

UNIVERSITÀ DEGLI STUDI DI PADOVA

Department of Civil, Environmental and Architectural Engineering

Master’s degree in Mathematical Engineering

MASTER THESIS

Order-Flow toxicity and microstructure
of crypto order books

Supervisor:

Prof. Grasselli Martino

Co-Supervisor:

Prof. Busca Jerome

Candidate: Alessio Cianini 2058085

ANNO ACCADEMICO 2022-2023

Alessio Cianini N:# 2058085

Abstract

The main goal of this thesis is to dive deep into how the order book for Bitcoin

actually works. We want to understand how the market behaves under pressure and

gain valuable insights into its dynamics.

To achieve this, we’ll be using a measure called the VPIN indicator [9], which

will help us to figure out how toxic the order flow is.

In this context, toxicity refers to the potential adverse selection and information

asymmetry, which can be indicative of trading strategies that capitalize on delayed

public information.

This indicator will give us a glimpse into how market participants react and adapt

when there is an imbalance between the volume of buy and sell orders.

We’ll also explore different models to see which ones can accurately capture the

complexities of the Bitcoin market. These models will take into account factors like

liquidity, price impact, and market depth. By comparing these models, we hope to

improve our understanding of how the Bitcoin market really works.

In addition to analyzing the order book and its statistical properties [4], we’ll be

studying real trades to get a complete picture of what’s happening in the market.

We’ll use the self-exiting Hawkes process [16] to model the trade data, which allows

us to observe patterns and clusters of activity over time. This analysis will give us

valuable insights into how trades are connected and influence each other.

The primary objective of this thesis is to predict Bitcoin’s price returns.

Initially, we employed an ordinary least squares (OLS[19]) model as a foundational

2

Alessio Cianini N:# 2058085

baseline and then we implemented a Neural Network [27] to see if using a more

advanced model we could get better results.

3

Alessio Cianini N:# 2058085

Acknowledgements

I extend my deep gratitude to Prof. M. Grasselli and Prof. Jerome Busca for their

guidance and enduring support throughout my thesis. Their valuable insights have greatly

contributed to my academic growth.

To my family’s unwavering moral support which has been my constant source of

strength. I am endlessly thankful for their encouragement and the confidence they have

placed in me.

Special thanks to my grandparents, who have been an incredible source of inspiration

and encouragement. Their support has been one of my greatest motivators.

To my brother, I offer my heartfelt thanks for being such a solid presence in my life.

His kindness and encouragement have been invaluable.

I would also like to express my appreciation to my closest friends — Allegra B.,

Alberto M., Stefano M., and Tommaso P. — for their companionship and support during

my studies. Their presence has been a cherished part of my journey.

And finally, I am grateful to all my other friends who have been part of my life’s

journey during these years.

4

Alessio Cianini N:# 2058085

Contents

1 Introduction 8

2 Reconstruction of Order Book and Trades 13

2.1 Order book and Trades . 14

2.1.1 Order Book . 14

2.1.2 Trades . 15

2.1.3 Binance Data . 17

2.2 Implemention for the riconstruction of the order book with C++ 23

2.2.1 C++ choice and multithreading 23

2.2.2 Thread Safe Queue . 25

2.3 Bouchaud-Mezard-Potters analysis . 29

3 Hawkes Process 32

3.1 Counting Process . 32

3.1.1 Poisson Process . 33

3.1.2 Non-homogeneous Poisson Process 34

3.1.3 Self-Exciting process . 34

3.1.3.1 Self-exciting definition . 34

3.2 Simulation of Hawkes Process with C++ and Python 36

3.3 Expectation Maximization algorithm for Hawkes Process 40

5

Alessio Cianini N:# 2058085

3.3.1 Mathematical Approach . 40

3.3.2 Estimation Results . 46

3.3.3 Estimation with real trades timestamps 47

3.3.3.1 Estimation of the paramters 47

3.4 Volume analysis . 49

4 VPin 49

4.1 What is Pin . 49

4.1.1 Formula with MLE Approach . 49

4.2 What is Vpin . 50

4.3 Introduction . 50

4.4 Low-Frequency Estimation . 52

4.5 High-Frequency Estimation . 53

4.6 Results of VPIN . 53

5 Introduction to Machine Learning 55

5.1 Supervised Learning . 55

5.2 Unsupervised Learning . 56

5.3 Our Focus . 56

5.3.1 Linear Regression . 56

5.3.2 Logistic Regression . 57

5.3.3 Ordinary Least Square . 59

6

Alessio Cianini N:# 2058085

5.4 Linear Model . 60

6 Neural Networks 65

6.1 What is a Neural Network . 65

6.2 Architecture of a NN . 65

6.2.1 Forward Propagation . 67

6.2.2 Common Loss Functions . 68

6.2.3 Activation Function . 69

6.2.4 Backword Propagation . 70

6.2.4.1 Weight Update . 74

7 Backtests 75

7.0.1 General Metrics . 80

7.1 OLS Result . 81

7.1.1 OLS metrics and parameters . 82

7.2 NN Result . 83

7.2.1 Neural Network metrics . 84

7.2.2 Architecture of the Neural Network 85

7.2.2.1 Analysis of the Neural Network Weights and Structure . 88

7.3 Comparative Analysis of Neural Network and OLS Metrics 90

8 Conclusion 92

7

Alessio Cianini N:# 2058085

1 Introduction

The primary aim of this Master’s thesis is to predict specific market behaviors, particularly

drastic changes in prices, and leverage this knowledge for potential benefit.

This prediction of market behaviors will be based on various mathematical models

designed to quantify the current state of the market with respect to factors such as order

flow toxicity (which is the combination of the risk of adverse selection and information

asymmetry that exploit delayed public information), frequency of orders in the market,

and market depth.

For addressing order flow toxicity, we employ an indicator named VPIN (The Volume

Synchronized Probability of Informed Trading) [9]. VPIN serves the purpose of calculating

the imbalance between buy and sell orders. It has been proved to be effective in predicting

price crashes in the stock market. This research seeks to examine if similar results can

be obtained for cryptocurrencies. The efficacy of the VPIN indicator is illustrated by the

2010 crash for the E-mini S&P, as depicted in Figure 1:

8

Alessio Cianini N:# 2058085

Figure 1: The VPIN indicator during the 2010 Flash Crash for the E-mini S&P

https://en.wikipedia.org/w/index.php?title=File%3AFlash_Crash.jpg

Concerning the mathematical model, we aim to validate certain statistical properties

of the order book [4] within the cryptocurrency market. Additionally, trades will be

modeled using a Hawkes process [11], a popular self-exciting process often employed for

understanding the order flow of trades.

The conclusions of this research will be split into two parts. Initially, we will evaluate

the accuracy of the VPIN and Hawkes intensity indicators in isolation. Subsequently, we

will introduce an additional parameter known as the market depth ratio.

The limit order book comprises a list of buy and sell orders for different prices, with

the quantity at each price level forming the volume for that level.

To be more precise in the order book, buy orders are listed on the ”bid” side, while sell

orders are listed on the ”ask” side. Each order includes the price at which the buyer or

seller is willing to transact and the quantity of the asset they want to buy or sell. The

9

Alessio Cianini N:# 2058085

orders are typically arranged in ascending order on the bid side, with the highest bid price

at the top, and in descending order on the ask side, with the lowest ask price at the top.

This concept is exemplified in the following figure:

Figure 2: Order book ask and bid orders for BTC in 2016

https://monzo.com/blog/2016/01/08/how-does-the-wholesale-foreign-exchange-market-work

10

Alessio Cianini N:# 2058085

The green and red areas in the upper part of the figure represent the aggregated

volumes for each price leve for BTC in January 2016. Our research will employ an

indicator that calculates the ratio of these volumes at each time instance, t0, under

analysis.

If we want to visualize it more linearly this is another image that can help understand

how orders are inserted in the market:

Figure 3: Order book vertical

https://www.ifcmarkets.com/en-CA/about-forex/order-book

11

Alessio Cianini N:# 2058085

After analyzing the market variables, we’ll employ the Ordinary Least Squares (OLS[19])

model.

As baseline we aim to use OLS to fit our data and develop a model that can forecast price

returns.

However, our main interest is in using a Neural Network[27] for predictions.

12

Alessio Cianini N:# 2058085

2 Reconstruction of Order Book and Trades

In my research, I obtain the necessary data by utilizing the Binance API[7], which allows

me to download historical tick-by-tick order book events and trade records. This data

plays a critical role in conducting microstructural analysis, calculating the VPIN indicator

[9], exploring various models, and modeling trades using the Hawkes process [11].

By accessing this data, I gain valuable insights into the dynamics of the market. It

should enable to make informed trading decisions and understand how market participants

react and adapt to different situations.

The historical order book events and trade records obtained through the Binance API

provide a comprehensive view of market activity, which is crucial for conducting detailed

analyses and drawing meaningful conclusions.

Having access to this data is instrumental in understanding the microstructure of the

Bitcoin market and contributes to a more comprehensive understanding of its underlying

dynamics. It allows for robust analysis and helps uncover patterns, trends, and correla-

tions that are essential for making informed decisions in trading and gaining insights into

the market’s behavior.

13

Alessio Cianini N:# 2058085

2.1 Order book and Trades

2.1.1 Order Book

The order book[15] is a fundamental component of financial markets, including the Bitcoin

market. It serves as a centralized record of all buy and sell orders for a specific asset or

security, such as Bitcoin, and is organized based on price and time.

Figure 4: Vertical representation of the Order Book for list of offers in sell and buy in
descending price order

https://guides.cryptowat.ch/trader-education/order-books-and-market-depth-charts-explained

14

Alessio Cianini N:# 2058085

The order book provides traders with valuable insights into the supply and demand

dynamics of the market in real-time. By examining the order book, traders can see the

current best bid and ask prices, which represent the highest price a buyer is willing to

pay and the lowest price a seller is willing to accept, respectively. These prices are often

referred to as the ”top of the book”[15].

Overall, the order book provides traders with real-time visibility into the supply and

demand for a specific asset, enabling them to make informed trading decisions based on

current market conditions. Understanding the order book is essential for navigating the

complexities of financial markets and capitalizing on trading opportunities.

2.1.2 Trades

[29] When the bids and asks order get filled it represents the actual buying and selling of

assets at specific prices. When a trade occurs, it reflects the convergence of a buyer and

a seller agreeing on a transaction.

Each trade is recorded in the order book, which serves as a central record of all buy

and sell orders. When a trade takes place, it results in a change to the order book.

Specifically, the buyer’s order is filled, meaning they obtain the desired quantity of the

asset at the agreed-upon price, and the corresponding sell order from the seller is removed

from the order book.

The occurrence of trades provides valuable insights into the real-time supply and

demand dynamics of the market. By analyzing the trades, traders can observe the actual

15

Alessio Cianini N:# 2058085

prices at which transactions are happening and the corresponding volumes being traded.

This information helps them assess market liquidity and understand the current market

sentiment.

Trades are essential for market participants to execute their strategies and manage

their positions. Traders may enter trades to take advantage of price movements, hedge

against risks, or seek profitable opportunities. The ability to monitor and analyze trade

data allows traders to make informed decisions based on actual market activity.

In addition to their immediate impact on the order book, trades can also have ripple

effects on market dynamics. For example, large trades can result in price movements,

as they indicate significant buying or selling pressure. These price movements may, in

turn, influence the behavior of other market participants, creating a chain reaction of

additional trades and potential market trends.

Understanding the patterns and characteristics of trades is crucial for traders and

researchers alike. By studying trade data, one can identify trends, detect market anoma-

lies, and develop trading strategies based on historical trade patterns. Moreover, trade

data is often utilized in quantitative analysis and modeling, such as the application of the

Hawkes process[11] mentioned earlier, to capture interdependencies and clustering effects

within the market.

In summary, trades represent the actual buying and selling of assets at specific prices.

They are recorded in the order book and reflect the real-time supply and demand dynamics

of the market. Analyzing trade data provides insights into market activity, helps traders

16

Alessio Cianini N:# 2058085

make informed decisions, and contributes to a deeper understanding of market behavior

and dynamics.

2.1.3 Binance Data

As mentioned earlier, the Binance API[7] allows us to download historical tick-by-tick

data, which is essential for our analysis of the order book and trades. This data provides

us with the ability to reconstruct the order book at any specific moment and examine the

trades that occurred throughout the day.

The data we obtain from the Binance API is typically presented in CSV (Comma-

Separated Values) format, which is easy to work with and analyze. For the order book

data, each event in the data records a specific quantity at a particular price level. This

means that we can see the individual orders placed at different price levels, rather than

just the changes in the order book from the previous state. This level of detail helps us

to understand the supply and demand dynamics at various price levels.

We can see in order:

• Symbol - For example: ’BTCUSDT’, ’BTCUSD 200925’.

• Time - Transaction time in timestamp.

• First update id

• Last update id

• Side

17

Alessio Cianini N:# 2058085

– a = ask (Sell order)

– b = bid (Buy order)

• Update type

– snap = for order book snapshot only

– set = set price level to the current qty (not delta)

– delta = qty change of the price level (delta)

• Price

• Qty

• Pu - Last update id of the previous row, which helps examine completeness. Only

applicable to COIN-M Futures depth update.

18

Alessio Cianini N:# 2058085

On the other hand when it comes to trades, the data shows us the total quantity

traded at each price level. This information gives us insights into the trading activity

that took place at different price points, showing the levels of buying and selling interest

in the market.

19

Alessio Cianini N:# 2058085

20

Alessio Cianini N:# 2058085

We can see in order:

• Id - Trade ID

• Qty - Quantity

• Base Qty - Base Quantity

• Price - Price

• Time - Time in Unix time format

• Is Buyer Maker - Was the buyer the maker

By utilizing the historical tick-by-tick data obtained through the Binance API, we

can reconstruct the order book at different points in time and analyze the trades that

occurred. This detailed data allows us to identify patterns, trends, and potential trading

opportunities.

The availability of this data in a format that captures both the order book events and

trade quantities enables us to conduct thorough analysis and modeling of market behavior.

We can apply various quantitative techniques and models to gain deeper insights into the

microstructure of the market and develop trading strategies based on historical patterns

and trends.

In summary, the Binance API provides us with historical tick-by-tick data in CSV

format, allowing us to reconstruct the order book and analyze trades. This data gives

us specific quantities at each price level for the order book events, and the total traded

21

Alessio Cianini N:# 2058085

quantities for each price level in the case of trades. By leveraging this data, we can gain

a comprehensive understanding of market dynamics and make informed decisions based

on historical market activity.

22

Alessio Cianini N:# 2058085

2.2 Implemention for the riconstruction of the order book with

C++

2.2.1 C++ choice and multithreading

Due to the substantial size of the data file for analysis, we opted to use C++ as the

programming language to handle the analysis efficiently. To enhance performance, a

multithreading approach was adopted, utilizing three distinct threads to streamline the

process.

The first thread was designed to read and store the order book data in queue1, a

data structure that allows for efficient data storage and retrieval. This thread specifically

focused on handling the order book information, ensuring its proper organization and

availability for further analysis.

Simultaneously, the second thread was responsible for reading and storing the trade

data in queue2. This thread dedicated its efforts to managing the trade data, maintaining

its integrity and accessibility throughout the analysis phase.

The third thread played a crucial role in the analysis process. Its primary responsibil-

ity was to examine the data from the top of each queue and determine which one had the

least timestamp. By comparing the timestamps, the thread could select the data with

the earlier occurrence, indicating the chronological order of events. Once the analysis was

completed, the corresponding data was removed from the respective queue to optimize

memory usage.

23

Alessio Cianini N:# 2058085

24

Alessio Cianini N:# 2058085

By implementing this multithreading approach, we aimed to improve the efficiency of

the analysis process, allowing for simultaneous handling of order book and trade data.

The division of tasks among the threads helped streamline the operations, enabling faster

data processing and reducing potential bottlenecks.

Overall, the utilization of C++ and multithreading techniques facilitated the effective

handling and analysis of the large data file. This approach ensured optimal utilization of

system resources, enabling efficient organization, comparison, and removal of data from

the queues.

2.2.2 Thread Safe Queue

During the implementation of the multithreading application, we encountered challenges

related to shared variables, particularly in the case where both threads accessed the same

queue simultaneously. This concurrent access could potentially lead to data inconsisten-

cies, race conditions, or other issues.

To address this challenge and ensure data integrity, we created a custom thread-safe queue

class. This class implements synchronization mechanisms to control access to the queue

and ensure that only one thread can access it at a time. By enforcing this synchroniza-

tion, we prevent concurrent modifications and maintain consistency in the queue’s state.

The thread-safe queue class employs techniques such as mutexes, locks, or other synchro-

nization primitives to manage access to the shared resource. When a thread wants to

access the queue, it first acquires a lock or mutex, ensuring exclusive access. Once the

25

Alessio Cianini N:# 2058085

thread completes its operation, it releases the lock, allowing other threads to access the

queue.

By utilizing this custom thread-safe queue class, we successfully mitigate the risks asso-

ciated with concurrent access to the shared queue. This approach guarantees that data

modifications are performed in a controlled manner, eliminating data inconsistencies and

ensuring the reliability of the multithreading application.

Handling shared variables and ensuring thread safety is crucial in multithreaded applica-

tions, especially when multiple threads are accessing the same resources. The creation of a

custom thread-safe queue class exemplifies our commitment to maintaining data integrity

and resolving challenges related to concurrent access in the multithreading implementa-

tion.

26

Alessio Cianini N:# 2058085

ThreadSafeQueue.cpp

1 #include "ThreadSafeQueue.h"

2 ThreadSafeQueue :: ThreadSafeQueue () {}

3 void ThreadSafeQueue ::push(std:: string item) {

4 std:: lock_guard <std::mutex > lock(m_mutex);

5 m_queue ->push(item);

6 }

7 void ThreadSafeQueue ::pop() {

8 std:: lock_guard <std::mutex > lock(m_mutex);

9 m_queue ->pop();

10 }

11 std:: string ThreadSafeQueue :: front() {

12 std:: lock_guard <std::mutex > lock(m_mutex);

13 std:: string item = m_queue ->front();

14 return item;

15 }

16 bool ThreadSafeQueue :: is_empty () {

17 std:: lock_guard <std::mutex > lock(m_mutex);

18 return m_queue ->empty ();

19 }

20 size_t ThreadSafeQueue ::size() {

21 std:: lock_guard <std::mutex > lock(m_mutex);

22 return m_queue ->size();

23 }

27

Alessio Cianini N:# 2058085

ThreadSafeQueue.h

1 #pragma once

2 #ifndef QUEUETHREAD_H

3 #define QUEUETHREAD_H

4 #include <queue >

5 #include <mutex >

6 #include <string >

7

8 class ThreadSafeQueue {

9 private:

10 std::queue <std::string >* m_queue = new

std::queue <std::string >;

11 std:: mutex m_mutex;

12

13 public:

14 ThreadSafeQueue ();

15 void push(std:: string item);

16 void pop();

17 std:: string front();

18 bool is_empty ();

19 size_t size();

20

21 };

22

23 #endif

28

Alessio Cianini N:# 2058085

2.3 Bouchaud-Mezard-Potters analysis

The first analysis that has been done is a check to see if the shape of the average order

book behave like stated in the paper ”Statistical properties of stock order books: empir-

ical results and models of Bouchaud-Mezard-Potters”[4].

In the paper is showed the average volume of the queue in the order book as a funcion of

the distance ∆ from the current bid or ask in a log-linear scale.

In order to achieve the same behaviour for each timestamp an average w.r.t. to the pre-

vious average order book shape has been calculated.

The following images will show the average size of the order book boh for bid and ask.

In [Figure 5] we have zoomed in an interval which is close to the mid price:

Figure 5: Zoom near the mid price to see the average volume for each price level.

29

Alessio Cianini N:# 2058085

In [Figure 6] we took all the level of the orderbook registered while constructing it:

Figure 6: Average volume with all the price levels displayed without zoom.

The result obtained show that the properties stated in the paper even for the cryp-

tocurrency market are satisfied:

From the paper we have that the function that gives the shape of the averaged order book

is given by:

ρst(∆) = e−∆

∫ ∆

0

duu−1−µsinh(u) + sinh(∆)

∫ ∞

0

duu−1−µe−u

And the properties are:

- for the price distance ∆ from the mid price if ∆ −→ 0 we have that the average volume

in the order book tends to 0

- whilst the average order book volume reflects the incoming flow of orders: ρst(∆) ∝

∆−1−µ.

30

Alessio Cianini N:# 2058085

In summary for [4], the form of the average order book is a manifestation of the interplay

between a power-law influx of limit orders with a limited duration and the price dynamics

that clear orders in proximity to the current market price.

31

Alessio Cianini N:# 2058085

3 Hawkes Process

Before introducing the Hawkes Process, it’s necessary to first discuss its foundational

concepts, namely the Counting Process, the Poisson Process, and the self-exciting process.

3.1 Counting Process

Definition: A point process is a sequence of non-negative random variables {Ti, i ∈ N}

such that for every i ∈ N, Ti < Ti+1.

Definition [17]: A stochastic process ([25], pg.53) {N(t), t > 0} is referred to as a

counting process if N(t) signifies the total number of events that occurred by time t. The

stochastic process is defined as:

N(t) =
∑

i∈N

I{Ti≤t}

where Ti is a point process.

32

Alessio Cianini N:# 2058085

Figure 7: Sample path realization of counting process

https:

//www.researchgate.net/figure/Sample-path-realization-of-counting-process_fig4_265081596

3.1.1 Poisson Process

Definition: The counting process {N(t), t ≥ 0} is termed a Poisson Process with rate

λ > 0 if the following properties are satisfied:

1. N(0) = 0

2. {N(t), t ≥ 0} has independent increments

3. P(N(t+ h)−N(t) ≥ 2) = o(h)

4. P(N(t+ h)−N(t) = 1) = λh+ o(h)

Here, o(h) is a part of the Landau Notation [30] for Big O and Little o.

Theorem ([22], pg.312) If {N(t), t > 0} is a Poisson Process with rate λ > 0, then

for all s > 0 and t > 0, N(s+ t)−N(s) is a Poisson random variable with mean λt.

33

Alessio Cianini N:# 2058085

3.1.2 Non-homogeneous Poisson Process

Definition: The counting process {N(t), t ≥ 0} is known as a non-homogeneous Poisson

Process with an intensity function λ(t), t > 0 if it satisfies:

1. N(0) = 0

2. {N(t), t ≥ 0} has independent increments

3. P(N(t+ h)−N(t) ≥ 2) = o(h)

4. P(N(t+ h)−N(t) = 1) = λ(t)h+ o(h)

In this case, the intensity function for a non-homogeneous Poisson Process is deterministic.

3.1.3 Self-Exciting process

3.1.3.1 Self-exciting definition

From [11], considering a point process that respects properties (3) ad (4) for a Poisson

Process we have that the process is self-exciting in the sense that :

Λ(t) = ν +

∫ t

−∞

g(t− u)dN(u),

As described in [11], this can be interpreted as a self-exciting shot process, where the

current intensity of events is influenced by past events. We assume that g(ν) ≥ 0 and

g(ν = 0) ν < 0.

34

Alessio Cianini N:# 2058085

If we assume sationarity then from the definition we express Λ:

λ = E[λ(t)] = ν +

∫ t

−∞

g(t− u)du,

or

λ =
ν

[

1−
∫∞

0
g(v)dv

] .

35

Alessio Cianini N:# 2058085

3.2 Simulation of Hawkes Process with C++ and Python

[18] proposed an algorithm for the simulation of Hawkes processes.

Let us denote by UNIF[0, 1] the uniform distribution on the interval [0, 1] and [0, T] the

time interval on which the process is to be simulated.

We assume here that P = 1.

1. Initialization: Set λ∗ ← λ0(0), n← 1.

2. First event: Generate U ∼ UNIF[0, 1] and set s← − 1
λ∗

lnU .

• If s ≤ T , then set T1 ← s.

• Else, go to the last step.

3. General routine: Set n← n+ 1.

(a) Update maximum intensity: Set λ∗ ← λ(Tn−1) + Y . λ∗ exhibits a jump

of size Y as an event has just occurred.

(b) New event: Generate U ∼ UNIF[0, 1] and set s← s− 1
λ∗

lnU .

• If s ≥ T , then go to the last step.

(c) Rejection test: Generate D ∼ UNIF[0, 1]. If D ≤ λ(s)
λ∗

, then set Tn ← s, and

go through the general routine again. Else, update λ∗ ← λ(s) and try a new

date at step (b) of the general routine.

4. Output: Retrieve the simulated process {Tn} on [0, T].

36

Alessio Cianini N:# 2058085

Intensity Function

1 double intensity(double t, const std::vector <double >&

arrivals)

2 {

3 double lambdaValue = mu;

4 for (double arrival : arrivals) {

5 lambdaValue += alpha * std::exp(-beta * (t - arrival));

6 }

7 return lambdaValue;

8 }

37

Alessio Cianini N:# 2058085

Simulation with [18] Method

1 std::vector <double > simulateHawkes\cite {6}(double T) {

2 std:: random_device rd;

3 std:: default_random_engine generator(rd());

4 std:: uniform_real_distribution <double >

uniformDistribution (0.0, 1.0);

5 std::vector <double > events;

6 double s = 0.0;

7 std::vector <double > arrivals;

8 int n = 0;

9 while (s < T)

10 {

11 n++;

12 double lambdaStar = intensity(s, arrivals);

13 double U = uniformDistribution(generator);

14 s -= (1 / lambdaStar) * std::log(U);

15 if (s >= T) {

16 break;

17 }

18 double D = uniformDistribution(generator);

19 double currentIntensity = intensity(s, arrivals);

20 if (D <= currentIntensity / lambdaStar)

21 {

22 events.push_back(s);

23 arrivals.push_back(s);

24 }

25 }

26 return events;

27 }

38

Alessio Cianini N:# 2058085

With the method described in [18] we can simulate the Hawkes Process using these

parameters for the intensity :

α = 0.1 β = 1.5 µ = 0.5

and in an interval from T = 0 to T = 25 will lead us to:

This Figure show the exponential decay observed between successive points.

39

Alessio Cianini N:# 2058085

3.3 Expectation Maximization algorithm for Hawkes Process

The Expectation Maximization (EM) algorithm is a cyclic process utilized for calculating

maximum likelihood approximations when perceived observations can be regarded as

incomplete data [5]. The algorithm works in two primary steps: the Expectation step

(E-step), and the Maximization step (M-step). During the E-step, latent variables are

assessed based on observed data and current parameter approximations. Then, during

the M-step, the likelihood function is optimized using the latent variables estimated in the

preceding E-step, this stage derives new approximations for the upcoming iteration. With

each cycle, the likelihood escalates, ensuring convergence [3]. [28] proposed applying the

EM algorithm to Hawkes processes, treating the unobservable branching structure under

the Poisson cluster representation as latent variables for parameter estimation. However,

the computational load of the EM algorithm can be significant, so various approximations

are often implemented to make estimation less resource-intensive.

3.3.1 Mathematical Approach

From [16] we consider a Hawkes Process with intesity:

λ(t) = µ(t) +
∑

t>ti

g(t− ti)

with exponential triggering kernel g(t) = αωe−ωt on the time interval [0, T] and the EM

algorithm proposed in [28] for the estimation of the parameters Θ = (µ, α, ω) from a point

sample {ti}
n
i=1 generated according to the intensity. The log-likelihood function is given

by

40

Alessio Cianini N:# 2058085

l(Θ) =

n
∑

i=1

log(λ(ti))−

∫ T

0

λ(t)dt (1)

where the integral approximation, µT + α
∑n

i=1(1 − e−ω(T−ti)) ≈ µT + αn, can be

used when ω−1 ≪ T . Let

A(i) =

i−1
∑

j=1

e−ω(ti−tj)

B(i) =
i−1
∑

j=1

(ti − tj)e
−ω(ti−tj)

Then the derivatives of the log-likelihood with respect to the parameters are given by

∂l

∂µ
=

n
∑

i=1

1

λ(ti)
− T

∂l

∂α
=

n
∑

i=1

ωA(i)

λ(ti)
− n

∂l

∂ω
=

n
∑

i=1

α

λ(ti)
(A(i)− ωB(i))

The EM algorithm for the estimation of the parameters is as follows. Let pij be the

probability that event j triggers event i. Starting with a guess Θ0 for the parameters,

iterate the following until convergence is reached:

41

Alessio Cianini N:# 2058085

Expectation step:

pkij =
αkωke−ωk(ti−tj)

µk +
∑i−1

j=1 α
kωke−ωk(ti−tj)

pkii =
µk

µk +
∑i−1

j=1 α
kωke−ωk(ti−tj)

Maximization step:

µk+1 =

∑n

i=1 p
k
ii

T

αk+1 =

∑

i>j p
k
ij

n

ωk+1 =

∑

i>j p
k
ij

∑

i>j(ti − tj)pkij

It is easy to show that each EM iteration satisfies the following:

µk+1 − µk =
µk

T

∂l

∂µ

αk+1 − αk =
αk

n

∂l

∂α

ωk+1 − ωk =
ωk

∑

i>j(ti − tj)pkij

∂l

∂ω

42

Alessio Cianini N:# 2058085

The EM algorithm is essentially a projected gradient ascent method when you look at

the point where partial derivatives are evaluated at Θk. This observation was also made

by ”Xu & Jordan (1996)” [33] in their study of EM algorithm for Gaussian mixtures.

They found that this projection technique enhances the rate of convergence, especially

when there’s minimal overlap in the mixtures.

For the sake of simplicity, we’ll express equations (11)-(13) as:

Θk+1 −Θk = P (Θk)∇l|Θk

In this equation, P (Θk) is a diagonal matrix with all entries positive. If Θ∗ represents

the MLE estimate of (2), we can use Taylor’s expansion to express the gradient of the

log-likelihood about Θ∗:

∥Θk+1 −Θ∗∥ ≤ ∥I + P (Θk)H(Θ∗)∥∥Θk −Θ∗∥

Here, H stands for the Hessian of the log-likelihood. This tells us that the rate at

which the EM algorithm converges is contingent upon the condition of the matrix PH.

When dealing with boundary correction, we need to consider when the integral in (2)

is computed precisely. The partial derivatives of the log-likelihood with respect to α and

ω would then be:

∂l

∂α
=

n
∑

i=1

ωA(i)

λ(ti)
− n+

n
∑

i=1

e−ω(T−ti)

43

Alessio Cianini N:# 2058085

∂l

∂ω
=

N
∑

i=1

α

λ(ti)
(A(i)− ωB(i))− α

n
∑

i=1

(T − ti)e
−ω(T−ti)

The expectation step remains as it is, but the maximization step for α and ω evolves

to:

αk+1 =

∑

i>j p
k
ij

n−
∑n

i=1 e
−ω(T−ti)

ωk+1 =

∑

i>j p
k
ij

∑

i>j(ti − tj)pkij + α
∑n

i=1(T − ti)e−ωk+1(T−ti)

Interestingly, the maximization step for ωk+1 is implicit. While we could solve this

nonlinear equation at each iteration, we choose to use ωk on the right side as a substitute

for ωk+1. One of the perks of this approach is that our algorithm maintains its nature as

a projected gradient ascent [1]. The entries on the diagonal of P (Θk) are given by:

µk/T,

αk/(n−

n
∑

i=1

e−ω(T−ti)),

ωk/(
∑

i>j

(ti − tj)p
k
ij + α

n
∑

i=1

(T − ti)e
−ωk+1(T−ti)).

44

Alessio Cianini N:# 2058085

Expectation Maximization Algorithm

1 void em_hawkes_process(std::vector <double >& times ,

double& alpha ,

2 double& beta , double& mu,

3 int max_iterations = 100 , double tol = 1e-2) {

4 int n = (int)(times.size());

5 double diff;

6 std::vector <double > pkij(n), pkii(n);

7 for (int iter = 0; iter < max_iterations; ++iter)

8 {

9 double sum_pkij = 0, sum_pkii = 0, sum_weighted_pkij = 0;

10 for (int i = 1; i < n; ++i)

11 {

12 double sum_exp = 0;

13 for (int j = 0; j < i; ++j)

14 {

15 double temp = alpha * beta *

16 std::exp(-beta * (times[i] - times[j]));

17 sum_exp += temp;

18 }

19 pkii[i] = mu / (mu + sum_exp);

20 sum_pkii += pkii[i];

21

22 for (int j = 0; j < i; ++j)

23 {

24 pkij[j] = alpha * beta *

25 std::exp(-beta*(times[i] - times[j]))/

(mu + sum_exp);

26 sum_pkij += pkij[j];

27 sum_weighted_pkij +=

28 (times[i] - times[j]) * pkij[j];

29 }

30 }

31

32 double sum_exp_wT_ti = 0;

33 for (int i = 0; i < n; ++i) {

34 sum_exp_wT_ti += std::exp(-beta *

35 (times[n-1] - times[i]));

36 }

37

38 mu = sum_pkii / (times[n-1] - times [0]);

39 alpha = sum_pkij / (n - sum_exp_wT_ti);

40 beta = sum_pkij / sum_weighted_pkij;

41 }

42 }

45

Alessio Cianini N:# 2058085

3.3.2 Estimation Results

If we simulate our path with the [18] Method with an interval from T = 0 to T = 2000

and with the parameters of above

µ = 0.5 α = 0.1 β = 1.5

we would like to obtain from our calibration approximatively the same calibrated para-

maters.

We can see that the estimation is around the true values and therefore we can say that

the estimation algorithm works correctly and we will be able to use it in the future with

the true timestamp from our buckets.

46

Alessio Cianini N:# 2058085

3.3.3 Estimation with real trades timestamps

After having created our buckets of volume, we are going to check after how much time

a bucket is filled and create a list of timestamp.

After that we are going to calibrate with the Expectation Maximization algorithm the

timestamps and see which are the parameters for α, µ and β.

3.3.3.1 Estimation of the paramters

Calibrating with a bucket size of 1000 BTC for buckets we end up having that

α = 1.49508

β = 0.821979

µ = 1.01967

and plugging those parameters in the Hawkes process we obtain these results:

Figure 8: Price intensities

47

Alessio Cianini N:# 2058085

Upon observing the market dynamics, we find an interesting phenomenon that oc-

curred around May 19, 2021. A substantial crash was observed during this time frame,

an event which caught the attention of traders and researchers alike.

The unique feature of this particular incident was not just the downturn itself, but

rather the subsequent events that unfolded in the market. Namely, there was a significant

rise in the volume of Bitcoin exchanged.

Considering the nature of Hawkes processes, which are known to be self-exciting, this

incident becomes even more noteworthy. This self-exciting process suggests a memory

of past events, wherein each occurrence increases the probability of future events. It is

a sort of snowball effect where the action doesn’t die down immediately but has a per-

sistent effect, leading to more events or actions. In the context of the Bitcoin market,

this translates into an increase in trading volumes, with more transactions occurring in a

shorter span of time.

Given that higher trading volume leads to more buckets in a shorter time

frame, what we witnessed around May 19 was a drastic increase in our inten-

sity.

48

Alessio Cianini N:# 2058085

3.4 Volume analysis

4 VPin

In this section we are going to introduce PIN in order to be able to speak about the main

subject of this thesis which is the VPIN.

4.1 What is Pin

PIN a.k.a. Probability of informed trading is an indicator that assumes that in the market

there are two different types of agents that enter in the market: the informed traders and

uninformed traders.

4.1.1 Formula with MLE Approach

As cited in [9] given Bt and St the total number of daily buy and daily sell the joint

likelihood function for a sample of buys and sells from t = 1...T is given by:

L(Θ|Bt, St) =

T
∏

t=1

[

αδ
e−µ+λs(µ+ λb)

Ste−λb(λb)
Bt

St!Bt!
+

α(1− δ)
e−(µ+λb)

Bt
e−λs(λs)

St

St!
+

(1− α)
e−λb(λb)

Bte−λs(λs)
St

Bt!St!

]

(2)

Where Θ = (α, δ, µ, λb, λs).

49

Alessio Cianini N:# 2058085

Easley et al. (2002) estimated the vector of parameters Θ by maximizing the previous

equation and the PIN formula turns out to be:

PIN =
αµ

αµ+ λs + λb

where αµ+ λs + λb is the arrival rate of all orders and αµ is the arrival rate of informed

orders.

4.2 What is Vpin

The Volume Synchronized Probability of Informed Trading (VPIN) is a mathematical

model widely utilized in financial markets for various applications. It was originally

introduced by Professors Maureen O’Hara and David Easley from Cornell University, in

collaboration with Marcos Lopez de Prado from Tudor Investment Corporation and RCC

at Harvard University

4.3 Introduction

Given a security with price S and present value S0, after a certain amount of information

is going to be incorporated into the price we are going to have that the price can be either

SB (Bad news) or SG (Good news).

The probability that an event arrives within the time frame of the analysis is denoted as

50

Alessio Cianini N:# 2058085

α, and the probability that the news will be bad is δ (i.e. good 1− δ).

The author proved that the expected value of the security’s price can be computed at

time t as:

E[S≈] = (1− αt)S0 + αt[δtSB + (1− δt)SG]).

Following a Poisson distribution with informed traders arriving with a rate µ, and uni-

formed traders with rate ϵ. Then in order to avoid losses from informed traders, market

makers reach breakeven at a bid level

E[Bt] = E[St]−
µαt(δt)

ϵ+ µαt(δt)
(E[St]− SB).

and the breakeven ask level at time t must be

E[At] = E[St] +
µαt(1− δt)

ϵ+ µαt(1− δt)
(SG − E[St])

It follows that the breakeven ask-bid is given by:

E[At −Bt] =
µαt(1− δt)

ϵ+ µαt(1− δt)
(SG − E[St]) +

µαt(δt)

ϵ+ µαt(δt)
(E[St]− SB).

if we consider the standard case we have

δ =
1

2
−→ E[At −Bt] =

αtµ

αtµ+ 2ϵ
(SG − SB).

51

Alessio Cianini N:# 2058085

that gives us the information that the level at which market makers provide liquidity is

PINt =
αtµ

αtµ+ 2ϵ

4.4 Low-Frequency Estimation

The PIN model needs estimation of four non-observable parameters, namely α, δ, µ and

ϵ.

This was done via Maximum Likelihood, by fitting three Poisson distribution.

P[V B , V S] = (1−α)P[V B , ϵ]P[V S , ϵ]+α(δP[V B , ϵ]P[V S , µ+ϵ]+(1−δ)P[V B , µ+ϵ]P[V S , ϵ]).

Where V B is the volume traded against the ask and V S against the bid.

In [8] it has been proved that

E[V B − V S] = α(1− δ)(ϵ− (µ+ ϵ)) + αδ(µ+ ϵ− ϵ) + (1− α)(ϵ− ϵ) = αµ(1− 2δ)

and for sufficient large µ

E[|V S − V B |] ≈ αµ.

52

Alessio Cianini N:# 2058085

4.5 High-Frequency Estimation

David Easley, Marcos Lopez de Prado and Maureen O’Hara proposed a high-frequency

estimate of PIN - VPIN - . The treshold is a volume clock captured by volume buckets.

This is a form of subordinated stochastic process that differ from the standard chrono-

logical clock.

What has been done is divide samples of volume bars in volume buckets which are groups

of trades that amount for the same aggregate volume.

Since all buckets have the same amount of volume we have

1

n

n
∑

τ=1

(V B
τ + V S

τ) = V = αµϵ

4.6 Results of VPIN

To calculate the VPIN, several parameters must be specified: the desired bucket size for

analysis, the number of correlated buckets, and the filter threshold for orders deemed

’noisy’. For our analysis, we’ve set the bucket size at 1000 BTC, chosen 50 buckets for

correlation, and established a $100 threshold for filtering orders.

53

Alessio Cianini N:# 2058085

By running a simulation on a dataset, we obtained the following results:

Figure 9: VPIN results

54

Alessio Cianini N:# 2058085

Having explored the preceding calculations (Order book depth, VPIN, Hawkes pro-

cess), we now turn our attention to the most intriguing aspect of this thesis: determining

whether the sign of returns can be predicted using the previously discussed properties.

To achieve this, we will first delve into an explanation of the models we intend to employ.

5 Introduction to Machine Learning

As explained in the phd thesis [23]

Machine Learning (ML) is an interdisciplinary field combining computer science and

statistics. It forms the crux of modern artificial intelligence (AI) by endowing computers

with the ability to discern patterns and make informed decisions from data.

ML techniques are largely bifurcated into two primary paradigms:

1. Supervised Learning - Utilizes labeled data to prognosticate outcomes.

2. Unsupervised Learning - Endeavors to identify patterns in unlabeled data.

5.1 Supervised Learning

In supervised learning, data comes equipped with an answer key, and the algorithm it-

eratively adjusts itself to predict the correct output. The goal is to craft models that

generalize patterns from given data in order to make predictions on new, unseen data.

Notably, regression problems, the focus of this document, fall under this category.

55

Alessio Cianini N:# 2058085

5.2 Unsupervised Learning

Unsupervised learning differs from supervised learning in that there is no supervisor or

absolute error measures. It involves algorithms independently discovering data structures

within an unlabeled dataset D = {xi}
N
i=1 containing feature vectors. The goal is to

create a model that can transform these feature vectors into either other vectors or values

useful for solving practical problems, uncovering ”interesting patterns” in the data—a

process often referred to as knowledge discovery. Unlike supervised learning, there are no

predefined patterns to search for, and no clear error metric for evaluation.

5.3 Our Focus

What we are more interested about in this thesis is supervised learning.

We are going then to cover most of the arguments that are related to this in the next

pages from.

5.3.1 Linear Regression

Regression serves as a foundational technique widely applied in data analysis, primarily

focusing on two pivotal objectives: data prediction and forecasting. These areas find

significant relevance within the domain of machine learning, making regression an indis-

pensable tool for projects in this field. Furthermore, regression analysis extends its utility

into areas characterized by the exploration of causal relationships among both dependent

56

Alessio Cianini N:# 2058085

and independent variables within datasets featuring diverse variables. Across all models

of regression, a fundamental principle underpins their operation: leveraging independent

variables to forecast dependent variables [24].

Within the landscape of regression analysis, linear regression stands as a distinctive

model, characterized by its exclusive reliance on a single independent variable to ascertain

dependent variables [2]. These models play a pivotal role in assessing the influence exerted

by independent variables on designated dependent variables. In the process of model

development, linear regression adheres to a straightforward linear approach, aiming to

minimize disparities between predicted values and actual outputs. Employing a linear

regression model facilitates the estimation of data, drawing upon actual observations

drawn from a random sample of data. Additionally, linear regression assists in identifying

the presence or absence of a linear relationship between input and output variables. When

applying linear regression to a dataset, the model rigorously selects a target variable under

specific predefined conditions while excluding extraneous data points. This meticulous

approach not only results in the creation of a functional model but also streamlines the

grouping of data with shared characteristics, enhancing organizational clarity.

5.3.2 Logistic Regression

Logistic regression stands as one of the key machine learning algorithms specifically tai-

lored for assessing dependent variables when they exhibit binary outcomes. When applied

to datasets of this nature, logistic regression facilitates the development of predictive mod-

57

Alessio Cianini N:# 2058085

els capable of discerning appropriate outcomes. Utilizing this algorithm not only enables

data description but also the elucidation of relationships between a dependent variable

and other nominal, ordinal, or interval variables [21].

Logistic regression encompasses various types that are chosen based on the inherent

characteristics of the data, each suited for specific classification and prediction tasks.

Common variants of logistic regression analysis include binary logistic regression, multi-

nomial logistic regression, and ordinal logistic regression.

In the realm of binary logistic regression, there exist only two possible categorical

responses, and all data points are categorized into one of these two potential values.

On the other hand, multinomial logistic regression handles datasets with more than two

categories, assigning each data point to one of the available classes. These classes are

typically unordered, and their selection is driven by feature matching.

Finally, ordinal logistic regression tackles datasets featuring multiple ordered cate-

gories. In this scenario, incoming data is assigned to the appropriate category based

on feature matching. This comprehensive approach ensures that logistic regression can

effectively handle diverse datasets and address various classification challenges.

hence, the majority of the situations that will be coming in the real life situations

will be addressed by the regression analysis, and hence the mode training can be done

effectively.

Depending on the nature of the dataset, a more appropriate variant of logistic regression

will be selected for the model’s development.

58

Alessio Cianini N:# 2058085

5.3.3 Ordinary Least Square

In our analysis we used first a simple OLS[19] method as baseline to compare later with

a Neural Network the results.

In statistics, ordinary least squares (OLS) is a type of linear least squares method for

choosing the unknown parameters in a linear regression model (with fixed level-one effects

of a linear function of a set of explanatory variables) by the principle of least squares:

minimizing the sum of the squares of the differences between the observed dependent

variable (values of the variable being observed) in the input dataset and the output of

the (linear) function of the independent variable.

Geometrically, this is seen as the sum of the squared distances, parallel to the axis of

the dependent variable, between each data point in the set and the corresponding point

on the regression surface—the smaller the differences, the better the model fits the data.

The resulting estimator can be expressed by a simple formula, especially in the case of

a simple linear regression, in which there is a single regressor on the right side of the

regression equation.

The OLS estimator is consistent for the level-one fixed effects when the regressors

are exogenous and forms perfect collinearity (rank condition), consistent for the vari-

ance estimate of the residuals when regressors have finite fourth moments and—by the

Gauss–Markov theorem—optimal in the class of linear unbiased estimators when the er-

rors are homoscedastic and serially uncorrelated. Under these conditions, the method of

59

Alessio Cianini N:# 2058085

OLS provides minimum-variance mean-unbiased estimation when the errors have finite

variances. Under the additional assumption that the errors are normally distributed with

zero mean, OLS is the maximum likelihood estimator that outperforms any non-linear

unbiased estimator.

5.4 Linear Model

Assume the dataset comprises n samples {zi, wi}
n

i=1. For every sample i, there is a scalar

outcome wi and a column vector zi with p features, i.e., zi = [zi1, zi2, . . . , zip]
T
. In the

linear regression framework, the outcome, wi, is represented as a linear combination of

the features:

wi = α1 zi1 + α2 zi2 + · · ·+ αp zip + δi,

or in its vector notation,

wi = zTi α+ δi,

w = Zα+ δ,

For an overdetermined system, we have

60

Alessio Cianini N:# 2058085

p
∑

j=1

zijαj = wi, (i = 1, 2, . . . , n),

Zα = w,

Z =

Z11 Z12 · · · Z1p

Z21 Z22 · · · Z2p

...
...

. . .
...

Zn1 Zn2 · · · Znp

, α =

α1

α2

...

αp

, w =

w1

w2

...

wn

.

α̂ = argmin
α

L(α),

Where the objective function L(α) is given by:

L(α) =

n
∑

i=1

∣

∣

∣

∣

∣

∣

wi −

p
∑

j=1

Zijαj

∣

∣

∣

∣

∣

∣

2

= ∥w − Zα∥
2
.

(

ZTZ
)

α̂ = ZTw .

61

Alessio Cianini N:# 2058085

The matrix
(

ZTZ
)

is known as the normal matrix and the ZTw as the moment matrix.

Finally, α̂ is the coefficient vector the l-s hyperplane expressed as:

α̂ =
(

ZTZ
)−1

ZTw.

or

α̂ = α+
(

ZTZ
)−1

ZT
δ.

Consider that b is a potential choice for the parameter vector β. The term yi − xT
i b,

known as the deviation for the i-th entry, denotes the vertical gap between the data point

(xi, yi) and the hyperplane y = xT b. This evaluates how well the model fits the data. The

sum of squared deviations (SSD), also referred to as the deviation sum of squares (DSS)

or residual sum of squares (RSS) ([12], pg.15) , quantifies the comprehensive model fit:

S(b) =

n
∑

i=1

(yi − xT
i b)

2 = (y −Xb)T (y −Xb),

where T stands for the matrix transpose. The rows of X, representing the values of all

independent variables linked with a particular dependent variable value, areXi = xT
i . The

b value that minimizes this sum is termed the OLS estimate for β. S(b) is a quadratic

function in b with a positive-definite Hessian, ensuring this function has a unique global

62

Alessio Cianini N:# 2058085

minimum at b = β̂, defined by:

β̂ = arg min
b∈Rp

S(b) = (XTX)−1XT y.

Here, N = XTX is a Gram matrix, and its inverse, Q = N−1, is the influence matrix of

β [10] [13]([32], pg.134). The product XTX−1XT = QXT is named the Moore–Penrose

pseudoinverse matrix of X. This elucidation underscores that estimations are valid only

if there’s no absolute multicollinearity among the explanatory variables.

After determining β, the approximated values from the regression are

ŷ = Xβ̂ = Py,

with P = X(XTX)−1XT being the projection matrix onto space V covered by X’s

columns. This matrix P is also dubbed the hat matrix as it ”adorns” the variable y.

Another matrix, M = In − P , known as the nullifier matrix, projects onto the space

orthogonal to V . Both P and M are symmetric and idempotent, relating to X via

PX = X and MX = 0 ([12], pg.15). Matrix M yields the deviations from the regression:

ε̂ = y − ŷ = y −Xβ̂ = My = M(Xβ + ε) = (MX)β +Mε = Mε.

Using these deviations, σ2’s value can be approximated via the reduced chi-squared statis-

63

Alessio Cianini N:# 2058085

tic:

s2 =
ε̂T ε̂

n− p
=

yTMTMy

n− p
=

yTMy

n− p
=

S(β̂)

n− p
,

σ̂2 =
n− p

n
s2.

The bottom value, n− p, represents the statistical degrees of freedom. The initial value,

s2, is the OLS approximation for σ2, whereas σ̂2 is known to be an unbiased approxima-

tion of σ2([14], pg.187)([34], pg.626). These two concepts are elucidated for researchers

acquainted with finite sample theory, a significant aspect of multivariate statistics.

A common method to evaluate the OLS regression’s fit is by measuring how much the

original data variation can be lessened by regressing on X. The determination coefficient

R2 is the ratio of the ”explained” variance to the ”total” variance of y, when the regression

sum equals the squared residuals’ sum ([12], pg.15):

R2 =

∑

(ŷi − y)2
∑

(yi − y)2
=

yTPTLPy

yTLy
= 1−

yTMy

yTLy
= 1−

RSS

TSS
(3)

where TSS is the dependent variable’s overall sum of squares, L = In−
1
n
Jn, and Jn is an

all-ones n×n matrix. L centralizes a variable by subtracting its mean. R2 is meaningful if

the data matrix X has a ones column, indicating the coefficient is the regression intercept.

Then, R2 lies between 0 and 1, with values nearing 1 signifying a close fit.

The variance in predicting the independent variable based on the dependent variable

is discussed in the article titled Polynomial least squares.

64

Alessio Cianini N:# 2058085

6 Neural Networks

6.1 What is a Neural Network

A Neural Network is a complex structure comprising layers stacked on top of each Nother,

with neurons residing within each layer. It serves as a mathematical framework for

mapping input variables to a desired target variable and has the capability to acquire and

recognize patterns.

6.2 Architecture of a NN

[27]Let’s describe the structure of a Neural Network. For the sake of illustration, we will

consider a 2-layer Neural Network.

The input layer receives two input features, denoted as x1 and x2. In the hidden layer,

there are three neurons, each of which is associated with weight parameters :

(w11, w12, w13, w21, w22, w23, w31, w41, w51), as depicted in the figure below [Figure 8].

Typically, these weight parameters are initialized with random values.

65

Alessio Cianini N:# 2058085

Figure 10: Simple Neural Network

https://studymachinelearning.com/mathematics-behind-the-neural-network/

The terms b1 and b2 represent bias parameters corresponding to the input layer and

hidden layer, respectively. The Neural Network encompasses both Forward Propagation

and Back-propagation, involving a sequence of five essential steps:

1. Initialization of weight and bias parameters.

2. Execution of Forward Propagation.

3. Calculation of the Loss.

4. Implementation of Back-propagation.

5. Adjustment of the weight and bias parameters.

66

Alessio Cianini N:# 2058085

6.2.1 Forward Propagation

[27]During Forward Propagation, input data is sequentially processed through the net-

work in a forward manner. Each hidden layer undertakes data processing, performs

computations, and transfers results to the subsequent layer. Ultimately, the output layer

computes the model’s output.

Now, let’s delve into the mathematical expressions that define Forward Propagation. z11,

z12, z13, and z21 are intermediate neuron values derived from the weights, biases, and

neuron values of the preceding layer.

An activation function is subsequently applied to these intermediate neuron values to

capture non-linear patterns between the input and the target output variable. As a re-

sult, a11, a12, a13, and a21 represent the outputs of the activation function applied to z11,

z12, z13, and z21, respectively.

Below we can see a table with the representation of the equations and the vector repre-

sentation of them.

67

Alessio Cianini N:# 2058085

Figure 11: Formulas for forward propagation

https://studymachinelearning.com/mathematics-behind-the-neural-network/

6.2.2 Common Loss Functions

The Mean Squared Error[20]:

Given a set of n predictions derived from a sample of n data points involving multiple

variables, and Y represents the vector of observed values for the predicted variable, while

Ŷ corresponds to the predicted values (for instance, obtained through a least-squares fit),

you can calculate the Mean Squared Error (MSE) within the sample as follows:

MSE =
1

n

n
∑

i=1

(

Yi − Ŷi

)2

.

68

Alessio Cianini N:# 2058085

Cross Entropy[6]:

Cross-entropy loss, also known as log loss, evaluates the effectiveness of a classification

model that produces probability values ranging from 0 to 1. As the predicted probability

deviates further from the true label, the cross-entropy loss escalates.

For binary classification (M = 2), the cross-entropy loss is calculated as:

−[y log(p) + (1− y) log(1− p)]

6.2.3 Activation Function

In place of the conventional logistic sigmoid function, we can consider the hyperbolic

tangent function, denoted as tanh(z):

tanh(z) =
sinh(z)

cosh(z)
=

ez − e−z

ez + e−z

As stated in [26] Similar to the logistic sigmoid, the tanh function also exhibits a

sigmoidal (”S”-shaped) behavior. However, it yields values within the range of (−1, 1).

Consequently, strongly negative inputs to the tanh function will be mapped to negative

outputs. Furthermore, only zero-valued inputs result in nearly zero outputs. These

characteristics make it less likely for the network to become ”stuck” during training.We

know that the gradient for the tanh function is:

69

Alessio Cianini N:# 2058085

d

dz
tanh(z) =

∂

∂z

(

sinh(z)

cosh(z)

)

= 1− tanh2(z)

6.2.4 Backword Propagation

[27]Backward propagation, often referred to as backpropagation, is the process of trans-

mitting the error (loss) back through the neural network and subsequently updating the

weights and bias parameters.

Backpropagation plays a pivotal role in the operation of Neural Networks, executing

various mathematical operations to discern patterns between the input and the target

variable.

The primary objective of the neural network is to minimize the error (loss). Achieving

this involves obtaining accurate values for the weight and bias parameters.

The error undergoes changes concerning these parameters, and the rate of this change in

error is determined by computing the partial derivatives of the loss function with respect

to each parameter.

Through these derivatives, we ascertain the sensitivity of the loss function to each weight

and bias parameter. This approach is commonly known as the Gradient Descent[31] op-

timization method.

Let’s delve into how backpropagation functions with an illustrative example. In this con-

text, we need to calculate the partial derivatives of the loss function with respect to each

parameter. The subsequent section outlines the computations involved in this derivation.

70

Alessio Cianini N:# 2058085

In the diagram above, the red line signifies the backpropagation mechanism. The terms

Figure 12: Formulas for backward propagation

https://studymachinelearning.com/mathematics-behind-the-neural-network/

da[2], dz[2], dw[2], db[2], da[1], dz[1], dw[1], and db[1] denote the partial derivatives of

the loss function concerning a[2], z[2], w[2], b[2], a[1], z[1], w[1], and b[1], respectively.

While computing these derivatives, it is also imperative to calculate the derivative of the

activation function.

71

Alessio Cianini N:# 2058085

Now let’s sum up these derivative for the cross-entropy case [27]:

da[2] =
∂L

∂a[2]
=

=
∂L

∂a[2]

(

−y log(a[2] − (1− y) log(1− a[2]
)

=

=
−y

a[2]
+

(1− y)

1− a[2]

dz[2] =
∂L

∂z[2]
=

∂L

∂a[2]
×

∂a[2]

∂z[2]
=

=
−y

a[2]
+

(1− y)

1− a[2]
×

∂σ(z[2])

∂z[2]
=

=
−y(1− a[2]) + (1− y)a[2]

a[2](1− a[2])
× a[2](1− a[2]) =

= −y + ya[2] + a[2] − ya[2] = a[2] − y

with a[2] = σ(z[2])

dw[2] =
∂L

∂w[2]
=

=
∂L

∂z[2]
×

∂z[2]

∂w[2]
=

= dz[2] ×
∂(w[2]a[1] + b[2])

∂w[2]
= dz[2] × a[1]

72

Alessio Cianini N:# 2058085

db[2] =
∂L

∂b[2]
=

=
∂L

∂z[2]
×

∂z[2]

∂b[2]
=

= dz[2] ×
∂(w[2]a[1] + b[2])

∂b[2]
=

= dz[2]

da[1] =
∂L

∂a[1]
=

=
∂L

∂z[2]
×

∂z[2]

∂a[1]
=

= dz[2] ×
∂(w[2]a[1] + b[2])

∂a[1]
=

= dz[2] × w[2]

dz[1] =
∂L

∂z[1]
=

=
∂L

∂a[1]
×

∂a[1]

∂z[1]
=

= (dz[2] × w[2])×
σ(z[1])

∂z[1]
=

= (dz[2] × w[2])× σ′(z[1])

73

Alessio Cianini N:# 2058085

dw[1] =
∂L

∂w[1]
=

∂L

∂z[1]
×

∂z[1]

∂w[1]
=

= dz[1] ×
∂(w[1]x+ b[1])

∂w[1]
=

= dz[1] × x

db[1] =
∂L

∂z[1]
=

∂L

∂z[1]
×

∂z[1]

∂w[1]
=

= dz[1] ×
∂(w[1]x+ b[1])

∂w[1]
=

= dz[1] × x

6.2.4.1 Weight Update

The parameters for weight and bias are revised by deducting the gradient of the loss

function with respect to these parameters.

The learning rate, denoted by α, dictates the magnitude of the parameter update. It

determines the extent of adjustment to the parameter during each update step. The value

of α ranges from 0 to 1, allowing for controlled modifications to the model’s parameters.

W [1] = W [1] − α
∂L

∂W [1]
W [2] = W [2] − α

∂L

∂W [2]

b[1] = b[1] − α
∂L

∂b[1]
b[2] = b[2] − α

∂L

∂b[2]

74

Alessio Cianini N:# 2058085

7 Backtests

Before we delve into the intricacies of the backtest, it’s essential to familiarize ourselves

with the behavior and values of our chosen indicators, especially during the initial phases.

For this purpose, we shall first inspect how these indicators performed during the very first

4 days. Following that, we will broaden our horizon and observe them over an extended

timeframe, particularly during periods characterized by significant market fluctuations.

The graphs that we will be presenting next will showcase three main components:

• The market prices

• The values of vpin

• The hawkes intensities

Now, let’s turn our attention to the first visualization. The following graph represents

the results and values of our indicators during the initial 4 days:

75

Alessio Cianini N:# 2058085

However, to gain a deeper understanding, it’s also invaluable to study these indicators

during tumultuous periods in the market. The subsequent graph encapsulates the data

from a phase where the market experienced a pronounced crash:

76

Alessio Cianini N:# 2058085

In the realm of financial modeling and analysis, it’s vital to ensure that methodologies

are not only robust but also meticulously detailed to ensure reliable outcomes. Here’s an

in-depth look into the comprehensive method I adopted for my backtest:

1. Bucketing Process: The initial step involved creating a series of buckets. Each

bucket represented a specific volume of traded assets. As trades occurred and the

specified volume threshold of a bucket was reached, I recorded pertinent data: chiefly

the price at which the trade occurred, along with several other relevant features.

2. Lagged Returns Calculation: With buckets established and data recorded, I

proceeded to compute the lagged returns of these buckets. This step was critical

as it provided a historical perspective, allowing us to see how returns behaved in

previous periods relative to specific volumes and other features.

3. Feature Selection: Four primary features emerged as particularly crucial for pre-

dictive modeling. These were:

• Lagged returns from the aforementioned process.

• VPIN, offering insights into volume-synchronized probability of informed trad-

ing.

• Order Book Imbalance, which provides a snapshot of the discrepancy between

buying and selling pressures.

77

Alessio Cianini N:# 2058085

• Hawkes Intensity, capturing the self-exciting dynamics of certain financial

events.

4. Model Training: Armed with these four features, I embarked on training two

distinct models: a Neural Network (NN) and an Ordinary Least Squares (OLS)

model. The data extracted from the buckets served as the foundational training set

for these models.

5. Train-Test Split: Ensuring a model’s effectiveness isn’t complete without out-

of-sample testing. I partitioned the data into training and testing subsets using

the classic train-test division methodology. This split guaranteed that the model’s

performance wasn’t merely a result of overfitting to the training data.

6. Result Analysis: Post-training, I tested the models using the out-of-sample data.

The results yielded were returns in percentage terms. Any positive return (> 0%)

was coded as ’1’ and any negative return (< 0%) as ’-1’.

7. Accuracy Assessment: The final step involved assessing the accuracy of the

model’s predictions. This was achieved by calculating the ratio of instances where

the predicted sign of return matched the actual sign of return to the total number

of predictions. The formula used was:

Accuracy =
Total of Correct Sign Predictions

Total of All Predicted Signs

78

Alessio Cianini N:# 2058085

This meticulous process, which seamlessly integrated data bucketing with advanced

predictive modeling techniques, was pivotal in ensuring reliable and actionable insights.

In our pursuit to validate and illustrate the performance of both the Neural Network

(NN) and the Ordinary Least Squares (OLS) model, we have prepared a series of graphical

representations. These are designed not only to provide quantitative insights but also to

offer a visual assessment of the models’ predictions relative to actual outcomes. Here’s a

detailed breakdown of the visualizations:

1. Returns Comparison:

This graph juxtaposes the predicted returns with the true returns. For both the

NN and the OLS model, this visualization serves as an immediate gauge of how

accurately our models have forecasted compared to the actual data.

2. Visual Verification of Returns and Prices:

Through a color-coded scheme, this graph presents the return predictions alongside

the actual prices. The purpose of this is twofold: to visually confirm the direction

of the returns (positive or negative) and to correlate these predictions with price

movements. This method offers a more intuitive way to spot-check the correctness

of our model predictions.

79

Alessio Cianini N:# 2058085

7.0.1 General Metrics

1. Accuracy: This metric provides us with the ratio of correct predictions (positive

return or negative return) to the total number of input samples. It’s a primary

measure to understand how well our model is performing. Mathematically, the

formula for accuracy is given by:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
× 100

2. Mean Absolute Error (MAE): This represents the average of the absolute differ-

ences between the predicted and actual values. It gives a snapshot of the magnitude

of errors made by our model.

3. Mean Squared Error (MSE [20]): This metric takes the average of the squared

differences between the predicted and actual values. It provides insights into the

variance of our predictions and is especially useful when we want to penalize larger

errors more.

80

Alessio Cianini N:# 2058085

7.1 OLS Result

1. Returns Comparison:

2. Visual Verification of Returns and Prices:

81

Alessio Cianini N:# 2058085

7.1.1 OLS metrics and parameters

Intercept: [0.05514604]

Coefficients: [0.00640321 0.17465479 -0.03895252 -0.03441836]

Accuracy 46.29 %

Correct 443

Number of elements 957

Mean Absolute Error: 0.8290

Mean Squared Error: 1.2128

82

Alessio Cianini N:# 2058085

7.2 NN Result

1. Returns Comparison:

2. Visual Verification of Returns and Prices:

83

Alessio Cianini N:# 2058085

7.2.1 Neural Network metrics

It’s essential to acknowledge that these interpretations are derived from isolated weights,

and the overall behavior of the model is shaped by the interplay of all features, the chosen

activation functions, and biases (which haven’t been provided). Additionally, domain-

specific insights from financial time series analysis can further refine these interpretations.

Accuracy 52.77 %

Correct 505

Number of elements 957

Mean Absolute Error: 0.8843

Mean Squared Error: 1.3017

84

Alessio Cianini N:# 2058085

7.2.2 Architecture of the Neural Network

Layer (type) Output Shape Param #

input 1 (InputLayer) (None, 1, 1) 0
input 2 (InputLayer) (None, 1, 1) 0
input 3 (InputLayer) (None, 1, 1) 0
input 4 (InputLayer) (None, 1, 1) 0
concatenate (Concatenate) (None, 1, 4) 0
dense (Dense) (None, 1, 6) 30
lstm (LSTM) (None, 1, 12) 912
lstm 1 (LSTM) (None, 1, 12) 1200
lstm 2 (LSTM) (None, 1, 18) 2232
lstm 3 (LSTM) (None, 1, 24) 4128
lstm 4 (LSTM) (None, 1, 18) 3096
lstm 5 (LSTM) (None, 1, 12) 1488
lstm 6 (LSTM) (None, 1, 12) 1200
lstm 7 (LSTM) (None, 6) 456
dense 1 (Dense) (None, 1) 7

Table 1: Neural Network Architecture

85

Alessio Cianini N:# 2058085

86

Alessio Cianini N:# 2058085

NN WEIGHTS FIRST ENTRY

[-1.3158753 -0.4892516 0.7667988 0.0288299 -0.62861747 -0.34718516]

[0.12609749 -1.7035676 0.24501395 0.30555445 -0.07373061 -1.577009]

[-0.24600908 -0.03532389 0.00995408 -0.09426929 0.021626 0.85759133]

[1.1419278 0.80790037 0.9138882 -0.6260078 -0.83464617 -0.6504741]

87

Alessio Cianini N:# 2058085

7.2.2.1 Analysis of the Neural Network Weights and Structure

The structure of the neural network model can be described as follows:

• The model is designed with four distinct input layers, each corresponding to a

specific financial feature: VPIN, intensities, order book ratios, and returns.

• These individual input layers are then concatenated to form a unified layer.

• The concatenated layer is then connected to a dense hidden layer which comprises 6

neurons. The activation function chosen for this hidden layer is the ReLU (Rectified

Linear Unit).

Given this structure, the provided weight matrix for the hidden layer has dimensions

4 × 6, meaning each of the four input features connects to all six neurons in the dense

layer.

A closer look at the weights reveals:

1. VPIN: The first row of the weight matrix corresponds to the VPIN feature. The

weights here are both negative and positive, hinting at a complex relationship be-

tween VPIN and the patterns captured by the six neurons. Notably, a weight of

-1.3158753 suggests a potential inverse relationship between this feature and the

activation of the corresponding neuron.

2. Intensities: The weights for the second feature, intensities, are dominantly neg-

88

Alessio Cianini N:# 2058085

ative. A standout value of -1.7035676 indicates that higher intensity values could

suppress the activation of its linked neuron, or vice versa.

3. Order Book Ratios: For the order book ratios, the third row, the weights are

generally of smaller magnitude, indicating a more nuanced influence on the dense

layer’s neurons.

4. Returns: The last row, representing the returns feature, displays mixed weights.

This implies that returns have a multifaceted influence on the patterns recognized by

the neurons. Both positive and negative weights, such as 1.1419278 and -0.83464617

respectively, underline this complexity.

89

Alessio Cianini N:# 2058085

7.3 Comparative Analysis of Neural Network and OLS Metrics

Upon analyzing the metrics for both the Neural Network (NN) and the Ordinary Least

Squares (OLS) model, several observations can be made:

1. Accuracy: The NN model exhibits an accuracy of 52.77%, which is notably higher

than the 46.29% accuracy of the OLS model. This suggests that the NN model

might be better suited for capturing the underlying complexities of the dataset and

making more precise predictions.

2. Mean Absolute Error (MAE): Both models have a relatively close MAE, with

the NN model registering 0.8843 and the OLS model at 0.8290. Although the

difference is marginal, the slightly lower MAE for the OLS model indicates that, on

average, its predictions deviate less from the true values.

3. Mean Squared Error (MSE)[20]: The MSE values for both models are also in

close proximity, with NN at 1.3017 and OLS at 1.2128. A smaller MSE value for

the OLS model suggests it may be slightly better at avoiding large errors in its

predictions.

4. OLS Parameters: The intercept and coefficients for the OLS model offer insights

into the model’s understanding of the relationships between variables. A positive

coefficient suggests a direct relationship, while a negative one indicates an inverse

relationship.

90

Alessio Cianini N:# 2058085

An important observation from real-world application is the models’ performance

during market fluctuations. It appears that both models, especially the Neural Net-

work, exhibit a heightened ability to forecast market crashes effectively. This aptitude is

commendable and can be invaluable for risk mitigation and strategic positioning during

turbulent times. However, during periods of market stability or inactivity, these models

seem to be less reliable as predictors. In quieter market phases, the inherent noise and

randomness might overshadow any discernible patterns, making predictions more chal-

lenging. It is, therefore, advisable to exercise caution and possibly integrate additional

predictive indicators when the market is relatively stable.

91

Alessio Cianini N:# 2058085

8 Conclusion

In this thesis, we have applied a different approach to the analysis of the Bitcoin market,

incorporating both statistical methods and machine learning models. Our exploration of

the order book’s statistical properties, alongside the application of indicator like VPIN

and the Hawkes process, has been proved to be important as input for our forecasting

models.

The Neural Network performed better in terms of accuracy, reaching 52.77%. On the

other hand, the OLS model was slightly more consistent, although it wasn’t as accurate.

This means it’s more reliable for straightforward predictions.

We also noticed something interesting when we looked at how these models work in

real-life market situations. Both models, especially the NN, were really good at predicting

big market changes, like crashes. This is great for reducing risk and making smart moves

during uncertain times.

92

Alessio Cianini N:# 2058085

References

[1] Baeldung. Gradient Descent vs. Ascent: A Complete Guide. url: https://www.

baeldung.com/cs/gradient-descent-vs-ascent.

[2] P. L. Bartlett, P. M. Long, G. Luosi, and A. Tsigler. “Benign Overfitting in Linear

Regression”. In: Proceedings of the National Academy of Sciences PNAS (2020).

doi: https://doi.org/10.1073/pnas.1907378117.

[3] S. Borman. “The Expectation Maximization Algorithm: A short tutorial”. In: Un-

published (2004). url: https://www.lri.fr/~sebag/COURS/EM_algorithm.pdf.

[4] J.-P. Bouchaud. “Statistical properties of stock order books: empirical results and

models”. In: Quantitative Finance 2 (2002), pp. 251–256.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood From In-

complete Data via the EM Algorithm”. In: Journal of the Royal Statistical Society,

Series B 39 (1977), pp. 1–38.

[6] Machine Learning Glossary Docs. Loss Functions. url: https://ml-cheatsheet.

readthedocs.io/en/latest/loss_functions.html.

[7] Binance Documentation. Binance. url: https://binance-docs.github.io/.

[8] D. Easley, R. F. Engle, M. O’Hara, and L. Wu. “Time-Varying Arrival Rates of In-

formed and Uninformed Traders”. In: Journal of Financial Econometrics 6.2 (2008),

pp. 171–207.

93

Alessio Cianini N:# 2058085

[9] D. Easley, M. Lopez de Prado, and M. O’Hara. “An Improved Version of the

Volume-Synchronized Probability of Informed Trading: A Comment”. In: Critical

Finance Review 6 (2017), pp. 377–379.

[10] C. D. Ghilani and P. R. Wolf. Adjustment Computations: Spatial Data Analysis.

(2006).

[11] A. G. Hawkes. “Spectra of Some Self-Exciting and Mutually Exciting Point Pro-

cesses”. In: Biometrika 58.1 (1971), pp. 83–90.

[12] F. Hayashi. Econometrics. Princeton University Press, (2000).

[13] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle. GNSS – Global Navigation

Satellite Systems: GPS, GLONASS, Galileo, and more. Springer Wien New York,

(2007).

[14] J. Kenney and E. S. Keeping. Mathematics of Statistics. Van Nostrand Reinhold

Inc, (1963).

[15] W. Kenton. What Is an Order Book? Definition, How It Works, and Key Parts.

Investopedia. Reviewed by Brock, T. (2022). url: https://www.investopedia.

com/terms/o/order-book.asp.

[16] E. Lewis and G. Mohler. “A Nonparametric EM Algorithm for Multiscale Hawkes

Processes”. In: Journal of Nonparametric Statistics (2011), pp. 1–6.

[17] K. Obral, J. Barry, and J. Kang. Simulation, Estimation and Applications of Hawkes

Processes. (2016).

94

Alessio Cianini N:# 2058085

[18] Y. Ogata. “Statistical Models for Earthquake Occurrences and Residual Analysis

for Point Processes”. In: Journal of the American Statistical Association (1981),

pp. 9–27.

[19] Ordinary Least Squares Regression (OLS). XLSTAT. url: https://www.xlstat.

com/en/solutions/features/ordinary-least-squares-regression-ols.

[20] Probability-Course. Mean Squared Error (MSE). url: www.probabilitycourse.

com.

[21] P. Ranganathan, C. Pramesh, and R. Aggarwal. “Common Pitfalls in Statistical

Analysis: Logistic Regression”. In: PMC (PubMed Central) (2017), pp. 148–151.

[22] S. Ross. Introduction to Probability Models. 11th. Academic Press, (2014).

[23] H. Saleh and J. A. Layous. “Machine Learning – Regression”. Available at: https:

//www.researchgate.net/publication/357992043. PhD thesis. Damascus, Syr-

ian Arab Republic: Higher Institute for Applied Sciences, Technology, Department

of Electronic, and Mechanical Systems, (2022). doi: 10.13140/RG.2.2.35768.

67842.

[24] A. F. Schmidt and C. Finan. “Linear Regression and the Normality Assumption”.

In: Journal of Clinical Epidemiology 98 (2017), pp. 146–151.

[25] S. E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Models. Springer,

(2004).

95

Alessio Cianini N:# 2058085

[26] D. Stansbury.Derivation: Derivatives for Common Neural Network Activation Func-

tions. (2020). url: https://dustinstansbury.github.io/theclevermachine/

derivation-common-neural-network-activation-functions.

[27] Study-Machine-Learning. Mathematics Behind the Neural Network. url: https:

//studymachinelearning.com/mathematics-behind-the-neural-network/.

[28] A. Veen and F. P. Schoenberg. “Estimation of spacetime branching process models

in seismology using an emtype algorithm”. In: Journal of the American Statistical

Association 103 (2008), pp. 614–624.

[29] T. Vipond. What are Trade Orders? Corporate Finance Institute. url: https:

/ / corporatefinanceinstitute . com / resources / career - map / sell - side /

capital-markets/trade-orders/.

[30] Wikipedia. Big O notation. url: https://en.wikipedia.org/wiki/Big_O_

notation.

[31] Wikipedia. Gradient descent. url: https://en.wikipedia.org/wiki/Gradient_

descent.

[32] G. Xu. GPS: Theory, Algorithms and Applications. Springer, (2007).

[33] L. Xu and Michael I. Jordan. “On Convergence Properties of the EM Algorithm for

Gaussian Mixtures”. In: Neural Computation 8 (1996).

[34] D. Zwillinger. “Standard Mathematical Tables and Formulae”. In: Chapman & Hal-

l/CRC (1995).

96

	Introduction
	Reconstruction of Order Book and Trades
	Order book and Trades
	Order Book
	Trades
	Binance Data

	Implemention for the riconstruction of the order book with C++
	C++ choice and multithreading
	Thread Safe Queue

	Bouchaud-Mezard-Potters analysis

	Hawkes Process
	Counting Process
	Poisson Process
	Non-homogeneous Poisson Process
	Self-Exciting process
	Self-exciting definition

	Simulation of Hawkes Process with C++ and Python
	Expectation Maximization algorithm for Hawkes Process
	Mathematical Approach
	Estimation Results
	Estimation with real trades timestamps
	Estimation of the paramters

	Volume analysis

	VPin
	What is Pin
	Formula with MLE Approach

	What is Vpin
	Introduction
	Low-Frequency Estimation
	High-Frequency Estimation
	Results of VPIN

	Introduction to Machine Learning
	Supervised Learning
	Unsupervised Learning
	Our Focus
	Linear Regression
	Logistic Regression
	Ordinary Least Square

	Linear Model

	Neural Networks
	What is a Neural Network
	Architecture of a NN
	Forward Propagation
	Common Loss Functions
	Activation Function
	Backword Propagation
	Weight Update

	Backtests
	General Metrics
	OLS Result
	OLS metrics and parameters

	NN Result
	Neural Network metrics
	Architecture of the Neural Network
	Analysis of the Neural Network Weights and Structure

	Comparative Analysis of Neural Network and OLS Metrics

	Conclusion

