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Abstract

Visual Grounding is a crucial computer vision task requiring a deep understanding of data
semantics. Leveraging the transformative trend of training controllable generative models, the
research aims to demonstrate the substantial improvement of state-of-the-art visual grounding
models through the use of massive, synthetically generated data. The study crafts a synthetic
dataset using controllable generativemodels, offering a scalable solution toovercome challenges
in traditional data collection processes. The study introduces a synthetic dataset, employing
controllable generativemodels for scalability. Evaluating visual groundingmodel (TransVG)—
on the synthetic dataset showcases promising results, with attributes contributing to a diverse
dataset of 250,000 samples. The resulting datasets showcases the impact of synthetic data on
visual grounding evolution, contributing to advancements in this dynamic field.
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1
Introduction

Visual Grounding (VG) stands as a pivotal computer vision task, demanding a profound un-
derstanding of data semantics. The essence of VG lies in aligning entity mentions in natural
language queries with their corresponding portions in images. However, achieving this align-
ment necessitates copious annotations, a resource-intensive and challenging endeavor. Despite
significant strides in VG techniques over the years, progress in this semantic-rich task remains
somewhat constrained.

In the broader landscape of artificial intelligence, marked advancements, particularly in gen-
erative models, have emerged as a transformative trend. Notably, a recent trajectory involves
trainingmore conditionable generativemodels, where the output is guided not only by text but
also by other conditions such as images, bounding boxes, textual entities, keypoints, and depth
masks. This approach renders the output more controllable, opening avenues for enhanced
model performance.

The primary objective of this research is to demonstrate that the availability of massive, syn-
thetically generateddata can substantially improve theperformanceof state-of-the-artVGmod-
els. The research further aims to harness controllable generativemodels for crafting a synthetic
dataset — an area of increasing significance in AI research. Synthetic dataset generation offers
a scalable solution, enabling models to be trained on extensive datasets without the challenges
and expenses associated with conventional data collection processes.

TheRelatedWork chapter embarks on an extensive exploration of the diverse visual ground-
ing tasks, describing their varied types andmethodologies for constructing effectivemodels. Be-
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yond the theoretical framework, the discussion extends to practical applications of well-solved
visual grounding tasks. Furthermore, the chapter delves into prominent datasets widely uti-
lized for pre-training and evaluating visual grounding models, offering insights into their sizes,
structures, annotation systems, and inherent limitations. The chapter introduces the concept
of synthetic data, delving into various generation techniques that serve as a precursor to the
methods employed in this research.
TheMethodchapter serves as a detailed guide to themethodologies utilized in the creationof

a synthetic dataset. It begins by elaborating on the selection process for the base dataset, provid-
ing an in-depth analysis of its core attributes and justifying its strategic importance. Through-
out the chapter, the methodologies deployed are discussed, emphasizing their critical role in
crafting a realistic and expansive dataset. From the initial steps of data collection to the in-
tricacies of attribute-based sentence generation, each methodology is dissected to offer a clear
understanding of its implementation and impact on the dataset synthesis process. Moreover,
the chapter aims to underscore the significance of these methodologies in achieving the over-
arching goals of the project. By providing a thorough examination of each step in the dataset
synthesis pipeline, it seeks to demonstrate how the combined application of these methodolo-
gies contributes to the creation of a high-quality, representative dataset capable of supporting
robust research and development efforts.
The Results chapter delves into the chosen VG model — TransVG — evaluating its per-

formance while pre-trained on the synthetic dataset. The comprehensive dataset, its creation
methodology, and the experimental design are thoroughly examined. This includes trials with
datasets comprising exclusively synthetic images, focusing on the synthetic dataset generated
with the attribute semantic task. The chapter seeks to present a complex understanding of the
impact of synthetic data on the chosenmodels, offering valuable insights into their adaptability
and efficacy according to the larger scale of the data used for pre-training.
The Conclusion chapter provides a comprehensive summary of the work accomplished. It

reflects on the key findings, acknowledges any limitations encountered, and proposes poten-
tial avenues for addressing them. Additionally, the chapter offers insights into future research
directions, with a particular focus on exploring other semantic tasks such as size and spatial
relations. It discusses methodologies that can be employed for these tasks, highlighting the po-
tential for leveraging existing datasets and techniques for dataset augmentation. Preliminary
results from initial experiments in these areas may also be discussed, providing a glimpse into
the potential impact and significance of future research.
This thesis aims to contribute to the evolving landscape of Visual Grounding by showcasing
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the potential of synthetic data and controllable generative models in advancing the state of the
art.
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2
Related work

This chapter provides an in-depth exploration of the visual grounding task, encompassing its
diverse types and methodologies for constructing effective models. The discussion extends to
the practical applications ofwell-solved visual grounding tasks. Additionally, the chapter delves
into prominent datasets widely utilized for pre-training and evaluating visual grounding mod-
els, offering insights into their sizes, structures, annotation systems, and inherent limitations.
The definition of synthetic data is introduced, accompanied by a comprehensive overview of
techniques for its generation, exploring the various types.

2.1 Visual Grounding

Visual grounding is a concept in computer vision and natural language processing that refers
to the ability to connect or ”ground” language descriptions to corresponding visual elements
in a scene. The example of visual grounding is presented at Figure 2.1.
The goal is to establish a meaningful link between textual descriptions and the correspond-

ing objects, regions, or entities in an image or video. This area of study has garnered growing
interest due to its significant potential in closing the divide between language expressions and
visual comprehension.

Visual grounding is characterized by its heightened precision and flexibility compared to
image captioning, object detection, object recognition, and instance segmentation tasks. In the
context of visual grounding, the indicated object is typically identified through various details
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Figure 2.1: Visual Grounding

provided in the language expression. These details may encompass object categories, visual
attributes, relational contexts with other objects, attributes, spatial relations (such as relative or
absolute positions, size, shape), andmore. Consequently, to enhance theprecisionof reasoning
andmitigate ambiguity, it is essential to thoroughly utilize textual information and incorporate
discriminative visual features for effective visual grounding.

2.1.1 VG types

The different types of visual grounding task can be categorized based on the level of super-
vision involved in the training process. Visual grounding can be fully supervised and weakly
supervised. The comparison of the models is presented at Figure 2.2.

1. Fully supervised VG In fully supervised visual grounding, the model is trained using
pairs of annotated data, where each input is paired with a corresponding ground truth
annotation that specifies the regions or objects referred to by the given language descrip-
tion.

The training dataset consists of pairs of examples, each containing an input and a cor-
responding textual description. For each example, there are detailed annotations that
precisely identify the regions or objects in the visual data that are being referred to in the
text. These annotations are often provided in the form of bounding boxes, pixel-level
segmentation masks, or other region-specific information.
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Figure 2.2: Comparison of fully supervised VG and weakly supervised VG models

Theground truth annotations serve as the supervision signal during training. Themodel
learns to associate the language descriptionswith the correct visual elements byminimiz-
ing the discrepancy between its predictions and the annotated regions.

The objective function used during training is typically a loss function thatmeasures the
dissimilarity between the predicted regions by the model and the ground truth regions
specified in the annotations. Common loss functions for this task include localization-
based losses such as mean squared error for bounding box regression or pixel-wise cross-
entropy for segmentation tasks.

In a fully supervised visual grounding task, given an image and a textual description like
”a red car in the center”, the model should be trained to predict a bounding box or seg-
mentation mask that precisely outlines the region corresponding to the red car in the
center of the image.

Example of fully supervised VGmodel is VLTVG [1]. This is a transformer-based visual
grounding framework that has been developed to directly retrieve the feature represen-
tation of the target object for localization. The framework establishes discriminative fea-
ture representations through visual-linguistic verification and context aggregation. Sub-
sequently, it employs multi-stage reasoning to identify the referred object, enhancing
the precision of object localization in the visual data.

2. Weakly supervised VG Weakly supervised visual grounding involves training models
with less precise or weaker forms of supervision compared to fully supervised methods.
The annotations provided during training are less specific and may not precisely spec-
ify the regions or objects in the visual data. This type of learning is often used when
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obtaining detailed annotations for large datasets is impractical. For example, instead of
bounding boxes, weak supervision might involve image-level labels indicating the pres-
ence of certain objects in the image.

The training dataset may contain images paired with textual descriptions, but the anno-
tations are less detailed than in fully supervised scenarios. Instead of precise bounding
boxes or pixel-level masks, weak supervision might involve image-level labels indicating
the presence of certain objects or concepts in the image. During the training phase the
model learns to associate the provided weak annotations with the corresponding visual
elements and not to learn the patterns given with the fully annotated files.

The objective function used during training is adapted to accommodate the weaker su-
pervision. For example, if the annotations are image-level labels, the loss functionmight
be designed to encourage the model to focus on relevant regions associated with the la-
beled concepts without requiring precise localization.

In a weakly supervised visual grounding task with image-level labels, given an image and
a textual description like ”a beach scene”, themodel is trained to understand that the lan-
guage description is associated with the general concept of a beach but without precise
information about the location of objects within the image.

Weakly supervised visual grounding is more challenging than fully supervised methods
because the model needs to infer the relevant regions without explicit localization infor-
mation. The ambiguity in weak supervision may lead to less accurate localization, and
the model needs to rely on contextual information to make predictions.

The advantage of weakly supervised visual grounding is that it allows for training on
larger datasets with less manual annotation effort. However, the trade-off is that the
model’s ability to precisely locate objects in the visual data is limited by the quality and
granularity of the weak annotations provided during training.

The example of weakly supervised learning is Confidence-aware Pseudo-label Learning
(CPL) where the proposal selection is conducted based on the is determined by cross-
modal (region-textual) analysis, involving the direct computation of matching scores
between the proposal and the query.

3. Self-supervisedVGSelf-supervised visual grounding refers to aparadigmwhere amodel
is trained for the task of associating language descriptionswith specific regions or objects
in visual data without relying on external annotations. Instead, the model generates its
own supervision signal from the input data.

Self-supervised learning involves designing pretext tasks that do not require external an-
notations but are still relevant to the target task of visual grounding. These pretext tasks
are typically constructed based on inherent properties of the visual and textual data.
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Themodel learns representations that capture semantic relationships between visual ele-
ments and corresponding language descriptions during the pretext tasks. These learned
representations are then utilized for the primary task of visual grounding.

Self-supervised visual grounding is advantageous in scenarios where obtaining labeled
data is challenging or expensive. By leveraging the intrinsic structure of the data, the
model can still learn meaningful representations that benefit subsequent tasks.

The example of self-supervised visual grounding model is the model presented by Agar-
wal et al [2]. They proposed Visual Difference Attention (VDA) as a differentiable op-
eration andDifferentiable Difference Attention (DiDA) loss as a new learning objective.
VDA utilizes attention maps by computing the difference in feature vectors between an
original image and a version where the salient region is masked out. DiDA, instead, re-
sults in attention maps of higher quality and brings about quantitative enhancements
in tasks such as classification, detection, and segmentation.

This project will exclusively focus on discussing fully supervised visual grounding models
and will present the technology needed to generate sufficiently synthetic datasets that are suit-
able for visual grounding tasks.

2.1.2 VG approaches

Current existing approaches for building VG models can be divided into three groups: one-
stage methodology, two-stage methodology and transformer-based methodology.

Two-stagemethodologies are characterized by a dual-phase process, involving the generation
of region proposals in the initial stage and subsequently utilizing language expressions to iden-
tify themost suitable region in the second stage. Typically, these region proposals are generated
through either unsupervisedmethods or by employing a pre-trained object detector. In the sec-
ond stage, training loss, manifested as either binary classification ormaximum-margin ranking,
is applied to optimize the similarity between positive object-query pairs.

Recent advancements in the two-stage methodology involve refining object relationships,
incorporating correspondence learning, and leveraging phrase co-occurrences to enhance per-
formance. These improvements represent a concerted effort to bolster the efficacy and adapt-
ability of two-stage approaches in the context of visual grounding tasks.

The two-stage approach offers advantages in terms of flexibility, optimized training, effec-
tive integration of language and visual information, modular design, adaptability to complex
relationships, and demonstrated success in previous studies.
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In contrast to two-stage approaches, one-stagemethods streamline the visual grounding pro-
cess by eliminating the computationally intensive steps of object proposal generation and re-
gion feature extraction. Instead, these methods densely integrate linguistic context with visual
features, utilizing language-attended feature maps for bounding box prediction in a sliding-
window fashion.

Pioneering work in this category includes FAOA [3], which encodes text expressions into
a language vector and seamlessly integrates this vector into the YOLOv3 detector. The inte-
gration aims to effectively ground the referred instance without the need for explicit object
proposal generation.

Another notable one-stage approach is RCCF,which formulates the visual grounding prob-
lem as a correlation filtering process. This method selects the peak value of the correlation
heatmap as the center for target object localization, offering a computationally efficient alter-
native.

Addressing the limitations of FAOA in handling complex queries, the recent advancement
known asReSC introduces a recursive sub-query constructionmodule. Thismodule enhances
the model’s capability to effectively ground complex queries, contributing to improved perfor-
mance in scenarios where nuanced linguistic expressions are involved.

One-stage and two-stagemethodologies have predominantly depended on either extensively
pre-trained object detectors or proposal-free frameworks that enhance off-the-shelf one-stage
detectors through the integration of textual embeddings. In contrast, the transformer-based
approach is constructed upon a transformer encoder-decoder architecture and operates au-
tonomously of any pre-trained detectors or word embedding models.

Two instances of the transformer-based approach are TransVG [4] and VGTR [5]. In the
case of TransVG, it leverages transformers for multi-modal correspondence and, through em-
pirical evidence, demonstrates that intricate fusion modules - such as modular attention net-
works, dynamic graphs, andmulti-modal trees - can be effectively replaced by a simpler stack of
transformer encoder layers, resulting in improved performance. VGTR is designed to capture
global visual and linguistic contexts without relying on the generation of object proposals. It
redefines visual grounding as a task of regressing object bounding box coordinates conditioned
on the input query sentence. VGTR employs the potent capabilities of transformers to com-
prehend natural language descriptions, seeking to acquire more discerning visual evidence to
mitigate semantic ambiguities.
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2.1.3 VG applications

Visual grounding applications leverage the relationship between language and visual content
to enhance various tasks.
VG is helpful in robotics while aiding robots and autonomous systems in understanding

and interpreting their surroundings [6]. This is particularly important for tasks like navigation,
where the system needs to recognize and interact with objects based on visual input.

VG can be helpful in Question-Answering Systems and in particular in Visual Question
Answering [7]. It is employed inVQA systems to comprehend and respond to questions about
images. It involves linking linguistic queries with specific visual elements, requiring a nuanced
understanding of the visual context.

VG is essential in Augmented Reality applications [8] where digital information or objects
need to be overlaid onto the real-world scene. This involves accurately mapping and aligning
virtual elements with corresponding entities in the visual field. Same stands for Virtual Real-
ity. VG contributes to creating realistic and immersive virtual environments. This includes
mapping virtual objects to real-world counterparts and ensuring a coherent user experience.

Overall, visual grounding is crucial for various applications, including image and video cap-
tioning, human-robot interaction, and augmented reality. Visual grounding enables machines
to understand and interpret natural language descriptions in the context of visual information,
enhancing their ability to interact with the visual world.

2.2 Overview of existing VG datasets

This part describes several well-known datasets that are employed for the visual grounding task,
serving both as pre-training and fine-tuning resources, as well as benchmarks for model eval-
uation. However, the constrained size of these datasets poses limitations on achieving opti-
mal model performance. The annotation process, which relies on human resources, is cost-
intensive, making it impractical to replicate extensive datasets inexpensively.

2.2.1 Flickr30k

The Flickr30k dataset [9] is a widely used benchmark dataset in the field of visual grounding.
It was created for the task of associating textual descriptions with specific regions or objects in
images, making it relevant for visual grounding and image-captioning research.

11



The dataset consists of 31,000 images collected from the Flickr website. Each image is as-
sociated with five different textual descriptions, providing diverse linguistic expressions for the
visual content. The annotations in Flickr30k are provided in the form of sentence descriptions,
where each description is a human-generated sentence describing the content of the image. An-
notations are considered at the sentence level, and each image hasmultiple associated sentences.

2.2.2 ReferItGame

TheReferItGame dataset is a dataset designed specifically for the task ofVG.TheReferItGame
dataset is created to address this task and provide a resource for evaluating models on visual
grounding.

The dataset consists of 130,525 expressions, referring to 96,654 distinct objects, in 19,894
photographs. The images collected from the ReferIt game, an online game where users refer
to specific objects or regions in images using natural language expressions. It includes a diverse
set of images containing various scenes, objects, and backgrounds. The annotations in Refer-
ItGame are in the form of referring expressions, which are sentences or phrases that refer to a
particular object or region in an image. Each image may have multiple referring expressions,
capturing the diversity of ways people might describe the same visual content.

2.2.3 MS COCO

MSCOCOdataset [10] is awidelyused and comprehensivedataset for various computer vision
tasks, including visual grounding.

MS COCO is a large-scale dataset that contains images covering a diverse range of scenes
and everyday activities. It includes over 200,000 images, each annotated with object instance
segmentation masks, bounding boxes, and captions. Annotations in MS COCO are rich and
include multiple types of information. Each image has annotations for object instances, pro-
viding bounding boxes and segmentationmasks for various objects. In addition to object anno-
tations, MS COCO includes five captions for each image, capturing different ways to describe
the visual content.

2.2.4 RefCOCO

The RefCOCO dataset [11] is another dataset designed for the task of visual grounding. ”Re-
fCOCO” stands for ReferIt Game Referring to COCO, indicating its connection to the MS
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COCO (Common Objects in Context) dataset. RefCOCO specifically addresses the task of
referring expression comprehension in the context of the MS COCO dataset.
The RefCOCO dataset is created by selecting a subset of images fromMSCOCO and pro-

viding referring expressions for specific objects in those images. Annotations in RefCOCO
consist of natural language sentences or phrases that refer to particular objects in the images.
Each image in RefCOCOhas corresponding annotations capturing how peoplemight linguis-
tically refer to specific objects within that image.

2.2.5 Visual Genome

The Visual Genome dataset [12] is also a large-scale dataset designed for various computer vi-
sion tasks, including visual grounding.

Visual Genome is a rich and extensive dataset, containing over 100,000 images that cover a
diverse range of scenes and objects. Each image in the dataset is densely annotated with object
instances, object relationships, and scene graphs. Annotations in Visual Genome go beyond
simple object detection. Each image is annotated with detailed information about object in-
stances, their relationships, and spatial arrangements in the form of scene graphs. Scene graphs
represent relationships between objects and provide a structured representation of the visual
content.

2.3 Synthetic data

Synthetic data generation involves the creation of artificial data to augment or supplement real-
world datasets for trainingmachine learningmodels. This process aims to overcome limitations
such as data scarcity, annotation costs, or privacy concerns associated with using exclusively
real-world data. Here are key aspects of synthetic data generation.

Synthetic data is often generated to supplement existing datasets, providing additional di-
verse examples to enhance the generalization and robustness of machine learning models. In
certain applications where real data may contain sensitive information, synthetic data can be
used to create privacy-preserving datasets for model development without revealing actual in-
dividual details.

The use of synthetic data offers several advantages, particularly in scenarios involving regu-
lated or sensitive data. It alleviates constraints associated with privacy concerns and regulatory
compliance by allowing the generation of artificial data that mimics certain characteristics of
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the original data. Synthetic data is especially beneficial for creating datasets tailored to specific
requirements thatmaybe challenging to achievewith authentic data. It is commonly employed
in quality assurance and software testing processes.
However, there are notable disadvantages to using synthetic data. One primary challenge is

the difficulty in replicating the complexity present in the original data accurately. The synthetic
data may not fully capture the intricate patterns and variations found in real-world datasets,
leading to inconsistencies. Additionally, synthetic data cannot straightforwardly replace au-
thentic data because models trained solely on synthetic data might not generalize well to real-
world scenarios. Despite the advantages, accurate and authentic data remains crucial for pro-
ducing meaningful and reliable results in various applications.

2.3.1 Synthetic data genetation techniques

1. Rule-based Generation

Rule-based generation [13] refers to the process of creating synthetic data by applying ex-
plicit rules and predefined heuristics to generate samples that adhere to specific patterns
or characteristics. This approach does not rely on complex learning algorithms or gener-
ative models but rather involves the formulation of explicit rules that guide the creation
of artificial data.

Rule-based generation involves the formulation of explicit rules and conditions that gov-
ern the generation of synthetic data. These rules are often based on domain knowledge
or an understanding of the desired characteristics of the data. Heuristics, which are prac-
tical problem-solving methods or rules of thumb, may be incorporated into the rule-
based generation process to handle specific situations or to introduce variability in the
synthetic data.

Rule-based generation is often tailored to a specific domain or application. The rules are
designed to capture the essential features and patterns relevant to the task. The genera-
tion process is deterministic, meaning that given the same set of rules and initial condi-
tions, the synthetic data will be reproduced identically.

The effectiveness of rule-based generation depends on the accuracy and completeness of
the formulated rules. If the rules do not capture the nuances of the real-world data, the
synthetic data may lack realism.

A disadvantage of the approach is that while rule-based generation provides control over
the generated data, it may lack the flexibility to capture complex relationships present in
real-world datasets.

2. Generative Models
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Generativemodels are an advanced approach for creating synthetic datasets by leveraging
sophisticated algorithms to learn and simulate the underlying data distribution. Unlike
rule-based methods, generative models learn from existing data and generate new sam-
ples that share similar statistical properties. Two prominent types of generative models
used for synthetic data generation are Generative Adversarial Networks (GANs) [14]
and Variational Autoencoders (VAEs) [15].

Generative models learn the underlying data distribution by analyzing real-world exam-
ples. GANs and VAEs, for instance, use neural networks to capture complex patterns
and relationships in the training data

Generative models are capable of producing synthetic data that exhibits both realism
and diversity. The generated samples capture the statistical characteristics of the training
data, offering a more complex representation of the underlying distribution.

2.3.2 Types of synthetic data

1. Image Synthesis

Image synthesis is theprocess of generating artificial images throughcomputationalmeth-
ods, often driven by algorithms, models, or neural networks. The goal of image syn-
thesis is to create visually realistic or meaningful images that share characteristics with
real-world photographs.

Image synthesis can refer to data augmentation, style transferring, or super-resolution.
By generating variations of existing images, synthetic data can be added to the training
set, enhancingmodel robustness and generalization. Style transfer techniques use image
synthesis to apply artistic styles to photographs. These methods aim to create visually
appealing images by combining the content of one image with the style of another. In
super-resolution tasks, image synthesis is applied when low-resolution images are trans-
formed into high-resolution counterparts.

Some image synthesismethods allow for conditional generation,where specific attributes
or features can be controlled during the synthesis process.

Image synthesis is a dynamic and evolving field with applications across various indus-
tries. As algorithms and models continue to advance, the quality and realism of synthe-
sized images are expected to improve, opening up new possibilities and challenges in the
realm of computer-generated visual content.

2. Text Generation
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Text generation is the process of automatically creating coherent and contextually rel-
evant text based on certain input or conditions. This can involve various techniques,
from rule-based methods to advanced machine learning models.
Simple rule-based methods involve using predefined templates, grammatical rules, or
heuristics to generate text.
Statistical language models, such as n-grams or Hidden Markov Models (HMMs), use
statistical patterns in the training data to predict the likelihood of words or sequences of
words.
Advanced machine learning models, particularly recurrent neural networks (RNNs),
long short-term memory networks (LSTMs), and transformers, have demonstrated sig-
nificant success in text generation tasks.
Sequence-to-sequence models, often based on encoder-decoder architectures, are used
for tasks like machine translation and text summarization.
Attentionmechanisms, commonly employed in transformermodels, allowmodels to fo-
cus on different parts of the input sequencewhen generating each element of the output
sequence.

In this research project, a hybrid approach is employed, incorporating both rule-based gen-
eration and generative model techniques for the purpose of generating an extensive synthetic
dataset tailored to the visual grounding task. This comprehensive strategy involves applying
generation methods not only to images but also to textual data, ensuring a diverse and varied
dataset to enhance the training and evaluation of visual grounding models. Example of ?? ref-
erence.
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3
Method

This chapter outlines themethodologies employed in creating a comprehensive synthetic dataset.
The initial section introduces the selectedbase dataset chosen for subsequentmodifications and
augmentations, providing a detailed overview of its main features and the rationale behind its
selection. Following this, the core semantic tasks crucial for generating a high-quality dataset
are enumerated. These tasks serve as the foundation for every step in the generation process.
The subsequent sections delve into the specific techniques applied for sentence generation

and image synthesis. Each technique is thoroughly explained, elucidating the reasoning behind
its utilization and how it contributes to the overall dataset quality.
To conclude, the chapter discusses the adaptability of thesemethods for scaling to other orig-

inal visual grounding datasets. This exploration broadens the applicability and relevance of the
developed methodologies beyond the initial dataset, highlighting the potential for widespread
use and impact.

3.1 Dataset

The selected dataset for subsequent augmentation is derived from the Flickr30k Entities, an
expanded iteration of the original Flickr30k dataset. This dataset encompasses a substantial
corpus featuring 244,000 coreference chains, establishing connections between references to
identical entities across diverse captions associated with a given image. Additionally, it incor-
porates 276,000meticulously annotated bounding boxes, providing spatial delineations for the
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entities of interest. This enriched dataset not only amplifies the quantity of available data but
also enhances the semantic depth and structural understanding through the incorporation of
coreference chains and bounding box annotations.
The Flickr30k Entities dataset comprises a total of 31,783 images, consistent with the quan-

tity found in theoriginal Flickr30kdataset. Each image, on average, features 8.7objects, thereby
contributing to a rich and diverse visual context. The dataset encompasses a comprehensive
spectrum of 44,518 distinct categories, with an average of 6.2 objects per category, reflecting a
notable diversity and granularity in object representation.
The dataset maintains a linguistic dimension by providing five distinct sentences to describe

each image, aligning with the structure observed in the original Flickr30k dataset.
Each sentence within the dataset is annotated with entities falling under distinct macro cat-

egories, including people, other, notvisual, scene, body parts, clothing, animals, instruments,
and vehicles. For instance, an entitymention could be classified as belonging to categories such
as people, animals, or scene, reflecting the diverse semantic elements present in the annotations.
Moreover, the dataset accounts for the potential ambiguity in entity categorization through

the introduction ofmerged categories, such as vehicles/scene, animals/people, clothing/people,
bodyparts/people, people/scene, animals/scene, clothing/scene, bodyparts/scene, clothing/ve-
hicles, among others.
The annotation process assumes that any noun-phrase (NP) chunkwithin the sentences can

potentially represent an entitymention. TheseNP chunks, characterized by their brevity (with
an average of 2.35words) and non-recursive nature, capture succinct andmeaningful segments
within the sentences. The diversity of entitymentionswithin the dataset is notable, encompass-
ing references to single entities (e.g., ”a dog”), regions of ”stuff” (e.g., ”grass”), multiple distinct
entities (e.g., ”two men”, ”flags”, ”football players”), groups of entities that may not readily be
identified as individuals (e.g., ”a crowd”, ”a pile of oranges”), or even the entirety of a scene
(e.g., ”the park”).

The process of generating bounding boxeswithin the dataset follows specific guidelines. No-
tably, for entities categorized under ”scene”, the creation of a bounding box is deemed unnec-
essary. In cases where individual entities can be distinctly identified, such as with ”a man”, ”a
dog”, individual bounding boxes are employed to encapsulate each entity. Conversely, when
the individual elements within a group, such as ”a crowd of people”, cannot be readily distin-
guished from one another, a singular bounding box is utilized to encompass the entire group.
This approach acknowledges the variability in entity representation, ensuring that bounding
boxes appropriately reflect the perceptual and structural distinctions among entities, whether
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Category Number of
appearances Example

people 144,931

[/EN#262852/people A man] wearing
[/EN#262855/clothing a blue wrestling suit]
with [/EN#262860/other an US emblem] , is
wrestling [/EN#262852/people another person] in
[/EN#262856/other a competition] setting .

animals 15,916
[/EN#116768/animals A black and white dog] is
playing with [/EN#116769/other an orange ball] in
[/EN#116770/scene the snow] .

clothing 52,179

Here are [/EN#247722/people ten people] skat-
ing and [/EN#247727/people one guy] with-
out [/EN#247729/clothing a shirt] dancing on
[/EN#247725/other concrete] in [/EN#247724/scene a
tree-lined park] .

instruments 4,485 [/EN#9319/people A man] plays [/EN#9321/instruments
saxophone] next to [/EN#9320/other a yellow fire hydrant] .

vehicles 12,615
[/EN#139627/people A boy] does [/EN#0/notvisual
tricks] on [/EN#139628/vehicles a bicycle] while in
[/EN#139631/scene a park] .

body parts 15,535

[/EN#43116/people A young boy] with
[/EN#43129/bodyparts close-cropped hair] , wear-
ing [/EN#43121/clothing a red robe] , is holding
[/EN#43122/other a black kettle] as [/EN#43125/people
someone] is about to pour [/EN#43126/other something] in
[/EN#0/notvisual it] .

scene 73,409
[/EN#0/notvisual There] are [/EN#206621/people men] play-
ing [/EN#206623/instruments the drums] , while walking
along [/EN#206622/scene the street] .

not visual 26,371

[/EN#97320/people An adult] holds [/EN#97319/people
a small child] [/EN#0/notvisual who] sits on
[/EN#97322/other a table] in [/EN#97321/scene a mall
food court] .

other 99,050 [/EN#0/notvisual I] won [/EN#193444/other the trophy] at
[/EN#193447/people the parade] !

Table 3.1: Description of categories in F30K Entities dataset
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individual or grouped, within the dataset.
The selectionof this dataset as the foundation for constructing a synthetic augmenteddataset

stems not only from its inherent diversity but also from the efficiency of its annotation sys-
tem. Flickr30k Entities is evident in its expansive range of categories and diverse scenes. well-
organized entity labeling system contributes significantly to the synthesis of diverse and contex-
tually relevant sentences, enhancing thenaturalness and coherence of generated textual content.
The provision of precise coordinates facilitates efficient manipulation and correct positioning
of entities in newly generated images. This not only streamlines the synthesis process but also
ensures the spatial accuracy of generated scenes, bolstering the overall quality and realism of
the synthetic visual content.

3.2 Semantic tasks

In the context of VG, various semantic tasks can be employed to generate sentences that effec-
tively convey information about the depicted scene. The following categories encompass key
strategies.

1. Attributes
Queries in this category focus on detailing the descriptive characteristics of the object.
Attributes may encompass a range of features, such as color, material, ethnicity, and
more. In this work only the color attributes are used.

2. Spatial Relations
Spatial relations involve describing the location of objects either in absolute terms or rel-
ative to other elements in the scene. Absolute location queries specify the precise place-
ment of the object (e.g., ”woman on the left”), while relative location queries establish
the object’s position in relation to another entity (e.g., ”girl standing under the bridge”).

3. Size
Size considerations can be expressed in terms of absolute or relative dimensions. Abso-
lute size queries describe the object’s size outright (e.g., ”big dog”), while relative size
queries indicate the object’s size in comparison to another element or other elements in
the scene (e.g., ”the smallest bowl”).

These semantic tasks can bemanipulatedwithin sentences to achieve diverse expressions and
meanings, thereby enhancing the effectiveness of VG in understanding and describing visual
content.
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This thesis focuses exclusively on the attributes semantic task for dataset generation, with
a specific emphasis on utilizing color as the selected attribute for generating new sentences.
Color is chosen due to its straightforward nature and ease of manipulation. While the primary
discussion revolves around sentence generation with variations in color, brief descriptions of
techniques applicable to other semantic tasks will also be provided.

3.3 Sentence generation

The effective execution of most semantic tasks necessitates a profound comprehension of the
provided query to generate a sentence with analogous structure but incorporating specific al-
terations. To achieve this, preprocessing of the original query is essential to enhance overall
understanding.

In the context of the research, the original database includes sentences with annotated en-
tities. However, it’s essential to design a generation process that can be easily scaled to other
datasets lacking such entity annotations. Thus, a cost-effective source for obtaining these an-
notations needs to be identified.

The challenge involves text classification without the availability of annotated training data.
Text classification is the task of mapping text to labels based on textual descriptions, and the
aim is to accomplish this without the aid of annotated training instances.

There are two possible approaches to solve this problem.
First strategy is a similarity-based approach. This approach generates semantic embeddings

for both the texts and label descriptions. The matching process involves measuring the similar-
ity between texts and labels usingmetrics like cosine similarity. Among various similarity-based
approaches, the recently introduced Lbl2Vec [16] method has demonstrated superior perfor-
mance. Lbl2Vec embeds word, document, and label representations jointly. Initially, word
and document representations are learned using Doc2Vec. Subsequently, the average of label
keyword representations is employed to identify themost similar candidate document represen-
tations via cosine similarity. The average of these candidate document representations forms
the label vector for each class. During classification, documents are assigned to the class with
the highest cosine similarity between the label vector and the document vector.

Another avenue explored is zero-shot classification. This involves leveraging labeled training
instances from known classes to train a classifier capable of predicting instances from unseen
classes. Notably, zero-shot learning techniques utilize annotated data for training but do not
use labels to inform the target classes, relying on knowledge from previously seen classes to

21



classify instances from entirely new classes.
Zero-shot text classification (0Shot-TC) [17] is an approach that enables a text classification

model to categorize instances into classes it has never seen during training. This is achieved
through the use of pre-trained language models and embeddings, which capture semantic rela-
tionships and contextual information about words and phrases. The foundation of zero-shot
text classification is the use of pre-trained word embeddings or contextual embeddings. Pre-
trained embeddings enable themodel to understand the semantic relationships betweenwords
and phrases. The embeddings encode contextual information, capturing themeaning ofwords
in various contexts.

The zero-shot text classification model is typically built on top of a pre-trained language
model. This model could be a transformer-based architecture like BERT or GPT, where the
pre-trained embeddings serve as the foundation. In zero-shot learning scenarios, the model is
provided with additional information about the classes it has not seen during training. This
information can come in the form of class descriptions, attributes, or any relevant metadata
that characterizes the unseen classes.

The demonstrated preprocessing plays an important role in enhancing comprehension of
semantic tasks and refining algorithms for sentence generation.

3.3.1 Query transformationwith attributes

The sentence transformation technique employed in this project is attribute-based query trans-
formation, a category that encompasses a broad range of object characteristics, surpassing the
scope of spatial relations, and size. Attributes can manifest as diverse features such as color,
shape, texture, and more, contributing to the richness of entity descriptions.

For simplicity of implementation, only the color attribute was utilized in this project. The
rationale behind this choice stems from the ease of understanding and clarity associated with
color. Unlike attributes like material diversity or animal race, which pose challenges for the
model in terms of distinction, color is more intuitively comprehensible. Hence, it was chosen
to assess the visual grounding models’ ability to handle this semantic task.

To generate new sentences incorporating the color attribute, only sentences containing a
color token were selected from the original dataset. This selection process does not require
preprocessing, as colors are uniquely identifiable without ambiguity in the sentence.

Expanding upon the process of generating sentences based on attributes, particularly focus-
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Figure 3.1: Example of sentences generated with randomized colors

ing on color, involves a multi-step approach aimed at enriching the dataset with diverse and
contextually relevant examples.
To begin with, the identification of sentences containing explicit color tokens within the

original dataset is crucial. This step ensures that only sentences with clear references to color
attributes are selected, streamlining the subsequent transformation process and minimizing
ambiguity.
Once identified, these sentences serve as the foundation for generating new sentences with

color variations. The core strategy involves substituting the specified entity’s color attribute
with a different color while retaining the entity’s root and other attributes intact. This meticu-
lous replacement process ensures that the semantic context of the sentence remains consistent
while introducing variability in color attributes.

The randomness in assigning new colors adds an element of unpredictability and diversity
to the generated sentences, effectively expanding the dataset’s breadth and enabling more com-
prehensive training of visual grounding models. Iterating this process multiple times further
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enhances dataset diversity, capturing a wide spectrum of color attribute variations and facilitat-
ing robust model learning.
The introduction of randomness in assigning colors can result in particularly challenging

samples for both image generation models and visual grounding (VG) models. Examples like
”blue banana” or ”green dog” present instances where the assigned color deviates significantly
from the expected or typical color associated with the object, posing difficulties for model in-
terpretation and generation.
The generation of new sentences involved replacing the entity with the color with another

entity sharing the same root and possessing the same range of attributes, but with a different
randomly assigned color. This procedure was repeated multiple times to introduce greater di-
versity into the dataset.

Furthermore, the iterative nature of attribute-based sentence generation fosters continuous
refinement and optimization of the dataset, ensuring its adaptability to evolving research needs
and challenges.
In summary, the process of generating sentences based on attributes, particularly focusing

on color, involves a systematic approach aimed at maximizing dataset diversity, semantic coher-
ence, and model adaptability. By leveraging advanced techniques and incorporating feedback-
driven refinement, attribute-generated sentences serve as invaluable resources for advancing
research in visual grounding and related fields.

3.3.2 Query transformationwith other tasks

Spatial relations serve as a critical element in characterizing the location of objects within a
given context, encompassing both absolute and relative positional distinctions. Manipulating
these relations, particularly by substituting them with their opposites, becomes instrumental
in inducing semantic variations within sentences.

Absolute locations offer a direct indication of an object’s position in the image, devoid of
comparative references to other objects. Expressions such as ”bottom”, ”top”, and ”right” pre-
cisely denote the object’s spatial orientation as perceived by the observer. On the other hand,
relative locations delineate the interconnections among two or more objects within the image,
introducing concepts of spatial hierarchy such as being ”lower” or ”the lowest”, or positioning
”to the right of” another entity.

In the context of dataset augmentation, a deliberate strategy involves locating spatial rela-
tion tokens and substituting themwith their opposites. This deliberate alteration serves to not
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onlymodify the sentence’s meaning but also contributes to the diversification of the generated
dataset.
To introducemodifications related to spatial relations in bounding boxes, information from

the sentence generation step is crucial. Thefirst key consideration iswhether the spatial relation
is indicative of absolute or relative location.
For absolute location, adjustments to the bounding box coordinates are necessary, aligning

with the entire space of the image. In this scenario, the relevant bounding box pertains solely
to the entity. Given the change in spatial relation tokens to their opposites, adjustments along
either the horizontal or vertical axes are required. For instance, when transitioning from ”a
woman on the left” to ”a woman on the right”, the bounding box shifts horizontally to the
right.
In the case of relative location, coordinates are interlinked with multiple objects, typically

involving a base case of two objects. Here, the coordinates of both objects necessitate move-
ment to opposite sides. Importantly, the size of the bounding box should remain constant
to preserve semantics, preventing unintended alterations, such as making a ”little dog” entity
significantly larger than ”the owner”.
Another crucial consideration is the application of similar adjustments to bounding boxes

whose coordinates intersect with the original one. This ensures consistency in characterizing
intersections, particularly relevant for entities in categories like ”instruments”, ”clothing”, ”ve-
hicles”, and ”body parts”. These categories are closely tied to the original entities, minimizing
the risk of inconsistencies, such as having a ”woman wearing a yellow dress” with the woman
on the right and the dress on the left.
This straightforward modification to bounding boxes contributes to improved comprehen-

sion of spatial relations by visual groundingmodels. It enhances their ability to accurately iden-
tify and align spatial relations in both image and text contexts.
Query transformation involving size introduces the concept of size as either absolute or rel-

ative, offering diverse ways to characterize objects within a given context.
Absolute size pertains to the inherent description of an object, resembling an attribute that

captures a specific characteristic of the entity. Expressions like ”small”, ”wide”, or ”huge” fall
under this category, encapsulating the determined features of the object.
On the other hand, relative size is employed to compare the object in question with another

entity or entities. This comparison can highlight extreme characteristics relative to others (e.g.,
”the elephantwasmuchbigger than amouse”) or single out an item froma set of similar entities
(e.g., ”the largest bowl on the table”).
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Overall, incorporating query generation with size adds an additional layer of diversity to the
newly generated synthetic dataset, enriching the range of language patterns within the dataset.
To incorporate alterations related to size changes into bounding boxes, insights from the

sentence generation process becomepivotal. It is paramount to discernwhether the size change
is absolute or relative in nature.
For absolute size changes, the bounding box coordinates should be adjusted while consider-

ing the entire image space. The focus here is on the bounding box corresponding to the entity
undergoing the size change. For example, transitioning from ”a small dog” to ”a large dog”
could involve an increase in size, but the bounding box remains centered.
In cases of relative size changes, where the size is compared with another entity, adjustments

to bounding box coordinates are contingent upon both entities involved. Size comparisons are
oftenmade between two objects, and in such instances, the bounding box coordinates for both
entities need to be modified accordingly. It is crucial to maintain the original size relationships
to prevent semantic distortion. For instance, changing the size of ”a small cup next to a large
mug” requires coordinated adjustments to both bounding boxes.
Similarly, analogous modifications should be applied to bounding boxes whose coordinates

intersect with the original one. This ensures consistency in visual representation, particularly
for entities in categories closely associated with one another, such as ”instruments”, ”clothing”,
”vehicles”, and ”body parts”.

By implementing these straightforward adjustments to bounding boxes, the visual ground-
ing models can better interpret and comprehend size changes in both image and text, facilitat-
ing more accurate alignment between the two modalities.s

3.4 Image synthesis

Having successfully generated sentences and bounding boxes in preceding steps, the next cru-
cial phase involves synthesizing the final components of a robust visual grounding dataset —
images. This step aims to represent all modifications obtained during sentence generation ef-
fectively capturing and expressing the nuances of the chosen semantic task.

In this section of the chapter, the methodologies employed for image synthesis are compre-
hensively detailed. These techniques are selected to ensure that the resulting images faithfully
reflect the diverse modifications achieved throughout the dataset creation process, thereby en-
capsulating the intricacies of spatial relations, size, and attribute representation. The synthesis
techniques employed are essential for producing a well-rounded and effective visual grounding
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Figure 3.2: Stable diffusion architecture

dataset.

3.4.1 Stable diffusion

Stable diffusion [18] refers to a stochastic process characterized by the stability of its distribu-
tion of increments over time. In the context of image generation, stable diffusion offers a novel
approach where images are synthesized through a series of diffusion steps, each introducing
controlled noise to the image. Unlike traditional generative models that directly learn a map-
ping from latent variables to images, stable diffusionmodels leverage the dynamics of diffusion
to generate images progressively.

The generationprocess beginswith an initial image, typically anoise sampleor a low-resolution
image. The image undergoes a series of diffusion steps, where noise is added to the image in a
controlled manner. Each diffusion step increases the entropy of the image, progressively blur-
ring itwhile preserving global structures. The intensity of the noise added at each diffusion step
follows an annealing schedule, which gradually decreases over time. This schedule plays a cru-
cial role in shaping the distribution of pixel values in the generated images. At each diffusion
step, samples are drawn from the conditional distribution of pixel values given the previous
state of the image and the added noise. This sampling process ensures that the generated im-
ages follow the desired distribution. After completing all diffusion steps, the final noisy image
is reconstructed by reversing the diffusion process. This reconstruction yields a high-quality,
photorealistic image with fine details and textures.

Stable diffusion offers several advantages for image generation tasks:
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Figure 3.3: GLIGEN architecture

1. Fine-Grained Control
Bymanipulating the annealing schedule anddiffusionparameters, practitioners can con-
trol the level of detail and diversity in the generated images.

2. Robustness to Noise
Stable diffusion models are inherently robust to noise, making them suitable for gener-
ating images in noisy environments or from low-quality inputs.

3. Scalability
The progressive nature of stable diffusion allows for the generation of high-resolution
images with minimal memory requirements, facilitating scalability to large image sizes.

4. Diversity
The stochastic nature of stable diffusion enables the generation of diverse images from
the same initial state, offering a rich source of variability in the generated samples.

Stable diffusionoffers a promising framework for image generation, leveraging the principles
of stochastic processes to produce high-quality, diverse, and photorealistic images.

3.4.2 GLIGEN

Grounded-Language-to-Image Generation (GLIGEN) [19] is an innovative approach that ex-
tends existing pre-trained text-to-image diffusion models by incorporating grounding inputs,
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Figure 3.4: BoxDiff architecture

such as bounding boxes for grounding concepts, reference images, and part keypoints. This
novel methodology addresses the challenge of integrating new grounding information while
preserving the extensive concept knowledge encoded in the pre-trained models.

The original Transformer block of Latent DiffusionModels consists of two attention layers:
self-attention from visual tokens and cross-attention from caption tokens. GLIGEN’s primary
contribution involves freezing the trainingweights of the originalmodel and integratingGated
Self Attention layers between the model’s attention layers.

This modification facilitates spatial grounding capabilities by directing model attention to
the concatenation of visual and grounding tokens. Importantly, this grounding truth injection
has no impact on the original model’s understanding or pre-trained concept knowledge. The
adapted block allows for enhanced user influence by specifying regions to modulate with the
novel feature, resulting in a substantial reduction in the cost of tuning the model to a specific
concept.

During inference, the model dynamically decides whether to utilize grounding tokens (by
adding the new layer) or the original diffusion model (by removing the new layer), known as
Scheduled Sampling. This innovation significantly enhances output visual quality by lever-
aging rough concept locations and outlines in the early steps of re-noising, followed by the
incorporation of fine-grained details in later steps.

A noteworthy aspect of this project is the emphasis on spatial control through bounding
boxes, providing a significant advantage for aligning semantic tasks: spatial relations, size.
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Figure 3.5: BoxDiff generation results with provided bounding boxes

3.4.3 BoxDiff

Box-Constrained Diffusion (BoxDiff) [20] emerges as a noteworthy conditional image synthe-
sis method, leveraging the simplest spatial constraints, such as boxes or scribbles, provided by
users. These constraints seamlessly guide object and context synthesiswithin the denoising step
of Stable Diffusion models, eliminating the need for additional model training with extensive
paired layout-image data.

Stable Diffusion models incorporate explicit cross-attentions between a given text prompt
and intermediate features of the denoiser. This enables the extraction of specific spatial atten-
tion maps corresponding to objects or contexts mentioned in the text.

BoxDiff stands out as a training-free approach, enhancing synthesis by introducing three
spatial constraints: Inner-Box, Outer-Box, and Corner Constraints. These constraints influ-
ence the update directions of the noised latent vector, gradually aligning synthesized objects or
contexts with the specified spatial conditions. To address potential fidelity issues arising from
strong constraints during the denoising step, a representative sampling approach is explored to
mitigate such challenges.

Despite its assertion of controlling spatial relations, empirical tests reveal discrepancies be-
tween object positioning and the specified bounding boxes. This misalignment results in chal-
lenges for spatial relations, size. However, BoxDiffdemonstrates commendable performance in
accurately capturing attributes from textual descriptions. Notably, color consistency is main-
tained as per the textual descriptions, and even intricate structures and patterns in clothing are
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Figure 3.6: Results of image synthesis using the hybrid GLIGEN + BoxDiff approach

faithfully reproduced.
In summary, while facing limitations in spatial tasks, BoxDiff excels in faithfully rendering

attributes outlined in text, contributing to its efficacy in synthesizing detailed and accurate vi-
sual content based on textual input.

3.4.4 GLIGEN + BoxDiff

Given the strengths of both the GLIGEN and BoxDiff models, a strategic decision was made
to integrate thesemodels for achieving the desired outcomes in the final synthetic dataset. GLI-
GEN excels in accurately representing bounding boxes, ensuring consistent and precise object
positioning, while BoxDiff is adept at expressing attributes effectively.

The versatility of BoxDiff as a plug-and-play component in various diffusion models makes
it an ideal candidate for integration with GLIGEN. This collaborative approach leverages the
spatial control provided by GLIGEN for accurate bounding box representation and combines
it with the attribute expression prowess of BoxDiff.

The final results, as illustrated in the figure, showcase meaningful synthesis. The position-
ing of men remains consistent, guided by the bounding boxes generated in the previous step
through GLIGEN. Simultaneously, the attribute representation is notable, reflecting the suc-
cessful collaboration of the models.

This integration strategy not only harnesses the strengths of each model but also demon-
strates the potential for synergistic effects when combining specialized components for com-
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prehensive and accurate synthetic dataset generation.
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4
Results

This chapter provides an in-depth exploration of the chosen visual grounding model selected
for testing on the synthetic dataset — TransVG, and the VG dataset chosen for tests. The
chapter also offers a comprehensive overview of the created dataset, detailing the methodology
outlined in the preceding chapter. Additionally, the chapter delves into the conducted exper-
iments on the candidate model, encompassing trials with datasets comprising exclusively syn-
thetic images, assessments on attribute semantic task to ascertain optimal model performance.

4.1 Color attributes dataset

The color attributes dataset comprises a comprehensive collection of structured data focusing
specifically on color attributes associated with various objects. Each entry in the dataset is cu-
rated to include detailed information about the object and its corresponding color attribute.
Each dataset sample includes a sentence (textual description of object attributes, with a focus
on color attributes) and corresponding image sample synthesized using the image generation
model.The dataset consists of 250,000 sentence-image pairs that can be used for VG tasks.

The dataset encompasses a wide range of objects from diverse categories, including but not
limited to animals, clothing, furniture, and vehicles. For each object, multiple color attributes
are utilized, including the ones that are unlikely to appear in real world scenario.

The image samples in the dataset were generated using the Stable diffusion model, a state-
of-the-art technique for producing high-quality, realistic images based on textual descriptions.
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Figure 4.1: TransVG architecture

This approach ensured the creation of visually coherent and contextually relevant image sam-
ples that closely corresponded to the attributes described in the accompanying sentences.
In conclusion, the dataset created for this project represents a valuable resource for advanc-

ing research in VGfield. By combining attribute-based sentence generation with image synthe-
sis, the dataset offers a rich and diverse collection of samples for training and evaluating visual
grounding models.

4.2 Training pipeline

This chapter outlines the training pipeline employed in this study to validate the efficacy of the
synthetic datasets generated. The pipeline encompasses the selection of a state-of-the-art visual
grounding model, pre-training the chosen model on the synthetic dataset, and subsequently
fine-tuning it on established visual grounding datasets.

4.2.1 Candidate model

The Transformers for Visual Grounding (TransVG) model [5] is a transformer-based fully-
supervised framework for the VG task. TransVG follows a two-staged approach. Notably, the
transformer architecture is applied to both the visual and linguistic branches, contributing to
a comprehensive understanding of both modalities.
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TransVGstarts by taking an image and a language expression as inputs. These inputs are then
separated into two sibling branches: a visual branch and a linguistic branch. This separation is
intended to independently generate visual and linguistic feature embeddings.
The visual and linguistic feature embeddings are combined to form a multimodal feature

embedding. To facilitate this combination, a learnable token [REG] is appended to the feature
embeddings. This [REG] token plays a crucial role in the subsequent visual-linguistic fusion
modules.
The model employs a visual-linguistic transformer that homogeneously embeds the input

tokens from different modalities into a common semantic space. This is achieved by utiliz-
ing transformer encoder layers, which are adept at capturing both intra-modality and inter-
modality context through the self-attention mechanism.
The final output state of the [REG] token is leveraged to directly predict the 4-dimensional

coordinates of the referred object in the prediction head. This implies that the model learns to
predict the bounding box coordinates (e.g., top-left and bottom-right) of the objectmentioned
in the language expression.
The model is trained to align the visual and linguistic representations, enabling it to under-

stand the correspondence between objects in the image and their linguistic descriptions. A loss
function, likely related to the accuracy of bounding box coordinates predicted by themodel, is
employed during training to guide the learning process.
Notably, TransVG introduces a novel approach by directly predicting the coordinates of the

referred object. This can simplify the training process and potentially lead to more accurate
visual grounding results.

4.2.2 Pre-training strategy

The construction of the new synthetic dataset involved executing the primary semantic task of
attributes, with a specific emphasis on color variation.

The dataset generation followed a strategic process:

1. Sentence Generation
Novel sentences were derived from existing ones in the Flickr30k Entities [9] dataset
using specific rules. Each sentence was deemed meaningful and designed to represent
the attribute semantic task, in particular showing the variety of colors.

2. Conditional Text-to-Image Generation
Conditional text-to-image generatorswere employed toproducenew images correspond-
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ing to the generated queries. The positioning adhered to the bounding boxes, reflecting
the attributes provided in the text.

The strategy involved pre-training the TransVGmodel on the 250,000 samples included in
the attribute-based dataset. The diverse range of color descriptions present in the dataset aimed
to train the model to effectively distinguish between attributes and improve its ability to recog-
nize objects based on color attributes. The substantial size of the dataset served as a significant
advantage, providing training data to facilitate robust model learning and generalization.

Overall, the strategic approach employed in dataset construction aimed to create a compre-
hensive and representative dataset for training visual groundingmodels, with a particular focus
on attribute-based tasks and color variation. Throughmeticulous sentence generation and con-
ditional text-to-image generation, coupledwith extensivemodel pre-training, the dataset aimed
to provide a valuable resource for advancing research in VG field.

4.2.3 Fine-tuning strategy

In this thesis, the evaluation and analysis were conducted using the RefCOCO dataset [11]
and its variations, namely RefCOCO+ and RefCOCOg. These datasets were chosen due to
their ability to showcase diverse semantic tasks. RefCOCO+ primarily emphasizes samples
containing attributes, while RefCOCOg is specifically designed for recognizing aspects related
to positioning.

The RefCOCO dataset comprises 19,994 images, encompassing 50,000 referred objects
with a total of 142,210 referring expressions. Each object is associated with multiple referring
expressions. The dataset is officially divided into a training set with 120,624 expressions, a val-
idation set with 10,834 expressions, and a test set with 5,657 expressions.

Similarly, RefCOCO+ consists of 19,992 images featuring 49,856 referred objects and a
total of 141,564 referring expressions. The dataset is officially split into a training set with
120,191 expressions, a validation set with 10,758 expressions, and a test set with 5,726 expres-
sions.

RefCOCOg comprises 25,799 images and 49,856 referred objects, with expressions tailored
to recognize various positioning aspects.

These datasets serve as comprehensive benchmarks, enabling the assessment ofmodels across
different semantic tasks. The official splits into training, validation, and test sets provide a stan-
dardized framework for the evaluation of algorithms and models, contributing to a nuanced
understanding of their performance under various conditions.
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RefCOCO is the original subset of RefCOCO dataset. It contains images with referring
expressions generated by players in the ReferIt Game. RefCoco focuses on basic instances of
referring expressions without additional complexities. Notably, RefCOCO presents ambigu-
ous expressions. This makes it a suitable benchmark for algorithms that aim to disambiguate
and accurately interpret referring expressions in visual contexts.
RefCOCO+ is an extensionof the originalRefCOCOdataset. It includes additional images

with corresponding referring expressions, collected in a similar manner to the original dataset.
However, the dataset includesmostly the sampleswith attributes variety. The goal is to provide
a larger and more diverse set of data for training and evaluation.
RefCocoG stands for ”Referring Expressions in COCOGames”. This subset is designed to

introducemore abstract and complex referring expressions. RefCocoG images typically involve
sceneswithmore intricate relationships and abstract descriptions, posing a greater challenge for
models.
Each subset serves a specific purpose in evaluating the performance of models on different

aspects of referring expression comprehension. Thesedifferences in subsets help ensure that the
RefCoco dataset covers a broad range of scenarios, making it a valuable resource for advancing
the visual grounding models, and, therefore, for the evaluation of a new synthetic dataset.

4.3 Experiments

During the experiments the TransVG model underwent pre-training on the synthetic dataset
composed by generating samples with different colors.

The attributes dataset was specifically curated to encompass a broader spectrum of descrip-
tions for entities.

The pre-trained model underwent additional fine-tuning on the RefCOCO, RefCOCO+,
andRefCOCOgdatasets. Subsequently, the performance of these fine-tunedmodels was com-
pared with that of the original TransVGmodel, which was trained directly on RefCOCO, Re-
fCOCO+, and RefCOCOg from scratch, respectively.

This comparative analysis aimed to assess the impact of pre-training on synthetic dataset on
the overall performance of theTransVGmodel when applied to a specific visual grounding task
- attribute-based with a focus on colors.

The TransVG model was pre-trained on the attribute dataset, comprising approximately
250,000 generated images and 1,000,000 queries. Following pre-training, the model under-
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Model Training RefCOCO RefCOCO+ RefCOCOg
TransVG from scratch 69.05 69.02 63.22

TransVG pre-training on attributes
dataset + fine-tuning 70.66 72.01 64.33

Table 4.1: Comparative performance of TransVG model trained from scratch and pre‐trained on synthetic image dataset

went further fine-tuning on the RefCOCO, RefCOCO+, and RefCOCOg datasets, subse-
quently being evaluated on the respective test splits of each dataset.
The comparative analysis, as presented in the table 4.1, reveals that themodel pre-trained on

the attribute dataset exhibits superior performance across all subsets of the RefCOCOdataset.
In specific terms, the model demonstrated a performance increase of 1.61% on RefCOCO,
2.99% on RefCOCO+, and 1.11% on RefCOCOg.

Notably, themost significant performance growthwas observed on theRefCOCO+dataset,
which aligns with expectations given that this dataset emphasizes attribute variety, a focus of
the attribute dataset’s pre-training. Importantly, the enhanced performance is not limited to
RefCOCO+; rather, it extends to all other datasets as well.

Furthermore, it is crucial to highlight that the attribute dataset is substantially larger, with a
size 12 times greater (250,000 images) compared to the individual sizes of RefCOCO (20,000
images), RefCOCO+ (20,000 images), and RefCOCOg (25,000 images). This significant in-
crease in dataset size likely contributes to the model’s improved performance, indicating the
effectiveness of leveraging large synthetic datasets.
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5
Conclusion

5.1 Discussion

In summary, the construction of the new synthetic dataset involved a meticulous process en-
compassing the attribute semantic taskwith great variety of color descriptions, sentence genera-
tion, and image synthesis. This strategic approach aimed to create a diverse and comprehensive
dataset for training and evaluating models in the visual grounding task.

The experiments involved pre-training the TransVG model on attribute synthetic dataset.
Subsequently, pre-trainedmodel underwent fine-tuning onRefCOCO,RefCOCO+, andRe-
fCOCOg, and their performances were evaluated on the respective test splits of each dataset.
The results were compared to the TransVG model trained on RefCOCO, RefCOCO+, and
RefCOCOg from scratch.

The pre-training on attribute dataset achieved superior performance on RefCOCO, Ref-
COCO+, andRefCOCOg compared to training from scratch demonstrating performance in-
creases of 1.61%, 2.99%, and 1.11%onRefCOCO,RefCOCO+, andRefCOCOg respectively.
It had particularly strong performance growth on RefCOCO+ due to the dataset’s emphasis
on attribute variety. Moreover, it proved that the larger scale of the synthetic dataset with rele-
vant samples contributes to improved results.

In conclusion, the pre-training strategy contributed to improved performance across Ref-
COCO datasets The results underscore the importance of dataset characteristics and scale in
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Figure 5.1: Caption error in Flickr30K dataset

shaping the model’s ability in the visual grounding task.

5.2 Limitations and suggestions

5.2.1 Original Flickr30K errors

The utilization of Flickr30K to generate the new synthetic dataset introduces inherent chal-
lenges due to errors present in the original dataset. These errors can propagate and amplify in
the generated datasets, adversely affecting the performance of visual grounding models.

Two types of errors exist: errors in captions and errors in matching captions with bounding
boxes. While the former primarily pertains to language understanding, the latter influences
both language comprehension and object detection.

An illustrative example of the first type of error is depicted in the figure. The second caption
in the image contains a complex construction error, leading to ambiguity in coreference links.
The phrase ”the middle of a blue play area” should be chunked as ”[the middle] of [a blue play
area],” indicating that ”the middle” specifically refers to the region containing the yellow dot.
The existing coreference link between ”the middle of a blue play area” and ”a field of blue” is
invalid, introducing uncertainty about the correct interpretation of the corresponding tan box
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Figure 5.2: Caption and dismatching error in Flickr30K dataset

(labeled 1). Additionally, the entity mentions, including ”a yellow dot,” ”a yellow circle,” ”a
splash pad,” and ”a yellow concrete spot,” are fragmented into three chains with three distinct
bounding boxes (labeled 2).
The second type of error is shown in figure. Coreferent entity mentions, such as ”a strange

pipe,” ”a tube,” ”an electrical instrument,” and ”an instrument,” are fragmented into three
chains. Notably, the phrase ”an instrument” in the fourth sentence is erroneously linked to
both boxes 1 and 2 when it should be associated with box 2 alone. Moreover, box 3, corre-
sponding to ”a tube,” is too small, preventing its merger with box 2. An additional example
illustrates a mismatch between bounding boxes and captions. In this case, a woman in a store
is described as holding an item in her left hand. However, the bounding box corresponds to
the item she is holding, leading to a misalignment with the textual description, which refers to
the left hand itself. The bounding box for the item in this case is selected for the item that the
woman is holding in her right hand.

These examples underscore the critical need for meticulous error analysis and correction in
the original dataset, as errors in captions and bounding box associations can adversely impact
the performance of visual grounding models. Addressing these issues is paramount for ensur-
ing accurate training and evaluation of models on the synthetic dataset.
Indeed, one potential solution to mitigate the errors stemming from existing datasets is to

generate entirely new sentences without relying on pre-existing datasets that might introduce
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Figure 5.3: Dismatching error in Flickr30K dataset

patterns or errors.

5.2.2 Errors in the generated dataset

Achallenge emergedduring the image generationprocess for the attributes semantic task. While
theGLIGENmodel exhibited impressive results in generating imagesbasedonprovidedbound-
ing boxes and contextual cues, it struggled with sentences that were intricate and detailed, par-
ticularly failing in accurately capturing the specified colors of objects, as evidenced in the case
of ”<color> hard hat”.

This issue may arise from two potential sources. Firstly, complex sentences with numerous
details could overwhelm the generationmodel, making it difficult to faithfully follow the given
instructions. Secondly, the problem might be attributed to a scarcity of relevant examples in
the training dataset, such as instances involving a ”purple hard hat.”

Although the number of instances exhibiting these shortcomings is limited, it has the poten-
tial to impact the training of VGmodels negatively, leading to suboptimal performance on the
attributes semantic task.
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Figure 5.4: GLIGEN generation results with the change of a color attribute

5.3 Future work

5.3.1 Expansion of the attribute dataset

The first suggestion for futurework is to expand the attributes dataset. The expansion of the at-
tributes dataset involves incorporating additional attribute types [21]. This expansion should
alignwith the distinct characteristics of objects within each category as specified by the original
dataset. For instance, objects in the ”clothing” category might exhibit attributes such as ”ma-
terial” and ”pattern,” while these descriptors may be less relevant for entities in the ”animals”
category. To achieve a comprehensive set of attributes for each category, a systematic division
approach can be implemented. For example, the ”clothing” category can be further subdivided
into ”top”, ”bottom”, ”headpiece”, ”shoe”, ”bag”, and ”jewelry”. This tailored approach en-
sures the inclusion of more relevant and diverse attribute samples in the dataset.

5.3.2 Introducingother semantic tasks todataset generation

One of the suggested directions for future work involves extending the dataset generation pro-
cess to incorporate other semantic tasks, aiming to explore the broader capabilities of visual
grounding models. In particular, emphasis should be placed on tasks related to size and spa-
tial relations, as they offer distinct challenges and delve into the relationships between objects
depicted in images and described in sentences.

The integration of size and spatial relations tasks into the dataset generation process necessi-

43



Figure 5.5: Representation of the semantics of the sentence

tates preliminary sentence preprocessing.
The extraction of information from sentences is facilitated by the use of a linguistic tool

called a syntax tree. Syntax refers to the rules, principles, and processes governing the structure
of sentences in a natural language. At its core, syntax entails how various elements such as
subjects, verbs, nouns, nounphrases, etc., are arrangedwithin a sentence. A syntax tree serves as
a visual representation of language structure, graphically depicting the grammatical hierarchy.
Noteworthy tools in the field of NLP for constructing syntax trees include The Natural

Language Toolkit (NLTK) [22] and Stanza.
In the constructed tree, the clear relationship emerges between ”an officer” and ”a black uni-

form and hat”, forming a single noun phrase. Within this structure, ”an officer” serves as the
main nounphrase, while ”a black uniform andhat” functions as a prepositional phrase, thereby
acting as an attribute of ”an officer”. Within the verb phrase, the central token is ”stands” sig-
nifying the action attributed to ”an officer”. Furthermore, the verb phrase indicates that the
preposition ”to the left of” establishes a connection between ”an officer” and ”a large struc-
ture”, with ”an officer” being the primary entity in this relationship.

Unlike attribute-based tasks, which primarily focus on attributes like color, size and spatial
relations tasks involve altering bounding boxes to reflect changes in object size and position as
described in the sentences.

For the size semantic task, the dataset includes 7500 training samples and 500 validation
samples. These samples undergo bounding box alterations to adjust the size of the objects as
described in the sentences. Similarly, for the spatial relations task, the dataset involves changing
the position of the bounding boxes to align with their positioning in the sentences.

The training pipeline for the size semantic task follows a similar approach to that of the
color attribute dataset. TheTransVGmodel is pre-trained on the size dataset and subsequently
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Figure 5.6: Syntax tree of the original sentence generated by Stanza and NLTK tools

fine-tuned on the RefCOCO+ split of the RefCOCO dataset. Despite achieving a validation
accuracy of 66.12% on the test split of RefCOCO+, which is 2.9% lower than training on Re-
fCOCO+ from scratch, the results are promising considering the small size of the generated
dataset. They demonstrate the feasibility and effectiveness of using artificially generated sam-
ples to train VGmodels.

5.3.3 Usage of other original datasets

Another avenue for future exploration is the incorporation of data from alternative original
datasets, such as Visual Genome [12]. Leveraging datasets that already provide information
about relationships among entities inboth text and images, aswell as details likepositioning and
scene graphs, can mitigate the need for specific sentence preprocessing. This approach offers a
potential solution to avoid possible errors during this preprocessing step and can contribute to
a more robust and comprehensive dataset.

5.3.4 Generating samples from scratch

The last direction for future research involves developing a methodology for generating sen-
tences from scratch based on specific requirements [23]. This could be achieved through the
use of logic templates that define the desired entities at each position and specify the expected
relationships among objects. By generating sentences according to the actual needs of the task,
this approach may offer a more tailored and flexible solution for attribute-based tasks, provid-
ing increased control and customization in the sentence creation process. This avenue opens
up possibilities for exploring novel techniques in natural language generation for image-related
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tasks.

5.4 Concludingwords

Visual grounding is the task of associating elementsmentioned innatural language querieswith
their corresponding visual entities in images, establishing ameaningful connectionbetween tex-
tual descriptions and visual content. In the context of fully supervised visual grounding, the
model undergoes training using pairs of annotated data. Each input in the training set is as-
sociated with a corresponding ground truth annotation, meticulously indicating the specific
regions or objects in the image referred to by the accompanying language description. Nowa-
days, themodels trained to solve fully supervised visual grounding task are limited by the size of
the annotated datasets which are hard and expensive to collect. This thesis introduces a more
efficient and cost-effective method for data generation, demonstrating its viability for training
fully supervised visual grounding models. The research validates the importance of relevant
samples, highlighting the impact of dataset size on model performance.
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