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ABSTRACT  

The dissertation I present investigates recent developments achieved in the field of policy 

evaluation, exploring the techniques that allow to perform some kind of analysis that look 

beyond traditional objectives: this is the essence of going from ex-post to ex-ante evaluation. 

Conducting an ex-ante evaluation of  a public policy works toward exploring potential results 

of a reform never implemented. Actually, the power of ex-ante evaluation from a policy-

maker prospective is great, since it allows to answer to a wide variety of policy questions. 

This work focuses on the evaluation of public policy concerning education, defining the 

theoretical framework developed over the last decades until the most recent findings. 

Specifically, I consider the education sector of the United Kingdom and perform an empirical 

evaluation of the returns to higher education in this country.  

 

SOMMARIO 

La dissertazione che presento studia gli sviluppi recenti realizzatisi nel campo della 

valutazione delle politiche pubbliche, esplorando le tecniche che permettono di intraprendere 

delle analisi che vadano oltre al raggiungimento degli obiettivi tradizionali: in questo si 

definisce l’essenza del passare dalla valutazione ex-post alla valutazione ex-ante. Condurre la 

valutazione ex-ante di una politica pubblica mira ad esplorare gli effetti potenziali di una 

riforma mai adottata. Effettivamente, la capacità della valutazione ex-ante dal punto di vista 

del policy maker è considerevole, dato che permette di rispondere ad una vasta varietà di 

questioni di politica pubblica. Questo lavoro si concentra sulla valutazione delle politiche 

rivolte al settore dell’educazione, definendo il contesto teorico sviluppatosi negli ultimi 

decenni fino ai risultati più recenti. Nello specifico, prenderò in considerazione il settore 

dell’educazione in Gran Bretagna ed eseguirò una valutazione empirica dei rendimenti 

dell’istruzione superiore in questo Paese. 
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INTRODUCTION 

The dissertation I present investigates recent developments achieved in the field of policy 

evaluation, exploring the techniques that allow to perform some kind of analysis that look 

beyond traditional objectives: this is the essence of going from ex-post to ex-ante evaluation. 

Conventional ex-post evaluation relies on consolidated methods (e.g. instrumental 

variables, difference in difference, regression discontinuity design, etc.) that attempt to extract 

a causal relationship from data with the highest grade of internal validity, ensuring at the same 

time the generalization of results to the external environment, thus the external validity. 

Clearly, this is the first, important and most of the time arduous step to complete. Indeed, 

any other further grade of analysis cannot be achieved if the ex-post evaluation does not 

accomplish these purposes. This consideration is the key point for performing successfully 

ex-ante evaluation. 

Conducting an ex-ante evaluation of  a public policy works toward exploring potential 

results of a reform never implemented. In particular, we can ask ourselves: given the 

existence of a certain policy and its causal effect, what would be the set of policy rules that 

allows to achieve a bigger effect? Actually, the power of ex-ante evaluation from a policy-

maker prospective is great, since it allows to answer to a wide variety of policy questions. It is 

obviously interesting to understand and forecast what would be the most effective means (e.g. 

a subsidy, a training program, the construction of a new school, etc.) that permit to maximize 

a certain measure of output (earnings, employment rate, volume of participants, level of 

personal skills, e.g.) or alternatively, understand if it exists a different set of policy tools that 

allows to achieve the same result while respecting the Government budget constraint. With 

the suitable validated model, ex-ante evaluation permits to fulfil useful cost-benefit analysis. 

Feeling confident of having the availability of the right model is the key point explained 

above. As discussed in Chapter 1., having the possibility of relying on a natural experiment 

would be the perfect starting point to perform all the steps that leads to the ex-ante evaluation. 

In this case, validating the model chosen for the ex-ante analysis means applying it to the data 

provided by the experiment to verify if it permits to replicate the results of the ex-post one. 

The validation process and also the choice of the suitable model, has a particular importance 

and various techniques can be followed. Chapter 1. provides a review of the literature that 
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goes through all these aspects and many others, comparing the result achieved by different 

authors.  

This work focuses on the evaluation of public policy concerning education, defining the 

theoretical framework developed in last decades until the most recent findings. Specifically, I 

consider the education sector of the United Kingdom and perform an empirical evaluation of 

the returns to higher education in this country.  

The education sector has addressed the attention of researchers for decades given its  

importance for the economy of all countries. Reforms intended to promote education at all 

levels has to be developed carefully since human capital accumulation is one of the main 

drivers of economics growth. For this reason, Governments should always intervene with the 

appropriate measure to handle this phenomenon.  

When conducting analysis concerning educational output, the main obstacle is represented 

by the unobservable individual characteristics that are considered a source of bias in the 

evaluation of the returns to educational qualification. The relevant literature has progressed 

around the management of consequences implied by these unobservables factors, discussing 

which are the most effective methods to be used and the most important parameters of interest 

to be evaluated. Chapter 2. considers these aspects, with a focus on the literature that starting 

from the 2000s, has been concentrated on exploiting all the methodologies developed and 

results achieved over years, to provide the elements that allows to perform ex-post and ex-

ante evaluation in the field of educational policies.  

In Chapter 3., the features of the higher education sector of the U.K. are presented, with a 

description of the main reforms undertaken by the Governments over last fifty years in order 

to funding a sector that has experienced a huge increase in the number of participants over 

time.  

Finally, Chapter 4., illustrates the empirical results obtained from the application of the 

model presented in previous chapters, discussing limits, difficulties and suggesting possible 

extension.  
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1 FROM THE EX-POST TO THE EX-ANTE POLICY 

EVALUATION 

1.1 POLICY EVALUATION: DEFINITION AND PROBLEMS 

Heckman and Vytlacil (2000, 2-3) define the policy evaluation problem as “the problem of 

comparing outcomes of a policy in place with outcomes under alternative policies” and the 

problem of causal inference “consists of determining which causes affect outcomes and 

measuring their quantitative importance”. They continue specifying that: “The policy 

evaluation problem is a special case of the problem of causal inference which entails 

comparisons between a hypothetical state and the observed state where the “causes” are 

different policies”. 

The causal effect is defined by authors as the change of outcomes for an agent across states 

(s, s’) under the ceteris paribus clause stated by Marshall (1890), that means that only states 

(s, s’) are varied. 

Subsequently, Heckman and Vytlacil (2007a, 4790-2) indicate three main policy 

evaluation problems: 

1. “Evaluating the impacts of historical interventions on outcomes including their impact 

in terms of welfare”. 

2. “Forecasting the impacts (constructing counterfactual states) of interventions 

implemented in one environment in other environments, including their impacts in 

terms of welfare”. 

3. “Forecasting the impacts of interventions (constructing counterfactual states 

associated with interventions) never historically experienced to various environments, 

including their impacts in terms of welfare”. 

The first policy evaluation problem consists in that of internal validity: identifying one or 

more given treatment parameters in a given environment. The second one consists in the 

problem of external validity, defined as the evaluation of one or a set of treatment parameters 

estimated in one environment to another environment; the term environment refers to 

different groups of people or different time periods with respect to those that are object of 
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study, but sharing the same characteristics. The last policy evaluation problem consists 

essentially in the ex-ante policy evaluation.  

Authors define the term impact as the construction of individual level or population level 

counterfactuals and their valuations. Evaluating impacts of historical interventions on welfare 

means conducting a welfare evaluations, either ex-ante or ex-post, of the outcomes derived 

from agents and/or society behavior and interventions.  

With respect to the last two policy evaluation problems, authors specify that “these 

forecasting problems are special cases of the problem of causal inference in which 

extrapolation from knowledge of currently experienced states is required to forecast and 

evaluate states not previously experienced” (see Heckman and Vytlacil 2000, 3).  

What I am going to present in the following chapters involve precisely the achievement of 

the three aspects of policy evaluation. The path begins by exploiting ex-post methodologies, 

both internally and externally valid, in order to develop a credible approach that is able to 

make ex-ante policy evaluations. As Di Nardo and Lee (2011) say, the main aim of ex-post 

evaluation strategy is to achieve the highest degree of internal validity, “a high degree of 

confidence that what is measured indeed represents a causal phenomenon”. They state that 

these methodologies pursue a goal which is complementary to that of ex-ante policy 

evaluations. Indeed, “(…) we view “external validity” to be the central issue in an attempt to 

use the results of an ex post evaluation for an ex ante program evaluation”. (see Di Nardo and 

Lee, 2011, 13). The main difference between the two approaches is that in the ex-post 

evaluation the credibility of the analysis depends on the “credibility of the statistical model of 

the experiment” whereas, in an ex-ante evaluations the credibility is focused on the “statistical 

model of the behaviour of individuals”, and the aspect that make the second one more hard to 

achieve than the first is that, in ex-ante analysis, validation occurs in context which are 

different than those in which data have been collected.  

Attaining this objective implies unavoidably the need of managing some conventional 

estimation problems known in the policy evaluation literature. By adopting the notation used 

by Heckman and Vytlacil (2007a), you can interpret Y (s, ω) as the outcome corresponding to 

the state (policy or treatment) s for agent ω, with ω ∊ Ω, realized after the treatment’s choice. 

Before knowing the treatment, agents can make forecasts about it. In fact, it is exactly the 
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potential influence derived from these forecasts about future outcomes that can generate the 

problem of selection bias.  

An individual when considering whether to participate or not can be influenced by his/her 

considerations about futures potential outcomes and this give rise to a selection problem. The 

greatest advantage of social experiment is precisely that of avoiding self-selection problems 

that could give raise to selection bias. When the treatment assignment rule is randomization, 

receipt of treatment is independent of outcomes of treatment.  

Problems arise when assignment depends on choices of agents. An example is given by the 

Roy model, in which agents choose which treatment has to be received by themselves or other 

agents (e.g. parents choosing for their children) by evaluating potential returns of alternative 

treatments. In a “utility-maximization framework” agents choose the one that provides the 

highest income, and this self-selection (as I will show in more details later) does not allow to 

estimate properly the outcome (see Carneiro, Heckman and Vytlacil, 2010). 

Continuing with the same notation, authors define the individual level causal effect for 

individual ω that compares objective outcomes of treatment s with those of treatment s’ as: 

Y(s,ω) – Y(s’,ω),  with s≠s’.  

Clearly, it is not possible to observe the same individuals in both states of the world; this 

problem is known as the fundamental problem of causal inference (see Holland, 1986). 

This is a central problem in policy analysis and typically, it is handle by trying to estimate 

a population version of the individual level parameter defined above, therefore a population 

level treatment parameter.  

Indeed, Heckman and Vytlacil (2007a, 4802) state that: “The conventional approach in the 

treatment effect literature is to reformulate the parameter of interest to be some summary 

measure of the population distribution of treatment effects like a mean or the distribution 

itself rather than attempting to identify individual treatment effects”. I will turn to this point 

later when discussing the parameters of interest in policy evaluation.  

The second way to handle the fundamental problem of causal inference is recurring to the 

structural econometric analysis. Under a well specified economic theory it is possible to 

model Y(s,ω) in all its determinants. Thus, it is possible to understand the mechanism 

generating outcomes and choices of agents modelling also their dependence. 
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“Constructing this counterfactual in a convincing way is a key ingredient of any serious 

evaluation method”. As pointed out by Blundell and Dias (2009), it exists three main classes 

of policy evaluation methods: the experimental method that exploits randomized experiments, 

the non-experimental methods and the structural methods.  

The assignment rule, so the way in which individuals are allocated to one group or another 

in the program or the way in which they receive the policy, is pure randomly in the social 

experiment, while in non-experimental method the researcher tries to mimic the 

randomization exploiting non-experimental data. 

1.2  A COMPARISON OF EX-ANTE AND EX-POST METHODS: LITERATURE 

REVIEW 

The aim of this section is to investigate the recent developments in the evaluation of public 

policies. One of the main concern of this field is trying to implement an efficient method to 

evaluate public interventions in order to evolve from the so-called ex-post approach typically 

followed in the treatment effect literature. What I mean is, finding a way that allows the 

researcher to design an as less costly as possible evaluation structure but at the same time 

achieving a degree of credibility of the tool as high as possible. Technically this 

methodologies fall within the field of the ex-ante evaluation processes and they are 

implemented through structural models. Many researchers in last years have studied this topic 

moved by the need of evolving from the experimental approach. Indeed, a controlled 

experiment is often not possible to implement, can be too costly and time-consuming and the 

consequently ex-post analysis may highlight the need of further adjustments of the policy or 

some elements of it; but again this is costly and time-consuming.  

These difficulties may be overcame, at least partially, by the introduction of ex-ante 

methodologies. These ones anyway, are not free of disadvantages, as I will explain later. 

However, exploiting the advantages of both approaches may lead to an efficient and credible 

evaluation.  

Heckman (2010) in his work introduces how to merge ex-ante and ex-post evaluation.  He 

illustrates the pros and cons of both “structural” and “policy evaluation” approaches.  

This distinction finds its roots in the previous distinction of the approaches pursued in 

evaluating microeconomics problems; (see Heckman and Vytlacil, 2000). Authors compare 



7 
 
 

 

the “structural approach” with the “treatment effect approach”; they argue that a structural 

model is designed to achieve different objectives, such as providing a framework for causal 

inference, evaluating the effects of different policies in place and performing forecasting 

analysis to construct counterfactuals of current policies or of policies never implemented. The 

treatment effect approach instead pursue a more precise objective: policy evaluation. 

Forecasting is not included in this approach. 

Heckman (2010) underlines the fact that one important difference between structural 

approach and conventional program evaluation approach (treatment effect approach) is that 

the first makes explicit assumptions about the behavior and decision-making process of the 

agents whereas the latter does not. The program evaluation approach just emphasizes the 

power of the randomized experiment that allows to identify the outcome without having to 

explain how preferences of agents are formed, how the mechanism determining 

counterfactual states acts or which are the sources of variability among agents. Therefore, 

structural approach focuses on the causal mechanism, program evaluation approach on the 

causal effect. The first allows forecasting the effects of policies which have never been 

implemented, the second just analyzes the effects only after the policy’s implementation. This 

distinction however, can be seen not just as a limitation of one of these approaches or of both 

of them, but instead as the key that can be used as a leverage to make one method as the 

continuation of the other. 

Pronzato (2012) in her work makes a comparison between the quasi-experimental 

approach and the structural one by showing their implementation in the analysis of a reform 

of lone parental welfare. She works on the same data and uses the same outcome variable for 

the two strategies. For the quasi-experimental evaluation, she considers the sample of 

Norwegian lone mothers for the treatment group, and mothers in a couple for the control 

group, both before and after the reform, estimating the effect with the triple-difference 

method. 

The sample for the structural model consists of a sub sample of just lone mothers observed 

before the reform, a construction chosen for a typical ex-ante evaluation, as we will see in 

other works. Here the message she gives is: “the two strategies help the understanding of 

policy impact in a complementary way: while the focus of the quasi-experimental evaluation 

design is to measure what really happened, the challenge of the structural model is to predict 

what potentially can happen”. (see Pronzato, 2012,  17-8) 
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This study provides results of the two methodologies which are very close. This can 

suggest that the reconciliation between the two improve their credibility. Indeed, when the 

predictions obtained by the structural estimation match the results of the quasi-experimental 

analysis one can say that the model is validated. But note that the validation applies mutually: 

it makes both methods credible. When this happens, the researcher can feel safer that the 

predictions about future policy’s development is more robust; moreover, this allow to limit 

the cost of policy implementation. 

The complementarity of the two approaches appears even more clear when highlighting the 

limitation of using just one of them. For instance, in her work the author specifies the fact that 

in the quasi-experimental approach we can observe how mother’s behaviour change after the 

implementation of the reform, but we cannot disentangle different effects of the different parts 

of the reform. Consequently, it is not even possible to predict the most suitable policy’s 

improvement that could be implemented in the future unless another reform is undertaken. 

But, implementing a structural model full specified in its parameters, permit to overcome this 

obstacle.  

Clearly, even the structural approach presents some drawbacks. In particular, its 

computational complexity leads to achieve replication and sensitivity analysis not so easily. 

Model parametrization can be most of the time very difficult. Indeed, the model has to rely on 

a certain number of assumptions concerning functional forms and distributions of 

unobservables. Anyway, even in this case connecting ex-post and ex-ante analysis simplifies 

the work.  

In their work, Duflo, Hanna and Ryan (2012) use both a randomized experiment and a 

structural dynamic model of labour supply to test whether monitoring activity and a set of 

incentives increase teachers’ presence at school in India. Why have they chosen this 

technique? Because making just an ex-post analysis prevents from the analysis of the effects 

of some alternative kinds of incentive schemes that differ from the one experimented. 

Moreover, since they put teachers in the treatment group under control (by monitoring daily 

their presence at school) in addition to grant them with a non-linear incentives’ scheme, the 

use of the structural model allows to disentangle the effect of the monitoring from that of the 

financial incentive. Also in this case the structural model is estimated using just the daily 

attendance data in the treated schools. This procedure is called holdout samples and is useful 

for the validation of the model. Here, in particular, the treatment group is chosen for the 
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estimation since the financial scheme provides the necessary variation for model 

identification.  

To test the sensitivity of the model they construct different specifications of it based on 

different kinds of assumptions concerning unobserved heterogeneity and the error structure.  

As authors say: “A primary benefit of estimating a structural model of behaviour is the 

ability to calculate outcomes under economic environments not observed in the data”. (See 

Duflo, Hanna and Ryan 2012, 1265-6). 

Indeed, just thanks to the structural model they are able to identify the cost-minimizing 

combination of the elements of the policy: the amount of the incentive and the minimum 

number of days of work that each teacher has to complete to get it.  

Maybe one of the most known work in the literature scene is the one of Todd and Wolpin 

(2010a). They exploited the randomized social experiment conducted by the Mexican 

government in rural areas consisting in a conditional cash transfer program called 

PROGRESA, to assess its effect on children’s school participation. Since the randomized 

experiment, even if simple to estimate, avoids the evaluation of alternative designs of the 

program, they adopted a behavioural model to estimate the effect of never implemented 

programs; they made therefore an ex-ante evaluation.  

In their previous work (see Todd and Wolpin, 2006) they implemented a discrete choice 

dynamic programming model where parameters are estimated by simulated maximum 

likelihood; here, they exploited child wages variation across untreated villages, without using 

the variability induced by PROGRESA. Experimental variation is used by the author only for 

validate the model. In the subsequent work (see Todd and Wolpin, 2010) they investigate the 

use of a non-parametric dynamic model, that means a model where assumptions about 

functional forms are not specified. This aspect represented a great achievement in the attempt 

of reducing the computational burden of structural model but it is not free from drawbacks. 

In general, behavioural models are applied to programs that affect the budget constraint, in 

particular modifying the costs side. When modelling the behaviour of agents, the researcher 

does not need all those data required to implement a matching or control function approach 

about treated and untreated; this is why they can be applied for ex-ante evaluation. Authors 

specify that not even strong functional form assumptions are necessary: they exploit the 
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condition for which non-parametric policy evaluation are met for a variety of policy 

intervention. 

This methodology really simplifies the computational complexity but at the cost of 

maintaining some strong independence assumptions on the distribution of observed 

heterogeneity.  

Typically, for their identification, structural model need that data about the policy 

instrument provide a source exogenous variation. The policy variables in question, must affect 

only the budget constraint without affecting directly the outcome equation. 

As authors say “Ex ante evaluation requires extrapolating from past experience to learn 

about effects of hypothetical programs”. (see Todd and Wolpin, 2010a, 262). 

Todd and Wolpin perform nonparametric estimation of a cash transfer to parents 

conditional on their children attending school. This is a subsidy that should incentivize school 

attendance by influencing the family’s budget constraint. Since authors consider an initial 

situation in which school is free, they do not have past data about tuitions from which to 

extrapolate variation. So they can estimate the model even if there is not a direct variation in 

the data related to the policy instrument, because the cash transfer is considered as a wage 

subsidy that enters in the budget constraint. By studying wage variation in the data they can 

analyze ex-ante the policy effect; the comparison is made constructing two budget constraint 

that refer to individuals that differ only in wage level. The subsidy act only through the 

budget constraint so it represents the exogenous source of wage’s variation that permit to 

identify the model. This is a key assumption of this method. 

Here, a sort of “matching” is performed by equating particular functions of observables, 

not the observables directly as in the traditional matching estimator used in the ex-post 

analysis.  

The second key assumption is that unobserved heterogeneity is independent of wage and 

other variables entering the budget constraint. This assumption is very restrictive because 

preferences of individual that affect school participation are likely to be correlated with 

factors related to the conditioning set. Authors manage this problem by conditioning also on 

some observable individual characteristics, even if this step can be non-trivial and goes 

counter-current with respect to the goal of reducing the model’s complexity. 

Anyway, the main two limitations of this approach are: 
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- The estimation is based on a comparison that match groups of individuals exactly just 

at two different points of the wage distribution; 

- moreover, this method cannot be applied to all classes of programs. 

Also in this article, we have seen an example of the holdout sample method. Indeed, 

authors say that they “match” untreated individuals with other untreated individuals. So, they 

use the control group for their estimation, which result is compared with that of the already 

realized randomized experiment that serves as benchmark to validate the behavioural model. 

Todd and Wolpin (2010b) and Keane, Todd and Wolpin (2011), examines in depths the 

most important characteristics of the discrete choice static/dynamic programming models, 

widely applied to the ex-ante evaluation and that falls in the category of structural estimation. 

Todd and Wolpin (2010b, 22) provide a useful definition of the discrete dynamic 

programming model, a model “in which agent make choices sequentially over time from a 

discrete set of alternatives as new information arrives to maximize their expected utility over 

some time horizon”. They review some studies concerning empirical policy evaluation of 

different policies in developing countries using this kind of model. Moreover, they introduce 

these applications with a precise analytical presentation of the features of static and dynamic 

programming models.  

Discrete choice models, both static and dynamic, are based on the latent variable 

specification. This framework considers that individuals make a decision at discrete time 

intervals, choosing between two (or more) alternatives given different state of the world. The 

latent variable function determines the outcome of the decision process, given the difference 

in payoff from choosing one of the alternatives. The payoff is a result of a typical problem of 

maximizing the utility under the budget constraint. Therefore, the latent variable may entails 

considerations about revenues and costs, the history of past decisions and some observed and 

unobserved variables that influence the final decision (either contemporaneous or lagged and 

contemporaneous depending on whether the model is static or dynamic respectively). 

The aim of structural model so far cited, is exactly estimating the parameters of the latent 

variable function, which is not observed. Todd and Wolpin (2010b, 23) define the structural 

estimation as “the recovery of fundamental parameters of behavioural models, such as utility 

or technological parameters”. The non-structural approach instead estimates only a certain 

function of the structural elements. 
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A paper which follows a methodology very close to the one of Todd and Wolpin (2010a) is 

that of Ranjeeta (2010) which studies the effects of a conditional cash transfers to improve 

education and health in Nicaragua; it is another example of validating a structural model with 

the results obtained by a randomized social experiment realized in 2000. Ex-ante evaluation 

consists in a semi-parametric single index model that once validated is applied to simulate 

two alternative policy scenarios. The author extends the approach followed by Ichimura and 

Taber (2000) and the one of Todd and Wolpin (2010a) we have seen, that consists in 

estimating reduced form equations using minimal assumptions of functional form and 

estimating semi-parametrically the behavioural model to compare the predictions of it with 

the result of the experiment.  

In order to evaluate the structural model, he does not estimate the structural parameters but 

instead relies on exogenous variation in observed policy variables. Policy variables that affect 

only the budget constraint and not directly the outcome equation are school costs and full 

income.   

School costs do not include tuition because school is free in Nicaragua; so they include 

exogenous expenditure faced by families independently of tuition. They are observed only for 

families that have already enrolled their children at school; in order to achieve observability 

for the whole sample of children, school costs are predicted. Survey used to retrieve the data 

contains information about full wealth of families.  

Also in this paper, author matches untreated individuals with other untreated individuals 

and the group of the treated in the ex-post analysis is used to make comparison of results and 

validate the model. Ex-ante results perfectly predicts results from experimental evaluation. 

Even in this paper the author underlines the sense of this methodology: “Comparing the ex-

ante results to the experiment provides a way of validating the model used. The validated 

models are then used to simulate alternate policy scenarios” (see Ranjeeta 2010, 23). 

The effects of alternative policy scenarios are estimated for two health outcome variables, 

health check of children below 3 years and full coverage of vaccination, and enrolment rate as 

school outcome variable.  

Keane, Todd and Wolpin (2011) defines four possible approaches to estimate a dynamic 

model:  

1. non-parametric, non-structural; 
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2. parametric, non-structural; 

3. non-parametric-structural; 

4. parametric, structural. 

First of all, all approaches require an exclusion restriction. Recalling what we have seen in 

the paper of Todd and Wolpin (2010a), there was needed an exogenous source of variation of 

wages, provided in that case by the subsidy. It acts only through the budget constraint and 

does not affect directly preferences entering in the alternative-specific utility function. So 

wage variation is exogenous, is independent of preferences. This is the key assumption to 

identify the model. More generally, the exogenous variation provides a policy-relevant 

variation, necessary when estimating the effect of a policy. The effect of wage on 

participating decision is isomorphic to that of a subsidy. Having a policy-relevant variation 

allows to estimate the policy effect even without having direct variation in the policy 

instrument (like for example the variation in tuition). Both tuition and exogenous wage 

variation are independent of individual preferences affecting utility, so studying data about 

one of them allows to identify the model.  

Typically, once the model has been identified, only the parametric-structural approach 

allows for counterfactual policy analysis. Todd and Wolpin (2010a) have nevertheless, made 

a non-parametric structural estimation of the conditional cash transfer program on the 

probability of participation of children to school. However, they demonstrate that this 

estimation approach is only feasible when wages offer are observed. Without observing wage 

for those who do not work more assumptions about functional forms are needed. 

As I have already said, in order to achieve counterfactual analysis implementing structural-

parametric estimation of static/dynamic programming models, we need functional forms and 

distributional assumptions. In particular, assumptions are needed about unobserved 

heterogeneity. As Todd and Wolpin (2010b, 29) say, it consists in “permanent differences 

across agents that potentially affect the decision that they make but that are unobserved by the 

researcher”. Assuming that the stochastic component of the model are mutually serially 

uncorrelated simplifies greatly the computational burden and the estimation procedure. 

Anyway, estimate the model with difference specification can be useful for its validation.  

Todd and Wolpin (2010b) list the two most important reasons for which structural 

estimation is useful. The first is that, it allows to separate the effects of individual preferences 
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and opportunities (policy interventions) on final outcome, helping understand which aspects 

have to be modified for achieve a certain desired outcome. The second is that structural 

estimation allows to analyse policy interventions never implemented and that maybe cannot 

be implemented (e.g. for economic reasons) and therefore that could never be assessed. 

Moreover, typically the experimental design can assess only policy intervention of a limited 

duration; long term evaluation can be instead achieved with structural models.  

After having described some basic features of structural models, I continue hereinafter, 

presenting some other empirical studies that combine ex-post and ex-ante techniques together. 

Di Porto, Elia and Tealdi (2013) present an ex-ante and ex-post social program evaluation 

on labour tax evasion in Italy. So, they investigate how the combination of different policy 

instruments impacts the reduction of tax evasion without raising unemployment. In their ex-

post analysis they study if the reform approved in Italy in 2003, concerning the legislation 

about temporary contract and apprenticeship, had some effect on the reduction of informal 

work. Then, “using the ex-post findings as a background to design a theoretical model”, they 

make an ex-ante analysis through a structural model to simulate different policy interventions 

(that include changes in tax burden, penalty fee for tax evaders, firing costs and type of 

contracts) in order to find the optimal one that allows to achieve the outcome desired. The ex-

post analysis is achieved by a DiD and triple difference analysis. Then, they realize a 

continuous time search and matching model to evaluate (ex-ante) the effect of temporary 

contracts in the informal sector. The estimation is made by modelling the labour market both 

before the reforms when only permanent contracts were in place and post reforms when 

temporary contracts have been added (see Di Porto, Elia and Tealdi, 2013, 11-23). In this 

paper, parameters are calibrated choosing their values according to some sources: literature 

about the topic, Italian legislation and statistics provided by the National Institute for 

Statistics (ISTAT). 

The findings of this research show that by just analysing the effects of the 2003 reform, 

temporary contracts alone are not an efficient instrument to drive the “emersion” 

phenomenon. As we have already see, ex-post evaluation alone does not allow to study the 

effects of the potential different elements of a reform combined together to find the optimal 

mix. Applying different policy mix through an experimental design would be prohibitively 

costly. Structural estimation overcomes this limit and, as authors did, allow to define an 

optimal policy mix. What maybe miss in this work is a validation mechanism. The structural 
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model calibration results somewhat complicated in particular when calibrating firing costs, as 

authors explain. (See Di Porto, Elia and Tealdi, 2013, 23-4). They do not implement the 

estimation via an holdout sample techniques in which they could have estimate the parameters 

modelling the labour market just before the reform and then comparing results with the post-

reforms analysis.  

Wasmer (2012) evaluate the 1989 welfare policy reform implemented in France. It consists 

in studying the effects on employment of a living allowance granted to all individual 

satisfying certain requirements. The interesting technical aspect of this work is the fact that 

the author calibrates a matching model with the estimates provided by the ex-post analysis 

realized with a DiD method. It can be noted that, contrary to the calibration realized in the 

work mentioned before (see Di Porto, Elia and Tealdi, 2013) here, Wasmer applies this 

method in order to calibrate and validate at the same time its model. He first implements a 

difference-in-difference and triple difference-in-difference method identifying the control and 

treatment groups that allow to control for different regional trends and also performs various 

robustness check and falsification exercises. Once he feels safe that the estimates are robust, 

he uses them to calibrate the key parameters of the labour market model to run a number of 

counterfactual policies including also the most recent French reform (of 2007) that provided 

changes in the previous one implemented in 1989. The steps he follows are the following:  

- estimate the coefficient of the model prior to the reform to achieve some targets 

observed in the market pre-reform; 

- calibrate the model using the DiD estimates of the economy post reform; 

- finally, once the model is fully parametrized run counterfactual experiments (e.g. see 

the employment effects that would have been obtained in 1989 if 2007 reform had 

been implemented at that time). 

Wasmer (2011, 30) says: “our results are a first step toward integrating ex-post estimations 

of public policies into ex-ante structural approaches”. 

Geyer, Haan, Wrohlich (2012), estimate an intertemporal structural model of labour supply 

for mothers with young children receiving some governmental benefits and then validate their 

model exploiting a parental leave reform introduced in Germany, to define a natural 

experiment. 



16 
 
 

 

The structural estimation is made by modelling the market under the reform and taking 

data from the German Socio-Economic Panel Study (SOEP) in order to simulate the effect of 

the reform of 2007 and then, the same reform is analysed through a natural experiment using a 

different source of data. Results are compared and model validated. The validation of the 

model provides encouraging results suggesting that the structural model can be used to 

estimate the causal effect of a policy reform.  

Even this work provides an evidence that combining experimental and structural approach 

can avoid many evaluations problems; indeed, authors say that (see Geyer, Haan, Wrohlich 

2012, 1) “it is often criticized that structural models rely on strong assumptions that need to 

be imposed. Therefore, opponents of the structural approach question the reliability of those 

policy evaluations and instead suggest to exploit true exogenous variation for the 

identification of the causal effect on behavior induced by a policy reform”.  

Brewer et al. (2006) have studied the impacts of a change in in-work benefits (the Working 

Families’ Tax Credit – WFTC) on labour market behaviour of families with children 

introduced in the U.K. in 1999. They designed a discrete choice structural model using micro-

data before and after the transfer program to evaluate the program’s incentives of the 

participation rate (through participation costs) and the effects on labour supply.   

In this work, the advantages coming from the structural model highlighted by the authors 

are: 

- separating effects of in-work benefits from other contemporaneous taxes and benefits 

changes; 

- controlling the program’s self-selection effects. 

The program was implemented at a national level and participation was contingent on 

eligibility criteria. Therefore it has been not design as a controlled experiment and this imply 

the lack of a control group.  

Authors indeed, model a structural model of labour supply including participation of 

eligible individuals; they follow a non-parametric identification approach relying just on 

functional form assumptions and considering as the source of variation the changes in taxes 

and benefits over time and different eligibility status of individuals, both acting through the 

budget constraint.  
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Having the data available, they validated the capability of the model to capture the labour 

force participation, hours worked and program participation by comparing the predicted 

values with the actual ones. They subsequently perform some counterfactual analysis 

concerning the effects of alternative combination of the tax and benefit system both for lone 

mothers and couple families. Finally, they compare their estimations with those of other 

studies concerning ex-ante evaluation of the same program with a structural model, ex-post 

evaluation exploiting a natural experiment and estimation of the same program in other 

countries.  

This work represents an example of another possibility to design a structural model to 

evaluate a counterfactual policy starting from the actual state of the world that supplies the 

necessary data to design the framework and to test the estimation of the suggested model. 

Moreover, without having a controlled experiment that provide the basis for the comparison, 

it is still possible to try to validate the model gleaning from other studies and analysis both ex-

ante and ex-post. 

Blundell (2006, 424-5) says: “As a precursor to the analysis I will have to convince you of 

the validity of the structural model estimates. For this I will make a comparison with a simple 

difference in difference evaluation strategy. Although not providing sufficient information for 

policy simulation or the assessment of optimality, simple difference in difference evaluations 

can be valuable for validating the specification of more fragile microeconometric models”. 

Remaining in the field of tax credit polices reforms in the U.K., Blundell (2006) evaluates 

the optimality of Earned Income Tax Credit Policies for lone parents in the U.K. and compare 

tax credit policy reforms in the U.S. (EITC) and the U.K. (WFTC). 

His methodology consists first in assessing the validity of a dynamic model of labour 

supply by comparing the estimation of the impact of the implemented policy with that of a 

difference in difference analysis. Once the structural model is validated he studies the 

optimality of tax credit policies. The analysis of optimality is driven by the consideration that 

many times labour economics just focuses on the analysis of the average impact of a reform. 

Here the author wants to investigate whether the mentioned policy is optimal for low income 

individual, this means focusing of the intensive margin
1
 of labour supply responses. The 

                                                           
1
 As Blundell, Bozio and Laroque (2013, 2) define: “(…) we split the overall level of work activity into the number 

of individuals in work and the intensity of work supplied by those in work. This reflects the distinction between 

whether to work and how much to work at the individual level and is referred to, respectively, as the extensive 
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objective is maximizing a well-behaved social welfare function subject to a government 

budget constraint. 

Even in this example, author notices that: “On their own quasi-experimental approaches do 

not identify all the parameters necessary to assess optimality” Blundell (2006, 433). This is 

because in their analysis they need to have an estimation of the elasticities of labour supply 

response, whereas quasi-experimental and experimental approaches estimate just the average 

treatment effect. Again, this represents the main limitation of these procedures that can be 

overcame through a structural approach. Nevertheless, authors themselves underline the need 

of exploiting in any case the contribution of this approach: “(…) they can be used to assess 

the validity of structural estimates of the elasticity parameters”, Blundell (2006, 433). 

Indeed, author proceeds by investigating the literature to define the characteristics of the 

structural model of labour supply including take up rate, and adopting a matching difference 

in difference approach to define the policy impact using data before and after the reform 

comparing potentially eligible parents with not eligible one in the control group and making 

assumptions on unobservables.  

The source of variation needed to identify the model come from housing costs and local 

taxation that, as always, acts through the budget constraints across individuals in the sample; 

instead, the specification of assumptions needed, in particular concerning unobserved 

heterogeneity, comes from related works.  

Finally, he runs the simulation of WFTC policy reform. He studies how the labour supply 

behaviour of individuals varies when parameters of tax and transfer system vary. 

Thoresen and Vattø (2013), put all their efforts in demonstrating how it is possible to 

reconcile the quasi-experimental approach with the structural one, given the growing 

dominance of the latter in the policy analysis. In the field of tax and benefits reform, authors 

follow the reasoning of Blundell (2006) and validate a discrete choice model of labour supply 

with a reduced form panel data analysis. An important topic in the field of taxation consists in 

the concept of elasticity of taxable income (ETI): a parameter that measures the response in 

taxable income to a change in the net-of-tax rate. They compare the “ETI literature” with the 

structural estimation. In the ETI literature, typically, panel data of actual labour income levels 

                                                                                                                                                                                     
and intensive margin of labour supply. At the aggregate level the former is typically measured by the number of 

individuals in paid employment and the later by the average number of working hours” 
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before and after the reform are used. The reform is necessary for identification, provided by 

panel data that gives net-of-tax rate variation across individuals and time. The approach 

involves the individual’s utility maximization subject to a budget constraint, using IV 

techniques to deal with endogeneity problems, and employing the difference-in-difference 

estimator.  

As authors say: “although the discrete choice labor supply model continues to be a key 

instrument for predicting policy changes, serious concerns have been raised about the ability 

of structural models to generate robust predictions about the effect of policy changes, (…), it 

is essential to use other source of information to validate the models” (see Thoresen and 

Vattø, 2013, 5). 

In this peculiar side of the literature, the comparison necessary for the validation of the 

structural model has to be made carefully since the ETI methodology estimates the average 

treatment effect for the treated, while the labour supply model gives us responses that differ 

along the income scale. To do so, first, the structural model estimate earning pre- and post-

reform under exogenous wage assumption and finally, the same regression framework of the 

ETI approach is used to estimate elasticities for the simulated earning levels. These estimation 

are compared with estimation obtained using reduced form panel data analysis. Results are 

similar.  

The aim is the one common for all policy analysis: the ETI methodology measures the 

average elasticities that follow a specific tax change reform and is not informative about other 

potential reform. Having a validated structural model may, therefore, overcome this 

limitation.  

To remain in the sphere of taxation implications, Bourguignon and Ferreira (2003), review 

ex-ante evaluation techniques based on estimation and simulation of structural econometric 

models of household behaviour. They model labour supply effects of tax-benefits systems in 

developed countries and simulate effects of potential reforms in those countries. They 

underline how ex-post analysis are undoubtedly useful, even if they are necessary but not 

sufficient alone to allow the policy maker to define the proper policies to achieve some 

desired results. When an ex-post analysis of an existing policy shows that some features have 

to be reformed, it then will turn to be essential to determine a list of possible alternatives and 

find the optimal one in term of outcomes and implementation costs. In order to do so, authors 
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define some counterfactuals which depend on changing of household behaviour once reforms 

are implemented. 

They affirm: “such an analysis is marginal because it is meant to capture differences from 

the status quo. Also, it is almost necessarily behavioral, because of the need to generate 

counterfactuals that take agent responses into account (…) this requires some model, which 

transforms the actual sample into the counterfactual one.” (see Bourguignon and Ferreira, 

2003, 3). 

Bernal and Keane (2010), compare the impact of maternal and alternative care providers’ 

time inputs on children’s cognitive development, since empirical studies in the literature show 

that this last one seems to be highly correlated with future labour market outcomes. In this 

interesting work, authors need to manage a problem of self-selection given that mother’s 

employment and childcare use decisions tend to be correlated with unobserved characteristics 

of mothers and children. Therefore, given a longitudinal data sample of lone mothers, they 

exploit some reforms concerning aids to families as an exogenous source of variation on the 

incentive to work/use childcare, essential to the identification of the effects of mother’s 

work/childcare decision on child outcomes. These effects are identified through a structural 

approach. Indeed, in their specification authors want to study the effect of the time dedicated 

by the mother to their children; for this reason, comparing just average outcomes under an 

instrumental variable approach may over-identify the impact since it will include the effect of 

changing not only time inputs but also good inputs. This aspect can be clearly handled by 

modelling a structural model of mother’s employment and childcare decision. Moreover, with 

such a model authors can manage the problem of unobserved heterogeneity affecting decision 

rules. In particular the methodology is called “quasi-structural” since they “approximate” 

decision rules for employment and childcare use and then estimates these ones jointly with a 

child cognitive ability production function and mother’s wage function. In this approach the 

difference with respect to a fully specified structural model is that the last one includes 

expectations about futures, in this case for example about changes in welfare rules.  

As for all structural models, the identification is granted by a natural exclusion restriction 

which in this case is the set of reforms that affect the decision rules for employment and child 

care use but do not enter the cognitive ability production function. Additional instruments 

(local demand conditions) are adopted and act in the same way.  
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Also in this case, a natural experiment is involved as a tool of validation of the structural 

estimations. Authors find similar results between structural estimation and IV approach using 

same instruments even if the selection bias is handled differently in the second one. 

It is interesting to note that authors list a series of previous works where problems of 

endogeneity have been handled differently, underlying how however, results seem 

inconclusive or that differ greatly between each other. They found that techniques that involve 

extensive sets of explanatory variables, fixed effects, value added models face with difficulty 

the problem of endogeneity or even not at all. Just the IV method deals well with it but, as 

authors say, using weak instrument ends up with a failure in estimation. To conclude, 

combining the power of using good instruments with a model that could deal with selection 

bias allow to obtain robust estimation. 

When the literature provides several studies on a certain subject, it would be very useful to 

compare final results, model’s formulation (a dynamic model rather than a static one, a 

binomial vs. a multinomial decision setting, and so on) assumptions (about functional forms, 

unobserved heterogeneity, individual preferences), to discuss estimation methodologies and 

obtain parameters estimates needed, for example, to calibrate the model.  

Obviously, these synergies are useful in all kind of researches, but when performing ex-

ante evaluation they are more. The goal is trying to develop a model investigating the actual 

context but also the economic theory to find the optimal estimation solution that suite the 

concrete specific case and is able to predict future scenarios. All this, having in mind the goal 

of replicability of the analysis and of the credibility of its predictive power. Modelling 

individuals behaviour in a predictive way can maybe be challenging and understand the 

optimal mix of behavioural assumptions can involve a great effort, as we have seen, that 

sometimes could reveal to be ineffective and imprecise. 

Ex-post evaluations that rely on experimental or quasi-experimental design do not really 

have to face behavioural modelling problem; their concern is observing what is happened and 

choosing the most suitable technique to analyse data and handling unobserved ones with 

consolidated techniques.  

The trade-off depends on the extent of the analysis. Ex-post analysis allow to achieve 

results that could be both internally and externally valid in a rather consolidated fashion, but it 

does not allow to explore beyond one specific question. Structural models instead, require a 
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greater effort in term of knowledges and computational burden in order to achieve some 

degree of replicability and validity, but with a notably greater analytical potential.  

This is why resolving the trade-off can be achieved through both approaches and when 

studying public interventions’ implications with structural models, it is very important to 

having a variety of examples as wide as possible available in order to resolve and simplify the 

drawbacks of the ex-ante techniques.  

An intelligent combination of all the methodologies insofar saw could, maybe, smooth out 

criticisms about policy evaluation techniques. Extrapolating the best from each approach 

allows to define a new efficient one that can answer to a wide range of policy analysis’ issues.  

Heckman (2010, 2) comparing structural models and “treatment effects” literature say: 

“The two approaches have much to learn from each other. A more active dialogue would 

benefit practitioners of both approaches. (…) A synthesis of some of the best features of both 

approaches would produce a better approach to the evaluation of social policy and of medical 

procedures”. 

1.3 COMBINING EX-POST AND EX-ANTE TECHNIQUES, AN EXAMPLE. 

(EDUCATION CHOICES IN MEXICO: USING A STRUCTURAL MODEL AND A 

RANDOMIZED EXPERIMENT TO EVALUATE PROGRESA) 

Attanasio, Meghir and Santiago (2012) evaluate PROGRESA, evolved subsequently in 

Oportunidades, the same program implemented in Mexico and previously studied by Todd 

and Wolpin, (2010a). The aim of the paper is still the same: analyse the effects of monetary 

incentives to education choices in that country, in order to incentivize school enrolment of 

poor children. By exploiting the rich dataset provided by the randomized social experiment, 

authors show how to combine them efficiently with a structural model of education choices in 

order to make ex-ante analysis. The difference with respect to the work of Todd and Wolpin, 

(2010a) is that here Attanasio, Meghir and Santiago (2012) choose the way of dynamic 

structural parametric estimation. Contrary to Todd and Wolpin, (2010a) that did not exploit 

the variability induced by PROGRESA, Attanasio, Meghir and Santiago (2012) estimate a 

structural model identified by the variation induced by the experiment (such that it is for sure 

exogenous) using both the treatment and control group. They stress the point that the marginal 

utility of the grant is different from the marginal utility of other sources of income, like wage. 

Therefore, exploiting the variation of the opportunity cost of schooling (wage), like Todd and 
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Wolpin (2010a), may have different implications on the program’s effect estimation. 

Moreover, authors estimate the general equilibrium effects that the program could have on 

children wages. They found that the program resulted in an increase in wage in the treatment 

group by reducing labour supply of children.  

The randomized experiment’s estimation suggest an effect of the program of the type of an 

inverted U-shaped, with a small impact for children aged 0-10, a peak between 10-14 and then 

declining again.  

The model is designed as follows: each child faces two alternatives: schooling or working; 

one option precludes the other; going school envisages the grant provided by the program and 

costs affected by observable and unobservables factors. Children are allowed to go to school 

up to the age of 17, so at 18 they recover the investment, modelled by a terminal value 

function. The grant received by PROGRESA is compared with the monetary reward of going 

work.  

The reason for choosing a dynamic model is motivated by the fact that when deciding 

about enrolment, each children face each year an option to continue or drop taking into 

account the structure of the program: grants are available for the last 3 years of primary 

school and the first 3 year of secondary school. Completing primary school gives eligibility 

for receiving secondary school’s grant. Then, the terminal value function depends on the 

highest grade completed. So current decisions affect future ones; there is a state dependence 

because the number of years of school completed affects utility of attending the current one.  

Authors also test for anticipation effects, given that in some areas the implementation of 

the program is delayed, but they have not found anyone.  

A careful specification of all costs and benefits of attending school is essential: benefits 

depends on the utility of attending school, childcare services provided by the school and past 

attendance. Household entitled to PROGRESA living in treatment villages receive the grade 

and gender-specific grant. 

Costs involve buying all what it is necessary to attend school, from books to clothes and 

transportation; in addition, it is considered the opportunity cost of attending school 

represented by the lost opportunity of receiving a salary.  
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So, utility function of attending school (𝑢𝑖𝑡
𝑠 ) depends on the grants received (𝑔𝑖𝑡) and on 

the remaining pecuniary and non-pecuniary costs or gains from attending school (𝑌𝑖𝑡
𝑠). (𝑌𝑖𝑡

𝑠) 

equation includes: a vector of taste shifter variables (that exclude household income since it is 

likely to be endogenous); the variable denoting attending primary or secondary school and the 

related costs; an extreme value added term i.i.d. over time and individuals, an element that 

introduces dynamics (in the sense that current schooling choices affect future grades and 

utility costs); and finally, a term representing unobservables (for the econometrician, but 

known for the individual) assumed to have constant impact over time.  

The utility function of not attending school (𝑢𝑖𝑡
𝑊) depends on the potential earnings when 

out of school (𝑤𝑖𝑡) and a costs-benefits variable (𝑌𝑖𝑡
𝑊) which is a function of the same factors 

above described, a part from school attendance and related costs.  

The model includes uncertainty represented by: first, the future costs of schooling that 

since affect future schooling choices also affects the current ones and second, by the 

possibility of failure in completing a grade.  

Value functions (for schooling and working) that takes the form of a Bellman equation, are 

modelled to design the comparison between current costs of schooling and future benefits and 

costs.  

Wages represent the opportunity costs for education; since wages are not observed for 

children who do not work, and the dynamic programming requires that individual predict 

future wages, authors model a wage equation. The equation serves to test the presence of 

general equilibrium effects of the program and predictions from this equation are used in 

place of actual wages.  

Finally, the presence of past education that creates dynamic effects involve an initial 

condition problem since the econometrician is not able to observe the entire history of 

schooling of each child. Authors solve the problem specifying a reduced form for educational 

attainment up to current date.  

Exogenous variability in the data is derived from the fact that among treated villages 

families eligible are those classified as “poor”. Moreover, the grant varies by grade attended 

but in the same grade there could be children of different ages. Therefore, the effect of the 

grant is identified by comparing across treatment and control villages, eligible and ineligible 

households and different ages within and between grades.  
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The model is estimated by maximum likelihood; different versions of the model are 

estimated and results compared. First of all, authors find that the dynamic model fits the data 

well and the estimation results match those obtained in the experimental design. The program 

effectively increase enrolment rate between primary and secondary school but the impact on 

children of primary school age is not big. Authors ran also simulation to changing some 

elements of the policies; in particular, in order to improve school participation more resources 

should be offered to older children. Results suggest that given the same amount of resources 

spent, the impact on school enrolment decision of older children is larger. The conclusion 

they stated is that the program should change its structure according to different age levels.  

Authors underline how it is important to have a fully specified structural model to 

understand all the mechanisms underlying agents’ behaviour. Only by modelling so 

accurately every aspects it is possible to understand where it is necessary to intervene and 

how; simulations are then useful to understand which future policies would be optimal in term 

of costs sustained and benefits achieved.  

The evidence is that only the development of such a precise structural model produce the 

emersion of several results and considerations that are useful in order to improve the reform’s 

design and achieve more effective results.  
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2 RETURNS TO EDUCATION 

Estimating returns to education represents an area of interest in labour economics that has 

always drawn the attention because of the importance since ever conferred to the role of 

human capital in economic growth
2
.  

Education indeed, is a component of the concept of human capital, therefore several 

studies have looked for a causal effects of years and quality of education on labour market 

outcomes, estimating the “returns to education”. Two important works that left an important 

trace are those by Mincer (1974) and Griliches (1977).  

In his famous book, Mincer (1974) developed the Mincerian wage regression, the starting 

point still currently adopted in this field of analysis, to represent the existing positive 

relationship between earnings, education and experience. This gave raise to further 

discussions concerning several econometric issues as Griliches (1977) pointed out in his 

work. For instance, he addressed the problem of the “ability bias”, discussing the role of 

ability in the Mincerian equation and the way it should be properly measured and interpreted. 

Moreover, when treating the endogeneity of schooling decision, he underlined an important 

aspect that prevents the estimation of the true causal effect of education. Griliches (1977,13) 

explained that:  

“Schooling is the result, at least in part, of optimizing behaviour by individuals and their families. This 

behaviour is based on some anticipated earnings function. To the extent that the “errors” (…) in the ex-post and 

ex-ante earning functions are correlated, they will be “transmitted” to the schooling equation and induce an 

additional correlation between schooling and these disturbances.”  

This discussion paved the way to the concept of heterogeneity in returns to schooling. It is 

just since recent decades that econometricians estimating returns to education has focused, 

more than the past, on the problem of heterogeneity in returns to education. 

Card (1999, 2001) dealt with the estimation of the causal relationship between education 

and earnings in the presence of heterogeneous returns to schooling; he presented a survey of 

the literature that applies IV using institutional changes in the education system and discuss 

the discrepancies between IV and OLS estimates. The evidence is that in a wide number of 

studies the IV estimates are much higher than OLS ones. One possible explanation advanced 

                                                           
2
See Mincer (1981), Solow (1957), Barro (1992), Becker (1962, 2009), Romer (1990), Lucas (1988), Schultz 

(1961), Jorgenson and Griliches (1967), just to cite a few.  
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by Cards, relies on heterogeneity in returns. In the model he adopted, based on Becker (1967), 

individuals make their schooling choice comparing costs and benefits, maximizing the 

discounted present value of net educational earnings. Given that aptitudes and tastes towards 

schooling vary among individuals, also marginal costs and returns vary and the optimal level 

of schooling will be heterogeneous. 

He explained these findings suggesting that the marginal returns to schooling in particular 

for those individuals coming from less-wealthy backgrounds, are higher than average 

marginal returns for the population. This is deducted by the fact that IV estimates marginal 

returns only for a sub-population and is not adapt to a population level estimation. Card 

(2001, 1156) said:  

“Institutional features like compulsory schooling or the accessibility of schools are most likely to affect the 

schooling choices of individuals who would otherwise have relatively low schooling. If the main reason that 

these individuals have low schooling is because of higher-than-average costs of schooling, rather than because of 

lower-than-average returns to schooling, then "local average treatment effect" reasoning suggests that IV 

estimators based on compulsory schooling or school proximity will yield estimated returns to schooling above 

the average marginal return to schooling in the population, and potentially above the corresponding OLS 

estimates.” 

This consideration can be treated as an important starting point to discuss the most recent 

literature concerning the estimation of returns to education.  

2.1 HOMOGENEOUS AND HETEROGENEOUS TREATMENT PARAMETERS 

Estimation of returns to education has put the focus onto managing the analysis of 

heterogeneous returns. Under this framework, conventional population level parameters and 

estimation methods could not be suitable; in this section, I introduce the development 

achieved in the literature. 

2.1.1 Estimating average effects 

The conventional population parameters estimated in the treatment literature (using the 

notation of Heckman and Vytlacil, 2007a) are: 

 ATE (j, k) = E (Y(j, ω) – Y(k, ω)) 

Where the mean effect of moving from program, state or treatment j to program, state or 

treatment k for individual ω is estimated. 
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Another conventional parameter is the Average Effect of the Treatment on the Treated 

(TT): 

 TT (j, k) = E (Y(j, ω) – Y(k, ω) | D (j, ω) = 1)  

Where D (j, ω), is the treatment status that assume value 1 if the individual receives the 

treatment, and 0 otherwise. It estimates the mean effect of moving from program, state or 

treatment j to program, state or treatment k for those individuals who get the treatment.  

Finally, in the same way, the treatment on the untreated (TUT) is defined in contrast as 

follows: 

 TUT (j, k) = E (Y (j, ω) – Y (k, ω) | D (j, ω) = 0). 

All these are “average effects”, valid at a population level. When average effects are 

constant across individuals or “homogeneous”, average and “marginal effects” are the same. 

In case of “heterogeneous treatment effects”, the opposite is true. It means that a certain 

program, policy or reform, does not allow all individuals to receive benefits of the same 

magnitude. This would be an interesting phenomenon to explore, since for example from a 

policy maker point of view, it would be useful to identify what portion of population would 

benefit of greater gains from an intervention than another one. 

Following the same line of reasoning of Card (2001), Angrist (2004) said that Instrumental 

Variable, identifies a causal effect which is internally valid for those individuals whose 

treatment status was affected by the instrument chosen. To be externally valid, the assumption 

needed is the one of homogeneity. “Basic IV assumptions identify causal effects on 

‘compliers’, defined as the subpopulation of treated individuals whose treatment status can be 

influenced by the instrument” (see Angrist, 2004, C53). This definition relates to the 

parameter introduced by Imbens and Angrist (1994), the Local Average Treatment Effect.  

2.1.2 Estimating marginal effects 

The literature concerning heterogeneous effects has been a focus of several studies; we can 

find at first the work of Heckman and Robb (1986) that considered a model of selection into 

training when the effects varies among individuals, and adopted alternative evaluation 

methods to estimate the effects of the treatment in case of non-random selection. 

Björklund and Moffitt (1987) produced one of the first work concerning returns to 

education under heterogeneous treatment effects. “One of the largest literatures in empirical 
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labor economics concerns the estimation of the determinants of the effects of various 

individual choices on wages”. (See Björklund and Moffitt, 1987, 42). In the literature many 

studies involve models of self-selection where individuals having different characteristics, 

both observables and unobservables to the researchers, internalize in their decision-process 

the knowledge and expectations they have formed about the realization of future returns, 

representing the outcome of a given educational path. This phenomenon is called indeed, 

selection on gains. Since returns are not constant across population, individuals self-select 

into the alternative that satisfy their own budget constraint. This means that the above 

described average population treatment effects do not coincide with the marginal ones.  

The work of Björklund and Moffitt (1987) introduced some concepts that have been 

widely studied in all subsequent works: Heckman and Honoré (1990) assessed the conformity 

of the Roy model to study a wide array of occupational choices. This model “(…) explain 

occupational choice and its consequences for the distribution of earnings when individuals 

differ in their endowments of occupation-specific skills”. (See Heckman and Honoré 1990, 

1121). Heckman, Smith and Clements (1997) stressed the importance of the existence of 

heterogeneity of impacts among individuals as opposed to the traditional evaluation literature 

that considers distributional issues of policy impacts as irrelevant. Finally, Heckman and 

Vytlacil (1999, 2000, 2005, 2007a, 2007b) developed a rich literature that addresses and 

unifies all these aspects.  

The main concept of this branch of the literature is resumed in this sentence  (see 

Björklund and Moffitt, 1987, 42):  

“The implications of heterogeneity in rewards -or heterogeneity in the rate of return- are many and 

interesting. First, we are able to estimate not only the average wage gain to the activity of those who are 

currently participating, but also the marginal wage gain of the individuals who are on the margin (…) Second, 

we show that (…) we can distinguish the wage gain from the welfare gain to the activity”.  

Authors contributed also to the definition of the Marginal Treatment Effect (MTE) a 

parameter of interest that researchers want to estimate under heterogeneous treatment effects 

framework. It can be defined as the impact of the treatment on those individuals at the margin 

of indifference about participation.  

Subsequently, Heckman (2001b, 107) said: 
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 “An important distinction is the one between evaluation models where participation in the program being 

evaluated is based, at least in part, on unobserved idiosyncratic responses to treatment and models where 

participation is not based on unobserved idiosyncratic responses. This is the distinction between selection on 

unobservables and selection on observables. The validity of entire classes of evaluation estimators hinges on 

whether or not they allow agents to act on unobserved idiosyncratic responses”. 

In next section, I present technical aspects of the methodologies used to estimate marginal 

treatment effects. 

2.2 ESTIMATING MARGINAL RETURNS TO EDUCATION: AN EXAMPLE FROM 

THE LITERATURE 

Carneiro, Heckman and Vytlacil (2011) estimates the Marginal Treatment Effect  of 

college participation exploiting a local version of instrumental variable.  

The framework is characterized by self-selection and idiosyncratic returns entering the 

decisional process. Thus, marginal and average returns to schooling are ex-post not the same. 

Anyway, it is possible to recover marginal returns at different points of the margin of 

indifference. This is achieved through a local version of instrumental variable (see Heckman 

and Vytlacil 1999, 2005, 2007b). The analysis allows to study how to obtain a marginal 

expansion in college attendance induced by a variation in the available instrument that not 

necessarily has to correspond to the variation induced by the policy under consideration.  

Using data from the National Longitudinal Survey of Youth (NLSY) of white males in 

1979 they show that returns to college vary across individuals that act knowing their 

idiosyncratic returns to education. The MTE (Marginal Treatment Effect) is central in the 

analysis because it allows to define all the conventional parameters of interest but also others 

that answer interesting policy questions, like the Marginal Policy Relevant Treatment Effects. 

The MTE is estimated in their work using a robust semiparametric selection model and 

continuous instruments. Comparing the return (identified by these parameters) of one year 

into college with results given by OLS and IV estimators, they find that both OLS and IV 

estimation of the Average Treatment Effects are upward biased. This finding just confirms the 

evidence resulting from the literature in this field. 

Returns to schooling are conventionally measured in monetary term, thus the impact that a 

certain number of years of education has on earnings. This is what precisely estimates the 

well-known  Mincer Equation, stated as follows: 
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 𝑌𝑖 =  α + β𝑆𝑖 + 휀𝑖 (1) 

Where, 𝑌𝑖 is the log wage for individual i, 𝑆𝑖 is a dummy indicating university enrolment, β 

is the parameter of interest identifying the return to education, and 휀𝑖 is the residual.  

Carneiro (2003), gives a precise definition of the causes of all problems of estimation in 

the Mincer equation, analysing the sources of heterogeneity. The first problem arising in this 

regression is the correlation between 𝑆𝑖  and 휀𝑖, the latter interpreted typically as unobserved 

ability. This is called the “selection in levels”, the conventional source of bias considered in 

the literature, typically called “ability bias”. It can be simply solved through conventional 

methods, like Instrumental Variables. Authors found that estimating the Mincer Equation 

through conventional methods demonstrate that returns,  β, vary across individuals, thus β is 

random. It is interpreted as the percentage increase in earnings due to an additional year of 

schooling. When it is correlated with 𝑆𝑖 it give raise to the selection on returns or on gains, 

interpreted as the condition of those individuals that decide to go to school because they are 

aware of the benefits they can retrieve from schooling, thus they exploit their knowledge 

about their own idiosyncratic returns. This means that the variables that determine returns to 

education in the outcome equation are correlated with the variables entering the selection 

process.  

Analysis made at the margin of indifference allows to recover the marginal return of a 

policy that expands the individual probability of attending university, thus the return of a 

policy that induces students, that otherwise would not have enrolled, to enrol. With standard 

IV procedures instead, the risk of overestimating returns is ran, because identification 

encompasses returns also of those students that would have enrolled a priori. Indeed, under 

standard IV procedures people induced to participation by a change in the instrument could 

not be the same as those induced to participation by a policy change. Authors found that the 

two procedures give results that differ substantially, with the IV results overestimated (0.0951 

for conventional IV and 0.0148 for estimated marginal returns). This because, marginal 

expansion of university participation attracts students with lower net returns than those of 

students already enrolled. 

Carneiro, Heckman and Vytlacil (2011) estimate the MTE adopting different estimation 

procedures in order to benchmark one against the other. The normal selection model gives 

precise estimations and show that: 
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- MTE, evaluated at mean values of 𝑿, is declining in 𝑈𝑠3 meaning that people with 

highest gross returns to schooling are more likely to enrol into college, and vice versa. 

This supports the evidence that individuals self-select into the sector where they have 

a comparative advantage.  

- Range of variation of returns is (-15.6%; 28.8%) but heterogeneity can be even larger 

considering two aspects: 

o The MTE is the average gain measured at each quantile of the desire to go to 

college; 

o Accounting for variation in 𝑿, the range expands from -31.56% to 51.02%. 

The semiparametric approach results confirms these findings, even if MTE estimates 

presents larger standard errors. 

2.2.1 The model 

Starting from the standard Mincer equation (1), Heckman, Carneiro and Vytlacil (2011) 

apply the generalized Roy model
4
 where:  

 𝑌1 =  𝜇1(𝑿) + 𝑈1  and  𝑌0 =  𝜇0(𝑿) + 𝑈0 (2) 

are the potential log wages that the individual would face if he decides to attend (𝑌1) or not 

(𝑌0) college, where: 𝜇1 = 𝐸(𝑌1|𝑿 = 𝒙) and  𝜇0 = 𝐸(𝑌0|𝑿 = 𝒙). 𝑿  are observable individual 

characteristics.  

Returns to schooling, or the individual treatment effect, are identified by 

 𝑌1 − 𝑌0 =  𝛽 =  𝜇1(𝑿) − 𝜇0(𝑿) + 𝑈1 − 𝑈0. (3) 

As pointed out by Carneiro, Heckman and Vylacil (2001), when 𝑈1 − 𝑈0 ≠ 0, 𝛽 varies in 

the population.  

The average treatment effect is defined as: �̅�(𝑥) = 𝐸(𝛽|𝑿 = 𝒙) = 𝜇1(𝒙) − 𝜇0(𝒙). 

Writing the outcome equation in potential outcome notation 

                                                           
3
  Notation is explained in next section;  𝑿 is the vector of observable individual characteristics and 𝑈𝑠 

corresponds to different quantiles of the unobserved component of the index of the desire to go to college.    
4
 See Heckman and Vytlacil (2007b). 
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 𝑌 =  𝑆𝑌1+(1-S)𝑌0 (4) 

And substituting equation (2) in (4), we obtain: 

 𝑌 =  𝜇0(𝑿) + 𝑆(𝜇1(𝑿) − 𝜇0(𝑿)) + 𝑈0 + 𝑆(𝑈1 − 𝑈0) (5) 

Where �̅�(𝑥) = 𝜇1(𝒙) − 𝜇0(𝒙), therefore, 

 𝑌 =  𝜇0(𝑿) + 𝑆�̅�(𝑥) + 𝑈0 + 𝑆(𝑈1 − 𝑈0) (6) 

Since participation into the program is voluntary, it is necessary to define the decision rule. 

To do so, a standard latent variable discrete choice model is adopted, where the individual’s 

net benefit of college attendance is given by: 

 𝐼𝑠 =  𝜇𝑠(𝒁) − 𝑉 (7) 

𝑆   is the dummy variable indicating college enrolment, 𝒁  is a vector of observable 

variables and 𝑉 unobservables to the econometrician. 𝐼 is a latent endogenous variable and 

𝑆=1 if 𝐼𝑠 ≥ 0 and 𝑆=0 otherwise.  

Assumptions stated are: 

i. 𝑉 is a continuous random variable with a strictly increasing distribution function 𝐹𝑉; it 

may depends on (𝑈1,𝑈0) in a general way. 

ii. 𝒁 may include some or all components of 𝑿 plus some variables excluded from it (the 

exclusion restriction). 

iii. (𝑈1, 𝑈0, 𝑉) is statistically independent of 𝒁 given 𝑿. 

iv. (𝑈1, 𝑈0, 𝑉) is statistically independent of 𝑿. 

v. 𝜇𝑠(𝒁) is a non degenerate random variable conditional on 𝑿 (existence of a valid 

instrument). 

vi. 𝑌1 and 𝑌0 have finite first moments (in order to define mean parameters). 

vii. 1 > Pr(𝑆 = 1|𝑋 = 𝑥) > 0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈ 𝑆𝑢𝑝𝑝 (𝑋) , this is required in order to 

assure the existence of treated and controls.  
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Monotonicity in 𝒁 is also required, in the sense that given certain values of an instrument, 

𝑧 and 𝑧′, 𝑆(𝑧) ≥ 𝑆(𝑧′) for all individuals, or 𝑆(𝑧′) ≥ 𝑆(𝑧) for all individuals, meaning that a 

certain instrument either induces individuals into schooling or not.  

The probability of attending college (the propensity score) is defined like:  𝑃(𝒛) ≡

Pr(𝑆 = 1| 𝒁 = 𝒛) = 𝐹𝑉(𝜇𝑠(𝒛)), (conditioning on 𝑿 left implicit). 

Under these assumptions, Vytlacil (2002) establishes that the model presented is equivalent 

to the LATE model of Imbens and Angrist (1994) under Index Sufficiency, that involves that 

𝒁 enters the conditional expectation only through 𝑃(𝒛).  

The Marginal Treatment Effect (MTE) is given by: 

 MTE (x, 𝑢𝑠) ≡ 𝐸(𝛽|𝑿 = 𝒙, 𝑈𝑠 =  𝑢𝑠) (8) 

With 𝑈𝑠 =  𝐹𝑉(𝑉) , uniformly distributed, where different value of 𝑈𝑠  corresponds to 

different quantiles of 𝑉 . Therefore, if 𝑆 = 1, 𝑃(𝒛) ≥ 𝑈𝑠. Representing MTE over different 

values of 𝑈𝑠, permits to see how “(…) returns vary with different quantiles of the unobserved 

component of the index of the desire to go to college” (see Carneiro, Heckman and Vytlacil, 

2011, 2756). If the MTE does not depend on 𝑢𝑠, marginal and average returns are ex-post the 

same, so the parameter identified would be �̅�(𝑥), the average treatment effects.  

The MTE is the mean return to schooling for individuals with characteristics 𝑿 = 𝒙 and 

𝑈𝑠 =  𝑢𝑠, so for an individual indifferent between going or not to college, whose 𝑃(𝒛) = 𝑈𝑠. 

Equation (8) tells us that MTE is “the expected treatment effect conditional on the 

unobservables that determines participation” (see Carneiro, Heckman and Vytlacil 2010, 379). 

Carneiro, Heckman and Vytlacil 2001, establish that the MTE is the limit of LATE when it 

exists.  

2.2.2 The Local Instrumental Variable estimator (LIV) 

The MTE can be estimated through the method of Local Instrumental Variable, by 

differentiating 𝐸(𝑌|𝑿 = 𝒙,   𝑃(𝒁) = 𝑝) with respect to p
5
, where, (leave the conditioning on 

𝑿 implicit): 

                                                           
5
 The importance of having continuous instruments is evident when computing this derivative; continuous 

instruments involve a continuous 𝑃, required to do this calculation. 
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 𝐸(𝑌|𝑃(𝒁) = 𝑝)  =  𝜇0 + �̅�𝑝 + 𝐸(𝑈1 − 𝑈0|𝑆 = 1, 𝑃 = 𝑝)𝑝 

=  𝜇0 + �̅�𝑝 + 𝐸(𝑈1 − 𝑈0|𝑃 ≥ 𝑈𝑠, 𝑃 = 𝑝)𝑝 

= 𝜇0 + �̅�𝑝 + ∫ 𝐸
𝑝

0

(𝑈1 − 𝑈0|𝑈𝑠 = 𝑢𝑠)𝑑𝑢𝑠
 

(8) 

Where 𝐸(𝑈1 − 𝑈0|𝑃 > 𝑈𝑠, 𝑃 = 𝑝)𝑝  is a control function involved in selection on 

unobservables analysis, and  

 𝜕𝐸(𝑌|𝑃(𝒁) = 𝑝) 𝜕𝑝⁄  = �̅� + 𝐸(𝑈1 − 𝑈0|𝑈𝑠 = 𝑝) (9) 

Therefore,  

 MTE (x, p) = �̅� + 𝐸(𝑈1 − 𝑈0|𝑈𝑠 =  𝑝) (10) 

is the Local Instrumental Variable Estimator (LIV) of Heckman and Vytlacil (1999).  

A simple graphical observation of this derivative allows to understand the magnitude of the 

heterogeneity. A flat derivative indicates that the heterogeneity has little impact in the 

evaluation, whereas nonlinearity indicates that there is selection on unobservables. Since 

typically standard IV impose linearity in 𝑃, IV would be a valid estimator only in absence of 

selection on unobservables.  

Indeed, estimating equation (6) with standard IV poses some problems; an instrument is 

valid if it affects the endogenous regressor and is not correlated with the error term in the 

outcome equation. From (6) 

 𝑌 =  𝜇0(𝑿) + 𝑆�̅�(𝑥) + 𝑈0 + 𝑆(𝑈1 − 𝑈0) (6) 

It is clear that: 

𝑝𝑙𝑖𝑚 �̂�𝐼𝑉 =
𝐶𝑜𝑣(𝑍, 𝑌)

𝐶𝑜𝑣(𝑍, 𝑆)
= �̅� +

𝐶𝑜𝑣(𝑍, 𝑈0)

𝐶𝑜𝑣(𝑍, 𝑆)
+

𝐶𝑜𝑣(𝑍, 𝑆(𝑈1 − 𝑈0))

𝐶𝑜𝑣(𝑍, 𝑆)
 

even if 𝐶𝑜𝑣(𝑍, 𝑈0) is = 0, 𝐶𝑜𝑣(𝑍, 𝑆(𝑈1 − 𝑈0)) = 𝐶𝑜𝑣(𝑍, 𝑈1 − 𝑈0|𝑆 = 1)𝑃, therefore the 

last term is not equal to zero because 𝑈1 − 𝑈0 is dependent on 𝑆.  

Linear instrumental variable is typically used when the goal is that of estimating the 

average returns to schooling, 𝛽. Under selection in levels, this method allows to estimate the 

average returns of schooling, either if 𝛽 is constant or a random variable, but not correlated 

with 𝑆. 
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Things change under heterogeneity, when 𝛽 is not only a random variable, but is also 

correlated with 𝑆 . Under these circumstances is not possible to identify a parameter that 

averages out the distribution of returns. 

Carneiro (2003, 4) says “(…) I find that the average person going to college has a higher 

return from the marginal person who is indifferent between enrolling in college or not. This 

suggests that heterogeneity is important and needs to be accounted for in policy analysis”. 

�̂�𝐼𝑉, estimated using 𝑃(𝒁) as an instrument can be derived from a weighted average of the 

MTE (see Carneiro, Heckman and Vytlacil, 2001). Moreover, all other parameters of interest 

can be retrieved in this fashion, as it is explained in next section.  

Given the empirical support of 𝑃(𝒁) (conditional on 𝑿), it is possible through the MTE to 

estimate the return to schooling for an individual indifferent between enrolling or not at all 

points of the margin of indifference, identified by unobservable factors entering the net 

benefit function. In other words, it is possible to identify the returns of a particular individual, 

identified by the quantile of the unobserved component of the desire to go to college (𝑈𝑠), 

induced to go to college by a marginal change in 𝑃(𝒁). By aggregating all instruments in 

𝑃(𝒁), it is possible to enlarge the support over which MTE can be estimated.  

This method avoids problems that arise when estimating LATE in case of multiple 

instruments; estimating LATE in case of selection on gains using multiple instruments is 

typically achieved through varying one instrument at a time; anyway, this procedure needs to 

account for the covariation of each instruments with the others. Adopting 𝑃(𝒁), it is possible 

to identify the contribution of each instrument in tracing out various regions of MTE function.  

From (10), you can understand that an individual at the margin is an individual for which 

the net benefit function is null; those with an high value of 𝑈𝑠  have therefore also an high 

value of 𝑃(𝒁), for which(𝑈𝑠 =  𝑝). In order to induce him or her participating, it is needed 

that instruments assume certain values that makes the p-score through a marginal increase 

higher than  𝑈𝑠. Instead, those individuals with low value of 𝑈𝑠, with 𝑃(𝒁) higher than 𝑈𝑠, 

face a positive net benefit function, thus are already enrolled; for these individuals, marginal 

increase in 𝑃(𝒁) is worthless.  

Once the MTE is estimated, Carneiro, Heckman and Vytlacil (2011) can retrieve 

parameters like the average return to college in the population, the average return to college 
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for students enrolled and also the standard IV estimator, just by creating weighted averages of 

the MTE
6
. 

The general formula that allows to identify all parameters of interest starting from the MTE 

is the following: 

 Parameter j= ∫ 𝑀𝑇𝐸
1

0
(𝑥, 𝑢𝑠)𝜔𝑗(𝑥, 𝑢𝑠)𝑑𝑢𝑠 , given 𝑥 (11) 

 

2.2.3 Policy Relevant Treatment Effects and Marginal Policy Relevant Treatment 

Effects 

Another parameter of interest is the Policy Relevant Treatment Effect (PRTE). 

Once the MTE is identified, the optimal policy that induces individuals at the margin of 

indifference to enrol can be identified. How? Authors choose a class of policies that modifies 

the probability of participation (p-score). An exclusion restriction is needed, indeed Carneiro 

(2003), sets the conditions needed to evaluate the policy relevant effect; the policy under 

investigation has to affect only the selection equation in order to rules out general equilibrium 

effects (this is the standard requirement stated in all structural models as already presented in 

Chapter 1); then, the policy has to operate only through one of the instruments selected, 

changing their values inside the support of the data. In the estimation of education’s returns 

typically, policies under consideration satisfying these conditions can be the change in tuition 

or distance to college. For example, Carneiro (2003), estimates the effect of subsidizing 

tuition in a fixed amount considering individuals that decide to enroll only if the subsidy is in 

place. The way in which this is modelled is the same already seen in other structural choice 

models (see Todd and Wolpin, 2010). The effect of a subsidy is equal to the reduction of 

tuition by a fix amount, e.g.  𝑍 − 𝛼 . Other subsidy schemes can be estimated too, like 

proportional tax reduction. 

The formula is derived as follows; (keeping conditioning on 𝑿  implicit in all that follows) 

starting from a Baseline Policy, the aim is calculating the mean effect for a person 

experiencing a change of a policy that influences its probability of participation into a certain 

program. Define 𝑆∗ as the treatment status under the Alternative Policy, 𝑌∗ as the outcome 

under the Alternative Policy, then if 𝐸(𝑆) ≠ 𝐸(𝑆∗),   

                                                           
6
See Heckman and  Vytlacil (2005) Table IB 
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 PRTE = 
𝐸(𝑌∗|𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑙𝑖𝑐𝑦)−𝐸(𝑌|𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑃𝑜𝑙𝑖𝑐𝑦)

𝐸(𝑆∗|𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑃𝑜𝑙𝑖𝑐𝑦)−𝐸(𝑆|𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑃𝑜𝑙𝑖𝑐𝑦)
= ∫ 𝑀𝑇𝐸

1

0
(𝑢𝑠)𝜔𝑃𝑅𝑇𝐸(𝑢𝑠)𝑑𝑢𝑠 (12) 

where, 𝜔𝑃𝑅𝑇𝐸(𝑢𝑠) are the policy weights that depend on the distribution of 𝑃∗ and  𝑃, the 

p-score under the alternative and baseline policy respectively. Therefore, this parameter 

identifies the average return for an individual that decide to enroll because the policy is in 

place but that would not enroll otherwise.  

The PRTE depends only on the distribution of 𝑃∗,which is the probability of participation 

after the policy change. PRTE function links the distribution of 𝑃∗  to the individual-

outcome’s change.  

The limitation of this method is that the PRTE can be difficult to identified because it 

requires that the support of  𝑃(𝒁) is the full unit interval, and it is not always the case. Indeed, 

as explained in Carneiro, Heckman and Vytlacil (2010, 386), “(…) suppose that the largest 

estimated probability of attending college is strictly less than 1. For analysing a tuition 

subsidy policy, it is possible that the largest probability of attending college under a tuition 

subsidy will be greater than the largest probability of attending college without a tuition 

subsidy, so the support condition for identifying the corresponding PRTE parameter is 

violated”. 

The evolution of the PRTE that requires only a weaker condition, is the marginal version 

of the PRTE: the Marginal Policy Relevant Treatment Effect (MPRTE), that identifies the 

marginal change from a baseline policy. It requires weaker assumptions because it only needs 

that the MTE is estimated within the support of the data, therefore the full unit support of 

𝑃(𝒁) is not required. MPRTE is derived placing positive weights on the MTE (x, 𝑢𝑠), for 

those values of 𝑢𝑠 where the density of 𝑃(𝒁) is positive. Thus, identifying MPRTE is still 

possible even if PRTE is not. Moreover, the MPRTE is a parameter useful in conducting cost-

benefit analysis of marginal policy changes.  

Carneiro, Heckman and Vytlacil (2010) specify all the conditions required to estimate the 

MPRTE. In particular, they say that “the essential requirement is availability of a continuous 

instrument”. This means that the necessary assumption is that 𝒁  contains a continuous 

variable, thus a continuous instrument for the treatment status variable. Under this condition, 

marginal policy changes can be analyzed and marginal policy treatment effects evaluated. The 

whole analysis is still conducted conditional on X. 



39 
 
 

 

Using sequences of PRTEs it is possible to define a marginal version of this parameter of 

interest. Following Carneiro, Heckman and Vytlacil (2010, 2011), the MPRTE can be derived 

as follows. 

Start by considering a baseline policy, for which the baseline probability that 𝐷 = 1 is 

𝑃0 = 𝑃(𝒁). 

Now take a sequence of policies indexed by a scalar variable α, with α=0 the baseline 

policy. Then, Pα is the corresponding probability of schooling, whose associated cumulative 

distribution function is denoted by Fα. 

Next, for each policy α, define the corresponding PRTE parameter. The corresponding 

MPRTE parameter is the limit of the sequence of PRTEs as α goes to zero. An example that 

relates to following chapters, is a policy that affects tuition fees. If the kth elements of 𝒁 is 

college tuition, and the policy subsidizes college tuition for example with grants, by a certain 

amount α, you will have Zα
k 

= Z
k 

+ α and Zα
j
= Z

j
 for j≠k. Carneiro, Heckman and Vytlacil 

(2011) estimate the MPRTE for policies concerning marginal change in tuitions and marginal 

changes in 𝑃. 

Therefore, MPRTE is derived as follows: 

 
𝑀𝑃𝑅𝑇𝐸({𝐹𝛼}) =  lim

𝜏→0
𝑃𝑅𝑇𝐸(𝐹𝜏) =  ∫ 𝑀𝑇𝐸

1

0

(𝑢𝑠)𝜔𝑀𝑃𝑅𝑇𝐸(𝑢𝑠; {𝐹𝛼})𝑑𝑢𝑠 (13) 

A practical issue in the estimation of the MPRTE concerns how to deal with the 

conditioning set of observed variables 𝑿. Following Carneiro, Heckman and Vytlacil (2010), 

if the conditioning set contains only discrete elements the nonparametric estimation is still 

possible; however, as noted in Carneiro, Heckman and Vytlacil (2011) by imposing stronger 

assumptions, specifically invoking parametric assumptions on the joint distribution of the 

unobservables and independence between unobservables and (𝑿, 𝒁), it is possible to identify 

the MTE over the unconditional support of P, not on the support of P conditional on 𝑿. 

An interesting objective that can be achieved through evaluation of public policy is 

performing a cost-benefit analysis. Carneiro, Heckman and Vytlacil (2010, 2011) state that 

the parameter of interest in this sense is the MPRTE. In particular, they link this parameter to 

the Average Marginal Treatment Effect (AMTE), defined as: “the average effect of treatment 

for the marginal person who is indifferent between participation and non participation”. Cost-
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benefit analysis can be achieved comparing average marginal returns to average marginal 

costs of policy implementation. 

AMTE relies on a certain metric; it considers individuals who are arbitrarily close to the 

margin of indifference, so it takes into account a measure of distance between 𝑃(𝒁) and 𝑈𝑠 

that identifies the indifference set.  

Given a certain metric 𝑚(𝑃, 𝑈𝑠), the AMTE is defined as follows: 

 
𝐴𝑀𝑇𝐸 = lim

𝑒→0
𝐸[𝑌1 − 𝑌0|𝑚(𝑃, 𝑈𝑠) ≤ 𝑒] = ∫ 𝑀𝑇𝐸

1

0

(𝑢𝑠)𝜔𝐴𝑀𝑇𝐸(𝑢𝑠)𝑑𝑢𝑠 (14) 

Where weights, 𝜔𝐴𝑀𝑇𝐸(𝑢𝑠), depends on the metric chosen. 

Both MPRTE and LATE estimate marginal effects; LATE “measures the mean gross 

return to treatment for individuals induced into treatment by a change in an instrument”. It 

estimates “the mean return at the margin defined by manipulation of the instrument”. (see 

Heckman, 2010, 15). Anyway the substantial difference is that in the case of LATE the 

instrument variation has to correspond exactly to the policy variation and different 

instruments produces different estimates (e.g. exploiting variation over an instrument like 

distance to college does not produce the same estimate that would be obtained exploiting the 

variation in tuitions). Moreover, the LATE approach does not require the specification of a 

choice equation. This means that it is not possible to identify the margin of choice traced out 

by variation in instruments. 

2.3 ESTIMATION’S PROCEDURE OF MTE AND MARGINAL POLICY EFFECTS 

Heckman, Urzua and Vytlacil (2006) specify different estimation alternatives to derive the 

parameters of interest presented in the previous paragraph. In particular, the first step consist 

in the estimation of the propensity score; this is done by adopting a Probit model by authors, 

but other techniques can be adopted (e.g. the Logit model as in Carneiro, Heckman and 

Vytlacil, 2011). 

The main point concerns the second step, that is the estimation of the MTE. Methods 

explained by Heckman, Urzua and Vytlacil (2006) can be pooled in two main categories: the 

parametric and the semiparametric approach of structural models; within each category, they 

specify two procedures, as listed below: 
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 The parametric approach: 

o Under normality assumption; 

o Relaxing normality assumption (using a polynomial for the propensity score); 

 The semiparametric approach: 

o The LIV estimator; 

o Semiparametric approach with more structure (mixing polynomial 

approximation method and LIV). 

Reconnecting to the model of Carneiro, Heckman and Vytlacil, (2011) previously 

discussed, they adopt a Normal Selection Model for what concerns the parametric estimation, 

and the LIV estimator afterwards, which is the main focus of their work. Under the first 

procedure, more structure is required with respect to the LIV estimator approach. In 

particular, the main parametric assumption invoked is that the joint distribution of (𝑈0, 𝑈1, 𝑉) 

is normally distributed and independent of (𝑿, 𝒁) . Under this assumption, the outcome 

equation is estimated through Maximum Likelihood estimator. Authors argue that the 

parametric estimation is less flexible but more precise than the semiparametric one. 

Nevertheless, since normality is a strong assumptions, the results produced under this method 

are compared with that of the semiparametric approach. 

In what follows, I discuss first the parametric approach and then the semiparametric one.  

2.3.1 Sample Selection Model 

The Sample Selection Model of Heckman was developed in Heckman (1979). In this 

section I discuss this topic, providing details and development of this method.  

Heckman developed the model in order to estimate behavioural functions in case of 

“omitted variable” bias. This bias results from non-random selection of sample, therefore is 

also called sample selection bias. When non-random selection arises from individuals’ self-

selection into treatment we talk about self-selection bias. Heckman (1979) developed this 

model to deal with cases of limited dependent variable. To explain this, consider for example 

a wage equation; when estimating it, it is possible to observe earnings only for a certain 

subgroup of the population, which is not randomly selected, but has self-selected on the base 

of some unobserved factors. 
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This model is particularly important in the heterogeneous treatment effect literature, 

because it has put the basis for the development of the estimation procedures needed for the 

identification of the MTE. What is particular important in the estimation of the MTE using 

parametric or semiparametric approach instead of IV approach, is that we are able to precisely 

specify the margin of indifference.  

Heckman’s Nobel Lecture contributed to the further developments in the identification of 

the parameters of interests considered in policy evaluation. Heckman (1979) presented his 

techniques modelling labour supply to identify the determinants of wages of working women.  

For what concerns returns to schooling, through  a structural model as the Generalized Roy 

model, it is possible to model both the outcome and choice equations as it has been explained 

in section 3.2.1. In particular, modelling schooling choice is important given endogeneity of 

the dummy variable indicating schooling status; here the selection bias arises because some 

determinants of the schooling choice equation affects the wage equation. 

Heckman sample selection model relies on the use of the Inverse Mill’s Ratio (see 

Heckman, 1979 for more details). It is implemented in the famous Heckman two-step 

estimator to estimate the outcome regression.  

The sample selection model involves two equations, the outcome and the selection 

equation. In case of returns to education, the selection equation indicates that we are 

observing wages of graduates only if the selection equation is positive. This equation tells us 

how the selection process works. 

Indeed, in the original sample selection model of Heckman, the selection equation defines 

that you can observe the dependent variable in the outcome equation only if the selection 

equation is above a certain threshold, e.g. is positive. For those individuals not selected into 

program/treatment/status you cannot observe the counterfactual. Therefore, the dependent 

variable in the outcome equation is incidental truncated, that means that it is the result of a 

sample selection mechanism
7
.  

Now I present the main features of the sample selection model; this allow to understand the 

estimation procedures that are useful to our analysis.  

Following Greene (2005) and Vella (1998), the sample selection model is structured as 

follows: 
                                                           
7
 For more details about truncation and censoring see Greene (2005) and Heckman (1979). 
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 𝑦𝑖
∗ = 𝒙𝒊

′𝜷 + 휀𝑖; 𝑖 = 1, … , N (i) 

 𝑑𝑖
∗ = 𝒛𝒊

′𝜸 + 𝑣𝑖; 𝑖 = 1, … , N (ii) 

 𝑑𝑖 = 1(𝑑𝑖
∗ > 0) (iii) 

 𝑦𝑖 = 𝑦𝑖
∗ ∗ 𝑑𝑖 (iv) 

 

𝑦𝑖
∗ is the latent endogenous variable, whose counterpart is 𝑦𝑖 which can be observed only if 

𝑑𝑖 = 1 ;𝑑𝑖
∗  is the latent variable indicating the sample selection. 𝒙𝒊

′  and 𝒛𝒊
′ are vectors of 

exogenous variables and the exclusion restriction is that 𝒛𝒊
′ contains at least one element not 

contained in 𝒙𝒊
′; 𝜷  and 𝜸  are vectors of unknown parameters. 휀𝑖 and 𝑣𝑖 are zero mean error 

terms and have nonzero correlation. The entire sample is made of N individuals and n is the 

number of individuals for which 𝑑𝑖 = 1.  

The standard assumption [A1] tells that, the error terms (휀𝑖 ,𝑣𝑖) are bivariate normally 

distributed with correlation 𝜌[(휀𝑖,𝑣𝑖)~𝑁(0,0,1, 𝜎𝜀 , 𝜌)] and they are independent of 𝒛𝒊
′. 

Under this assumption it follows that:  

 𝐸[𝑦𝑖
∗|𝒙𝒊

′, 𝑑𝑖
∗ > 0] = 𝐸[𝑦𝑖

∗|𝒙𝒊
′, 𝑑𝑖 = 1] 

= 𝒙𝒊
′𝜷 + 𝐸[휀𝑖|𝑑𝑖 = 1] 

= 𝒙𝒊
′𝜷 + 𝐸[휀𝑖|𝑣𝑖 > −𝒛𝒊

′𝜸] (v) 

Since (휀𝑖,𝑣𝑖) are bivariate normally distributed, we can know the truncated joint density 

given the truncated normal distribution formula from Greene (2003, 757). Given a continuous 

random variable x with pdf f(x) and be a  a constant, the density of the truncated random 

variable is: 

𝑓(𝑥|𝑥 > 𝑎) =
𝑓(𝑥)

𝑃𝑟𝑜𝑏(𝑥 > 𝑎)
 

If 𝑥 is normally distributed with mean μ and variance 𝜎, 𝑃𝑟𝑜𝑏(𝑥 > 𝑎) = 1 − Φ(
a−μ

𝜎
), with 

Φ(∙)  the standard normal cumulative distribution function. Therefore the density of the 

truncated normal distribution is: 

𝑓(𝑥|𝑥 > 𝑎) =
𝑓(𝑥)

1 − Φ(
a − μ

𝜎 )
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Given a random variable with a truncated normal distribution, the truncated mean is: 

𝐸(𝑥|𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛) = 𝜇 + 𝜎𝜆(𝛼) 

With 𝛼 =
a−μ

𝜎
; 𝜆(𝛼) is the so called Inverse Mills Ratio, equal to: 

 𝜙(𝛼)/[1 − Φ(𝛼)] if truncation is 𝑥 > 𝑎; 

 −𝜙(𝛼)/Φ(𝛼) if truncation is 𝑥 < 𝑎. 

Where 𝜙(∙)  and Φ(∙)  are respectively the probability density and the cumulative 

distribution function of the standard normal distribution.  

Considering these formulas, Greene (2003), defines the moments of the Incidentally 

Truncated Bivariate Normal Distribution; if y and z have a bivariate normal distribution, with 

mean 𝜇𝑦  , 𝜇𝑧 , standard deviation 𝜎𝑦  , 𝜎𝑧 and correlation 𝜌, the truncated mean is: 

𝐸(𝑦|𝑧 > 𝑎) = 𝜇𝑦, + 𝜌𝜎𝑦 𝜆(𝛼𝑧) 

With 𝛼𝑧 =
a−𝜇𝑧 

𝜎𝑧 
 , and 𝜆(𝛼𝑧) =  𝜙(𝛼𝑧)/[1 − Φ(𝛼𝑧)]. 

Therefore, given the properties of the incidentally truncated distribution and in particular 

from the truncated mean formula, it follows that equation (v) can be written as: 

 𝐸[𝑦𝑖
∗|𝒙𝒊

′, 𝑑𝑖 = 1] = 𝒙𝒊
′𝜷 + 𝜌𝜎𝜀 𝜙(−𝒛𝒊

′𝜸)/[1 − Φ(−𝒛𝒊
′𝜸)] 

= 𝒙𝒊
′𝜷 + 𝜌𝜎𝜀 𝜆(−𝒛𝒊

′𝜸) (vi) 

From (vi) is clear that the least square regression of  𝑦𝑖 on 𝒙𝒊
′ in the observed data cannot 

allow to consistently estimate 𝜷, this because of the second term in the right hand side of (vi) 

which is different from zero (𝜌𝜎𝜀 ≠ 0 for assumption) and because the inverse Mills ratio 𝜆(-

𝒛𝒊
′𝜸) is correlated with 𝒙𝒊

′ in particular if the two vectors 𝒙𝒊
′ and  𝒛𝒊

′ contain common variables. 

Only introducing a term that accounts for 𝐸[휀𝑖|𝑑𝑖 = 1] ≠ 0 , it is possible to obtain a 

consistent estimate, otherwise one would incur in the specification error of an omitted 

variable problem. 

An interesting extension of this model consists in the Treatment Effect Model, that is 

particularly interesting for the analysis presented in this dissertation and represents the setting 

shown in the paper by Carneiro, Heckman and Vytlacil (2011).  
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2.3.2 Endogenous Treatment Effect Model 

 𝑦𝑖 = 𝒙𝒊
′𝜷 + 𝛿𝑑𝑖 + 휀𝑖; 𝑖 = 1, … , N (vii) 

 𝑑𝑖
∗ = 𝒛𝒊

′𝜸 + 𝑣𝑖; 𝑖 = 1, … , N (viii) 

 𝑑𝑖 = 1(𝑑𝑖
∗ > 0) (ix) 

This model indeed has been widely applied in the literature to study returns to education. 

Therefore, as shown in Greene (2003) consider equation (vii) as the earning equation and 

equation (viii) the program participation equation indicating whether the individual attends 

college or not. Since the framework is that of selection on gains, estimating equation (vii) 

with conventional methods like OLS would produce a biased estimate; indeed individuals 

who self-select into college are the ones with higher returns. Since 𝜷  differs across 

individuals and it is in general found to be different from the average 𝜷 for the population, 

�̅�, then the sorting gain is defined as 𝐸[𝜷 -�̅�|𝑆 = 1]. 

When the sorting gain exists, the relation between the most known parameters estimated is 

TT>ATE>TUT, because those who decide to select into schooling are those who retrieve an 

higher returns from it. 

Since 𝑣𝑖and 휀𝑖 are correlated, keeping the same assumption [A1] of the sample selection 

model, and keeping in mind equation (vi), the estimation turns to be: 

 𝐸[𝑦𝑖|𝒙𝒊
′, 𝑑𝑖 = 1] = 𝒙𝒊

′𝜷 + 𝛿 + 𝜌𝜎𝜀 𝐸[휀𝑖|𝒙𝒊
′, 𝑑𝑖 = 1] 

= 𝒙𝒊
′𝜷 + 𝛿 + 𝜌𝜎𝜀 𝜆(-𝒛𝒊

′𝜸) (x) 

Then, by symmetry of the normal distribution, 𝐸[휀𝑖|𝒙𝒊
′, 𝑑𝑖 = 0] = 𝐸[휀𝑖|𝑣𝑖 < −𝒛𝒊

′𝜸] =

𝐸[휀𝑖|𝑣𝑖 > 𝒛𝒊
′𝜸] =  𝜙(𝒛𝒊

′𝜸)/[1 − Φ(𝒛𝒊
′𝜸)]; so, for individuals that do not select into treatment, 

 𝐸[𝑦𝑖|𝒙𝒊
′, 𝑑𝑖 = 0] = 𝒙𝒊

′𝜷 − 𝜌𝜎𝜀 𝐸[휀𝑖|𝒙𝒊
′, 𝑑𝑖 = 0] 

= 𝒙𝒊
′𝜷 − 𝜌𝜎𝜀 𝜆(𝒛𝒊

′𝜸) (xi) 

Consequently, the average treatment effect is: 

 𝐸[𝑦𝑖|𝒙𝒊
′, 𝑑𝑖 = 1] − [𝑦𝑖|𝒙𝒊

′, 𝑑𝑖 = 0] = 𝛿 + 𝜌𝜎𝜀 
𝜙𝑖

Φ𝑖[1 − Φ𝑖]
⁄  

(xii) 
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From (xii) it is clear that by simply estimating (vii) by OLS omitting 𝜌𝜎𝜀 
𝜙𝑖

Φ𝑖[1 − Φ𝑖]
⁄  

produce a biased estimate of the true treatment effect. 

2.3.3 Parametric estimation  

The normal sample selection model and its extension as treatment effect model, can 

traditionally be estimated in two ways: 

 Through the two-step estimator of Heckman (1979); 

 Through Maximum Likelihood.  

2.3.3.1 The two step estimator 

The two- step estimator for the sample selection model involves: 

- A first step in which a binary Probit model is applied to estimate the selection 

equation through maximum likelihood; this allow to estimate  𝜸. Since 𝒛𝒊
′ is observed, 

using �̂�, it is possible to obtain an estimation of the inverse Mills ratio  𝜆𝑖, therefore �̂�𝑖. 

- The second step consists in the least square regression of 𝑦𝑖 on 𝒙𝒊
′ and the additional 

term  �̂�𝑖 .this regression takes the form of: 

 𝑦𝑖 = 𝒙𝒊
′𝜷 + 𝜇�̂�𝑖 + 𝜂𝑖 (xiii) 

With 𝜇 = 𝜌𝜎𝜀, and 𝜂𝑖 a generic zero mean error uncorrelated with the regressor. 

This method is also called control function estimator. 

Given the formula of the variance of the incidentally truncated bivariate normal 

distribution (see Greene, 2003, 781): 

𝜎𝑖
2 = 𝜎𝜀

2(1 − 𝜌2𝛿𝑖), 𝑤𝑖𝑡ℎ 𝛿𝑖 =  𝜆𝑖(𝜆𝑖 − 𝒛𝒊
′𝜸) 

It is possible to estimate all the parameters of the model.
8
 

Finally, a t-test for 𝜇 = 0 is a test for the sample selectivity bias. 

In case of the endogenous treatment effect model, equation (xiii) becomes: 

                                                           
8
Greene (2003, 2005) demonstrated that the covariance matrix for least square estimator as it is conventionally 

estimated is inappropriate in this model, anyway, Heckman (1979) provided the appropriately correction. 
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 𝑦𝑖 = 𝒙𝒊
′𝜷 + 𝜃𝑑𝑖 + 𝜇�̂�𝑖 + 𝜂𝑖 (xiii) 

And the first step leads to obtain a Probit residual (estimation of 𝜆𝑖 using �̂�), that is called 

the generalized residual from the Probit model and takes the form of: 

 �̂�𝑖 = 𝑑𝑖 ∗
𝜙(𝒛𝒊

′�̂�)

Φ(𝒛𝒊
′�̂�)

+ (1 − 𝑑𝑖)
−𝜙(−𝒛𝒊

′�̂�)

Φ(−𝒛𝒊
′�̂�)

 
(xiv) 

From Vella (1998, 136), important properties of this residual are stated:  

“First, it has mean zero over the whole sample. Second, it is uncorrelated with the variables that appears as 

explanatory variables in the first step Probit model. (…) This model is identified without exclusion restrictions 

due to the nonlinearity of the residual. Also note that the generalized residual is uncorrelated with the 𝒛𝒊
′𝑠, over 

the whole sample, by construction. Thus the consequences of high degree of collinearity between the generalized 

residual and the  𝒛𝒊
′𝑠, which is a concern in the sample selection model, does not arise”. 

The two-step estimator has also been revised in the literature in order to accommodate 

criticism about the strong distributional assumption imposed. Therefore, as explained in Vella 

(1998) and Greene (2003), alternative methods like the Semi-parametric two-step estimation 

has been investigated. See also Heckman, Urzua and Vytlacil (2006) that suggest the adoption 

of a parametric approach using a polynomial approximation for the propensity score to 

estimate the marginal treatment effect under heterogeneity conditions.  

2.3.3.2 The Maximum Likelihood estimator 

Under assumption [A1] the average log likelihood function to maximize is: 

 

𝐿 =
1

𝑁
∑ {𝑑𝑖 ∗ 𝑙𝑛 [∫ 𝜙𝜀𝜈(𝑦𝑖 − 𝒙𝒊

′𝜷, 𝑣)𝑑𝑣
∞

−𝒛𝒊
′𝜸

] + (1 − 𝑑𝑖)

𝑁

𝑖=1

∗ [𝑙𝑛 ∫ ∫ 𝜙𝜀𝜈(휀, 𝑣)𝑑휀𝑑𝑣
∞

−∞

∞

−𝒛𝒊
′𝜸

]} 
(xv) 

With  𝜙𝜀𝜈 the probability density function of the bivariate normal distribution. 

From Vella (1998), “when the model is estimated by maximum likelihood the parameter 

estimates are fully efficient”. Also in this case, there have been various attempts in the 

literature to estimate under ML relaxing normality assumption; see the discussion in Vella 

(1998) for more details.  
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Carneiro, Heckman and Vytlacil (2011) estimate the normal selection model through 

Maximum Likelihood. Under the assumption that the joint distribution of (𝑈0, 𝑈1, 𝑉)  is 

normally distributed and independent of (𝑿, 𝒁) with the variance of 𝑉normalized to 1, they 

adopt a linear-in-the-parameter model, assuming separability between 𝑿 and (𝑈0, 𝑈1), with 

equations (2) and (7) becoming: 

 𝑌1 =  𝛿1𝑿 + 𝑈1 and  𝑌0 =  𝛿0𝑿 + 𝑈0 (2’) 

 𝐼𝑠 =  𝛾𝒁 − 𝑉 (7’) 

Therefore, writing equation (2’) with potential outcome notation, we obtain: 

 𝑌 = 𝛿0𝒙 + 𝑆𝒙(𝛿1 − 𝛿0) + 𝑈0 + 𝑆(𝑈1 − 𝑈0) (5’) 

Carneiro, Heckman and Vytacil (2003), show that combining the model for 𝑆 with the 

model for 𝑌 implies a partially linear model for the conditional expectation of 𝑌: 

 𝐸(𝑌|𝑿 = 𝒙,   𝑃(𝒁)) = 𝛿0𝒙 + 𝑃(𝒁)𝒙(𝛿1 − 𝛿0) +  𝐾(𝑃(𝒁)) (8’) 

Where 𝐾(𝑃(𝒁)) = 𝐸(𝑈1 − 𝑈0|𝑃(𝒁), 𝑆 = 1)𝑃(𝒁) = 𝐸(𝑈1 − 𝑈0|Φ(𝑈𝑠) ≤ 𝑃(𝒁)𝑃(𝒁), and 

(𝛿1 − 𝛿0)  is the coefficient of the interaction between 𝑃(𝒁) and 𝒙. In Carneiro, Heckman and 

Vytlacil (2003) testing the linearity of this equation is a way to test for selection on the 

individual returns to attending college; Nonlinearity in 𝑃 means that there is heterogeneity in 

the returns to college attendance and selection on gains  (conditional on 𝑿).  

Deriving (8’) with respect to p, we are able to estimate the marginal treatment effect. 

 MTE (𝐱, 𝑢𝑠) = 𝒙(𝛿1 − 𝛿0) + E(𝑈1 − 𝑈0|𝑈𝑠 =  𝑢𝑠) 

= 𝒙(𝛿1 − 𝛿0) + E(𝑈1 − 𝑈0|𝑉 =  Φ−1(𝑢𝑠)) 

                        = 𝒙(𝛿1 − 𝛿0) − (𝜎1𝑉 − 𝜎0𝑉) Φ−1(𝑢𝑠) (10’) 

With, Φ−1(∙) the inverse of the standard normal cumulative distribution function. A test 

for heterogeneous effects require to test if the slope of the MTE is equal to zero, which means, 

testing if (𝜎1𝑉 − 𝜎0𝑉) = 0. 
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2.3.4 The LIV estimator 

The innovation of Heckman and Vytlacil (1999) allows to exploit a semiparametric 

estimation of the parameters of interest that overcomes the concerns raised up about the 

strong parametric assumptions required in the previously seen approach. As explained in 

Carneiro, Heckman and Vytlacil (2001, 3) “The contrast often made in the empirical literature 

between IV and selection models is a false one. Recently developed IV methods are special 

cases of nonparametric selection models”. 

Start by estimating 𝑃(𝒁) through Probit or Logit regression, as we have seen before. This 

step allows to identify the support of 𝑃(𝒁) on which MTE will be estimated. Depending on 

the underlying assumptions, it will vary. Indeed, assuming that (𝑈0, 𝑈1, 𝑉) is independent of 

𝒁 given  𝑿, Carneiro, Heckman and Vytlacil (2011) show that the support of the propensity 

score shrinks with respect to the full unit interval
9

. Whereas, invoking the stronger 

assumption for which (𝑈0, 𝑈1, 𝑉) is independent of (𝒁,𝑿), the support is almost the full unit 

interval.  

The subsequent step consist in using 𝑃(𝒁)̂  to estimate a partially linear regression of 𝑌 on 

𝑿 and 𝑃(𝒁). This step allow to identify 𝛿1 and 𝛿0. 

Estimating a partially linear regression under the assumptions of separability and 

independence between 𝑿 and unobservables, presents the important advantage of relying only 

on the marginal support of 𝑃(𝒁), instead of investigating the support of 𝑃(𝒁) conditional on 

𝑿.  

The term  𝐾(𝑃(𝒁)) in equation (8’) is an unknown function that must be estimated non 

parametrically. Carneiro, Heckman and Vytlacil (2006, 2011) use a local polynomial 

estimation for the estimation of 𝐾(𝑃(𝒁)) and its derivative with respect to 𝑃(𝒁), necessary 

for the identification of the MTE. Their approach suggests: from equation (8’),  

 𝐾(𝑃(𝒁)) = 𝐸(𝑌 − 𝛿0𝒙 + 𝑃(𝒁)𝑿(𝛿1 − 𝛿0)|𝑃(𝒁))  

From which, 𝐾(𝑃(𝒁))  results from the local polynomial regression of 𝑌 − 𝛿0̂𝒙 +

�̂�(𝒁)𝑿(𝛿1̂ − 𝛿0̂) on �̂�(𝒁). Carneiro, Heckman and Vytlacil (2003) instead estimate 𝐾(𝑃(𝒁)) 

                                                           
9
 Given that 𝑿 is multidimensional they consider an index as:  𝑿[𝛿1 − 𝛿0]. 
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through local linear regression. Carneiro (2003) estimate equation (8’) using both approaches, 

a local linear regression using a biweight kernel and then polynomials in 𝑃. 

Details about semiparametric LIV estimator estimation are presented in Heckman, Urzua 

and Vytlacil (2006). 
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3 FUNDING HIGHER EDUCATION IN THE U.K. 

Investments in human capital is a major concern for governments of all countries. 

Designing reforms aimed at promoting education at all levels is an activity that could focus on 

broadening the participation to education among citizens and/or enhance the efficiency of the 

services provided, for instance by ameliorating the quality of teaching.  

In what follows, I introduce the functioning of the higher education system in the U.K., 

focusing on the aspect of the costs of access and the related reforms.  

3.1 HIGHER EDUCATION REFORMS IN THE U.K.: FROM 1960S TO OUR DAYS.  

Data from the Higher Education Statistics Agency (HESA) show Higher Education (HE) 

students’ enrolments from the academic year (a.y.) 2009/10 to 2013/14; considering 

undergraduates students, enrolments remained more or less stable until a.y. 2011/12 followed 

by a large decrease of 6 percentage points in 2012/13, in correspondence to changes in tuition 

fees. (The fee’s cap has been increased to £9,000 for new entrants from 2012/13)
10

. The 

decline continued by another 2% between 2012/13 and 2013/14.  

At first glance, an overview of the situation over the last years catches the attention on the 

relationship between university enrolment and tuition fees/grants changes over time.  

Wyness (2010) states that in the last 50 years, students’ volume in higher education sector 

in the U.K. has more than quadrupled. Nonetheless, “in the late 1980s, the U.K. had one of 

the lowest participation rates in higher education (about 14 per cent) of any advanced 

industrial country”. (Barr and Crawford, 2005).  

The first stylized fact of this phenomenon is that while students’ volume were rising, 

funding to higher education sector were decreasing. The second stylized fact concerns social 

characteristics of students. There are much more students coming from wealthy families as 

compared to students from more disadvantaged socio-economic conditions. (Wyness, 2010).  

Increasing funding and stimulating participation, in particular among less wealthy people, 

is a goal that can be achieved through targeted reforms. 

                                                           
10

 Source: https://www.gov.uk  

https://www.gov.uk/
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Therefore, I illustrate below the major interventions realized by the U.K.’s Government to 

address these issues.  

Today, funding system in the U.K. provides that HEIs (Higher Education Institutions) are 

publicly funded through:  

 tuition fees backed by Government-funded loans; 

 teaching grants from the Higher Education Council for England.  

For students coming from least wealthy backgrounds, the Governments also provide 

means-tested maintenance loans and maintenance grants
11

. This is the results of several 

reforms succeeded over the last 50 years. 

The major policy changes happened over 5 decades are described below. The last relevant 

HE reforms happened in 2012.  

 

3.1.1 1960s – 1990s 

Until 1963 in the U.K., policies in force envisaged a system in which all costs related to 

university, from teaching to tuition fees, from grants to administrative costs, were borne by 

taxpayers. Funding per student was high but the volume of students enrolled was small. For 

this reason, in order to encourage participation, in 1963 the Robbins Report led to an 

expansion in the number of universities. This expansion in the following twenty years pushed 

the volume of students up, even if it was still low as compared to the other industrial 

countries. Moreover, being part of the higher education system still was a privilege of richer 

families. The funding system showed some weaknesses given that maintenance grants (non-

repayable financial support) were entirely paid by the Government; for this reason, student 

loans entered the funding system. 

From 1990s to our days several reforms modified Higher Education’s access costs. In the 

following tables (Table 1- 3) relevant values (nominal) of grants, fees and loans are reported 

with respect to subsequent income brackets for academic years in which changes took place.  

  

                                                           
11

 See Government reform of higher education: twelfth report of Session 2010-12, (2012). 
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Table 1. Grants by parental income (nominal value) 

GRANTS Academic Year 

Parental income 1992/93 1998/99 2004/054 2006/075 2012/136 

≤10,000 22651 8103 1000 2.700 3.250 

20000 1362 8103 298 2.283 3.250 

30000 0 456 0 832 2.3417 

40000 0 0 0 0 523 

50000 0 0 0 0 0 

≥60000 0 0 0 0 0 

Source: computation made by Erich Battistin 

[1] Statistical First Release 1992-2002 

[2] Computed from Dearden et al (2011) 

[3] The Independent (1998), Student Choice 

[4] A Guide to Financial Support for Higher Education Students in 2005/06 

[5] Dearden et al (2011) 

[6] Statistical First Release 2012/13 

[7] 3250 −
30000−25000

5.5
, Reduced by £1 for every £5.50 of income above £25,000 up to £42,600 

  

 

 

 

 

 

 

Table 2. Fees by parental income (nominal value) 

FEES Academic Year 

Parental 

income 
1992/93 1998/99 2004/052 2006/07 2012/13 

≤10,000 0 0 0 3,000 9,000 

20000 0 2801 0 3,000 9,000 

30000 0 1,000 8863 3,000 9,000 

40000 0 1,000 1,150 3,000 9,000 

50000 0 1,000 1,150 3,000 9,000 

≥60000 0 1,000 1150 3,000 9,000 

Source: computation made by Erich Battistin 

 [1] The Independent (1998), Student Choice 

 [2] A Guide to Financial Support for Higher Education Students in 2005/06 

 [3] 
30000−22010

9.5
+ 45 
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Table 3. Loans by parental income (nominal value) including Fee Loans introduced in 

2006/07 

LOANS Academic Year 

Parental 

income 
1992/931 1998/99 2004/054 2006/07 2012/136 

≤10,000 580 2,7352 4,095 6,555 12,875 

20000 580 2,7352 4,095 6,555 12,875 

30000 580 2,3263 4,095 7,005 13,3307 

40000 580 2,0512 3,3315 6,459 14,239 

50000 580 2,0512 3,070 6,305 13,770 

≥60000 580 2,0512 3,070 6,305 12,5758 

Source: computation made by Erich Battistin 

[1] Statistical First Release 1992-2002 

[2] Student Loans - A Guide to Applying in 1998/99 

[3] Computed from Dearden et al (2011) 

[4] A Guide to Financial Support for Higher Education Students in 2005/06 

[5] 3075 + 1020 − (
40000−22010

9.5
+ 45 − 1175). This formula is derived from A Guide to Financial Support for 

Higher Education Students in 2005/06, but the figure for the maximum grant is from Statistical First Release 

2004/05. 

[6] Statistical First Release 2012/13 

[7] “The amount of Maintenance Grant you receive will affect the amount of Maintenance Loan you can borrow. 

We will reduce the amount of Maintenance Loan you can receive by £0.50 for every £1 of Maintenance Grant you 

are entitled to”. (3250 − 2341)0.5 + 3875 + 9000 

[8] All students are entitled to 65% of the appropriate maximum Maintenance Loan, but the remaining 35% is 

subject to means-testing. 

  

3.1.2 1990s – 2000s 

In 1990 the Student Loans Company was funded and the first Student Loan System was 

implemented. Nonetheless, the way in which loans’ accounting rules were set created some 

funding problems. In 1992 the Further and Higher Education Act
12

 was issued by the 

Government in order to convert a certain number of polytechnics and colleges of higher and 

further education into universities, and create bodies to fund higher education. In 1997 in 

order to manage the funding crisis, the Dearing Report was issued. Indeed, the expansion in 

the number of universities and students volumes was not sustained by a correspondent 

increase in the available funding per student; for this reason, the National Committee of 

Inquiry into Higher Education (chaired by Lord Dearing) was established in order to manage 

the situation. The Dearing Report introduced an important change because it involved that 

new full-time students enrolling in the a.y. 1998/99 started to contribute to the costs of higher 

education. The 1998 reform was therefore a turning point. Indeed, in 1998 the first tuition fees 

                                                           
12

 See http://www.legislation.gov.uk/ukpga/1992/13/contents  

http://www.legislation.gov.uk/ukpga/1992/13/contents
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were introduced officially for the a.y. 1998/99 through the Teaching and Higher Education 

Act; the fees amounted to £1,000. This was paid up-front just by richer families while poorest 

were exempted, given that the amount to be paid was contingent on student’s and parents’ 

income.  

Maintenance grants were abolished in 1999. For what concerns maintenance loans, these 

were increased by an amount similar to that by which grants decreased and fees increased. 

The objective of the government was to try to leave unaltered economic conditions of students 

in the period post-reform.  

3.1.3 2001 – 2015 

In 2004 the Higher Education Act was issued.  It abolished up-front fees, introduced a 

deferred fee to be implemented in 2006/07 a.y. (in England and Northern Ireland and in 

2007/08 in Wales), and re-introduced grants for a.y. 2004/05 at £ 1,000 per year for low 

income families.  

The main change produce by the Higher Education Act consisted in the introduction in the 

a.y. 2006/07 of the “deferred variable fee” (or “top-up fees”) not means-tested; each 

university could decide the amount respecting the cap of £3,000. Under this reform then, 

students face a “tuition-free entry” and start paying fees just after graduation. In order to 

promote participation, universities had to develop the Access Agreement with the Office for 

Fair Access (OFFA) in order to establish measures to support students’ participation, like 

bursary and other measures.  

Fees are with this reform deferrable until after graduation through government-subsidies 

Tuition Fee Loans, issued at zero real interest rate and repayable according to income. The 

characteristics of Tuition Fee Loans (in term of interest rate and repayment term) are the same 

of Maintenance Loan and both can be combined. 

As for the previous reform in 1998, indeed, increase in fees has been balanced by the loans 

and grants. This reform did not exempt poorest students from fees’ payment but universities 

charging fees of more than £2,700 had to offer bursaries of at least £300 to students receiving 

the maximum amount of Maintenance Loan
13

. 

                                                           
13

 See Tuition Fee Statistics (2015) 
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The  Browne Report
14

 (Securing a Sustainable Future for Higher Education: An  

independent review of higher education funding and student finance) published in October 

2010, was aimed at achieving three objectives:  

 increase the overall higher education participation, in particular, extending 

participation to poorer students that could not afford higher education; 

 improve teaching quality to enhance students’ knowledge needed in the labour 

market;  

 simplify the funding system.  

In June 2011 the Government’s Higher Education White Paper: Students at the heart of the 

system
15

 was published. It rejected some Browne Report’s proposals while accepting some 

others. The results are indicated below and entered into effects in the a.y. 2012/13. 

Following the Browne Report, the Government increased the cap on tuition fees from a 

‘basic maximum amount’ of £6,000, to an absolute maximum of £9,000 which could be 

charged only in ‘exceptional circumstances’. Students would be entitled to tuition fee loans of 

up to £9,000 per year, according to the fees charged by the institution they attend. These 

changes started to be applied from the a.y. 2012/13 for undergraduates. This is the current 

situation.  

Tuition fee Loans are still available to cover fees for both full and part-time students. Data 

from the House of Commons (see Bolton, 2015) tells that for the a.y. 2012/13 universities set 

their fees at £8,400 yet. For the current a.y. 2015/16 they increased fees up to almost £8,900.  

In the same year, about 92% of eligible full-time students from England took out Tuition Fee 

Loans. 

In order to face living expenses, full-time students have also access to maintenance loan, 

which are 65% not means-tested (students will be entitled for at least 65% of the maximum 

loan
16

) and the remaining 35% is household’s income contingent.  

Moreover, grants were established up to £3,250 and bursaries and fee waivers were also 

available.  

                                                           
14

 See https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/422565/bis-10-1208-

securing-sustainable-higher-education-browne-report.pdf  
15

 See https://www.gov.uk/government/publications/higher-education-students-at-the-heart-of-the-system--2  
16

 See http://www.publications.parliament.uk/pa/cm201213/cmselect/cmbis/286/286.pdf 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/422565/bis-10-1208-securing-sustainable-higher-education-browne-report.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/422565/bis-10-1208-securing-sustainable-higher-education-browne-report.pdf
https://www.gov.uk/government/publications/higher-education-students-at-the-heart-of-the-system--2
http://www.publications.parliament.uk/pa/cm201213/cmselect/cmbis/286/286.pdf
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Scottish HE policies have diverged under some aspects with respect to the rest of the U.K.; 

from the a.y. 2000/01 upfront tuition fees were abolished for eligible full-time students. From 

2001/02 the Graduate Endowment came into effects, that consisted in a contribution (of 

£2,000 in that year) made after graduation to be repaid in the same way as income-contingent 

loans. In 2007 the Graduate Endowment was abolished.  

 

3.2 COLLEGE PARTICIPATION: THE EFFECTS OF THE REFORMS AND OTHER INFLUENCING 

FACTORS 

Dearden, Fitzsimons, Wyness (2014) use a difference in difference approach to test the 

impact of the re-introduction of grants in the a.y. 2004/05 for students coming from poorer 

families, discovering that a £1,000 increase in grants produces an increase in participation 

among less well-off individuals of almost 4 percentage points.  

The motivation of this analysis arises from substantial differences in applications rates 

among young people with different social backgrounds observed over the years. Indeed, data 

from UCAS (2012) confirm this evidence; application rates vary a lot with respect to 

backgrounds defining a gap between young people coming from different areas. Even if 

application rates of students coming from most disadvantaged areas have sharply increased 

(about 60%) between 2004 and 2012 contributing to the reduction of the gap, a large 

differential is still present: “Those living in the lowest income areas have application rates in 

2012 of 23 per cent compared to 48 per cent for their peers living in the highest income 

areas”. (UCAS Analysis and Research, 2012).  

Dearden, Fitzsimons and Wyness (2011) estimate the effects of grants and fees on 

individuals’ likelihood of entering university considering eligible students over the period 

1992-2007. They created a pseudo-panel dataset estimated through a fixed-effects model with 

cohort defined aggregating observations on the base of geographic residence, gender, parental 

education and time. Results show that an increase of £1,000 in fees determines a decrease of 

3.9% point in the likelihood of enrolling into university. An increase in grants of the same 

amount increase participation of 2.6 percentage point. 

Two important aspects are underlined in this analysis: the impact of parents’ education and 

prior individual’s educational attainments are strong and significant. In particular, individual 
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having more educated parents and with good secondary education results are more likely to 

enrol into university.  

Social background, family’s financial situation, cognitive and non-cognitive skills are all 

important aspects to be considered when performing empirical analysis in the educational 

sector and, above all, should be factors to be investigated in order to develop effective policy 

reforms.  

What emerges from data and research results discussed above is that financial aid to more 

disadvantaged individuals has a positive causal effect in terms of higher education 

participation but there also other factors driving educational choices that need to be addressed. 

Therefore, we can ask ourselves: are tuition alone sufficient to reduce the existing gap and 

lead to a future convergence between different socio-economics groups of individuals? Or are 

there other ways to efficiently invest Government resources? 

When considering that in order to be accepted into university a student has to obtain some 

further educational qualification
17

 (e.g. A levels or other qualifications depending on the 

university chosen)  it could be argued that reforming university’s access costs  would not be 

sufficient for these individuals when they have not even achieved the minimum requirements 

to enter it.  

Individuals may find themselves in this situation as a consequence of the socio-economic 

background of their family. Obviously, other factors determine education achievement, in 

particular cognitive and non-cognitive skills but this does not preclude that there exists a 

category of children with the suitable ability, whose performances and ambitions are restraint 

by the environment and family.  

Crawford and Greaves (2015) have highlighted these aspects as the results of their 

research. They investigate the effect of socio-economic background on university. Raw 

differences between highest and lowest socio-economic quintile groups are large (the first 

have 3 times more probability of enrolling than the other); the interesting aspect is that 

differences are reduced a lot when controlling for prior education attainment. In particular, 

results obtained by children at 16 years old (General Certificate of Secondary Education, 

                                                           
17

 Education system in the U.K. involve children to be in secondary education (compulsory) until 16 years old. 

Next stages are Further Education (FE) from 16 to 18 years old and Higher Education (HE) which involve 

undergraduate and postgraduate courses.  
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GCSE) are alone sufficient to explain a substantial part of raw differences. Secondary school 

seems to play a crucial role even because it influences post-secondary school achievement 

(Further Education). The latter, most of the times necessary to entry into university. The 

evidence suggests that children from more disadvantaged families get worse secondary school 

results. 

Chowdry et al., (2012) confirm this evidence: “(…) poor attainment in secondary schools 

is more important in explaining lower HE participation rates amongst students from 

disadvantaged backgrounds than barriers arising at the point of entry into HE”. This leads to 

investigate the true nature of constraints that prevents enrolment in higher education. Maybe 

there are several factors that induce individuals to stay out of higher education other than 

economics issues, that in any case are an important obstacles faced by more disadvantaged 

families. Policy reforms that address this concerns are necessary in inducing individuals into 

participation,  nevertheless as Chowdry et al. (2012) argue, most disadvantaged students my 

anticipate access barriers to the time they are in secondary education precluding themselves 

the possibility of obtaining a degree, besides to whichever tuition reforms could be put in 

place.  

Data from Corver (2010), reports trends in the enrolment rate into higher education 

institutions in England.  

As shown in Figure 1 the volume of young people enrolling into higher education sector 

has continued to increase starting from mid-1990s. In particular, we can see that after the 

reform for the a.y. 1998/99 that introduced for the first time tuition fees the pattern has not 

been negatively influenced. The report specifies that starting from the mid-2000s the 

differences in participation between young people from different backgrounds started to 

contract;  the 2003/04 reform actually produced more favourable access condition for poorer 

students while establishing more burdensome rules for richest families
18

.  Indeed, even if the 

proportion of students from more advantaged backgrounds has increased by 5 per cent over 

last five years, proportion of students from more disadvantaged ones has increased by 30 per 

cent over the same period in England.  

                                                           
18

 Disadvantaged backgrounds are defined on the base of disadvantaged neighbourhoods, parental education, 

occupation or income.  
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Figure 1. Trends in young participation in England

 
 Source: Trends in young participation in higher education: core results for England (2010) 

The report, even if it does not provide evidence on the existence of any causal effect, 

underlines the influence that prior educational attainment has on the trend described above: 

“The increases in the proportion of young people living in the most disadvantaged 

neighbourhoods who enter higher education are consistent with other statistics including 

recent trends in GCSE attainment”. (See Corver, 2010, 2).  

All these aspects considered together, suggests that there is still a lot to investigate in order 

to understand the mechanism that shapes individual decision-making process. The focus 

should be understand what are the main drivers of higher education, how to intervene on these 

ones to stimulate university participation and identify the target population that should be the 

focus of future reforms.  
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4 ESTIMATING RETURNS TO HIGHER EDUCATION 

IN THE U.K. 

In this chapter I will present the analysis conducted on U.K. data to estimate the effect of 

holding an higher education qualification on future earnings.  

The aim is that of evaluate the monetary returns that individuals induced to enrol into 

higher education by a set of policy reforms have experienced, and possibly perform an ex-ante 

evaluation that allows to considering potential efficient changes in future policies.  

4.1 SAMPLE SELECTION 

The analysis conducted in this dissertation is based on data from the British Household 

Panel Survey (BHPS). It consists in a panel dataset that follows a sample of individuals over 

time, from 1991 to 2009. It is made of 18 waves, each one reporting data at an individuals and 

household level. With annual frequency, each adult member (aged at least 16 years old) of a 

household of a nationally representative sample of more than 5,000 households is 

interviewed, resulting in approximately 10,000 individual interviews. When an individual left 

the initial household, it was followed to the new one interviewing the new components.  

For the purpose of this dissertation this dataset is useful to detect all information at the 

individual level over time and also link them to information at the household level related to 

each individual selected. 

The aim is evaluating the returns to higher education (focusing on undergraduate degrees) 

for a sample of individuals that face certain levels of university’s access costs and benefits at 

the time they are eligible. 

I have developed a cohort analysis considering eleven cohorts of individuals selected with 

the following procedures: 

 For each year between 1992 and 2002 individuals “eligible” for university’s 

enrolment has been considered. Eligibility is a condition based on the date of birth: 

“(…)in the UK, eligibility for the first year of HE is determined by date of birth. 

(…) youths become eligible for HE if they are aged 18 before August 31st of that 

academic year. This means that young people can be aged either 18 or 19 when 

they first become eligible for HE”. (See Dearden, Fitzsimons and Wyness, 70, 
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2014). Therefore, cohorts are created considering the date of birth such that for 

each cohort individuals are already aged either 18 or 19.  

 The second step consists in looking for each individual at their wages 6 years after 

the enrolment (therefore 3 years after graduation).  

 Finally, all other relevant explanatory variables are selected. 

In what follows I list and described dependent and independent variables considered in the 

equations to be estimated. 

4.2 DEPENDENT AND INDEPENDENT VARIABLES  

Consider the Mincer Equation  as presented in Chapter 2: 

 𝑌𝑖 =  α + β𝑆𝑖 + 휀𝑖 (1) 

The dependent variable and the endogenous regressor are: 

 Logpaygu:  logarithm of wpaygu “usual gross pay per month of the current job”. 

This variable has been preferred to other earning’s indicator because of the limited 

number of missing values. 

 Schooling: the treatment status dummy has been constructed considering the 

variable wqfedhi (highest educational qualification) in the BHPS. This variable has 

been observed for all individuals selected, in the year in which their wages are 

measured. This is the only indicator that permits to determine if an individual has 

achieved some qualifications from 18 years old onward. Other variables denoting 

educational achievements are also present, but they are uninformative because of 

the high rates of missing values.  

Therefore, all individuals claiming to have a “First Degree”, “Teaching 

Qualification”, “Nursing Qualification” or “other Higher Qualifications
19

” (Higher 

Degree
20

 excluded) are selected in the treatment group. 808 individuals are 

observed in total, 486 for S=1, 322 for S=0. 

 

                                                           
19

 Foundation Degree, Diploma of Higher Education, Certificate of Higher Education, Higher National Diploma. 

(See http://www.educationuk.org/global/articles/higher-education-courses-qualifications/ ) 
20

 Postgraduate qualifications 

http://www.educationuk.org/global/articles/higher-education-courses-qualifications/
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Hereafter, I estimate returns to Higher Education adopting methodologies explained in 

Chapter 2., in order to deal with selection in levels and selection on returns. Consequently, I 

define a set of instrumental and control variables, as detailed below.  

Instrumental Variables: 

 𝒁  is the vector of instrumental variables: 

o Fees, Grants, Loans: these are the access costs and benefits for a.y. between 

1992/93 – 2002/03 established by the reforms presented in Chapter 3. They are 

attached to each individual on the base of the household income selected in the year 

the students is eligible. The variable considered to determine family income is 

wfihhyr (annual household income from September previous here to September 

current year). 

o Distance: the variable indicates the distance to the nearest university in miles. 

This variable was not available in the BHPS and it has been constructed. BHPS 

data of the Local Authority Districts (LAD
21

) codes have been selected for each 

household in which the individual was living at eligible age. For the limited number 

of waves it was not possible to identify the LAD of residence at 16 years old. From 

the higher education statistics agency website
22

, I have retrieve data about Higher 

Education Providers. Using geographic coordinates of LAD and Universities I have 

calculated distance in miles to the nearest institute. Distance to the nearest 

university is typically considered as an instrument because it should affect the costs 

faced by the individual that attend university.  

Control variables: 

 𝑿  is the set of controls that forms the conditioning set: 

o Sex 

o Age 

                                                           
21

 LAD definition refers to the “Census 1991: Individual Sample for Anonymised Records for Great Britain 

(SARs)”. 
22

 https://www.hesa.ac.uk/component/heicontacts/  

https://www.hesa.ac.uk/component/heicontacts/
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o Qual: this dummy indicate if the individual declares to possess GCSEs with 

grade A-C
23

 (or equivalent qualification for Scotland: Standard Grades). A more 

suitable indicator of educational attainment would be the number of subjects passed 

with highest grade (e.g. at least 5 GCSEs grade A-C), unfortunately even if present, 

these variables report a high number of missing values. As discussed in Chapter 3., 

qualifications obtained at the end of secondary school influence the probability of 

attending university.  

o Jbstat: is a categorical variable (recoded with respect to the original present in 

the BHPS) that indicates if in the eligibility year the individual is either working 

(1), studying (2) or find itself in other status (e.g. is unemployed, in family care, 

disabled) (3). 

The decision of controlling for this variable derives from the fact that an individual 

who is already employed at 18 years old may be less motivated to enrol, if he finds 

itself in a good working environment or, alternatively, it could also be that having a 

job stimulates the propensity to enrol since the individual would feel itself more 

able to face its own spending needs, weighing less on parents. 

o Mqfedhi: highest educational mother qualification reported in the year the 

individual is eligible. Since this variable was not present in the dataset it has been 

constructed keeping the identification number of the mother of each individual and 

looking at its level of educational qualification reported in the “eligibility” year of 

the children. For limited number of waves available, it was not possible to retrieve 

the educational qualification of the mother when the individual was in secondary 

school. It takes value 1 for “further/higher qualifications”, 2 for “secondary 

education or apprenticeship”, 3 for “no qualifications”. The importance of 

introducing this variable among the controls is deducted from the impact that 

familiar characteristics have on the decision of children to enrol, as explained in 

Chapter 3. 

o Fisit: it is a subjective indication of the financial situation expressed by the 

father of the household. It has been re-managed from the original variable in the 

dataset, keeping the identification number of the father and looking at the variable 

                                                           
23

 The General Certificate of Standard Education is a qualification obtained at the end of compulsory education 

(15-16 years old) throughout all the country with standardized grades between A and G. Good qualifications, 

also required by colleges and universities, are those graded A-C. 
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fisit in the year of “eligibility” of the children. It is a dummy that takes value one 

for “wealthy/relaxed” situations and zero for “borderline/bad” situations. The 

reason for introducing it in the dataset is the same concerning the importance of 

controlling for familiar backgrounds. 

o Unat18: is the unemployment rate for young aged 15-19 years old in the U.K. 

for all educational levels, measured in the year individual are eligible. The source is 

the Eurostat LFS
24

. This variable is used in the conditioning set of the first stage 

regression as a measure to control for the characteristics of the labour market at the 

time the individual has to choose if enrol into Higher Education or look for a job. 

o Unwork: is the unemployment rate for young up to 25 years in the U.K. 

measured in the year in which wages are observed. The source is the Eurostat LFS. 

This variable is used in the conditioning set of the outcome equation as a measure 

to control for labour market characteristics at the time the individual is already 

graduated. 

o Incomeclass: this is a categorical variable that indicates income brackets over 

which fees, grants and loans are calculated. It takes value 1 for “low income” 

(<£20.000), 2 for “medium income” (£20.000-£40.000), 3 for “high income” 

(>£40.000). It is used in the conditioning set of the first stage regression. 

o Cohort dummies and regional dummies. Regions considered are those indicated 

by the variable Region2 (Government Office Region)
25

.  

 

Table 4. shows the descriptive statistics of the variables presented above. It is clear that 

certain variables determine a great reduction in the number of observations. This refers in 

particular to mqfedhi and fisit, and as explained later this can be a source of bias in the 

estimation. 

 

 

 

 

                                                           
24

 See http://ec.europa.eu/eurostat/data/database  
25

 North East, North West, Yorkshire & Humber, East Midlands, West Midlands, East of England, London, South 

East, South West, Wales, Scotland. 

http://ec.europa.eu/eurostat/data/database


66 
 
 

 

Table 4. Descriptive statistics 

Variable Obs Mean Std. Dev. Min Max 

      

logpaygu 808 7.071698 0.5100139 4.685213 8.613273 

schooling 808 0.6014851 0.4898957 0 1 

fees 808 312.4072 459.3291 0 1075 

grants 808 692.7327 938.2617 0 2265 

loans 808 1971.601 1103.971 580 3905 

distance 784 7.740855 7.73734 0.03 38.31 

sex 808 0.480198 0.4999172 0 1 

age 808 18.13738 0.3444573 18 19 

qual 796 0.0942211 0.2923198 0 1 

jbstat 807 1.656753 0.666386 1 3 

mqfedhi 471 1.876858 0.7947404 1 3 

fisit 444 0.6509009 0.4772231 0 1 

unat18 808 16.40718 1.739745 13.5 19.2 

unwork 808 12.9724 1.054673 11.7 15 

incomeclass 808 1.851485 0.7301086 1 3 
 

 

4.3 MODEL’S EQUATIONS  

Marginal returns to a Higher Education are estimated here applying a parametric normal 

model using the Heckman two-step procedure. 

Recalling the theoretical framework defined in section 2.3 and Equations (2)-(7) describing 

the Generalized Roy Model, in Chapter 2., the estimation involves the following steps
26

: 

1. Estimation of the Propensity Score from the first stage regression: 

𝑃(𝒛) = Pr(𝑆 = 1| 𝒁 = 𝒛, 𝑿 = 𝒙) 

From this regression it possible to obtain the predicted values of 𝜇𝑠 , 𝜇�̂� , the 

coefficients from the regression of the schooling indicator on the instruments 

conditional on the set of controls. The predicted value of the propensity score is 

therefore 𝑃(𝒛)̂ =  Φ(𝜇�̂�𝒁). Calculate then the normal density function using  𝜇�̂�, equal 

to ϕ(𝜇�̂�𝒁), that allows to generate the selection term (Inverse Mill’s ratio). 

                                                           
26

 See Heckman, Urzua and Vytlacil (2006) and Heckman, Tobias and Vytlacil (2001).  
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2. At this point is necessary to define the common support (between 0 and 1) of 

the propensity score. Select intervals of 0.01 points to determine the grid over which 

to compare the frequencies of the propensity scores for both groups of treated and 

untreated.  For each range, keep observations only if positive frequencies in both 

group (S=0,1) exist. The marginal treatment effect as evaluated here below makes 

sense only within this common support. 

3. Run the outcome regressions for each group separately, thus: 

𝐸(𝑌|𝑿 = 𝑥, 𝑆 = 1, 𝑃(𝒁) = 𝑝) =  𝛼1 + �̂� + 𝑿𝛽1 + 𝜌1 (−
ϕ(𝜇�̂�𝒁)

Φ(𝜇�̂�𝒁)
) for S=1 

𝐸(𝑌|𝑿 = 𝑥, 𝑆 = 0, 𝑃(𝒁) = 𝑝) =  𝛼0 + 𝑿𝛽0 + 𝜌0 (
ϕ(𝜇�̂�𝒁)

1−Φ(𝜇�̂�𝒁)
) for S=0; 

4. From step 3 we obtain 𝛼1 + �̂�, 𝛼0̂, 𝛽1̂, 𝛽0̂, 𝜌1̂, 𝜌0̂  that permit to calculate the 

MTE. So, keeping the mean values of all variables in the 𝑿  vector, the MTE is: 

𝑀𝑇𝐸(̂  𝑿 = 𝑥, 𝑈𝑠 = 𝑢𝑠) = (𝛼1 + �̂� − 𝛼0̂) + �̅�(𝛽1̂ − 𝛽0̂) + (𝜌1̂ − 𝜌0̂)Φ−1(𝑢𝑠) 

Where 𝑈𝑠= 1- Φ(𝜇�̂�𝒁), is the probability not to be treated. The MTE is evaluated at 

the margin of indifference, therefore at the values of the unobservables that make the 

individual indifference between enrolment or not. Φ−1(𝑢𝑠)= - 𝜇�̂�𝒁.  

The coefficient (𝜌1̂ − 𝜌0̂) if statistically significant indicates that there is selection 

on unobservables. If 𝜌1̂ < 𝜌0̂, there is selection on returns.  

4.4 ESTIMATION RESULTS 

Hereafter I present estimation results obtained applying the above stated model.  
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4.4.1 First-stage regression 

Table 5.  Probit regression (1) 

Probit regression         Number of 
obs= 409 

      LR chi2(33)= 74.27 

      Prob > chi2= 0.0001 

Log likelihood = -237.88064         Pseudo R2= 0.135 

schooling Coef. Std. Err. z P>z [95% Conf. Interval] 

         

fees -0.0010449 0.0010166 -1.03 0.304 -0.0030374 0.0009476 

grants 0.0003464 0.0003433 1.01 0.313 -0.0003264 0.0010193 

loans -0.0009504 0.0005929 -1.60 0.109 -0.0021124 0.0002117 

distance -0.0099131 0.009275 -1.07 0.285 -0.0280917 0.0082656 

sex -0.0057636 0.1424166 -0.04 0.968 -0.284895 0.2733677 

age 0.0520573 0.2215278 0.23 0.814 -0.3821291 0.4862437 

qual 0.1067409 0.2916708 0.37 0.714 -0.4649234 0.6784052 

jbstat 0.2846678 0.1030772 2.76 0.006 0.0826402 0.4866955 

unat18 -2.59579 1.319089 -1.97 0.049 -5.181157 -0.0104232 

_Imqfedhi_2 -0.1402572 0.1626493 -0.86 0.389 -0.4590441 0.1785296 

_Imqfedhi_3 -0.2764767 0.1868908 -1.48 0.139 -0.642776 0.0898225 

fisit 0.0469359 0.1545225 0.30 0.761 -0.2559226 0.3497944 

_Iincomecla_2 0.6597746 0.6583042 1.00 0.316 -0.6304779 1.950027 

_Iincomecla_3 0.6359548 0.7071711 0.90 0.368 -0.7500751 2.021985 

_Icohort_2 8.315 3.894383 2.14 0.033 0.6821491 1.594785 

_Icohort_3 7.639767 3.507563 2.18 0.029 0.7650699 1.451446 

_Icohort_4 4.042627 1.626069 2.49 0.013 0.8555899 7.229664 

_Icohort_5 4.969295 2.19518 2.26 0.024 0.6668217 9.271768 

_Icohort_6 1.97956 0.4996489 3.96 0.000 1.000267 2.958854 

_Icohort_7 0.9706057 0.7305394 1.33 0.184 -0.4612253 2.402437 

_Icohort_8 1.652889 1.179638 1.40 0.161 -0.6591595 3.964938 

_Icohort_9 2.54744 1.558009 1.64 0.102 -0.506202 5.601082 

_Icohort_10 -3.058033 1.469071 -2.08 0.037 -5.937359 -0.1787072 

_Iregion2_2 0.1835043 0.3688069 0.50 0.619 -0.539344 0.9063526 

_Iregion2_3 -0.1275673 0.3949873 -0.32 0.747 -0.9017282 0.6465936 

_Iregion2_4 -0.3590907 0.3842141 -0.93 0.350 -1.112137 0.3939551 

_Iregion2_5 -0.0727445 0.3958803 -0.18 0.854 -0.8486556 0.7031666 

_Iregion2_6 -0.053179 0.3783943 -0.14 0.888 -0.7948183 0.6884603 

_Iregion2_7 0.265451 0.3763639 0.71 0.481 -0.4722087 1.003111 

_Iregion2_8 -0.1911401 0.3516647 -0.54 0.587 -0.8803903 0.4981102 

_Iregion2_9 -0.0926924 0.3920143 -0.24 0.813 -0.8610264 0.6756415 

_Iregion2_10 0.1724351 0.3835363 0.45 0.653 -0.5792822 0.9241524 

_Iregion2_11 0.9221118 0.4160514 2.22 0.027 0.106666 1.737558 

_cons 4.051678 2.181731 1.86 0.063 -2.244366 8.327792 
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From Table 5. the first aspect to be noticed is the statistical insignificance of the instrument 

chosen. This is a fundamental problem because under this condition the exclusion restriction 

is not satisfied. Therefore, the model is not identified since is not possible to extrapolate any 

exogenous variation in the probability of being enrolled into university. Consequently, the 

endogeneity problem cannot be solved and this preclude the estimation of the Marginal 

Treatment Effect or other parameter of interest.  

Anyway, the attempt is try to analyse the evidence obtained to investigate, for what 

possible,  the source of the problem. 

Therefore, I try to specify alternative regression equations modifying the conditioning set, 

in order to see if the R-squared improve. In doing this I proceed without going against the 

theoretical setting that justifies the application of the model as presented in last chapters. 

Consequently, as seen in Chapter 3., familiar characteristics are typically controlled for in the 

estimation of the probability of enrolling into university, since they are a factor driving 

heterogeneity in enrolment among students.  

Dropping sex and age (controls with the high level of the p-value) and qual (highest grades 

of secondary educational qualification achieved) does not lead to any improvement in terms 

of pseudo R-squared. The reason for dropping qual arises from the concern that it could be a 

“bad control”, meaning that it could be itself an outcome of another variable, e.g. mqfedhi 

(mother education) in this case. The doubt arises from empirical evidence presented in 

Chapter 3. The literature suggests that qualifications obtained at 16 years old have a great 

impact on university enrolment but at the same time, children with highest qualification are 

those belonging to higher social class’ families, with more propensity for education. It is also 

to be considered that this variable gives just a rough measure of prior educational attainment 

as explained in previous section. A more precise indicator would control for the number of 

subjects passed with the highest grades in order to have a proxy for the measure of ability at 

16 years old. 

The major improvement in term of pseudo R-squared is achieved when the instrument 

distsance to nearest university in dropped. The concern about the validity of this instrument is 

that from BHPS data it was not possible to retrieve the urban residence of each individuals at 

the age of 14 or 16 (as for example considered in Carneiro, Heckman and Vytlacil, 2011). 

Distance has been measured considering local authority district of residence in the 
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“eligibility” year. This could mean that distance appears to be not exogenous if for example 

the family has decide to move after secondary school to permit continuation into further 

education of the children.  

The alternative specification of the first-stage regression dropping distance has not lead to 

any substantial improvement in the statistical significance (or value of) of other coefficients. 

Number of observations also remain substantially the same (N=426).  

Last consideration focuses on sample size. Keeping some variable in the conditioning set, 

like mqfedhi and fisit, shrinks the sample a lot (see Table 6.- 7.) 

Table 6. 

 financial situation report by father  

schooling 0 (bord/bad) 1 (wealthy/rel) Total 

0 68 105 173 

1 87 184 271 

Total 155 289 444 
    

Table 7. 

  highest educational qualification      

schooling 1(further/high) 2(sec or app.) 3(no qual) Total 

0 55 73 64 192 

1 126 94 59 279 

Total 181 167 123 471 

Indeed, the Probit first-stage regression considerably change excluding these controls (see 

Table 8.) (the sample size almost double), maybe indicating the poor performance of the 

Maximum Likelihood estimator on small samples.  
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Table 8. Probit regression (2) 

Probit regression                                     Number of obs= 806 

                                                      LR chi2(27)=  64.75 

                                                      Prob > chi2=      0.0001 

Log likelihood = -509.50087                               Pseudo R2= 0.0597 

schooling Coef. Std. Err. z P>z [95% Conf.Interval] 

         

fees -0.0010294 0.0005196 -1.98 0.048 -0.0020478 -0.000011 

grants 0.0003303 0.0001946 1.70 0.090 -0.0000511 0.0007117 

loans -0.0006339 0.0003663 -1.73 0.084 -0.0013519 0.0000841 

jbstat 0.2682615 0.0694446 3.86 0.000 0.1321525 0.4043705 

unat18 -1.785101 0.7651616 -2.33 0.020 -3.28479 -0.2854122 

_Iincomecla_2 0.4007677 0.3603031 1.11 0.266 -0.3054134 1.106949 

_Iincomecla_3 0.5930517 0.4253723 1.39 0.163 -0.2406626 1.426766 

_Icohort_2 5.576763 2.271392 2.46 0.014 1.124917 1.002861 

_Icohort_3 5.052427 2.056147 2.46 0.014 1.022454 9.0824 

_Icohort_4 2.498071 1.016143 2.46 0.014 0.506468 4.489675 

_Icohort_5 3.45908 1.379122 2.51 0.012 0.756051 6.162109 

_Icohort_6 1.021856 0.3470302 2.94 0.003 0.3416895 1.702023 

_Icohort_7 0.8693246 0.381167 2.28 0.023 0.1222511 1.616398 

_Icohort_8 1.354933 0.6796123 1.99 0.046 0.0229172 2.686949 

_Icohort_9 1.981313 0.8985634 2.20 0.027 0.2201611 3.742465 

_Icohort_10 -2.114388 0.8657716 -2.44 0.015 -3.811.269 -0.4175071 

_Iregion2_2 0.380157 0.2705667 1.41 0.160 -0.1501439 0.9104579 

_Iregion2_3 0.2486645 0.2884461 0.86 0.389 -0.3166795 0.8140085 

_Iregion2_4 0.0108054 0.2841473 0.04 0.970 -0.5461131 0.567724 

_Iregion2_5 0.2687559 0.2952604 0.91 0.363 -0.3099439 0.8474557 

_Iregion2_6 0.1007669 0.2906205 0.35 0.729 -0.4688389 0.6703726 

_Iregion2_7 0.4182252 0.2883784 1.45 0.147 -0.146986 0.9834364 

_Iregion2_8 0.2528414 0.263979 0.96 0.338 -0.2645479 0.7702307 

_Iregion2_9 0.0189919 0.2779702 0.07 0.946 -0.5258197 0.5638034 

_Iregion2_10 0.3553505 0.2868336 1.24 0.215 -0.206833 0.9175339 

_Iregion2_11 0.5693553 0.28003 2.03 0.042 0.0205066 1.118204 

_Iregion2_12 -0.3669044 0.3947927 -0.93 0.353 -1.140684 0.4068751 

_cons 2.818853 1.25253 2.25 0.024 3.639397 5.273766 

 

Estimation appears to be very sensitive to the increase of sample size (N=806) that has 

almost doubled. It results in a remarkable decrease in the p-values of the instruments at the 

5% level, with fees becoming weakly significant. Dropping the dummy for incomeclass 

generate an even greater impact on estimates’ precision. (see Table 9.)  
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Table 9. Probit regression (3) 

Probit regression       Number of obs= 806 

      LR chi2(25)= 62.73 

      Prob > chi2= 0.0000 

Log likelihood = -510.50889             Pseudo R2= 0.0579 

Schooling Coef. Std. Err. z P>z [95% Conf. Interval] 

         

Fees -0.0006281 0.0002431 -2.58 0.010 -0.0011046 -0.0001516 

Grants 0.0001259 0.0000712 1.77 0.077 -0.0000136 0.0002654 

Loans -0.0007222 0.0002429 -2.97 0.003 -0.0011983 -0.0002461 

Jbstat 0.2725542 0.069329 3.93 0.000 0.1366718 0.4084366 

unat18 -1.722009 0.4761413 -3.62 0.000 -2.655229 -0.7887896 

_Icohort_2 5.426281 1.439074 3.77 0.000 2.605747 8.246815 

_Icohort_3 4.955715 1.307045 3.79 0.000 2.393954 7.517477 

_Icohort_4 2.61174 0.6860248 3.81 0.000 1.267156 3.956323 

_Icohort_5 3.588679 0.9158136 3.92 0.000 1.793717 5.383641 

_Icohort_6 1.25975 0.2749014 4.58 0.000 0.7209529 1.798547 

_Icohort_7 0.7701347 0.277317 2.78 0.005 0.2266034 1.313666 

_Icohort_8 1.215305 0.4299538 2.83 0.005 0.3726116 2.057999 

_Icohort_9 1.861179 0.5578092 3.34 0.001 0.7678927 2.954465 

_Icohort_10 -2.072444 0.5785431 -3.58 0.000 -3.206368 -0.9385202 

_Iregion2_2 0.3764103 0.2704252 1.39 0.164 -0.1536133 0.9064339 

_Iregion2_3 0.2286591 0.2879848 0.79 0.427 -0.3357808 0.7930989 

_Iregion2_4 0.0019163 0.2835529 0.01 0.995 -0.5538373 0.5576698 

_Iregion2_5 0.2640437 0.2950912 0.89 0.371 -0.3143243 0.8424118 

_Iregion2_6 0.0899581 0.2900213 0.31 0.756 -0.4784732 0.6583895 

_Iregion2_7 0.4034632 0.2882444 1.40 0.162 -0.1614853 0.9684118 

_Iregion2_8 0.2558676 0.2636728 0.97 0.332 -0.2609217 0.7726569 

_Iregion2_9 0.0147634 0.2772579 0.05 0.958 -0.528652 0.5581789 

_Iregion2_10 0.349902 0.2865304 1.22 0.222 -0.2116872 0.9114912 

_Iregion2_11 0.5567052 0.2796686 1.99 0.047 0.0085648 1.104846 

_Iregion2_12 -0.3908767 0.3943201 -0.99 0.322 -1.16373 0.3819765 

_cons 2.764955 7.894069 3.50 0.000 1.217746 4.312164 

 

Distance is not included in Table 9.; anyway running the Probit estimates with Distance 

confirms the evidence before presented. The effect of Distance is not statistically significant 

at 5% level (P-value 0.319) and its inclusion does not alter other coefficients’ estimates. 

In conclusion, estimates are very sensitive under different specification and sample size 

preventing a logical interpretation of results and above all, a valid continuation of the 

analysis. Indeed, what emerges from Table 5. is that not only there is no exclusion restriction 
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available, but also there is not a sufficient evidence in the data that allows to conclude that 

mother education, qualification obtained at 16 years old and the subjective consideration of 

the household’s financial situation have an impact in university enrolment. 

The only variables that throughout all specifications have an impact (respectively positive 

and negative on the enrolment probability) are the employment status of the individual in the 

eligible year  (jbstat) and the unemployment rate in the same year for individuals aged 15-19 

(unat18).  This probably indicates that students having the possibility of working before 

university have more probability of enrolling because they are able to gain some money that 

will help in facing the financial sacrifice (or acquiring more independence from parents). This 

interpretation would be in line with the negative impact of the unemployment rate. 

In Table 9. even if the instruments acquire some significance (at least for fees and loans), 

this is not sufficient to prove their validity and that they provide the necessary variation over 

time to define a common support of the propensity score which is large enough to estimate the 

MTE at all point of the margin of indifference.  

Assuming the instrument are valid, therefore fees, grants and loans are uncorrelated with 

unobservable components of the outcome equation, it may be that their relevance is small. By 

just looking at the correlation between the instruments and the endogenous regressor 

(schooling) it may raise the doubt of dealing with weak instruments. (Table 10.) 

Table 10. Correlation coefficients 

  schooling fees grants loans 

schooling 1.0000     

fees -0.0005 1.0000    

grants 0.0131 -0.4595 1.0000   

loans 0.0248 0.5502 -0.4648 1.0000 

 

First-stage regression leads to determine the common support of the propensity scores over 

which the margins of indifference are identified.  

With the data available no margin can be identified in order to calculate the parameter of 

interest, but it is possible to see the graph of the common support to understand the 

implications of dealing with non-performing instruments. As described in Chapter 2., having 

multiple continuous instruments is a fundamental requirement in order to enlarge the common 

support of the propensity score. This allows to recover all parameters of interest, but in 
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particular to determine the treatment effect for all individuals selected who find themselves at 

different margins of indifference, identified by all values of the unobserved components that 

make them less likely to participate.  

The larger the support, the more margins are identified and also the more precise the 

estimates are; indeed, sample size is also affected by the common support that we are able to 

define. For all ranges of the p-score in which we detect observations belonging to just one 

treatment status group, those observations have to be deleted. This can exert a negative impact 

especially when dealing with small sample as in the case of the current analysis.  

Below is shown the Graph 1. of the common support of the propensity score resulting from 

the first-stage regression of Table 9. The common support in this case is in the range [0.35 – 

0.8] and just in some isolated point outside it. Therefore, we are quite far from achieving a 

full support situation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The selection of the right instrument is a great concern when Instrumental Variable, both 

local and linear in general, are applied. For instance, Carneiro and Heckman (2002) analyse 

the nature of credit constraints effect on the decision to enrol into post-secondary education 

distinguishing the effect of short-run liquidity constraint from long-term ones. In their 

analysis, they criticize the choice of common instruments in the literature of returns to 

Graph 1. Common support of the propensity score 
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schooling, like tuition and distance to college arguing that these are invalid instruments. In 

particular, they develop a two-period model of credit-constraint schooling taking into 

consideration college quality in individuals’ decision. They argue that the invalidity of 

instruments commonly chosen derives from the fact that these are correlated with school 

quality, which enters into the potential wage equation.  

Obviously their analysis reflect the American situation, but it is not to exclude that this can 

a point of debate also in the case of the U.K.; in particular, after the reform of 2006/07 

university are made free to establish the amount of fees they want respecting the maximum 

one fixed by the reform. Under this scheme, it would be reasonable to assume that highest 

quality college feel free to charge higher amounts justifying higher quality of teaching and if 

this is the case, tuition are related to university’s quality. Even if the analysis here conducted 

involve access costs up to 2002/03, in the BHPS there are not any variable that indicate or 

proxy the quality of the institute attended, therefore it would not suitable to perform analysis 

for subsequent cohort under the framework developed here.  

4.5 POSSIBLE EXTENSION AND THE EX-ANTE EVALUATION OF RETURNS TO 

EDUCATION 

As described in Chapter 2., the estimation of the Marginal Treatment Effect using a 

structural model like the Generalized Roy model, that allows to account for the decision 

process of the individual when they self-select into schooling, is a methodology that under the 

stated assumptions allow to perform a wide range of evaluations.  

With the appropriate data indeed, it is possible not only to estimate the causal effect of a 

certain “treatment”, which in this case is the possess of a Higher Educational qualification, 

but also try to identify the effect for a particular set of individual that stays on “the margin”. 

Having the possibility to recognize this class of individuals permit develop some 

considerations about the mechanism to enlarge participation into higher education. This can 

be achieved through some policy reforms, that can induce individuals to enrol.  

This is the point in which ex-post evaluation can be linked with an ex-ante approach. 

Unfortunately, the data used in the analysis presented in this dissertation have demonstrated to 

be not suitable for this kind of study. As a consequence, with a small sample and weak 

instruments it is not possible to perform an ex-ante evaluation of potential new policy rules 

concerning access costs to higher education. 
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If this would have been possible, some other parameters would have been considered, like 

the Policy Relevant Treatment Effect. By simulating a marginal change in policy affecting 

tuition, therefore in the instruments, it would have been possible to see: how the propensity of 

enrolling into higher education change, and what would have been the potential outcome 

change associated with new value of the propensity score.  

The shortcoming of this approach is that all relies on the availability of good instruments, 

which are typically difficult to be found.  

In the literature indeed, the largest part of studies that focus on the evaluation of policy 

reforms in the higher education sector in the U.K. are concentrated on the estimation of the 

causal effect of a particular set of access rule on the probability to enrol, without extending 

the analysis on the estimation of the returns to this “treatment”.   

Analysing the effect on future wages of holding an higher educational qualification for 

those individual that has been induced into participation by the set of reforms in act at the 

time they were eligible, requires a great quantity (and quality) of data.  

An alternative way of deriving an ex-ante evaluation framework, is that of taking 

inspiration from the existing studies that evaluate the effect of tuition’s reform on university 

enrolment to develop and validate a structural model that allows to perform an ex-ante 

analysis. 

As seen in the first chapter, in the literature many empirical studies that are aimed to 

perform ex-ante evaluation start from a natural or quasi-natural experiment as the basis to 

validate a structural model.  

For example, Attanasio, Meghir and Santiago (2012) develop a dynamic school 

participation model to study the effect of a monetary subsidy on school participation. 

Obviously, in that case they rely on a solid base in order to validate their formulation, the 

randomized social experiment Progresa. Anyway, we have seen that all kind of ex-post 

evaluation studies can be used as the ground against which benchmark a structural model, 

especially if a certain policy have been evaluated by different authors and with different 

methodologies.  

This for example could be applied also for what concerns the estimation of the latest 

reforms happened in the U.K.; Dearden, Fitzsimons, Wyness (2014) have studied the effect of 

the re-introduction of grants for low-income students, taking high-income students as the 
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control group. The causal effect results to be positive and even if it refers only to the a 

particular measure in a particular time it would be a good basis to design a dynamic/discrete 

choice model that would be used to test ex-ante the effect of different potential values of 

grants.  

Even if limited only to a particular measure, it would be a starting point to conduct ex-ante 

analysis when other kind of techniques are difficult to be applied. 
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CONCLUSIONS 

This thesis has investigated the methods that allows to perform ex-post evaluation and to 

exploit the results obtained to conduct ex-ante evaluation.  

The fundamental difference between ex-post and ex-ante approaches is that the latter is 

realized by modelling the behaviour and decision making process of agents. This is typically 

achieved through structural models, estimated parametrically or non-parametrically. 

Structural models describing behaviour of agents take the form of discrete choice models 

based on a latent variable specification. These models, in particular under parametric 

specifications, rely on some assumptions concerning functional forms and the distribution of 

unobservables that, even if strong, allow the parametric specification to be a powerful tool to 

predict the effects of policies never implemented.  

A part from the way in which structural models are estimated, they need to satisfy an 

exclusion restriction that ensure identification. The design of a structural model involves an 

outcome equation that can be defined, for instance, as a utility function maximized under the 

budget constraint. The presence of the budget constraint, besides defining individual’s 

decisional process, allows the identification. This is achieved thanks to the presence of a 

policy instrument that provides an exogenous source of variation, meaning that it affects only 

the budget constraint without directly influencing the outcome-specific equation. The source 

of variation can be also provided by an element different from the policy instrument object of 

the analysis, but able to provide a policy-relevant variation, therefore a variation that is 

isomorphic to that of the policy instrument.  

In this dissertation returns to higher education in the U.K. has been evaluated. The 

motivation relies on the empirical evidence observed in this sector over last decades, starting 

from the 1960s. The Government has faced an intensive increase in the volume of students 

enrolled into undergraduate courses, with the consequence that resources addressed to funding 

them started to be not sufficient. The solution to the funding problems materialized into a 

series of reforms that from the 1990s onwards were issued. They introduced and subsequently 

modified access costs and benefits, like fees, grants and loans.  

After the introduction of these reforms, several authors examined the causal effect exerted 

by new access rules on the enrolment rate, guided by the evidence suggested by data: the gap 

in the participation rate between “low-income” and “high-income” individuals. The literature 
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presented in previous chapters demonstrates that financial measures in favour of less-wealthy 

students are effective in reducing the existing gap and that familiar backgrounds seems to play 

a crucial role in children’s future choice. Therefore, we are dealing with a sector in which the 

Government has to deal with multiple objectives, consisting in the promotion of participation 

among all social classes, and the attribution of the appropriate amount of resources to all 

institutes in order to promote an efficient service. This scenario raises questions related to 

what could be the right policy instrument that can ameliorate this situation. 

Returns to higher education in the U.K. has been studied here applying the Generalized 

Roy model, estimated parametrically through the two-step estimator method. It implies that 

the “budget constraint” defined through a latent index structure, is estimated through 

Maximum Likelihood obtaining different values of the propensity scores; after this, the 

alternative-specific outcome equation is estimated through OLS including the appropriate 

correction term. 

 The Generalized Roy model has been used in the literature to study the returns to 

education under essential heterogeneity, a situation in which returns are assumed to vary 

between individual given their unobservables characteristics. This framework has several 

implications, since it may lead to biased estimates when applying traditional estimation 

methods like OLS or IV. Individuals that normally differ in unobservable characteristics, like 

ability, motivation, determination and other cognitive and non-cognitive skills are driven by 

these factors during their decisional process, creating the ability bias commonly known. These 

factors cause also the heterogeneity in returns, since they are normally affected by ability and 

other personal characteristics, besides education, experience and labour market’s conditions. 

Therefore, if individuals are aware of their idiosyncratic returns to education, they can act on 

this knowledge at the time when they decide to enrol, generating another kind of bias: the 

selection on unobservables bias; if more clever or capable students are those who enrol, we 

say that there is selection in gains.  

The existence of this mechanism has implications on the kind of parameter estimated. As 

discussed in Chapter 2., under essential heterogeneity the only relevant parameter that can 

draw a picture of this situation is the marginal treatment effect, a parameter that define the 

returns to education for individuals at the margin of indifference, thus individuals which are 

indifferent between participating or not. The marginal treatment effect varies with respect to 

different values of the unobserved component that influence the probability of participating, 
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therefore it tells what would be the return for individuals with different unobservable 

characteristics if they would be induced to college by a marginal change in their probability to 

enrol.  

Unfortunately, the attempt to estimate this parameter with the data chosen (the BHPS) has 

been inconclusive. The main problems faced in conducting this analysis concern in particular 

the data management. Even if data from eleven subsequent years have been selected, the 

relevant sample has revealed to be too small and this can be considered the first cause for non-

significant results. 

 Moreover, the availability of necessary variables was also limited. Several variables had to 

be derived or even if available, reported a high number of missing values, involving the 

choice of alternative measures that serve as a proxy (e.g. qualification achieved at 16 years 

old); nevertheless, in the case of the instrumental variable distance, the lack of postcodes 

identifying the area of residence, generated difficulties in the calculation of the distance from 

the nearest institute.  

The analysis therefore stopped at the first stage regression, from which the only conclusion 

is that there is not a sufficient evidence of statistical significance. This implies that the model 

is not identified, since the instruments seems not to provide the necessary exogenous variation 

to satisfy the exclusion restriction.  

A potential replication of this analysis should, first of all, rely on another dataset, that has 

to be panel in order to observe an individual from 18 to 18+t years old, age in which labour 

wages are observed, and has to provide the necessary variables to create subsamples of treated 

and untreated of a suitable size.  

Due to these shortcomings, the analysis has stopped, and the ex- ante evaluation could not 

be performed. As presented in the theoretical framework described in this thesis, the 

identification of the marginal treatment effect in general allows to perform not only ex-post 

evaluation, but also the ex-ante one. Indeed, it is possible to estimate how the probability to 

enrol would change under marginal change in the value of the policy instruments. Given new 

potential value of the propensity score, we can define the mean effect for an individual that is 

induced to participate by a certain intervention, as expressed by the policy relevant treatment 

effect. 
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In any case, if necessary data to analyse the returns to education were not available, it is 

still possible to develop a useful ex-ante evaluation, in order to analyse, for instance, the 

effect of certain reforms on the participation rate among the “low-income” individuals, being 

them the category still less present in the higher education sector. Exploiting methodologies 

explained in Chapter 1., it is not to exclude that a valid structural model can be selected, 

validated (relying on a reasonable number of empirical studies in the literature) and used to 

run counterfactual analysis. 
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