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Abstract

The use of programmable data planes in network research has led to great innovation in the
last decade. With programmable data planes, a network administrator can customise andmon-
itor the lowest-level behaviour of network devices via standard open-specific APIs. This offers
great flexibility and control to the people operating the network. Research demonstrates that
many applications can be transferred from servers to devices such as switches or network cards,
taking advantage of the data plane programmability offered by these devices.
Along that line of research on programmable data planes, this work proposes the implementa-
tion of a privacy-preserving mechanism in the network data plane, leveraging the flexibility of
programmable switches and the expressiveness of the domain-specific programming language
P4. We choose Differential Privacy (DP) as the target privacy-preserving technique, hence, ori-
enting our data plane design to DP-based mechanisms. Mainly, we show how to implement
and assemble Floating Point (FP) operations on P4 targets to build a differential privacy mech-
anism working on a vector of input elements.
Even though data plane programmability is a very active research area, at present, we are not
aware of any other work in the literature that presents the implementation of in-switch differ-
ential privacy technique. We believe that our initial effort sheds some important light on the
challenges and trade-offs to devise such in-network functionality.
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1
Introduction

In recent years, with the surge of novel data plane programming technologies, research enabled
by programmable networks has evolved considerably. The concept of programmability within
the network data plane denotes the capacity of a network device to provide access to its fun-
damental packet processing logic to the control plane via a standardized Application Program-
ming Interface (API), enabling its efficient and comprehensive reconfiguration [1]. This boosts
innovation in networks, as network administrators and/or operators canmore rapidly reconfig-
ure the behaviour of network devices according to their specific requirements. In fact, they can
implement new functionalities just by using the device’s programming interface, avoiding to
wait for the usual longer production cycles of network devices to roll out new functionalities.
Through data plane programming, researchers could show that network devices can do way
more than only forward packets, they prove to be suitable also for “in-network computing
tasks”, where application-level logic can be offloaded to network devices (e.g. switches, NICs).
For example, Zilbermanet al. [2] explore thepotential of programmable switches for in-network
classification, by mapping machine learning models to match-action pipelines. Jung et al. [3]
propose a novel in-switch Access Control List (ACL) system to assist an autonomous defence
mechanism based on static and dynamic ACL rules. Another example proposed by Liu et al.
[4] is a switch-native approach to detect volumetric DDoS by running detection and mitiga-
tion functions entirely on switches.
Even though data plane programmability is a very active research area, at present there are not
many attempts to leverage this technology to assist privacy-preserving techniques for network
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applications. As a consequence, this project aims to leverage the capabilities of programmable
dataplanedevices and theP4 language to explore thedesignof an in-networkprivacy-preserving
mechanism. Differential privacy is widely used in contexts where privacy-preserving data is cru-
cial. For example, it is used in distributedmachine learning applications to increase the privacy
of training data and nowadays it is common to applyMachine Learning (ML) to sensitive train-
ing datasets.
We target differential privacy as a class of privacy-preserving techniques for our work. We de-
sign a P4 program that implements a DP mechanism for a switch target, detailing the imple-
mentation challenges and the design trade-offs. We also perform a preliminary evaluation on a
software switch target that sheds further light on the design of such a P4 program.

The rest of the document is structured as follows: Chapter 2 provides the necessary back-
ground to understand the overall project; Chapter 3 presents our core contribution, that is,
the design of a differentially private technique on a P4-progammable switch target, illustrating
the related design challenges and the details of our proof-of-concept implementation; Chapter
4 reports the evaluation of our P4 implementation of the targeted differential privacy mech-
anism; Chapter 5 concludes this document by presenting a few ideas for future work on this
project.
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2
Background

This chapter provides the main background knowledge necessary to understand the overall
project. First, it describes the main characteristics of the Software-Defined Network (SDN)
paradigm in Section 2.1, to outline architecture and differences compared to traditional com-
puter networks. Then, it focuses on the data plane layer of SDN, as it is the crucial part of
this thesis work, by going from a fixed to a programmable data plane. Afterwards, Section 2.2
introduces P4, a high-level language for data plane programming, outlining its strengths and
weaknesses. Finally, Section 2.3 illustrates differential privacy by providing amathematical def-
inition, basic techniques and a use-case application.

2.1 The SDN paradigm

The idea of this project builds upon a relatively recent network paradigm called SDN. To fully
understand its impact, it is useful to start by looking at how networks were operated and man-
aged in the past.

2.1.1 Traditional networks

Historically, network devices were structured as vertically integrated solutions, including every-
thing from the underlying hardware to the Operating System (OS) running on that hardware,
to the application itself. Those devices have proprietary control, data and management planes.
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Moreover, the control plane is highly tied to the data plane.

Figure 2.1: Traditional router

For example, let us look at a router as a network device (Figure 2.1). The router’s control plane
can be seen as the specialized OS that takes decisions on which path and protocols the packets
have to use to reach the destination. The process of creating a routing table and drawing the
network topology are examples of control plane functions. Instead, the data plane forwards
packets from one interface to another according to the control plane logic.
A tight binding between control and data plane results in reducing flexibility, hindering inno-
vation and evolution of the networking infrastructure, as a network administratormust config-
ure each network device separately using low-level and vendor-specific commands. Moreover,
with this approach is very difficult to add new functionalities to devices [5].

2.1.2 Software-Defined networks

SDN aims to transform the market from hardware-centric and static networks to software-
defined and highly programmable networks. A simple definition of SDN is: ”A network in
which the control plane is physically separate from the data plane, and a single control plane con-
trols several forwarding devices” [5]. The main contributions can be summarized into four
main pillars:

1. Decoupling control and data planes. In practice, two data structures need to be main-
tained: the control plane maintains a routing table with the information to select the
best route while the data plane maintains a forwarding table optimized for fast packet
processing (Figure 2.2). This disaggregation makes it possible for different parties to be
responsible for each plane and it implies the need for a well-defined forwarding abstrac-
tion, that defines a way for the control plane to instruct the data plane. This separation
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should be codified in an open interface and the most common one is calledOpen Flow.
One consequence of such separation is that data plane components (like switches) be-
come simple packet-forwarding devices with all intelligence implemented via software
by the control plane. In principle, this disaggregation means that a network operator
should be able to purchase their control plane from vendor X and their data plane from
vendor Y.

Figure 2.2: Control and Data planes separation

2. Flow-based forwarding decisions. TheOpen Flow interface introduces a newway to spec-
ify the forwarding behaviour, via Flow rules and Flow tables. A “flow” can be defined as
a sequence of packets from source to destination and, in the SDN context, all packets of
a flow receive identical service policies at the forwarding device. A Flow rule is a Match-
Action pair such that any packet that matches the first part of the rule should have the
associated action applied to it.
For example, a simple flow rule might specify that any packet with destination address
“D” must be forwarded to output port “I”. Each switch then maintains a Flow table to
store the set of flow rules the controller has passed to it (Figure 2.3).
In flow-programming, decisions can be based on multiple factors like IP, MAC, and
TCP port. It allows more flexibility, as rules can be defined in a more granular way,
compared to a destination-based approach where decisions are based only on address
destination;

3. Moving the controller logic to an external entity called SDN controller / Network OS
(NOS). The NOS is a software platform that runs on a commodity server and provides
the essential resources and abstractions to facilitate the programming of forwarding de-
vices based on a logically centralized abstract network view. Logically centralized means
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Figure 2.3: Flow table

that a globally unique data structure is maintained in the controller, however, it may
be implemented in a distributed way over different servers. This is important both for
scalability and availability. Therefore, its purpose is similar to the one of a traditional
operating system.

4. The network is programmable through a set of software applications (Control Apps)
that express the desired network behaviour without actually being responsible for im-
plementing it (Figure 2.4).

Figure 2.4: SDN workflow

Figure 2.5 illustrates those two kinds of networks side by side. Each device in the traditional
network (on the left) has its control plane and data plane, while in the SDN one the control
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plane is separated from each device and placed into one logically centralized entity, called SDN
Controller. By opening vertically integrated, closed network devices, SDN creates opportuni-
ties for innovation that would not otherwise be available. Moreover, by opening up interfaces,
it shifts the control from vendor-specific to the network operator, as such interfaces are “pub-
lic” and can be modified using APIs [6].

Figure 2.5: Traditional VS Software‐Defined Network

2.1.3 SDN architecture

The Figure 2.6 shows a high-level system design of an SDN architecture on the right with the
separation of the network planes on the left [5].

Figure 2.6: SDN layers

A given SDN network is composed of three planes:
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1. Management plane: a set of applications (called Network / Control Apps) that manage
and configure the overall network behaviour. Essentially, a management application de-
fines the policies, which are appropriately translated by theNOS and sent to forwarding
devices. Examples of applications are routing, firewalls and load balancers;

2. Control plane: it is called SDNController /NetworkOS. TheNOS is a platform for con-
figuring and controlling a network of switches. It runs off-switch as an external entity.
Central to this role is the responsibility for monitoring the state of those switches (for
example detecting port and link failures), maintaining a global view of the topology that
reflects the current state of the network, andmaking that view available to any interested
network application;

3. Data plane: it is composed of a network of forwarding devices which are responsible
to forward network packets based on instructions received from the control plane. It
plays a critical role in the efficient and reliable forwarding of network traffic based on
received policies and instructions. The initial SDN concept assumed fixed data plane
functionalities, however the research in this field has recently evolved. The next section
explains this evolution in more detail.

Figure 2.7: ONOS

As a practical example, Figure 2.7 illustrates the open-source SDN controller platformOpen
NetworkOperating System (ONOS).ONOSmaps thedesiredbehaviour of control applications
onto the configuration instructions that need to be loaded onto each switch in the network. It
is also important to consider that information flows both “down” and “up” through ONOS.
The principal components of an SDN controller like ONOS are:
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• Northbound Interfaces: a collectionof interfaces usedby “control apps” to stay informed
about the network state and to control the network data plane. The union of all north-
bound APIs must be sufficient to configure, operate, and control the network. These
APIs allow developers to build custom network applications and services on top of the
ONOS platform;

• DistributedCore: ONOS is designed as a distributed system, with a cluster of controller
nodes working together to provide scalability and fault tolerance. This distributed archi-
tecture allows ONOS to handle large-scale network deployments with high availability.
It is responsible for managing the network state and notifying applications about rele-
vant changes in that state;

• Southbound Interfaces: multiple southboundprotocols are supported, includingOpen-
Flow, NETCONF, and P4Runtime. They allow to control a wide range of network
devices from various vendors.

2.1.4 Programmable Data Plane

With the introduction of the first generation of SDN, networks had programmable control
plane but fixed data plane functionalities. Still, it was a huge improvement compared to tradi-
tional networks of the past. However, recently the network community further improved the
architecture of SDNs by introducing programmable data planes.
This section focuses on programmable switches and their main characteristics [5]. In the SDN
context, switches are commonly called bare-metal switches. They are pure hardware devices as
they do not have any pre-installed Operating System (OS). They can be called also open switch,
the difference is that the latter has an OS pre-installed even if it is not tied to the hardware as in
a traditional switch. It is equivalent to buy a package with a bare-metal switch and an operat-
ing system at the same time. The interconnected set of switches is the underlying hardware for
SDN.
Figure 2.8 gives a high-level schematic of a bare-metal switch. It is made of the following com-
ponents:

1. Network Processing Unit (NPU): It is a merchant silicon switching chip optimized to
parse packet headers andmake forwarding decisions. In the Figure 2.8 theNPU is a com-
bination of ASIC-based forwarding pipeline that implements a series of match-action
tables and SRAM-based memory to buffer packets while they are being processed. It is
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Figure 2.8: Bare‐metal switch

important to point out that the ASIC pipeline is designed to perform specific network-
ing tasks efficiently, such as packet switching, forwarding table lookups, and quality of
service (QoS) enforcement and it is “vendor-specific”;

2. Central ProcessingUnit (CPU): It is a general-purpose processor that controls theNPU
and it is where the Switch OS is running. It is the part that exports the API that allows
the NOS to control the data plane;

3. Other commodity components that make this all practical like transceiver modules that
take care of all the media access details.

Look now at the forwarding pipeline of theNPU in detail, since it is a crucial element in pro-
grammable switches. High-speed switches use a multi-stage pipeline to process packets. This
architecture divides the execution of a packet processing task into several sequential stages, with
each stage performing a specific subset of operations on the input data before passing it to the
next stage. Each stage operates concurrently with other stages, allowing for parallel processing
and improving overall throughput. In practice, itmeans thatmultiple packets can be processed
at the same time. Themaindistinction inhowagivenNPUimplements this pipeline iswhether
the stages are fixed-function or programmable:

• Fixed-function pipelines: the switch has a pre-defined packet processing logic whose
processing functions are implemented and cannot bemodified or reprogrammed by the
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network administrator. While flow rules are general enough to say what forwarding be-
haviour the controller wants to program into a switch, switches do not necessarily have
the capacity to implement that functionality efficiently. As networks evolve, it is reason-
able to think that switches would implement new functionalities. However, to incor-
porate new features, traditional switches must be re-designed. This process can be very
long (it generally takes some years);

• Programmable pipelines: they allow a network administrator to define and customize
the packet processing behaviour using a high-level programming language such as P4.
The primary benefit lies in its ability to provide a significant degree of flexibility, enabling
network operators to implement new features, protocols, and optimizations as needed.
These pipelines can easily adapt to network changes and can be updated remotely with-
out requiring the deployment of new hardware.

As stated previously, the switch can be built using different ASICs. Because of this, a general
way to represent the pipeline called abstract pipeline is required, together with a definition of
how the abstract pipeline maps onto the physical pipeline (that is the vendor-specific ASIC).
Such abstract pipeline can be specified using the dedicated programming language P4. Some
standard architecturalmodels are used for this purpose (PISA,V1model, PSA, etc.). The intro-
duction of such an architectural model enables the portability of the same forwarding pipeline
(P4 program) across multiple targets (switching chips) that support the corresponding archi-
tecturemodel. Therefore, programmable switches are a huge step forward from a few years ago
as now it is possible to program both control and data plane layers of an SDN system.

2.2 The P4 language

This section introducesP4, a high-level language forprogrammable switchesused in this project.
It is a language for Programming Protocol-independent Packet Processors firstly introduced in
2014 [7]. The main goals in designing P4 stated in the original paper are:

1. Switch reconfigurability: the ability to change and add new functionalities via soft-
ware once the switch is already deployed. The main idea is to prevent redesigning new
hardware (a long and expensiveprocess) oncenovel functionalitiesmust be implemented
on the switch;

2. Protocol independence: Switches should not be tied to any specific network proto-
cols (like Ethernet, IPV4, etc.) and any specific packet format. Rather, the programmer
should be able to specify custom protocols and custom packet formats;
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3. Target independence: Programmers shouldbe able towriteP4programs independently
of the underlying hardware. Indeed, the programmer does not need to know the details
of the underlying switch as a compiler will be responsible for the translation from the
P4 program into the actual target switch low-level code.

2.2.1 Abstract model

Figure 2.9: P4 Abstract model

The Figure 2.9 shows the original abstract model proposed by the P4 original paper that gen-
eralizes how packets are processed in different forwarding devices (like Ethernet switches, load-
balancers, routers) andbydifferent technologies (like fixed-function switchASICs,NPUs, soft-
ware switches, FPGAs). Using such a model as a reference, the authors of the language could
more easily devise some syntax and programmingmodel for P4 that would allow programmers
to create target-independent programs and compilers tomap programs to a variety of different
forwarding devices. The above model is controlled by two main types of operations:

• Configure operations: program the parser, set the order ofMatch-Action (M/A) stages,
and specify the header fields processed by each stage;

• Populate operations: add (and remove) entries to the M/A tables that were specified
during configuration phase.

The packet processing workflow for such a model is the following: arriving packets are first
handled by the parser. The parser recognizes and extracts fields from the packet header. The

12



extracted header fields are then passed to the Ingress pipeline. There are two distinct M/A
pipelines, one for the Ingress and another for the Egress pipeline. The difference is that during
Ingress process tables determine the egress port and the queue into which the packet is placed,
while during Egress process the tables form per-instance modifications to the packet header
(for multi-cast copies). Once the packet goes through both Ingress and Egress pipelines, it
is recomposed by the Deparser and sent in output. Packets can carry additional information
between stages, called metadata, which is treated identically to packet header fields.

2.2.2 Protocol-Independent Switch Architecture

At an architectural level, the programmable pipeline is often referred to Protocol Independent
Switching Architecture (PISA) as shown in Figure 2.10.

Figure 2.10: PISA architecture

PISA has three main components:

1. Parser: it identifies and extracts header fields from specific locations in the packet;

2. Match-Action pipeline: it is a sequence of Match-Action (M/A) units each of which
is programmed to match and act upon one or more identified header fields. The mem-
ory blocks shown in the Figure 2.10 are typically built using a combination of SRAM
and TCAM. The difference is that TCAM is more expensive and power-hungry than
SRAM, but it supports wildcard matches.
The ALU component is responsible for implementing “actions”. Possible actions in-
cludemodifying specific header fields (like decrementing a TTL), incrementing or clear-
ing various counters internal to the switch, and setting user/internal metadata;

3. Deparser: it reconstructs the representation for each packet from all the in-memory
header fields produced as an output by the M/A pipeline.

Writing low-level target-specific code for a switch architecture is usually not an easy task,
however, the desired packet processing behaviour of a PISA switch can be expressed through a
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high-level program written in P4. Then, a vendor-specific compiler is responsible for generat-
ing the equivalent low-level program.

Togetherwith PISA, another very famous architecture is theV1model shown in Figure 2.11.
This is the architecture used in practice in this project. The main components are: Parser,
Ingress pipeline, Checksum verification, Traffic manager, Egress pipeline, Checksum update,
and Deparser.

Figure 2.11: V1Model switch architecture

In practice, every P4 program starts with a P4 template with a declaration of the above compo-
nents. The following P4 code shows only the final block, which is the “main” function that
specifies all components to be pulled together to build a complete switch pipeline.

1 /* Switch */
2 V1Switch(
3 MyParser(),
4 MyVerifyChecksum(),
5 MyIngress(),
6 MyEgress(),
7 MyComputeChecksum(),
8 MyDeparser()
9 ) main;

2.2.3 Structure of a P4 program

A P4 program contains definitions of the following key components [7]:

• Packet Headers: each protocol header is specified by declaring an ordered list of field
names together with their widths, similar to a C structure;
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• Parsers: A parser is defined as a state machine that analyzes packet headers to identify
and extract protocol fields. The extracted field values are sent to theM/A tables for pro-
cessing;

• Tables: they are the core mechanism to perform packet processing. They are considered
the core primitives. Tables are defined tomatch specific packet headers or fields and take
corresponding actions basedon thematches. A table canbe seen as a key-actionpairwith
pre-loaded entries by a controller. Then, during execution, once a specific field matches
the key of a table entry, the corresponding “action” is triggered;

• Actions: P4 supports the constructionof complex actions fromsimplerprotocol-independent
primitives. Actions can include forwarding, dropping, modifying headers, or invoking
custom processing logic;

• Control blocks: Once tables and actions are defined, a control block determines the
order of M/A tables that are applied to a packet. It is similar to a C function (without
loops).

2.2.4 Language Specification and Current Version

TheP4 language is developedby the p4.org consortium [8]. The current version is the P416. It is
a relatively simple, statically-typed programming language, with a syntax based on C, designed
to express computations on network packets. This language is designed to describe data-path
packet processing logic targeting high-throughput networking devices, but it has several con-
straints [9]. For example:

• P4 does not offer support for recursive functions (no loops);

• P4 does not support dynamic memory and pointers. Resource consumption can be
statically estimated (at compile-time);

• Only basic arithmetic operations are supported (no floating point).

In summary, P4 is a dedicated programming language for programmable switches, where
the main switch functionality is to forward packets. Therefore, P4 can be used to implement
more sophisticated in-switch operations but they must cope with the above limitations.
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2.3 Differential privacy

This section introduces Differential Privacy a formal mathematical framework to ensure the
privacy of individuals’ data in the context of statistical analysis of aggregated datasets. First, it
outlines the high-level intuition and purposes, then provides a more formal definition of the
framework and explains some of the differentially-private techniques mostly used nowadays.
Finally, the application of differential privacy to a practical use case is analyzed.

2.3.1 Intuition and definition

The Cambridge dictionary defines privacy as:
“someone’s right to keep their personal data and relationships secret”

Differential Privacy is a formal mathematical definition of privacy. In the simplest setting,
an algorithm that analyzes a dataset with sensitive information as an input and computes statis-
tics about it, is said to be differentially private if, by looking at the output, one cannot tell
whether any individual’s data was included in the original dataset or not. In other words, the
output of the algorithm hardly changes when a single individual joins or leaves the dataset.
The mathematical theory ofDifferential Privacy (DP) guarantees that anyone viewing the re-
sult of a differentially private analysis will make the same inference about any individual’s pri-
vate information. DP guarantees are summarized in [10]:

• It protects an individual’s information as if his informationwere not used in the analysis
at all, that is, the outcome of a differentially private algorithm is approximately the same
whether the individual’s information was used or not;

• It mathematically ensures that using an individual’s data will not reveal any personally
identifiable information, or even whether the individual’s information was used at all.

More formally, the mathematical definition of Differential Privacy provided by Dwork et
al. [11] is the following:

LetA : X → O be a randomized algorithm. A is (ε, δ)-differentially private, if for any o ⊆ O,
and for anyD1,D2 ∈ D s.t. D1 ∼ D2:

Pr[A(D1) ∈ o] ≤ eε · Pr[A(D2) ∈ o] + δ (2.1)
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Where ε ≥ 0, δ ∈ [0, 1] are called privacy parameters and the relationD1 ∼ D2 means that
D1 andD2 are neighbours.

Neighbours

The concept of “neighbour datasets” allows toquantify howmuch theoutput of an algorithm
changes when a single individual’s data is added or removed from the dataset. Two datasets
D and D′ are said to be “neighbouring” if they differ by at least one individual’s data entry.
Formally, let D = (x1, x2, ..., xn) and D′ = (x′1, x′2, ..., x′n) be two datasets, where xi and x′i
represent the data entries for individual i in datasets D and D′, respectively. Then, D and D′

are considered neighbouring if there exists an index j such that xi = x′i for all i ̸= j and xj and
x′j differ by at least one unit. This means datasetsD andD′ are nearly identical except for one
individual’s data entry.

Privacy parameters

The combination of (ε, δ) determines how strict or loose the DP guarantees are:

• δ is the probability of information accidentally being leaked, often referred to as the pri-
vacy parameter for “unusual events” or “worst-case scenarios”. Lower values indicate
stronger privacy guarantees, and typically, δ is set to a very small value such as δ < 1/n
where n is the database size. Based on the δ value, we may have [12]:

– pure DP: the value of δ = 0;

– approximate DP: the value of δ > 0 and it is consequently written (ε, δ)-DP.

• ε is commonly called privacy loss parameter. It quantifies the extent of the deviation be-
tween two output queries. Differential privacy requires only that the output of queries
computed ondifferent datasets remain approximately the same, that is, it permits a slight
deviation between the two output values. Let us consider Figure 2.12 where there are
two equal input datasets, where D1 contains a row with the element X while D2 does
not. We compute the same query for the two datasets and the output results can differ
at most for ε [10].
Choosing a value for ε can be thought of as tuning the level of privacy protection re-
quired. A smaller value of ε results in a smaller deviation between output1 and output2,
therefore associated with stronger privacy protection but less accuracy.
For example, when ε = 0, the Analysis 1 mimics the Analysis 2 perfectly, for all the
elements in the datasets. Yet when ε is set to a small number such as ε < 2, the deviation
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between Analysis 1 and Analysis 2 will be small, providing strong privacy protection.
Other ranges used in practice are ε ∈ [2, 10] for relax but possibly meaningful privacy
and if ε > 10 is almost equivalent to have no privacy;

Figure 2.12: ε privacy loss parameter

2.3.2 Basic techniques

After describing the mathematical framework behind differential privacy in Section 2.3.1, this
section describes some of the main techniques used to achieve DP in practice, namely Laplace
andGaussianmechanisms [13]:

• Laplace: TheLaplacemechanism is amethod for achievingdifferential privacyby adding
carefully calibratednoise to the output of a function (or query). It is oftenused in scenar-
ios where the function being computed involves the aggregation of sensitive data. The
following points illustrate the mechanism:

1. Function evaluation: A function f takes a dataset D as input and produces a real-
valued output f(D). The goal is to release the output of this function in a dif-
ferentially private manner. This function could be any computation or statistical
operation performed on the dataset, such as counting the number of individuals
satisfying a certain condition, calculating themeanor sumof anumerical attribute,
etc;

2. Sensitivity calculation: It measures how much the output of the function can
change when a single individual’s data is added or removed from the dataset. It is
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denoted as Δf. Mathematically, it is defined as (whereD1 andD2 are neighbours):

Δf = max
D1,D2

∥f(D1)− f(D2)∥ (2.2)

3. Noise addition: As stated in themechanism’sname, Laplace-distributednoisemust
be added to the function output. The Laplace distribution is characterized by its
Probability Density Function (PDF), which is given by:

Laplace(x|μ, b) = 1
2b

exp
(
−|x− μ|

b

)
(2.3)

where μ is the location parameter (mean) and b is the scale parameter (related to
the spread of the distribution). The larger the value of b is, the more spread out
the noise will be;

4. Privacy guarantee: Precisely, the final noisy output is given by:

f(D) + Laplace(0,Δf/ε) (2.4)

where Δf/ε represents the scale of the Laplace distribution, and it is chosen such
that as ε decreases (providingmore privacy), the scale of the noise increases. There-
fore, the amount of noise added to the output is determined by the sensitivity of
the function Δf and a privacy parameter ε.

In summary, the Laplace mechanism first generates Laplace-distributed noise and, after-
wards, adds such noise to the output of a function to achieve differential privacy.

• Gaussian: The Gaussian mechanism follows a similar process to the Laplace one. How-
ever, the noise added to the function’s output f(D) is sampled from aGaussian distribu-
tion. A Gaussian distribution is characterized by the following PDF:

Gaussian(x|μ, σ2) = 1
σ
√
2π

e−
(x−μ)2

2σ2 (2.5)

where μ is the mean and σ is the standard deviation. The final noisy output will be:

f(D) + Gaussian(0, σ2) (2.6)

Note that in the Gaussian mechanism, the noise is scaled by the standard deviation pa-

rameter σ2 = (Δf)2·2·log( 1.25
δ )

ε2
. Similarly to Laplace, the amount of noise is determined by

the sensitivity of the function Δf and the privacy parameters ε, δ.

The Figure 2.13 shows at a high level the process for achievingDPusing either theLaplace or
theGaussianmechanism. There is a datasetD containing sensitive information about individu-
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als. Then, a general query (or function) is applied to the entire dataset, for example computing
the mean. The noise is generated according to the chosenmechanism, that is, Laplace or Gaus-
sian. Finally, the generated noise is added to the output previously computed by the function
f(D) to produce the final output, called “noise output” in Figure 2.13.

Figure 2.13: DP general workflow

2.3.3 Applications

Differential Privacy (DP) can be applied to a wide range of applications across various domains
where privacy-preserving data analysis is crucial. For example, in the context of healthcare ap-
plications sensitive data are used, so privacy should be protected. Or yet, these days it is very
common to apply machine learning to sensitive training datasets. In fact, this section presents
federated learning, a framework where it is very relevant to protect the privacy of the training
data through techniques like DP.

Privacy leakage in Federated Learning

Federated Learning (FL) is a machine learning approach where a single model is trained in a
decentralized way across multiple clients. Instead of collecting data in a central repository, the
core idea of FL is to trainmultiplemodels locally by each client, without exchanging their train-
ing data. One of the mainmotivations for performing distributed training is exactly to protect
the privacy of each client’s training data, as in some applications such data can contain sensitive
information (e.g. healthcare, finance, transportation, etc.) [14].
We illustrate a typical FL workflow with one server and multiple clients in Figure 2.14:

1. The server broadcasts the “base model” to each client;

20



2. Each client trains the “base model” with its local data in parallel and sends only model
parameters to the server, while keeping their training data private;

3. Once the server has received all models from clients, it aggregates those to build a unique
model, that becomes the new “base model”.

Figure 2.14: Federated Learning workflow

The process is repeated several times, as the collaborative training requires many iterations
between clients and the server to build the final model.
Even if, in FL private data do not leave clients, researchers have proved that it is still possible
for an adversary or a curious observer to infer information on the training data. This type of
attack is called Membership Inference Attack and it allows an adversary to infer information
about the training data only by observing the model updates exchanged by the clients with the
server. Various variants of theMembership Inference Attack have already been proved, Suri et
al. (2023) [15] presents a subject membership inference attack while Zari et al. (2021) [16]
presents a passive membership inference attack.

Therefore, only keeping training data private for clients is not sufficient to achieve a strong
privacy guarantee in a federated learning system. For this reason, further privacy mechanisms
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must be applied to protect training data from the above attacks. One mechanism used to fur-
ther protect the privacy of training data is to use differential privacy on the gradient updates
[17]. In this way, the information carried by model updates is not linked to specific clients,
even if an adversary may be looking at it.
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3
Our contribution

This project aims at leverage the capabilities of programmable switches to implement differen-
tial privacy directly in the network data plane. We are not aware of any other work, at present,
in the literature that presents the implementation of in-switch privacy technique. This chapter
presents our core idea for a differentially private technique on a P4 switch, together with the re-
lated challenges and the implementation details. The chapter starts by describing at high-level
the targeted Differential Privacy (DP) technique, then it presents the main implementation
challenges and how those have been addressed. Finally, the chapter describes how the target
DP technique can be implemented in P4.

3.1 Targeted Differential PrivacyMechanism

This section explains the specific mechanism that we have selected for an implementation of
differential privacy on a P4 programmable switch. Let us consider the SDN model described
in figure Figure 3.1. The workflow to implement DP in P4 is the following: the client sends
a vector of parameters to the switch, the switch parses the vector, it performs the DP opera-
tions on its parameters and it sends a differentially private vector out to a server application. To
perform the DP operations, the switch must have the relative look-up tables populated. They
are needed to perform FP arithmetic directly on the switch. Therefore, the SDN controller is
responsible for populating each required look-up table once the switch has just started.
Let us now focus on the operations forDP thatmust be implemented inP4on the target switch.
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Figure 3.1: Basic SDN model

We consider input vectors of floating point numbers, assuming this could be the case with
“model parameters/gradient updates” for Machine Learning (ML)-based applications. Given
an input vector (x⃗) of limited size, the switch executes the following operations, in sequence,
to produce a differential private output vector (y⃗) of the same size:

1. Clipping the input vector: “Clipping” is a standard mechanism to limit the magni-
tude of a set of real values. For example, bound gradients during a training process is
a widely adopted technique in ML. Gradients too large may, in fact, lead to instability
of the model. This is often done by scaling down the gradients if their norm exceeds a
certain threshold [18].

Given the input vector x⃗ = [x1, x2, ..., xn], where n is the number of parameters, the
switch does the following:

(a) It computes the clipping coefficient Ctrue as the L1 norm of the input vector:

Ctrue = ∥x∥1 =
n∑
i=1

|xi| (3.1)

(b) It computes the clipping coefficient Cclip:

Cclip = min(1,C/Ctrue) (3.2)

where C is the clipping threshold constant. It can be considered as a free hyper-
parameter;

(c) It generates the clipped vector x⃗clipped:

x⃗clipped = x⃗ ∗ Cclip (3.3)
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2. Adding noise to the Clipped vector: This consists of generating a noise vector (n⃗)
according to pre-defined distribution, which is typically Gaussian/Laplace. Then, the
pre-computednoise is added to the clippedvector toobtain thedifferential private vector
y⃗:

y⃗ = n⃗+ x⃗clipped (3.4)

As a final result, the switch receives an input vector of parameters x⃗ and outputs the
correspondent differentially private vector y⃗.

3.2 Design Challenges

Wehad to address the following fourmain challenges to implement the targetedDPmechanism
on a P4 programmable switch.

1. Dealing with input vectors of variable length: the P4 language does not have any
built-in support forworkingwith vectors of any type. Assumingworkingwith vectors of
variable length size also increases the difficulty of implementing the targeted operations
on the switch, since P4 does not support loops or recursive functions. We detail about
this challenge in Section 3.3;

2. Noise generation: the P4programmable targetmust be able to generate noise according
to a certain distribution. This is required to obtain the values to be added to the clipped
vector. We detail about this challenge in Section 3.4;

3. Floating Point implementation: the input vector contains floating point values. How-
ever, the current P4 language specification and targets do not support floating point
types and arithmetic. We detail about this challenge in Section 3.5;

4. Sequential FP operations: the main challenge in implementing the targeted differen-
tial privacymechanismdescribed in Section 3.1 is to let the switch perform a pre-defined
sequence of floating point operations in the correct order without using loops. This
greatly increases the complexity of theP4program, lookup tables andmemory consump-
tion. We detail about this challenge in Section 3.6;
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3.3 Dealingwith input vectors of variable length

In this section, we describe how we generate the P4 program based on the number of input
elements. In our targeted DP mechanism, we assume the input vector to be of arbitrary size,
consequently, when changing the size of the input vector, the P4 program must change ac-
cordingly. Being a language most targeting high-throughput packet processor targets, the P4
language does not provide a built-in type for vectors and it does not support loops as many
other conventional high-level programming languages do. To store vectors in P4 we declare a
header with a custom number of fields, where each field is used to store every single element
contained in the input vector (an example is in Figure 3.2). In our program, we use fields of
16 bits as input numbers following the IEEE half-precision format. Each field in P4 must be
manually written inside a given header and it cannot contain loops. Therefore, we can write a
set of P4 instructions for a specific input vector, based on its size, but if we want to use a vector
with a different size, we must re-write part of the P4 program.
Assume to use a custom P4 header to store each parameter of the input vector, as shown in the
following P4 code (vector of size 2):

1 // Custom header for INPUT VECTOR:
2 header param_t {
3 bit<16> x1;
4 bit<16> x2;
5 }

Figure 3.2: P4 custom header for an input vector of 2 parameters

As the P4 language does not provide loops, if we decide to use an input vector of four parame-
ters, we must manually change the previous code snippet to become the following:

1 // Custom header for INPUT VECTOR:
2 header param_t {
3 bit<16> x1;
4 bit<16> x2;
5 bit<16> x3;
6 bit<16> x4;
7 }

Figure 3.3: P4 custom header for an input vector of 4 parameters

Therefore, it is difficult to adapt a P4 programbased on howmany elements of the input vector
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are received within an incoming packet, since that would require to use variable length loops
into the control flow of a P4 program.
To overcome this limitation, we use a template engine called Jinja2 [19]. Jinja2 is a template
engine for Python that simplifies the process of generating code dynamically. It provides a
flexible way to combine template code with dynamic data, allowing network administrators
to efficiently generate custom programs tailored to specific requirements. The general work-
flow is to create a template in some programming language (like P4 or Python) that contains
placeholder variables and that follows a specific syntax. The placeholders represent the variable
number of vector elements thatwill be replacedwith actual valueswhen rendering the template
at compile time. Therefore, the final program is generated with the custom data provided at
compiled time.
For example, the P4 code in Figure 3.2 and Figure 3.3 have been dynamically generate using
the following template code:

1 // Custom header for INPUT VECTOR:
2 header param_t {
3 {% for i in range(1, num_parameters + 1) %}
4 bit<16> x{{ i }};
5 {% endfor %}
6 }

Figure 3.4: P4 custom header’s template

Figure 3.4 shows aP4 templatewithplaceholders basedon Jinja2 syntax. Theplaceholder is rep-
resented by the num_parameters variable. Its value is set at compiled time and can be changed
to generate different final programs. In fact, if num_parameters= 2 we obtain the code in Fig-
ure 3.2 while if num_parameters= 4 we obtain the code in Figure 3.3.
The above example demonstrates how we handle a variable number of parameters in our P4
switch program using this technique. The same technique is also used to dynamically generate
a set of P4 instructions, according to input vector size. As an example, consider the “clipping”
phase of the DP mechanism described in Section 3.1 where the first step is to compute the L1
normof the input vector. To compute the L1 norm inP4weuse the same technique, that is, we
write the template in Figure 3.5 that will generate a custom number of P4 instructions based
on the value of num_parameters.
In Figure 3.5, line 3 stores a single parameter in a metadata field while line 4 sets the number to
positive by changing the most significant bit to 0 (in the IEEE half-precision format the most
significant bit expresses the sign of the number).
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1 // STEP 1: Compute the Clipping coefficient "C_true" as L1 norm of the INPUT VECTOR:
2 {% for i in range(1, num_parameters + 1) %}
3 meta.mainm.x{{ i }}abs = hdr.param.x{{ i }};
4 meta.mainm.x{{ i }}abs[15:15] = 0b0; // set to positive
5 {% endfor %}

Figure 3.5: Compute absolute values in P4

The above examples demonstrate how to customize a P4 program in an agile way at compiled
time, without having to rewrite each time considerable parts of it.

3.4 Noise generation

The targetedDP technique requires applying noise generated from a specific distribution, typi-
callyGaussian/Laplace. P4 targets like bmv2 have the ability to generate noise in the data plane,
e.g., through the use of dedicated engines for the generation of random numbers. The main
drawback with these engines is that is not possible to control the distribution of the produced
values, therefore we cannot produce noise values that follow a Gaussian or a Laplace distribu-
tion through those. For this reason, the noise required by the target DP mechanism must be
generated differently.
We can control the noise distribution more easily by pre-computing its values offline with soft-
ware running at the control plane level and then loading them into a data plane table to be
used at run time. The P4 programwill load the required noise values intometadata fields from
a match-action table and then will add those to the clipped input vector elements. This pro-
cess allows us to control the underlying noise distribution and to fulfil the differential privacy
requirements. For this work, we designed a simple incremental counter mechanism to select
different noise values per each parameter. Abettermechanism should be adopted to update the
table values after a certain time, to avoid introducing and repeating patterns into this process.

3.5 Floating Point implementation

As previously explained, Floating Point (FP) operations are not natively supported by P4 tar-
gets, therefore as part of this work, we investigated possible techniques to perform floating
point arithmetic on P4-programmable targets. Table 3.1 summarizes the state-of-the-art tech-
niques for performing FP arithmetic on P4-programmable targets:
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Technique Description Pros Cons

NetFC [20]

It uses the IEEE half-
precision format to
represent FP values
and a “Look-Up Table”
(LUT) method to im-
plement FP operations.
It focuses on FP addi-
tion, FP multiplication
and FP division.

- LUT approach
amenable to match-
action based architec-
tures.
- Tables can be used
across the various FP
operations.
- Implementation of
all of the required FP
operations.
- Pseudo-code avail-
able.

- LUTs cannot rep-
resent every possible
value, the final result
will be approximated.
- Several tables per op-
eration are required.
- No public code is
available for each op-
eration.

InREC [21]

It uses the IEEE half-
precision format to rep-
resent FP values and the
LUT approach to im-
plement FP operations.
They implement the fol-
lowing elementary oper-
ations: log(x), 2x, x/y,
sin x,

√
x, x+ y.

- LUTs provide fast
matching.
- The technique is
tested on a real Tofino
switch.

- No pseudo-code
available.
- No public code
available.
- The implementation
of each elementary
operation is not
detailed.
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Technique Description Pros Cons

Unlocking
the Power
of Inline
Floating-
Point
Operations
[22]

It implements stan-
dard FP arithmetic
for IEEE-754 num-
bers. They propose
“FPISA” to implement
FP computations in
P4. “FPISA” breaks
each floating point
value into exponent and
signed mantissa and
stores them separately
in different pipeline
stages.

- They proposed a
variant technique
called “FPISA-A”
to run on existing
Tofino switches.

- The full technique
cannot be imple-
mented on PISA-like
switches.
- Not all the FP opera-
tions are illustrated.
- No public source
code available.

In-Network
Fractional
Calculations
[23]

It is based on Fixed-
point encoding of real
numbers. It uses Taylor
polynomials to approxi-
mate a function and the
degree of the polyno-
mial to specify accuracy.
Taylor coefficients are
pre-computed offline
and stored in the P4
program.

- It shows how
to encode com-
plex functions like
π, cos, log, exp.
- The code is publicly
available.
- The accuracy of the
operations is tune-
able by modifying
the degree of the
polynomial.

- Not amenable for an
implementation on a
PISA-like switch tar-
get.

Table 3.1: State‐of‐the‐art techniques to implement FP arithmetic in P4

As reported in Table 3.1, none of the related work made available an open-source code of
the P4 implementation of their technique that we could leverage for our work. In the end,
we decided to implement the technique proposed in theNetFC paper for the following main
reasons:

• Their technique can be applied to perform all of the FP operations we need for our DP
technique, namely, addition, multiplication and division;
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• They provide pseudo-code for the floating point operations;

• Their technique shows good approximation results on average.

3.5.1 The originalNetFC algorithms for FP arithmetic

NetFC implements FP arithmetic operations using a “Look-Up Table” (LUT) method. This
method translates a FP operation into a sequence of table lookups. Beingmatch-action tables a
construct available on P4-programmable target switches, this method fits well with that target
architecture.

FP MULTIPLICATION / FP DIVISION:

Let us focus the description of the algorithmon themultiplication operation since similar steps
are followed to perform division. Assuming x and y to be two non-zero IEEE half-precision
numbers, the multiplication can be expressed as:

x ∗ y = ±2i+j (3.5)

where i = log2(|x|) and j = log2(|y|). This new computation can be performed through the
two following tables:

1. “log2T” :
VALUE =

⌊
log2(|KEY|)

⌋
where KEY is a 16-bit FP number and VALUE is a 16-bit Integer. This table is used to
retrieve the values of i and j;

2. “exp2T” :
VALUE = 2KEY

where KEY is a 16-bit Integer computed as (i + j) and the VALUE is a 16-bit floating
point number.

The entire pseudo-code for theNetFC’s FPmultiplication is shown inAlgorithm3.1. NetFC
first parses an input packet to obtain the two operands x, y and checks if they are equal to 0.
Afterwards, it looks up the “log2T” to find out the value of i and j, whose sum is used to detect
corner cases. After that, (i+ j) is used as KEY to look up on the “exp2T” and retrieve the final
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Algorithm 3.1NetFC floating-point multiplication
Input: p, an input data packet.
1: parser floating-point number x, y from p
2: if x ≡ 0 or y ≡ 0
3: return 0
4: end if
5: get i = ⌊log(|x|)⌋, j = ⌊log(|y|)⌋ by “logTable”
6: sign(x ∗ y) = XOR(sign(x), sign(y))
7: n = i+ j
8: if n > 15 {Corner case: overflow}
9: return ∞
10: else if n < −24 {Corner case: underflow}
11: return 0
12: else
13: get |x ∗ y| = 2n by “expTable”
14: set the sign bit
15: end if

result of the FPmultiplication. The sign of the result is determined byXOR-ing the two input
signs.

We have illustrated only the algorithm for the FPmultiplication, but that can be easily adapted
to perform the FP division operation. The division algorithm is based on a set of transforma-
tions, similar to the ones applied for the multiplication, resulting in the following equation:

x/y = ±2i−j (3.6)

FP ADDITION:

The addition operation is performed through a different algorithm that requires the use of
more look-up tables. Having twopositive IEEEhalf-precisionFPnumbers x and y, the addition
can be rewritten as:

x+ y = 2i+log2(1+2j−i) (3.7)

where still i = log2(|x|) and j = log2(|y|). We define the following table:

1. “miT” :
VALUE =

⌊
log2(1+ 2KEY)

⌋
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where the KEY=(j− i) and both KEY &VALUE are 16-bit Integers.

The above addition equation only holds for positive operands, while it becomes the follow-
ing if negative operands are considered:

x+ y = ±2i+log2(±1+±2j−i) (3.8)

Twomore definitions of the “miT” table are necessary to perform this operation also consider-
ing negative operands:

1. “mi2T” :
VALUE =

⌊
log2(1− 2KEY)

⌋
2. “mi3T” :

VALUE =
⌊
log2(−1+ 2KEY)

⌋
where the KEY is always given by (j− i) and both KEY &VALUE are 16-bit Integers.

Algorithm 3.2NetFC floating-point addition
Input: p, an input data packet.
1: parse floating-point operands x, y from p.
2: if x (or y)≡ 0
3: return y (or x)
4: end if
5: get i = ⌊log2(|x|)⌋, j = ⌊log2(|y|)⌋ by “logTable”.
6: n = j− i.
7: if n > 15 {Corner case: overflow}
8: return y
9: else if n < −15 {Corner case: underflow}
10: return x
11: else
12: select “miTable” based on Table 3.2.
13: getm = ⌊log(|1± 2n|)⌋ by “miTable”.
14: k = i+m.
15: get |x+ y| = 2k by “expTable”.
16: set sign bit according to Table 3.2.
17: end if

TheNetFC algorithm to perform FP additions in P4 requires 5 different table lookups. The
pseudo-code is reported inAlgorithm 3.2. It should be noted that by considering both positive
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and negative operands, subtraction can be seen as a special case of the same algorithm. The pro-
cess starts with parsing an incoming packet to obtain the two operands x, y and check if they are
0. Then, it retrieves the values i and j by looking up the “log2T” table. After processing corner
cases (lines 7-10), it selects which “miTable” to look up based on a decision table (Table 3.2) to
obtain the valuem. The valuem is summed to the i value to obtain the KEY of the “exp2T”.
The final result is obtained by looking up the “exp2T” table, while the sign of the result is de-
termined by the decision table Table 3.2.

x > 0 y > 0 |x| > |y| Formula “miTable” Sign
T T T 2i+log(1+2j−i) miT +
T T F 2i+log(1+2j−i) miT +
T F T 2i+log(1−2j−i) mi2T +
T F F −2i+log(−1+2j−i) mi3T -
F T T −2i+log(1−2j−i) mi2T -
F T F 2i+log(−1+2j−i) mi3T +
F F T −2i+log(1+2j−i) miT -
F F F −2i+log(1+2j−i) miT -

Table 3.2: NetFC decision table

The decision table is needed to process both positive and negative floating point values. The
more general FP addition equation (3.8) covers eight possible situations which are decided by
the following conditions: 1) x > 0; 2) y > 0; 3) |x| > |y|. All situations are enumerated in
such a decision table. The last two columns in the table show respectively which “miTable” to
apply and the sign of the final result.

1 // Custom "Control block" that performs the FP MULTIPLICATION & FP DIVISION:
2 // - if the "div" bit is set to 1 => execute FP DIVISION code
3 // - if the "div" bit is set to 0 => execute FP MULTIPLICATION code
4 control FPdiv_mult(inout metadata meta, in bit<1> div) {
5 ...
6 }
7

8 // Custom "Control block" that performs the FP ADDITION:
9 control FPaddition(inout metadata meta) {
10 ...
11 }

Figure 3.6: Control blocks declaration in P4
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3.5.2 Our P4 implementation ofNetFC

Since the P4 implementation of the NetFC algorithms for FP arithmetic is not publicly avail-
able, our implementation of those algorithms follows the description and the pseudo-code
available in the original paper [20]. This section describes our P4 program for performing FP
arithmetic, based on the NetFC algorithms.
OurP4program implements FP addition, FPdivision andFPmultiplicationusing customcon-
trol blocks declared as in Figure 3.6. A “control block” is a P4 language construct that provides
a structured way to define the control flow and packet processing logic, enabling network ad-
ministrators to specify the behaviour of P4 switches in a flexible way. Through look-up tables
and custom logic, it allows the manipulation of packet header andmetadata fields. Typically, a
control block declares tables and actions, then in the internal apply() block it specifies a custom
logic that uses the previously defined tables to perform the required operations. The definition
of these control blocks is included in a dedicated file called FPoperations.p4. FP operations
are implemented on a separate file to keep the main P4 program more readable and organized.
The program is structured as follows:

1. It declares ametadata structure with a set of fields required to store intermediate values
for each operation. “Metadata” refers to the additional information associated with the
packet that is not part of the packet header. It is typically used to store intermediate
results, context information, or any other data that needs to be shared or manipulated
during packet processing. In our program, each field is carefully created with a specific
size and it is used to store values computed during internal operations;

2. It creates a customControl for FPmultiplication and FP division. The same control can
be used for both operations as their implementation codes are similar. In fact, we use a 1
bit variable called “div” as a control argument to select between multiplication and divi-
sion. It allows us to execute different parts of codes according to the selected operation.
It is illustrated in line 4 of Figure 3.6.
The purpose of this control is to define tables, actions and logic to perform both opera-
tions according to Algorithm 3.1. The defined tables are the “log2T” and the “exp2T”.
As an example, the Figure 3.7 illustrates the “log2T” table declaration where the KEY is
a FP number stored in “meta.tempmeta.x” and the corresponding VALUE is provided
by the controller and it will be store in the “meta.tempmeta.i” field through the “geti”
action. The matching type used for this table is called “ternary” and it allows matching
on a valuewith three possible states for each bit: 0, 1, or “do not care” (often represented
as *). We configure the ternary match such that the last four bits of our FP number are
“do not care” bits. This is done on purpose to avoid the situation in which we do not
have amatch due to some internal rounding. It is important to highlight that a “ternary”
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1 // "log2T" Table
2 action geti(int<16> val) {
3 meta.tempmeta.i = val;
4 }
5 table log2T {
6 key = {
7 meta.tempmeta.x: ternary;
8 }
9 actions = {
10 geti;
11 NoAction;
12 }
13 }

Figure 3.7: log2 table declaration

match is more expensive in terms of resources compared to an “exact” match.
Then, in the apply() block, we manually configured the following corner cases: 0/0 =
Nan; x/0 = +inf; x/ − 0 = −inf; 0/x = 0; 0 ∗ 0 = x ∗ 0 = 0 ∗ x = 0 and we
implement the logic of Algorithm 3.1.

3. It creates a custom Control for FP addition as shown in line 9 of Figure 3.6. As the ad-
dition operation requires more look-up tables and a different logic, it is implemented
in a separate control. The control’s structure is the same as in point 2, it declares tables,
actions and the logic of Algorithm 3.2. In this case, threemore tables are required, there-
fore the defined tables are: “log2T”, “miT”, “mi2T”, “mi3T”, “exp2T”. The declaration
of each table follows the structure of Figure 3.7. Then, in the apply() section of this
control we first consider the following corner cases: 0 + 0 = 0; 0 + y = y; x + 0 =
x; (−x) + x = 0; x + (−x) = 0 and then we implement the logic of Algorithm 3.2
using previous tables.
The choice of the correct “miTable” is based on a decision table (Table 3.2) and it is
implemented in P4 with a sequence of if-else statements.

To perform a single FP operation, we create an instance of our custom FP control block in-
side a main program calledmain.p4.
As an example, in Figure 3.8 we show how to perform an addition. We instantiate the control
block for addition in line 6, then, on the apply() block we use that instance to perform the ad-
dition operation between x1 and x2 (lines 9-13).
For any of the implemented FP operations to work, the P4 tables in our programmust be filled
with the required entries. For that purpose, our implementation also includes some controller
logic inside the programmycontroller.py that initialises theP4-target’s tableswith the required
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1 /*** INGRESS PROCESSING ***/
2 control MyIngress(inout headers hdr,
3 inout metadata meta,
4 inout standard_metadata_t standard_meta) {
5 // Create one instance of Addition's custom Control block:
6 FPaddition() add1;
7

8 apply {
9 // ADDITION between "hdr.param.x1" and "hdr.param.x2"
10 meta.tempmeta.x = hdr.param.x1;
11 meta.tempmeta.y = hdr.param.x2;
12 add1.apply(meta);
13 hdr.param.add_res = meta.tempmeta.finresult;
14 ...

Figure 3.8: Perform a FP addition in P4

values. Therefore, the role of the controller is to first create the required tables and, then, load
them into the switch. More precisely, to implement FP division and multiplication our pro-
gram defines and uses the following two LUTs:

1. “log2T” :
VALUE =

⌊
log2(|KEY| ∗ k)

⌋
2. “exp2T” :

VALUE = 2
KEY
k

While for the FP addition, our program defines and uses the following three tables:

1. “miT” :
VALUE =

⌊
log2(1+ 2

KEY
k ) ∗ k

⌋
2. “mi2T” :

VALUE =
⌊
log2(1− 2

KEY
k ) ∗ k

⌋
3. “mi3T” :

VALUE =
⌊
log2(−1+ 2

KEY
k ) ∗ k

⌋
Each table includes a scaling factor ′k′, which is not strictly mandatory, however, it allows

to increase the accuracy of the final result by increasing the impact of the decimal fraction of
log2(|x|), otherwise reduced by the floor function. The NetFC paper [20] shows that as the
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scaling factor increases so does the accuracy of their results. For example, they show in the pa-
per they can reach very high accuracy values (99%) by using a scaling factor k=1024.

Tobuild tables, thenetwork administrator defineswhichKEYs touse for each table and, through
the execution of the five above equations, the correspondent VALUEs are generated. Once the
controller creates the tables, it is ready to load them into the P4 switch. To do that, a connec-
tion between the controller and the switch is created using specific APIs, as shown in line 2 of
Figure 3.9. At this point, specific commands can be used to populate each table.
For example, Figure 3.9 shows the controller code to populate the “log2T”.

1 // Connect to the P4 switch:
2 controller = SimpleSwitchThriftAPI(9090)
3

4 // Ternary mask:
5 ternary_mask = '0xFFF0'
6

7 // Populate the "log2" Table:
8 // KEYS are stored in "key_l_hex" as HEX_16_bits format
9 // VALUES are stored in "values_l_hex" as HEX_16_bits format
10 for i in range(len(values_l_hex)):
11 key = key_l_hex[i]
12 value = values_l_hex[i]
13 // add one entry
14 controller.table_add('log2T', 'geti', [key+'&&&'+ternary_mask], [value])

Figure 3.9: Populate the log2 table

The “table_add” command is used to add entries into a match-action table of a P4 switch and
it requires the following arguments:

• Name of the table to which you want to add an entry (e.g. “log2T”);

• Name of the action to perform when a matching entry is found (e.g. “geti”);

• Values tomatch against in order to determinewhether an entry applies (aswe use ternary
match the key is combined with a ternary mask). In our example, we use line 5 of Fig-
ure 3.9 to set the last four bits as “do not care bits”;

• Parameters to pass to the action when it is invoked (e.g. value).

The code inFigure 3.9 assumes tohave the set ofKEYs andVALUEs stored into “key_l_hex[]”
and “values_l_hex[]” respectively in a hexadecimal format, as it is required by the switch’s “ta-
ble_add” command. Then, through the for loop, it adds one entry at a time to the “log2T”.
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The same switch’s command is used to populate the other tables.

In summary, up to a maximum of five lookup tables are created to perform a single FP op-
eration between two operands into our P4 program.
The next section explains how our program can be used to execute multiple operations in par-
allel as well as to obtain the sequence of operations required to execute the targeted DP mech-
anism.

3.6 Sequential FP operations: DP in P4

Once we were able to execute the single FP operations in a P4 program, we moved to the im-
plementation of the required sequence of operations to achieve Differential Privacy (DP). The
exact process is described in Section 3.1. The DP technique requires performing a sequence of
FP operations in a predefined order.
The core P4 program that implements our DP mechanism is main.p4, while the individual
FP operations are implemented in the separate FPoperation.p4 program described in Section
3.5.2. More in detail,main.p4 does the following main steps:

1. The parameters of the vector to operate on are passed to the switch through a custom
header. We assume FP input values following the IEEE half-precision format. The Sec-
tion 3.3 illustrates how vectors are stored in P4;

2. For each FP operation between two numbers, our core program includes a correspon-
dent control block instance. It is important to understand that each instance creates a
separate set of tables with distinct names. Therefore, when we create multiple instances
we are essentially creatingmultiple sets of tables, each associatedwith its specific instance.
The total number of FP operations (TOT_FP_OPERATIONS) required can be com-
puted with the following equation (assuming n is the number of elements of the input
vector):

TOT_FP_OPERATIONS = (n ∗ 2− 1) + n+ 1 (3.9)

(n ∗ 2− 1) ⇒ N° of FP additions

n ⇒ N° of FP multiplications

1 ⇒ N° of FP division

Since the predefined sequence of operations is dependent on the number of input ele-
ments, a P4 template with placeholders is used to create the final P4 program following
the technique described in Section 3.3;
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3. Loading the value of the clipping constant from a dedicated table into some metadata
field, this value is configured by our controller program and provided by the network
administrator.

1 //---------------------- "store_C_constant" Table ------------------------//
2 action storeConst(bit<16> const_val) {
3 meta.mainm.c_const = const_val;
4 }
5 table Clip_constT {
6 key = {
7 standard_meta.ingress_port: exact;
8 }
9 actions = {
10 storeConst;
11 NoAction;
12 }
13 }

Figure 3.10: Clipping constant table declaration

The code snippet in Figure 3.10 presents the relative table declaration in P4. We create
a table named “Clip_constT” and we use as KEY the port on which the packet enters
the switch. Once a packet enters the switch there will be a match, therefore, the action
named “storeConst” is executed and it stores the value provided by the controller in the
metadata “meta.mainm.c_const”.

4. Executing the required operations described in Section 3.1, in sequence, to apply dif-
ferential privacy. Namely, in the apply() block of the Ingress control of our main p4
program the following operations are executed:

(a) Clipping the input vector:
i. Compute absolute values for all elements of the input vector. The Figure 3.5
shows the relative P4 code to compute absolute values for each input param-
eter;

ii. Add the absolute values in parallel, with a sequence of partial FP addition
operations, finally obtaining Ctrue = ∥x∥1 =

∑n
i=1 |xi|. The set of P4 opera-

tions is carefully generated to exploit the internal “parallelism”. In P4, certain
operations can be parallelized as long as there is no hard dependency between
them. In our case, by carefully designing the sequence of additions, some of
them can be executed in parallel. As an example, let us consider the P4 code in
Figure 3.11 to perform the sum among four elements. The “add1” (between
x1 − x2) and the “add2” (between x3 − x4) are not dependent, so they are
executed in parallel, while “add3” depends on partial results. Then, partial
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results are added to obtain the final C_true value (lines 13 - 18).

1 // Parallel sums of absolute values:
2 // x1 + x2
3 meta.tempmeta.x = meta.mainm.x1abs;
4 meta.tempmeta.y = meta.mainm.x2abs;
5 add1.apply(meta);
6 meta.mainm.temp1 = meta.tempmeta.finresult;
7 // x3 + x4
8 meta.tempmeta.x = meta.mainm.x3abs;
9 meta.tempmeta.y = meta.mainm.x4abs;
10 add2.apply(meta);
11 meta.mainm.temp2 = meta.tempmeta.finresult;
12 // temp1 + temp2
13 meta.tempmeta.x = meta.mainm.temp1;
14 meta.tempmeta.y = meta.mainm.temp2;
15 add3.apply(meta);
16 meta.mainm.temp3 = meta.tempmeta.finresult;
17 // final result
18 meta.mainm.ctrue = meta.mainm.temp3;

Figure 3.11: Parallel sums of absolute values

The parallelism speeds up the computation, since, multiple operations can be
executed simultaneously;

iii. Get the value of the C constant from a metadata field and find the value of
C/Ctrue by performing a single FP division;

iv. Find the value of Cclip = min(1,C/Ctrue)with an if statement;
v. Execute n FP multiplications to obtain x⃗clipped = x⃗ ∗ Cclip;

(b) Adding noise to the Clipped vector:
i. Compute the noise vector (n⃗) offline in a python program, based on Laplace
distribution;

ii. Perform n FP additions to obtain the final noise output y⃗ = n⃗+ x⃗clipped.
Since the P4 language does not support loops, each vector operation has been un-
rolled in our program.

5. The final vector y⃗ is emitted into a custom header in the output packet.

The functionality of mycontroller.py is very similar to the one described for the single FP
operations. It still creates the five different look-up tables, in the sameway, required to perform
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the FP operations. However, since the number of tables varies with the size of the input vector,
the controller programmust populate the respective number of tables.
Let us consider the code snippet in Figure 3.12 where ourmain.p4 executes two FP additions.
Multiple FP operations can be executed by simply instantiating the corresponding control
block multiple times (lines 6-7). Then, the first addition between x1− x2 is performed in lines
10-14 and the second addition is shown in lines 15-19. As described in Section 3.5.2, our FP ad-
dition requires 5 different look-up tables. It follows that, in this example, the controller needs
to populate the following ten tables: “add1.log2T”, “add1.miT”, “add1.mi2T”, “add1.mi3T”,
“add1.exp2T”, “add2.log2T”, “add2.miT”, “add2.mi2T”, “add2.mi3T”, “add2.exp2T”.

1 /*** INGRESS PROCESSING ***/
2 control MyIngress(inout headers hdr,
3 inout metadata meta,
4 inout standard_metadata_t standard_meta) {
5 // Create two instances of Addition's custom Control:
6 FPaddition() add1;
7 FPaddition() add2;
8

9 apply {
10 // ADDITION between "hdr.param.x1" and "hdr.param.x2"
11 meta.tempmeta.x = hdr.param.x1;
12 meta.tempmeta.y = hdr.param.x2;
13 add1.apply(meta);
14 hdr.param.add1_res = meta.tempmeta.finresult;
15 // ADDITION between "hdr.param.x3" and "hdr.param.x4"
16 meta.tempmeta.x = hdr.param.x3;
17 meta.tempmeta.y = hdr.param.x4;
18 add2.apply(meta);
19 hdr.param.add2_res = meta.tempmeta.finresult;
20 ...

Figure 3.12: Sequence of FP additions in P4
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4
Evaluation

This chapter presents the evaluation of our P4 implementation of the floating point arithmetic
and of the targeted differential privacy mechanism. To begin with, it outlines the general net-
work model used for our experiments, in Section 4.1. Afterwards, it describes the experiments
performed for each floating point operation reporting accuracy results and presenting an anal-
ysis of the resources required by the related P4 programs, in Section 4.2. Finally, it presents the
evaluation of the targeted differential privacy mechanism in Section 4.3.

4.1 Experimental set-up

The experiments of the following sections are based on the SDN model shown in Figure 3.1
which emulates a simple network scenario to develop and test a P4 program. For our exper-
iments, the scenario was emulated on an Ubuntu virtual machine using the P4 UTILS tool
[24] that allows to create and test virtual networks composed of P4-programmable switches.
P4 UTILS is based on the following main components:

1. Mininet: It is a network emulation framework that can efficiently virtualize nodes (hosts
and switches) in a network by exploiting Linux kernel features. It is an interesting tool
to develop and test Software-Defined Networks (SDN) including P4-programmable
switches [25];

2. Behavioral-model: It is a software switch for rapid prototyping and testing of P4 pro-
grams. The software is the P4 reference software switch commonly referred to as the
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Behavioral model or bmv2. This switch provides an environment where developers can
build, debug and test P4 programs without the need for specialized hardware [26];

Tobuild the SDNmodel in Figure 3.1 for our evaluation, we havewritten a Pythonprogram
called network.py that, based on P4 UTILS APIs, specifies the following network configura-
tion:

• A P4-programmable switch and a program to be loaded into it;

• Client and server hosts;

• Links by placing hosts in the same sub-network;

• The SDN controller program;

First, network.py creates and configures the desired network. Then, it compiles and loads
the switch’s program. After the switch is started, it runs the SDN controller program to load
tables on the P4 switch and it ends by opening aMininet command line (CLI). By interacting
with CLI, host terminals can be opened to execute custom scripts.

4.2 On the Floating Point Operations

This section describes the testing environment and presents the evaluation results for our P4
implementation of the floating point arithmetic techniques described in Section 3.5.2. It fo-
cuses on FP addition, FP division and FP multiplication.

4.2.1 Set-up

We use the network.py program, described in Section 4.1, to create the base network. The
FP operations are defined in the P4 program called FPoperations.p4 (as described in Section
3.5.2). The controller program (mycontroller.py) is the SDN controller logic responsible to
populate the match-action tables on the switch. In order to perform a single FP operation, we
use a general P4 program calledmain.p4 (in Section 3.5.2 a code snippet shows how a FP oper-
ation is expressed in P4) responsible for instantiating the relative control block and performing
the selected FP operation. To test the P4 program with our FP operation implementation, we
use twoPython scripts, one to simulate a client application and another one to simulate a server
application:
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• “client.py” : Python program that creates and sends to the switch an arbitrary number
of custom network packets. Packets are built with the “Scapy” library [27] and have the
following custom data (Figure 4.1):

1. X : It is an IEEEhalf-precisionfloatingpointnumber that represents thefirst operand
of a given FP operation;

2. Y : It is an IEEE half-precision floating point number that represents the second
operand of a given FP operation;

3. RES: It is the output of X op Y in P4, where op can be addition / multiplication /
division. It is initialized at zero and it will be written the switch with the result of
the operation.

Figure 4.1: Packet format of test packets for single FP operations

• ”server.py” : Python program, also based on “Scapy”, used to sniff packets coming from
the P4 switch and store the values of the operands and of the result of the operation in
packets for further analysis.
By taking input operands X and Y from the received packet, the server program com-
putes the same FP operation in Python to obtain the exact result. This is the target value
we use to assess the accuracy of our output result in P4.
Following the evaluation in theNetFC paper [20], we use the same formula to compute
the accuracymetric. Assuming EXACT to hold the result of the operation computed in
Python andAPPROX to hold the result of the operation computed in P4, we compute
our accuracymetric as follows:

EXACT = Python(X op Y)

APPROX = P4(X op Y)

accuracy = e−
|EXACT−APPROX|

|EXACT| (4.1)

Accuracy values are in [0, 1], where a higher accuracy indicates that the EXACT value is
closer to the APPROX value. It is easy to see that an accuracy value of 1 is an optimal
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result since it means that the two measurements are the same.
To store the above values, the server creates a data frame with the following five columns
and saves it as a CSV file:

1. X: first input operand;
2. Y: second input operand;
3. P4 result: output result computed in P4;
4. Python result: output result computed in Python;
5. Accuracy: value computed using equation 4.1.

Then, we compute the average accuracy reported in our plots as a single value obtained
by averaging the values in the accuracy column.

4.2.2 Experiments

The input data for our experiments is taken from a single dataset of ten thousand IEEE half-
precision floating point numbers in the range [−2,+2], generated following a uniform distri-
bution. The range was arbitrarily chosen to include both negative and positive numbers. To
build a complete list of value pairs:

1. We first select 1000 elements from the dataset to be used as the first operand (X ) in the
packet;

2. We then select another 1000 elements from the dataset to be used as a second operand
(Y ) in the packet.

The single experiment consists of 1000 FP operations. For each FP operation, we repeat
the single experiment ten times, each time repeating the operations in the above points 1 and
2 to feed different input data to each experiment.

4.2.3 Results

For every FP operation under analysis, we run ten experiments with random data and we store
the results into a CSV file (the format of the CSV file was described in Section 4.2.1). In the
end, we run a total of 10000 computations per each FP operation and so we obtain a CSV file
with the same number of entries.
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(a) Cumulative Distribution Function of the FP addition

(b) Cumulative Distribution Function of the FP multiplication
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(c) Cumulative Distribution Function of the FP division

Figure 4.2: Accuracy’s plots

The data stored in such files are used to create the accuracy plots reported in Figure 4.2. These
plots show the “average” Cumulative Distribution Function (CDF) for the accuracy values.
The “average” means we are plotting the CDF of 1000 accuracy values, each value obtained by
averaging the corresponding results of the ten different experiments for that FP operation. Fig-
ure 4.2 shows the results of each considered FP operation in three different plots. Figure 4.2 (a)
plots the CDF of the FP addition, Figure 4.2 (b) plots the CDF of the FP multiplication and
Figure 4.2 (c) plots the CDF of the FP division. The X-axis shows accuracy values in the range
[0, 1] and the Y-axis represents the cumulative probability. The vertical dotted line represents
the average accuracy among all x data points.
By comparing the average accuracy obtained with each operation, we can see that the division
achieves the highest accuracy values (97%) after the multiplication (92%), while the addition
has the lowest average accuracy (90%). Moreover, in the case of the addition the measured ac-
curacy values are spread out over a wider range compared to the other two operations.
It can also be observed a certain similarity of the CDFs of the division andmultiplication. The
technique to implement those two operations is indeed very similar, contrary to the algorithm
used to compute the addition operation where more lookup tables and processing steps were
required.
Despite our results being good overall, that is, average accuracy values equal to or greater than
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90%, they still looked worse than the ones reported in the original NetFC paper [20]. We ac-
knowledge that we were not able to replicate their exact same results (above 99% accuracy) and
we think that this may be due to different factors in the experimental settings, e.g., different
datasets, different range of values stored in the lookup tables, different scaling factors. Unfor-
tunately, the authors of NetFC did not provide all of the necessary data and details to replicate
their experiments with our implementation.

4.2.4 Resource Analysis

This section reports an analysis of thememory resourceswhich are required to store the lookup
tables for executing our FP arithmetic algorithms. We consider 16 bits to store both IEEE half-
precision and integer numbers in P4. We can think of a P4 table as a KEY-VALUE pair, where
each KEY andVALUE can be either a FP number or an integer. Therefore, we consider 32 bits
the size of one row for each of the five lookup tables required. Based on that table entry size,
we build Table 4.1 to show the total memory usage by each look-up table, where the table sizes
are obtained bymultiplying the number of rows by the row’s size. The largest table is the log2T
while the other tables have considerably lower similar sizes.

log2T exp2T miT mi2T mi3T
TOTAL SIZE (KB) 80,0 1,47 1,60 0,8 0,8

Table 4.1: Single lookup table sizes

Knowing the size of each lookup table required, we can compute the total memory require-
ments for each FP operation as shown in Table 4.2. The last two columns show, respectively,
the total number of tables required and the corresponding memory size.

N°
log2T

N°
exp2T

N°
miT

N°
mi2T

N°
mi3T

TOTN°
TABLES

TOT
SIZE
(KB)

addition 2 1 2 2 2 9 167,88
mult / div 2 1 - - - 3 161,47

Table 4.2: Memory usage for single FP operations

In summary, a total of 9 tables and 167,88 KB of memory are needed to execute a single FP
addition while 3 tables and 161,47 KB ofmemory are needed to execute a single FP division. It
is worth noting that the single table size is based on the number of entries in each table.
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In our experiments, we do not consider the entire range of representable values for each table,
as we faced a table size limitation on the bmv2 software switch. For the sake of time, we could
not investigate this issue further in the context of this work and increase the number of entries
that each P4 table could store on bmv2, rather we limited the number of table entries to 1024
in our experiments.

4.3 On the Differential PrivacyMechanism

This section describes the experiments and results related to the targeted differential privacy
mechanism explained in Section 3.6.

4.3.1 Set-up

The testing environment is created using the same network.py program described in Section
4.1. EachFPoperation is implementedusing the control blocksdefined in theFPoperations.p4
file, which was described in Section 3.5.2. In this setting, the number of tables that the con-
troller (mycontroller.py) needs to populate depends on FP operations to be performed. Mul-
tiple copies of the same table are required to perform multiple FP operations per packet with
our P4 program.
The core P4 program that implements the DP technique is main.p4. It is generated starting
from a P4 template with placeholders, as the pre-defined sequence of operations is modified
according to the number of input parameters. The structure of the main P4 program was ex-
plained in Section 3.6. Similarly to the experiments of Section 4.2, we use the following two
scripts to simulate client and server applications:

• “client.py” : Python program that creates an arbitrary number of packets by leveraging
the “Scapy” library [27]. Each packet contains a flexible number of parameters, config-
urable by the administrator. To ease the generation of the corresponding P4 code in
our “main.p4” program, we assumed the number of parameters to always be a power of
two. As it can be seen from Figure 4.3 where the packet format is illustrated, the packets
generated by “client.py” also carry some fields to store the noise values. The choice to
carry noise values in the packets has been driven by the need to replicate more easily the
computation performed with P4 in Python for comparison. This does not invalidate
the more sound solution proposed in Section 3.4 to introduce noise directly on the P4
target through the P4 program.

• ”server.py” : a Python program (based on “Scapy”) used to sniff packets coming from the
P4 switch and store the values of the vector for further analysis. Every packet received

50



Figure 4.3: Packet format of test packets for the DP targeted mechanism, example with an input vector containing 4
parameters.

carries two subsequent vectors: the first vector contains the differentially private values
and the second contains the noise values.
Whenever the server receives a packet, it computes the same sequence of DP operations
in Python. This result is considered the “target result” and it will be used, together with
the P4 result, to compute the accuracymetric (using the same formula as in Section 4.2).
To store both the received and computed vector values, the server creates a data frame
with the following five columns and writes it as a CSV file:

1. Input vector: each input parameter of a given input vector;
2. P4 result: the result of the DP operations computed in P4;
3. Python result: the result of the DP operations computed in Python;
4. Accuracy: a value computed using equation 4.1 for each couple of P4 and Python

results;
5. Average accuracy: a single value obtained by averaging the accuracy column.

4.3.2 Experiments

We used the same dataset described in Section 4.2.1 to run these experiments. Remember that
our dataset contains ten thousand FP values uniformly distributed in the range [−2,+2]. We
use the following approach:
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1. For each experiment, we randomly select n values from the dataset, where n is the num-
ber of input parameters.

We repeat step 1 for 1000 times, which is equivalent to pick 1000 input vectors of sizen from
our dataset. An analogous process is executed for every n ∈ [2, 4, 8, 16, 32, 64].

4.3.3 Results

EachCSVfile created by the server contains an accuracy column that holds values in [0, 1]. This
measures the discrepancy between the output of our DP mechanism applied with the approx-
imations introduced by P4 and the output of the equivalent operations performed in Python.
Higher accuracy values mean that our P4 code approximates well the targeted FP operations.
The optimal result corresponds to an accuracy value of 1.

Figure 4.4: Impact of different input vector size n on the accuracy of the DP mechanism

Surprisingly, from our experiments in Figure 4.4, we see that an increasing number of parame-
ters produces better accuracy results on average. For the sake of time, we could not investigate
deeply these results within this work, nonetheless, we are aware of the following factors that
may have contributed to these results: the choice of a specific clipping constant and our dataset
for experiments.
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Figure 4.5: Impact of different values of the clipping constant C on the accuracy of the DP mechanism

With regards to the clipping constant in our DPmechanism, we have run some experiments to
understand how this may have affected our accuracy results. The clipping constant is a free hy-
perparameter used during the “clipping” phase of the differential privacymechanism. To show
the impact of theC constant on our results, Figure 4.5 plots theCumulativeDistribution Func-
tion (CDF) of the accuracy in three different experiments. The three experiments use the same
set-up and the same number of input parameters but they vary theC value used for clipping the
input vector parameters. We consider the three following arbitrary values following for the clip-
ping constant: [0.1, 0.8, 1.7]. Each curve in Figure 4.5 represents the accuracy CDF for each of
the three experiments. From these experiments, it looks that lower values of C (e.g. C = 0.1)
produce better accuracy while increasing the value of the clipping constant (e.g. C = 1.7)
produces less accurate results. Figure 4.5 demonstrates the importance of the C value in our
differential privacy mechanism. Therefore, the clipping constant C represents a parameter to
be carefully tuned according to the MLmodel and the dataset used.

4.3.4 Resource Analysis

This section analyzes thememory usage of our P4programwhen running the target differential
privacy technique. Differently from Section 4.2 where single Floating Point (FP) operations
were tested, the differential privacymechanism requires performing a varying number of FP op-
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erations, based on the number of input parameters n. The total number of FP operations can
be computed with equation 3.9 in Section 3.6. Based on that equation, Table 4.3 shows how
thememory size increases with increasing the number of parameters and, as a consequence, the
number of required FP operations. For each row the table reports the number of input param-
eters, the correspondent number of FP operations (computed with equation 3.9) and the total
memory required, the last can be computed referring to the data in Table 4.2.

N° Input parameters TOT FP operations TOT memory size (KB)
2 6 123,99
4 12 254,39
8 24 515,19
16 48 1036,79
32 96 2079,99
64 192 4166,39

Table 4.3: Memory usage of our P4 program varying the size of the input vector

Figure 4.6: Switch’s memory usage varying the number of input parameters

Figure 4.6 shows the linear increase of the memory required to store our P4 program when
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increasing the number of parameters to deal with into the input vector. 64 was the highest
number of parameters we could successfully compile in our P4 program during our tests. De-
spite compiling successfully, that program size was already not easily managed by the software
switch bmv2, so we could not run any experiment with that program. To better consider these
results, remember that a P4-programmable switch (e.g., Intel’s Tofino [28]) usually has a few
tens of MB of memory available, which is also shared by several switch functions.

Another metric that shows the increasing complexity of our P4 program with an increasing
number of input parameters in the input vector is the size of the P4 program itself.

N° Input parameters Size of the P4 program Size of the compiled program
2 381 14236
4 427 29795
8 519 61023
16 703 123479
32 1071 248391
64 1807 498215

Table 4.4: Sizes of the P4 source code and of the relative compiled program by varying the number of input parameters

Table 4.4 compares the sizes of the generated P4 program and its relative compiled JSON file.
The first column of Table 4.4 shows the number of input parameters, the second one indicates
the lines of code (LoC) of the generated P4 program and the third one presents the LoC of
the compiled JSON file. The JSON file is the compiled program generated by the P4 compiler.
The LoC for the JSONfile is significantly higher compared to the LoC of the P4 program as in
the compiled program, each “control” is very likely codified independently, therefore, the size
of the compiled program continues to increase linearly as reported in Figure 4.7.
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Figure 4.7: Memory usage of our P4 program varying the size of the input vector
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5
Conclusion

This work focused on the implementation in the network data plane of the targeted privacy-
preserving technique. We tried to leverage the capabilities of programmable switches and the
P4 language to implement aDifferential Privacy (DP) technique in the switch’s data plane. The
targeted DP technique requires performing a sequence of Floating Point (FP) operations in a
predefined order. Namely, our DP technique is based on two main steps: clipping and adding
noise. We implemented a P4 program for the software switch bmv2 that performs exactly those
operations, assuming a vector of floating point numbers in input.
One of the main challenges we tackled was to implement floating point operations on the
switch’s target, as the P4 language does not support FP data types and arithmetic. In the lit-
erature, we could find several works proposing techniques to implement FP operations in P4,
however, those do notmake their source code publicly available. Therefore, after a careful anal-
ysis of those techniques, we embarked on the implementation of a specific technique,NetFC,
only based on the description available in the original published work [20]. By following that
information, we were able to implement FP addition, FPmultiplication and FP division in P4.
Toevaluate our targeteddifferential privacymechanisms,we compared thedifferentially-private
values produced by our P4 program with the values produced with an equivalent Python pro-
gram. Based on the outputs of these two programs, we compute an accuracy value that shows
how the two measures differ. With our implementation of that technique, we obtained accu-
racy values between 90% and 97%, while the original NetFC work reported higher accuracy
results (99%). We believe that such discrepancy can be attributed to various factors in our ex-
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perimental setting like the input dataset, the entries in the look-up tables and the scaling factor
used. Unfortunately, the authors ofNetFC did not provide enough details about their experi-
mental setup for us to replicate precisely their experiments.
Finally, we analysed the impact of varying the size of the input vector on the size of our P4
program and the required memory. And we have also measured the impact of the clipping
constant on the overall accuracy of our DP technique.

5.1 Future work

We hereby list a set of avenues that could be worth exploring with future work on this topic.

• In our experimentswith the software switch bmv2, we hit amaximumnumber of entries
per table, after 1024 entries, bmv2 considered a table “full”. Larger tables would allow
to run experiments using wider ranges of numbers, possibly leading to higher accuracy
results.

• Increase the scaling factor “k” of the NetFC technique to further improve accuracy, as
shown in original paper. By increasing “k”, more table entries are needed and, conse-
quently, this increases the memory requirement of the program too.

• Our work targeted the bmv2 software switch for rapid prototyping and testing. How-
ever, it is definitely important to assess better the practical relevance of such a P4 pro-
gram to target other platforms (like a hardware switch). This may require changing con-
siderable portions of our code as real switches can have different constraints compared
to the bmv2 software switch we used.
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