
Sparse Fast Fourier Transform

Leo Turi
Registration Number: 1007564

Supervisor: Professor Michele Pavon
Faculty of Engineering

Bachelor Degree in Information Engineering

July 22nd, 2013

ii

”Smoke · Roast = Const.”

- ING. F. MARTINOLI -

Last month we had to sit through a presentation on eliminating
redundancy, and it was a bunch of Power Point slides, plus a

guy reading out what was on the slides, and then he gave us all
hard copies. I don’t understand these things.

- MAX BARRY, COMPANY -

iv

Introduction

Our world is deeply influenced by information technology. It is taught in
schools, it is a basic requirement in most companies and industries and, in
general, it is and will be one of the leading sectors both for the present
time and for the future. This was not the case for the past, because half
a century ago information technology was still in its beginnings, and many
did not believe in its importance. It is clear that they were mistaken, but
their misbelief is comprehensible. Only few people would have been able to
foresee the incredible growth this sector was about to experience.

Nowadays, it is still growing further, and many stunning theories are
developed every month. Since 2004, a very beautiful theory has raised the
interest of the scholars and technicians all around the world. It is known as
Compressed Sensing (CS), and proposes to revolutionize the signal process-
ing field. As of now, we are used to sample signals in their entirety and later
compress then, either to save space while storing them or to save time while
sending them. In this process there is a clear inefficiency: we store data
that we will later discard. Compressed Sensing brings the compress process
right to the sampling: we sample just the signifying parts of the signal. To
do so, it chooses as a quality factor signal sparsity. Actually, many signals
can be described by a few number of coefficients when represented under a
certain basis. By sampling only the correct coefficients, then, we would be
able to obtain a correct representation of the signal in sub-linear time. This
is not just theory: it is possible also in practice.

The main benefit that CS theory would bring to signal processing is a
significant speed boost to data acquisition. However, CS paradigms are not
confined to just the sampling process, they are absolutely general, and many
applications are possible.

What we focus on in this thesis, is a possible application of CS principles
not to signal acquisition but to signal analysis. Specifically, we know that
the most used method of analysis are the Fourier Transforms. This subfield
of signal processing has become extremely important since the invention of
the Fast Fourier Transform (FFT), an extremely fast algorithm to compute
the Discrete Fourier Transform (DFT). This algorithm made practical what
once was not, as naive DFT algorithms are computationally costly. Thanks
to the FFT, this field has grown both in popularity and in utility.

v

It is common knowledge that there is no known algorithm which can
improve over the FFT. There exist algorithms which are faster than FFT
for particular cases, of course, but none is totally general. This has been
true for a long time, but may not be so since May 2012.

In that period, a research team of the Massachussets Institute of Tech-
nology developed an algorithm known as Sparse Fast Fourier Transform
(SFFT). This algorithm promises to improve over the FFT for almost every
sparse signal. The theory applies almost the same principle as CS to Fourier
Transform, and computes just the significant coefficients in the frequency
domain in sub-linear time. This is something that not even the FFT is able
to do, and thus this theory could bring a revolution in the signal analysis
field.

In the first chapter, we review the basic knowledge necessary to under-
stand the whole topic. Then, in the second chapter we introduce the FFT
and some of its implementations, to show how the actual state-of-the-art
algorithm is technically made. The third chapter is a brief introduction
to CS theory, its principles and its solutions for sparse signal recovery. The
chapter ends with some practical implementations of CS. The final and most
important chapter deals with the SFFT algorithm developed by the MIT
team, which goes under the name of Nearly Optimal Sparse Fast Fourier
Transform. It is a very complex algorithm, that we introduce mainly in its
theory. We also briefly speak about the probability of success of the algo-
rithm, for it is not 100%. Finally, we show the original algorithm published
by the team, and we list some benchmark examples against the best FFT
implementation.

vi

Contents

Introduction v

1 Useful Concepts on Signals and Fourier Analysis 3
1.1 Introduction to Discrete-Time Signals 3
1.2 Hilbert Space . 5
1.3 Fourier Analysis . 6

2 The Fast Fourier Transform 13
2.1 What is the FFT? . 13
2.2 Cooley and Tukey’s FFT . 15
2.3 Implementations . 16
2.4 Runtimes . 19
2.5 Example . 20

3 Compressed Sensing Theory 23
3.1 Sample Less to Compress More 23
3.2 Recovery Approach . 25
3.3 Compressed Sampling Theorem 27
3.4 Applications . 28

4 Nearly Optimal Sparse Fourier Transform 31
4.1 Objectives . 31
4.2 Basic Understanding . 32
4.3 Flat Filtering Windows . 33
4.4 Location and Estimation . 35
4.5 Updating the signal . 37
4.6 Total Time Complexity . 37
4.7 The Role of Chance . 38
4.8 Testing the Exactly Sparse Case 41

Conclusions 49

Bibliography 51

1

2

Chapter 1

Useful Concepts on Signals
and Fourier Analysis

In this section we introduce the basic concepts required to understand what
the Fast Fourier Transform aims to do. As signal transmission nowadays is
almost only digital, we review only discrete-time signals, the family to which
digital signals belong. We give the most useful definitions and introduce
the main properties. Then, we review Hilbert Spaces, in order to give a
proper background for the following analysis techniques we introduce. Those
techiques, which are nothing but the various Fourier Transforms, form the
most important knowledge necessary to understand the following chapters,
and thus will be reviewed thoroughly.

1.1 Introduction to Discrete-Time Signals

Definition 1.1 (Discrete-Time Signal). A discrete-time signal x[n] is a real
(or complex) valued function defined only for integer values of the indipen-
dent variable n. Formally

x : N 7→ R (or C) (1.1)

The Support of this signal is the smallest set of values [mx,Mx] for which

x[n] = 0 if n < mx or n > Mx, (1.2)

and we will indicate it as supp(x). In case this set is finite, we say that the
signal has limited support.

We define the scalar product 〈·〉 between two signals x[n] and y[n] as

〈x, y〉 =
∑
i

x[i] · y[i] (1.3)

3

and the Energy that every signal carries as the sum series over its support

Ex =

Mx∑
n=mx

|x[n]|2. (1.4)

A signal is said to be periodic with period N if it is unchanged by a time
shift of N , where N is a positive integer, i.e. if

x[n] = x[n+N], ∀n ∈ N (1.5)

The smallest positive value of N for which eq.(1.3) holds is the signal’s
fundamental period N0.

In case a signal x[n] is aperiodic, or non-periodic, we can repeat x[n] at
a fixed rate over time to obtain a periodic signal:

Definition 1.2 (Periodic Repetition). Given an aperiodic discrete time sig-
nal x[n], we define its periodic repetition of period T as

x̂[n] =

+∞∑
k=−∞

x[t− kT]. (1.6)

We note that, in case T > supp(x), x[n] equals the original signal over the
single period.

Fundamental discrete-time signals are the Complex Exponential Signals,
defined by

x[n] = ejω0n (1.7)

and the Sinusoidal Signals, defined by

x[n] = Acos(ω0n+ ψ). (1.8)

These signals are closely related to each other through Euler’s Formula,

ejω0n = cos(ω0n) + jsin(ω0n). (1.9)

We note that the fundamental complex exponential e
2π
N
n is periodic with

period N . Furthermore, the set of all discrete-time complex exponential
signals periodic with period N is given by

ψk[n] = ejkω0n = ejk
2π
N
n, k = 0,±1,±2, . . . (1.10)

All of these signals have fundamental frequencies that are multiples of 2π/N
and thus they are said to be harmonically related. There are only N distinct
signals in the set given by eq.(1.10), as discrete time complex exponentials
which differ in frequency by a multiple of 2π are identical. Hence, in eq.(1.10)
it suffices to tale k = 0, 1,..., N-1.

4

Moreover, this family of signals has also the particularity of being or-
thogonal. First, though, we need to introduce another concept:

Definition 1.3 (`2 Space). Discrete-time signals which have finite energy
over the whole time domain belong to the signal space called square summable
or `2 space, i.e.

`2 = {x ∈ x[n]n∈Z : ∃M ∈ R : |Ex| < M} (1.11)

Definition 1.4 (Orthogonality and Orthonormality). Two `2 signals x[n], y[n] ∈
H are said to be orthogonal when

〈x, y〉 =

+∞∑
i=−∞

x[i]y[i] = 0. (1.12)

A family of signals {ψ1 . . . ψn} of length n is said to be orthogonal when

〈ψi, ψj〉 = 0, iff i 6= j. (1.13)

Last, a family of signals is said to be orthonormal if it is orthogonal and
each of its vectors has norm equals to 1, i.e. when

〈ψi, ψj〉 = 0 iff i 6= j

〈ψi, ψi〉 = ||ψi||2 = 1 iff i = j
(1.14)

As an example, the normalized family of complex exponential

ψk[n] =
1√
N
ejk

2π
N
n, k = 0, . . . , N − 1 (1.15)

is indeed orthonormal.

Orthogonal and orthonormal families will be thoroughly used in the fol-
lowing sections. As of now, in order to give proper definitions later on, we
need to introduce the concept of Hilbert space. The knowledge of vector
spaces is given for granted, yet, for any further insight, we suggest reading
an equivalent of [1].

1.2 Hilbert Space

The ideal space for Fourier Analysis is a Hilbert Space, in which series
converge to a vector. We note that what we are defining is properly a vector
space, but we can exploit a direct connection between finite signals and
vectors directly from the definition we gave of discrete time signal.

5

Definition 1.5 (Hilbert Space). Be H a complex vector space [1] on which
we can define a map:

H ×H −→ C
(x, y) −→ 〈x, y〉H

. (1.16)

This map is known as scalar or internal product, and has the following
properties:

(i) 〈y, x〉 = 〈x, y〉, where y stands for y’s complex conjugate;

(ii) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

(iii) 〈αx, y〉 = α〈x, y〉 where α ∈ C

(iv)

〈x, x〉 = 0 if x = 0

〈x, x〉 ≥ 0 otherwise

(v) (Cauchy-Schwartz inequality)

|〈x, y〉| ≤ ||x||H · ||y||H (1.17)

(vi) (Norm)

||x||H = 〈x, x〉
1
2 (1.18)

In case every Cauchy sequence, i.e. each sequence {xn}n∈N with values in
H such that

∀ε > 0 ∃N(ε) = N : ∀m,n ≥ N, ||xm − xn|| < ε, (1.19)

has limit inside H, then we say that H is complete and call it Hilbert Space.
An example of an infinite dimensional Hilbert Space is provided by `2, see
1.3.

1.3 Fourier Analysis

In this section we will review the different kind of Fourier Representations
and Transforms, and end up introducing the Discrete Fourier Transform,
which is the basis which the second chapter stems from.

1.3.1 Fourier Series Representation of Discrete-Time Signals

What we previously introduced wouldn’t be worth of vast consideration
without the work of Jean-Baptiste Joseph Fourier, a French mathematician
and physicist who lived across the 18th and 19th centuries. He had the
idea that any complex periodic function could be represented through the
superposition of a (possibly infinite) series of periodic functions, namely

6

simple sines and cosines. His idea was not entirely new, as already Euler,
D’Alembert, Bernoulli and Gauss had used similiar trigonometric series in
their studies. Yet, contrary to them, Fourier believed that such a series -
what we now call Fourier Series - could represent any arbitrary function.
This totally revolutionized both mathematics and physics.

In particular, in the field of signals, the Fourier series representation of a
discrete time periodic signal is a finite sum. Given a family of harmonically
related complex exponentials, as defined in eq.(1.10), we can consider the
representation of a periodic signal, through the linear combination of the
Ψk[n]. Thus

x[n] =
N−1∑
k=0

ake
jkω0n, with ω0 =

2π

N
. (1.20)

This equation is referred to as the discrete-time Fourier series. Since the
exponentials Ψk[n] are linearly indipendent, it represents a set of N in-
dipendent linear equations for the N unknown coefficients ak, and thus the
system is determined. Then, we can solve eq.(1.20) backwards to obtain the
ak coefficients, as

ak =
1

N

N−1∑
n=0

x[n]e−jk
2π
N
n. (1.21)

We note that even in case we considered more than N sequential values
of k, the values ak would repeat periodically with period N as a consequence
of eq.(1.10). The whole information associated to the periodic signal x[n] is
then contained in its N Fourier series coefficients. This means that, once we
fix the harmonically related family of signals, Ψk[n], x[n] is equally described
by its discrete-time representation (in the time domain) and by its Fourier
coefficients (in the frequency domain). Then we can identify a relationship
between these two kind of representations, i.e.

x[n]
Fs←→ ak (1.22)

described by the Discrete-Time Fourier Series, (DTFS). It is an almost
isometric map

Fs : CN → CN (1.23)

enjoying several properties:

• (Linearity)

Az[n] +By[n]
Fs←→Aak +Bbk; (1.24)

• (Time Shifting)

x[n− n0]
Fs←→ ake

−j 2π
N
n0 ; (1.25)

7

• (Time Reversal)

x[−n]
Fs←→ a−k; (1.26)

• (Multiplication)

x[n]y[n]
Fs←→

N−1∑
l=0

albk−l = ak ∗ bk; (1.27)

• (Periodic Convolution)

N−1∑
r=0

x[r]y(n− r) = x[n] ∗ y[n]
Fs←→Nakbk; (1.28)

• (Conjugation)

x[n]
Fs←→ a−k; (1.29)

• (Energy Conversion)

||a||2 =
1

N
||x[n]||2 (1.30)

where x[n] and y[n] are periodic signals with period N and ak and bk are
their Fourier series coefficients.

1.3.2 Discrete-Time Fourier Transform

In the previous section, we showed that the Fourier Series representation
applies to periodic signals. In this section we show how, for finite energy
signals, we can extend Fourier analysis to aperiodic signals.

Given the aperiodic signal x[n] ∈ `2 we first define its periodic repetition
x̃[n] of period T, with T > supp(x), so that over one period the two signals
are equal. Now, as T approaches∞, it is immediate that x̃[n] = x[n] for any
finite value of n. Let us now examine the DTFS of x̃[n], and in particular
its Fourier Series coefficients:

x̃[n] =

N−1∑
k=0

ake
jk 2π

N
n, (1.31)

ak =
1

N

N−1∑
n=0

x̃[n]e−jk
2π
N
n. (1.32)

Since x̃[n] = x[n] over a period that includes the support of x[n], we can sub-
stitute x[n] in eq.(1.33). Moreover, x[n] is zero outside its support, thus we

8

can extend the series to the whole discrete-time domain without modifying
the result:

ak =
1

N

N−1∑
n=0

x[n]e−jk
2π
N
n =

1

N

+∞∑
n=−∞

x[n]e−jk
2π
N
n. (1.33)

We now have set all the basis to define the discrete time Fourier transform.

Definition 1.6 (Discrete-Time Fourier Transform). The Discrete-Time Fourier
Transform, (DTFT), of the aperiodic signal x[n] ∈ `2 is defined as the mean
square limit

X(ejω) =
+∞∑

n=−∞
x[n]e−jωn. (1.34)

We note that the coefficients ak are proportional to samples of X(ejω), i.e.,

ak =
1

N
X(ejkω0), (1.35)

where ω0 = 2π/N is the spacing of the samples in the frequency domain.

Combining equations eq.(1.31) with eq.(1.35) as well as 1/N = ω0/2π
yields

x̃[n] =
1

2π

N−1∑
k=0

X(ejkω0)ejkω0nω0. (1.36)

Now, we can note two things: first, both X(ejω) and ejωn are periodic of
period 2π, and so their product is periodic as well; second, each term of the
summation represents the area of a rectangle of height X(ejkω0)ejkω0n and
width ω0, thus, as N approaches to ∞, ω0 becomes infinitesimal, and so the
summation passes to an integral. Therefore, as N → ∞, x̃[n] = x[n], from
equation eq.(1.36) we can obtain the original signal x[n], thus defining the
Inverse DTFT:

Definition 1.7 (Inverse Discrete-Time Fourier Transform). Given the com-
plex function X(ejkω0) defined in eq.(1.34), the Inverse DTFT grants the
possibility to reconstruct the original aperiodic signal x[n] as

x[n] =
1

2π

∫
2π
X(ejω)ejωndω, (1.37)

where the interval of integration can be taken as any interval of length 2π,
due to the periodicity. We must point out that the function X(ejkω) must
be integrable over its period, but this is assured by the fact that x[n] ∈ `2.

9

Theorem 1.3.1 (Placherel’s Theorem). Given two signals x[n], y[n] ∈ `2

and their respective transforms X(ejω) and Y (ejω), then

+∞∑
n=−∞

x[n] · y[n] =
1

2π

∫
2π
X(ejω) · Y (ejω)dω (1.38)

In particular x[n] = y[n], we get ||x[n]||2 = ||X(ejω||2.

Thus, we now have a way to analyze every aperiodic finite energy discrete
time signal in the frequency domain.

1.3.3 Discrete Fourier Transform

The discrete Fourier analysis is one of our matter of interest. Still, it is
impossible to apply as it is, as the frequency domain of the tranforms is
still infinite and continous. One of the reason for the great use of discrete
time methods for the analysis of signals is the development of exceedingly
efficient tools for performing Fourier analysis of discrete-time sequences. At
the heart of these methods is a technique that is very closely allied with the
discrete-time Fourier analysis and that is ideally suited for use on a digital
computer due to some fancy properties. This technique is the Discrete
Fourier Transform, or DFT, for limited-support signals.

Definition 1.8 (Discrete Fourier Transform). Let x[n] be a limited support
signal and x̃[n] be its periodic repetition of period N. The Fourier series
coefficients for x̃[n] are given by

ak =
1

N

N−1∑
n=0

x̃[n]e−jk
2π
N
n. (1.39)

By choosing the interval {N} where x̃[n] = x[n], the coefficients ak define
the Discrete Fourier Transform of x[n], i.e.

X̂[k] = ak =
1

N

N−1∑
n=0

x[n]e−jk
2π
N
n. (1.40)

The importance of the DFT stems from several properties:

• (Completeness) The DFT is an invertible linear transformation

F : CN → CN (1.41)

and its inverse transform is defined as

x[n] =
N−1∑
k=0

X̂[k]ejk
2π
N
n, with n = 0, 1, 2, . . . , N − 1. (1.42)

10

• (Orthogonality) The vectors uk = [ej
2π
N
kn, n = 0, . . . , N − 1] form an

orthogonal basis over the set of N-dimensional complex numbers;

• (Parseval’s Theorem for the DFT)

N−1∑
n=0

x[n]y[n] =
1

N

N−1∑
k=0

X̂[k]Ŷ [k] (1.43)

• (Periodicity)

X̂[k +N] =
1

N

∑
{N}

x[n]e−j(k+N) 2π
N
n =

=
1

N

∑
{N}

x[n]e−jk
2π
N
n e−j2πn︸ ︷︷ ︸

=1

=

=
1

N

∑
{N}

x[n]e−jk
2π
N
n =

= X̂[k]

(1.44)

• (Sampled DTFT) The DFT coefficients of a signal can be seen as the
corresponent DTFT values sampled with frequency ω = 2π/N , i.e.

X̂[k] =
1

N
X(ej

2π
N
k) (1.45)

where X(ejω) is the DTFT of x[n].

11

12

Chapter 2

The Fast Fourier Transform

In this chapter we introduce the reader to the Fast Fourier Transform, to
its history and its development, to prepare the background over which we
we will show some of the latest and most used versions of this extremely
important algorithm. We will also give a look at the C++ implementation
of the Cooley-Tuckey Algorithm, so that comparisons will be easy to do
when we will talk about the Sparse FFT.

2.1 What is the FFT?

The Fast Fourier Transform is an algorithm, as we said, to compute the DFT
and its inverse. Its importance derives from the fact that it made the Fourier
analysis of digital signal an affordable task: an algorithm which naively
implements DFT definition takes O(N2) arithmetical operations to define
the set of N coefficients, while an FFT is much faster, and can compute the
same DFT in only O(N logN) operations. This time complexity is often
called linearithmic. The difference in speed can be enormous, especially for
long data sets, where N could be 106∼9. Moreover, many FFT have an
interesting feature that grants an increase on accuracy at the expense of
increase computations. We say ”many” due to the fact that there is NOT
a single FFT algorithm, instead there are many different algorithms which
involve a wide range of mathematics to attain high speed. We cannot see
all of them, but the reader is free of reviewing what we left out in [3].

One of the most used is the Cooley-Tukey Algorithm (CT), which was
developed in 1965 and which we will review later on in this chapter. It
is a divide and conquer algorithm that recursively breaks down a DFT of
any composite size N = N1N2 into many smaller DFTs of sizes N1 and
N2, along with O(N) multiplications by complex root of unity traditionally
called twiddle factors.

Another wide spread algorithm cares about the case in which N1 and N2

are coprime, and is known as Prime-Factor (or Good-Thomas) algorithm.

13

It is based on the Chinese Remainder Theorem, which is used to factorize
the DFT similiarly to CT but without the twiddle factor.

Other algorithms are Bluestein’s, Rader’s and Bruun’s FFT algorithms,
which are variants of the CT algorithm based on polynomial factorization.

Eventually, to give the FFT a proper background, it is good to review
its history.

2.1.1 History of the FFT

The history of the FFT is particular. No clear traces can be found of the
”first” algorithm written that speeds up the DFT - or any equivalent sinusoid
expansion - and a long road must be travelled to define its history. Yet, its
history, as we’ll see, draws a beautiful circle in time.

Modern FFT history starts in 1965 with two American mathematicians,
James Cooley and John William Tukey, who developed the omonimous al-
gorithm, Cooley-Tukey (CT). Soon after them, another mathematician who
goes by the name of P. Rudnick demostrated a similiar algorithm based on
the work of Danielson and Lanczos, which appeared in 1942. The discovery
of these early studies prompted an investigation into the history of the FFT
[4].

It has been discovered that many scientists had used algorithm with the
same aim as the FFT. Among those we can list George Howard Darwin
(son of the more famous Charles), Lord Kelvin, Francesco Carlini and Peter
Andreas Hansen. But a single footnote on the work A History of Numerical
Analysis from the 16th Through the 19th Century by H. Goldstine casted
light on who could have first worked on a solid FFT algorithm:

This fascinating work of Gauss was neglected and was rediscovered

by Cooley and Tukey in an inportant paper in 1965.

The quotation goes back to the beginning of the 19th Century, to a
treatise written by Carl Friedrich Gauss, entitled ”Theoria Interpolationis
Methodo Nova Tractata”. The German scientist extended Euler’s and La-
grange’s studied on series expansion while considering the problem of deter-
mining the orbit of certain asteroids from sample locations. These functions
were expressed by a Fourier series, and Gauss showed on his treatize on in-
terpolation that its coefficients were given by the now well-known formulas
for the DFT. This set of equations is the earliest explicit formula for the
general DFT that has been found.

Gauss used the algorithm to compute the Fourier transform passing by
a set of N1 samples, and then reapplied it to compute another Fourier trans-
form passing by another set of N1 samples that were the offsets from the
positions of the first set. The two sets of coefficients were though completely
different, showing that the algorithm could be flawed. With modern termi-

14

nology, we can instead say that the waveform was simply undersampled, and
that therefore the coefficients were in error because of aliasing of the high
frequency harmonics of the algorithm.

The solution Gauss gave for this issue was very important. He measured
a total of N2 sets of N1 equally spaced samples, which together form an
overall set of N = N1N2 equally spaced samples. Then, the Fourier series
for the N samples is computed by first computing the coefficients for each
of the N2 sets of length N1, and then computing the coefficients of the N1

series of length N2. After some algebric steps, what he got was the following
equation:

C(k1 +N1k2) =

N2−1∑
n2=0

[

N1−1∑
n1=0

X(N2n1 + n2)Wn1k1
N1

Wn2k2
N2

]Wn2k2
N2

(2.1)

This is exactly the exponential form of Gauss’ algorithm, where the WN

term accounts for the shift from the origin of the N2 length-N1 sequences.

This algorithm actually computes the DFT in a surprisingly fast way, a
feature that Gauss did not analyse. Yet, there is a very curious fact with the
algorithm: it is, exactly, the FFT algorithm derived by Cooley and Tukey in
1965, no less than 150 years later. The same WN factor is called a twiddle
factor, a factor to correct the DFT of the inner sum for the shifted samples
of X(n), exactly what Gauss found.

This states the history of the FFT to be far longer than the trivial
50 years it’s been used up to now. Yet, this also states that, in a way or
another, the ”best” algorithm that could lately be found was the same as two
centuries ago. It is from this point of view that we can see the importance of
developing an algorithm faster than the FFT: to resume the natural course
of science evolution.

Let’s now focus just on CT Algorithm, and get to know better the beauty
of the FFT.

2.2 Cooley and Tukey’s FFT

CT algorithm comes in different forms, based on how the N samples are
factorized. The simplest and most common form is a radix-2 decimation-
in-time FFT (Radix-2 DIT), in which the algorithm divides a DFT of size
N into two interleaved DFTs of size N/2 with each recursive stage.

Radix-2 DIT first computes the DFTs of the even-indexed inputs x[2m]
and of the odd-indexed inputs x[2m + 1], and then combines those two
results to produce the DFT of the whole sequence. There are two ways
of implementing the algorithm: one is the recursive way, which has lower
running times but uses a great amount of memory; the other is the in-place
way, which is slower but very light in memory consumption. By the way,

15

there’s an implicit assumption: the length of the samples x[n] is a power of
two, but usually this is not a hard restriction.

The mathematical form of the reconstructed DFT is

X[k] =

N/2−1∑
m=0

x[2m]e−j2km
2π
N + e−jk

2π
N

N/2−1∑
m=0

x[2m+ 1]e−j2km
2π
N (2.2)

where the exponential outside the sum is the twiddle factor. We can call
the even-indexed input DFT E[k] and the odd-indexed input DFT O[k],
obtaining the form

X[k] = E[k] + e−j
2π
N
kO[k]. (2.3)

We need to compute only N/2 outputs: thanks to the periodicity of the
DFT, the outputs for N/2 ≤ k < N from a DFT of length N/2 are identical
to the outputs for 0 < k ≤ N/2. What changes is the twiddle factor, which
flippes the sign of the O[k + N/2] terms. Thus the whole DFT can be
calculated as follows:

X[k] =

E[k] + e−j

2π
N
kO[k] if k < N/2

E[k −N/2]− e−j
2π
N

(k−N/2)O[k −N/2] if k ≥ N/2
(2.4)

The above re-expression of an N-size DFT as two N/2-size DFTs is also
called the Daniel-Lanczos lemma, since the identity was noted by those two
authors in 1942: they followed the recursion backwards until the trans-
form spectrum converged to the original spectrum. By doing so, curiously,
they didn’t notice that they achieved the asymptotic complexity of N logN ,
which is now the common standard for an ideal FFT.

We shall now analyse how the algorithm Cooley-Tukey can be imple-
mented and the issues linked to each implementation.

2.3 Implementations

At first, Cooley and Tukey designed the algorithm to be implemented re-
cursively. A very simple code for this implementation is Algorithm 2.3.1:

While this granted the best performance attainable, the memory required
for large set of data was improbe. Thus, they investigated the problem of
devising an in-place algorithm that overwrites the input with its output data
using only O(1) auxiliary storage.

Their solution was to apply a reordering technique, called bit-reversal,
to the Radix-2 DIT. Bit-reversal is the permutation where the data at an
index n, written in binary with digits b4b3b2b1b0 is transferred to the index
with reversed digits b0b1b2b3b4.

16

procedure RCT(x) {
n = length(x);
if (n == 1) then

return x;
end if
m = n/2;
X = (x2j)

m−1
j=0 ;

Y = (x2j+1)m−1
j=0 ;

X = RCT (X);
Y = RCT (Y);
U = (Xkmodm)n−1

k=0 ;
V = (g−kYkmodm)n−1

k=0 ;
return U + V ;

end procedure

Algorithm 2.3.1: Out-of-place Cooley-Tukey FFT pseudocode

This choice was due to the fact that, when we try to overwrite the input
with the output at the last stage of the algorithm given by eq.(2.4), the
digits we obtain should go in the first and second halves of the output array,
which corresponds to the most significant bit b4, whereas the two inputs E[k]
and O[k] are interleaved in the even and odd elements, corresponding to the
least significant bit b0. Thus, if we perform every step of the transform, we
obtain that all the bits must be switched to perform the in-place FFT, and
this requires the use of the bit-reversal technique.

The following C++ algorithm is an in-place implementation, which ex-
plicitly applies the bit-reversion to the input array.

// in−p l a c e Cooley−Tukey FFT a l gor i thm with b i t−r e v e r s a l

void CTFFT(double∗ data , unsigned long nn)
{

unsigned long n , mmax, m, j , i s t ep , i ;
double wtemp , wr , wpr , wpi , wi , theta ;
double tempr , tempi ;

// reverse−b inary r e i n d e x i n g
n = nn<<1;
j =1;
for (i =1; i<n ; i +=2) {

i f (j>i) {
swap (data [j −1] , data [i −1]) ;
swap (data [j] , data [i]) ;

}
m = nn ;

17

while (m>=2 && j>m) {
j −= m;
m >>= 1 ;

}
j += m;

} ;

// here b e g i n s the Danielson−Lanczos s e c t i o n
mmax=2;
while (n>mmax) {

i s t e p = mmax<<1;
theta = −(2∗M PI/mmax) ;
wtemp = s i n (0 . 5∗ theta) ;
wpr = −2.0∗wtemp∗wtemp ;
wpi = s i n (theta) ;
wr = 1 . 0 ;
wi = 0 . 0 ;
for (m=1; m < mmax; m += 2) {

for (i=m; i <= n ; i += i s t e p) {
j=i+mmax;
tempr = wr∗data [j −1] − wi∗data [j] ;
tempi = wr ∗ data [j] + wi∗data [j −1] ;

data [j −1] = data [i −1] − tempr ;
data [j] = data [i] − tempi ;
data [i −1] += tempr ;
data [i] += tempi ;

}
wtemp=wr ;
wr += wr∗wpr − wi∗wpi ;
wi += wi∗wpr + wtemp∗wpi ;

}
mmax=i s t e p ;

}
}

Algorithm 2.3.2: In-place Cooley-Tukey FFT C++ algorithm

Variations of Cooley-Tukey algorithm, as well as many other algorithms,
are used in one of the fastest C++ FFT implementations, which is known
as the Fastest Fourier Transform in the West (FFTW) [5]. It is one of
the best implementations existent, and can compute transforms of real and
complex-valued arrays of arbitrary size and dimension in O(N log N) time.
The benchmarks against most of the used FFT algorithms [6] attest that it
effectively is one of the fastest algorithms developed, and its performances,
when tested on Intel R© hardware, are almost on par with Intel R©’s own highly
optimized IPPS routines [7].

18

2.4 Runtimes

As we previously said, ideal algorithms for the FFT have linearhithmic time
complexity O(N logN). As the algorithms are implemented through various
programming languages, though, slow downs may occur depending on the
different implementations. Usually, recursive implementations requires time
to refine memory usage, and iterative finds its bottleneck with 32-bit system
and large sets of data.

Figure (2.1) shows the running times of the C++ implementations of the
previous in-place algorithm [CTFFT], of a non optimized out-of-place recur-
sive algorithm [RCT (sub-optimal)], and, last, of a very optimized version
of the recursive algorithm [RCT (optimized)] [8]. The optimizations done to
the recursive algorithm care about complex root of unity recursive calculus,
which appears also in the iterative algorithm, and generally specialize the
FFT to be short and extremely fast.

Figure 2.1: FFT C++ algorithms comparison.

The running time of the iterative algorithm results to be low for small
values of n, but drastically increases as n grows. This is due to the actual
limitations of CPUs. The test was run on a 32-bit system, but a 64-bit
system behaved almost the same only for higher values of n. On contrary,
the recursive algorithm needs to be optimized in order to obtain very good
results, although it is clear that its slow-down ratio is drastically less steep
than the iterative algorithm, both before and after optimization. The draw-

19

back is the load on the main memory, which is drastically higher than in the
iterative case, although the high availability of RAM in modern computers
renders this drawback less important.

2.5 Example

Let’s see now an example of Fourier analysis of a picture.

As the Fourier transform is composed of complex values, it can be visual-
ized as an image as well. In most implementations the image mean, F(0,0),
is displayed in the center of the image. The further away from the center
an image point is, the higher is its corresponding frequency; the whiter it is,
the higher is the coefficient corresponding to that frequency.

Figure 2.2: Fourier Analysis of an Image

Figure (2.2) is composed of four images. The upper left is our original
image. Its transform presents the whole range of frequencies, thus we need
to display it in logarithmic form so that the image doesn’t appear pitch
black. The result is the top right image, and shows that the image contains
components of all frequencies, but that their magnitude gets smaller for
higher frequencies. Hence, low frequencies contain more image information

20

than the higher ones. The transform image also tells us that there are two
dominating directions in the Fourier image, one passing vertically and one
horizontally through the center. These originate from the regular patterns
in the background of the original image.

The third image, in the lower left corner, is the phase of the Fourier
transform. The value of each point determines the phase of the correspond-
ing frequency. The phase image does not yield much new information about
the structure of the spatial domain image; however, note that if we apply
the inverse Fourier Transform to the above magnitude image while ignoring
the phase we obtain the bottom right image: it carries all the components
of the original image, but without phase information it results corrupted
beyond recognition.

21

22

Chapter 3

Compressed Sensing Theory

In this chapter we introduce the main features of the Compressed Sensing
theory, and show some practical applications.

3.1 Sample Less to Compress More

Nowadays we are overwhelmed by information. Impressive amounts of data
are constantly stored in our personal computers, notebooks and smart-
phones, and we are used to access to them frequently and to frequently
share them with others. When faced with the huge capacity of modern
portable storage devices, we seldom care about the dimension of the files we
store and share. But, when it comes to data sharing on an internet connec-
tion, we suddenly start to care about how much we receive and how much
we transmit, as sharing takes time.

To speed things up, the easiest thing to do is not to transmit useless
informations. This can be easily done by compressing datas before sending
them. There are two forms of compression: lossless and lossy. The first
grants the possibility to recover the whole set of data by decompression,
but compression rates are low. An example are the PNG and BMP image
formats. The second allows very high compression rates (90% of the file size
can be omitted), yet does not allow complete recovery of the original datas,
as the less useful informations have been discarted douring compression.
Examples of this are the JPEG, JPG and JPEGmini image formats.

We can observe that, when we transmit lossy-compressed files, then those
files will remain that way forever. There is no point in trying to decompress
them, as some share of their information was lost. But, this raises a question:
in case we always shared lossy-compressed file, wouldn’t obtaining the whole
original files in many case become obsolete?

This is in part true. Thus, in certain cases, if we could be able to sample
directly compressed original files, we would never need to compress data
again, thus losing redundancy in the whole process.

23

This is exactly the idea which lies behind the Compressed Sensing (CS)
theory. It is a relatively new theory, which has been developed during the last
few years. It caused a great interest in the scientific world near 2006, thanks
to the work of Emmanuel Candes, Terence Tao, David Donoho and Justin
Romberg, who obtained important results towards a practical compressed
sampling method.

CS theory asserts that one can recover certain signals from far fewer
samples or measurements than traditional methods use. To accomplish this,
CS relies on two principles: sparsity and incoherence.

• Sparsity expresses the idea that, with respect to a suitable basis Ψ,
most signals of interest have many zero coefficients, and thus contain
less information than what we could guess from their size.

• Incoherence says that, the more casual is the set of measurements, the
more general can be the solution to the recovering process.

Compressed Sensing also introduces an important innovation for what
regards signal reconstruction. While the usual Nyquist-Shannon sampling
approach is linear, so that signal reconstruction is certain and easy to do,
in CS the approach is the exact opposite: reconstruction problems are non-
linear, and solutions are both uncertain and hard to find. This could seem
meaningless, at first, but when put under practice with the correct set of
measurements and the correct algorithms, running times result to be signif-
icantly better than by using a linear approach.

Signal reconstruction is basisd on the solution of an `1-norm minimiza-
tion problem. This requires high computational cost, but, together with an
incoherent set of measurements and the hipothesis that the original signal
has a sparse representation, it allows exact recovery from a very shallow set
of measurements.

Candes, Tao, Donoho and Romberg discoveries regarded the minimum
number of samples needed to perform exact signal reconstruction with very
good probability. This, together with the latest discoveries in the field of `1-
norm minimization algorithms, allowed CS to be implemented successfully
in many fields.

One of the first projects was the One Pixel Camera [10], developed at
Rice University [9]. Using CS, a camera which samples one pixel at a time
is able to generate a full resolution image, with good definition, by sampling
less than 40% of the image pixels. For instance, a 65536 pixel image (256x256
pixel) was obtained by using just 6600 samples, 10% of its resolution, and
by recovering the other 90% through `1-norm minimization. Figure (3.1)
shows the recovered image.

Other fields which would benefit of CS approach are those which require
a long time to perform sampling. Magnetic Resonance Imaging, for instance,
requires up to 30 minutes to scan the subject, depending on the number of

24

Figure 3.1: Example of CS applied to photography.

body parts to be scanned and the needed resolution. Through CS, though,
it would be possible to scan at significant less resolution while keeping image
quality inaltered, thus reducing drastically scanning time.

Compressed Sensing is an active field of research, and is day by day
been developed further. Rice University keeps an updated list of almost any
research and publication regarding CS. For an in-depth analysis of CS, we
suggest reading some other publication listed on the online database [12].

Now, we shall try and explain deeply how CS allows to sample less than
needed.

3.2 Recovery Approach

Let us suppose that a continuous-time signal x(t), when expressed in a
specific basis Ψ, presents coefficients which are either much bigger than
zero or near-zero. If we removed those near-zero coefficients, we would
obtain a signal x̃(t) which is the sparse, or equivalently the lossy-compressed,
representation of x(t).

What we aim to do is sampling directly that signal x̃(t), obtaining the
sparse signal x̃[n]. So let us now introduce the specific concept of sparsity.

Definition 3.1 (k-Sparse Signal). A discrete time signal x̃[n] is said to be
k-Sparse if its Support {i : x[i] 6= 0} has cardinality less or equal to k. [13]

The first way we can think to obtain the sparse signal is by sampling
directly in the Ψ domain. This certainly would allow us to recover the
signal x̃[n]. Yet, this approach does not work. First, we would need to
know beforehand which is the correct basis to sample in, a feature we do
not always possess. Second, this approach is not solid to variations: if the

25

signal changed, the basis could change as well, and we’d need to readapt
to it. But changes aren’t immediate, and we could end up sampling in the
wrong basis, rendering unuseful all our work.

What CS practically does is looking for a general sampling basis, which
allows us to obtain random components of the signal. This seems mean-
ingless at first, but it is the best approach possible. First, in this way we
can develop a general solution which applies to each and every signal we
sample, indipendently on the basis in which they have sparse representation.
Thus our system would be solid to variations, and wouldn’t require previous
knowledge on the signal, at all.

This approach is known as Incoherent Sampling. In fact, the figure of
merit on which a basis is chosen is the Coherence it has with the basis
in which the sampled signal is sparse. Here follows a proper definition of
coherence.

Definition 3.2 (Coherence). The coherence between the sensing basis Φ
and the representation basis Ψ is the greatest correlation between two of
their vectors, i.e.

µ(Φ,Ψ) =
√
N · max

1≤i,j≤N
|〈φi, ψj〉|. (3.1)

The less two basis are coherent, the more general will be the samples we
obtain. An immediate example is that of spike-basis φi[n] = δ[n − k] (in
time domain) and the normalized Fourier basis of eq.(1.15) (in frequency
domain). When we sense with the first base and sample in the second base,
we obtain maximum incoherence, i.e. µ(Φ,Ψ) = 1.

The most stunning results, though, are obtained when we deal with
random orthonormal basis. With high probability, the coherence between
a random basis Φ and any orthonormal basis Ψ is about

√
2logn [14]. By

extension, random waveforms φk with independent identically distributed
entries, e.g. Gaussian, will also exhibit a very low coherence with any fixed
representation Ψ, which is exactly what we need.

This has a highly valuable implication: as random basis have low coher-
ence with most basis, then we can always use as sampling base pure White
Noise. This is stunning, as what we usually aim to remove from most of
physical systems is exactly noise.

After selecting the most incoherent base, thus, we need to develop a
worthy system to recover our signal. Yet, as what we aim to do is to recover
the correct signal from less samples than what is traditionally needed, there
are infinite possible reconstructions of the signal. Then, we need to impose
specific conditions on the signal we want to retrieve. This was already done,
though, when we introduce the concept of sparsity. The recovered signal
must be the sparsest signal possible.

26

What would be best to use is `0-norm minimization, i.e. minimizing a
norm which counts the number of non-zero entries in a signal. Unfortunately,
solving `0-norm minimization issues is infeasible, since it is both numerically
unstable and NP-complete [11].

Luckily, as we anticipated, it has been demonstrated by David L. Donoho
[15] that, for most systems, optimization based on the `1-norm can exactly
recover sparse signals and closely approximate compressible signals with
high probability, provided enough samples are accessible.

The optimization problem is stated as follows.

Remark 1 (`1-Norm Optimization Problem). Suppose we are able to observe
only a subset M of length m < N of the ak coefficients of x when expanded in
an orthonormal basis Ψ. The proposed reconstruction x̃ is given by x̃ = Ψã,
where Ψ is the representation matrix and ã is the solution proposed to the
convex optimization

min
ã∈Rn

||ã||`1 subject to ak = 〈ψk,Ψã〉, ∀k ∈M ⊂ {1 . . . N} (3.2)

Through this minimization, we are almost sure to recover the correct
signal, provided enough samples are available. The inquiry on the minimum
number of samples needed to perform exact recovery requires a section of
its own.

3.3 Compressed Sampling Theorem

We can also formalize the intuitions about CS we introduced so far by defin-
ing a specific sampling theorem.

Let x be a signal with sparse x̃ = Ψã representation in a certain or-
thonormal basis Ψ, and let {ak} be its set of coefficients such that ak =
〈x, ψk〉 = 〈Ψã, ψk〉. We can recover the x̃ signal as we saw in the previous
paragraph. Let us now discuss the the minimum number of samples needed
to recover the signal with negligibile error.

Theorem 3.3.1 (Of Exact Signal Recovery). [14] Fix x ∈ Rn and suppose
that the coefficient sequence a of x in the basis Ψ is k-sparse. Select m
measurements in the Φ domain uniformly at random. Then if

m ≥ C · µ2(Φ,Ψ) · k · log n (3.3)

for some small positive constant C, the solution to the optimization problem
(3.2) is exact with overwhelming probability. In details, if the constant C
is of the form 22(δ + 1) in eq.(3.3), then the probability of success exceeds
1−O(N−δ).

This theorem has some important implications, which emphasize its gen-
erality:

27

1) The role of coherence is clear: the smaller the coherence, the fewer
samples are needed, hence CS emphasis on low coherence systems.

2) There is no loss of information even when measuring a set of m coeffi-
cients which may be far less than the signal size apparently demands.
In case the coherence is close to 1, then C ·k · log n < n samples suffice
for exact recovery.

3) The algorithm does not assume any knowledge on the number of non-
zero coordinates of a, their location, or their amplitudes, which we
assume are all completely unknown a priori. Simply, if the signal
happens to be sufficiently sparse, exact recovery occurs.

3.4 Applications

Practical examples of CS cannot be found yet in consumer’s products. By
the way, its computational approach could one day lead to low-cost equiva-
lents of actual expensive technologies, which would then need just a proces-
sor unit to perform what today is made physically.

Let us now give a quick look to some projects which consider CS appli-
cations. Most of the projects deal with Imaging, which was the first ideal
application of CS even before its theory was totally defined.

3.4.1 Lensless Camera

An immediate and impressive example, on the line of the previously intro-
duced One Pixel Camera [10], is a project which has been developed by the
Bell labs in the last months and is called Lensless Camera [16]. It is the
latest application of CS to image sampling, and, as of now, promises to grant
an improvement over modern image acquisition.

Each and every camera which exists in the modern age is affected by a
simple, often overlooked, issue: the lens which allows to obtain images also
causes some visible effects of distortion near the margins of the sampled
image. Bell’s solution would not be affected by this issue: a matrix of
pixels acts as a matrix of objectives, which capture light without the need
of any lens, and a CS algorithm reconstructs the image from randomized
samples. By doing so, first there appear to be no distortions. The light is
caught directly, and each sensor allows rough reconstruction of the image,
which CS exploits to recover the final image. Second, the sensor definition
may simply be increased by joining together matrix units. This is in a way
different from modern CMOS technology, which requires the sensors to be
implanted onto a chip sensor and requires new printing to increase the sensor
resolution.

28

It must be clear that these features are not yet fully enstablished, as
the Lensless Camera is still an experiment. Yet, if developed correctly, they
would offer new insights onto image sampling techniques.

3.4.2 Sparse MRI

As stated at the beginning of the chapter, CS finds its natural fit also in
MRI [17]. Magnetic Risonance Imaging is a medical imaging technique
used in radiology to visualize internal structures of the body in detail. The
machinery is composed of a narrow tunnel inside which the patient should
lay still. Depending on the level of detail needed, scan times may be quite
long, also up to 20-30 minutes, and patients who cannot keep still for all
that time or, as example, who suffer from claustrophobia could be unable
to undergo a complete scan.

With CS, though, scan times could be lower dramatically, and quality
would not degrade at all. There are many types of MRI but most of them
satisfy the hypothesis of Compressed Sensing, and thus it may be imple-
mented successfully.

3.4.3 Compressive Radar Imaging

Compressed Sensing would also carry benefits to radar systems [18]. By
citing from the cited paper, ”CS has the potential to make two signicant
improvements to radar systems: (i) eliminating the need for the pulse com-
pression matched filter at the receiver, and (ii) reducing the required receiver
analog-to-digital conversion bandwidth. These ideas could enable the design
of new, simplied radar systems, shifting the emphasis from expensive receiver
hardware to smart signal recovery algorithms”.

There are many other possible applications of CS to vast fields of modern
technology, but the role of CS in this thesis is introductory to the following
chapter, thus we cannot list them all. Every further information can be
found on Rice University database [12].

29

30

Chapter 4

Nearly Optimal Sparse
Fourier Transform

This section is based on the latest instance of sparse Fourier transform [19]
developed by a research team of the Massachussetts Institute of Technology,
or MIT. The team was composed by four people: Professors Piotr Indyk and
Dina Katabi, and PhD Candidates Haitham Hassenieh and Eric Prince.

Just like in Compressed Sensing, suppose that a N -dimensional signal is
k-sparse in the frequency domain. Then its Fourier transform can be repre-
sented succinctly using only k coefficients, and computing an almost exact
DFT would be possible in sub-linearithmic time. Furthermore, even if the
signal is not sparse, we can aim to recover the best k-sparse approximation
of its Fourier transform to improve over standard DFT running time.

To this account, the team developed two algorithms which are able to
improve not only over naive DFT algorithms, but also over the Fast Fourier
Transform.

The algorithms are designed to handle both cases: the exactly sparse
case, and the general case. The first requires the signal to be at most k-
sparse, and the algorithm is the fastest; the latter applies to a generic input
signal and aims to approximate its sparse representation. This causes the
second algorithm to be slightly more complex and to require that a minimum
number of samples are available.

For both algorithms the probability of success is not 100%. For the sake
of explanation, we shall overlook this at first, but we shall later return on
this matter.

4.1 Objectives

Sublinear sparse Fourier analysis is not a brand new concept. This field
has witnessed many significant advances in the past two decades, and there
exists many algorithms which exploit sparsity to improve over FFT. Yet,

31

two main issues affect the actual state of art:

1. There exists no algorithm which improves over the FFT’s runtime for
the whole range of sparse signals, i.e. k = o(N).

2. Most algorithms are quite complex, and suffer from large ”big-Oh”
constants.

The MIT team aimed to design two algorithms which would not suffer
from these issues. For what concerns the exactly sparse case, they obtained
exactly what they wanted. The key property is the O(k logN) complexity,
which allows to obtain o(N logN) complexity for any k = o(N). Moreover
the algorithm is quite simple, and presents small ”big-Oh” constants.

For the general case, which requires a greater degree of approximation,
the running time is at most one logN/k factor away from the oprimal run-
time, withO(k logN log(N/k)), and the ”big-Oh” constant is slightly greater

than in the exactly sparse case. Moreover, the vector X̂ ′ computed by the
algorithm satisfies the following `2/`2 guarantee:

||X̂ − X̂ ′||2 ≤ C min
k−sparse Ŷ

||X̂ − Ŷ ||2, (4.1)

where C is some approximation factor and the minimization is over k-
sparse signals.

Let us see how the algorithms work.

4.2 Basic Understanding

In theory, Sparse Fourier algorithms work by hashing the Fourier coefficients
of the input signal into a small number of bins.

Figure 4.1: Representation of the binning process.

A linear approach would then require that, for each bin, we calculate two

values, ûh and û′h, which are respectively the sum and the weighted sum of
the Fourier coefficients stored inside the h-th bin

ûh =
∑

n∈h-th bin

X̂[N], û′h =
∑

n∈h-th bin

n · X̂[N]. (4.2)

32

In case in each bin falls just one coefficient, then we can recover the

coefficient immediately as n = û′h/ûh. With the hypothesis that the signal
is sparse in the frequency domain, and by using a randomized hash func-
tion, there is a high probability that each bin contains just one significant
coefficient. Thus, ûh would be a good estimation of that coefficient value.

To estimate the index of the coefficient, though, it is not possible to
use the weighted sum, as this would require the knowledge of all the n
Fourier coefficients. Moreover, there are more than one coefficient per bin,
thus the index approximation must be the best possible. To obtain this,
an alternative approach is used, which could though return a wrong index.
So, the process must be repeated to ensure that each coefficient is correctly
identified.

Usually, each iteration the number of coefficients which are not identified
correctly is a constant number k′. For the exactly sparse case, k′ = k/2,
while for the general case k = k/4. If we remove those k − k′ coefficients
from the signal, then for the following iteration the signal can be considered
k′-sparse. This allows to reduce both the window size and the number of
bins, i.e. B, and thus to reduce the total time complexity. We see that the
identified coefficients can be removed from the bins rather than from the
signal, as the latter is a costly operation.

By correctly recovering all the k coefficients, we obtain a correct Fourier
transform of the signal in case it is at most k-sparse in frequency domain,
or the best k-sparse approximation in case the signal is not sparse at all.

This is the idea behind how the algorithm works. In practice, though,
each operation must meet certain requirements:

1. Storing needs to be done in sublinear time, thus it is performed through
aN -dimensional filter vector with particular properties, as later shown.

2. Location and estimation methods need to be as fast as possible, both
in the exactly sparse and in the general case.

3. As the algorithm has been implemented iteratively, a fast method for
updating the signal is required, so that identified coefficients are not
considered in future iterations.

The algorithms were implemented by adapting previously designed tech-
niques and by designing brand new ones, thus we will now introduce them
in detail.

4.3 Flat Filtering Windows

The filter used for the hashing is a N -dimensional shifted filter vector G,
whose Fourier transform we will call Ĝ. The filter needs to be concentrated

33

both in time and in frequency. That is, G must be zero except for a small
number of coefficients and also Ĝ must be negligible except at a small frac-
tion (∼ 1/k) of the frequency coordinates, corresponding to the filter’s pass
band region.

The filter permits to analyse just a fraction of the whole signal at a
time. In this way, instead of computing the N -dimensional DFT, we can
compute the B-dimensional DFT of this section, where B is the support of
the filter, in O(B logB) time. These B Fourier coefficients result to be a
subsampling of the of the N -dimensional DFT applied to the first B therms
of the signal, and we can hash these values correctly inside each bin. This is
kind of analogous to summing each Fourier coefficient inside the bin, with
the difference that we are also adding some noise due to the subsampling.
The noise added results to be negligible if the signal is sparse, while it must
be taken into account in the general case.

To build a filter which satisfies the first constraint, a box-car function
would be enough, i.e. an ideal square wave with infinite period. Although,
Fourier transform of a box-car is nothing but a sync, which decays to zero
at infinity, thus causing what we could call leakage in frequency. That is,
the spectrum that would go inside a bin may ’leak’ in the nearby bins.

What we would like to happen is that our filter behaved as a box-car
function in frequency, so that there would not be any leakage. The best
solution in this direction is to use a Gaussian function.

Lemma 4.3.1. Let G be a gaussian with σ = B
√

logN , H a box-car filter
of length N/B, and F the filter we want to design. Then, F̂ = Ĝ ∗ H
is a filter which has (pass) band N/B and support O(B logN). Moreover,
leakage can happen at most in one other bin. Figure (4.3.1) shows the time
and frequency graphs of this filter.

Figure 4.2: Time and frequency plots of the F̂ filter.

The filters used in the algorithm are called Flat Filtering Windows, and
were designed together with an earlier version of the sparse Fourier trans-
form. A Flat Filtering Window is a couple (G, Ĝ′) where both G and Ĝ′ are

34

like the previously defined filters, and in addition Ĝ′ satisfy certain proper-
ties [19]. Further insight can be found in the published article [20].

A particularity of these filters is that they present a special region within
their pass band, called super-pass region, in which Ĝ is relatively larger
compared to the values assumed in the rest of the pass band. This region
is shown in Figure(4.3). We say that a coefficient is isolated if it falls into a
filter’s super-pass region and no other coefficient falls into filters pass region
[19]. As the super-pass region is a constant fraction of the pass region, the
probability of isolating a coefficient is constant. When a coefficient becomes
isolated, then it can be estimated and located.

Figure 4.3: Frequency plot of a Flat Filtering Window, with visual subdivi-
sion in regions.

4.4 Location and Estimation

We briefly spoke of the estimation method in Section 4.2, and here we
just need to formalize it. As there likely falls just one ”big” coefficient
inside each bin, the value contained inside the bin can be considered a good
approximation of the coefficient value. Thus, estimation is straight forward
in both cases. The location method, instead, depends on whether the exactly
sparse case or the general case is handled.

Before diving into the details, a general observation requires to be done
for both of the cases. Note that the value of the identified coefficient is
supposed to be the most significant within the bin, some magnitudes larger
than the rest of the coefficients. This, though, is true only if the coefficient
fell inside the super-pass region of the filter. Otherwise, if the coefficient falls
into the bad region of the filter, its value could be softened up to the point
of not being relevant anymore, and thus the estimation would be wrong.
Moreover, if the coefficient was also isolated during filtering, then we can be
sure that the index estimation is correct, for none other coefficient falls in
the N/B window. Otherwise, index estimation could be flawed by the noise

35

caused by the other coefficient. Thus a necessary condition to locate and
estimate a coefficient, is that it is isolated.

4.4.1 Exactly Sparse Case

In the exactly sparse case, location is based on the difference in phase be-
tween two samples of the signal, sampled at a time unit of difference. The
bins are represented by a vector û of length B = O(k). Another vector, û′

is used to store the samples after the time shift.

For each step of the algorithm û and û′ are computed by hashing and
summing the Fourier coefficients of the input signal. The coefficients stored
inside û′ differ from the original coefficients by an e−2π n

N factor, due to
DTFT property of time-shifting (see eq.(1.25)) inherited by DFT. Thus
we can obtain the index n of the h-th bin’s largest coefficient with good

fidelity, by dividing ûh/û
′
h. This approach was inspired by the one used to

estimate frequency offset in orthogonal frequency division multiplexing, a
telecomunications coding technique (OFDM) [21].

4.4.2 General Case

For what regards the general case, preliminary experiments showed [19] that
the two-samples approach works surprisingly well if more than two samples
are used. Still, in theory this should not be possible. When time shifting a
signal which is not sparse, the noise caused by the other frequencies cannot
be ignored anymore, and thus the phase difference cannot be considered
linear anymore in the index of the coefficients. In fact, it results to be
2π n

N + ν, where ν is a random factor due to the noise [19].

However, the disturbance caused by the noise must remain limited within
certain values, that is E[ν2] is limited. Then, we need to search for the
correct value of n among the N/k elements inside the bucket, and this in
O(logN/k) time.

A first solution is to perform measurements by time shifting the filter ran-
domly, using β ∈ [N]. To select the best n candidate, a minimum distance
criterion based on the phase is used. O(logN/k) random measurements
would then suffice to distinguish among the N/k coefficients, because each
measurement would likely be within π/4 from its corresponding real value
and probably further apart from any other real value. Yet, by doing so, the
choice would be done in linear time complexity, as N/k checks should be
done.

Instead, the algorithm performs a t-ary search on the location for t =
O(logN). At each O(logt(N/k)) level, the region is split into t consecutive
subregions of size w. The time shift is different this time, and allows the
decoding to be done in O(t log t), with probability of failure t2. By repeating
logt(N/k) times, we can find n precisely. The total number of measurements

36

is then O(log t logt(N/k)) = O(log(N/k)), and the decodification (location)
time is O(log(N/k) log(n)).

4.5 Updating the signal

We noted that the aforementioned techniques locate a coefficient correctly
only if it has been isolated. During each filtering step, each coefficient be-
comes isolated only with constant probability. Therefore the filtering process
needs to be repeated to ensure that each coefficient is correctly identified.

Repeating the filtering right away O(logN) times would not be the best
idea, as it would cause a total running time of O(k log2N). Instead, we can
reduce the filtering time by removing the identified coefficients. Subtracting
them from the signal is a computationally costly operation, thus the coeffi-
cients are removed from the bins obtained by filtering the signal. This can
be done in time linear in the number of subtracted coefficient.

For the exactly sparse case, the cost of filtering the signal is thenO(B logN),
where B is the number of bins. b is set to O(k′), where k′ is the number
of yet-unidentified coefficients. Thus, initially B is equal to O(n), but its
value decreases by a constant factor each iteration. In total, removing the
coefficients requires O(k) time.

4.6 Total Time Complexity

We can now show the total time of the algorithms.

For the exactly sparse case:

• Index location and estimation is immediate.

• The removal of the coefficients from the bin takes O(k) time in total.

• Hashing is each time done in O(B logN) time, where B halves each
iteration.

• The first iteration dominates over the others, with B = k.

Thus the total time complexity results to be O(k logN + k) = O(k logN).

For the general case:

• To identify the coefficients O(log(N/B)) measurements are needed.

• Coefficient value estimation is immediate.

• The removal of the coefficients from the bin takes O(k) time in total.

37

• Hashing is then done in O(B logN + k) time, where B halves each
iteration.

• The first iteration still dominates over the others, with B = k.

Thus the total time complexity results to be O((B logN + k)log(N/B)) =
O(k logN log(N/k)).

4.7 The Role of Chance

Now that we described the general behaviour of the algorithms, it is time to
resume that matter which we have overlooked up to now: the algorithms’
probability of success.

We must note that the effective time complexities are asymptotically the
same as the ones we showed in the previous section, but the therms on which
they are evaluated are different. This is due to the fact that most events,
starting from the hashing, have to deal with random probability, which is
taken into account inside the algorithms.

We now show both the algorithms and make some considerations on the
role that chanche has in the recovery of the correct sparse signals.

4.7.1 Algorithm for the Exactly Sparse Case

The pseudocode for the exactly sparse case algorithm is shown as Algorithm
4.8.1.

Let us analyse NoiselessSparseFFTInner. Each iteration the win-
dow size is set at B = k′/β for a small β constant; then a variable σ is chosen
randomly among the odds numbers in [N], and another variable b is chosen
randomly as well. These are the parameters for the randomized hash func-
tion. Defined πσ,b(n) = σ(n− b) mod N , the bin in which each coefficient is

mapped to is hσ,b(n) = round(πσ,b(n)B/N). Set S = supp(X̂ − Ẑ).
On the probability space induced by σ, we define two events which can

happen:

• ”Collision” event Ecoll(n) holds iff there is leakage to another bin due
to the non ideal flat window function, i.e. iff hσ,b(n) ∈ hσ,b(m) with
m ∈ S,m 6= n.

• ”Large Offset” event Eoff (n) holds iff the coefficient falls in a bad
region (i.e. if the offset from the center frequency of the bin is too
large).

It can be proved [19] that:

• Pr[Ecoll(n)] ≤ 4|S|/B, where |S| is the number of not-yet identified
coefficients.

38

• Pr[Eoff (n)] ≤ α, where α] is the parameter which defines the bad
region size in the flat filtering window GB,α,δ.

In case neither of these cases happen, then estimation and location are
performed correctly.

The procedure HashToBins cares about the hashing of the coefficients,
and returns the vector of bins û. The values stored depend from the flat
window function (G, Ĝ′), which are defined at each iteration by the values B,
α and δ. δ is a constant which must be chosen to grant good performances.
In the case, δ = 1/(16n2L), where L is a value such that X̂[N] ∈ {−L·}.

The variable Ẑ stores in every instant the computed sparse Fourier trans-
form of x. Set ζ = {n ∈ supp(Ẑ) : Eoff (n) holds}, then the running time of

HashToBins results to be O(Bα log(1/δ) + |supp(Ẑ)|+ ζ log(1/δ)).

The total running time and precision of the algorithm are defined from
the main loop NoiselessSparseFFT.

Define St = supp(X̂ − Ẑ). Each iteration is considered successful iff
|St|/|St−1| ≤ 1/8, i.e. if the number of coefficients identified is below a
certain threshold. Then, if we consider the events E(t) that occur iff the
number of precedent successful iterations is greater than t/2, we can prove
that

∑
t Pr[E(t)] ≤ 1/3. Thus

• the probability that the all the coefficients are identified correctly is
greater than 2/3.

The running time of NoiselessSparseFFT is dominated by O(logN)
executions of HashToBins. Since large offset events happen in median
ζ = α|supp(Ẑ)| times and 1/δ ∝ N2, the expected running time of each
execution of HashToBins is O(Bα logN + k + αk log(1/δ)) = O(Bα logN +

k+αk logN). Setting α = Θ(2−n/2) and β = Θ(1), as in the algorithm, the
expected running time round n becomes O(2−n/2k logN+k+2−n/2k logN).
Therefore,

• the total expected running time for NoiselessSparseFFT isO(k logN).

4.7.2 Algorithm for the General Case

The algorithm for the General case is divided into Algorithms 4.8.2 and 4.8.3.
This case is not too different from the previous, yet it is more complex.

Let’s start from the SparseFFT procedure. As in the noiseless case,
we define πσ,b(n) = σ(n− b) mod N and hσ,b(n) = round(πσ,b(n)B/N). We
say that hσ,b(n) is the bin that frequency n is mapped into. Moreover, we
define h−1

σ,b(m) = {m ∈ [N]|hσ,b(n) = m}.

39

Define the approximation error on x as

Err(x, k) = min
k-sparse y

||x− y||2. (4.3)

In each iteration of SparseFFT, define X̂ ′ = X̂ − Ẑ, and let S =
{n ∈ [N] : |X̂ ′|2 ≥ ερ2/k}, where ε is a small number and ρ is a threshold
which takes in consideration the approximation error on x and some other
parameters.

It can be shown that, with parameters ε, R = O(log k/ log log k) and
B = Ω(Ck

α2ε
), for C larger than some fixed constant,

• SparseFFT recovers Ẑ(R+1) with

||X̂ − Ẑ(R+1)||2 ≤ (1 + ε)Err(X̂, k) + δ||X̂||2. (4.4)

in O(kε log(N/k) log(N/δ)) time.

• The probability that SparseFFT computes the correct values with
the above precision is at least 3/4.

4.7.3 Lower Bounds

As we said in the introduction, a minimum number of the signal samples
must be available in order for the algorithm to work correctly.

If one assumes that the FFT is optimal and hence the DFT cannot be
solved with less than O(N logN) samples, this algorithm results optimal as
long as k = NΩ(1). Thus it requires a minimum of Ω(k log k) samples in
order to have a good approximation.

For the general case, the result the team obtained can be translated into
the language of Compressed Sensing:

Theorem 4.7.1. Let F ∈ CN×N be orthonormal and satisfy |Fi,j | = 1/
√
N

for all i, j. Suppose an algorithm takes m adaptive samples of Fx and com-
putes z with

||x− z||2 ≤ 2 min
k-sparse y

||x− y||2 (4.5)

for any x, with probability at least 3/4. Then m = Ω(k log(N/k)/ log logN).

Corollary 4.7.2. Any algorithm computing the Fourier transform must ac-
cess Ω(k log(N/k) log logN) samples from the time domain.

Note that, if the samples were chosen adaptively, thenm = Ω(k log(N/k)).
As we pointed out in Chapter 3, though, adaptive sampling is not always
the right choice, and algorithm versatility would on contrary suffer from this
choice.

40

4.8 Testing the Exactly Sparse Case

We now show some tests done with the discussed algorithm for the exactly
sparse case. The implementation source files can be found on the main site
[23] under the section Code. The algorithm were written in C++ language
and tested under Ubuntu 10.04 and 11.10 OS versions. All the relative
documentation con be found in the corresponding paper [24].

The code implements a testing environment, in which the SFFT algo-
rithm is compared to the FFTW of the same input. The structure of the
benchmark is the following:

INPUT: ./experiment -N (N dimension) -K (K dimension) (input)

OUTPUT:

RUNNING EXPERIMENT: n= (N dimension), k= (K dimension)

Simulation:

**

Projected error rate:

Expected running time:

**

sFFT filter parameters for: n= , k= .

**

Comb Filter: (parameters)

Location Filter: (parameters)

Estimation Filter: (parameters)

Window size: Location Filter Estimation Filter

Noise in filter: Location Filter Estimation Filter

**

sFFT Results

**

Total sFFT time:

ERROR:

K= ; MISSED (estimation, result) = L1 ERROR=

**

FFTW Results

**

Time to create FFTW plan:

Time to run FFTW :

**

We shall display the benchmark for a positive case, in which SFFT bests
FFTW, and for a negative case, in which SFFT takes longer than FFTW
routines.

4.8.1 Positive Case

18. SFFT 1.0 (N = 4194304, K = 50, SNR = 0dB)

INPUT: ./experiment -K 50 -B 4 -E 0.2 -L 15 -l 3 -r 2 -t 1e-6 -e 1e-8 -S 1

OUPUT:

RUNNING EXPERIMENT: n=4194304, k=50.

41

Simulation:

**

Projected error rate: 0.00103322 (5.11769e-06 per large frequency)

Expected running time: 0.0349159

**

SNR = 1.00033 / 0.00 dB

sFFT filter parameters for: n=4194304, k=50.

**

Comb Filter: none

Location Filter: (numlobes=12349.0, tol=1e-06, b=448) B: 100/8192 loops: 2/3

Estimation Filter: (numlobes=617.0, tol=1e-08, b=10468) B: 512 loops: 15

Window size: Location Filter : 114061; Estimation Filter : 7507;

Noise in filter: Location Filter : 6.09389e-08; Estimation Filter 1.70111e-09

**

sFFT Results

**

Total sFFT time: 0.030106

Time distribution:

scoretable Comb perm+?lter grouping estimation stepB+C other total

0.005050 0.000000 0.015866 0.002781 0.004032 0.001417 0000960 0.030106

16.8% 0.0% 52.7% 9.2% 13.4% 4.7% 3.2% 100.0%

ERROR:

K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 3.41686

(0.0683372 per large frequency)

**

FFTW Results

**

Time to create FFTW plan: 0.000276

Time to run FFTW : 0.296326

**

4.8.2 Negative Case

1. SFFT 2.0 (N = 65536, K = 50)

INPUT: ./experiment -N 65536 -K 50 -B 4 -E 2 -M 128 -m 6 -L 10 -l 4 -r 2

-t 1e-8 -e 1e-8

OUTPUT:

RUNNING EXPERIMENT: n=65536, k=50

Simulation:

**

Projected error rate: 0.000181988 (0.000158854 per large frequency)

Expected running time: 0.0125901

**

sFFT filter parameters for: n=65536, k=50.

**

Comb Filter: loops: 6 mod: 100/8192

Location Filter: (numlobes=1810.0, tol=1e-08, b=47) B: 100/1024 loops: 2/4

Estimation Filter: (numlobes=905.0, tol=1e-08, b=111) B: 512 loops: 10

Window size: Location Filter : 22023; Estimation Filter : 11011;

Noise in filter: Location Filter : 6.22353e-10; Estimation Filter 1.60315e-09

**

sFFT Results

**

42

Total sFFT time: 0.005218Time distribution:

scoretable Comb perm+filter grouping estimation stepB+C other total

0.000011 0.002111 0.002404 0.000084 0.000203 0.000376 0.000028 0.005218

0.2% 40.5% 46.1% 1.6% 3.9% 7.2% 0.5% 100.0%

ERROR:

K=50; MISSED (estimation, result) = (0, 0); L1 ERROR= 8.84975e-07

(1.76995e-08 per large frequency)

**

FFTW Results

**

Time to create FFTW plan: 0.000397

Time to run FFTW : 0.001631

**

4.8.3 Result analysis

The tests on the exactly sparse case have shown that SFFT improves over
FFTW for values of k/N < 3%. For values greater than the 3% of N ,
the algorithms cannot improve over FFTW. Further optimizations would
probably allow to attain this feature, but for the time being the algorithms
cannot beat the FFTW for all k.

It is to note, though, that the SFFT runtime depends almost exclusively
on k. In fact, as we see in the first graph of Figure 4.8.3, fixing k and
increasing the size N of the signal leaves the SFFT running time almost
unchanged, while the FFTW running time grows linearly depending on N .
This was to be expected, obviously, as the time complexities of the two
algorithms are O(k logN) for the SFFT and O(N logN) for the FFTW.

Figure 4.4: C++ implementation of SFFT algorithm compared to FFTW,
Run Time vs Signal Size.

43

Figure 4.5: C++ implementation of SFFT algorithm compared to FFTW,
Run Time vs Signal Sparsity.

44

procedure HashToBins(x, Ẑ, Pσ,a,b, B, δ, α)
Compute ŷjN/B for j ∈ [B], where y = GB,α,δ · (Pσ,a,bx)

Compute ŷ′jN/B = ŷjN/B − (Ĝ′B,α,δ ∗ P̂σ,a,bz)jN/B for j ∈ [B]

return û given by ûh = ŷ′jN/B.
end procedure
procedure NoiselessSparseFFTInner(x, k′, Ẑ, α)

Let B = k′/β, for sufficiently small constant β.
Let δ = 1/(4n2L).
Choose σ uniformly at random from the set of odd numbers in [N].
Choose b uniformly at random from [N].
û← HashToBins(x, Ẑ, Pσ,0,b, B, δ, α).

û′ ← HashToBins(x, Ẑ, Pσ,1,b, B, δ, α).
ŵ ← 0.
Compute J = {j : |ûh| > 1/2}.
for j ∈ J do

a← ûj/û
′
j .

i← σ−1(round(φ(a) n2π)) mod n. . φ(a) denotes the phase of a.
v ← round(ûj).
ŵi ← v.

end for
return ŵ

end procedure
procedure NoiselessSparseFFT(x, k)

Ẑ ← 0
for t ∈ 0, 1, . . . , log k do

kt ← k/2t, αt ← Θ(2−t).
Ẑ ← Ẑ + NoiselessSparseFFTInner(x, kt, Ẑ, αt).

end for
return Ẑ

end procedure

Algorithm 4.8.1: Exact k-sparse recovery

45

procedure SparseFFT(x, k, ε, δ)
R← O(log k/ log log k)
Ẑ(1) ← 0
for r ∈ [R] do

Choose Br, kr, αr
Rest ← O(log(Br

αrkr
))

Lr ← LocateSignal(x, Ẑ(r), Br, αr, δ)
Ẑ(r+1) ← Ẑ(r) + EstimateValues(x, Ẑ(r), 3kr, Lr, Br, δ, Rest).

end for
return Ẑ(R+1)

end procedure
procedure EstimateValues(x, Ẑ, k′, L, B, δ, Rest)

for r ∈ [Rest] do
Choose ar, br ∈ [N] uniformly at random.
Choose σr uniformly at random from the set of odd numbers in

[N].
û(r) ← HashToBins(x, Ẑ, Pσ,ar,b, B, δ).

end for
ŵ ← 0
for i ∈ L do

ŵi ← medianr û
(r)
hσ,b(i)

ω−arσi. . Separate median in real and

imaginary axes.
end for
J ← arg max|J |=k′ ‖ŵJ‖2.
return ŵJ

end procedure

Algorithm 4.8.2: k-sparse recovery for general signals, part 1/2.

46

procedure LocateSignal(x, Ẑ, B, α, δ)
Choose uniformly at random σ, b ∈ [N] with σ odd.

Initialize l
(1)
i = (i− 1)N/B for i ∈ [B].

Let w0 = N/B, t = logN, t′ = t/4, Dmax = logt′(w0 + 1).
Let Rloc = Θ(log1/α(t/α)) per Lemma ??.
for D ∈ [Dmax] do

l(D+1) ← LocateInner(x, Ẑ, B, δ, α, σ, β, l(D), w0/(t
′)D−1, t, Rloc)

end for
L← {π−1

σ,b(l
(Dmax+1)
j) | j ∈ [B]}

return L
end procedure

. δ, α parameters for G, G′

. (l1, l1 + w), . . . , (lB, lB + w) the plausible regions.
. B ≈ k/ε the number of bins

. t ≈ logN the number of regions to split into.
. Rloc ≈ log t = log logN the number of rounds to run

procedure LocateInner(x, Ẑ, B, δ, α, σ, b, l, w, t, Rloc)
Let s = Θ(α1/3).
Let vj,q = 0 for (j, q) ∈ [B]× [t].
for r ∈ [Rloc] do

Choose a ∈ [N] uniformly at random.
Choose β ∈ { snt4w , . . . ,

snt
2w } uniformly at random.

û← HashToBins(x, Ẑ, Pσ,a,b, B, δ, α).

û′ ← HashToBins(x, Ẑ, Pσ,a+β,b, B, δ, α).
for j ∈ [B] do

cj ← φ(ûh/û
′
j)

for q ∈ [t] do

mj,q ← lj + q−1/2
t w

θj,q ← 2π(mj,q+σb)
n mod 2π

if min(|βθj,q − cj | , 2π − |βθj,q − cj |) < sπ then
vj,q ← vj,q + 1

end if
end for

end for
end for
for j ∈ [B] do

Q∗ ← {q ∈ [t] | vj,q > Rloc/2}
if Q∗ 6= ∅ then

l′j ← minq∈Q∗ lj + q−1
t w

else
l′j ←⊥

end if
end for
return l′

end procedure

Algorithm 4.8.3: k-sparse recovery for general signals, part 2/2.

47

48

Conclusions

In this thesis, we introduced a brand new algorithm, known as Sparse Fast
Fourier Transform or SFFT, which aims to improve over the actual state-
of-the-art algorithm for Fourier analysis, the FFT.

We have seen that the algorithm works best when the signal is exactly
sparse, but also that it effectively bests FFT only if the signal is sparse
enough. This issue is minor, as many signals have high degrees of sparsity.
However, the algorithm also supposes that the signal’s length is a power of
two, which could be instead a serious limitation.

The general case solution is still a bit rough, and there remain some open
problems which we haven’t yet dealt with. First, it is not known whether
the runtime could eventually be reduced to that of the exact sparse case.
Second, neither is known whether the precision of the algorithm could be
increased further. Third, if we were able to have an `∞/`2 guarantee instead
of the present `2/`2 one, the algorithm would be significantly more solid.

These points altogether indicate that the SFFT has a lot to grow. As
a matter of fact, since its release, three versions of the algorithm have been
published, and each time there were several improvements. However, it is
undeniable that sparsity could be the key we were looking for to obtain
extremely fast and efficient data acquisition and analysis algorithms. Many
others have tried this road, and SFFT is just the latest - and probably best
- representative. We are sure that the whole sector will develop further and
further in the following years, also on the wave of CS incredible growth. It
is not to exclude that, exactly from this sector, there will eventually rise the
next state-of-the-art.

49

50

Bibliography

[1] Cristina Ronconi, ”Appunti di Geometria”, Univer Editrice, Dicembre,
2002.

[2] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab, ”Signals
& Systems”, Second Edition, Prentice Hall International, Boston, Mas-
sachussetts, August 16, 1996.

[3] James S. Walker, ”Fast Fourier transforms”, CRC press, 1996.

[4] Michael T. Heideman, Don H. Johnson, C. Sidney Burrus, ”Gauss and
the History of the Fast Fourier Transform”, IEEE ASSP Magazine, Oc-
tober, 1984.

[5] Matteo Frigo and Steven G. Johnson, The Design and Implementation
of FFTW3”, Proceedings of the IEEE 93, pp. 216-231, 2005.

[6] Matteo Frigo and Steven G. Johnson, ”benchFFT,
www.fftw.org/benchfft/, 2005.

[7] Intel R©Labs, http://software.intel.com/en-us/intel-ipp, 2013.

[8] Vlodymyr Myrnyy, ”A Simple and Efficient FFT Implementation in
C++”, DrDobbs.com, Dr. Dobb’s, May 10, 2007.

[9] Rice University Homepage, www.rice.edu, Rice University, Houston,
Texas, 2013.

[10] Marco F. Duarte, Mark A. Davenport, Dharmpal Takhar, Jason N.
Laska, Ting Sun, Kevin F. Kelly, and Richard G. Baraniuk, Single Pixel
Imaging via Compressive Sampling, IEEE Signal Processing Magazine,
March 2008.

[11] Dongdong Ge, Xiaoje Jiang, and Yinyu Ye, ”A Note on the Complexity
of Lp Minimization”, Stanford University, Stanford, California, Septem-
ber 3, 2009.

[12] Compressed Sensing Resources, dsp.rice.edu/cs, Rice University, Hous-
ton, Texas, 2013.

51

[13] Emmanuel J. Candes, ”Compressive Sampling”, Int. Congress of Math-
ematics, 3, pp. 1433-1452, Madrid, Spain, 2006.

[14] Emmanuel J. Candes, Michael B. Wakin ”An Introduction To Com-
pressive Sampling” IEEE Signal Processing Magazine, pp. 21-30, March,
2008.

[15] David L. Donoho, ”For Most Large Underdetermined Systems of Linear
Equations the Minimal `1-norm Solution is also the Sparsest Solution”,
Stanford University, Stanford, California, September 16, 2004.

[16] Gang Huang, Hong Jiang, Kim Matthews, and Paul Wilford, ”Lensless
Imaging by Compressive Sensing”, Bell Labs, Alcatel-Lucent, Murray Hill,
New Jersey, USA, May 2013.

[17] Michael Lustig, David Donoho, and John M. Pauly, ”Sparse MRI: The
application of compressed sensing for rapid MR imaging”, Magnetic Res-
onance in Medicine, pp. 1182 - 1195, December 2007.

[18] Richard Baraniuk, Philippe Steeghs, ”Compressive radar imaging”,
IEEE Radar Conference, Waltham, Massachusetts, April 2007.

[19] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price, ”Nearly
Optimal Sparse Fourier Transform”, STOC’12, ACM Symposium on The-
ory of Computing, New York, USA, May 2012.

[20] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price, ”Simple
and practical algorithm for sparse Fourier transform”, SODA, 2012.

[21] Juha Heiskala, Juhn Terry, ”OFDM Wireless LANs: A Theoretical and
Practical Guide”, Sams, Indianapolis, Indiana, USA, 2001.

[22] Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss, ”Approximate
sparse recovery: optimizing time and measurements”, STOC, pp. 475-484,
2010.

[23] MIT Staff, ”SFFT: Sparse Fast Fourier Transform”,
groups.csail.mit.edu/netmit/sFFT/index.html, 2012.

[24] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price, ”Sparse
Fast Fourier Transform Code Documentation (SFFT 1.0 and 2.0)”,
STOC’12, ACM Symposium on Theory of Computing, New York, USA,
May 2012.

52

