shot 39122 – 5 sensors off Fig B.1d: Shot 39122 – 5 sensors 

OFF (polar plot): Centroid distance 

from reference 

  
Fig. B.1e: Shot 39122 – 9 sensors off Fig B.1f: Shot 39122 – 9 sensors OFF 

(polar plot): Centroid distance from 

reference 
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Shot 36922 

  
Fig. B.2a: Shot 36922 – 2 sensos off Fig B.2b: Shot 36922 – 2 sensors off 

(polar plot): Centroid distance from 

reference 

  
Fig. B.2c: Shot 36922 – 5 sensors off Fig B.2d: Shot 36922 – 5 sensors 

OFF (polar plot): Centroid distance 

from reference 

 
 

Fig. B.2e: Shot 36922 – 9 sensors off Fig B.2f: Shot 36922 – 9 sensors OFF 

(polar plot): Centroid distance from 

reference 
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Shot 37829 

  
Fig. B.3a: Shot 37829 – 2 sensors off Fig B.3b: Shot 37829 – 2 sensors off 

(polar plot)_ Centroid distance from 

reference 

 

 
Fig. B.3c: Shot 37829 – 5 sensors off Fig B.3d: Shot 37829 – 5 sensors OFF 

(polar plot): Centroid distance from 

reference 

 

 
Fig. B.3e: Shot 37829 – 9 sensors off Fig B.3f: Shot 37829 – 9 sensors OFF 

(polar plot): Centroid distance from 

reference 
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Shot DEMO-like 𝛿𝐿 

  
Fig. B.4a: Shot 𝛿𝐿  – 2 sensors off Fig B.4b: Shot 𝛿𝐿  – 2 sensors off 

(polar plot): Centroid distance from 

reference 

 
 

Fig. B.4c: Shot 𝛿𝐿 – 5 sensors off Fig B.4d: Shot 𝛿𝐿  – 5 sensors off 

(polar plot): Centroid distance from 

reference 

 

 
Fig. B.4e: Shot 𝛿𝐿  – 9 sensors off Fig B.4f: Shot 𝛿𝐿  – 9 sensors OFF 

(polar plot): Centroid distance from 

reference 
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Shot 𝑁𝑇𝐿 

 
 

Fig. B.5a: Shot 𝑁𝑇𝐿  – 2 sensors off Fig B.5b: Shot 𝑁𝑇𝐿  – 2 sensors off 

(polar plot): Centroid distance from 

reference 

 

 
Fig. B.5c: Shot 𝑁𝑇𝐿 – 5 sensors off Fig B.5d: Shot 𝑁𝑇𝐿  – 5 sensors off 

(polar plot): Centroid distance from 

reference 

 
 

Fig. B.5e: Shot 𝑁𝑇𝐿  – 9 sensors off Fig B.5f: Shot 𝑁𝑇𝐿  – 9 sensors off 

(polar plot): Centroid distance from 

reference 
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B.2 Configuration’s overview 

Shot 39122 

 

Fig. B.6a: Shot 39122: 𝚫Centroid (range plot vs. n. of faulty sensors) 

 

Fig. B.6b: Shot 39122: 𝑰𝒑 error (range plot vs. n. of faulty sensors) 
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Shot 36922 

 

Fig. B.7a: Shot 36922: 𝚫Centroid (range plot vs. n. of faulty sensors) 

 

Fig. B.7b: Shot 36922: 𝑰𝒑 error (range plot vs. n. of faulty sensors) 
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Shot 37829 

 

Fig. B.8a: Shot 37829: 𝚫Centroid (range plot vs. n. of faulty sensors) 

 

Fig. B.8b: Shot 37829: 𝑰𝒑 error (range plot vs. n. of faulty sensors) 
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Shot DEMO-like 𝛿𝐿 

 

Fig. B.9a: Shot 𝛿𝐿: 𝚫Centroid (range plot vs. n. of faulty sensors) 

 

 

Fig. B.9b: Shot 𝛿𝐿: 𝑰𝒑 error (range plot vs. n. of faulty sensors) 
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Shot 𝑁𝑇𝐿 

 

Fig. B.10a: Shot 𝑁𝑇𝐿: 𝚫Centroid (range plot vs. n. of faulty sensors) 

 

 

Fig. B.10b: Shot 𝑁𝑇𝐿: 𝑰𝒑 error (range plot vs. n. of faulty sensors) 
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Shot 39122 

 

 

 

 

 

Fig. B.11: Shot 39122: Box-plot 
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Shot 36922 

 

 

 

 

 

Fig. B.12: Shot 36922: Box-plot 

  



Appendix 

93 
 

Shot 37829 

 

 

 

 

 

Fig. B.13: Shot 37829: Box-plot 
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Shot DEMO-like 𝛿𝐿 

 

 

 

 

 

Fig. B.14: Shot 𝛿𝐿: Box-plot 
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Shot 𝑁𝑇𝐿 

 

 

 

 

 

Fig. B.15: Shot 𝑁𝑇𝐿: Box-plot 
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B.3 𝚫Centroid vs. 𝑰𝒑 error 

Shot 39122 

 

 

Fig. B.16a: Shot 39122 – 1 sensor off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.16b: Shot 39122 – 3 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 

  

  
Fig. B.16c: Shot 39122 – 5 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.16d: Shot 39122 – 7 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 

  

  
Fig. B.16e: Shot 39122 – 9 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.16f: Shot 39122 – 11 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 



Appendix 

97 
 

Shot 36922 

 

 

Fig. B.17a: Shot 36922 – 1 sensor off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.17b: Shot 36922– 3 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 

  

  
Fig. B.17c: Shot 36922 – 5 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.17d: Shot 36922– 7 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 

  

  
Fig. B.17e: Shot 36922 – 9 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.17f: Shot 36922  – 11 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
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Shot 37829 

 

 

Fig. B.18a: Shot 37829 – 1 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.18b: Shot 37829 – 3 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 

  

  
Fig. B.18c: Shot 37829 – 5 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.18d: Shot 37829 – 7 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 

  

  
Fig. B.18e: Shot 37829 – 9 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.18f: Shot 37829 – 11 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
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Shot DEMO-like 𝛿𝐿 

 

 
Fig. B.19a: Shot 𝛿𝐿– 1 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.19: Shot 𝛿𝐿  – 3 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 

  
Fig. B.19c: Shot 𝛿𝐿  – 4 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.19d: Shot 𝛿𝐿  – 5 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 

  
Fig. B.19e: Shot 𝛿𝐿  – 10 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.19f: Shot 𝛿𝐿  – 12 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
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Shot 𝑁𝑇𝐿 

  
Fig. B.20a: Shot 𝑁𝑇𝐿  – 1 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.20b: Shot 𝑁𝑇𝐿  – 3 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 

  

  
Fig. B.20c: Shot 𝑁𝑇𝐿  – 5 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.20d: Shot 𝑁𝑇𝐿  – 7 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 

  

  
Fig. B.20e: Shot 𝑁𝑇𝐿  – 9 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
Fig B.20fb: Shot 𝑁𝑇𝐿  – 11 sensors off: 

Δ𝐶 𝑣𝑠 𝑖𝑝% 
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B.4 Noise Analysis 

 

 

Shot 39122 (1 sensor off) 

 

 
Fig. B.21a: Shot 39122, 1 sensor off, best case, noise analysis 

 

 
Fig. B.21b: Shot 39122, 1 sensor off, worst case, noise analysis 
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Shot 39122 (7 sensors off) 

 

 
Fig. B.22a: Shot 39122, 7 sensors off, best case, noise analysis 

 

 

 
Fig. B.22b: Shot 39122, 7 sensors off, worst case, noise analysis 
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Shot 36922 (1 sensor off) 

 

 
Fig. B.23a: Shot 36922, 1 sensor off, best case, noise analysis 

 

 

 
Fig. B.23b: Shot 36922, 1 sensor off, worst case, noise analysis 
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Shot 36922 (7 sensors off) 

 

 
Fig. B.24a: Shot 36922, 7 sensors off, best case, noise analysis 

 

 

 
Fig. B.24b: Shot 36922, 7 sensors off, worst case, noise analysis 
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Shot 37829 (1 sensor off) 

 

 
Fig. B.25a: Shot 37829, 1 sensor off, best case, noise analysis 

 

 

 
Fig. B.25b: Shot 37829, 1 sensor off, worst case, noise analysis 
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Shot 37829 (7 sensors off) 

 

 
Fig. B.26a: Shot 37829, 7 sensors off, best case, noise analysis 

 

 

 
Fig. B.26b: Shot 37829, 7 sensors off, worst case, noise analysis 
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Shot DEMO-like 𝛿𝐿 (1 sensor off) 

 

 
Fig. B.27a: Shot 𝛿𝐿, 1 sensor off, best case, noise analysis 

 

 

 
Fig. B.27b: Shot 𝛿𝐿, 1 sensor off, worst case, noise analysis 
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Shot DEMO-like 𝛿𝐿 (7 sensor off) 

 

 
Fig. B.28a: Shot 𝛿𝐿, 7 sensors off, best case, noise analysis 

 

 

 
Fig. B.28b: Shot 𝛿𝐿, 7 sensors off, worst case, noise analysis 
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Shot 𝑁𝑇𝐿 (1 sensor off) 

 

 
Fig. B.29a: Shot 𝑁𝑇𝐿, 1 snsor off, best case, noise analysis 

 

 

 
Fig. B.29b: Shot 𝑁𝑇𝐿, 1 sensor off, worst case, noise analysis 
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Shot 𝑁𝑇𝐿 (7 sensors off) 

 

 
Fig. B.30a: Shot 𝑁𝑇𝐿, 7 sensors off, best case, noise analysis 

 

 

 
Fig. B.30b: Shot 𝑁𝑇𝐿, 7 sensors off, worst case, noise analysis 
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