
Università degli Studi di Padova

Department of Information Engineering

Master Degree in Computer Engineering

Algorithm of adaptive modi�cation of tool
paths in robot manipulators based on the

measurement of 3D real objects

Advisor: Prof. Emanuele Menegatti

Coadvisor: Dr. Stefano Tonello

Student: Nicola Salmaso

14th of October 2014 Academic Year 2013/2014

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

ALGORITHM OF ADAPTIVE MODIFICATION OF TOOL
PATHS IN ROBOT MANIPULATORS BASED ON THE

MEASUREMENT OF 3D REAL OBJECTS

Contents

Abstract …... 1

Introduction ….. 2

1. The overall system …... 3
 1.1 The communication system... 3
 1.2 The acquisition system.. 5
 1.3 Environment, software and used libraries... 6

2. Mounting bracket …... 7
 2.1 The bracket.. 7
 2.2 Planning and design.. 7
 2.3 Realizzation …... 11

3 Smart camera acquisition module …........….. 13
 3.1 Smart camera.. 13
 3.2 API …... 15
 3.3 CameraDevice interface …... 17
 3.4 CameraDevicePeakDetector interface …... 18
 3.4 Test of the acquisition module …... 19

4. Linux Client …... 21
 4.1 C4G protocol….. 21
 4.2 ViDeE protocol …...............................…... 21

5. Calibration ..…... 23
 5.1 Camera calibration …... 23
 5.2 Laser calibration …... 23
 5,3 Tool calibration …... 24
 5.4 World-robot calibration ….. 25

6. Coupling pose and frame ... 28
 6.1 Constant speed interpolator ... 28
 6.2 Pose-frame binder ….. 28

7. Point Cloud acquisition ...…... 31
7.1 PointCloudGrabber and trinagulation .. 31

8. Preprocessing …... 33
 8.1 Purpose .. 33

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

 8.2 Floor removal ….. 34
 8.3 Outliers removal …... 35
 8.4 Object insultion …... 36
 8.5 Downsampling ….. 37

9. Tool Path Stretching ….. 38
 9.1 Tool Path …... 38
 9.2 TPS with affine trasformation ….. 38
 9.3 Finding the scale factor .. 39
 9.4 Model construction ... 39
 9.5 Finding affine transformation with RANSAC ... 40
 9.6 Tool Path transformation .. 41
 9.7 A more general case ... 42
 9.8 Results .. 45

Conclusions ... 48

Bibliography .. 49

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

ABSTRACT

The goal of this paper is the definition of an algorithm for adaptive modification of tool
paths made by robot manipulators. The algorithm operates on three-dimensional reconstructions
obtained from real objects mass-produced and subject to deformation due to manufacturing errors.
The three-dimensional reconstruction is by means of hardware and software architecture analyzed
in detail in this paper.

The introduction chapter provides a general overview of the project SmartRange3D
developed on behalf of the company IT+Robotics.

The chapters from the firt to the seventh relate to the scanning system and 3D
reconstruction, the eighth and ninth chapters concern instead of modifying the algorithm adaptive
toolpath.

The first chapter describes in detail the hardware and the system of communication used.

The second chapter deals with the design and implementation of the support bracket used
by the acquisition system.

The third chapter is about the development of an acquisition module from smart camera
capable of detecting a laser line within the acquired images.

The fourth chapter discusses a component of the system, called Linux Client, of particular
interest because it is able to communicate with all the other elements of the system.

The fifth chapter deals with the calibration of the system components

The sixth chapter defines and describes a mechanism for the association between the
position of the acquisition system and acquired frame, called Pose-Frame Binder.

The seventh chapter covers the process of scanning and reconstruction of point cloud
representing the object scanned.

The eighth chapter deals with the preprocessing procedures at which the acquired point
cloud must be submitted in order to be transformed into a valid input to the algorithm of the
adaptive modification of tool paths.

The ninth chapter defines the algorithm of adaptive modification of the tool paths in the
case of objects with different scale factor and in the case in which there are deformations.

1

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

INTRODUCTION

The project subject of this thesis is called SmartRange3D and has been developed for
IT+Robotics, a spin-off of the University of Padua, which operates in the field of robotics and
computer vision applied to robotics.

IT+Robotics is a spin-off subsidiary of the University of Padua, founded in 2005 by the
collaboration between teachers of Robotics and Information Engineering Department of the
University of Padova. IT+Robotics designs and manufactures vision systems for quality control,
robot guidance systems and software for off-line work cells and machines, using the algorithms of
machine vision, motion planning and artificial intelligence.

The project is divided into two stages. The first stage has as main objective to develop a
system for the acquisition by the camera mounted on a robot able to scan real-world objects to
reconstruct a three-dimensional point cloud. Initially it was realized the support bracket for
mounting a smart camera and two laser line projectors on the wrist of the robotic arm, with the
possibility to adjust the distance of the laser projectors and their inclination and with different
connections to comfortably change the camera. Then the camera acquisition module was made,
using a smart camera built-in peak detection algorithm capable to detect the location of the laser
line in the frame. A client software was developed to communicate with the controller of the robot
manipulator; in particular, the client can control the movements of the robot and to receive the
position with respect to a predetermined reference system. Another software acts as a server and
manages the acquisition by providing the client the command to control the smart camera, start the
calibration cycle and scanning, perform the triangulation of the captured frames and reconstruct the
3D point cloud final.

The second phase involves the development of a software application that takes the name of
Tool Path Stretcher (TPS) and the goal is to develop an algorithm capable of adapting tool paths
made by the robot manipulators defined on an object model another object, equal to the first but
positioned in another position of the space and at a different scale. The algorithm is the need to
adapt a tool path, defined on an ideal model to an actual reproduction of the model subject to
manufacturing errors.

2

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

1. THE OVERALL SYSTEM

1.1 THE COMMUNICATION SYSTEM

The communication system is composed of heterogeneous elements and the communication
between them is allowed via various protocols.
The component elements of the system are :

• Server
• Client
• Robot controller
• Robot manipulator
• Smart camera
• Laser line projectors

The acquisition system was developed above this communication architecture and will be discussed
in detail in paragraph 1.4. The system as a whole is summarized in Fig. 2 e in Tab. 1.

The client is the central element and communicates directly with all other components,
except for the manipulator robots with which communicates indirectly by means of the robot
controller. The client communicates with the controller by sending packets in JSON format - via
UDP - and is thus able to move the manipulator, read and write the parameters that characterize the
motion and the reference system. In particular have been implemented commands able to :

• Move the manipulator in Cartesian coordinates
• Move the manipulator in joint coordinates
• Set the speed of movement
• Set up a motion of linear type
• Set the interpolation type of positions
• Receive real-time position of the manipulator

The client then communicates with the server where the acquisition module, calibration
procedures, laser triangulation and 3D reconstruction have been installed. The communication
between the two elements occurs in a synchronous manner, via TCP / IP, with the server listening on
a known port waiting for a connection. The communication uses Videe messages, a protocol
developed by IT + Robotics, where the client sends commands to the server and waits for them to
be performed and responds with a message containing the result of the operation. The procedures
available to the server and its commands are :

• INIT_CYCLE
the server initializes the data structures used

• INIT_CALIBRATION
the server is preparing for the calibration procedure

• PERFORM_CALIBRATION
il server esegue le calibrazioni abilitate

• GRAB_IMAGE
the server performs the enabled calibrations

• SET_POSITION
the server receives the start and end positions of scan, used in the case linear interpolation

3

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

• START_SCAN
start the scanning process, acquiring frame mode peak detection

• STOP_SCAN
interrompe la scansione avviando la procedura di triangolazione e ricostruzione della nuvola
dei punti

• RESET
stops scanning and starts the procedure of triangulation and reconstruction of the point
clouds

Fig.1 – The commands provided by the ViDeE protocol

Tab. 1 – Comunicazioni che avvengono all'interno del sistema
Source Comand Destination Responce Protocol

Client comando ViDeE Server result of command
execution

ViDeE over
TCP/IP

Server # frame Client Robot position TCP/IP

Client
on/off trigger

Laser -

Client Acquisition
trigger

Camera -

Client movement
comand,
parameters
read/write

Robot controller Robot posizion,
parameters value

C4G over UDP/IP

4

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Server
acqusition,
parameters
read/write

Camera
result of command
execution,
parameters value

ethernet

Controllore robot comando
movimento,
lettura/scrittura
parametri

Manipolatore robot position,
parameters value

Fig. 2 – The communication system

1.2 THE ACQUISITION SYSTEM

The acquisition system has the server as its central element, although some operations are
driven directly by the client. The camera acquisition module, described in detail in Chapter 3, is
installed inside the server. The server connects to the camera with a gigabit ethernet connection and
through it :

• reads and writes the parameters of the smart camera as frame rate, ROI, exposure
• sets the trigger of the camera (internal or external)
• manages the switching between the different acquisition modes (normal or peak detection)
• select the peak detection algorithm
• reads and writes the parameters of the peak detection algorithm
• acquires frame at setted framerate or on-demand

In this project, the trigger of the camera is external to it, and while this configuration is
made by the server, the trigger is supplied from an external circuit controlled directly by the client
through the parallel port. The same circuit also provides the on/off trigger of the laser pointers, one
for each laser.

5

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

1.3 ENVIRONMENT, SOFTWARE AND USED LIBRARIES

Il server è stato realizzato su PC con sistema operativo Windows 7. Il software
SmartRange3D realizzato all'interno del server è stato sviluppato inizialmente in ambiente
Microsoft Visual Studio 2008 e poi migrato nella sua versione finale in Visual Studio 2010. La parte
a più alto livello (GUI, gestione dei processi, protocollo ViDeE) è scritta in C# mentre la parte a più
basso livello per la quale l'onere computazione e sono richieste performance il migliore possibile è
scritta in C++. Per la triangolazione laser e la ricostruzione della point cloud sono state utilizzate
librerie proprietarie di IT+Robotics, riadattate in alcune parti. Tali librerie a loro volta fanno
largamente uso delle librerie open source

The server has been implemented on a PC with Windows 7 operating system. The software
SmartRange3D developed within the server was initially developed under Microsoft Visual Studio
2008 and then migrated in its final version in Visual Studio 2010. The part at the highest level (GUI,
process management, protocol Videe messages) is written in C# while the lowest level for which the
computation burden and required performance is the best it can be written in C ++. For the laser
triangulation and reconstruction of point cloud proprietary libraries of IT+Robotics have been used,
adapted in some parts. These libraries in turn makes extensive use of open source libraries :

• OpenCV – Open Computer Vision
• PCL – Point Cloud Library

The smart camera acquisition module has been written in C / C ++, has been integrated to
SmartRange3D within Visual Studio 2010 and makes use of C libraries internal property of
Tecnogamma, the manufacturer of the camera, which deal with the low level hardware management
of the device, as well as peak detection algorithms.

The client has been implemented on Linux operating system with RTAI (Real Time
Application Interface) wich via a real time network card is able to communicate with the controller
of the robot in real time. The two modules developed within the client, ViDeEClient and
ComauIASLab, were written in C ++ in Eclipse development environment for C / C ++.

The robot manipulator used is the Comau C4G inside the laboratory IAS Lab at the
University of Padua.

For the design of the bracket SketchUp has been used.
The TPS software has been developed on the operating system Ubuntu 13.04. was written in

C language ++ with Geany text editor and compiled using CMake 2.8.10.1.
The software makes extensive use of open source library Point Cloud Library (PCL).

6

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

2. MOUNTING BRACKET

2.1 THE BRACKET

The acquisition system formed by a smart camera and two laser pointer must be mounted on
a rigid support which has:

• to mount to the wrist of the robot and rigidly coupled with it even in case of sudden
movements

• to allow adjusting the distance between the two blades laser
• to allow adjusting the inclination of the two blades laser
• to provide the possibility of changing the smart camera without removing all the bracket
• to take account of cluttered cords and trigger chamber and laser
• to provide a configuration in which the distance-blade blade is 500 mm

With these specifications was therefore designed and made a bracket composed of
• metal section for the body
• aluminum plates for the hardware of the devices and for the wrist of the robot
• L-shape angular to join the plates to the body

Details regarding the design and implementation of the bracket are discussed in the following
paragraphs.

2.2 PLANNING AND DESIGN

The central body of the bracket is composed of a perforated metal section 600 mm long and
with square section 40x40mm, the technical characteristics are shown in Fig.3.

Fig. 3 – The section that makes up the body of the bracket

At the center of the body of the bracket an aluminum plate is fixed by means of threaded
holes, screws and bolts. Similarly, another plate of the same size is fixed to wrist of the robot.
Through plugs, threaded holes, screws and bolts, the two plate are fixed on one another allowing
you to mount the bracket to the wrist of the robot. The plugs have been inserted to make the
attachment more stable and able to withstand sudden movements of the manipulator at its maximum
speed can move at 1.5 m / s.

At the ends of the section two supports with a cylindrical bore for the laser pointers are
mounted, capable to adjust its tilt. Thanks to the structure of the perforated profiled the two laser
projectors can be moved and fixed in different positions, thus allowing to change the distance
between them. Finally, at the center of the body of the bracket on the other side with respect to the

7

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

wrist of the robot, the camera supports are mounted using screws and two brackets L-shaped bolt.
The two brackets allow you to attach two drilled plates to mount the smart camera. To change the
smart camera is sufficient to change these two plates and adjust the distance of the two corners,
which are able to slide along the section. For the assembly of the smart camera only one angular
and a single plate are neede but by using two pairs of them the stability can be improved while in
case of impact the camera is protected on both sides. A schematic drawing of the angular is shown
in Fig.4.

Fig.4 – L-shaped angular

They have been designed and manufactured plates for mounting three different cameras, two
of which have been used in the project:

• Spectra GbE Camera – produced byTecnogamma – Fig.5
• MV1-D2048x1088-3D03-760-G2-8 – produced by Photonfocus – Fig.6
• MatrixVision – produced by Bluecougar (not used in the project) – Fig.7

The support system as a whole is schematically shown in Fig.8.

8

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.5 - design of the support plate for the Tecnogamma smart camera

Fig.6 - design of the support plate for the Photonfocus smart camera

9

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.7 - design of the support plate for the BlueCougar smart camera

Fig.8 – the bracket system

10

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

2.3 REALIZATION

The plates were delivered together with the technical drawings of the workshop Physics at
the University of Padua where they were drilled and tapped.

The two plates for fixing the bracket to the wrist of the robot have been fixed one to the
body of the section and one to the wrist of the robot by means of screws on recessed holes closed
with bolts hex nut and between them by means of plugs and other screws fixed externally bolts with
hexagon nut.

The brackets and mounts for the laser were fixed to aluminum profile with screws locked
inside the section with bolts hex nut. The lasers have been made to slide inside of the cylindrical
supports to be tight and securely fastened to the bracket.

The support plates of the smart camera were fixed to the corner pieces by means of screws.
The smart camera was mounted to a plate on angular already fixed to the body of the bracket, the
other pair angular-plate was then slid up to the edge of the camera for fixing the second plate. Once
the second plate fixed to the bracket, the second angular movable anchor has been fixed.

Fig.9 – Smart camera and laser projectors mounted to the support bracket

11

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.10 – The bracket system fixed to the robot wrist

12

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

3. SMART CAMERA ACQUISITION MODULE

3.1 SMART CAMERA

The smart camera for which I developed the form of acquisition is the Tecnogamma Spectra
GbE. In Table 2 the technical characteristics of the camera are given. The graphs in Fig. 11 and 12
show respectively the quantization energy and the spectral response.

Tab.2
Caratteristica Descrizione

Sensor Cypress mod. LUPA 3000 Mono

Data transmission Gigabit ethernet

Trigger input Optoinsulated TTL or LVTTL

Strobe output TTL or LVTTL

Power supply 5-12 V

Maximum power input 10 W

Operating temperature 0-60 °C

Humidity 20-60 %

Fig.11 – quantum efficiency

13

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.12 – Spectral response

The camera consists of three cards coupled together:

• Maisha I/0
contains power components and the outside interface (RJ45 connector)

• Maisha3000
contiene la parte logica (FPGA) e la memoria della telecamera

• LUPA3000_sensor
contiene il sensore Lupa3000 e la circuiteria elettronica che si occupa di gestire il sensore

Among the most important features of the smart camera for the purposes of the project is the
integrated peak detection algorithm capable of detecting the laser line within the frame acquired.
The smart camera can then work in two modes :

• Live Mode
works like a normal camera and acquires frame grayscale

• Relief Mode
a peak detection algorithm is enabled and the smart camera acquires images containing only
information about the location of the peak laser inside of the frame. It is important to note
that the camera is able to acquire information of a single laser line for frame.

14

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

3.2 API

The acquisition package was written using the proprietary API of the producer of smart
camera in the C language.

HANDLE ConnectTCam (__in DWORD TCamIndex ,__out PWCHAR pName,__out PWCHAR pDesc)

The method allows you to connect to the smart camera, connected via gigabit ethernet, getting a
handle to the camera, the name and description of the device. The handle can then be used by other
methods to access the camera.

BOOL GetStrobeMode (__in HANDLE DeviceHandle, __out STROBE_MODE& sm);
BOOL SetStrobeMode (__in HANDLE DeviceHandle,__in STROBE_MODE sm);

Respectively allow to read and set the four outputs that control the illuminators (not used within the
project) and four inputs which take an external trigger signal.

BOOL GetTrgMode(__in HANDLE DeviceHandle,__out TRG_MODE& trgm);
BOOL SETTRGMODE(__IN HANDLE DEVICEHANDLE,__IN TRG_MODE TRGM);

Respectively allow to read and set the mode of triggering the acquisition, switching from
TRG_MODE :: FREERUN TRG_MODE :: ExTrigger regulated namely by acquisition or by
internal clock to acquire controlled by external trigger.

BOOL GetAcqMode(__in HANDLE DeviceHandle,__out ACQ_MODE& acqm);
BOOL SetAcqMode(__in HANDLE DeviceHandle,__in ACQ_MODE acqm;

Allow to respectively read and write mode of acquisition. Allowed values are STOP, LIVE_ONLY,
RELIEF_ONLY and RELIEF_LIVE. In STOP mode the camera is inhibited from acquiring;
LIVE_ONLY mode the camera captures images in grayscale mode the camera captures images
RELIEF_ONLY tablets containing information on the peak laser; Finally RELIEF_LIVE mode the
camera captures frames whose rows contain information about the frame either in grayscale and the
position of the peak laser, in relationship defined by the function SetHybridLiveRatio (not used for
the purpose of the project).
All entries must be made with the camera parameters in ACQ_MODE :: STOP.

BOOL SetSharedMem (__in HANDLE DeviceHandle,__in HANDLE hShMemEvent[2],
 __out PVOID ShMemAddr[2]);

The method defines events to manage the shared memory and the memory area used. It is called
once in the initialization phase and is required in order to acquire in both modes (LIVE_ONLY and
RELIEF_ONLY).

DWORD GetLive (__in HANDLE DeviceHandle,__out TCamShMemory& ShMem,
 __out TCamFrameInfo& Info);
BOOL ReleaseLive (__in HANDLE DeviceHandle, __in TCamShMemory ShMem);

GetLive is the method that allows to capture with the camera in live mode, going to copy a frame
from the read buffer to the memory area in the address :

((PUCHAR) ShMem.pMemArea) + Info.ImOffSet

15

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

The information concerning the frames are contained within the structure TcamFrameInfo
composed as follows:

typedef struct _TCamFrameInfo {
 ULONG DWTIMECOUNTER;//TIME CONTER
 USHORT WFRAMECOUNTER;//FRAME COUNTER
 UCHAR CXSTART;
 UCHAR CNBKERNELS;
 USHORT WYSTART;
 USHORT WYEND;
 UCHAR CDECIMATION;//ONLY VALID FOR LIVE
 END_OF_FRAME EOF;// ONLY VALID FOR RLE DWORD NPACKETLOST;//MISSING PACKAGES
 DWORD IMOFFSET;//OFFSET COMPARED TO BASE ADDRESS WHERE THERE IS THE BITMAP
 DWORD DWBYCONTENT;//ACTUAL PAYLOAD STARTING FROM IMOFFSET
} TCamFrameInfo, *PTCamFrameInfo;

ReleaseLive frees the memory for later use.

BOOL SetReliefMode (__in HANDLE DeviceHandle, __in RELIEF_MODE ReliefMode,
 __in SPOT_DIRECTION SpotDir, __in UCHAR COGWindowSize);

To operate in relief mode a peak detection algorithm must be set. SetReliefMode takes care of this,
choosing between RELIEF_MODE::Threshold and RELIEF_MODE::Cog, namely between
threshol algorithm and center of gravity algorithm.
The threshol algorithm compares the threshold brightness of each pixel to a threshold value called
"trigger" decide whether the pixel is illuminated by the laser spot. The trigger can take values from
0 to 255 (as the values of the pixels) and during the processing of a line are identified the rising
edges and falling edges, thus finding the position and width of the spot. To avoid choosing the
wrong rising edges is used a parameter called persistence (permanence), which defines how many
consecutive pixels with a value higher than the trigger can be considered a valid rising edge; exactly
the same thing is done for the falling edge: in this case the permanence defines the number of
consecutive pixels below the value of valid triggers to locate the front.
The center of gravity algorithm first locates the laser spot using the threshold algorithm and then
calculates the center of gravity between neighboring pixels at the position of the spot identified to
refine and correct the position estimate.

DWORD GetReliefFrame (__in HANDLE DeviceHandle, __in HANDLE hEvent,
 __out LPVOID pRELIEF, __in DWORD Size,
 __out TCamFrameInfo& UserFrame);

GetReliefFrame allows you to capture with the camera in relief mode, copying a frame from the
read buffer to the memory area in the address

((PUCHAR) pRELIEF) + UserFrame.ImOffSet

The compressed frame is stored as an array of ReliefThData or ReliefCOGData depending on the
algorithm used for peak detection. Each element of the array contains information relating to a line
of the frame, so it is important that the laser line is oriented vertically within the image. In
particular, if the frame is stored in the array

ReliefThData rows[ROWS_N] o ReliefCOGData rows[ROWS_N]

16

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

with ROWS_N equal to the number of rows of the frame acquired, it will follow that rows[i] will
hold the position and the width in pixels of the laser line in i-th row of the image.

3.3 CAMERADEVICE INTERFACE

The libraries developed by IT + Robotics allow you to use a capture device in several
procedures. To integrate these libraries the acquisition module must then implement the interface
CameraDevice, written in C language ++.

CameraDevice::CameraDeviceTecnoGamma()

Class constructor, here are defined default parameters that define the mode of acquisition, the peak
detection algorithm and the capture trigger.

void CameraDevice::openInternal()

Method to open the connection to the device. Call the API ConnectTCam and gets a handle to the
device.

void CameraDevice::stopInternal()

Stops capturing. Call the API passing as a parameter SetAcqMode ACQ_MODE :: Stop.

void CameraDevice::startInternal()

Initializes the acquisition in live mode or relief depending on the setting, by setting the trigger mode
desired. With relief mode setting switches to stop mode in order to modify the parameters; calls the
API to read the GetStrobeMode STROBE_MODE structure that contains information about input
and strobe trigger used; modifies the structure accessed to set one of four trigger as a trigger input,
calls the API SetStrobeMode passing the modified structure, and finally calls the API SetTrgMode
to switch from stop mode ExTrigger mode or to start capturing driven by external trigger.

const vector<string> CameraDevice::getAvailableCameraID()

Returns a string array containing the IDs of available devices. Call the API EnumerateTCams.

void CameraDevice::acquireInternal(CVImage& image)

The method to acquire a frame from the buffer memory of the device. The aquired frame in relief
mode is stored in an array, the array is then processed and an object is created CVImage (CV :: Mat
object library OpenCV) to two channels containing respectively the position and width of the laser
spot within the row. They are also appended to the object as dummy rows and timestamp
information framecounter

17

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.13 – implementation of the method acquireInternal interface CameraDevice

3.4 CAMERADEVICEPEAKDETECTOR INTERFACE

To operate the triangulation and 3D reconstruction the libraries of IT+Robitcs use objects
that implements the CameraDevicePeakDetector interface. To integrate to these libraries the
acquisition module implements this interface. Extending the interface already CameraDevice, the
only method left to implement is

void CameraDevicePeakDetector::decodePeaksStatic(
const CVImage& sourceimage,
vector<Cloud<PointImagePeak>::Ptr >& peaks,
vector<CVImage::Ptr>& images2d)

Starting from an image containing information about the position of the laser line the method
reconstructs the 3D point cloud of the surface on which the laser line lies. The image previously
processed in the method of acquireInternal CameraDevice is processed further and stored in a
structure adapted to contain a point cloud. This method will be invoked from an internal class
library of IT+Robotics who will perform the triangulation of the 3D point cloud from the back.

18

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.14 – implementation of the decodePeaks method of the interface CameraDevicePeakDetector

3.5 TEST OF THE ACQUISITION MODULE

Inside the Windows server the software called SmartRange3D has been developed, wich is
responsible for the acquisition, scanning, triangulation and 3D reconstruction,

In a first stage the acquisition module, written as C ++ library, has been tested and debugged
for the purposes to be subsequently integrated into the project SmartRange, written in C # and C ++.
For this test application has been developed a stand alone launchable within SmartRange3D that
uses the library acquisition to exploit full functionality.

The application consists of a simple menu where the items are selectable via the keyboard
by typing the number of the operation you want to perform. Once completed the testing phase of
this library was then actually used within the project SmartRange3D real.

19

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.15 – The stand alone testing application for the acquisition module

20

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

4. LINUX CLIENT

4.1 C4G PROTOCOL

One of the key features of the linux client is the ability to communicate with the robot
controller to drive the movement of the manipulator. To do this in the client a C++ module is
installed, able to send via UDP packets in JSON format containing the commands interpreted by a
server listening in the controller.

In Table 3 are listed the names of the commands and their effect.

Tab.3 – C4G comands
Nome comando Effetto

ComauProtocol(string IP, int PORT) Class constructor. Opens a UDP connection

MOVE(CartPosition pos, int camera_fps) Moves the robot and sets the frame rate of the
camera. Receives in real time the position of the
robot.

SET_OVERRIDE (int override) Sets the speed of the manipulator to a percentage
of the speed that is set

SET_LINSPEED (double linspeed) Sets the speed of linear motion of the
manipulator

getStaticPose() Receives the current position of the manipulator

prepareCartPacket(Jzon::Array pos, int
camera_fps)

Constructs a package in json format to send to
the robot controller

sendPacket() Send a message previously built with
prepareCartPacket json to the robot controller

recvPacket() Receives a message from the json controller

4.2 VIDEE PROTOCOL

The Windows server contains the acquisition module and the procedures for triangulation
and scan but it is the client that gives the commands to start these procedures. To do that it
communicates via TCP / IP with the server, exchanging messages of Videe protocol developed by
IT+Robotics.

In Table 4 are listed the names of the commands and their effect.

21

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Tab.4
Nome comando Effetto

INIT_CYCLE Initialize the data structures to be used

INIT_CALIBRATION Initialize the calibration procedure

PERFORM_CALIBRATION Perform calibrations enabled

GRAB_IMAGE Acquire a frame from smart camera

SET_POSTION Receive the start and end positions of scan

START_SCAN Start the scanning process

STOP_SCAN Terminate the scanning procedure

RESET Clear the data structures used by the various processes

22

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

5. CALIBRATION

5.1 CAMERA CALIBRATION

Before passing to the acquisition, triangulation and reconstruction is necessary to calibrate
all elements of the system. Regarding the camera has been used a procedure libraries of
IT+Robotics that requires several frames acquired from the device in which there is a black and
white checkerboard with number of squares and their sizes known.

In order to facilitate the task of acquiring frames from different locations has been exploited
the fact that the camera has been already fixed to the bracket attached to the wrist of the robot and
using the teach pendant it is possible to read the 3D positions of the robots and save them to a text
file. Using the text file was then possible to move the manipulator in succession in the positions
previously read through the protocol C4G and capture frames by messages of ViDeE protocol. The
algorithm is very simple and is as follows:

1. Read the next location from the text file
2. Send the position to the robot controller in a C4G message via UDP
3. Wait until the robot is positioned
4. Capture a frame by sending to SmartRange3D a GRAB_IMAGE command of Videe

protocol
5. Ends when there are no more positions to be read

With this procedure, within SmartRange3D, the Windows server, frames are collected in a
number equal to the positions that the manipulator has taken. At the end of it the calibration of the
camera can be started directly from the graphical interface of SmartRange3D or via a Videe sent
by the ViDeEClient module of the Linux client.

The benefits of having saved positions on a text file and the ability to perform acquisitions
automatically are

• repeatability of the operation
• possibility of replacing the board
• possibility of removing or adding new positions
• reusability of positions for other types of calibration
• reusability of the positions for the calibration of other rooms

When calibrating smart camera 70 frames were used taken at different angles and heights,
with a 15x25 chessboard with squares of 20mm. The resulting reprojection error calculated is equal
to 0.1586

5.2 LASER CALIBRATION

The two laser pointers need to be calibrated. To do this, a procedure library IT + Robotics
has been used that similarly to the case of camera calibration requires frames captured at different
positions in which the laser lines are visible.

For the acquisition of the frame, the algorithm used for the camera has been reused by
changing the type of acquisition by normal mode to laser mode. The positions of acquisition are the
same and it was thus possible to reuse the entire procedure of the calibration cycle of the camera.

23

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

The reprojection error calculated is equal to 0.2787 and 0.4413 for a laser for the other.

5.3 TOOL CALIBRATION

In order to calibrate the robot-world, it is necessary to first calibrate the tool. The tool is
made of a tip of 100 mm mounted on the bracket of the smart camera. The calibration of the tool is
done using a procedure installed in the teach pendant of the robot manipulator and requires the
acquisition of at least 3 different positions. In these positions the tool assumes different angles in the
xyz axes while the tip of the tool is always in point. To facilitate the task a tip has been used, fixed
to the floor and facing upwards. In this way to acquire the location was sufficient to vary the
inclination of the tool and position it so that the tip of the tool and the tip fixed to the floor touched.

Nelle Fig.16 e 17 sono riportate alcune foto prese durante la fase di calibrazione del tool.

Fig.16 – The calibration of the tool, with the support bracket in the foreground

24

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.17 – The calibration of the tool, with the teach pendant in the foreground

5.4 WORLD-ROBOT CALIBRATION

Once the calibration of the tool has been performed, the robot comau is able to know the
position of the tool in every configuration of the joints. The calibration of the robot world can then
be performed, locating the XY plane using the calibrated tool. To do so the board previously used
for calibration of the camera has been reused, but also a different checkerboard can be used
provided that it is positioned in the XY plane.

The calibration procedure is performed via the teach pendant of the robot controller. During
the procedure is required to place the tool in three different positions:

• O : origin of the plane
• X: any point on the X axis
• XY: any point on the line parallel to the Y axis passing through the point chosen previously

Once these three points were chosen, the procedure inside the robot controller reconstructs the XY

25

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

plane, Once these three points were chosen, the procedure inside the robot controller reconstructs
the XY plane, from which extrapolates the 3D reference system composed of three axes xyze origin.
The reference system thus calculated is stored in the controller and selecting it it is possible to move
the robot coordinates expressed in this reference system.

To facilitate the operation of choosing these three points, they were taken in three
intersections each formed of four blocks of the chessboard. In Fig.17, 18 and 19 are shown the
photos taken at the time of selection of the three points. The photos relate to the first calibration
which has been used in a different board than the final one.

Fig.17 – origin selection

Fig.18 – selection of the point along the x axis

26

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.19 – selection of the third point

27

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

6. COUPLING POSE AND FRAME

6.1 CONSTANT SPEED INTERPOLATOR

The scanning procedure necessary to reconstruct a 3D point cloud requires a mechanism
able to associate to each frame acquired the camera position in the spatial coordinates with respect
to the chosen reference system. This mechanism is made possible by a set of hardware and software
that is called Pose-Frame binder and will be analyzed in detail in the next paragraph.

Inside the IT+Robotics libraries an interpolator called TrackerConstantSpeed is
implemented providing a linear scanning motion with a constant speed. This type of scan is used for
systems mounted on the conveyor belt in which the acquisition system remains stationary and the
object to be scanned flowing beneath it.

For a first testing stage this interpolator has been used, adapting it to the case of
SmartRange3D. In particular in SmartRange3D is not the object which moves but the system
acquisition and therefore it was necessary to reverse the direction of motion within the settings
interpolator.

The constant speed interpolator does not need to receive in real time the positions of the
robot, it is sufficient to provide the initial position, the final position and the speed of movement
and the interpolator is responsible to interpolate the positions assuming a constant frame rate.

The algorithm that makes use of the constant speed interpolator a has been implemented
within the Linux client, which is responsible to control the robot by using the protocol C4G
manipulate and operate the procedures SmartRange3D through commands Videe. Specifically, the
algorithm operates as follows :

1. Read the initial position and the final file
2. Send the C4G command Move(starting position) via UDP to the controller to position the

manipulator in the initial position
3. Sets the speed constant, linear motion and linear interpolation through messages of the C4G

protocol
4. Send the Videe command SetScanPosition(initial position, final position) via a TCP to

SmartRange3D to initialize the binder
5. Send the command to Videe StartScan SmartRange to start the scan and at the same time

sends the C4G command Move(end position) to set in motion the manipulator
6. When the robot has arrived at its final position, the scan stops sending the Videe command

StopScan

At the end of the procedure, when SmartRange3D receives the StopScan command, the
process of triangulation and reconstruction of 3D point cloud starts. Specifically, the procedure
reconstructs a partial point cloud for each frame, by making the position of the laser line and then
merge with the clouds of partial points in the final one.

6.2 POSE-FRAME BINDER

Scanning by interpolator is designed for fixed acquisition systems, mounted on to a
conveyor belt which slide the objects to be scanned and is then a choice for limiting the physical
architecture available. With the possibility of moving the manipulator and obtain its position in real
time constraints of linear motion and a constant speed can be eliminated, at the cost of greater
complexity of the reconstruction algorithm.

28

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

To function, this procedure needs a component able to associate to each frame acquired the
position of the acquisition system in the reference system adopted.

The best candidate is the Linux client that is responsible for controlling the movement by
means of the protocol C4G and the acquisition by Videe and is therefore in possession, at each step
of the scan algorithm, of the frame number of the frame in acquisition and the current position of
the manipulator. However, there is no a one to one correspondence between the number of frames
and the positions, the number of frames depends on the frame rate chosen while the positions of the
manipulator arrive to the client via UDP and are subject to packet loss and generally do not have a
rate constant. In addition to the acquisition of the frame while being a constant frame rate is subject
to error and some frames may be corrupted and then unwrapped. There may then be three cases :

1. one to one correspondence between the frame number and positions (ideal case)
2. one or more frame number different for each distinct location
3. one or more positions for each frame number distinct

In memory an array of pairs (# frame, 3D position) is kept .
The first case is the most simple and merely insert into the array a pair (# Frame, 3D

position) each time a new pair is available.
Assumed without loss of generality, in the second case at each position of the manipulator

correspond various distinct, sequential frame numbers. Given two frames frame i and framei we
have:

#(framei) > #(framei) ⇔ framei was acquired after framej

If k frame numbers framei,1, framei,2, … , framei,k are associated to the position Pi then these k frame
numbers correspond to the manipulator frame captured when he was in a position between Pi and
Pi+1.The choice of the frame that involves the least error is the frame with the smallest frame number
among those associated with Pi, namely framei,1, as is the temporally nearest to the instant in which
the robot is located in position Pi. In the array is then inserted the pair (#(framei,1) , Pi).

The third case provides multiple positions associated with the same frame number. The
protocol messages C4G traveling via UDP and could get the client out of order. In our case,
however, the client-controller connection is direct and messages traveling over a single cable thus
preventing the possibility of their arriving out of order. So without loss of generality we can assume
that the robot positions arriving at the client linux arrive in chronological order. If k positions P i,1,
Pi,2, … , Pi,k are associated to the frame framei these correspond to the positions taken by the robot in
the time passed between the acquisition of framei and the acquisition of framei+1. Following the
same logic as the previous case, the minor error is given by choosing the first between the positions
associated with framei, namely Pi,1, since it is the position temporally closer to the time of
acquisition offramei. In the array is then inserted the pair (#(framei) , Pi,1).

The pose-frame binder installed inside SmartRange3D has at its disposal the captured
frames and their frame number but is not aware of the positions associated with each frame. In the
reconstruction phase of the motion has therefore the need to retrieve this information and to do so a
communication mechanism has been implemented, via TCP, in which the binder sends the frame
number to the client, which retrieve, if present, the location associated with it and return it to the
binder. In order not to overload the computational burden of the linux client, engaged in the real-
time communication with the controller Comau, communication with the pose-frame binder occurs
at the end of the scan when the UDP communication controller-client Linux is already finished.

29

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

The pose-frame binder integrates with IT+Robotics libraries to which it shall provide a
method :

 RTMatrix getOffset(const CameraData* image)

which receives as input a frame from which extracts the frame number and returns the matrix
associated to the position of the acquisition system in the reference system used. To carry out this
process, the binder is concerned to establish the TCP connection with the client Linux.

bool connectTCP()

pose-frame allows the binder to connect to the Linux client (which in this application acts as a
server).

long getFrameID(const CameraData* image)

receives as input a frame and returns the frame number associated with it.

void sendFrameID(long frame)

via TCP sends a packet containing the frame number in which you want to know the location
associated with it.

void receivePosition(double* position)

receives a TCP packet containing the location associated with the frame for which an application is
made. The message will be a string formatted as "x, y, z, rx, ry, rz," where xyez are the coordinates
of the point and rx, ry and rz values of the rotations in the three axes. The coordinates are returned
in an array of six elements, one for each coordinate.

RTMatrix receiveRTMatrix(long frame)

invokes the method receivePosition and transforms the array containing the coordinates of the
position of the robot in a matrix, as required by the method getOffset that the pose-frame binder
must implement to integrate with the libraries of three-dimensional reconstruction.

Using the methods just described, the method getOffset can be written in a compact manner
as follows:

RTMatrix CameraHolderPositionTrackerDynamic::getOffset(const CameraData* image){
return receiveRTMatrix(getFrameID(image));

}

30

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

7. POINT CLOUD ACQUISITION

7.1 POINTCLOUDGRABBER AND TRIANGULATION

The triangulation and reconstruction of the point cloud are carried out by the libraries
developed by IT+Robotics. The two C++ classes who care for them are called Triangulate and
PointCloudGrabber and dealing respectively with triangular points of the laser line within a frame
given the position in which the frame has been acquired and to reconstruct the point cloud.

In the case of this project the PointCloudGrabber has been set to perform the first part of the
acquisition and later recall Triangulate for triangulation: this is to allow the operation of the pose-
frame binder without increasing the load of the linux client during the handling of the robot.

Fig. 20 – The step of scanning and acquisition

31

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig. 21 – The result obtained at the end of the phase of triangulation

32

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

8. PREPROCESSING

8.1 PURPOSE

The initial point cloud, acquired by 3D Smart Range, contains noise, outliers, floor and more
objects. The goal of the preprocessing phase is to provide TPS point clouds containing only one
object, immune to noise and outliers. Some raw clouds are shown in Fig.22 and 23 In particular, the
Fig. 22 shows a point cloud containing two frames equal and you may notice the presence of the
floor. Fig.23 shows instead the two boxes in different scale, in this case the floor is not present but
the outliers are evident. The time of acquisition dela point cloud in Figure 23 is shown in the photo
in Figure 21.

Fig. 22 – Point cloud obtained by scanning two frames with the same 3D Smart Range

33

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig 23 – Point cloud obtained by scanning two boxes at different scales with Smart 3D Range

8.2 FLOOR REMOVAL

For the removal of the floor a dual approach was used. Before an automatic procedure deals
with finding the floor inside the point cloud segmentation algorithm using the plan. If the algorithm
does not completely remove the floor, or would remove wrong side of the object to be insulated, the
software provides an alternative manual procedure.

During the procedure manual, the minimum and maximum values that can take the z-
coordinate of the points of the cloud are given. In the reference system used for the reconstruction
of point cloud the floor plane coincides with the XY plane and all points in the plane have the same
z. The manual procedure is therefore extremely effective going to completely remove the floor,
leaving intact the object to be insulated.

The point cloud shown in Figure 22 at the end of the procedure for removal of the floor is
visible in Fig.24. The outliers that were not visible due to the floor are now evident.

34

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig. 24 – Point cloud after the removal of the floor

8.3 OUTLIERS REMOVAL

Similarly to the fllor removal, the outliers removal is done in two way. A first an automatic
procedure using the filter Statistical Outliers Removal of PCL seeks out and removes outliers. If the
automatic procedure fails to completely eliminate outliers or improperly removes valid points
(inliers) a second procedure manual is available.

The manual process requires the setting of minimum and maximum values that the x and y
coordinates of the points of the cloud can take. In this way they are operated cutting planes
orthogonal to the XY plane that remove outliers that are located on the sides of the valid objects.
This type of cut removes outliers as those of Fig.24, obtaining a cloud visible in Fig.25.

Fig.25 - point cloud after the removal of outliers with cutting planes perpendicular to the XY plane

35

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

In case of outliers positioned above the object to be insulated, the same procedure used for
the manual removal of the floor is used, where through two minimum and maximum values of z are
defined two planes parallel to the XY plane. Only points between these two levels will be
considered valid while the other will be considered outliers and removed. This is the case of the
point cloud in Figure 3, that after the operation for removal of outliers becomes the cloud visible in
Fig.6.

Fig.26 - point cloud after the removal of outliers with cutting planes parallel to the XY plane

8.4 OBJECT INSULATION

The isolation of the object is made necessary by the presence of multiple objects within the
scan. In the real case the point cloud, to the specifications of the project 3D Smart Range, contain
only one object. At the time of scanning it was nevertheless chose to insert for convenience more
objects within a same point cloud in order to have a scan for each pair of objects on which to
perform the tool path streatching.

The procedure to manually insulate the object uses the same approach used for the removal
of outliers which sets the minimum and maximum values considered valid for the x and y
coordinates, defining cutting planes orthogonal to the XY plane. The objects within the scan are
arranged side by side along the same reference axis (x or y), and this approach allows partitioning
the cloud into two cloud containing exactly one object each.

36

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.27 e 28 -Point cloud containing two separate boxes on a different scale

8.5 DOWNSAMPLING

In order to allow TPS to work with cloud with the same density, and at the same time to
reduce the computational burden, the point cloud undergo a procedure downsampling. A grid filter
with leaf size of 2 mm in x and y and 0.5 mm in z was used. The downsampling is not performed by
the preprocessing module but directly from TPS immediately after the cloud of input have been
loaded.

Fig.29 – Cloud after downsampling with grid filter

37

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

9. TOOL PATH STRETCHING

9.1 TOOL PATH

The tool path (TP) is the path that a tool mounted on a manipulator robot performs during a
machining cycle. Without loss of generality the TP can be defined as a broken line in 3D space and
because the tool moves on the surface of the object also the TP lying on it. Given a point cloud
containing the reference object, which will be compared to the real object, the TP can be derived
from the same by taking a subset of the points of its surface and possibly interpolandoli to a higher
density.

In Fig.30 a tool path defined on the point cloud of a frame is shown.

Fig.30 – Tool Path defined on a frame

9.2 TPS WITH AFFINE TRANSFORMATION

Given

• the point cloud of a reference object O
• the point cloud of an object S equal to O except for a scale factor and a rototranslation

transformation
• a TP defined on O

we want to fit TP so that it follows the surface S, consistent with how it was defined on O.
Therefore we want to find a transformation steps from TP to TP ', where TP' is a tool path on S.

Let T be the affine transformation that allows you to switch from O to S, ie, T (O) = S. Then T can
transform any point of O to the corresponding point of S.
Since TP is defined on O, we have:

38

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

∀ p belongs to TP => p belongs to O

Intuitively we have that T (TP) = TP 'and it is therefore sufficient to find the transformation that
sends O in S and apply it to the TP.

The algorithm assumes to work with a pair of the same object to two different scale factors
and with a possible rotation-translation, it is then to find the affine transformation which transforms
O in S.

9.3 FINDING THE SCALE FACTOR

For the identification of the scale factor, an estimate is made using the initial Principal
Componenet Analysis (PCA) already implemented in PCL. For each point cloud, the covariance
matrix is calculated and the variance of the principal component is extracted. The ratio between the
variances of the main component is used as the initial estimate of the scale factor. This estimate is
then refined in the later stages in a process that will be discussed in the following paragraphs.

The code used for the estimation of the scale factor:

pcl::PCA<pcl::PointNormal> pca;
pca.setInputCloud(cloudA);
Eigen::Vector3f ev_A = pca.getEigenValues();

pca.setInputCloud(cloudB);
Eigen::Vector3f ev_B = pca.getEigenValues();

double principalCompA = ev_A[0],principalCompB = ev_B[0];

 double s = sqrt(principalCompB)/sqrt(principalCompA);

9.4 MODEL CONSTRUCTION

In order to identify the transformation Random Sample Consensus (RANSAC) is used.
RANSAC requires a set of observed data and a model that represents the observations. In the case
of TPS where you want to locate the transformation O to S, the set of observed data is the cloud
point of S and the model of observation O. In fact it is used in place of S sS, where s is the factor
scale previously estimated.

For the construction of the model SampleConsensusModelRegistration of pcl is used. The
code consists of two rows. First create the model by taking as a set of observed data to the cloud S :

pcl::SampleConsensusModelRegistration<pcl::PointNormal>::Ptr sac_model(
new pcl::SampleConsensusModelRegistration<pcl::PointNormal>(cloudS));

And finally sets the template that represents the observations from the cloud of O :

sac_model->setInputTarget(cloudO);

39

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

9.5 FINDING AFFINE TRANSFORMATION WITH RANSAC

Once the model has been created with SampleConsensusModelRegistration, it is passed to a
RandomSampleConsensus object that deals with applying the RANSAC algorithm.

The ransac object is instantiated, passing the previously constructed model:

pcl::RandomSampleConsensus<pcl::PointNormal> ransac(sac_model);

This will set the threshold distance between the data and the model:

ransac.setDistanceThreshold(threshold);

RANSAC is actually performed:

ransac.computeModel();

At the end is constructed transformation matrix T from the data returned by the algorithm

ransac.getModelCoefficients(coeffs);
T = Eigen::Map<Eigen::Matrix4f>(coeffs.data(),4,4);

It is calculated by the number of inliers found

ransac.getInliers(inliers);
nInliers = inliers.size();

This method allows to reconstruct the transformation matrix T with a certain degree of
approximation. To make the algorithm more efficient, the method just described is iterated several
times trying to maximize the number of inliers found.

Given a user-defined number of iterations k the method is iterated k times changing scale
factor in a neighborhood of s, the scale factor estimated initially. The code then becomes:

maxInliers = 0;
for(i = -k; i < k; i++)
{

scale = s * (1 + i/k)
Tr = Eigen::Matrix4f(Eigen::Matrix4f::Identity());
Tr.topLeftCorner(3,3) *= Eigen::Matrix3f::Identity() * scale;
pcl::transformPointCloud(*cloudS, cloudsS, Tr);

 nInliers = computeRansac(cloudO, cloudsS, scale, T)

if(nInliers > maxInliers)
{

maxInliers = inLiers;
Topt = T;

}
}

At the end of the cycle will be identified scaling factor that maximizes the number of inliers.

40

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.31 – The RANSAC algorithm

9.6 TOOL PATH TRANSFORMATION

Once found the roto-translation matrix T and the scale factor s, it is sufficient to apply them
to the cloud containing the TP built on O to adapt it to S. The result can be seen in Fig.13 and shows
on the left the cloud with O TP and right of the original cloud S with the new TP adapted to the
shape of S. The different scale factor is clearly visible, as well as the roto-translation.

41

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig. 32 – Tool Path Stretching. On the left the original TP, ont the stretched right the TP

9.7 A MORE GENERAL CASE

The problem with the approach set out in the preceding paragraphs is that it provides two
objects that differ only by an affine transformation. The goal is instead to develop an algorithm to
adapt a TP to a new object subject to various deformations. To this end it is necessary to have a
function that maps the points of the reference object in the corresponding points of the object
deformed. The transformation can be divided into two components:

1. Global scale factor
2. Local deformations

In particular, in case of absence of the second point, it falls in the assumptions made previously and
the algorithm of the global affine transformation allows to obtain the adaptation of the tool path.
The algorithm in the general case treated in this section will therefore address the second point. Let
O be the reference object, D the deformed object, TP the tool path defined on O and TP the tool path
defined on D. The algorithm will then read O, D and TP and return TP' and it can be simplified as
follows:

1. Read O, D, TP (Fig.33)
2. Find the scale factor s using Principal Component Analysis
3. Build D '= sD getting an item with the proportions of D at the same scale of O
4. Use Iterative Closest Point to locate the global affine transformation T that sends sD in O
5. Apply T to D 'getting D' '(Fig.34)
6. At each point of TP associated with the point D '' a minimum distance
7. Apply the inverse transformation of T, and the scale factor of 1 / s to the points of D ''

identified
8. Build TP 'as the set of points thus calculated (Fig.35 and 36)

42

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig. 33 – Input : object model (in white) and object deformed and out of scale (in yellow)

Fig. 34 – Result of global affine transformation. The two objects, one in red and one in blue,
overlap properly

43

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig. 35 – On the left the original TP, on the right the stretched TP

Fig. 36 – Some correspondences between TP and TP' highlighted by some green lines

44

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

9.8 RESULTS

To test the TPS algorithm a software module wich implements it has been developed. The
input data used are the result of the preprocessing procedures applied to cloud obtained in the
scanning process. We have chosen the frames produced in series at different scales. The
deformations were obtained in two different ways: by filing the edges of some frames and inserting
non-rigid sheets inside them.

In Fig.37 you can see the result of the alignment of the two cloud in the case of two mass-
produced objects at different scales. Wrote the object for which you want to deform the TP, in white
the reference object on which it is called the TP. On the right you can see the result of the
identification and application of the affine transformation, with the object out of scale which was
adapted to the shape of the reference object.

Fig.37 – The transformation obtained by TPS applied to two cloud in different scale.

The Fig.38 shows the result of the alignment with cloud subject to deformations that can be
seen in the central area where it was added a floppy sheet. The overlap is good but the errors are
due to the fact that the transformation can not be represented by a single global affine
transformation.

45

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.38 – The transformation obtained with TPS applied to two cloud with local deformations.

The Fig.39 and 40 show the result of applying TPS. In Fig.39 you can see the initial state of
the algorithm, the tool path TP defined on the model O overlapped on it on the left and the cloud
containing the real object S at different scales. The Fig. 40 shows the output of the algorithm, with
TP adapted to follow the form of S.

Fig.39 – Input of TPS. To the left of O and TP defined on O, S right

46

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

Fig.40 – Output of TPS, with no local deformations. Note TP ' on the right.

Finally, Fig.41 shows the most general case in which the surface on which the TP has to be
adapted is deformed. Some pairs of corresponding points are indicated by the green lines.

Fig.41 – Output of TPS, in the case of local deformations.

47

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

CONCLUSIONS

The project was developed on behalf of and under the supervision of IT+Robotics under the
name of SmartRange3D. In a first phase the set hereThe acquisition system and that of
communication have been developed and put into operation. The development of the
communication system has required the construction of a hardware architecture and implementation
of procedures and protocols able to put in communication the various elements between them. For
the acquisition system has been designed, built and mounted a support bracket for fixing the camera
and the projectors to laser line to the manipulator robot. It was later developed a software module
capable of acquiring by smart camera exploiting the integrated procedures for peak detection. The
elements of the acquisition system were then calibrated using appropriate procedures already
developed by IT+Robotics and the producers of the robot.

The communication and acquisition systems were then exploited for the creation of a
software capable of performing calibration procedures and automatic scanning. To allow the three-
dimensional reconstruction of scanned objects a mechanism called Pose-Frame Binder has been
implemented, capable to associate to each frame acquired the camera position in the spatial
coordinates with respect to the chosen reference system.

The big advantage given by-frame poses binder is to be able to reconstruct a point cloud
more complete with the ability to rotate the acquisition system in a circular motion around the
object to be scanned to obtain a more complete overview of the same. In addition, the robot
manipulator while if set to move at a constant speed linear motion fails to fulfill an ideal motion and
interpolate the positions taken by it during the entire scan is due to error. In the case of the pose-
frame binder positions are read in real time, eliminating the need to interpolate the positions and the
consequent interpolation error.

The ability to move the acquisition system commanding the manipulator via software library
allows to improve the calibration cycle over that of having a system of extremely precise
positioning (the precision is given by the productive characteristics of the manipulator) allows the
repeatability of the procedure. This is useful when you need to perform multiple calibrations
involving several acquisitions in the same positions as in the case of smart cameras and two lasers.
In this case, just manually select the positions once and repeat the procedure of acquisition by
changing the mode of acquisition (from normal to peak detection) and turning on or off the blades
laser according to need. The repeatability of the operation allows to test calibrations using
chessboard (or other objects) between them for different number of blocks and dimension in order
to obtain the best result of calibration.

The point cloud reconstructed with the Pose-Frame Binder were processed to isolate the
individual objects within each scan. It has therefore been designed and developed an algorithm that
solves the problem of adaptive modification of tool paths to objects subject to deformation. In a first
step has been solved the problem of adapting the tool path to objects subject to a deformation
represented by affine transformation. Finally, the algorithm has been adapted to the more general
case of local deformations can not be represented by affine transformation.

The algorithm has been implemented in a testing software module and applied to the point
cloud obtained from the scan of some photo frames produced in series, some of the same
dimensions, others on a different scale and with the same proportions and some strains due to
filings or the inclusion of a non-rigid sheet inside them. The algorithm was able to adapt the tool
path defined on an object model to all other deformed and / or out of scale objects used, following
the correct surface in a manner consistent with how the path were defined.

48

Laurea Magistrale in Ingegneria Informatica Nicola Salmaso 14 Ottobre 2014

BIBLIOGRAPHY

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University
Press, 2000

J. Kannala, J. Heikkila, and S.S. Brandt, Geometrica camera calibration, Wiley Encyclopedia of
Computer Science and Engineering, 2008

P.Sturm et S.J. Maybank, On Plane-Based Camera Calibration : A Generale Algorithm,
Singularities, Applications, IEE International Confercence on Computer Vision and Pattern
Recognition, pp. 423-437, 1999

J. F. i Colladio, New methods for triangulation-based shape acquisition using laser scanners,
Ph.D. Thesys, Girona, 2004

Beyer, L.; Wulfsberg, J.: Practical Robot Calibration with ROSY. In: Robotica, Vol. 22, Cambridge
2004, pp. 505–512.

Tagiyev, N.; Alizade, R.: A Forward and Reverse Displacement Analysis for a 6-DOF In-Parallel
Manipulator. In: Mech. Mach. Theory, Vol. 29, No. 1, London 1994, pp. 115–124.

Trevelyan, J. P.: Robot Calibration with a Kalman Filter. Presentation at International Conference
on Advanced Robotics and Computer Vision (ICARCV96), Singapore 1996.

N.N.: ISO 9283 - Manipulating industrial robots. Performance criteria and related test methods.
ISO, Geneva 1998.

Gottlieb , J.: Non-parametric Calibration of a Stewart Platform. In: Proceedings of 2014 Workshop
on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
July 7–8, 2014, Tianjin, China

H.S.M. Coxeter, Introduction to geometry , Wiley, 1961

Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM 24
(6): 381–395, 1981

David A. Forsyth and Jean Ponce. Computer Vision, a modern approach. Prentice Hall, 2003.

Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision (2nd ed.).
Cambridge University Press, 2003.

P.H.S. Torr and D.W. Murray The Development and Comparison of Robust Methods for Estimating
the Fundamental Matrix. International Journal of Computer Vision 24 (3): 271–300., 1997

Ondrej Chum, Two-View Geometry Estimation by Random Sample and Consensus. PhD Thesis,
2005

49

