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Abstract

One of the most critical challenges in modern urban society is related to traffic management,
where too many inefficiencies are leading to unacceptable levels of road congestion, pollution
and delays, both for vehicles and pedestrians.
This thesis explores a novel approach to optimize traffic light control, exploiting Deep Re-

inforcement Learning (RL) techniques. The goal is to build an RL agent able to dynamically
select the optimal traffic light phase and determine the appropriate duration forwhich tomain-
tain it, eventually reducing traffic congestion and enhancing the overall traffic flow.
The proposed RL agent has been trained to adapt to varying levels of traffic, ranging from

light to moderate and eventually heavy levels of congestion, ensuring a stable and robust be-
havior under different scenarios. Additionally, this study analyzes the consequences of using
different time intervals for the agent’s action, investigating how this affects the overall system
performance. Finally, this study is distinguished frommost of theworks in the literature for the
focus on vulnerable road users, specifically on pedestrians. In this context, during the decision-
makingprocess themodel takes into considerationboth vehicle andpedestrianflows, balancing
their needs based on the relative assigned weight. An analysis was conducted on three different
weight levels, aiming at finding a trade-off strategy able to ensure fairness of service both to
drivers and pedestrians.
The findings will highlight how RL – and specifically Deep RL techniques – provides a

promising solution to trafficmanagement, significantly enhancing urbanmobility by reducing
traffic jams and thus improving the overall experience for all the members involved.
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1
Introduction

1.1 TheModern Scenario

Urbanization is an ever-growing trend in modern cities. The development of large urban cen-
ters undoubtedly generates advantages from an economic and technological perspective. How-
ever, on the other hand, it also introduces critical challenges from a social, urban planning and
ecological point of view.

Today, over 40million cars circulate in Italy; ifwe add to this the poormanagement of public
transport across the majority of the country, it is clear that road traffic is a problem that should
not be overlooked; urban centers face daily gridlocks, impacting not only individual mobility
but also public and commercial transportation.

A European Commission report [1] estimates that traffic congestion costs the European
Union €110 billion each year, approximately 1% of its Gross Domestic Product (GDP); in
2020, it is estimated [2] that the transport sector was responsible for 37.3% of nitrogen oxide
(NOx) emissions in Italy, not to mention the economic damages due to delays or those related
to noise pollution. These “negative externalities” represent a cost for the society in general, and
reducing road congestion could yield substantial economic returns as well as improving the
overall quality of life.
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1.2 IntegratingTechnology intoUrbanTrafficMan-
agement

The dualistic perspective of the consequences brought by the technological advancement offers
us also the instruments to address the traffic management problem.
The application of technological innovations at a ”urban level” gave raise to the concept of

smart cities; a comprehensive definition is provided by Dameri (2013) [3]:
”A smart city is a well defined geographical area, in which high technologies such as ICT, logis-
tic, energy production, and so on, cooperate to create benefits for citizens in terms of well being,
inclusion and participation, environmental quality, intelligent development; [...]”.
Within this smart-city framework, traffic management plays a crucial role. To effectively

reduce congestion, it is necessary to fully understand traffic patterns and have a wide compre-
hensions of its dynamics.
Advances in information technology and telecommunications, along with the exponential

growth in computing power, have made it possible to gather vast amount of information and
handle large-scale databases. This technological revolution allowed the construction of systems
able to leverage data, sensors, and algorithms to dynamically optimize traffic flow, reducing
delays and improving overall efficiency.
One such approach focuses on the optimization of traffic light systems, a critical component

of urban traffic management. Traditional traffic lights operate on fixed timers, often failing to
account for real-time traffic conditions. This results in inefficient green light durations, un-
necessary stops, and extended queues. The inefficiencies of these static systems become more
evident during peak hours or unexpected surges in traffic volume [4].

1.3 LeveragingReinforcementLearningtosolveTraf-
fic Challenges

Apromising approach in this domain is given by Reinforcement Learning (RL) [5]: an incred-
ibly evolving realm of Machine Learning, perfectly suited for solving the traffic signal control
problem, due to its ability of generalization, scalability and real-time applicability. By lever-
aging these capabilities, RL offers a highly effective solution for dynamically managing traffic
in modern urban settings. Through this approach, smart cities can more effectively optimize

2



traffic flow, reduce congestion, and ultimately improve both the environmental and social well-
being of urban areas.

The research presented in this thesis addresses the challenges discussed above through the
development of an algorithm designed to enhance traffic light efficiency. Our model, by lever-
aging real-time data, makes adaptive adjustments to traffic light timings, prioritizing smoother
vehicular flows while minimizing congestion. Taking into account factors such as vehicle den-
sity, queue length, and pedestrian activity, the algorithm is able to dynamically allocate green
light time based on demand.
Significant attention has also been dedicated to the integration of pedestrians in the algo-

rithm’s decision-making process. Urban mobility is not limited to vehicles: pedestrians rep-
resent a significant and vulnerable group of road users, whose needs are often overlooked by
traditional traffic systems; this lack of governance eventually results in unsafe crossings and in-
efficient movement patterns. By incorporating pedestrian flows into the optimization process,
the proposed system aims to balance the needs of all road users, enhancing safety and reducing
waiting time for both pedestrians and vehicles.

1.4 RelatedWorks

1.4.1 Conventional Traffic Light Control

Early traffic light control methods can be broadly divided into two categories: pre-timed signal
control and vehicle-actuated controlmethod. There exists also a third category, which however
represents an evolution from these ”deterministic” systems in how they handle pre-determined
rules: fuzzy logic control.

1. Fixed-Time Traffic Control Systems
These systems are based on fixed-time control, where phases are calculated on pre-set
schedules, without taking into consideration current traffic conditions. These systems
rely on historical data to design specific phase subdivisions for each time of the day.
While easy to implement, they are not capable of handling real-time fluctuations in traf-
fic demand, hence resulting inpoor performances under unusual traffic conditions, such
as accidents or weather events. Nevertheless, they still represent the main approach
adopted worldwide.
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2. Actuated Traffic Control Systems
These systems have been developed to overcome the limitation of fixed-time schemes.
For instance, they exploit sensors like inductive loops embedded in the pavement to
detect the presence of vehicles and adjust phases accordingly. In smaller towns, semi-
actuated traffic signal systems often provided an effective solution for balancing effi-
ciency and simplicity: sensors were put on major roads to adjust green light duration,
whileminor roadsmaintained prearranged timings. Despite beingmore responsive than
fixed-time systems, their decision-making capabilities remain local (i.e. they address con-
ditions at individual intersectionswithout considering network-wide optimization) and
still based on hand-crafted rules.

3. Fuzzy Logic Traffic Control Systems
Fuzzy logic systems emerged as an alternative to traditional rule-based traffic light sys-
tems. These systems address the limitations of rigid, deterministic rules by introducing
flexibility to handle uncertainties in traffic dynamics, allowing them to manage non-
linear relationships. Nevertheless, they’re still dependent on predefined rules and pa-
rameters, which limits their adaptability.

As already mentioned, these systems rely on hand-crafted rules tailored to current traffic
conditions and donot consider future changes; as a result, they fail to achieve a globally optimal
traffic solution. By moving beyond the strict frameworks of rule-based systems, fuzzy logic
systems paved theway formore adaptive, data-driven approaches likeReinforcement Learning,
which further leverage real-time feedback and continuous improvement.

1.4.2 RL Traffic Light Control

A lot of research has been done in academic and industry communities to build adaptive traffic
signal control systems. Due to the limited computing power and simulation tools, early studies
focus on solving the problem by fuzzy logic or linear programming. In these works, road traffic
is modeled by limited information, which cannot be applied in large scale systems. With the
development of deep learning and reinforcement learning, traffic control systems have become
more adaptive and efficient, enabling real-time optimization of traffic flows and significantly
reducing congestion.

One of the milestones in the field of deep RL dates back to 2015 and represents one of the
most widely used and important algorithms in the current landscape. In that year, Mnih et
al. [6] demonstrated human-level control through the Deep Q-Network (DQN) algorithm,
which blendsQ-learning with deep neural networks to perform complex tasks. Further studies
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implemented enhanced version, as theDoubleDQN [7], developed tomitigate the overestima-
tion bias in Q-value predictions, and the Dueling DQN [8]. These advancements have made
DQN and its variants cornerstones of modern reinforcement learning research, with applica-
tions spanning a wide range of domains.
Building on this, various studies have applied similar RL methodologies to traffic manage-

ment [9, 10, 11, 12, 13, 14, 15]. These works vary under several key aspects. First, in the state
representation, including hand-crafted features (e.g., lane density, queue length, traffic light
configuration, or image-like features as position and velocity. Second, they may differ in the
reward design, including waiting time, average delay, queue length and outflow rate.
In terms of action space, there are two main schools of thought: one that uses binary ac-

tions (i.e.: maintain phase or switch to the next), and another that expands the action space by
indicating howmany seconds to extend the current phase, based on a pool of options.

In addition to the more frequent DQN-based models, some studies explored the perfor-
mance of policy gradient algorithms, as Deep policy-gradient (PG) [12] or Actor-Critic meth-
ods [15], eventually achieving comparable results.
Recent advancements have expanded the RL environment to include mixed pedestrian - ve-

hicle contexts. Zhu et al. [16], developed a context-aware multiagent broad RL framework,
which accounted for both pedestrian and vehiclemovements, incorporating context-awareness
into the state space. Yazdani et al. [14] further refined this approachwith the IntelligentVehicle
Pedestrian Light (IVPL) system, optimizing signals for both vehicles and pedestrians, empha-
sizing safety and efficiency.
This project builds on these advancements by employing double DQNwhile aiming at con-

sidering pedestrian traffic, with the goal of optimizing the overall traffic flow.

1.5 Method

Our approach followed the outlined works by making different new contributions:

1. Selection of approaching phases: Typically, the studies presented only took into con-
sideration the possibility of either keeping the current phase or switching to the subse-
quent one, without the option to direct the flow to a specific phase. In our work, we de-
cided to improve the boolean action space approach by moving towards a three-option
based model, which allows the agent to be more flexible by choosing which of the three
phases to select. Thanks to this method, our model can still decide to keep the current
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phase by choosing the one it is currently running, or switch to the phase it considers
optimal.

2. Fairness implementation and focus on pedestrian flow: Very few studies ([14, 16])
have considered both vehicle andpedestrian flow in the traffic-light control problem. We
wanted to grant fairness in our system by teaching the model to weight the importance
given to each of the two flows considered, based on request. Unlike previous approaches
that either focused exclusively on vehicle flow or lacked dynamic adaptation for pedestri-
ans, our system is designed to prioritize both flows as needed. To achieve this, we trained
our model according to three different weight configurations, so as to demonstrate its
performance under alternative scenarios.

To conclude this introduction, we leave a brief outline of the structure of the remainder of
this project, composed by four chapters: a brief introduction to Reinforcement Learning will
be provided in Chapter 2, so as to give to anyone a guidance on the flow of this work. After-
ward, the problem and the approach adopted will be outlined in Chapter 3, focusing on the
methodological aspects, and in Chapter 4, from a more technical perspective. The experimen-
tal results will be presented and analyzed in Chapter 5. Finally, in Chapter 6 we will exhibit
our conclusions, the limitations of the study and future improvements.
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2
Foundations of Reinforcement Learning

To clarify what it means to use RL algorithms, it is important to start with the basic concepts
they are built upon. Therefore, in this chapter we are going to introduce RL in terms of its
components, such as the agent-environment interaction. Following this, we will explore the
concept of policy and its role in guiding the agent’s actions. Afterward, we will come up to
value functions and Bellman equations, which form the basis for evaluating policies.
Eventually, the chapter includes a brief analysis of some of the most common algorithms,

such as Q-Learning [17] and DQN [6], crucial for our project.
This introduction covers only the relevant aspects for ourwork in the context of single-agent

RL.

2.1 RL principles andMDPs

Reinforcement Learning is what it is more close to the concept of learning than ever has been
formulated. If we think about the primal form of cognition we would probably remind about
children, who learn how to act simply by interacting repeatedly with their surrounding envi-
ronment, recording which actions lead to success and which result in failure. Similarly, RL
models learn by trial and error, continuously adapting their behavior based on the feedback
they receive from the environment they are placed in. An intuitive representation of the agent-
environment relation is shown in Figure 2.1.
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Figure 2.1: Agent‐Environment Interaction ‐ Image adapted from [5]

To actually exploit such framework, we need to formalize it. In RL, it is usually assumed
that the environment can be described by a Markov Decision Process (MDP), which provides
a mathematical framework to model decision-making in uncertain environments. It consists
of:

• S: a finite set of States, i.e. all possible configurations the environment can be in;

• A: a finite set of possible Actions the agent can take;

• P : State Transition probability function. A function that describes the probability of
moving from one state to another, given an action.

• R: Reward function. A function that assigns a scalar feedback (i.e. reward) to each
state-action pair.

• γ: Discount Factor, γ ∈ [0, 1)

An MDP begins in an initial state s0 ∈ S, which is sampled from a distribution of initial
states µ. At each time step t, the agent observes the current state st ∈ S and selects an action
at ∈ A based on its policy π(at|st), which defines the probability of choosing action at given
state st. Once the agent takes the action, the MDP transitions to a new state st+1 ∈ S with a
probability givenbyP (st+1|st, at), and the agent receives a reward rt = R(st, at, st+1). These
steps are repeated either until the process reaches a terminal state, completes a maximum of T
time steps, or potentially continues indefinitely in the case of a non-terminating MDP.

2.1.1 Expected Discounted Return

A fundamental characteristic of the MDP framework is given by the Markov Property, from
which it derives its name. It states that the reward and future state are conditionally indepen-
dent of previous states and actions, given the current ones:
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Pr(st+1, rt|st, at, st−1, at−1, . . . , s0, a0) = Pr(st+1, rt|st, at) (2.1)

This implies that, in anMDP, the current state provides enough information to choose the
optimal action. The goal of an agent, in fact, is to select an optimal policy able tomaximize the
return over time.
With returnwe refer to the total discounted reward from time step t, and it is formulated as

in (2.2).

Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1 (2.2)

The discount factor γ is introduced to scale the importance of future weights. Logically, the
closer the reward, the higher its importance; viceversa, the further it is from t, the lower will be
the factor by which we’ll multiply the corresponding reward, and so the lower the result.
Ifwe setγ = 0, the agent is said tobemyopic (or short-sighted), since it prioritizes immediate

rewards rather than future ones. If γ ≃ 1, then the agent will place greater importance to long-
term rewards.

2.1.2 Value Function

It is now appropriate to introduce the concept of value function, which plays a fundamental
role in much of RL theory.
The value function measures the ”goodness” of a state, and is defined as the expected sum

of rewards the agent will receive while following a specific policy π, starting from a state s.
The value function, Vπ(s), for policy π, is given by:

Vπ(s) = Eπ[Gt | st = s] = Eπ

[
∞∑
k=0

γkrt+k | st = s

]
(2.3)

Similarly, the action-value function, also known as the Q-function, can be defined as the
expected sum of rewards when taking an action a in a state s, and thereafter following policy
π. The action-value functionQπ(s, a) is defined as:

Qπ(s, a) = Eπ[Gt | st = s, at = a] = Eπ

[
∞∑
k=0

γkrt+k | st = s, at = a

]
(2.4)
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2.1.3 Policy

Strictly related to the value function is the concept of policy, which is a guideline that points
to the agent which action it has to take. We can see the agent’s policy as a ”behavior function”,
a map from state to action. Consequently, the goal of maximizing cumulative rewards can be
reinterpreted in terms of the policy, where the objective becomes now finding the optimal pol-
icy that eventually will yield the highest expected return.

We can have deterministic policies (a = π(s)), where, given a state, only one specific ac-
tion can be taken, or stochastic policies, where the action is chosen based on some distribution
calculation between the actions and the given state (π(a|s) = P (At = a|St = s)).

2.2 Bellman Equations

Up to now, we have just outlined the basic components of the RL framework. To explain
how the agent actually ”learns”, we need to introduce the so-called Bellman Equations [18],
which can be considered as the guidelines followed by the agent to reach its goal: maximizing
the expected return. The Bellman equations formulate this objective in terms of a recursive
relationship with the value function.
A policy π is considered better than another policy π′ if the expected return of that policy is

greater than that of π′ for all s ∈ S, which implies V π(s) ≥ V π′
(s) ∀s ∈ S.

Therefore, the optimal value function V ∗(s) can be defined as:

V ∗(s) = max
π

Vπ(s), ∀s ∈ S (2.5)

Similarly, the optimal action-value functionQ∗(s, a) can be defined as:

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S, a ∈ A (2.6)

Moreover, for an optimal policy, we can define the equation:

V ∗(s) = max
a∈A(s)

Qπ∗
(s, a) (2.7)

Expanding equation (2.7) by using (2.4), we obtain:
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V ∗(s) = max
a

Eπ∗(Gt|st = s, at = a)

= max
a

Eπ∗

(
rt + γ

∞∑
k=0

γkrt+k+1 | st = s, at = a

)
= max

a

∑
s′

p(s′ | s, a) [rt + γV ∗(s′)] (2.8)

which is commonly known as the BellmanOptimality equation for V ∗(s). ForQ∗, instead,
the optimality equation is given by:

Q∗(s, a) = E(rt + γmax
a′

Q∗(st+1, a
′) | st = s, at = a),

=
∑
s′

p(s′ | s, a)
[
rt + γmax

a′
Q∗(s′, a′)

]
(2.9)

Here,Q∗(s, a) is defined recursively based on equations (2.4) and (2.6).
If the transition probabilities and reward functions are known, the Bellman optimality equa-

tions can be solved iteratively. It is the case of model-based algorithms, which exploit dynamic
programming to compute the optimal policy.
Conversely, many other algorithms assume that probabilities are unknown and must be es-

timated through policy and value function rollouts, which involve applying one or more sim-
ulation steps to test possible outcomes. These methods are known as model-free algorithms.
MonteCarlo, TemporalDifference, and Policy Search are themost commonly usedmodel-free
paradigms. The remainder of this chapterwill focus on this latter class ofmethods to introduce
important algorithms such as Q-learning and, in the subsequent section, Deep Q-Learning.

2.3 Model-FreeMethods

Model-freemethods can be applied to several RL problemswithout requiring any prior knowl-
edge of the environment’s dynamics. This means that the agent does not need to know the
transition probabilities or the reward function, but it learns the optimal strategy by interacting
with the environment.
There are two main categories of model-free algorithms:
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• Value-basedmethods: aim to learn the value function andderive the optimal policy from
it; an example is Q-learning, which constitutes the basis of the algorithm used in this
thesis and will therefore be explored more in depth shortly.

• Policy-based methods: directly optimize the policy without estimating the value func-
tion explicitly; examples include policy gradient methods.

These approaches can also be classified as either on-policy (e.g.: SARSA) or off-policy meth-
ods (e.g.: Q-Learning). On-policymethods use the current policy both to generate actions and
to update the same policy . In contrast, off-policymethods use two policies: one that is learned
about and that becomes the optimal policy - the target policy - and one that is more exploratory
and is used to generate behavior - the behavior policy.

2.3.1 Monte CarloMethods

Monte Carlo (MC) methods are based on the idea of Generalized Policy Iteration (GPI), an
iterative framework consisting of two processes. The first process attempts to approximate the
value function based on the current policy (policy evaluation step). In the second step, the
policy is improved with respect to the current value function (policy improvement step). In
Monte Carlo methods, the value function is estimated using the rollout technique, where the
current policy is executed in the system. The value function is then updated based on the accu-
mulated reward over the entire episode and the distribution of encountered states. The current
policy is refined using a greedy technique. By iterating between these two steps, the algorithm
is proven to converge to the optimal value function and policy. Although MC methods are
simple to implement, they require many iterations to converge and suffer from high variance
in value function estimation.

2.3.2 Temporal DifferenceMethods

Temporal Difference (TD) methods are still built on the idea of Generalized Policy Iteration
(GPI), but differ from MC methods in the policy evaluation step. Instead of using the total
sum of rewards, TDmethods calculate the temporal error, which is the difference between the
new estimate and the old estimate of the value function, considering the reward received at the
current time step and using it to update the value function.
The value function update equation is given by:

V (s)← V (s) + α[r + γV (s′)− V (s)] (2.10)
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Algorithm 2.1Q-learning for MDPs (with ε-greedy policies)
1: Initialize: Q(s, a) = 0 for all s ∈ S, a ∈ A
2: Repeat for every episode:
3: for t = 0, 1, 2, . . .
4: Observe current state st
5: With probability ε: choose random action at ∈ A
6: Otherwise: choose action at ∈ argmaxa Q(st, a)
7: Apply action at, observe reward rt and next state st+1

8: Q(st, at)← Q(st, at) + α [rt + γmaxa′ Q(st+1, a
′)−Q(st, at)]

9: end for

where α is the learning rate, r is the reward received at the current time step, s′ is the new
state, and s is the previous state. Therefore, TD methods update the value function at each
time step, unlike MC methods, which wait for the episode to complete before updating the
value function. This type of update reduces variance but introduces the bias in value function
estimation.
Therefore, TD algorithms can learn before the final outcome, allowing us to work with in-

complete sequences and in continuing environments. MC methods could work only with
episodic task, making them unsuitable for our project; hence, we’ll focus now on the most
characteristic TD algorithm: Q-learning.

Q-Learning is an off-policy temporal difference algorithm. Unlike SARSA, Q-Learning is
off-policy because it directly approximatesQ∗, independently of the policy being followed. An
experience is defined as (s, a, r, s′), where the agent starts in state s, takes action a, receives a
reward r, and transitions to a new state s′. The update to Q(s, a) is performed by receiving
the maximum possible reward from an action in s′ and applying the following update:

Q(st, at)← Q(st, at) + α[rt + γmax
a

Q(st+1, a)−Q(st, at)] (2.11)

The algorithm is described in Algorithm 2.1.
The simplestmethod for storing the values of theQ-function for each state-action pair is the

tabular form; however, this approach has some limitations. If the state and action spaces are
very large, it becomes impossible to store all the values in a tabular format. The reason is straight-
forward: the memory required to save all this data is too vast. Additionally, even searching the
table for a value in a particular state-action pair can be computationally prohibitive. Another
limitation arises from the state space itself: if the space is continuous, it will be impossible to
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use the tabular form unless the states are discretized. For these reasons, the tabular format is
only applied to environments with a limited number of states and actions.
To overcome these issues, function approximators have been introduced to store the values

of theQ-function. In this case, theQ-function is parameterizedby a vectorθ = (θ1, θ2, . . . , θn)
T

and is denoted asQ(s, a; θ). The function approximator can be thought of as amapping from
the vector θ in Rn to the space of the Q-function. As long as the number of parameters in
the approximator is less than the number of state-action values, changing the value of a certain
parameter will affect the Q-function in multiple regions of the state-action space; this helps
function approximators achieve better generalization in fewer training steps.
There are various methods in Reinforcement Learning for function approximation. This

thesis will focus on themost relevant ones, i.e. neural networks, and on their applicationwithin
the RL framework.

2.4 Deep Reinforcement Learning

With the term Deep Reinforcement Learning we refer to the exploitation of deep neural net-
works as function approximators for the value function - or the policy - in RL algorithms.
Since it’s out of the scope of this thesis, we are not going to talk about general neural net-

works functioning. Instead, we will directly focus on their application within RL and why
they are so essential for our work.

2.4.1 Deep Q-Learning

TheDeepQ-Learning algorithm is an important evolutionof thepreviously describedQ-Learning
algorithm. As stated above, the tabular approach used by Q-Learning makes it computation-
ally infeasiblewhenwe have to deal with high-dimensional or continuous state space, as the one
required in our project. Deep Q-Learning addresses this limitation by using a neural network
to approximate theQ-value function, granting the ability of generalizing over such state spaces.
The tabular version is therefore substituted with a neural network, which - given as input the
state - outputs the estimated value for each possible action.
The loss now is defined as:

Lt = (yt −Q(st, at; θ))
2 (2.12)

where:
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Algorithm 2.2Deep Q-Learning
1: Initialize: Neural networkQ(s, a; θ)with random weights θ
2: for each episode
3: Observe initial state s0
4: for t = 0, 1, 2, . . .
5: With probability ε: choose random action at ∈ A
6: Otherwise: choose action at ∈ argmaxa Q(st, a; θ)
7: Apply action at, observe reward rt and next state st+1

8: Update the Q-value:
9: Q(st, at; θ)← Q(st, at; θ) + α [rt + γmaxa′ Q(st+1, a

′; θ)−Q(st, at; θ)]
10: end for
11: end for

yt =

rt if st+1 is terminal

rt + γmaxa′ Q(st+1, a
′; θ) otherwise

(2.13)

The pseudocode is written in the algoritmh 2.2.
Despite the capability of handling high-dimensional/continuous spaces, this algorithm suf-

fers two other important issues:

• Moving target problem
The generalization capabilities offered by neural networks come with a downside. The
constantmodification of the agent’s policy during training and the exploitation of boot-
strapped target values, make the learning of the Q-value function quite challenging.
This non-stationarity problem is worsen in deep RL, where updating the value for one
state may unpredictably alter values for others (generalization), destabilizing even more
the optimization.

• Correlations
Taking consecutive steps as experience to train the agent generates a problem of correla-
tion. This breaks the assumptionof using i.i.d. (indipendent and identically distributed)
data to train the function approximation, whichmay eventually lead to oscillating or di-
verging policy.

To address these challenges, we can implement two important features: the target network
and the experience replay. The combination of these ideas brings us to one of the most relevant
RL algorithm: Deep Q-networks (DQN) [6].

15



2.4.2 Deep Q-Networks

DQN can be considered a step forward from deep Q-learning, as it incorporates a couple of
techniques to tackle the issues that affected the latter.
These methods are the two already introduced in the previous subsection, and they are ex-

plained as follows.

• Target Network
To mitigate the instability in training associated with the moving target problem, we
can implement an additional network known as target network. The latter is a periodic
copy of the online network: they are initialized with the same weights, but the target
network’s weight are updated only after τ steps, and set equal to the online one. This
”new” network can then be used in place of themainQ-value function to compute boot-
strapped target values; thanks to this approach, the target values are close to the estimates
of the main Q-value function while fixed for a discrete amount of steps, which has been
proven to increase the stability of the learning process.

• Experience Replay
With this technique, the agent’s experience et = (st, at, rt, st+1) is taken at each time
step t and stored in a dataset D = {et, et+1, . . . , en}, called replay buffer. Training is
performed using the mini-batch technique, where a subset of experiences B is sampled
uniformly at random from this buffer, B ∼ U(D). The use of this technique allows
past experiences to be utilized in more than one network update. Additionally, the ran-
dom selection of the subset from the replay memory helps break the strong correlation
between consecutive experiences, thus reducing variance in the updates.

TheMSE loss now is computed over the mini-batch B:

L(θ) =
1

B

∑
(sk,ak,rk,s

′
k)∈B

(yk −Q(st, at; θ))
2 (2.14)

where the target yk - related to the kth experience - is computed as previously (see equation
2.13). Then, the code can be formulated as in the algorithm 2.3.

2.4.3 Double DQN

Even the standardDQN showed some flaws. Research has shown that using the same network
both to select and evaluate actions could lead the algorithm to overestimate Q-values. To ad-
dress this issue, an enhanced version was proposed by VanHasselt et al. (2016) [7]: theDouble
DQN.
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Algorithm 2.3Deep Q-networks (DQN)
1: Initialize: online network with random parameters θ
2: Initialize: target network with parameters θ̄ = θ
3: Initialize: an empty replay bufferD = {}
4: repeat for every episode:
5: for time step t = 0, 1, 2, . . .
6: Observe current state st
7: With probability ε: choose random action at ∈ A
8: Otherwise: choose at ∈ argmaxa Q(st, a; θ)
9: Apply action at; observe reward rt and next state st+1

10: Store transition (st, at, rt, st+1) in replay bufferD
11: Sample randommini-batch ofB transitions (sk, ak, rk, sk+1) fromD
12: if sk+1 is terminal
13: yk ← rk
14: else
15: yk ← rk + γmaxa′ Q(sk+1, a

′; θ̄)
16: end if
17: LossL(θ)← 1

B

∑B
k=1 (yk −Q(sk, ak; θ))

2

18: In a set interval, update target network parameters θ̄ ← θ
19: end for
20: until convergence

This algorithm employs the aforementioned networks - the online network and the target
network - to compute the target value: the former is used to select the action, while the latter
is used to estimate its value. This decoupling ensures that the selection of the best action is
independent of its evaluation, thus mitigating the overestimation bias.
The target becomes now:

yt =

rt if st+1 is terminal

rt + γQ
(
st+1, argmaxa′ Q (st+1, a

′; θt) ; θ̄t
)

otherwise
(2.15)

Where:

• θ are the parameters of the online network, used to select the best action a via argmax.

• θ̄ are the parameters of the target network, used to evaluate the Q-value of the action
selected by the online network.
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Subsequently, the pseudo code of the algorithm used in this work is presented.

Algorithm 2.4Double DQN
1: Initialize: online network with random parameters θ
2: Initialize: target network with parameters θ̄ = θ
3: Initialize: an empty replay bufferD = {}
4: repeat for every episode:
5: for time step t = 0, 1, 2, . . .
6: Observe current state st
7: With probability ε: choose random action at ∈ A
8: Otherwise: choose at ∈ argmaxa Q(st, a; θ)
9: Apply action at; observe reward rt and next state st+1

10: Store transition (st, at, rt, st+1) in replay bufferD
11: Sample randommini-batch ofB transitions (sk, ak, rk, sk+1) fromD
12: if sk+1 is terminal
13: yk ← rk
14: else
15: yk ← rk + γQ(si+1, argmaxa′ Q(si+1, a

′; θ); θ̄)
16: end if
17: LossL(θ)← 1

B

∑B
k=1 (yk −Q(sk, ak; θ))

2

18: In a set interval, update target network parameters θ̄ ← θ
19: end for
20: until convergence
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3
ProposedMethod

In this chapter wewill focus on themethodological approach adopted to solve theTrafficLight
Control (TLC) problem at a road intersection. Our aim is to develop an agent capable of re-
ducing traffic congestion through the optimization of traffic light phases by leveragingRL tech-
niques.
We will then describe the key concepts of the RL framework used, including the definition

of states, actions and reward functions, and how these elements interact to guide the agent’s
behavior. We will avoid going into the technical details relating to the simulator or the experi-
mental setup, which will be covered in the subsequent chapter.
The final part will be then dedicated to the different environmental conditions used to train

our models: from the variation of traffic levels, to the different time intervals allocated to the
decision-making process of the agent, to the oscillating importance attributed to pedestrian
and vehicle flows.

3.1 Network building

The principle of the project was to create a fair and scalable model that could be applied across
various scenarios. This flexibility would allow the agent to be deployed in many environments,
whether in an elementary single intersection or in amore complex urban network, wheremany
roads intersect.
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In this project we opted for a standard two-way intersection, where each road is divided into
three lanes, one for each driving direction (see Fig 3.1). Technical aspects will be outlined in
chapter 4.

Figure 3.1: Road Network ‐ Image generated with SUMO

3.2 Environment definition

For the environment we considered some of the different approaches presented in literature
(section 1.4), and eventually selected the combination that best met our requirements.

3.2.1 State Space

Regarding the state space, we tried to capture simple but efficient information from all relevant
”entities”: from the vehicles situation, as the numbers and position, to the pedestrian flow, and
eventually to the traffic light configuration, such as timing and phase. This was necessary to
provide the agent with a comprehensive view of the current situation in the network.
As a matter of fact, we used five features that could gather the most from the environment;

inspiration was taken from [9]:

• Traffic Light Phase
It indicates the currently active traffic light phase. Together with the Elapsed Green
Time, it gives a complete description of the actual TL configuration.
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• ElapsedGreen Time
It measures the time that has elapsed since the traffic light turned green. This is a contin-
uous variable, providing information about the duration the green light has been active.

• Density
It indicates the proportion (i.e.: ∈ [0,1]) of the lane’s capacity currently occupied by
vehicles for each edge. It is computed for each lane in the network.

• Queue length
It represents the length of the vehicle queue* in each lane, normalized to a range between
0 and 1.

• Number of Pedestrians
As the name implies, it’s a scalar integer value representing the number of pedestrians
currently waiting in the network. As soon as they leave the pedestrian crossing, they are
removed from the environment.

All these features are simple in the sense that they donot require any advanced sensor in order
to be gathered. Indeed, thanks to modern technologies, they are straightforward to obtain in
almost any real world scenario.
The first two features - i.e. the current TL phase and the elapsed green time - can be easily

retrieved by interfacing with the traffic management infrastructure, since they are standard pa-
rameters and as such are continuously monitored. The remaining features - i.e. density, queue
length and number of pedestrians - can be captured using advanced camera systems; the latter,
leveraging computer vision techniques, are able to accurately detect both vehicles and pedestri-
ans in real-time. Furthermore, we emphasize that this setup does not require invasive or spe-
cialized sensors, as cameras provide a non-intrusive and cost-effective solution for continuous
monitoring of the traffic network.
In conclusion, the features exploited in the simulation are fully compatible with real-world

implementations, ensuring a smooth transition from theoretical models to practical applica-
tions.

3.2.2 Action Space

Concerning the possible actions undertaken by the agent, we decided to adopt a straightfor-
ward logic that could be easily scaled to more complex future scenarios.

*A vehicle is said to be in queue when its speed is below an imposed limit
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In the first stage of the project, the action space comprised only a binary choice: the agent
could either maintain the current phase, in case the traffic flow being managed was still signifi-
cant, or change to the next one. Then, the transition from one green phase to the next one was
preceded by a yellow light phase, which is immutable and always present.
With the implementation of pedestrians, we had to increase the number of phases so as to

allow their passage. By transitioning from a binary TL configuration to a triple one, we created
the opportunity not only to alternate among phases, but also to choose the order in which to
activate them. Consequently, we have expanded the action space to three, allowing the agent
to choose which phase to trigger.
The underlying logic is similar to the previous one: the agent can either maintain the phase

- simply by picking the current one - or switch to one of the others. This approach is in line
with the scalability approach wementioned earlier: the number of phases/actions can easily be
increased depending on the characteristics of the junction considered.
This method ensures flexibility, since it allows the model to adapt to a wide variety of sce-

narios. For instance, it can provide extended andmore frequent green phases to a specific road
in case of unusual circumstances that result in significantly higher traffic flow on that route;
conversely, it can even ”shut down” the opposite road in response to sudden issues.

3.2.3 Reward Functions

First Stage

In the first stage of the project, we considered only the passage of vehicles in the network.
Hence, we only monitored their behavior throughout the simulation. Three different reward
functions have been implemented, each serving a specific purpose to optimize traffic manage-
ment.

1. Waiting Time
The first reward function quantifies the total time vehicles spend waiting (i.e.: when
speed drops below a specified threshold) at traffic signals or intersections. By minimiz-
ing waiting time, the function aims to enhance traffic flow efficiency. We consider the
difference in waiting time between consecutive episodes: this incentivizes the agent to
minimize the current waiting time with respect to the previous one, and consequently
to maximize the associated reward.

2. Queue Length
The second reward function assesses the lengthof vehicle queues at the intersection. The

22



goal is to minimize queue length to alleviate congestion and prevent the accumulation
of long lines of vehicles. With the reward defined as the negative of the queue length,
the agent is committed to reduce queue sizes.

3. Total Delay
The last reward function calculates the cumulative delay experienced by vehicles across
the network, incorporating waiting times and additional delays caused by congestion. It
is defined as the variation from the maximum speed allowed, and it’s computed as:

Delayvehi
= (speedmax − speedvehi

)/speedmax

By minimizing average delay, the agent seeks to improve travel time reliability and effi-
ciency. Even in this case, we took as reward the opposite of the total delay.

Second Stage

With the introduction of pedestrians, we had to adjust the reward function to enable the agent
to consider also their state during the decision-making process.
The standard formulation of the reward function becomes:

Reward = −[(1− β) ∗Rveh + β ∗Rped] (3.1)

Aswe can note, the function now comprehends a convex combination of the rewards associ-
ated, respectively, with the vehicle (i.e.: Rveh) and the pedestrian (i.e.: Rped) flow. This grants
the model the ability of balancing the importance between the two components, based on the
weighting factor β. Additional details will be provided in subsection 4.4.3.
Concerning pedestrians, only the waiting time was took into consideration. The reasoning

is the same applied previously: taking the negative value of the reward logically pushes the agent
to reduce pedestrians’ waiting time.
We add a brief comment on the implementation of these functions.
Tooperate effectively, theynecessitate to compute additional informationwith respect to the

features defined in the state space (see 3.2.1); we are referring to the waiting time of the objects
and the speed of vehicles, useful to compute the overall network delay. These characteristics
can be classified as ”dynamic features”, given the fact that they require tracking the entities’
behavior over time: speed can be computed by analyzing the time interval between consecutive
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frames, while waiting time requires also to identify when a vehicle or pedestrian is stationary,
and recording the duration until they start moving again.
Although harder than static feature detection, this data can still be obtained thanks to ad-

vancements in computer vision techniques. It would be essential, however, the installation of
high-resolution cameras with a sufficient frame rate, so as to ensure a precise tracking over time
of the objects in the environment; additionally, these systemsmust be capable of recording and
processing multiple streams of information simultaneously and for extended periods.
In conclusion, while the complexity of dynamic feature detection is undoubtedly higher

than that of static feature detection, it remains manageable with state-of-the-art techniques.

3.3 Scenarios

The main advantage of RL based traffic lights is their ability of dynamically adapting to real-
time traffic conditions. For this reason, we decided to test our algorithm under different dy-
namics.

3.3.1 Varying Traffic Conditions

The first situation involves the modification of the traffic levels on the two roads. We imple-
mented 12 different vehicle inflows; each of these flows presents the same type of vehicle, with
equal generation condition (i.e.: lane and speed options, as will be explained in section 4.2.2).
Despite this, we decided to diversify the generation rate of the vehicles based on two different
perspectives. The first perspective involves differentiation by direction. To ensure the creation
of a flexible and diversified model, we opted to generate a larger volume of vehicles for the
north-south route and a smaller volume for the opposite direction; this can be easily related to
a real-world scenario, where a major road intersects with another one of lower relevance. The
second regards differentiation by magnitude; it was introduced to create varying traffic levels,
which, as we know, can fluctuate significantly in reality.

3.3.2 Varying Decision-Making Frequency

In this second scenario, we altered the time interval after which we perform an action-selection
step. We wanted to analyze the balance between efficiency and computational costs required
to deploy our model. Clearly, the adoption of a shorter window will create a more tailored
division of time among the different phases, providing vehicles with a smoother experience.
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On the other hand, the model should work several times more frequently with respect to ”less
responsive” models, increasing the operational cost of the algorithm.
Considering higher intervals, in fact, reduces the computational demands, leading to a po-

tentially more cost-effective model in low-traffic scenarios. Vice versa, the problem here would
be represented by rapidly changing traffic conditions, which could lead to unexpected conges-
tion.
A moderate intervention will be built as a potential balance, aiming to provide sufficient

reactivity while maintaining reasonable computational efficiency.
By analyzing these different scenarios, we aim to identify the optimal action-selection fre-

quency for maintaining traffic flow without incurring unnecessary operational costs.
The exploitation of higher frequenciesmight cause excessively frequent phase switching, po-

tentially causing system instability and unsustainable behavior. For this reason, a penaltymech-
anism will be introduced and adjusted to the corresponding time intervals; further details are
provided in 4.3.2.

3.3.3 Balancing Priority between Vehicles and Pedestrians

The third andmost relevant scenario explores theweights variation between vehicles and pedes-
trians, hence introducing the concept of fairness as a key factor in the trafficmanagement frame-
work.
To accomplish this, we introduced weights that influence the priority level assigned to vehi-

cles versus pedestrians during traffic light decisions. Recalling back the used reward function
(subsection 3.2.3), wemultiplied both terms by a factor related toβ: the higherβ, themore im-
portance is placed on pedestrian flow; logically, the lower β, the higher the importance placed
on vehicle flow.
This approach enables the model to respond to context-specific demands: for example, by

assigning a higher weight to pedestrians in areas near schools or shopping centers, where foot
traffic peaks. Conversely, during times of heavy vehicle flow, especially during rush hours, the
model can shift the weight toward vehicles to prevent excessive road congestion.
By adjusting these weights, we aim to evaluate themodel’s ability tomaintain fairness across

a range of real-world traffic scenarios. Through this approach, we can study themodel’s ability
to balance flow efficiency and fairness, creating a traffic management system that aligns with
the need of all road users.

25



26



4
Experimental Setup

This chapter is dedicated to the the technical side of the project.

Firstly, we will better outline the simulation environment and how we translated the real-
world problem into a virtual framework. Subsequently, an in-depth review of the RL envi-
ronment will be provided. The last part will be dedicated to the discussion of the algorithm,
including the tuning of the hyperparameters, the neural networks used and the replaymemory
specifications.

4.1 Problem definition

In this section we are going to formulate the Traffic Light Control (TLC) problem as an RL
task, by introducing the key components needed to define it:

• Physical/Simulation environment (1)

• RL environment (2)

• Agent (3)

The associated numbers refers to the relative section in Figure 4.1, where an abstract repre-
sentation of the interplay between the aforementioned entities is displayed.
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Figure 4.1: Deep Reinforcement Learning Framework for Traffic Light Control ‐ Image adapted from [11]

4.2 Simulation Environment

To simulate a real-world scenario we used SUMO (Simulation of Urban MObility) [19], an
open source traffic simulation platform designed for handling different road network configu-
rations. In addition to that, we used Flow [20], a python library built on top of the SUMOtraf-
fic simulator andOpenAI Gym [21] to facilitate the implementation of RL algorithms within
traffic environments. Basically, Flow acts as a bridge between SUMO and the RL model we
are going to build, train and test.

4.2.1 RoadNetwork

Our case study is based on a multi-lane two-way road intersection, where each road is divided
into three lanes, one for each driving direction (Figure 4.2(a)). It has been built artificially using
netedit, a graphical network editor included in SUMO.
The principal features we had to define are:

• Nodes - Fixed knots useful for dividing in space thenetwork. Themain attributes include
the x and y coordinates.

• Edges - The edges are the actual streets of our network. The main attributes are the
origin/destination nodes and the number of lanes.

• Routes - The routes are the sequence of edges vehicles can traverse given their position.
The main attributes include the sequence of edges (i.e.: the route) and the probability
to follow each sequence.
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Additional elements, yet essential for our work, are:

• Pedestrian Crossings - intuitively, they represent the crossing areas dedicated to pedestri-
ans. They are placed perpendicularly to edges, crossing all the lanes right after the stop
line for vehicles.

• Traffic Light - the core of our project; the main attributes include the different light con-
figurations (i.e. tl phases) and the corresponding time interval.

(a) Intersection Modeling (b) Lane connections

Figure 4.2: Visual Representations of the Considered Intersection ‐ Images generated with SUMO

On Figure 4.2(b), a focus on the internal lane connections is provided. We notice two char-
acteristics:

• Lane Connections
Each road is divided into three lanes, one for each driving direction. The rightmost lane
is dedicated to vehicles turning right, the center lane is for those continuing straight, and
the left lane is reserved for vehicles turning left and therefore crossing the intersection.
In this last case, cars must yield to those going straight, as they have traffic on their right.

• Flow Direction
In the figure, we can observe through the colored lines that one of the possible phases
allows vehicle flow in the west-east direction. An additional detail is provided by the
varying shades of green: the third lane is marked with a darker green, indicating that
vehicles traveling in that direction must yield the right of way (as they need to turn left
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and will encounter oncoming traffic from the opposite direction). The other phases
logically correspond to the flow in the north-south direction, while the remaining phase
is dedicated to pedestrian crossings in all directions.
This phase configuration was chosen due to a limitation in the current version of Flow:
pedestrians have not yet been fully implemented in the library. To work around this,
we created ”virtual” pedestrians that are not actually generated in the simulator. Conse-
quently, if we had allowed both pedestrians and vehicles to have the green light simulta-
neously, the vehicles would not be able to yield to the pedestrians properly. To avoid this
inconsistency, we opted for phases that prevent overlap between vehicle and pedestrian
movement.
Therefore, the phases are six in total, sinceweneed to consider also the yellow light transi-
tion. For safety and compliancewith current regulations, we have set the duration of the
yellow traffic light to 5 seconds. For the same reasons, we set also a minimum duration
of 5 seconds for the green phases.

We outline the sequence of phases:

1. GGgrrrGGgrrrrrrr - Green for vehicles from/to North-South, red for others

2. yyyrrryyyrrrrrrr - Yellow for vehicles from/to North-South, red for others

3. rrrGGgrrrGGgrrrr - Green for vehicles from/to East-West, red for others

4. rrryyyrrryyyrrrr - Yellow for vehicles from/to East-West, red for others

5. rrrrrrrrrrrrGGGG - Green for Pedestrians, red for others

6. rrrrrrrrrrrrYYYY - Yellow for Pedestrians, red for others

Note that the sequence is composed by 16 letters: the first 12 are allocated for vehicle lanes
- 3 for each road - and the last 4 for pedestrian lanes. The meaning of each letter is easily re-
conducible to the different colors of the traffic lights, while the uppercase ”G” is used when
vehicles do have the right of way.

4.2.2 Inflows

To simulate traffic, Flow provides a functionality to generate vehicles within the network dur-
ing the simulation. The class managing such process is called InFlows; an instance of it will
then be provided as an input during the network creation process.
In order to add a specific flow we need to define:
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• Vehicle type: whether human-driven or RL-controlled. Additional parameters include
the controllers, useful for determining the behavior of vehicles. Being out of the scope
of the thesis, we will not discuss further this section; more details can be found in [20].

• Departure: the spot in which the vehicle is generated. It consists of edge and lane; the
former is chosen among the four possible edges, while the latter is set to ”free”, meaning
vehicles occupy the rightmost available lane on the selected road.

• Speed: the speed at which the vehicles will enter the network. We set this value to 0.

• Inflow rate: howmany vehicles will be added into the network.

In our project, we implemented 12 different traffic flows, 3 for each cardinal point of origin.
More details will be provided at the end of the chapter (subsection 4.4.1).
For what concern pedestrians, as mentioned previously (see subsection 4.2.1), we created

them outside the simulator. To do that, we defined a fixed hourly rate, diversified only by direc-
tion: 350×2 pedestrians for east-west direction, 500×2 pedestrians for north-south direction.
For the removal, we decided to subtract 30% of them, with a maximum of 3, for each second
in which the traffic light is green.

4.3 RL Environment

4.3.1 State Space

The state space comprehends five features, as listed in section 3.2.1. A representation is pro-
vided below.

State =

Phase,Green Time,Density =


d11 d12 d13

d21 d22 d23

d31 d32 d33

d41 d42 d43

 ,Queue =


q11 q12 q13

q21 q22 q23

q31 q32 q33

q41 q42 q43

 ,Pedestrians


• Traffic Light Phase
One-hot encoded: we transformed the categorical variable corresponding to the phase
into a binary vector, where each phase is represented by a vector with a 1 in the position
corresponding to the current phase and 0s elsewhere. As a result, it is a vector of size
equal to the number of phases, 6.
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• ElapsedGreen Time→ x ∈ R+

• Density→ D ∈ R4×3, 0 ≤ dij ≤ 1 ∀i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3}

• Queue length→ Q ∈ R4×3, 0 ≤ qij ≤ 1 ∀i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3}

• Number of Pedestrians→ x ∈ N

Density and Queue Length are computed over a pre-determined part of the road, in our
case equal to 75 meters (computed considering a maximum of 10 cars plus the safety space
between vehicles). This factor will depend on the specific technology adopted, hence could be
diminished or enlarged at will.

4.3.2 Reward Function

Recalling the equation formulated in Chapter 3, we introduce a new component: a penalty
term, useful to prevent the agent from switching phases too frequently. The adjusted equation
is formulated as follows:

Reward = −[(1− β)×Rveh + β ×Rped] + pen (4.1)

Depending on the function and on the time interval dedicated to the action selection, the
reward is adjusted with a negative value. The functioning is simple but effective: the last n ac-
tions are checked, wheren depends on the time span employed in the decision-making process;
if all the phases are present, the penalization is considered. The penalty assumes the following
values:

1. waiting time: 10 for 15 sec. window, 20 for 10 sec, 60 for 5 sec.

2. queue length: 20 for 15 sec. window, 40 for 10 sec, 100 for 5 sec.

3. delay: 30 for 15 sec. window, 60 for 10 sec, 250 for 5 sec.

The number of actions checked - n - is set to 3 for 10′′ and 15′′ intervention models, and
increased to 5 for 5” models. The time span for a rapid intervention model covers logically
a fraction of the time employed by moderate/slow intervention models, hence the enlarged
window. Additionally, the weight is exponentially increased: our aim is to avoid several phase
switches within a short amount of time.
The effects of this measure can be observed in Figure 4.3; the average traffic light duration

has increased from 5 seconds to 20, with a much more uniform distribution and coherence
within the proposed framework.
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(a)Without penalty (b)With penalty

Figure 4.3: Green Time Length for Moderate Traffic ‐ 5sec scenario

4.4 Scenarios

The main advantage of RL based traffic lights is their ability of dynamically adapting to real-
time traffic conditions. For this reason, we decided to test our algorithm under varying dynam-
ics.

4.4.1 Varying Traffic Conditions

The first situation involves the modification of the traffic levels on the two roads. Vehicles trav-
eling from north and south routes belong to the main road; oppositely, vehicles coming from
east and west directions belong to the secondary road.
We used six different flows, which can be classified as:

1. Light flow: 400× 2 vehicles on the secondary road, 750× 2 vehicles on the main road

2. Moderate flow: 500× 2 on the secondary road, 850× 2 on the main road

3. Heavy flow: 600× 2 on the secondary road, 1000× 2 on the main road

For what concern pedestrians, we decided to use a single rate of flow to avoid introducing
excessive complexity into the analysis. It consists of:

1. Standard flow: 300× 2 pedestrians on the secondary road, 500× 2 pedestrians on the
main road
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The training procedure involved in this scenario is slightly more complex than the subse-
quent ones; this because we wanted to create a single model able to face simultaneously the
aforementioned scenarios. To achieve this, we alternated the different flowswhile training, and
created a larger, more stable replay buffer by increasing the memory size to 20.000 and raising
the batch size to 256. We trained the model for 1000 episodes, each lasting 2.000 time steps (1
time step = 1 second), for a total of 2e6 time steps.

4.4.2 Varying Decision-Making Frequency

In this second scenario, we altered the time interval after which we perform an action-selection
step. The proposed solutions are:

1. Rapid intervention: 5 seconds

2. Moderate intervention: 10 seconds

3. Slow intervention: 15 seconds

Here the proposedmodels are different from each other, and individually trained under the
specified frequencies. We trained them independently for a total of 300 episodes, still for 2000
steps each. Replay buffer was reduced at 10.000 and batch size to 128.

4.4.3 Balancing Priority between Vehicles and Pedestrians

The third scenario explores the weights variation between vehicles and pedestrians. The con-
figurations considered are the following:

1. β = 0.4→ 40%Rewped + 60%Rewveh

2. β = 0.5→ 50%Rewped + 50%Rewveh

3. β = 0.6→ 60%Rewped + 40%Rewveh

The training here followed the same approach used in 4.4.2.

4.5 Algorithm details

This section is dedicated to discuss in more details the characteristics of the algorithm intro-
duced in the subsection 2.4.3, along with the selection of the different hyperparameters.
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Network Architecture

The neural network used contains three fully connected layers: the first layer has 64 neurons,
the second 32, and the third has 3, one for each possible action. Leaky ReLU activation func-
tions are applied to the hidden layers to introduce non-linearity and prevent the dying neurons
problem. The final output layer remains a linear transformation, providing raw Q-values for
each action.

Learning phase

Based on the decision-making interval provided to the agent, the learning step is performed
after 5, 10, 15 or 20 time steps; these values derive from the three different frequency inter-
vals plus the potential 5 seconds of the yellow light that precede a phase switch. The network
employs RMSprop for optimization and mean squared error (MSE) as loss function.
The policy used is an elementary yet effective ϵ-greedy strategy: at each iteration, the agent

has a (1 − ϵ) percentage of going greedy - hence selecting the action proposed by the current
policy - or choosing a random action with probability ϵ. The first option ensures exploitation,
while the second exploration. Atfirst, exploration is essential for our agent to avoid local optima
and keep learning; eventually, we prefer a more stable approach. For this reason, we do not use
a static ϵ but we implement a decay over time; we set ϵ = 0.5, linearly decreasing up to 0.001
with ϵdecay based on the number of training steps.

Memory

At each ”learning step”, we store in memory the tuple <st, at, rt, st+1>. Whenever the buffer
is filledwith enough knowledge (at least equal to one batch), the training is actually performed:
a batch (size equal to 128 or 256) is retrieved and used to train the model. The total size of the
buffer is set to 10.000; for ”larger” models, it is doubled to 20.000 (see 4.4.1).

Hyperparameter Value Hyperparameter Value
learning rate 0.001 τ 250

ϵ 0.5→ 0.001 γ 0.99
memory size 10k, 20k batch size 128, 256

Table 4.1: Summary of Hyperparameters
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5
Results

This chapter is dedicated to the exhibit of the experimental results obtained by testing the
DDQN algorithm over different scenarios (see section 4.4).
The baseline introduced for the comparison is a fixed-time traffic light. We confirm that the

phases are the same introduced while training the model (see section 4.2.1), with the order un-
changed and constant over the episodes. For what concern the time interval of each phase, we
computed it through the standardWebster’s formula [22]; the latter outputs the optimal cycle
length of a network, given as input the observed traffic volume and the saturation flow (i.e.: the
highest possible amount of vehicular flow for each road. It depends on the width of the latter
and the dynamics allowed to car movements). The relative timings have been approximated to
the subsequent multiple of 5; eventually, the cycles obtained behave as follows:

Phase Veh. N Veh. S Veh. E Veh. W Ped. Low (s) Mid (s) High (s)
I green green red red red 35 40 45
II yellow yellow red red red 5 5 5
III red red green green red 20 25 30
IV red red yellow yellow red 5 5 5
V red red red red green 15 15 15
VI red red red red yellow 5 5 5

Table 5.1: Baseline for TL phases ‐ Variable traffic
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5.1 Waiting Time

5.1.1 Varying Traffic Conditions

Light Traffic

(a) Vehicle Total Waiting Time (s) ‐ Cumulative (b) Pedestrian Average Waiting Time (s) ‐ Cumulative

(c)Mean Aggregate Queue Length (m) ‐ Instantaneous (d)Mean Aggregate Delay ‐ Instantaneous

Figure 5.1: WT ‐ Metrics Comparison: Temporal Analysis of Vehicle and Pedestrian Flow in Light Traffic

Moderate Traffic

(a) Vehicle Total Waiting Time (s) ‐ Cumulative (b) Pedestrian Average Waiting Time (s) ‐ Cumulative
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(a)Mean Aggregate Queue Length (m) ‐ Instantaneous (b)Mean Aggregate Delay ‐ Instantaneous

Figure 5.2: WT ‐ Metrics Comparison: Temporal Analysis of Vehicle and Pedestrian Flow in Moderate Traffic

Heavy Traffic

(a) Vehicle Total Waiting Time (s) ‐ Cumulative (b) Pedestrian Average Waiting Time (s) ‐ Cumulative

(c)Mean Aggregate Queue Length (m) ‐ Instantaneous (d)Mean Aggregate Delay ‐ Instantaneous

Figure 5.3: WT ‐ Metrics Comparison: Temporal Analysis of Vehicle and Pedestrian Flow in Heavy Traffic
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Comparison

(a) Vehicle Total Waiting Time (b) Pedestrian Individual Waiting Time

(c)Mean Aggregate Queue Length (d)Mean Aggregate Delay

Figure 5.4: WT ‐ Comparison across Varying Traffic Levels against Fixed‐Time TL

In this section we presented the results obtained by our DDQN Agent under varying traffic
conditions, and compared them to the baseline.
In the first part, we demonstrate how the model performed in each scenario separately, pro-

viding the evaluations recorded across the four primary metrics used. These metrics were ana-
lyzed from various perspectives, the relative description follows (the reference is made on the
initial paragraph, but the format is consistently applied in the parallel sections).

1. 5.1(a) : Cumulative sum of vehicle total waiting time;

2. 5.1(b) : Cumulative sum of pedestrian average waiting time;

3. 5.1(c) : Instantaneous value of vehicle total queue length;

4. 5.1(d) : Instantaneous value of vehicle total delay.
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These metrics were recorded at regular intervals across 10 episodes, each lasting 2000 time
steps, and the average values were subsequently computed.
In the second part, a comparisonwith the baseline is shown across the threemodels together,

in order to provide a general overview of the results achieved by the model.
We conclude by confirming that the algorithm surpassed the baseline in all the three configu-

rations. Waiting time was reduced by 52.8% in the light traffic scenario, by 27.2% and 32.7%
in themoderate/heavy ones; by analyzing themagnitude of these relative improvements, we re-
veal cumulative gains of respectively 3.2e5, 3.6e5, 1.2e6 secondswithin the 2000-second time
window for each scenario. Aggregate queue length was reduced respectively by 65.1%, 45.7%
and 38.4%; total delay by 35.2%, 24.2% and 32.6%. Additionally, pedestrian waiting times
were also reduced, with improvements ranging from 20% to 40% in all the configurations.
We can therefore conclude by validating the model’s ability to handle highly diverse traffic

volumes while simultaneouslymanaging pedestrian interactions. In light traffic conditions the
percentage improvements are substantial, the highest across the different configurations. In
heavy scenario, instead, the baseline was not able to handle the vehicles load, as evidenced by
the decreasing performance observed in 5.3 (c) and (d); the model, on the other hand, was able
to prevent the congestion, thereby stabilizing the vehicles’ conditions.
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5.1.2 Varying Decision-Making Frequency

(a) Vehicle Individual Waiting Time (b) Pedestrian Individual Waiting Time

(c)Mean Aggregate Queue Length (d)Mean Aggregate Delay

Figure 5.5: WT ‐ Comparison against Fixed‐Time TL across Varying Frequency Levels

In this subsection,we compare the performance of the baselinewith the threemodels trained
under different decision-making frequencies.

As we can note, the performance of the three models is generally comparable, with the 5-
second model showing a slight advantage. It is important however to underscore the practical
implications of this high-frequency approach: if on one hand the agent is able to create more
tailored divisions of the TL phases - resulting in better performance - on the other it has to per-
form three timesmore the computations required by the slow-interventionmodel, demanding
much greater computational resources. We let ”supervisors” decide which version to imple-
ment, according to their specific needs and capabilities.
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5.1.3 Fairness - Varying β

(a) General Comparison (b) General Comparison w.r.t. Neutral Scenario

(c) Vehicle Individual Waiting Time (d) Pedestrian Individual Waiting Time

(e)Mean Aggregate Queue Length (f)Mean Aggregate Delay

Figure 5.6: WT ‐ Comparison against Fixed‐Time TL with Varying Levels of Fairness
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Here we compare the performance of the ”neutral” model (i.e. where β = 0.5) with that of
models featuring slight variations in theweight factor. By increasingβwe favor pedestrians over
vehicles: the former experienced a 26.3% reduction in their waiting time, while the latter saw
their performance decreasing (i.e. higher waiting times, longer queues and larger delays). This
is in line with the trade-off between the two categories we aimed at. Logically, by reducing the
level of β we improve vehicles flow: when β = 0.4, vehicle waiting time decreased by 14.5%,
queue length by 16.3% and total delay by 16.4%.
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5.2 Queue Length

5.2.1 Varying Traffic Conditions

Light Traffic

(a) Vehicle Total Waiting Time (s) ‐ Cumulative (b) Pedestrian Average Waiting Time (s) ‐ Cumulative

(c)Mean Aggregate Queue Length (m) ‐ Instantaneous (d)Mean Aggregate Delay ‐ Instantaneous

Figure 5.7: QL ‐ Metrics Comparison: Temporal Analysis of Vehicle and Pedestrian Flow in Light Traffic

Moderate Traffic

(a) Vehicle Total Waiting Time (s) ‐ Cumulative (b) Pedestrian Average Waiting Time (s) ‐ Cumulative
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(a)Mean Aggregate Queue Length (m) ‐ Instantaneous (b)Mean Aggregate Delay ‐ Instantaneous

Figure 5.8: QL ‐ Metrics Comparison: Temporal Analysis of Vehicle and Pedestrian Flow in Moderate Traffic

Heavy Traffic

(a) Vehicle Total Waiting Time (s) ‐ Cumulative (b) Pedestrian Average Waiting Time (s) ‐ Cumulative

(c)Mean Aggregate Queue Length (m) ‐ Instantaneous (d)Mean Aggregate Delay ‐ Instantaneous

Figure 5.9: QL ‐ Metrics Comparison: Temporal Analysis of Vehicle and Pedestrian Flow in Heavy Traffic
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Comparison

(a) Vehicle Individual Waiting Time (b) Percentage improvement in vehicle w.t.

(c)Mean Aggregate Queue Length (d)Mean Aggregate Delay

Figure 5.10: QL ‐ Comparison across Varying Traffic Levels against Fixed‐Time TL

The conclusions are similar to the one provided for the previous reward function, given the
comparability between the results.
Vehicle waiting time was reduced respectively by 57.3%, 32.4% and 37.2% in the three dif-

ferent scenarios. Aggregate queue length was reduced by 56%, 34% and 34%; total delay by
38%, 28% and 36%. Pedestrian waiting time by 25− 30%.
Even in this case, the model outperformed the fixed-time TL achieving competitive results

in every scenario.
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5.2.2 Varying Decision-Making Frequency

(a) Vehicle Individual Waiting Time (b) Pedestrian Individual Waiting Time

(c)Mean Aggregate Queue Length (d)Mean Aggregate Delay

Figure 5.11: QL ‐ Comparison against Fixed‐Time TL under Varying Frequency Levels

In this context as well, we confirm what stated before: now more than before, the varia-
tion within decision-making frequencies does not create huge differences. Rapid intervention
models, indeed, being more granular in their approach, grant a more effective subdivision of
TL phases, achieving performances higher than 10 − 20% with respect to the 5-sec interven-
tion models. However, this improvement must be compared to the increased computational
costs incurred by these models.
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5.2.3 Fairness - Varying β

(a)Overall Comparison (b)Overall Comparison w.r.t. Neutral Scenario

(c) Vehicle Individual Waiting Time (d) Pedestrian Individual Waiting Time

(e)Mean Aggregate Queue Length (f)Mean Aggregate Delay

Figure 5.12: QL ‐ Comparison against Fixed‐Time TL with Varying Levels of Fairness
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In this scenario, the results are more pronounced than in previous cases. With β = 0.4we im-
prove the vehicles conditions bynearly 20% in all themetrics: compared to the neutral scenario,
waiting time decreases to 81.5%, queue length to 69.7% and total delay to 83.8%. These im-
provements come at the expense of reducing the priority for pedestrians, whose waiting time
increases by 42.1%. Conversely, raising β to 0.6 leads to minor losses in vehicles efficiency -
waiting time increases by 15%, queue length by 20.7% and total delay by 7.8% - while pedes-
trian waiting time decreases by 18.4%.
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5.3 Total Delay

5.3.1 Varying Traffic Conditions

Light Traffic

(a) Vehicle Total Waiting Time (s) ‐ Cumulative (b) Pedestrian Average Waiting Time (s) ‐ Cumulative

(c)Mean Aggregate Queue Length (m) ‐ Instantaneous (d)Mean Aggregate Delay ‐ Instantaneous

Figure 5.13: TD ‐ Metrics Comparison: Temporal Analysis of Vehicle and Pedestrian Flow in Light Traffic

Moderate Traffic

(a) Vehicle Total Waiting Time (s) ‐ Cumulative (b) Pedestrian Average Waiting Time (s) ‐ Cumulative
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(a)Mean Aggregate Queue Length (m) ‐ Instantaneous (b)Mean Aggregate Delay ‐ Instantaneous

Figure 5.14: TD ‐ Metrics Comparison: Temporal Analysis of Vehicle and Pedestrian Flow in Moderate Traffic

Heavy Traffic

(a) Vehicle Total Waiting Time (s) ‐ Cumulative (b) Pedestrian Average Waiting Time (s) ‐ Cumulative

(c)Mean Aggregate Queue Length (m) ‐ Instantaneous (d)Mean Aggregate Delay ‐ Instantaneous

Figure 5.15: TD ‐ Metrics Comparison: Temporal Analysis of Vehicle and Pedestrian Flow in Heavy Traffic
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Comparison

(a) Vehicle Waiting Time (b) Percentage improvement in vehicle W.T.

(c)Mean Aggregate Queue Length (d)Mean Aggregate Delay

Figure 5.16: TD ‐ Comparison under Varying Traffic Levels against Fixed‐Time TL

The results are consistent with the previous findings.
Vehicle waiting time was reduced respectively by 49.7%, 35.4% and 32.8% in the three dif-

ferent scenarios. Aggregate queue lengthwas reduced by 48.1%, 38.5% and 27.5%; total delay
by 20.6%, 25.3% and 30.2%. Pedestrian waiting time by 34.0%, 21.5% and 28.4%.
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5.3.2 Varying Decision-Making Frequency

(a) Vehicle Individual Waiting Time (b) Pedestrian Individual Waiting Time

(c)Mean Aggregate Queue Length (d)Mean Aggregate Delay

Figure 5.17: TD ‐ Comparison against Fixed‐Time TL under Varying Frequency Levels

We reaffirm the conclusions provided earlier. All three models achieved reductions with
respect to the baseline, ranging from 10% to 50%; by narrowing the time interval, these im-
provements get slightly higher across all metrics, particularly in vehicle waiting time and queue
length. If no limits are imposed on computational resources, then the fast intervention model
should always be preferred; vice versa, at less congested intersections, it is advisable to carefully
assess this trade-off to determine the optimal solution.
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5.3.3 Fairness - Varying β

(a) General Comparison (b) General Comparison w.r.t. Neutral Scenario

(c) Vehicle Individual Waiting Time (d) Pedestrian Individual Waiting Time

(e)Mean Aggregate Queue Length (f)Mean Aggregate Delay

Figure 5.18: TD ‐ Comparison against Fixed‐Time TL with Varying Levels of Fairness
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Even in this case we can confirm what stated earlier. An increase in the weight factor β at-
tributes more attention to pedestrians, while a reduction gives priority to vehicles. The results
are almost identical to the one obtained in the first case, and can be seen in the figure above.

5.4 Comments

The results obtained are very promising, with all the three different branches displayingmodels
that outperformed the baseline under every aspect. In the following, wewill refer to thewaiting
time based model as the 1st model, the queue length based model as the 2nd model, and the
total delay based model as the 3rd model. We are going to repeat the general results, so as to
provide also a general overview of the models’ performances.

Forwhat concern traffic variations, the first twomodels achieved higher performances across
all metrics. For light traffic, optimizing queue length or waiting time provided the highest ben-
efit, as the system is less constrained by congestion: vehicle’s waiting time decreased by more
than 50% in all the three models; pedestrian’s waiting time decreased by 30− 34%; aggregate
queue length decreased in the three models respectively by 65%, 56% and 48%; total delay
decreased by 35 − 38% in the first two models, and surprisingly only by 20% in the delay-
based model. This suggest that such approach may not fully address congestion, and further
measure should be considered.
The results for moderate traffic are less pronounced, but more stable across the different

models: vehicle’s waiting time decreased by an average of 30%, pedestrian’s waiting time by
20%, aggregate queue length by nearly 40% and total delay by 25%. These results are consis-
tent across the three models, with only a 2/3 percentage point variation from the mean. The
improvement with respect to the baseline is less significant than the one obtained in the other
two traffic scenarios; this might be attributed to the capacity of pre-set TL schedules to handle
standard urban traffic flows. It is important to underline, in fact, that the tests have been per-
formed under constant flows, an environment in which fixed-time TL - if properly adjusted -
can achieve high cost-effectiveness ratios.
The third scenario involved an important volume of vehicles, which lead to congestion in

both tests. As shown in 5.3 - 5.9 - 5.15, the DDQN agent has been able to limit and handle
correctly the situation: it reduced vehicle’s waiting time by 35% in all the models and simul-
taneously improved also the pedestrian’s flow by 40% in the 1st model and 25 − 28% in the
other two. Queue length was reduced respectively by approximately 38%, 34% and 27%;
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Total delay was reduced by 32%, 38% and 30%.

Shifting our focus to the models based on frequency variation, we observed the expected
results: reducing the time window led to slight improvements across all performance metrics,
including reductions inwaiting time, queue length, and total delay. However, these gains came
at the cost of increased computational complexity and additional operational overhead. As pre-
viously mentioned, the choice of whichmodel to use is left to the discretion of the appropriate
authority.

Lastly, an overview on the balance between vehicles and pedestrians is provided. We notice
that an increase by 0.1 in β lead themodels to prioritize pedestrians, with an average reduction
in waiting time of 23% with respect to the standard model (β = 0.5). On the other hand, a
reduction by 0.1, by prioritizing vehicles, reduces their waiting time by 17%, the queue length
by 15% and the total delay by 7%; in the 2nd model, these results are significantly higher,
reaching respectively reduction of 19%, 30% and 16%.

These results confirm the effectiveness and adaptability of using different models tailored
to various scenarios: situations that demand greater consideration and attention for vulnera-
ble road users can benefit from models with higher beta values; conversely, scenarios where
road traffic reaches critical and challenging levels can leverage models with lower beta values.
Such models have proven to significantly reduce vehicle waiting times, cut down queues, and
minimize delays, thereby ensuring smoother traffic flow and substantial savings.
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6
Conclusion

In this thesis we explored the potential of RL techniques to optimize traffic management in
urban environments.

We started by introducing the problem and the relative implications on the current scenario.
Right after, we analyzed the several approaches presented in literature, which gave us a wider
perspective on the possible solutions to tackle the phenomenon throughReinforcement Learn-
ing techniques. Consequently, we briefly explained the single-agent Reinforcement Learning
framework, with a focus on the application of neural networks; the latter, being universal ap-
proximators, were essential for handling high-dimensional environments like the one consid-
ered here.

In Chapter 3 and 4 we delved into the core of the thesis: we proposed our approach, first
from a theoretical point of view, and then from the relative practical implementation. We dis-
cussed the network generation process in SUMOand the corresponding virtual representation
with FLOW.

Additionally, we defined the agent’s state and action spaces, and established three different
reward functions. Lastly, we better defined the algorithm - theDouble Deep Q-Network, along
with its features and the hyperparameters applied.

Finally, Chapter 5was dedicated to the analysis of the results. Herewe noticed the advantage
proven by RL techniques over standard traffic control baselines used nowadays.
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6.1 Limitations and Future Improvements

The advantage showed by our models marks only the beginning of what is possible. This work
was not intended as an exhaustive or fixed solution to a specific scenario; instead, the aim of this
thesis was the one of introducing and analyzing a very promising technique to both improve
the environmental conditions harmed by heavy traffic scenarios and - simultaneously - shed a
light on Vulnerable Road Users, in particular pedestrians. The latter are rarely considered in
literature, while they would need much more attention: any kind of city, from small towns to
metropolis, do have a significant flow of VRUs who want to take care of.

Thisworkdemonstrated that abalanced approachbenefitingbothvehicular trafficandVRUs
is possible, and the advantages would be priceless; indeed, future works should put their atten-
tion on refining this equilibrium and tailoring the reward functions to more effectively serve
these two categories. This necessity stems from a double perspective: first, from the desire of
reaching a greater balance and characterization between the two reward components; and sec-
ondly, from the ethical implications that may arise from the choice of which model to deploy
in specific contexts and why.

Another interesting proposal would be the implementation - and testing - of dynamic traffic
flows: this would unlock the true potential of the RL-basedAgent, which excel in learning and
specially adapting its behavior in real-time, unthinkable for any kind of rule-based TL. Unfor-
tunately, these capabilities have not been fully demonstrated in this study, given the challenges
associated with the implementation of highly diverse traffic conditions using the current ver-
sion of Flow. Addressing these limitations in future work will further enhance the robustness
and applicability of RL-based traffic solutions.
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