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ABSTRACT

Nearly scale-invariant primordial power spectrum is one of the key features of cosmic inflation.
The amplitude of the power spectrum as well as its spectral tilt are constrained by modern ex-
periments. To date no sign of deviations from the simplest single-field inflation models has been
observed. On the other hand, realistic models of inflation, meaning particle physics-based models,
contain multiple fields other than the inflaton. The presence of heavy fields coupled to the inflaton
may alter the predictions of the single-field inflation models.

In this thesis we consider the effects of heavy fields on the primordial power spectrum, studying
a generic model which contains massive scalar and fermion fields coupled to the inflaton. The
spacetime background for the quantum fields during inflation is time-dependent due to the ex-
pansion of the Universe and the time translation symmetry is broken. Therefore we expect the
radiative corrections to the inflaton power spectrum to be time-dependent.

The natural theoretical framework to formulate such models is the Schwinger-Keldysh also
known as the in-in formalism. We first introduce the Schwinger-Keldysh formalism. We then
compute the one-loop radiative corrections to the inflaton two-point correlation function due to
the heavy fields; without specifying the inflaton potential at first, keeping the inflationary scenario
general. We perform the computations in a de Sitter spacetime, choosing the initial state at some
initial conformal time τin to be the Bunch-Davies vacuum.

We explicitly single-out, in both the bosonic and fermionic contributions to the one-loop in-
flaton two-point function, the quadratic and logarithmic divergences, in terms of a cut-off, as
expected from the results on the Minkowski background. The analytical analysis is performed
using the WKB approximated mode functions. We then compute numerically the same radiative
corrections, using the full expressions for the solution of the mode functions. We show that the
WKB approximation is a good analytical approximation for massive mode functions and we argue
that it is a good tool to capture the UV divergences of massive fields.

Finally we apply our results to the supersymmetric hybrid inflation model. The bosonic and
fermionic divergences in the radiative corrections carry opposite sign and we show that they cancel
exactly giving rise to a finite total result.

The radiative corrections introduce the presence in the power spectrum of time-dependent fea-
tures of two type. One arises from the evolution of the background. The other is an oscillatory
feature. The scalar and fermion contributions produce a constant shift and this peculiar oscillatory
effects on top of the tree-level primordial power spectrum. Future improvements of CMB mea-
surements may refine our current understanding of the primordial power spectrum and lead to a
possible detection of these effects.
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INTRODUCTION

Cosmic inflation [1, 2] is a very successful fundamental theory in cosmology. It introduces a primor-
dial epoch of accelerated expansion of the Universe. This paradigm provides a natural dynamical
solution to the problems of the Hot Big Bang model related to the initial condition. Moreover the
quantum fluctuations of the inflaton furnish the seeds for the cosmological perturbations observed
today this relation can explain the temperature anisotropy in the Cosmic Microwave Background
and the large scale structure of the Universe.

In the slow-roll scenario for a single-field inflation the spectrum of the primordial perturba-
tions is predicted to be nearly scale invariant and it is consistent with the current observations
[3, 4]. However particle physics-based model of inflation include multiple fields which can cou-
ple to the inflaton and modify the prediction of the single-field scenario. During the inflationary
epoch the peculiar setting in which the fields interact is an expanding Universe: time translation
is broken by the inflating background and one expects the cosmological observable to show a time
dependence. The natural theoretical framework to address this problem is the Schwinger-Keldysh
(or in-in) formalism, in particular if we are interested in including quantum effects in the theory [5].

The goal of the thesis is to compute the one-loop radiative corrections to the two-point function
of the inflaton due to the interaction with heavy scalar and fermion fields. The initial conditions are
chosen at some initial conformal time τin where the system is expected to be in the Bunch-Davies
vacuum. The amputated part of the amplitudes is investigated in the first part of the discussion, in
order to understand the type and order of the divergences appearing at one-loop level through the
regularization process. The ultraviolet behavior will be singled-out from the regularized amplitude
and compared with the result in the Minkowski spacetime. The order of the divergences and the
type and number of counter-terms needed to renormalize the amplitude are expected to match
those in the Minkowski case [6]. The mode function solution for the heavy field will be treated
in the Wentzel–Kramers–Brillouin approximation. Numerical analysis is performed to understand
the goodness of the approximation.

The second part of the work is dedicated to study the time dependent features of the primordial
power spectrum that arise from the one-loop corrections. We expect the radiative corrections to
introduce a twofold time dependence, arising because of the initial conditions and the evolution
of the background. We also expect the presence of oscillatory features in the primordial power
spectrum due to the radiative corrections, from the analysis of [7].

The general results of the first parts can be adapted straightforwardly to many different infla-
tionary scenarios. In the last part of the thesis we apply them in the framework of supersymmetric
hybrid inflation [8]. The bosonic and fermionic contributions to the one-loop corrections are ex-
pected to carry opposite sign and of interested is the possibility for the divergences to exactly
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cancel. Finally in this setting, a prediction for the Cosmic Microwave Background temperature
power spectrum will be formulate, in order to investigate if the imprint of the oscillation expected
in the primordial power spectrum can be observed in the temperature power spectrum. The study
of the primordial power spectrum and its possible time dependent features can be used to shed
light on the physics at a very high energy scale and to discriminate among the large variety of
inflationary models.

In Chapter 1 the Hot Big Bang model will be introduced alongside with the fundamentals
of the theory of cosmic inflation and the vielbein formalism. In Chapter 2 we introduce the
Schwinger-Keldysh formalism and the bosonic and fermionic propagators in the Minkowski and de
Sitter spacetime. Chapter 3 is dedicated to both the analytical and the numerical studies of the
ultraviolet behavior of the radiative corrections to the inflaton two-point function arising from the
interaction with the heavy fields. In Chapter 4 we will discuss the time dependence of the radiative
corrections and calculate the primordial power spectrum prediction in the supersymmetric hybrid
inflation scenario. The thesis ends with a discussion of the results in the Conclusions.
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CHAPTER 1

STANDARD COSMOLOGICAL MODEL

The standard cosmological model [9–12], often called Hot Big Bang model, is the framework within
which we are able to describe the evolution of the Universe interpreting astronomical observations.
The past century has seen the triumphs of modern cosmology through three main observational
evidences: the expansion of the Universe [13], the existence of the Cosmic Microwave Background
(CMB) [14] and the measurement of the relative abundance of light element [15]. Despite the great
success before the 1980s there were still open questions in the Standard Model of cosmology.

They should not be considered as inconsistencies but rather problems related to the required
initial conditions. In fact the Hot Big Bang model never aimed to explain the primordial phase of
the Universe. Alan Guth in the 1980s [1] realized that an initial phase of accelerated expansion
of the Universe could provide a simple solution to these problems. From this idea started the
development of the inflationary theory [1, 16, 17]. The discussion presented in this chapter is
inspired by the work in [5, 7, 10, 18].

1.1 The Homogeneous and Isotropic Universe

The keystone of the standard cosmology is the idea that the Universe has no privileged position
nor direction, that translates into two fundamental properties: homogeneity and isotropy. This
is known as the cosmological principle and it is important to emphasize that it is not an exact
statement, it is an approximation that holds on sufficiently large scales. In fact, it is clear that
at small scales the Universe presents inhomogeneities as stars, galaxies and galaxy clusters and
anisotropies in their distribution.

It is compelling how, thanks to the great achievements of modern precision cosmology, the
Cosmological Principle that was once an assumption is now an experimentally tested hypothesis.
In fact there are several studies [3, 19, 20] that suggest its validity and that set the large scale to
be around 100 Mpc, that means scales larger than cluster of galaxies. We remark that this applies
only to the portion of the Universe that we can observe.

Nowadays the most convincing theory of gravity is Einstein’s General Relativity (GR) in which
the fundamental quantity that describes the geometry of spacetime is the metric. Imposing the
symmetries given by the cosmological principle to the most generic metric allowed in GR, we obtain

ds2 = −dt2 + a(t)2

(
dr2

1− κr2
+ r2dθ2 + r2 sin2 θ dφ2

)
, (1.1)

the so-called Friedmann-Lemaître-Robertson-Walker (FLRW) metric which describes a maximally
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Figure 1.1: During the expansion of the Universe the points keep the same comoving coordinates.
Their comoving distance is constant while the physical distance changes according to the value of
the scale factor. Figure inspired by [9]

symmetric spacetime. The equation (1.1) uses a special set of coordinates (t, r, θ, φ) which are
adapted to a comoving observer. A comoving observer is the observer that sees the source of the
spacetime geometry homogeneous and isotropic. Since the spatial part is time-independent, beside
the factor a(t), it is possible to picture it as a grid that uniformly expand according to the a(t)
value. However in this expansion process the points do not change their comoving coordinates as
shown in figure 1.1.

While comoving distance between two points remain constant during the elapsing of time t,
the physical distance R (given by R = a(t)r) evolves, since it is proportional to a(t), the scale
factor. The a(t) variable measures the relative expansion of the Universe and it is set to be 1
today. Finally κ is a constant that can assume three possible values accordingly to the class of
Universe that we are considering: κ = −1, κ = 0, κ = 1 for an Universe with spatial curvature
respectively negative, zero and positive. The Universe we observe today is compatible with κ = 0
[3], the spatially flat solution. This experimental observation leads to one of the shortcomings of
the Hot Big Bang as we will discuss in section 1.2. Thus assuming κ = 0, the metric reads

ds2 = −dt2 + a(t)2δijdx
idxj . (1.2)

We can describe the same spacetime using the conformal time τ

ds2 = a(t)2(−dτ2 + δijdx
idxj), (1.3)

where we defined τ as

dτ :=
dt

a(t)
. (1.4)

Another useful definition is the Hubble parameter

H :=
ȧ(t)

a(t)
. (1.5)

that characterizes the rate of expansion of the Universe, where the dot notation Ȧ(t) := dA
dt stands

for the derivative with respect to the cosmic time.
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1.1.1 Friedmann equations
The dynamics of the metric in the presence of matter and energy is described by the Einstein
equations [21, 22]

Gµν := Rµν −
1

2
R gµν =

1

M2
P

Tµν , (1.6)

where Rµν is the Ricci tensor, R the Ricci scalar and MP the reduced Planck mass. The equation
(1.6) describes how the geometry influences the dynamics of the matter and energy and the other
way around. The energy momentum tensor in the general relativistic setting is defined as

Tµν := − 2√
−g

δ(
√
−g Lm)

δgµν
, (1.7)

where g is the determinant of the metric and Lm the matter content Lagrangian. We assume in the
following that the matter content can be treated as a perfect fluid, that is one of the possibilities
to have an energy momentum tensor that satisfies the cosmological principle. So Tµν reads [12]

Tµν =

(
ρ(t) + P (t)

)
uµuν + P (t)gµν , (1.8)

where uµ is the four velocity and both ρ, the energy density, and P , the isotropic pressure, depend
only on the time because of the homogeneity and isotropy requirement. For a comoving observer
the energy-momentum tensor assumes a particularly simple form

Tµν =


ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 . (1.9)

Another condition on the stress-energy tensor is its covariant conservation

∇νTµν = 0, (1.10)

derived from the Bianchi identity of the Riemann curvature tensor [23].

With these important facts on the metric and the energy content we can now proceed to study
the evolution of the Universe through the Einstein equations. Using the FLRW metric (1.1), the
Einstein equations (1.6) and equations (1.10) and (1.9) we obtain the Friedmann equations [9, 24]

H2 =
1

3M2
P

− κ

a2
, (1.11)

ä

a
= − 1

6M2
P

(ρ+ 3P ), (1.12)

from which we derive the continuity equation

ρ̇+ 3H(ρ+ P ) = 0. (1.13)

The Friedmann equations describe the evolution of the Universe in terms of the scale factor evo-
lution. An equation of state for the fluid is needed to close the system of equations. We assume
that the relation between the pressure and the energy density has the following form

P = ωρ, (1.14)

with ω is being constant. From the second Friedmann equation (1.12) it is straightforward to
obtain the condition for an accelerated expansion

5



ω < −1

3
. (1.15)

Inflation, as we will discuss later, requires the presence of an exotic fluid with equation of state
that satisfies (1.15). There is a particular case of fluid with this property that is worth examining:
ω = −1. This is called the de Sitter (dS) Universe in which the pressure P is exactly −ρ and the
scale factor is

a(t) ∝ eHt. (1.16)

The dS solution describes an exponentially expanding Universe1. It is worth noticing that the
energy density in this solution is constant with time ρ = const; it is also called the cosmological
constant solution.

Solving the system of Friedmann equations for a fluid with ω 6= −1 we obtain the general
solution

a(t) ∝ t
2

3(1+ω) , (1.17)

There are two particularly interesting cases. The non-relativistic (NR) matter solution, where the
pressure is negligible, so ω = 0. The radiation solution, which has the equation of state P = ρ/3.
These solutions are summarized in Table 1.1.

NR Matter Radiation de Sitter

ω 0 1/3 −1

a(t) t2/3 t1/2 eHt

Table 1.1: Solution of the Friedmann equations for a Universe characterized by κ = 0, spatially
flat, and for different types of perfect fluid.

Studying the evolution of the Universe using the Friedmann equations we can then recognize
different eras where one of the components dominated the total energy density and the scale factor
evolved accordingly. Figure 1.2 summarizes it. In the ΛCDM model [9], according to the latest
Planck results [3], the different energy density components are distributed as shown in Table 1.2

Let us introduce a parameter that will be useful in the section 1.2, the density parameter Ω
[24]

Ω(t) :=
ρ(t)

ρc
, (1.18)

where ρc, the critical energy density, corresponds to a flat Universe. From the Einstein equations we
learned that there is a relation between the geometry and the matter-energy content and this fact

Radiation NR Matter Cosmological Constant

Ω0 (9.13821± 0.00035) · 10−5 0.3111± 0.0056 0.6889± 0.0056

Table 1.2: Highlights of the experimental constraints on some of the parameter of the ΛCDM
model presented by the Planck collaboration [3]. The subscript zero on Ω indicates its value today

1As we will discuss in the following a de Sitter expansion cannot be a realistic model of inflation.

6



Figure 1.2: The early Universe energy density was dominated by radiation with the scale factor
growing as a(t) ∝ t1/2. Around redshift z ' 1090 the matter-radiation equality point is reached
and it is then dominated by non-relativistic matter with scale factor evolving as a(t) ∝ t2/3. Figure
from [9].

is also reflected here. Indeed measuring ρ we can determine Ω that describe the overall geometry
of the Universe, since we can connect it to κ though the Friedmann equations.

The curvature of the spacetime with Ω greater, equal to or less than 1 is respectively negative,
zero and positive. From the Friedmann equations we obtain the time dependence of Ω

Ω(t)− 1 =
κ

a2(t)H2(t)
. (1.19)

Ω varies with time but the overall geometry is fixed.

1.1.2 Causal structure the Universe

To understand the causal structure of the Universe we need to study the propagation of light in a
spacetime characterized by the FLRW metric (1.1). The property of isotropy allows us to fix any
given θ and φ leading to dΩ2 = 0 and the massless nature of the photons assures that their motion
is along null geodesics, ds2 = 0. These conditions lead to

0 = ds2 = dt2 − a(t)2dr2. (1.20)

Therefore the comoving distance traveled by light in an interval between ti and tf is

r =

∫ tf

ti

1

a(t′)
dt′. (1.21)

It is now possible to define the radius of a comoving sphere around an observer O that contains
all the points that may have interacted with O from zero initial time until a time t as

rp(t) :=

∫ t

0

1

a(t′)
dt′. (1.22)

rp(t) is a comoving distance, the physical distance is as usual

dp(t) = a(t) rp(t). (1.23)

dp(t) is called particle horizon. The name ’horizon’ suggests the meaning of the variable: points
that are separated by a distance greater than dp(t) at time t cannot have been in causal contact
in all past history of the Universe. Notice that it is an actual horizon only if it is a finite quantity

7



that means only if the integral in equation (1.22) converges. From the general solutions for a(t),
equation (1.17), it follows that the particle horizon exists only if

ω > −1

3
, (1.24)

this condition holds both in the radiation and non-relativistic matter solutions. The particle
horizon dp assumes the form

dp(t) =
3(1 + ω)

3ω + 1
t. (1.25)

The condition (1.24) is equivalent to a decelerated expansion ä(t) < 0, as opposed to the condition
(1.15).

It is useful to introduce now the Hubble radius dh that we can later relate to the particle
horizon. Let us take an observer O and consider a sphere around it with varying radius. As the
radius increases, the receding velocity of a point on the surface of the sphere increases, since the
Universe is expanding. The Hubble radius is defined as the distance reached when the receding
velocity is equal to the speed of light. Therefore it is defined as follows

dh :=
a

ȧ
=

1

H
. (1.26)

Introducing the Hubble time as τh = H−1, that is the typical expansion time (approximately the
time in which the Universe doubles its size) we can interpret the Hubble radius as the maximum
distance that a particle can travel in a τh, in fact reintroducing c,

dh = c τh. (1.27)

This is a complementary way to describe causal connection between points of the spacetime. The
comoving Hubble radius is

rh :=
1

aH
. (1.28)

To emphasize the difference between the Hubble radius and the particle horizon we can rewrite
the latter as

rp(a) =

∫ a

0

da′

a′
.

1

a′H(a′)
(1.29)

The comoving particle horizon is the logarithmic integral of the comoving Hubble radius. The
difference between the two quantities is highlighted by the integral. In fact if particles at a given
time t are separated by a distance greater than rp they have never been able to interact before,
hence the integral over all the history of the Universe. While if the distance is larger than rh they
are not in causal contact now (or better, they have not been in contact in the past τh) but they
could have been in the past. It is possible to have rp much larger than rh if the contribution of
the Hubble radius from the early times was dominating [9].

1.2 Shortcomings of the Standard Model

The Standard Model of cosmology at first did not aim to explain the first moments of the Universe’s
history. In fact, as mentioned above, in order to explain the experimental observations it needed
a set of fine-tuned initial condition. We are now going to explore these issues of the model.

8



Figure 1.3: Conformal diagram of the history of the Universe in the Standard Model of cosmology.
Photons observed today share the same properties even if they could not have been in thermal
contact before the last scattering instant, their past light cone do not overlap. Figure from [25].

1.2.1 Horizon problem
The part of the Universe contained inside the sphere of radius rp is also called observable Universe
since it is the section of the spacetime we are able to observe from a theoretical point of view and
at present it is increasing in size. The horizon problem lays in the fact that the new scale λ0 that
enters the horizon today, shows the same property of homogeneity and isotropy of the parts of the
Universe already known. Up until now this observation cannot be explained in the context of the
Hot Big Bang model unless we fix isotropy and homogeneity as initial condition. In fact there has
not been causal connection on scale λ0 before today. It is actually even more problematic since
small inhomogeneity of the energy density have been detected [3] and they should also be properly
produced by fixing ad-hoc the initial condition.

The CMB is the perfect example to clarify this issue. In fact if we computed the particle
horizon at the time of recombination2 and the angle in the sky subtended by such distance we
obtain θh ' 1.16o [25]. So two photons that reach us from an angle larger then θh should not
have been causally connected in the past and therefore they should not have had the possibility
to thermalize. Here lays the discrepancy: the experimental observations show isotropy in the
temperature of the CMB photons in the full sky (with fluctuation of the order of ∆T

T ' 10−5 [3]).
Starting from the conformal metric in equation (1.3), we can compute the light cone for a photon
that has null geodesic and travels radially, obtaining

dτ = ±dr, (1.30)

that is the same condition as in the Minkowski spacetime. We then see in figure 1.3 that the
majority of the photons from the last scattering surface had not been in causal contact with each
other. Their past light cones do not overlap in the past however they arrive at the observer at τ0
sharing the same properties.

1.2.2 Flatness problem
The latest experimental observations [3] showed that the present Universe is compatible with a
spatially flat solution i.e. κ = 0 and Ω = 1. To understand why this is a problem we recall how
the density parameter evolves with time

2The time of recombination, or last scattering, is the time after which Thompson scattering has a negligible scat-
tering rate with respect to the Universe expansion rate. Photons and electrons are no longer in thermal equilibrium
and the former can now freely travel toward us today.
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Ω(t)− 1 =
κ

a2(t)H2(t)
= κ r2

h(t), (1.31)

where we connected it with the comoving Hubble radius. Considering only a Universe composed
of matter and radiation, rh is always growing with time and so is the difference between Ω and 1.
Therefore the differences between a flat solution and an open or closed one should become more
and more relevant during the evolution of the Universe.

Furthermore being κ = 0 a solution with null probability of realization, since it is one configu-
ration over infinity possibilities; we expect our Universe to have a spatial curvature different from
zero. The problem is now evident: we need to fix Ω very close to 1, as initial condition, to explain
the observed Universe today.

Quantitatively today we observe [3]

|Ω0 − 1| = 0.0007± 0.0019 (68%), (1.32)

and assuming the presence of only matter and radiation, the value that we should fix at the Planck
scale EP = 1019 GeV 3 is given by [24]

|Ω(tp)− 1| ' |Ω0 − 1| 10−60, (1.33)

|Ω(tp)− 1| . 10−62. (1.34)

It is clear that this is not an inconsistency of the model but rather a very unnatural and fine-tuned
initial condition we need to fix in order to explain the experimental observations within our model.

1.2.3 Unwanted relics
Historically the first problem that arose in the Standard Model was a purely theoretical one. In
fact it became clear that the integration of various extensions of the Standard Model (SM) of
particle physics, e.g Grand Unified Theories (GUT), in the Hot Big Bang model would lead to the
production of a number of topological defects in the early Universe at very high energy.

These cosmological defect are usually the result of spontaneous symmetry breaking (SSB) of
the GUT group where the type depends on the symmetry and how it is broken. For example the
SSB in the most simple GUT model SU(5) −→ SU(3) × SU(2) × U(1) would produce magnetic
monopoles. The problem is that being produced at very high energy and without any efficient
process that reduces the number of relics we would have today

ΩM0 & 1016, (1.35)

that would enormously overclose the Universe [24]. A more detailed discussion can be found in
[26].

1.3 A Single Dynamical Solution

Inflation is a dynamical mechanism that can solve the three issues of the Hot Big Bang cosmology
at the same time. It consists in a primordial epoch of accelerated expansion. Its simplicity lies in
the fact that the constraints to be imposed on this epoch to solve both the horizon problem and
the flatness problem are equivalent.

3The Planck scale is, at best, the last scale at which the Quantum Field Theory and GR description of nature
we are using still holds.
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Figure 1.4: The plot describes the evolution of the comoving Hubble radius. It presents the
inflationary epoch in the interval [ti,tf ] where rh decreases and then in the radiation-matter epoch
starts to increase again. Fundamental to solve the problem is that rh(ti) > rh(t0). The comoving
scale l0 enters the Hubble sphere at t3 but it was already inside in the past. Figure from [24].

1.3.1 Horizon problem
To solve the horizon problem today there should be a mechanism that allows all the photons of
the CMB in the present observable Universe to have been thermalized before the last scattering.
This means that the scales that enter the horizon today were actually already inside, at some time
t, before the moment of the CMB production and then they have exited. In this way homogeneity
and isotropy are naturally explained by primordial thermalization of the photons.

We need an epoch in which the Hubble radius decreases in such a way that the scale that enters
today were actually already inside the Hubble sphere in the past. Figure 1.4 shows it explicitly.
This condition implies

ṙh < 0 ===⇒
(1.28)

ä > 0. (1.36)

As anticipated before, an epoch of accelerated expansion is necessary to solve the problem. However
this is not the only condition. To solve the problem there is a minimum duration we need to require.
In fact, as figure 1.4 shows, to solve the horizon problem today we need to demand

rh(ti) ≥ rh(t0), (1.37)

that is equivalent to ask that all the scales we observe today were already inside the horizon before
inflation.

To quantify the duration of inflation it is useful to define the concept of number of e-folds that
is

N := ln

(
a(tf )

a(ti)

)
=

∫ tf

ti

dt′H(t′). (1.38)

Imposing the requirement (1.37) we obtain N & 60 [24] that corresponds to a ratio of around 26
order of magnitude between the scale factor at the beginning and at the end of inflation(

a(tf )

a(ti)

)
& 1026. (1.39)
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Figure 1.5: Evolution of the density parameter with respect to the cosmic time t. The dotted line
at constant Ω = 1 describes a spatially flat Universe. Instead the above and below curves describe
respectively an open and a closed Universe. Inflation takes place in the interval [ti, tf ] and drives
Ω towards one. During the matter/radiation dominated Universe, for t > tf , Ω diverges from the
flat Universe value Ω = 1. Figure from [24].

1.3.2 Flatness problem

In the case of the flatness problem we need a process that provides naturally the otherwise fine-
tuned initial condition, i.e. a primordial process that pushes Ω very close to one. Since

Ω(t)− 1 =
κ

a2(t)H2(t)
= κ r2

h(t), (1.40)

a decreasing Hubble radius and so an accelerated expansion is needed to solve this issue, as in the
previous case.

The effect produced by an inflationary era is to drive the Universe towards a state very close
to flatness as shown in figure 1.5. The solution Ω = 1 is an attractor solution during inflation [25].
This is clear when we study

dΩ(t)

d ln a
= (1 + 3w)Ω(Ω− 1), (1.41)

that is obtained starting from (1.40), taking the time derivative of Ω

d

dt
Ω(t) = −κ d

dt

(
1

ȧ2

)
= +2κ

ä

ȧ3
, (1.42)

connecting the a derivative to the t one

d

d ln a
= a

d

da
=
a

ȧ

d

dt
, (1.43)

using the second Friedmann equation (1.12) and the definition of the density parameter (1.18).
During inflation the condition (1.15) is satisfied, therefore equation (1.41) has an attractor solution
since the right-hand side is negative and it is almost zero in the neighborhood of Ω = 1.

In order to solve the problem as before we need to fix the minimum amount of lasting time.
This is obtained by imposing

Ω(ti)− 1 < Ω(t0)− 1. (1.44)

It turns out [24] that the requirement in equation (1.44) implies

N & 60,

that means that with one mechanism and same constraint both flatness and horizon problems can
be solved.

12



1.3.3 Cosmological constant

In the previous discussion we encountered a fluid candidate with negative pressure that can provide
an accelerated expansion: the cosmological constant. In fact the scale factor for this solution grows
exponentially

a(t) ∝ eHt (1.45)

with H being constant. This solution, that requires ω = −1, is equivalent to simply adding a
constant to the Einstein equation, that is allowed by the theory,

Gµν = 8πG

(
Tµν −

1

8πG
Λgµν

)
, (1.46)

when the constant dominates the energy density. Therefore in a Universe dominated by the cos-
mological constant

PΛ = − Λ

8πG
, (1.47)

ρΛ =
Λ

8πG
, (1.48)

the energy density is positive and constant and the pressure is negative and constant. The scale
factor and the Hubble parameter, according to the Friedmann equations are

H2 =
Λ

3
, (1.49)

a(t) ∝ exp

(√
Λ

3
t

)
. (1.50)

However an exact cosmological constant cannot be the solution to the initial conditions problem.
In fact we need a dynamical solution, inflation has to reach an end in a finite amount of time and
has to produce afterwards the radiation dominated era for which we have experimental evidences.

The modern interpretation of this solution is that energy density ρΛ describes the energy density
of the ground state of a quantum system, the vacuum state. The ground state does not contain
any particle species but, due to quantum fluctuation, virtual particles are created and annihilated.
Therefore the energy of the vacuum state is non zero.

Quantitatively the energy generated by the fluctuations of a given particle species is obtained
by the vacuum expectation value (VEV) of its stress energy tensor

〈0|Tµν |0〉 = 〈0|ρ|0〉 gµν . (1.51)

Inserting this expression into the Einstein equation we obtain

Gµν = 8πG 〈ρ〉 gµν . (1.52)

The important message of equation (1.52) is that if the VEV of a particle species is constant for
a certain time interval it behaves exactly as a cosmological constant. It is important to underline
that in GR it is not possible to shift the energy of the ground state to zero as we are used to do in
Quantum Field Theory (QFT) in the Minkowski spacetime. Any form of energy is in fact source
of and subject to gravity.
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1.4 Slow-Roll Inflation

In section 1.3 we described the kinematical properties of the process that can solve the shortcomings
of the Hot Big Bang model. In section 1.3.3 we suggested how a dynamical field can indeed produce
the period of accelerated expansion we are looking for.

The simplest model of inflation we can study is a single scalar field minimally coupled to gravity.
The dynamics of the field is governed as usual by the action

Sφ =

∫
d4x
√
−g Lφ(φ, gµν). (1.53)

However to completely describe a scalar field in a curved spacetime we need to consider also the
Einstein-Hilbert action [23], the action that produces the Einstein equation (1.6) in vacuum,

SEH =
1

16πG

∫
d4x
√
−g R. (1.54)

The Lagrangian for the scalar field is given by [11]

Lφ = −1

2
gµν∂µφ∂νφ− V (φ), (1.55)

where in the kinetic term we have the minimal coupling of the scalar field with the metric through.
V (φ) is the potential that contains the mass term, self interaction and eventual effective description
of the interaction with other particle that were integrated out. One could also consider the term

Lφ ⊃
1

2
ξφ2R, (1.56)

in the action, which would imply a direct coupling of the field φ with gravity. This type of
interaction appears in the so called scalar-tensor theories [27, 28]. Considering only a minimally
coupled field, we set ξ = 0 in the following discussion.

The stress energy tensor associated to the field follows from the GR definition given in equation
(1.7). With some algebra and recalling the matrix property

Tr(log(g)) = log(det(g)) (1.57)

it is possible to derive [11]

Tµν = ∂µφ ∂ν φ+ gµν Lφ. (1.58)

Before moving on to the equation of motion of the field it is useful to think how to tackle and
simplify the problem. Both the metric gµν and φ are fields that depend on the spacetime point.
However we know that in the zeroth order approximation we expect the Universe to be homogeneous
and isotropic. This means that the background metric value is the FLRW metric in (1.1) on top
of which we can add some perturbations.

Moreover since we want to use the scalar field to describe inflation and solve the problem of
the initial conditions, we expect also the background value of field, φ0, to be homogeneous and
isotropic meaning independent from the spatial coordinates. We therefore split the fields into two
contributions:

gµν(x, t) = g(0)
µν (t) + δgµν(x, t), (1.59)

φ(x, t) = φ0(t) + δφ(x, t), (1.60)

with g(0)
µν (t) = gFLRWµν (t). This is nothing else than a perturbative expansion and so, to be physi-

cally sensible, the perturbations need to satisfy the following conditions
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〈
δφ2(x, t)

〉
� φ2

0(t), (1.61)

〈δgµν〉 � g(0)
µν . (1.62)

During the model building of an inflationary theory we need always to check if these requirements
are met; they are not trivial conditions.

The procedure of perturbative splitting can be justified if we consider the experimental mea-
surement of the CMB [3]. In fact the temperature anisotropies are found to be much smaller than
its mean value, in particular

∆T

T
' 10−5 (1.63)

Since the anisotropies of the temperature are directly connected with overdensity and then with
perturbations of the field [10], as we will discuss in section 1.5.1, the perturbative splitting in
equations (1.60) and (1.59) has a observational basis.

1.4.1 Background dynamics

The dynamics of the background fields should produce the accelerated expansion needed. As
stated before, the background fields are homogeneous and isotropic, meaning that the only non
null components of the stress-energy tensor of the scalar field are the diagonal ones, considering
the comoving reference frame:

Tµν =


ρφ 0 0 0
0 Pφ 0 0
0 0 Pφ 0
0 0 0 Pφ

 . (1.64)

It follows then from equation (1.58) that

ρφ =
1

2
φ̇2

0 + V (φ0), (1.65)

Pφ =
1

2
φ̇2

0 − V (φ0). (1.66)

It is clear now that with a scalar field is possible to have a fluid with negative pressure, that is
equivalent to an accelerated expansion: taking a look at equation (1.66), if V (φ0) > φ2

0 the pressure
assumes negative values. From the equation of state of the fluid (1.14) the fluid parameter is

ω =
1
2 φ̇

2
0 − V (φ0)

1
2 φ̇

2
0 + V (φ0)

, (1.67)

We can ask the scalar to behave like a cosmological constant for a given time interval, this means
asking ω ' −1 that translates to the first slow-roll condition

φ̇2
0 � V (φ0) . (1.68)

The condition in equation (1.68) implies that Pφ0
' −ρφ0

, a state similar to a cosmological
constant. It describes a scalar field whose potential energy dominates over the kinetic part. This
means that the field is moving slowly along the potential and thus this can be obtained by an
almost flat potential during inflation as shown in figure 1.6. As we will see later we will need a
second condition that assures equation (1.68) to be satisfied for N ≈ 60.
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Figure 1.6: The energy density of the scalar field during inflation is dominated by its potential
since its kinetic energy is subdominant. φ is slowly rolling on a quasi flat potential V (φ). Inflation
ends when the potential starts to present a strong dependence on the field. Figure from [25].

The scalar field is thus mimicking a cosmological constant during this phase but the process
remains dynamical. This solution represents a quasi de Sitter expansion, the Hubble parameter is
almost constant during inflation and therefore the scale factor has a nearly exponential dependence
on time.

H2 =
8πG

3
ρφ0
' 8πG

3
V (φ0) ' const, (1.69)

a(t) ∝ eHt. (1.70)

We now introduce the equation of motion for the scalar field obtained by extremizing the action
in equation (1.53)

� φ =
∂V

∂φ
, (1.71)

where in GR the d’Alambertian operator assumes the form

� φ =
1√
−g

∂µ(
√
−g gµν∂νφ). (1.72)

In a FLRW Universe because of the isotropy of the background field, ∇2φ/a2 = 0 and the equation
of motion reads

φ̈0 + 3Hφ̇0 = − ∂V
∂φ0

, (1.73)

where the only difference with the Klein-Gordon equation in a flat spacetime is the presence of
the term 3Hφ̇0. This is a friction-like term in classical mechanics and it describes the fact that
the scalar field evolves on a background that is expanding. If the expansion was absent (H = 0)
we recover the solution in the Minkowski spacetime. In all this treatment we are assuming that
in the inflationary epoch the scalar field is the dominant contribution to the energy density of the
Universe.
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1.4.2 Slow-roll parameters
The properties that the scalar field has to satisfy can be summarized by the introduction of model-
independent parameters. These parameters will be applied to particular theories to constrain the
potential. Considering a quantity Q(t) in an expanding Universe, its evolution can be measured
in terms of the scale factor a(t) and parameterized as follows

εQ :=
d lnQ(t)

d ln a(t)
=

Q̇(t)

HQ(t)
. (1.74)

As discussed above the Hubble parameter remains almost constant during a quasi dS inflation, we
can thus define the first slow-roll parameter as

ε :=
d lnH(t)

d ln a(t)
= − Ḣ

H2
. (1.75)

The parameter is closely related to the second derivative of the scale factor, in fact

ä = ȧH + aḢ = aH2

(
1 +

Ḣ

H2

)
= aH2(1− ε) (1.76)

Therefore inflation ends when ε→ 1. It can be easily shown that the slow-roll condition in equation
(1.68) is equivalent to

ε� 1 . (1.77)

The second requirement is connected to the duration of inflation. In fact in order to solve the
initial conditions problems we need the first slow-roll condition, that assures ä > 0, to be satisfied
for a time such that the Universe can expand by (around) 60 e-folds4. We can parametrize this
asking ε to evolve slowly, defining

η :=
d ln ε(t)

d ln a(t)
=

ε̇

Hε
, (1.78)

and requiring

η � 1 , (1.79)

during inflation. This is the second slow-roll condition. The η parameter is also related to the
dynamics of the field, in fact the previous condition is equivalent to

φ̈� 3Hφ̇. (1.80)

Both η and ε are model independent parameters.
The two slow-roll conditions can be translated using the Friedmann equations to conditions that

constrain the shape of the potential. We can introduce a new set of parameters tightly connected
with the potential as follows

εV :=
1

16πG

(
1

V

∂V

∂φ

)2

(1.81)

ηV :=
1

8πG

(
1

V

∂2V

∂φ2

)
(1.82)

4The number of e-folds needed depends on the energy scale of inflation and on the details of reheating process.
For details please refer to section 5.1 of [29].
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Figure 1.7: Phase space diagram for the inflationary model with potential V (φ) = 1/2m2φ2 [30].
It is clear the presence of an attractor solution in the origin. Figure from [5]

If the conditions in equations (1.77) and (1.79) are satisfied, at first order in the slow-roll
parameters,

εV ' ε, (1.83)
ηV ' η + ε. (1.84)

Therefore it is now clear that the slow-roll conditions imply the need for a flat potential.
The experimental bounds on the parameters are given by the Planck experiment [3]

εV < 0.0097 (95%CL), (1.85)

ηV = −0.10+0.0078
−0.0072 (68%CL). (1.86)

1.4.3 Attractor solution
In general scalar models of inflation have attractor solutions [25, 30]. Let us study the most simple
example: single field inflation with potential

V (φ) =
1

2
m2φ2. (1.87)

The equation of motion starting from equation (1.73) is

φ̈+ 3Hφ̇+m2φ = 0, (1.88)

using the equivalence

φ̈ = φ̇
d

dφ
φ̇, (1.89)

we re-write (1.88) as

dφ̇

dφ
+ 3H +m2φ

φ̇
= 0. (1.90)

Using the first Friedmann equation 1.11 we have

H2 =
1

6M2
P

(
φ̇2 +m2φ2

)
, (1.91)
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Figure 1.8: The Planck map of the temperature anisotropies of the CMB. Figure from [3].

therefore

dφ̇

dφ
= −

√
3
2

1
M2

P

(
φ̇2 +m2φ2

)1/2

φ̇+m2φ

φ̇
. (1.92)

The phase diagram is presented in figure 1.7. The presence of an attractor solution is very important
in our treatment as it justifies the use of the Friedmann equation during the inflationary epoch. In
fact even if we start from a strongly inhomogeneous and anisotropic Universe every state is rapidly
evolving towards the attractor that is a FLRW Universe where the Friedmann equations are valid.

1.5 Cosmological Perturbations

Up until now we discussed the zeroth order properties of the Universe (homogeneity and isotropy)
but the measurements from CMB show the presence of temperature fluctuations of the order
∆T
T ∼ 10−5 as shown in figure 1.8. This temperature fluctuations can be connected to energy-
density perturbation in the early Universe [10, 11].

In this section we will try to understand how to explain the presence of this fluctuations in
the context of the Standard Model of cosmology and we will encounter a strong prediction of the
inflationary mechanism: the quantum fluctuations of the scalar field are the seed of the cosmological
perturbations we observe today. Let us start by studying the dynamics of the perturbation of the
scalar field using the decomposition in equation (1.60).

1.5.1 Quantum fluctuation
The complete Klein-Gordon equation for an inhomogenous scalar field φ(x, t) (1.71)

φ̈(x, t) + 3Hφ̇(x, t)− ∇
2

a2
φ(x, t) = −∂V

∂φ
. (1.93)

In the following we will consider the evolution of a scalar field perturbation in a fixed de Sitter
background spacetime5. Using the background equation (1.73) and the decomposition in equation
(1.60) we obtain

5In this section we will deal with a fixed background metric while we know that a perturbation of φ produces a
perturbation of the metric. A complete treatment is left for section 1.5
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δφ̈+ 3Hδφ̇− ∇
2δφ

a2
= −∂

2V

∂φ2
δφ (1.94)

that is the equation of motion for the perturbation δφ(x, t) at linear order. Before moving forward
to the complete solution let us have a qualitative view of the perturbations at large scales, meaning
at cosmological scales [31]. Cosmological scales λ are super-horizon scales: λ > H−1.

In this limit the Laplacian term can be neglected: we are filtering the perturbation modes,
concentrating only on the one relevant at large scale. We have now a system of equations, the
equation of motion for the background and for the perturbation ÿ + 3Hẏ = −∂

2V
∂φ2 y

δφ̈+ 3Hδφ̇− ∇
2δφ
a2 = −∂

2V
∂φ2 δφ

(1.95)

where we defined y := φ̇ to underline the similarity between the two equations. We can now show
that the two equations are not independent, in fact the Wronskian function is

W (y, δφ) = ẏδφ− yδφ̇, (1.96)

knowing that if W = 0 the variables y and δφ are linearly dependent and from some trivial
computation we obtain

Ẇ = −3HW =⇒W ∝ e−3Ht, (1.97)

W
t>1/H−−−−→ 0. (1.98)

Therefore δφ and φ̇0 become linearly dependent very fast, after a transient time ∼ 1/H. So we
can write

δφ(x, t) ∝ φ̇0(t), (1.99)

where we note that we lack a term dependent on the spatial part, so

δφ(x, t) = −δτ(x)φ̇0(t), (1.100)

where the minus sign is conventional. We can re-write the decomposition of the scalar field as

φ(x, t) = φ0(t) + δφ(x, t) = φ0(t)− δτ(x)φ̇0(t), (1.101)

and therefore

φ(x, t) = φ0(t− δτ(x)). (1.102)

Equation (1.102) tell us that the fluctuations of the scalar field are such that the field reaches the
classical value φ0 at different times depending on the position x in which it is. The field φ will
have the same history in all parts of the Universe but at slightly different times.

To solve equation (1.94) it is convenient to go to Fourier space since we are considering linear
perturbations and the various modes k evolve independently,

δφ(x, t) =
1

(2π)3

∫
d3k eikxδφk. (1.103)

Note that in the Fourier expansion we used a plane-wave spatial decomposition that is valid only
in a flat spacetime, which is a good approximation for the spatial part of the Universe during
inflation. The equation of motion is then
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δφ̈k + 3Hδφ̇k +
1

a2
k2δφk = −∂

2V

∂φ2
δφk (1.104)

where δφk are the Fourier modes.
Let us now solve explicitly the equation of motion for the perturbations. We will first discuss

the case where the field φ is massless

δφ̈k + 3Hδφ̇k +
k2

a2
δφk = 0. (1.105)

This model is useful in two ways: it is a first simple example to work with and is a good approx-
imation for the scalar field during inflation. In fact the second slow-roll condition (1.79) can be
re-written as

ηV =
1

3

1

H2

∂2V

∂φ2
, (1.106)

therefore even when the potential contains a massive term V ⊃ m2
φφ

2/2 the condition ηV � 1
is equivalent to considering an almost massless field mφ � H (since H fixes the relevant energy
scale). Let us study the solution in two different regimes:

Small scale regime

When the scale we are considering is well inside the horizon λ � H−1 (sub-horizon) we are in
the small scale region. The wavenumber satisfies the relation k � aH therefore the friction term
3Hδφ̇k can be neglected and we are left with a simple harmonic oscillator equation

δφ̈k +
k2

a2
δφk = 0, (1.107)

where the frequency is f(t) = k2

a(t)2 , decreasing with time. In the small scale regime the perturbation
are rapidly oscillating.

Large scale regime

Regarding fluctuations at a scale λ � H (super-horizon) meaning k � aH, the equation (1.105)
reduces to

δφ̈k + 3Hδφ̇k = 0, (1.108)

that has a simple exact solution

δφk = Ae−3Ht +B, (1.109)

where a and b are constants. Because of the term e−3Ht the first term becomes negligible very fast
and the perturbations remain constant. Therefore perturbations at super-horizon scale are said to
be frozen at the horizon crossing (λ = H−1) value

δφk ' B(k). (1.110)

The behavior is shown in figure 1.9. It also shows the later regime when the scale re-enters the
horizon and the density perturbations start to evolve again and in particular they collapse because
of gravitational instability forming the large scale structures we observe today. To have an estimate
of B we can match the sub-horizon and the super-horizon solution at the horizon crossing time,
considering the absolute value,
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Figure 1.9: The curvature perturbations ζ during and after inflation. Later we will show how
the curvature perturbation is proportional to the density perturbation in a given gauge (and so
proportional to δφ during inflation) and we will introduce it formally. Inflation is represented by
the first part of the red curve, where the Hubble radius is decreasing. During this era the scale λ
exits the horizon. The perturbation is then frozen. The comoving scale λ (the blu line) re-enters
the horizon at a late time in a FLRW Universe. The perturbation will then evolve and eventually
produce the fluctuation signature we can measure today in the CMB. We can therefore connect the
measured temperature perturbation of the CMB with the primordial quantum fluctuation. Figure
from [25].

|B(k)| :=
∣∣∣∣ e−ikτa
√

2k

∣∣∣∣
k=(aH)

, (1.111)

that gives

|B(k)| = 1

a
√

2k

∣∣∣∣
k=(aH)

−→ |δφk| =
H√
2k3

, (1.112)

the value of the perturbation at super-horizon scale.

1.5.2 Canonical quantization and the vacuum choice

In the previous section we studied the behavior in the two limits we can now move to the study of
the complete solution of equation (1.105). Since we want to describe this fluctuation as originated
by quantum effects we proceed quantizing them, working in conformal time τ . Firstly we introduce
a new variable δ̂φ(x, τ)

δ̂φ(x, τ) = a(τ)δφ(x, τ). (1.113)

We then promote it to an operator introducing the mode expansion

δ̂φ(x, τ) =
1

(2π)3

∫
d3k

[
uk(τ)bke

ik·x + u∗k(τ)b†ke
−ik·x

]
, (1.114)

where we have introduced the creation and annihilation operators bk, b
†
k that are defined as

bk|0〉 = 0, (1.115)

for all values of k and producing exited states as usual
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|mk1 , nk2 , · · · 〉 =
1√

m!n! · · ·
[(
b+k1
)m (

b+k2
)n · · · ] |0〉, (1.116)

where |0〉 is the vacuum of the theory. Notice that the mode function depends on the conformal time
τ since we expanded only the spatial Fourier modes as explained above. Choosing the normalization
[25]

u′∗k (τ)uk(τ)− u∗k(τ)u′k(τ) = i, (1.117)

we have the familiar commutation rules

[bk, bk′ ] =
[
b†k, b

†
k′

]
= 0,[

bk, b
†
k′

]
= ~ δ(3) (k − k′)

. (1.118)

Even considering a free theory, as in this case, the vacuum |0〉 is not completely determined by the
normalization condition in equation (1.117) (in section 2.3.2 of [25] there is a clear example of the
ambiguity of the vacuum).

To fix a unique vacuum we have to introduce a physical insight, that is the equivalence prin-
ciple. For small scales and small time intervals the spacetime has to be locally approximated by
Minkowski. In Minkowski the solution to equation (1.105), since a = 1, is simply a plane-wave
solution. Therefore we can impose the following condition to our mode functions

uk(τ)
k�aH−→ e−iωkτ√

2k
(1.119)

that is known as the Bunch-Davies vacuum choice [32]. We are now ready to solve analytically
equation (1.105) in de Sitter spacetime, where we recall that the conformal time is

τ = − 1

aH
, (1.120)

so that equation (1.105) expanded in mode function gives

u′′k(τ) +

(
k2 − a′′

a

)
uk(τ) = 0, (1.121)

where we defined the derivative of a quantity A with respect the conformal time as

A′ :=
dA

dτ
. (1.122)

The exact solution to equation (1.121) in terms of the field perturbation is

δφk =
1

a

[
A
e−ikτ√

2k

(
1− i

kτ

)
+B

eikτ√
2k

(
1 +

i

kτ

)]
, (1.123)

where A and B are constants to be fixed by the Bunch-Davies vacuum. Asking at early times the
survival of only the positive frequency modes (B = 0) and using the condition (1.119) we have the
physical solution

δφk =
1

a

e−ikτ√
2k

(
1− i

kτ

)
(1.124)

that reproduces exactly the behaviour in the two regimes studied before.
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1.5.3 Massive scalar field
The study of a massive scalar field σ in a de Sitter background is also relevant in our discussion
[31]. Proceeding as before we have

δ̂σ(x, τ) = a(t)δσ(x, τ), (1.125)

and using the Fourier expansion

δ̂σ(x, τ) =
1

(2π)3

∫
d3k δσk(τ)eik·x. (1.126)

In this case the equation of motion of the mode function (1.121) is modified containing also the
mass term as follow

δσ′′k +

(
k2 +

1

τ2

(
m2
σ

H2
− 2

))
δσk = 0 (1.127)

that can be re-written as

δσ′′k +

[
k2 − 1

τ2

(
ν2
σ −

1

4

)]
δσk = 0, (1.128)

where we defined the index νσ6 as

ν2
σ =

(
9

4
− m2

σ

H2

)
(1.129)

that, at first order in the slow-roll parameters, is

νσ '
3

2
− ηV (1.130)

We are considering a massive field but with a small mass because of the consideration made
in section 1.5.1, therefore we consider the index νσ to be real. The solution of equation (1.127) is
then given by the Hankel functions

δσk =
√
−τ
(
AH(1)

νσ (−kτ) +BH(2)
νσ (−kτ)

)
. (1.131)

and again A and B are to be fixed by the initial conditions. Using the expansion of the Hankel
functions we can study the behaviour of the solution at small scales, where we have

H
(1)
νσ (k � aH) ∼

√
−2
kτπ e

i(−kτ−π2 νσ−
π
4 ),

H
(2)
νσ (k � aH) ∼

√
−2
kτπ e

−i(−kτ−π2 νσ−
π
4 ).

(1.132)

Imposing the Bunch-Davies vacuum, we can fix

A(k) =
√
π

2 ei(νσ+ 1
2 )π2 ,

B(k) = 0,
(1.133)

therefore the exact solution is

δσk =

√
π

2
ei(νσ+ 1

2 )π2
√
−τH(1)

νσ (−kτ). (1.134)

Regarding the massless case we saw that, on super-horizon scales, the perturbations are constant
and are

|δφk| =
H√
2k3

. (1.135)

6We are considering a real νσ index, assuming m < 3/2H.
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In the massive case instead there is a small time dependence in the solution in fact

|δσk| '
H√
2k3

(
k

aH

) 3
2−νσ

(1.136)

where we used

H(1)
νσ (k � aH) ∼

√
2

π
e−i

π
2 2νσ−

3
2

(
Γ (νσ)

Γ(3/2)

)
(−kτ)−νσ , (1.137)

the expansion of the Hankel function in the super-horizon (k � aH) regime.

A similar computation [31] can be performed in the case of a quasi de Sitter spacetime where
ε 6= 0 but still ε� 1 and the scale factor is, using the conformal time definition (1.4),

a(τ) = − 1

H(1− ε)τ
, (1.138)

a′′

a
=

2

η2

(
1 +

3

2
ε+O

(
ε2, η2

))
. (1.139)

where we stopped the expansion at first order in the slow-roll parameters. The equation of motion
is again equation (1.128) but with

νσ '
3

2
+ ε− ηV , (1.140)

and we already know the solution. This result will be useful for the discussion in the next section.

1.5.4 Power spectrum
A fundamental tool to study the perturbation of a stochastic field is the power spectrum, we will
use it to characterize the statistical properties of the quantum perturbations of the scalar field.
The statistical properties of a random field δ(t, x) are determined by an infinite set of correlation
functions, that are nothing else than the ensemble average over the product of δ at different points

〈δ (t, x1) δ (t, x2)〉 = ξ (x1, x2)
〈δ (t, x1) δ (t, x2) δ (t, x3)〉 = ξ (x1, x2, x3)
...
〈δ (t, x1) δ (t, x2) . . . δ (t, xN )〉 = ξ (x1, x2, . . . , xN ).

(1.141)

If and only if the process is Gaussian the two-point function ξ (x1, x2) is enough to characterize
δ(t, x) since all the even N correlation functions are combinations of ξ (x1, x2) and the odd ones
vanish. The concept of power spectrum arises when we consider the field in Fourier space, using
the plane-wave expansion

δ(t, x) =
1

(2π)3

∫
d3k eik·xδk(t). (1.142)

defining the power spectrum as

〈δk1(t)δk2(t)〉 = (2π)3δ(3) (k1 + k2)P (k), (1.143)

we see that it is nothing else than the Fourier transform of the two-point function

ξ(r) =
1

(2π)3

∫
d3k eik·rP (k), (1.144)
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where we are considering that in a homogeneous and isotropic Universe

ξ(r) = ξ (|x1 − x2|) , (1.145)

the two-point function depends only on the relative distance. The dimensionless power spectrum
can then be introduced as

∆(k) :=
k3

2π2
P (k), (1.146)

After some calculations we can show that

〈
δ2(x)

〉
=

∫
dk

k
∆δ(k) =

∫
d(ln k)∆δ(k), (1.147)

which means that the dimensionless power spectrum is the contribution to the variance per (loga-
rithmic) intervals of k. It is useful to introduce another parameter, the spectral index that describes
the slope of the power spectrum in a logarithmic scale

n(k)− 1 =
d ln ∆δ

d ln k
, (1.148)

and we see that in general it depends on the scale k considered. If the spectral index is scale
invariant, n(k) = const, the power spectrum has a simple power-law dependence on k

∆(k) = ∆ (k0)

(
k

k0

)n−1

, (1.149)

with k0 being a pivot scale. One particular case is for a scale invariant power spectrum (Harrison-
Zel’dovich power spectrum) that means n(k) = 1. At each scale λ the perturbations have the same
amplitude. We now connect the power spectrum to the Fourier modes of the perturbation and
summarize the behavior of the power spectrum for the cases studied in Table 1.3: firstly we use
the fact that the perturbation is real

〈δφk(t)δφ∗k′(t)〉 = (2π)3δ(3) (k − k′) |δφk|2 , (1.150)

therefore

∆δφ(k) =
k3

2π2
|δφk|2 . (1.151)

Massless inflaton, de Sitter ∆δφ(k) ' H2

4π2

Massive inflaton, de Sitter ∆δφ(k) =
(
H
2π

)2 ( k
aH

)3−2νσ '
(
H
2π

)2 ( k
aH

)−2ηV

Massive inflaton, quasi-de Sitter ∆δφ(k) =
(
H
2π

)2 ( k
aH

)3−2νσ '
(
H
2π

)2 ( k
aH

)2ε−2ηV

Table 1.3: Power spectrum of the inflaton perturbation in three relevant cases, at first order in the
slow-roll parameters.
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xµ

ψ

ϕ
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M0

Figure 1.10: Passive approach: the point P in M0 is mapped to two different points O, O′

depending on the gauge choice. Figure inspired by [33].

1.6 Perturbations in General Relativity

In the previous discussion we actually studied a simplified version of the problem. In fact we studied
the evolution of the scalar field perturbations in an unmodified background metric (de Sitter and
quasi de Sitter). But we know that the Einstein equations (1.6) tell us that any perturbation of
the stress-energy tensor produces a disturbance in the metric side. We therefore need to take that
it into account to have a complete description. In order to study it we first briefly introduce the
perturbation theory in General Relativity.

In the previous sections we argued that the Universe can be described as homogeneous and
isotropic at zeroth order and on top of that we can introduce small perturbations as described in
equation (1.59). Any tensorial quantity can be split into a homogeneous and a perturbative part

T (t, x) = T0(t) + δT (t, x), (1.152)

where T0(t) is the homogeneous and isotropic background value of T in the background spacetime
M0 that in our case is the FLRW spacetime. T instead lives in a different spacetime, the perturbed
one, that we will call M. Since we know that the perturbations are small (|δT | � |T0|) we can
consider only the linear term in the perturbation expansion. The Einstein equations up to the first
order of perturbation read

δGµν = 8πGδTµν . (1.153)

Re-arranging equation (1.152) we have

δT = T − T0, (1.154)

and we notice that the perturbation δT is not uniquely defined in General Relativity. In fact T
and T0 live in two different spacetimes while to compare tensor we need to evaluate them at the
same spacetime point. Therefore we need to introduce a map, a diffeomorphism, that connects the
background and the perturbed spacetimes (M0, M). The map is defined as

ψ : M0 −→ M, (1.155)
ψ(P ) −→ O, (1.156)

where P ∈ M0 and O ∈ M. It is clear that ψ is not an unique map but in the same way we
can define a second map ϕ as shown in figure 1.10. When choosing a map we are making a gauge
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choice. The gauge freedom is twofold, it is a tool to simplify a problem or to have a better physical
insight but it is also an issue. In fact the gauge freedom translate to a gauge dependence of the
perturbations, which is known as the gauge problem [25, 31]. Let us give an example of this. If we
have two maps that connect M0, in which we have T0, and M, in which we have T and T ′, the
perturbation is different due to the gauge choice, in fact

δT = T − T0

δT ′ = T ′ − T0
(1.157)

where in general δT 6= δT ′. The choice of gauge can hide physical perturbations or can introduce
fictitious ones. To avoid ambiguities we need to study gauge-invariant quantities that are combi-
nations of both matter-energy perturbations and metric perturbations. We refer to [31, 34] for a
full treatment of the gauge problem and gauge transformation. Here we just indicate the result of
a gauge transformation at linear order that is

δT̃ = δT + LξT0 (1.158)

where we defined a gauge transformation as the choice of different map connecting the perturbed
manifold to the unperturbed one. Lξ is the Lie derivative along the vector ξ.

Perturbation of the metric and the stress energy tensor

In the previous study we discussed the perturbation of the inflaton. We are now ready to discuss
also the perturbation of the metric. If we perturb at linear order the FLRW metric we obtain [25,
31]

g00 = −a2(τ)[1 + 2Ψ(x, τ)],

g0i = gi0 = a2(τ)ωi(x, τ),

gij = a2(τ) [(1− 2Φ(x, τ))δij + γij(x, τ)] ,

(1.159)

where Φ, Ψ are scalar functions, ωi is a vector and γij a traceless tensor γii = 0. The decomposition
in these three categories of a well-defined object in a manifold M is very useful since at linear
order their dynamics are decoupled. Furthermore we can decompose vectors into solenoidal and
longitudinal part (the Helmholtz theorem). Similarly we can decompose also tensors. We then
have

ωi = ∂iω
‖ + ω⊥i , (1.160)

γij = Dijγ
‖ + ∂iγ

⊥
j + ∂jγ

⊥
i + γTij , (1.161)

with

Dij = ∂i∂j − δij
∇2

3
, (1.162)

where ω‖ and γ‖ are scalar function, ω⊥i and γ⊥i are solenoidal vectors (∂iω⊥i = 0, ∂iγ⊥ = 0) with
two degrees of freedom and γTij is the symmetric, solenoidal, transverse and traceless tensor part,
with again two degrees of freedom.

We have the freedom to perform a gauge transformation, meaning adding the Lie derivative of
the background metric over a vector ξµ

δg̃µν = δgµν +
(
Lξg(0)

)
µν
. (1.163)

It is useful to separate this vector in its four degrees of freedom
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ξ0 = α,
ξi = ∂iβ + di,

(1.164)

with ∂idi = 0. Performing the transformation on the metric we obtain [31]

Ψ̃ = Ψ + α′ +Hα,

Φ̃ = Φ− 1

3
∇2β −Hα,

ω̃‖ = ω‖ − α+ β′,

ω̃⊥i = ω⊥i + d′i,

γ̃‖ = γ‖ + 2β,

γ̃⊥i = γ⊥i + di,

γ̃Tij = γTij ,

(1.165)

where H = a′/a and the prime now stands for the derivative with respect the conformal time.
From this calculation we already obtained the first invariant quantity we were searching: γTij . The
tensor perturbations of the metric are gauge invariant.

A similar procedure applies to the matter part of the Einstein equations, the stress-energy
tensor. Starting from the stress-energy tensor for a fluid [12]

Tµν = (ρ+ P )uµuν + Pgµν + σµν , (1.166)

where introduced the anisotropic stress tensor σµν . We can decompose the perturbation with
respect the perfect fluid tensor into scalar, vector and tensor parts. We are not interested in
the complete treatment since we are going to consider only the departure from the background
stress-energy tensor due to scalar energy density perturbation that is [25, 34]

T 0
0 = − (ρ0 + δρ) . (1.167)

We again use the gauge freedom to perform a gauge transformation of the perturbation

δρ̃ = δρ+ αρ′0, (1.168)

that shows that ρ is a scalar under general coordinate transformation but its perturbation is gauge
dependent. Moreover we learn that scalars are independent on the coordinates within hypersur-
faces of constant conformal time τ .

Scalar perturbation

Having described both metric and matter perturbation we can now search for a scalar gauge invari-
ant quantity as combination of the two in order to characterize effectively the scalar perturbations.
We are going to consider only the scalar part of the perturbations. Equation (1.165) reduces then
to

Ψ̃ = Ψ + α′ +Hα,

Φ̃ = Φ− 1

3
∇2β −Hα,

ω̃‖ = ω‖ − α+ β′,

γ̃‖ = γ‖ + 2β,

(1.169)
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with the same gauge transformation defined in equation (1.164). Let us introduce the intrinsic
spatial curvature on hypersurfaces at constant τ for a Universe with κ = 0 as assumed in equation
(1.2)

(3)R =
4

a2
∇2Φ̂ (1.170)

where we have defined

Φ̂ := Φ +
1

6
∇2γ‖. (1.171)

Therefore we will refer to Φ̂ as curvature perturbation but notice that it is not a gauge invariant
quantity. In fact under a gauge transformation,

˜̂
Φ = Φ̂−Hα. (1.172)

Let us define a special slicing where the energy density perturbation is vanishing δρuni = 0, called
the hypersurface of uniform energy density. We want to move from a general slicing to this
particular one, performing a gauge transformation

δ̃ρ = δρuni = δρ+ αρ′0 = 0, (1.173)

and thus we need α = −δρ/ρ′. Under the same shift the curvature perturbation Φ̂ transforms as

˜̂
Φ = Φ̂uni = Φ̂−Hα = Φ̂ +Hδρ

ρ′0
. (1.174)

Therefore we can define a gauge invariant quantity

− ζ := Φ̂ +Hδρ
ρ′0
, (1.175)

where ζ is the gauge invariant curvature perturbation of the hypersurfaces with uniform energy
density, in a particular gauge it reduces to the gauge dependent curvature perturbation Φ̂

ζ = −Φ̂δρ=0. (1.176)

As shown in [31] ζ has a fundamental property during inflation on super-horizon scales

ζ ′ = 0 → ζ = const, (1.177)

being also gauge invariant. In any gauge on super-horizon scale, it is constant and allows us to
connect the early Universe scalar field perturbations to the density perturbation that produces the
temperature anisotropy of the CMB. In fact we have

ζ
t
(1)
H (k)

= ζ
t
(2)
H (k)

, (1.178)

where t(1)
H (k) and t(2)

H (k) are respectively the time at which the mode k exits and re-enters the hori-
zon. Therefore if we consider a mode k that re-enters the horizon during the radiation dominated
era we have

− ζ
t
(2)
H (k)

=
1

4

δρ

ρ

∣∣∣∣
t
(2)
H (k)

=
δT

T

∣∣∣∣
t
(2)
H (k)

= −ζ
t
(1)
H (k)

= H
δφ

φ̇

∣∣∣∣
t
(1)
H (k)

. (1.179)
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where we used the uniform curvature gauge (Φ̂ = 0) and we used the fact that in single field
inflation on super-horizon scales7

ζ = −Φ̂− H
φ′
δφ. (1.180)

In this way we were able to connect today observable from the CMB spectrum to quantities that
describe inflation.

Therefore the complete treatment of the perturbation of the scalar field has to include the
metric perturbation and has to be described in terms of gauge invariant quantities. The first-order
perturbed Klein-Gordon equation is [31, 35, 36]

δφ′′ + 2Hδφ′ −∇2δφ+ a2δφ
∂2V

∂φ2
a2 + 2φ

∂V

∂φ
− φ′0

(
Ψ′ + 3Φ′ +∇2ω‖

)
= 0. (1.181)

Introducing the Sasaki-Mukhanov gauge invariant variable [37]

Q := δφ+
φ′

H
Φ̂ (1.182)

and following the previous procedure to quantize the field, the equation of motion for the mode
functions simplifies to [31, 36]

Q′′k +

(
k2 − a′′

a
+M2

φa
2

)
Qk = 0, (1.183)

where Mφ is the effective mass of the inflaton field

M2
φ =

∂2V

∂φ2
− 8πG

a3

(
a3

H
φ̇2

)
. (1.184)

Imposing the slow-roll condition, at first order in the slow-roll parameters we have

M2
φ

H2
= 3ηV − 6ε, (1.185)

Q′′k +

(
k2 − 1

τ2

(
ν2
φ −

1

4

))
Qk = 0. (1.186)

where νφ ' 3/2 + 3ε − ηV (at first order in the slow-roll parameters). We recognize that the
equation (1.186) is of the same form of equation (1.128) that we solved previously. We already
know that the solution at super-horizon scale up to the lowest order in the slow-roll parameters is

|Qk(k)| = H√
2k3

(
k

aH

) 3
2−νφ

. (1.187)

Now we see that ζ and Q are connected [31]

ζ = −H
φ′
Q, (1.188)

and we just have to proceed calculating the power spectrum for ζ

∆ζ(k) =

(
H2

2πφ̇

)2(
k

aH

)3−2νφ

. (1.189)

7On super-horizon scales −ζ is equal to the comoving curvature perturbation R defined as [31]

R = Φ̂ +
H
φ′
δφ = Φ̂ +

H

φ̇
δφ
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The spectral index is then given by

nζ − 1 = 3− 2νφ = −6ε+ 2η. (1.190)

Here we have the first fundamental prediction of the slow-roll single field inflationary model: the
power spectrum for a nearly massless scalar field in a quasi de Sitter spacetime is almost scale
invariant but nζ 6= 1. Since ζ remains constant at super-horizon scale, let us consider a mode k?
that crosses the horizon at t?, that is when k = aH. The power spectrum is then

∆ζ(k) =

(
H2

2πφ̇

)2
∣∣∣∣∣
t?(k)

(1.191)

where the dependence on the mode is hidden in t?, since each mode exits the horizon at different
time.

Gravitational waves

The second fundamental prediction is the production of a stochastic gravitational wave (GW)
background in the early Universe [25, 38]. To show this let us study only the tensor perturbation
of the FLRW metric. We know that at the linear level the evolution of each contribution is
independent. Therefore adding a tensor to the metric we have

ds2 = a2(τ)
[
−dτ2 + (δij + γ⊥ij (x, τ))dxidxj

]
. (1.192)

Let us indicate γ⊥ij = hij and recall its properties in Table 1.4

Symmetric hij = hji

Traceless hii = 0

Divergenceless Dih
i
j

Table 1.4: Properties of the tensor perturbations of the metric

From the perturbed Einstein equations (1.153) for the tensor perturbation, without a source of
tensor anisotropy, we obtain the equation of motion for the perturbations

ḧij + 3Hḣij − a−2∇2hij = 0. (1.193)

Note that equation (1.193) is a wave equation in an expanding Universe and that due to the
properties given in Table 1.4, hij is a wave with two degrees of freedom, meaning two polarizations
(+, ×). Moving to Fourier space where we have the expansion

hij(t, x) =
1

(2π)3

∑
λ=+,×

∫
d3k eik·xhλ,k(t)εij(k), (1.194)

the equation of motion reads now

ḧλ + 3ḣλ +
k2

a2
hλ = 0. (1.195)

Notice that each polarization evolves exactly as a massless scalar field minimally coupled to gravity.
Therefore we already know the solution when we recognize

hλ =
√

32πGφλ. (1.196)
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For the power spectrum we have the tensor power spectrum

∆h+,×(k) = 32πG∆φ+,× , (1.197)

∆h+,×(k) =
8H2

πM2
P

(
k

aH

)−2ε

. (1.198)

Summing over the polarization we have

∆T =
16H2

πM2
P

(
k

aH

)−2ε

. (1.199)

Since it is again a power law it is possible to define a tensorial spectral index

nT :=
d ln ∆T (k)

d ln k
. (1.200)

From equation (1.199) we have

nT = −2ε. (1.201)

Summarizing the results we have

∆ζ(k) = AS

(
k
k0

)nζ−1

,

∆T (k) = AT

(
k
k0

)nT
,

(1.202)

with both the spectral indices and the amplitudes depending on the inflation dynamics, i.e. on the
potential V (φ), hence on the specific inflationary model. Therefore experimental bounds on these
parameters will help us to exclude classes of models.

We have four observable variables to take into consideration but they can be reduced to two.
In fact let us define the tensor-to-scalar ratio of the amplitudes as

r :=
AT
AS

. (1.203)

In the slow-roll paradigm we have a further relation, that can either be used as a consistency check
or to connect two observables. That is

r = 16ε ====⇒
(1.201)

r = −8nT , (1.204)

leaving with two independent quantities: r and nζ .
The experimental measurement of a GW background would be a smoking gun for the infla-

tionary mechanism but if we were able to test the relation in equation (1.204) we would check
a relation that connects independent observables and is a general prediction of the single field
slow-roll inflation models. The latter measurement is a very tricky one since we do not only have
to measure the gravitational wave but also measure its spectrum shape.

Moreover if the relation holds, the scale dependence of the tensor power spectrum is very small.
The latest measurement provides an upper bound for the scalar-to-tensor ratio r [3]

r0.05 < 0.07 95%CL. (1.205)

The measurement of the amplitude of the GW background is very important because it can
also fix the inflationary energy scale. In fact the amplitude is

AT =
2

π2

H2

M2
P

(1.206)
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during inflation and we know that

H2 ' (3MP)
−2
V (φ). (1.207)

Therefore

AT =
2

3π2

V (φ)

M4
P

. (1.208)

From the last equation we can obtain the energy scale

Einf = V 1/4 (1.209)

and thus we can give an estimation using the consinstency equation

Einf = V 1/4 =
(
1.88× 1016GeV

) ( r

0.10

)1/4

(1.210)

In the next years the attempts to measure the GW background will be crucial to improve our
knowledge of the physics of the primordial Universe.

1.7 Fermions in Curved Spacetime

In this section we will briefly present the theory used to deal with spinors in curved spacetime.
When studying QFT in a flat Minkowski space we are able to introduce the concept of spinor as
a representation of the Poincaré symmetry group. When we deal with GR the symmetry group
changes and it is GL(1, 3) that do not allow any spinor representation. We need therefore a
formalism to include spinors in GR: the vierbein field theory [23, 35]. We will follow the treatment
given in [39].

This complementary approach to GR was firstly introduced by Einstein in 1928 during his at-
tempt to unify electromagnetism and gravity, and formalized in 1948 [40]. In a modern perspective
this is the correct tool to develop a relativistic QFT in curved spacetime.

1.7.1 The vierbein formalism
The idea behind the vierbein formalism is to change the basis of the tangent space T . The natural
basis commonly used is the coordinate basis. At a point p the tangent space Tp has a basis

ê(µ) = ∂(µ), (1.211)

such that any 4-vector A ∈ Tp can be decomposed into its components Aµ

A = Aµê(µ) = (A0, A1, A2, A3) . (1.212)

In the following the Greek letters will be associated with the components of the vector in the
coordinate basis while for the new basis that we will introduce we will use the Latin indices.

The cotangent space T ?p basis is given by the differential elements

ê(µ) = dx(µ), (1.213)

therefore the dual vectors B ∈ T ?p has components

B = Bµê(µ) = gµνB
νe(µ). (1.214)

Being ê(µ) and ê(µ) basis for dual spaces their tensor product is simply the identity

ê(µ) ⊗ ê(ν) = 1µν . (1.215)
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At this point we are still free to change the basis that spans the tangent space Tp. We then
choose a new set of basis vectors ê(a) that have still to be orthonormal. Since the spacetime we
want to describe is a Lorentzian manifold, the orthonormality condition reads

g
(
ê(a), ê(b)

)
= ηab, (1.216)

where g( , ) is the metric tensor, the equation (1.216) describes the inner product and ηab is
the Minkowski metric. Basis that are independent from the coordinates are usually called non-
coordinate basis and the set of basis vectors are called tetrad or vierbeins. As before we can now
express every vector in term of the new basis vectors; therefore also the coordinate basis vectors
in equation (1.211)

ê(µ) = eµ
a(x)ê(a), (1.217)

where the components eµa(x) form a 4× 4 invertible matrix. This set of functions depends on the
spacetime point x; in fact the role of the eµa(x) matrix is to rotate, in each point, the basis from
(to) the coordinate basis to (from) the vierbein basis.

We call the inverse transformation matrix eµa(x) and it satisfies

eµa(x)eν
a(x) = δµν , eµ

a(x)eµb(x) = δab, (1.218)

therefore we have the inverse transformation of equation (1.217)

ê(a) = eµa(x)ê(µ). (1.219)

From equation (1.218) we obtain the following relation

gµν(x)eµa(x)eνb(x) = ηab, (1.220)

The physical meaning of the last equation is that we are able to use, point by point, a base
where the spacetime metric, in that point, is Minkowski via a rotation of the tangent space basis.
Furthermore this relation teaches us how to raise and lower the Latin indices: we do that with the
flat metric. In fact re-arranging equation (1.220) we have

eµa(x) = gµνηab eν
b(x), (1.221)

that shows how both Latin and Greek indices are raised and lowered. Similarly we can search a
basis for the dual space ê(a) knowing that it has to satisfy

ê(a) ⊗ ê(b) = 1ab (1.222)

therefore connecting it to the coordinate basis we have

ê(a) = eµ
a(x)ê(µ)(x) (1.223)

and the inverse relation

ê(µ)(x) = eµa(x)ê(a). (1.224)

Note that imposing the compatibility between the choice of basis of the tangent and cotangent
basis through the relation (1.222) we have that the vierbeins matrices and inverse eµa(x), eµa(x)
are the same as those used to rotate the 1-form basis. Vectors (and 1-forms) can be expressed
in both basis and when dealing with vectors components (V µ or V a) we have the transformation
relation

V a = eµ
a(x)V µ and V µ = eµa(x)V a, (1.225)
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which is easily generalized to multi-index objects. The vierbein matrix allows us to move back and
forth from Greek and Latin indices.

Now that we have learned the basics we note that since we moved to a non-coordinate basis we
can change the basis independently from the coordinates but keeping the relation (1.216) satisfied.
The transformations that preserve it are the well-known Lorentz transformations

LLT : ê(a) → ê(a′) = Λaa′(x)ê(a). (1.226)

Note that, contrary to what we were used to, the matrix Λ depends on the spacetime point.
We call these transformation Local Lorentz transformation (LLT). This means that we have the
freedom to perform a (different) Lorentz transformation at any point. Of course general coordinate
transformations are still a symmetry and the most general transformation is given by

T a
′µ′

b′ν′ = Λa
′

a
∂xµ

′

∂xµ
Λbb′

∂xν

∂xν′
T aµbν . (1.227)

We need to introduce the covariant derivative in this new formalism, and we just need to replace
the usual Christoffel connection with the spin connection ωµ

a
b. As usual the covariant derivative

is then

∇µXa
b = ∂µX

a
b + ωµ

a
cX

c
b − ωµcbXa

c. (1.228)

The transformation law between the two connections is obtained by asking tensors to be indepen-
dent from the basis in which they are written. Therefore the covariant derivative of a vector X in
coordinate basis is

∇X = (∇µXν) dxµ ⊗ ∂ν (1.229)

=
(
∂µX

ν + ΓνµλX
λ
)

dxµ ⊗ ∂ν (1.230)

and in a mixed basis it is

∇X = (∇µXa) dxµ ⊗ ê(a) (1.231)

=
(
∂µX

a + ωµ
a
bX

b
)

dxµ ⊗ ê(a). (1.232)

Converting it to the coordinate basis gives

∇X =
(
∂µ (eν

aXν) + ωµ
a
b eλ

bXλ
)

dxµ ⊗ (eσa∂σ) (1.233)

= eσa
(
eν
a∂µX

ν +Xν∂µeν
a + ωµ

a
b eλ

bXλ
)

dxµ ⊗ ∂σ (1.234)

=
(
∂µX

ν + eνa∂µeλ
aXλ + eνaeλ

bωµ
a
b X

λ
)

dxµ ⊗ ∂ν (1.235)

So comparing equation (1.232) and (1.235) we find

Γνµλ = eνa∂µeλ
a + eνaeλ

bωµ
a
b. (1.236)

The important relation, called the tetrad postulate, that states that the covariant derivative of the
vierbein matrix is null is nothing else than a restatement of (1.236)

∇µeνa = ∂µeν
a − Γλµνeλ

a + ωµ
a
b eν

b = 0. (1.237)
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1.7.2 Dirac equation

Let us recall the action of the internal Lorentz transformation U(Λ), acting on spinors, on the
Dirac gamma matrices in flat spacetime [41]

U(Λ)−1γµU(Λ) = Λµσγ
σ (1.238)

and we remember also that the Dirac equation

(iγµ∂µ +m)ψ = 0 (1.239)

is invariant under Lorentz transformations in a flat spacetime [41]. Recall that the internal Lorentz
transformation U(Λ) commutes with the external Lorentz transformations Λ acting on 4-vectors.
Let us use a more compact notation in the following

Λ 1
2

:= U(Λ) (1.240)

Λ− 1
2

:= U(Λ)−1. (1.241)

Recalling the action of Λ on the gamma matrices

Λµσγ
σ = γνΛµν , (1.242)

we obtain an useful identity

Λµλe
λ
aγ
a
(
Λ−1

)ν
µΛ 1

2
= Λ 1

2
Λ− 1

2

(
Λµλe

λ
aγ
a
)

Λ 1
2

(
Λ−1

)ν
µ (1.243)

= Λ 1
2
Λµσ

(
Λσλe

λ
aγ
a
) (

Λ−1
)ν

µ (1.244)

= Λ 1
2
Λνλe

λ
aγ
a. (1.245)

We want the Dirac equation to be invariant under Lorentz transformations also in curved space-
times. We know that we need to add a term Γµ to the derivative in order to construct the covariant
derivatives and make the kinetic term invariant. Let us understand how this term has to behave
under U(Λ) in order to assure invariance:

eµaγ
a (∂µ + Γµ)ψ(x)

LLT−→ Λµλe
λ
aγ
a
(
Λ−1

)ν
µ (∂ν + Γ′ν) Λ 1

2
ψ
(
Λ−1x

)
(1.246)

= Λµλe
λ
aγ
a
(
Λ−1

)ν
µΛ 1

2

(
∂ν + Λ− 1

2
Γ′νΛ 1

2

)
ψ
(
Λ−1x

)
(1.247)

+ Λµλe
λ
aγ
a
(
Λ−1

)ν
µ

(
∂νΛ 1

2

)
ψ
(
Λ−1x

)
(1.248)

= Λ 1
2
Λνλe

λ
aγ
a

[
(∂ν + Γν)− Γν + Λ− 1

2
Γ′νΛ 1

2
+ Λ− 1

2
∂ν

(
Λ 1

2

)
︸ ︷︷ ︸

=0

]
ψ
(
Λ−1x

)
.

(1.249)

The transformation rule for Γµ can thus be read from the last equation

Γ′ν = Λ 1
2
ΓνΛ− 1

2
− ∂ν

(
Λ 1

2

)
Λ− 1

2
. (1.250)

Since the usual mass term is still invariant we can write the invariant Dirac equation in a curved
spacetime as

iγaeµa(x)∇µψ −mψ = 0, (1.251)
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where the covariant derivative is defined as

∇µ = ∂µ + Γµ, (1.252)

with Γµ transforming according to (1.250) and we can define from equation (1.251) the spacetime
dependent gamma matrices as γµ(x) := γaeµa. The reader will recognize this procedure to be
exactly the same as the one used for gauge field theory with the difference that Γµ is not a gauge
field.

To complete the treatment we provide the expression of Γµ [35, 39]:

Γα =
1

2
eβk (∇αeβh)Shk (1.253)

where Shk are the antisymmetric generators of the Lorentz transformations that satisfy the com-
mutation relation [

Shk, Sij
]

= ηhjSki + ηkiShj − ηhiSkj − ηkjShi, (1.254)

and give the infinitesimal transformation of a spinor

Λ 1
2

= 1 +
1

2
λabS

ab. (1.255)
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CHAPTER 2

THE SCHWINGER-KELDYSH FRAMEWORK

The early Universe is a peculiar setting for the study of quantum fields, since the field operators
acquire an explicit time dependence due to the spacetime expansion. In this framework inflation
takes place: the inflaton field is responsible for the accelerated expansion but it also presents quan-
tum fluctuations. These fluctuations, that are the seeds for the initial density perturbation that
will grow into the large scale structure of the Universe, are the main focus of our discussion and
hence we need a formalism to treat quantum fields in this new environment. In fact some differ-
ences from the particle physics QFT approach (that is also called the in-out formalism) appear
in the study of the primordial Universe physics: the Poincaré symmetry is explicitly broken by
the evolving background metric, in particular by the time dependent scale factor a(t); this leads
the quantum fields action and therefore the cosmological observables to have an explicit time de-
pendence. Moreover the information we seek are different. We are not interested in the S matrix
element of scattering processes but rather we want to follow the time evolution of expectation
values in a fixed initial state [42]. The Schwinger Keldysh (SK) formalism, also known as the in-in
formalism, is the appropriate formalism to study the evolution of the cosmological observables in
this setting, in particular if we are interested in including quantum effects and non Gaussiani-
ties. This new formalism was first introduced by Schwinger [43], developed by Keldysh [44] and
translated to relativistic field theory by Chou et al. [45] and finally extended by Jordan to curved
spacetimes [46]. It has been applied for over fifty years to condensed matter and statistical physics
but lately it has been a great complementary tool to the standard in-out approach in the study of
the early Universe cosmology [47–53].

In section 2.1 we will introduce the Schwinger Keldysh formalism in the context of expanding
background spacetime metric and derive the structure of the propagators of the free theory in order
to then address the general theory perturbatively. In section 2.2 we will derive the explicit form of
the propagators for a massive scalar and a massive fermion field first in the Minkowski spacetime
and then in the de Sitter spacetime. Finally in section 2.3 the WKB approximation is studied and
the approximated propagators are compared with full propagators via numerical methods.

2.1 The Schwinger-Keldysh Formalism

Correlation functions are one of the main objects in the study of both particle physics and cosmol-
ogy. However, there is a fundamental difference. In particle physics the S-matrix

S := lim
t→+∞
t0→−∞

UI(t, t0) ≡ UI(+∞,−∞), (2.1)
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is the fundamental object needed to study scattering and decay processes (the evolution operator
UI(t, t0) and the meaning of operators in the interaction picture, denoted by the label I, will be
introduced soon). Knowing the S-matrix we are able to compute the S-matrix elements

SFI := 〈ψI |S|ψF 〉I , (2.2)

the main focus of the study, since |SFI |2 is the transition probability for the state |ψI〉 fixed in
the far past (t → −∞) to become some state |ψF 〉 in the far future (t → +∞). In the very early
and late times the particles are considered to be infinitely far apart and so non-interacting. The
asymptotic states therefore belong to the Fock space of the free theory.

The main interest in cosmology instead is the expectation values of product of fields at a given
time. Boundary condition is imposed only at very early times in this case. As discussed in chapter
1, for wavelength deep inside the sub-horizon region we impose the Bunch-Davies vacuum choice
(1.119): we ask the mode function solutions to have the same form as in Minkowski space according
to the equivalence principle.

2.1.1 Interaction picture in cosmology
Both in cosmology and in particle physics it is customary to introduce the interaction picture
to address the computations. Let us introduce the interaction picture in a context where the
background is time dependent. Consider the Hamiltonian H[φ(x, t), π(x, t)] for the quantum theory
we want to describe, where the fields φi and the conjugate momenta πi obey the equal time
commutation relations

[φi(x, t), πj(y, t)] = iδijδ
3(x− y), (2.3)

[φi(x, t), φj(y, t)] = 0, (2.4)
[πi(x, t), πj(y, t)] = 0, (2.5)

and the Heisenberg equations of motion

φ̇i = i[H, φi], π̇i = i[H, πi], (2.6)

where the indices i, j denote different fields and spin components. In order to introduce the
perturbation theory we separate the field into background and perturbation parts as we did in
equation (1.60) for the inflaton field φ. The background (φ0,i, π0,i) is defined to be the homogeneous
and isotropic part of the fields (φ0 for the inflaton and gFLRWµν for the metric), leading to the
definition of the perturbation as

φi(x, t) = φ0,i(t) + δφi(x, t), πi(x, t) = π0,i(t) + δπi(x, t). (2.7)

Since the background is a complex-valued function the commutators of the perturbation are again

[δφi(x, t), δπj(y, t)] = iδijδ
3(x− y) (2.8)

[δφi(x, t), δφj(y, t)] = 0 (2.9)
[δπi(x, t), δπj(y, t)] = 0. (2.10)

It is useful to expand the Hamiltonian around the background, leading to

H[φ, π] = H[φ0, π0] + H̃[δφ, δπ; t], (2.11)

where H̃[δφ, δπ; t] is the Hamiltonian for the perturbation that depends on the background; it is
second and higher order in δφ and δπ since the terms linear in the perturbation are vanishing due
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to the background equation of motion. H̃[δφ, δπ; t] governs the time dependence of the fluctuation,
as shown in [47],

δφ̇ = i
[
H̃[δφ, δπ; t], δφ

]
, δπ̇ = i

[
H̃[δφ, δπ; t], δπ

]
. (2.12)

As usual we can define the evolution operator U(t, t0)
d
dtU(t, t0) = −iH̃[δφ(t), δπ(t); t]U(t, t0),

U(t0, t0) = 1,
(2.13)

such that the fluctuations at time t are connected to the same operator at time t0

δφi(t) = U−1 (t, t0) δφi (t0)U (t, t0)
δπi(t) = U−1 (t, t0) δπi (t0)U (t, t0) .

(2.14)

To solve problems that go beyond a quadratic Hamiltonian H̃[δφ, δπ; t] in the perturbations
we often need to use the perturbation theory. Therefore we decompose H̃ into a free part, H0,
quadratic in the fluctuation and an interacting part, Hint,

H̃[δφ, δπ; t] = H0[δφ, δπ; t] +Hint[δφ, δπ; t], (2.15)

This separation allows to introduce the interaction picture, defining the interaction picture opera-
tors δφIi and δπIi whose evolution is determined only by the H0 part of the Hamiltonian1

δφ̇Ii = i
[
H0[δφI , δπI ; t], δφIi

]
, δπ̇Ii = i

[
H0[δφI , δπI ; t], δπIi

]
, (2.16)

with the following initial conditions

δφIi (t0) = δφi (t0) , δπIi (t0) = δπi (t0) , (2.17)

in order to completely define the interaction picture. Since H0 is quadratic, the interaction picture
operators are free fields. Once again we can describe the evolution using a (free) unitary evolution
operator U0(t, t0) defined by

d
dtU0(t, t0) = −iH0[δφ(t0), δπ(t0); t]U0(t, t0),

U0(t0, t0) = 1,
, (2.18)

so that the operators are related to the operators in the Heisenberg picture at early time t0

δφIi (t) = U−1
0 (t, t0) δφi (t0)U0 (t, t0) ,

δπIi (t) = U−1
0 (t, t0) δπi (t0)U0 (t, t0) .

(2.19)

Defining F (t, t0) as

F (t, t0) := U−1
0 (t, t0)U (t, t0) , (2.20)

from equations (2.13) and (2.18) we have
d
dtF (t, t0) = −iHI

int[δφ(t0), δπ(t0); t]F (t, t0),

F (t0, t0) = 1,
(2.21)

where HI
int is the interaction part of the Hamiltonian in the interaction picture. The system (2.21)

has the well-known solution
1The free part of the Hamiltonian is equivalent in the Heisenberg and in the interaction picture [47].
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F (t, t0) = T exp

(
−i
∫ t

t0

dt HI
int(t)

)
, (2.22)

where T is the time ordered product applied to the power series expansion of the exponential. At
this point using equations (2.14) and (2.19) we can express the solution for the fluctuation in the
Heisenberg picture in terms of the free fields of the interaction picture as

Q(t) = F−1 (t, t0)QI(t)F (t, t0)

=

[
T̃ exp

(
i

∫ t

t0

dt HI
int(t)

)]
QI(t)

[
T exp

(
−i
∫ t

t0

dt HI
int(t)

)]
,

(2.23)

where Q(t) is any product of the fields and T̃ the anti-time ordered product.

2.1.2 The expectation values
The time evolution operator F (t, t0) can be used, in the interaction picture, to relate states at
different times. In particular, let us consider the vacuum state

|Ω(t)〉 = F (t, t0) |Ω (t0)〉 . (2.24)

We refer to |Ω(t)〉 as the ground state, the vacuum, of the interacting theory and to |0〉 as the early
time (Bunch-Davies) vacuum of the free theory. We are discussing the different vacua because in
cosmology the expectation value we want to compute is of the type

〈Q(t)〉 = 〈in|Q(t)|in〉 (2.25)

where the in state |in〉 := |Ω(ti)〉 ≡ |Ω〉 is the vacuum of the interacting theory at some very early
time ti and t > ti is a late time (e.g. the time of the horizon crossing). We can relate, using the
evolution operator F (t, t0), the interacting vacuum state to the free one. Let us expand |0〉 into
eigenstates of the full theory

|0〉 = |Ω〉〈Ω|0〉+
∑
n

|n〉〈n|0〉, (2.26)

where |n〉 are the excited states. Therefore

e−iH(t−ti)|0〉 = e−iH(t−ti)|Ω〉〈Ω|0〉+
∑
n

e−iEn(t−ti)|n〉〈n|0〉. (2.27)

Adding a small imaginary part to the time

ti → t̃i(1− iε), (2.28)

near ti → −∞ we are able to project away the excited states since the iε factor introduces a term
e−iEn(t−ti) → e−∞·εEn(· · · )→ 0. Recognizing the evolution operator F (t, t0) and since |Ω〉 is the
only state that survives we are left with

F
(
t, t̃i
)
|Ω〉 =

F
(
t, t̃i
)
|0〉

〈Ω|0〉
. (2.29)

The iε prescription physically means to turn off the interaction in the far past therefore projecting
the state |in〉 onto the free vacuum |0〉. Combining (2.23) and (2.29) the expectation value of an
operator Q is given by

〈Ω|Q(t)|Ω〉 =

〈
0
∣∣∣[T̃ ei ∫ tti dt′ HIint(t

′)
]
QI(t)

[
Te
−i

∫ t
ti

dt′′ HIint(t
′′)
]∣∣∣ 0〉

|〈0|Ω〉|2
, (2.30)
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|in〉

|in〉

ti
Re(t)

Im(t)
Q(t)

t

Figure 2.1: The in-in contour C. We denoted by C+ (C−) the forward (backward) branch. Figure
inspired by [5].

where setting |〈Ω|0〉|2 → 1 we obtain the in-in master formula

〈Q(t)〉 =
〈

0
∣∣∣T̃ ei ∫ tti dt′ HIint(t

′)QI(t)Te
−i

∫ t
ti

dt′′ HIint(t
′′)
∣∣∣ 0〉 . (2.31)

where the contour C specified by the above iε prescription is called the in-in contour or Keldysh
contour that goes from ti(1 + iε) to t where the correlation function is evaluated and back to
ti(1− iε) as shown in figure 2.1. This formalism is also referred to as the close-time-path formalism
(CTP) because of the shape of the time contour. To proceed and compute the correlation functions
perturbatively we expand the exponentials, obtaining at first order [5]

〈Q(t)〉 = −i
∫ t

ti

dt′
〈
0
∣∣[QI(t), HI

int (t′)
]∣∣ 0〉 , (2.32)

where the iε prescription is to be understood and ti has to be a sufficiently early time such that
the fluctuation wavelength are deep under the horizon and the fluctuations are supposed to be-
have as free fields and we fix the Bunch-Davies vacuum. Similarly to the case of particle physics
transition amplitudes we can introduce the Feynman diagrams for the correlation functions that
we will discuss in the following.

The same expectation values can be obtained using the path integral formalism. An advantage
of the path integral formalism over the operator formalism is that we can derive the Feynman
rules directly from the Lagrangian rather than from the Hamiltonian, and it can produce results
beyond perturbation theory. In the in-out path integral formulation of QFT the starting point is
the generating functional Z[J ] which is the vacuum to vacuum transition amplitude in presence
of a source and it allows to calculate correlators. As discussed before, in cosmological setting,
boundary conditions are imposed only at very early times without making any assumption on the
system in the far future. In order to calculate expectation values in the in vacuum under these
conditions Schwinger [43] introduced a different generating functional

Z[J+, J−] :=
∑
λ

〈in|λ〉J− 〈λ|in〉J+ , (2.33)

where we leave the in vacuum evolve independently under two different sources J+, J− and compare
it with a common state |λ〉 in the future and we sum over the complete set of |λ〉. Taking the
complete and orthonormal set of states |λ〉 to be eigenstates of the field we are considering (in the
Heisenberg picture) at some late time t

Φ(x, t) |λ〉 = λ |λ〉 , (2.34)

we can introduce a path integral representation of Z[J−, J+]. In the path integral representation
equation (2.33) can be interpreted as the sum of all the paths that go forward in time from the in
vacuum |in〉 to a state |λ〉 under the action of a source J+, where the state |λ〉 is defined on the
hypersurfaces at time t, and the back to the in vacuum in the presence of J−.
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2.1.3 Generating functional for a scalar field

Let us start considering a massive scalar field φ with an action S[φ]. For the moment we turn
off all the interactions and study the free theory to then proceed in the next chapter with the
perturbation theory [46, 48] We can now introduce the generating functional in equation (2.33) for
a scalar field in the path integral representation [46, 47, 52–54]

Z [J+, J−] =

∫
Dφ+Dφ− exp {i (S [φ+] + J+φ+ − S [φ−]− J−φ−)} , (2.35)

with the shorthand notation

Jφ =

∫ t

ti

dt′
∫

d3x J(x)φ(x). (2.36)

where J+ (J−) is the source of φ+ (φ−) with vacuum boundary condition in the far past for both
φ+ and φ− and the integral is over all the field configurations that coincide at t, that is, on the
hypersurface Σ at time t

φ+(t) = φ−(t). (2.37)

Equation (2.35) provides us the tool to calculate expectation values starting from a generating
functional with the time integration contour depicted in figure 2.1. Moreover since the path inte-
gral description of the theory in the Schwinger-Keldysh formalism in equation (2.35) is equivalent
in form to the in-out formalism, for a theory of two independent scalar fields, we are already able to
deal with an interacting theory in the perturbative regime, proceeding diagrammatically as usual,
keeping in mind the peculiar boundary conditions.

In order to proceed to use the perturbation theory we need first to study the propagators of the
free theory. The generating functional is now over two fields and two sources and it is convenient
to treat them as elements of vectors in some internal space

Φ :=

(
φ+

φ−

)
& J :=

(
J+

−J−

)
. (2.38)

We can therefore re-write equation (2.35) in the matrix form

Z [J] =

∫
Dφ+Dφ− exp

{
i

∫
d4x

(
ΦTLφ Φ + JTΦ

)}
, (2.39)

where we have defined the matrix Lagrangian as

Lφ :=

(
L[φ+] 0

0 −L[φ−]

)
. (2.40)

The path integral is Gaussian, therefore we have

Z[J] = Z[J = 02] exp

{
i

∫
d4x

∫
d4y JT (x)G(xµ, yµ)J(y)

}
, (2.41)

where the propagators matrix G(xµ, yµ) is defined by

Lφ G(xµ, yµ) := δ(4)(xµ, yµ)12, (2.42)

and we name the various elements of the matrix as follows

G(xµ, yµ) :=

(
G++(xµ, yµ) G+−(xµ, yµ)
G−+(xµ, yµ) G−−(xµ, yµ)

)
. (2.43)
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The four propagators are obtained through the standard procedure of functional derivation of the
generating functional with respect to the source

G++(xµ, yµ) = i

(
δ

iδJ+(xµ)

)(
δ

iδJ+ (yµ)

)
eiW [J+,J−]

∣∣∣∣
J+=J−=0

(2.44)

= i

∫
Dφ+Dφ−ei(S[φ+]−S[φ−])φ+(xµ)φ+(yµ) (2.45)

= i
∑
λ

〈0|λ〉 〈λ|Tφ(xµ)φ(yµ)|0〉 (2.46)

= i 〈0|Tφ(xµ)φ(yµ)|0〉 = 〈0|TCφ+(xµ)φ+(yµ)|0〉 , (2.47)

where T is the usual time ordering operator. Similarly for the remaining propagators

G+−(xµ, yµ) = i 〈0|φ(yµ)φ(xµ)|0〉 = i 〈0|TCφ+(xµ)φ−(yµ)|0〉 , (2.48)

G−+(xµ, yµ) = i 〈0|φ(xµ)φ(yµ)|0〉 = i 〈0|TCφ−(xµ)φ+(yµ)|0〉 , (2.49)

G−−(xµ, yµ) = i 〈0|T̃ φ(xµ)φ(yµ)|0〉 = i 〈0|TCφ−(xµ)φ−(yµ)|0〉 , (2.50)

where TC is the time ordering along the path C defined following the convention in figure 2.1,
meaning that the points in the backward branch C− are always later in time than the one in the
forwards branch C+. The implications are evident in equations (2.48) and (2.49). G++(xµ, yµ)
and G−−(xµ, yµ) are the Feynman and anti-Feynman propagators respectively; this comes from
the boundary condition that we have set. Notice that the propagators have some useful relations
connecting them

G+−(xµ, yµ) = G−+(yµ, xµ), (2.51)

G+−(xµ, yµ)? = −G−+(xµ, yµ). (2.52)

that are easily obtained from their definitions. Moreover we can show that the four propagators
are not independent: thanks to the time ordering property we can express G++ and G−− in term
of G+− and G−+ using the Heaviside θ(t1, t2) function

G++(xµ, yµ) = θ(x0 − y0)G−+(xµ, yµ) + θ(y0 − x0)G+−(xµ, yµ), (2.53)

G−−(xµ, yµ) = θ(x0 − y0)G+−(xµ, yµ) + θ(y0 − x0)G−+(xµ, yµ), (2.54)

Therefore it follows that

G++(xµ, yµ) +G−−(xµ, yµ) = G+−(xµ, yµ) +G−+(xµ, yµ). (2.55)

This suggests us that we can move to a more convenient basis where one of the components of
the propagator matrix is zero. This is the so-called Keldysh basis. Rotating the field into the new
basis we have

φ(1) =
1

2
(φ+ + φ−) & φ(2) = (φ+ − φ−), (2.56)

rotating the propagators matrix

G′(xµ, yµ) :=

(
G11(xµ, yµ) G12(xµ, yµ)
G21(xµ, yµ) G22(xµ, yµ)

)
:=

(
iF (xµ, yµ) GR(xµ, yµ)
GA(xµ, yµ) 0

)
. (2.57)
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The advantage of the new basis is that the correlator 〈0|Tφ(2)φ(2)|0〉 is always vanishing and
therefore when drawing the Feynman diagrams we know that they will not contain any “ 22 ”
internal leg. The relation with the previous basis is given by

Fφ(xµ, yµ) = − i
2

[
G−+(xµ, yµ) +G+−(xµ, yµ)

]
(2.58)

GRφ (xµ, yµ) = θ (x0 − y0)
[
G−+(xµ, yµ)−G+−(xµ, yµ)

]
(2.59)

GAφ (xµ, yµ) = GRφ (yµ, xµ) (2.60)

We recognize F as the Hadamard (or Keldysh) propagator and GR and GA as the retarded and the
advanced propagators. Let us notice moreover that equal time GR and GA are also automatically
zero because of the Heaviside function. Finally the three propagators are connected to the Feynman
propagator GF by the relation

GF (yµ, xµ) =
1

2

[
GR(yµ, xµ) +GA(yµ, xµ)

]
+ iF (yµ, xµ). (2.61)

2.1.4 Generating functional for a fermion field
The discussion for a fermion field is similar to the previous one therefore we will present it briefly.
We need to be careful and remember that the fields and the sources in the generating functional
in this case are Grassmann variables. Therefore the order in which they show up in the integral
is important. We will use the fermion case to express the previous results in a different and
complementary form that can be useful for a deeper understanding.

As we learned from the scalar case the computational technique in the Schwinger Keldysh
formalism is to double the fields and the sources, in order to write the generating functional for
in-in correlators Z. The fields ψ+, ψ+and the sources η+, η+live in the C+ branch, ψ−, ψ−and the
sources η−, η−in the C− branch. The boundary conditions are: ψ+(t) = ψ−(t) and ψ+(t) = ψ−(t)
on the hypersurface Σ at time t and we impose as the initial state the Bunch-Davies vacuum at ti,
deep inside the horizon. The path integral representation of the generating functional is

Z[η] =

∫
Dψ−Dψ−Dψ+Dψ+ exp

(
i

∫ t

ti

dt′
∫

d3x L[ψ−, ψ−] + η−ψ− + ψ−η−

)
(2.62)

× exp

(
−i
∫ t

ti

dt′
∫

d3x L
[
ψ+, ψ+

]
+ η+ψ+ + ψ+η+

)
,

where Z[η] = Z[η−, η−, η+, η+] or equivalently

Z[η] =

∫
DψDψ exp

(
i

∫
C

dt′
∫

d3x L[ψ, ψ]− ηψ + ψη

)
. (2.63)

Using a vector notation

Ψ :=

(
ψ+

ψ−

)
& η :=

(
η+

−η−

)
, (2.64)

Ψ :=
(
ψ+ ψ−

)
& η :=

(
η+ −η−

)
, (2.65)

leads to

Z[η] =

∫
Dψ−Dψ−Dψ+Dψ+ exp

{
i

∫
d4x

(
ψ+ ψ−

)((i6 ∂ +m) 0
0 −(i6 ∂ +m)

)(
ψ+

ψ−

)}
(2.66)

× exp

{(
η+ −η−

)(ψ+

ψ−

)
+
(
ψ+ ψ−

)( η+

−η−

)}
.
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Again the integral is quadratic in the fields and we proceed defining the propagators matrix

(
(i6 ∂ +m) 0

0 −(i6 ∂ +m)

)(
S++(xµ, yµ) S+−(xµ, yµ)
S−+(xµ, yµ) S−−(xµ, yµ)

)
:= δ4(xµ, yµ)

(
1 0
0 1

)
(2.67)

and the generating functional is re-written in explicit form for the fermion indices as

Z[η] = Z[η = 0] exp

{
i

∫
d4x d4y

(
ηa+(xµ) −ηa−(xµ)

)(S++(xµ, yµ)ab S+−(xµ, yµ)ab
S−+(xµ, yµ)ab S−−(xµ, yµ)ab

)(
ηb+(y)
−ηb−(y)

)}
.

The propagators are obtained by the functional derivative with respect to the sources

〈0|
(
T̃ψa1(xµ1 )...ψak(xµk)ψak+1(xµk+1)...ψan(xµn) Tψan+1(xµn+1)...ψaj (xµj )ψaj+1 ...ψan+m(xµn+m)

)
|0〉

=
1

Z[η = 0]

(
ik

δk

δη−
a1(xµ1 )...δη−

ak(xµk)

)(
1

in−k
δn−k

δη−ak+1(xk+1)...δη−an(xµn)

)
·
(

1

ij
δj

δη+
an+1(xµn+1)...δη+

aj (xµj )

)(
im−j

δm−j

δη+
aj+1(xµj+1)...δη+

am(xµm)

)
Z[η]

∣∣∣∣
η=0

.

Summarizing the results in matrix form we have

(
S++(xµ, yµ)ab S+−(xµ, yµ)ab
S−+(xµ, yµ)ab S−−(xµ, yµ)ab

)
= i

(
〈Tψa(xµ)ψb(yµ)〉 −〈ψb(yµ)ψa(xµ)〉
〈ψa(xµ)ψb(yµ)〉 〈T̃ψa(xµ)ψb(yµ)〉

)
. (2.68)

Given the identity provided by the definition of time ordering and anti-time ordering operators

〈Tψa(xµ)ψb(yµ)〉+ 〈T̃ψa(xµ)ψb(yµ)〉 = −〈ψb(yµ)ψa(xµ)〉+ 〈Tψa(xµ)ψb(yµ)〉, (2.69)

we have the correspondent equation to (2.55) for the fermions

S++
ab + S−−ab = S+−

ab + S−+
ab . (2.70)

We then rotate the fields and the propagators into the Keldysh basis with the same matrix used
for the scalar obtaining

S ′(xµ, yµ) :=

(
iFψ(xµ, yµ) GRψ (xµ, yµ)

GAψ (xµ, yµ) 0

)
(2.71)

=


1
2

(
S+−(xµ, yµ) + S−+(xµ, yµ)

)
θ(x0 − y0)

(
S−+(xµ, yµ)− S+−(xµ, yµ)

)
θ(y0 − x0)

(
S+−(xµ, yµ)− S−+(xµ, yµ)

)
0

 .

2.2 The Schwinger-Keldysh Propagators

In this section we will present the scalar and fermion Schwinger-Keldysh propagators in momen-
tum space for two different background spacetimes: Minkowski and de Sitter. The choice of the
Minkowski spacetime as background is a good way to warm-up to then approach the de Sitter
computations and it will be useful as a check of the future results in the limit a(t) = 1 (when the
flat FLRW metric is equal to the Minkowski one).
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To ease the comparison we Fourier-transform only the spatial coordinates (the spatial part
of the fields in dS can still be expanded through plane waves since is spatially flat spacetime).
Following the convention for the Fourier transform

φ(x, t) =

∫
d3p

(2π)3
φ̃(p, t)eip·x, (2.72)

φ̃(p, t) =

∫
d3x φ(x, t)e−ip·x, (2.73)

we define the expansion of the field in mode functions for a massless, ϕ, and a massive, σ, scalar
field and for a massive fermion field, ψ, respectively as

ϕ(x, τ) =
1

a(τ)

∫
d3k

(2π)3

[
b(k)u(k, τ)eik·x + b†(k)u∗(k, τ)e−ik·x

]
, (2.74)

σ(x, τ) =
1

a(τ)

∫
d3k

(2π)
3

[
c(k)v(k, τ)eik·x + c†(k)v∗(k, τ)e−ik·x

]
, (2.75)

ψ(x, τ) =
1

a3/2(τ)

∫
d3k

(2π)3

∑
λ=±1

[
dλ(k)uλ(k, τ)eik·x + f†λ(k)v∗λ(k, τ)e−ik·x

]
, (2.76)

where k is the conformal momentum. The mode functions are the complete set of solutions to the
free equations of motion for the fields that we recall here

�ϕ(x, τ) = 0, (2.77)
(�+Ms)σ(x, τ) = 0, (2.78)

(i6 ∇ −Mf )ψ(x, τ) = 0, (2.79)

where the covariant derivative and the d’Alambert operator in a curved spacetime are defined in
chapter 1 and we defined 6 ∇ := ∇µγµ(xµ) with the spacetime dependent γµ(xµ) matrices defined
in equation (1.251).

2.2.1 Scalar field

We are going to derive the relation between the Schwinger-Keldysh propagators and the mode
functions and then present their expressions in both the Minkowski and de Sitter background.
Using equations (2.48) and (2.74) we have

G−+
ϕ (xµ, yµ) = i 〈ϕ(xµ)ϕ(yµ)〉

=
i

a(τ1)a(τ2)

∫
d3k

(2π)3

∫
d3p

(2π)3

〈(
b(k)u(k, τ1)eik·x + b†u∗(k, τ1)e−ik·x

)
×
(
b(k)u(p, τ2)eip·y + b†(k)u∗(p, τ2)e−ip·y

)
〉

=
i

a(τ1)a(τ2)

∫
d3k

(2π)3

∫
d3p

(2π)3

〈
b(k)b†(p)

〉︸ ︷︷ ︸
=(2π)3δ(3)(k−p)

u(k, τ1)u∗(p, τ2)e−ik·xe−ip·y

=
i

a(τ1)a(τ2)

∫
d3k

(2π)3
u(k, τ1)u∗(k, τ2)e−ik·(x−y). (2.80)

Therefore the Fourier transform is
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G̃−+
ϕ (k, τ1, τ2) =

i

a(τ1)a(τ2)
u(k, τ1)u∗(k, τ2), (2.81)

where in the following we will omit the tilde in G̃ since it will be clear when we are dealing with
Fourier-transformed quantities by their dependence on the momentum k. The computation is
similar for the other propagators, leading to

G+−
ϕ (k, τ1, τ2) =

i

a(τ1)a(τ2)
u(k, τ2)u∗(k, τ1), (2.82)

G−+
σ (k, τ1, τ2) =

i

a(τ1)a(τ2)
v(k, τ1)v∗(k, τ2), (2.83)

G+−
σ (k, τ1, τ2) =

i

a(τ1)a(τ2)
v(k, τ2)v∗(k, τ1). (2.84)

From the G+− and G−+ propagators it is straightforward to construct the propagators in the
Keldysh basis as discussed above in equations (2.58), (2.59) and (2.60) so we can proceed now to
discuss the various mode function solutions.

Minkowski background

We choose as the initial state for the Minkowski background case the vacuum state of the free
theory, the mode function solution is [41]

uM(k, τ) =
1

2ωk
e−iωkτ , (2.85)

where ωk =
√
k2 +M2

s is the time independent frequency and we will see that it is the limit of
the WKB mode function for ωk(t) → ωk. Thanks to the equations (2.81) and (2.82) the Fourier
transformed Schwinger-Keldysh propagators are

G+−
ϕ/σ(k, τ1, τ2) =

i

2ωk
eiωk(τ1−τ2), (2.86)

G−+
ϕ/σ(k, τ1, τ2) =

i

2ωk
eiωk(τ2−τ1). (2.87)

Rotating into the Keldysh basis using equations (2.58), (2.59) and (2.60)

Fϕ/σ(k, τ1, τ2) =
1

2ωk
cos(ωk(τ1 − τ2)), (2.88)

GRϕ/σ(k, τ1, τ2) = θ(τ1 − τ2)
1

2ωk
sin(ωk(τ1 − τ2)), (2.89)

GAϕ/σ(k, τ1, τ2) = GR(k, τ2, τ1). (2.90)

With the Minkowski space as background the computation are simple and we can study massive
and massless case together distinguishing them via ωk.

De Sitter background

The natural choice of initial state in the de Sitter background is the Bunch-Davies vacuum [32]. As
discussed in section 1.5.2 this choice of vacuum fixes the mode functions, when they are deep inside
the horizon, to be equal to the positive energy modes of the field in the Minkowski spacetime.
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In this case we separate the solution in various limits that will be later useful. The mode
function solution for a massless scalar field, already derived in equation (1.124)2, is

u(k, τ) = a(τ)
H√
2k3

(1 + ikτ)e−ikτ , (2.91)

leading to the following propagators

G+−
ϕ (k, τ1, τ2) = i

H2

2k3
(1 + ikτ2)(1 + ikτ2)eik(τ1−τ2), (2.92)

G−+
ϕ (k, τ1, τ2) = i

H2

2k3
(1 + ikτ2)(1 + ikτ2)e−ik(τ1−τ2), (2.93)

that reads in the Keldysh basis

Fϕ(k, τ1, τ2) =
H

2k3

(
(1 + k2τ1τ2) cos(k(τ1 − τ2)) + k(τ1 − τ2) sin(k(τ1 − τ2))

)
, (2.94)

GRϕ (k, τ1, τ2) = θ(τ1 − τ2)
H

2k3

(
(1 + k2τ1τ2) sin(k(τ1 − τ2))− k(τ1 − τ2) cos(k(τ1 − τ2))

)
. (2.95)

The expansion for |kτ | � 1 is interesting since we will perform our computation in the sub-horizon
regime [55]

Fϕ(k, τ1, τ2) =
H2

2k3

(
1 +O(k2τ2

i )

)
, (2.96)

GRϕ (k, τ1, τ2) = θ(τ1 − τ2)
H

3k3

(
k3(τ3

1 − τ3
2 ) +O(k5τ5

i )

)
. (2.97)

It is also interesting to study the equal time behaviour of the Hadamard propagator since it is
the tree-level (TL) contribution to the inflaton two-point function as we will discuss in the next
chapter

Fϕ(k, τ, τ) =
H2

2k3
(1 + k2τ2). (2.98)

Moving now to the complete solution for a massive field in the de Sitter spacetime, that we will
also call full solution in the following, we can express it either in momentum space in terms of the
Hankel functions [32, 55] or in position space in terms of the Hypergeometric functions [32, 56]

v(k, τ) = −ie−π2 ν+iπ4

√
π

2a(τ)
H(−τ)3/2H

(1)
iν (−kτ), (2.99)

where ν =
√
M2
s /H

2 − 9/4, meaning that the order of the Hankel function is purely imaginary for
large mass M2

s /H
2 > 9/4,

G−+
σ (x, y, τ1, τ2) =

1

4π2
H2 Γ(3/2− ν)Γ(2/2 + ν)2F1(3/2− ν, 3/2 + ν, 2, 1− r/4), (2.100)

r =
(−(τ1 − τ2)2 + |x− y|2)

τ1τ2
,

where the dependence is only on the modulus of the difference between x and y and the Hyperge-
ometric function is defined for |δ| < 1 by

2To make the connection explicit notice that δφ(k, τ) = u(k, τ)/a.
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2F1(α, β, γ, δ) =

∞∑
n=0

αnβn
γn

δn

n!
. (2.101)

From equations (2.99) and (2.100) we can construct the Hadamard propagators with both descrip-
tions: in the first case directly from the mode function as we did in the massless case while for the
second case noticing that F is just given by the imaginary part of G+− obtained from equation
(2.52) and its definition (2.58)

Fσ(x, y, τ1, τ2) = Im(G+−(x, y, τ1, τ2)). (2.102)

The Fourier transform after some trivial computation is given by the following expression [7]

Fσ(k, τ1, τ2) = 4π

∫ ∞
0

dx̃ x̃2 sin(kx̃)

kx̃
F (x̃, 0, τ1, τ2). (2.103)

We can then perform via numerical methods the Fourier transform of the propagator using the
software Mathematica [57]. In figure 2.2 we compare the two expressions for the full equal time
Hadamard massive propagator constructed with numerical methods and we present in the same
figure the massless propagators as well. We observe as expected that the massless propagator
diverges for infrared momenta while the massive propagator is well-behaved.

The expressions with the Hypergeometric functions and the Hankel functions are related by
the Fourier transformation and in figure 2.2 they produce the same result as expected so we can
choose the one that has the best numerical stability for further computations. In the following
we will always compare the numerical and the analytical results to check the goodness of the
approximation we are going to make since it is the full massive propagator that describes the
exact free dynamics of a massive scalar field in the de Sitter background.

2.2.2 Fermion field

Let us proceed with the same analysis for the fermion field. In the following we will use the Dirac
representation of the gamma matrices and we write the four-spinor as [41]

uλ(k, τ) =

(
η(k, τ)ξλ

χ(k, τ)(σ · k̂)ξλ

)
, (2.104)

where η(k, τ) and χ(k, τ) are the mode functions and the two-spinor ξλ has the following properties

ξ†λξλ′ = δλλ′ , (2.105)

(σ · k̂)ξλ = λξλ, (2.106)

where k̂ is the unit vector in the k direction. Knowing that [58]

vλ(k, τ) = uCλ (k, τ) = iγ2u∗λ(k, τ), (2.107)

we can explicitly write vλ as

vλ(k, τ) =

(
χ∗(k, τ)(σ · k̂)ζλ

η∗(k, τ)ζλ

)
, (2.108)

where

ζλ = −iσ2ξ∗λ, (2.109)
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Equal-time Hadamard propagator
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Figure 2.2: Equal-time Hadamard propagator for different mass and for the massless case (orange
curve). ForMs/H = 5 (blue and red) andMs/H = 10 (green and black) the dotted points and the
solid lines are respectively the propagator derived from the hypergeometric and from the Hankel
functions.

and the σ matrices are the well known Pauli matrices [41]. We are now ready to proceed and
extract the expression for the Schwinger-Keldysh propagators, using (2.68) and (2.76)

S−+(k, τ1, τ2) = i 〈ψ(x)ψ(y)〉

=
i

a3/2(τ1)a3/2(τ2)

∫
d3k

(2π)3

∫
d3p

(2π)3

∑
λ,λ1

〈(
dλ(k)uλ1

(k, τ1)eikẋ + fλ1
(k)uλ1

(k, τ1)e−ik·x
)

×
(
fλ2

(p)uλ2
(p, τ2)eip·y + d†λ2

uλ2
(p, τ2)e−ip·y

)〉
=

i

a3/2(τ1)a3/2(τ2)

∫
d3k

(2π)3

∫
d3p

(2π)3

∑
λ,λ′

〈
dλ1

(k)d†λ2
(p)
〉

︸ ︷︷ ︸
=(2π)3δ(3)(k−p)δλ,λ1

uλ1
(k, τ1)uλ2

(p, τ2)eik·x−ip·y

=
i

a3/2(τ1)a3/2(τ2)

∫
d3k

(2π)3

(∑
λ

uλ1
(k, τ1)uλ1

(p, τ2)

)
eik·(x

µ,yµ), (2.110)

Therefore the Fourier transform is

S−+(k, τ1, τ2) =
i

a3/2(τ1)a3/2(τ2)

∑
λ

uλ(k, τ1)uλ(p, τ2). (2.111)

Similarly for the other propagator

S+−(k, τ1, τ2) = − i

a3/2(τ1)a3/2(τ2)

∑
λ

vλ(−k, τ1)vλ(−k, τ2), (2.112)
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where the spin sum is

∑
λ

uλ(k, τ1)uλ(p, τ2) =

(
η(τ1)η∗(τ2)12 −η(τ1)ξ∗(τ2)(σ · k̂)

ξ(τ1)η∗(τ2)(σ · k̂) −ξ(τ1)ξ∗(τ2)12

)
, (2.113)

∑
λ

vλ(−k, τ1)vλ(−k, τ2) =

(
ξ(τ1)∗ξ(τ2)12 η(τ2)ξ∗(τ1)(σ · k̂)

−ξ(τ2)η∗(τ1)(σ · k̂) η(τ2)η∗(τ1)12

)
. (2.114)

From equation (2.71) we can construct the Hadamard, the retarded and the advanced propagators

iFψ(xµ, yµ) =
1

2

(
S+−(xµ, yµ) + S−+(xµ, yµ)

)
(2.115)

GRψ (xµ, yµ) = θ(x0 − y0)

(
S−+(xµ, yµ)− S+−(xµ, yµ)

)
(2.116)

GAψ (xµ, yµ) = θ(y0 − x0)

(
S+−(xµ, yµ)− S−+(xµ, yµ)

)
(2.117)

Minkowski background

We keep the same initial state choice as for the scalar and we have the mode function solution [41]

ηM (k, τ) =

√
ωk +Mf

2ωk
e−iωkτ , (2.118)

χM (k, τ) =

√
ωk −Mf

2ωk
e−iωkτ , (2.119)

ωk =
√
k2 +M2

f , (2.120)

with again a time independent frequency. Therefore with a Minkowski background the propagators
are

S+−(k, τ1, τ2) = − i

2ωk
eiωk(τ1−τ2)

(
(ωk +Mf )12 σ · k
−σ · k (ωk +Mf )12

)
(2.121)

= − i

2ωk
eiωk(τ1−τ2) (6 k −Mf ) , (2.122)

where 6 k = γµk
µ, k0 = ωk, kµ = (k0, k) and we use the definitions of the γs in terms of the Pauli

matrices [41]. The S−+ propagator is

S−+(k, τ1, τ2) =
i

2ωk
e−iωk(τ1−τ2)

(
6 k +Mf

)
. (2.123)

where k
µ

:= x(k0,−k); than rotating into the Keldysh basis using equations (2.71)

Fψ(k, τ1, τ2) =
1

ωk

(
(Mf14 − k · γ) cos(ω(τ1 − τ2))− iωkγ0 sin(ωk(τ1 − τ2))

)
, (2.124)

GRψ (k, τ1, τ2) = θ(τ1 − τ2)

(
ωkγ

0 cos(ωk(τ1 − τ2))− i(Mf14 − k · γ sin(ωk(τ1 − τ2))
)

ωk
. (2.125)
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The propagators discussed here will be used to check the form of the propagators in the de Sitter
background and later together with the scalar ones we will use them to compute the amputated
diagrams as a warm-up and again to compare the results with the ones in the de Sitter background.
In fact we expect from the diagrams the presence of the same divergences since the ultraviolet
behavior in de Sitter and in Minkowski should be identical [6].

De Sitter background

In the fermion case we are not interested in the massless limit but only in the full form of the
propagator since we will need it to perform numerical computation. Given the Dirac equation in
the de Sitter spacetime (1.251) and the mode expansion for the fermion (2.76), the fermion mode
functions have to satisfy the following differential equations [59]

(
H2τ2 ∂

2

∂τ2
−H2τ

∂

∂τ
+ iMfH + k2H2τ2 +M2

f

)
η(k, τ) = 0, (2.126)(

H2τ2 ∂
2

∂τ2
−H2τ

∂

∂τ
− iMfH + k2H2τ2 +M2

f

)
χ(k, τ) = 0 (2.127)

The mode function solution up to a constant phase factor are [59]

η(k, τ) =

(
i

√
π(−kτ)

2
H(1)
ν (−kτ)

)
exp

[
π

2

(
Mf

H

)]
, (2.128)

χ(k, τ) =

(√
π(−kτ)

2
H

(1)
ν−1(−kτ)

)
exp

[
π

2

(
Mf

H

)]
, (2.129)

ν =
1

2
− iMf

H
. (2.130)

Equation (2.128) and (2.129) for small scale limit −kτ � 1 reproduce the Minkowski solution
therefore they determine a vacuum, analogous to the Bunch-Davies vacuum, for the fermion field
(spin s = 1/2). The complete expression presented here will be used in the next section to provide
a numerical check of the WKB approximated propagators and UV behavior.

2.3 The WKB Approximation

The Wentzel-Kramers-Brillouin (WKB or WKBJ honoring the mathematician Jeffreys) approxi-
mation known also as Liouville-Green method was first introduced in the context of semi-classical
study of quantum mechanics. The WKB approximation has been used in the context of QFT in
curved spacetime [60, 61] in order to define the correct Fock space of the theory.

In fact as introduced in the first chapter, a QFT in a curved background does not have an
absolute definition of vacuum and particles. If we consider the creation and annihilation operators
to satisfy the usual commutation relations [41], defining the vacuum state by

b̂k |0〉 = 0, (2.131)

for every k, the vacuum choice is actually a choice of the mode function. The adiabatic vac-
uum corresponds to the choice of the WKB-approximated mode function as (approximate) set of
solutions.

The prototype equation to which we can apply the WKB approximation is

d2x

dt2
+ ω2(t)x = 0, (2.132)
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Equal-time Hadamard propagator
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Figure 2.3: The yellow, orange and purple solid lines are the WKB approximated equal-time
Hadamard propagators respectively for Ms/H = 20, 10, 5. The dotted points and the thin solid
lines are the full propagators, respectively constructed from the Hypergeometric and Hankel func-
tion for the same set of mass to Hubble parameter ratio.

where ω(t) > 0 is always positive and is time dependent (recall that in Minkowski it was constant).
This differential equation is exactly the kind of equation that the mode functions have to solve in
order to satisfy the Klein-Gordon in a de Sitter background, see equations (1.71).

The frequency ω(t) is assumed to be slowly changing; its characteristic variation timescale is
called T where T−1 is called the adiabatic parameter and it is the order parameter of the expansion
(for T →∞). This condition can be expressed as∣∣∣∣dωdt

∣∣∣∣� ω2, (2.133)

holding for all times t. Equation (2.133) is the adiabaticity condition. The WKB ansatz is

xWKB(t) =
const√
ω(t)

exp

(
±i
∫ t

tin

dt′ ω(t′)

)
(2.134)

2.3.1 Scalar field

The ansatz in (2.134) is a good approximate solution of the free Klein-Gordon equation for a
massive field when (2.133) is satisfied which corresponds to in the Ms/H � 1 regime [55, 61]. The
mode function approximate solution is

v(k, τ) =
1√

2ω(τ)
exp

(
±i
∫ τ

τin

dτ ′ ω(τ ′)

)
, (2.135)

ωk(τ) =
√
k2 +M2

s a
2(τ) (2.136)

where the constant was fixed by the requirement that it has to reproduce the Minkowski solution
in the limit ωk(t)→ ωk. This choice of mode functions defines the adiabatic vacuum.
We can easily obtain the expression for the propagators in the Keldysh basis
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Retarded Propagator
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Figure 2.4: The retarded propagator is presented in the figure. The red thin line and the yellow
line are the propagators respectively constructed from the full and the WKB approximated mode
function for Ms/H = 20.

Fσ (k, τ1, τ2) =
cos
[∫ τ2
τ1

dτ
√
k2 +m2

sa
2(τ)

]
2a (τ1) a (τ2) [k2 +m2

sa
2 (τ1)]

1/4
[k2 +m2

sa
2 (τ2)]

1/4
,

GRσ (k, τ1, τ2) =−
θ (τ1 − τ2) sin

[∫ τ2
τ1

dτ
√
k2 +m2

sa
2(τ)

]
a (τ1) a (τ2) [k2 +m2

sa
2 (τ1)]

1/4
[k2 +m2

sa
2 (τ2)]

1/4
.

(2.137)

In figures 2.3, 2.4 and 2.5 we compare the behaviour of the WKB and full propagators in various
mass limit. As it is shown there is a very good agreement therefore the WKB mode function is a
good sensible approximation of the full mode function.

The computations with the use of the mode function described in terms of the Hankel functions
are faster and easier since they do not involve the numerical Fourier transform as in the case of the
Hypergeometric one. Therefore we will use only the Hankel function expression in the following
since we already verified the equivalence of the two.

2.3.2 Fermion field

Equation (2.134) cannot satisfy the normalization condition for a four spinor and therefore is not
a possible candidate for the approximated mode function, nor it is its generalized form as shown
in [56]. The correct way to obtain the WKB-like expansion is to start from the fact that it should
generalize the Minkowski mode functions, equations (2.118) and (2.119), and reproduce them for
time independent frequency. Therefore the zeroth order is

η(0)(k, τ) =

√
ω(τ) +Mf

2ω(τ)
e
−i

∫ τ
τin

dτ ′ ω(τ ′),

χ(0)(k, τ) =

√
ω(τ)−Mf

2ω(τ)
e
−i

∫ τ
τin

dτ ′ ω(τ ′),

(2.138)

where ω =
√
k2 +M2

f a
2(τ). This is the correct way to proceed and obtain the further adiabatic

orders as shown in [59].
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Figure 2.5: The retarded propagator is presented in the figure. The black thin line and the orange
line are the propagators respectively constructed from the full and the WKB approximated mode
function for Ms/H = 10.

Since the Schwinger-Keldysh propagators are obtained by combinations of S+− and S−+ we
just need to check if the WKB-like expression for these propagators are correctly describing the
exact behavior; we do this by checking every elements of these matrices. In figure 2.6 and 2.7 we
compare two of the matrix elements of the full propagators and the WKB-like ones: η(k, τ)η∗(k, τ)
and χ(k, τ)χ∗(k, τ) (at equal conformal time). We observe a good agreement meaning that the
WKB mode functions are a good approximation of the complete expression in the large mass limit.
The other elements of the propagators matrices produce similar results.

Equal-time (S-+)11 element

1/H2·(η η*)

+
+

+

+
+
+
+
+
+
+
+
+

+++
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+
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Figure 2.6: Comparison of the (11) element of the fermion propagator S−+, evaluated at equal con-
formal time. The orange curves is the adiabatic approximated expressions while the full numerical
solution is shown in the black cross (+) points. The mass is Mf = 10H.
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Equal-time (S-+)22 element

1/H2·(χ χ*)
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Figure 2.7: Comparison of the (22) element of the fermion propagator S−+, evaluated at equal con-
formal time. The orange curves is the adiabatic approximated expressions while the full numerical
solution is shown in the black cross (+) points. The mass is Mf = 10H.
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CHAPTER 3
ONE-LOOP CORRECTIONS

In this chapter we study the one-loop contributions to the inflaton two-point correlation function
coming from its interactions with massive scalar and massive fermion fields. We will introduce
the Lagrangian density of our model without specifying the inflationary potential so as to keep
the discussion on a general ground. We will then discuss the ultraviolet behavior of the two-point
function in the Minkowski and de Sitter backgrounds with the use of the formalism developed in
chapter 2. The aim of this chapter is to study how the quantum corrections to the cosmological
power spectrum modify the tree level result; in particular we will be interested in applying the
results into the supersymmetric hybrid model of inflation hence the choice of studying the presence
of fermion and scalar fields. But we want to stress that the results obtained here are completely
general and are easily applied to a different phenomenological models that include massive fermions
and scalar during inflation and are not necessarily supersymmetric.

In section 3.1 we will introduce the chosen model of interactions between the inflaton and
the heavy fields and the Feynman rules of the theory. Then the one-loop contribution to the
two-point function of the inflaton field will be discussed in section 3.2 and compared with the
numerical result. Finally in section 3.3 and section 3.4 the analytical results for the ultraviolet
behavior of the various contributions are presented and compared with the numerical computation.

The results of this chapter can be considered the natural continuation of previous works. For
the scalar case, our diagram (d) was computed in [7], of which we reproduce the results, and
diagrams (a), (b) and (c) for a massless scalar in [52]. Regarding the fermion contributions we
refer to the work in [62, 63], as a comparison of our computation, where they have dealt with
massless fermions (or with negligible mass) and for the massive case to [64].

The idea is to start from here in order to provide a complete treatment of fermion and scalar
contributions where the ultraviolet behavior is also explicitly presented and singled out. The result
has been reported for diagram (d) in [7]. The analytical computation in the in-in formalism in
Minkowski spacetime of diagram (d) reproduces the one in [7], other diagrams are not found in the
literature to our knowledge.

We stress the presence of the complementary formalism of effective field theory [65–67] that
can be used to address this type of problems and a bridge between the two could be of interest for
future work.
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3.1 The Interacting Lagrangian

The action we consider is

S =

∫
d4x
√
−g
[
M2

P

2
R− 1

2
gµν∂µφ∂νφ−

1

2
gµν∂µΣ∂νΣ + χ̄iγµ∇µχ− V (φ,Σ, χ)

]
, (3.1)

and describes a model that consists of a nearly massless scalar field, the inflaton φ, a massive scalar
field Σ and a massive fermion field χ. The potential V (φ,Σ, χ) includes the inflaton potential and
all the possible interactions between the fields. Its most generic renormalizable form, with Z2

symmetry for the field Σ, is

V (φ,Σ, χ) = Vinf(φ) +
1

2
M2

ΣΣ2 +
1

4!
λΣΣ4 +

1

2
µφΣφΣ2 +

1

4
λφΣφ

2Σ2 + Y φχ̄χ, (3.2)

where Vinf is the inflaton potential constrained by the slow-roll conditions, equations (1.77) and
(1.79). In this chapter we will not specify the explicit form of this potential, meaning the particular
inflationary model, in order to keep the discussion as general as possible. The results will be then
applied to a specific model in chapter 4: the supersymmetric hybrid model of inflation.

Assuming the vacuum expectation values of the heavy fields vanish, the fluctuation of the fields
around their backgrounds are

φ = φ0 + ϕ, Σ = 0 + σ, χ = 0 + ψ, (3.3)

where ϕ ≡ δφ is the inflaton fluctuation around the value φ0 ≡ 〈φ〉. The potential now reads

V (φ0, ϕ, σ, ψ) = Vinf(φ) +
1

2
M2
s σ

2 +
λΣ

4!
σ4 + µϕσ2 + λϕ2σ2 +Mf ψ̄ψ + Y ϕψ̄ψ, (3.4)

where we introduced a new set of parameters defined as

M2
s := m2

Σ + µφ0Σφ0 +
1

2
λφ0Σφ

2
0, µ :=

1

2
µφ0Σ +

1

2
λφ0Σφ0, λ :=

1

4
λφ0Σ, Mf := Y φ0. (3.5)

Note that the dependence of the background field φ0 in Ms, Mf , µ and λ lead them to be slowly-
varying rather than exactly constant. Note also that due to the Yukawa-like interaction between
the inflaton and the fermion, the latter one gains a mass in the final description of the potential.

In order to calculate the one-loop corrections to the two-point function of the inflaton we will
use the Schwinger and Keldysh formalism, doubling the fields into + and − components, rotating
the set of fields into the Keldysh basis, as discussed in chapter 2, and then extracting the Feynman
rules from the resulting Lagrangian density.

Once we have the Feynman rules we can proceed as usual drawing all the possible topologi-
cally inequivalent Feynman diagrams at one-loop. We have four sets of fields (ϕ+, ϕ−), (σ+, σ−),
(ψ+, ψ−) and (ψ̄+, ψ̄−) and we construct the Lagrangian density as

L[ϕ, σ, ψ, ψ̄]/
√
−g = L[ϕ+, σ+, ψ+, ψ̄+]/

√
−g − L[ϕ−, σ−, ψ−, ψ̄−]/

√
−g . (3.6)

Rotating into the Keldysh basis through the relations

2ϕ(1) = ϕ+ + ϕ−, ϕ(2) = ϕ+ − ϕ−, 2σ(1) = σ+ + σ−, σ(2) = σ+ − σ−,
2ψ(1) = ψ+ + ψ−, ψ(2) = ψ+ − ψ−, 2ψ̄(1) = ψ̄+ + ψ̄−, ψ̄(2) = ψ̄+ − ψ̄−,

the Lagrangian density reads
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Diagram Expression Diagram Expression Diagram Expression

Fϕ(k, τ1, τ2) −iGR
ϕ (k, τ1, τ2) −iGA

ϕ (k, τ1, τ2)

Fσ(k, τ1, τ2) −iGR
σ (k, τ1, τ2) −iGA

σ (k, τ1, τ2)

Fψ(k, τ1, τ2) −iGR
ψ (k, τ1, τ2) −iGA

ψ (k, τ1, τ2)

Table 3.1: Feynman rules for the propagators in the Keldysh basis.

L =
√
−g

[
∂µϕ(1)∂

µϕ(2) + ∂µσ(1)∂
µσ(2) −M2σ(1)σ(2) − µϕ(2)σ

2
(1) − 2µϕ(1)σ(1)σ(2) (3.7)

− µ

4
ϕ(2)σ

2
(2) − 2λϕ2

(1)σ(1)σ(2) − 2λϕ(1)ϕ(2)σ
2
(1) −

λ

2
ϕ(1)ϕ(2)σ

2
(2) −

λ

2
ϕ2
(2)σ(1)σ(2)

−m

(
ψ̄(1)ψ(2) + ψ̄(2)ψ(1)

)
−Y ϕ(1)ψ̄(1)ψ(2) − Y ϕ(1)ψ̄(2)ψ(1)

− Y ϕ(2)ψ̄(1)ψ(1) −
1

4
Y ϕ(2)ψ̄(2)ψ(2)

]
,

where we ignored the σ self interaction that is not relevant in our discussion. We can now associate
a Feynman representation to each propagator in the Keldysh basis, Table 3.1, where thin line
represents the inflaton fluctuation, the thick line the massive scalar and the fermion is represented
with an arrowed line.

In Keldysh basis the (1) and (2) components of the field set are represented respectively by
a solid and a dashed lines; recall that we defined iF and GR respectively as G11 and G12 of the
propagators matrix in the Keldysh basis; see equation (2.57). From the Lagrangian density we
extract the Feynman rules for the interaction vertices summarized in Table 3.2. Observe that each
vertex contains a factor a4 coming from the term

√
−g, needed to assure the invariance of the

action measure under general coordinate transformation.

Note that the Feynman rules in the Minkowski spacetime are those in Table 3.2 but with
a → 1. Moreover we do not specify counterterms at this stage: we will see in the following that
in general it would be needed to produce a finite one-loop amplitude. We will indeed present the
explicit dependence of the two-point function on a cut-off Λ, used to regularize the integrals. Note
however that in the supersymmetric theory we expect the cancellation of the divergences as long
as supersymmetry is exact.

3.2 Inflaton Two-Point Correlation Function

Before moving to the analysis of one-loop diagrams we note that the tree level contribution to the
two-point inflaton correlation function comes only from the Keldysh propagator

τ τ Fϕ(k, τ, τ), (3.8)

since the equal time contribution from the retardedGR(k, τ, τ) and advanced propagatorGA(k, τ, τ)
is vanishing. This is an useful property and it helps us see that a certain class of one-loop diagrams
is identically zero: the amputated diagrams with no external dashed line. An example of such
diagram is

τ τ
.
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Diagram Expression Diagram Expression

−ia4(τ1)µ −ia4(τ1)2µ

−ia4(τ1)
µ
4 −ia4(τ1)δ

2
mφ

−ia4(τ1)
λ
2 −ia4(τ1)2λ

−ia4(τ1)2λ −ia4(τ1)
λ
2

−ia4(τ1)Y −ia4(τ1)Y

−ia4(τ1)Y −ia4(τ1)
Y
4

Table 3.2: Feynman rules for the vertices in the Keldysh basis.

The reason is that diagrams of this type always contain a closed loop of two GR/A propagators
and this is vanishing because of the presence of the two step functions

GR(k, τ1, τ2)G
R(k, τ2, τ1) ∼ θ(τ1 − τ2)θ(τ2 − τ1) = 0. (3.9)

We can compare the result obtained for the two-point function of the inflation given in chapter
1 in Table 1.3 with the one we can extract from the tree level computation of F (k, τ, τ) in chapter
2, equation (2.98) in the Schwinger-Keldysh formalism. The solution of the equation of motion for
a massless scalar field in de Sitter, equation (1.124), is

δφk =
1

a

e−ikτ

√
2k

(
1− i

kτ

)
, (3.10)

therefore we have

|δφk|2 =
H2

2k3
(1 + k2τ2), (3.11)

which is equivalent to what we obtained for the tree level equal time Hadamard propagator,
equation (2.98)

F tree
ϕ (k, τ, τ) =

H2

2k3
(1 + k2τ2). (3.12)

We here showed that we obtained the same result with both formalisms and we can therefore
give the expression for the tree level power spectrum of a massless scalar field on super horizon
scale (|kτ | � 1), calculated from the Schwinger-Keldysh formalism as

∆tree
ϕ (k) =

k3

2π2
F tree
ϕ (k, τ, τ) � H2

4π2
, (3.13)
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equivalent to the one presented in Table 1.3.

3.2.1 One-loop corrections from a massive scalar
At one-loop level the heavy scalar contributions to the two-point function come from the diagrams
shown in figure 3.2. We need to consider also the mirrored diagrams, that we will denote in the
following with ′; in figure 3.1 we give an explicit example. The one-loop correction due to the
inflaton quartic self-interaction has been studied previously in [52, 55] and the interaction with an
heavy field of the type φ2Σ and φ3Σ in [68, 69]. These interactions are not presented in our study
since we imposed a Z2 symmetry. In other words we focus on the contributions purely coming
from the heavy fields.

We shall to evaluate the one-loop diagrams using the Feynman rules in Table 3.2 both in the
Minkowski and de Sitter background spacetimes aiming to extract the ultraviolet (UV) behavior
in the next sections.

Minkowski background

Let us evaluate step by step the Feynman amplitude corresponding to the diagram (a)

τ τ
k τ1 τ2

k

p

p+ k

The amplitude associate to the diagram (a) is

A
(a)
scalar =

∫ τ

τi

dτ1

∫ τ

τi

dτ2
(
−iGR

ϕ (k, τ, τ1)
) (

−iGR
ϕ (k, τ, τ2)

)
︸ ︷︷ ︸

External legs contribution

× V1V2
1

2

∫
d3p

(2π)3
Fσ(p, τ1, τ2)Fσ(p+ k, τ1, τ2)

︸ ︷︷ ︸
Amputated amplitude A

(a)
amp

, (3.14)

where V1 = V2 = −iµ are the contribution coming from the vertices and 1/2 is the symmetry
factor associated to the diagram. In this chapter we will dedicate our attention to the amputated
amplitude, A(a)

amp, since we are interested in extracting the UV behavior of the corrections.

The amputated amplitude neglecting the external momentum, i.e. |k+ p| ≈ |p| ≡ p1 is:

diagram (c) diagram (c’)

Figure 3.1: Example of diagram (c) and its mirrored version (c’)

1The meaning and the goodness of the approximation will be addressed in the next section when studying the
de Sitter case.
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diagram (a) diagram (b) diagram (c)

diagram (d)

Figure 3.2: One-loop Feynman corrections to the inflaton two-point function due to the interaction
with a massive scalar field.

A
(a)
amp, scalar = −µ2

2

∫
d3p

(2π)3
Fσ(p, τ1, τ2)Fσ(p, τ1, τ2). (3.15)

To perform the internal momentum integration, we split the momentum into a small momentum
p < pc and a large momentum parts p > pc. Here pc := Ms. Therefore we have

A
(a)
amp, scalar = − µ2

4π2

{∫ pc

0

dp p2 [Fσ(p, τ1, τ2)]
2 +

∫ pUV

pc

dp p2 [Fσ(p, τ1, τ2)]
2

}
, (3.16)

where we imposed an explicit UV cutoff pUV := Λ as a regulator of the otherwise divergent
integral. The choice of a cutoff in momentum as a regulator instead of other possible prescriptions
(e.g. dimensional regularization) was done for two main reasons. It is a very physical realization
of the regularization processes, meaning the process of cutting out our ignorance of the physics
at very high energy scale [70]. Moreover it is very convenient for both analytical and numerical
calculation and it does not have disadvantages since we do not have to deal with a gauge invariant
theory.

Diagram (a): Explicitly performing the integrations in (3.16), we obtain

A
(a)
amp, scalar =− µ2

4π2

{∫ Ms

0

dp p2
1

M2
s

cos2 [Ms(τ1 − τ2)] +

∫ Λ

Ms

dp p2
1

4p2
cos2 [p(τ1 − τ2)]

}

=− µ2

192π2

{
4Ms cos

2[Ms(τ1 − τ2)] + 6(Λ−Ms)

+
3

τ1 − τ2

(
sin[2Λ(τ1 − τ2)]− sin[2Ms(τ1 − τ2)]

)}
. (3.17)

Diagram (b): Following the same steps and using the same conventions in naming the vari-
ables we evaluate the amputated diagram (b)

A
(b)
amp, scalar =+

µ2

16π2
θ(τ2 − τ1)

{
Ms

3
sin2[Ms(τ1 − τ2)] +

1

2
(Λ−Ms)

− 1

4(τ1 − τ2)

(
sin[2Λ(τ1 − τ2)]− sin[2Ms(τ1 − τ2)]

)}
. (3.18)
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Diagram (b′): Its mirror diagram (b′), i.e. the diagram with the exchange τ1 ↔ τ2 is

A
(b′)
amp, scalar = +

µ2

16π2
θ(τ1 − τ2)

{
Ms

3
sin2[Ms(τ2 − τ1)] +

1

2
(Λ−Ms)

− 1

4(τ1 − τ2)

(
sin[2Λ(τ1 − τ2)]− sin[2Ms(τ1 − τ2)]

)}
. (3.19)

Diagram (a+ b+ b′): We note that the non-local linear divergences are cancelled in the sum
of the three previous amplitudes. In section 3.3 we will address the issue of the divergences. The
result of the sum is

A
(a+b+b′)
amp, scalar =− µ2Ms

48π2

{
cos[2Ms(τ2 − τ1)]

− µ2

32π2(τ1 − τ2)

(
sin[2Λ(τ1 − τ2)]− sin[2Ms(τ1 − τ2)]

)
. (3.20)

Diagram (c) and (c′): The result of the integration for diagram (c) and (c′) is

A
(c)
amp, scalar = +

µ2

π2
θ(τ2 − τ1)

{
i
Ms

12
sin[2Ms(τ2 − τ1)]

− i

8(τ1 − τ2)

(
cos[2Λ(τ1 − τ2)]− cos[2Ms(τ1 − τ2)]

)}
(3.21)

and
A

(c′)
amp, scalar(τ2 − τ1) = A

(c)
amp, scalar(τ1 − τ2), (3.22)

Diagram (d): The amputated amplitude of the tadpole-like diagram (d) can be evaluated
without using any of the above approximations, obtaining

A
(d)
amp, scalar =

∫
d3p

(2π)3
V1Fσ(p, τ1, τ2) (3.23)

=− iλ

2π2

∫ Λ

0

dp
1

2
√
p2 +M2

s

=− iλ

4π2

{
Λ2 −M2

s ln

(
2Λ

Ms

)}
.

The results obtained in Minkowski will be useful to check the consistency of the ones we will
obtain in the next sections when moving to the de Sitter background. The result of the UV
behavior of diagram (d) can be directly compared and are in agreement with previous literature
[7] and with analogous computations in in-out formalism [71]. Regarding the amplitudes of the
diagram (c+ c′) further manipulations are needed to extract the ultraviolet behavior as discussed
in the next sections.

De Sitter background

We are going to perform the same computations in a background of cosmological interest: de Sitter
spacetime. We use diagram (a) as an example to calculate the amputated amplitude. There are
some differences with the Minkowski case: the vertex factors acquire a time dependence through
a4(τj), j = 1, 2, coming from the Feynman rules in Table 3.2.
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The momentum pc and the UV cutoff pUV are also time dependent, in fact we have

ω(τβ) =
√
p2 +M2

s a
2(τβ) =

√
p2 + p2

c '

{
p p� pc

pc p� pc
(3.24)

where we defined pc := Msa(τβ) = −Ms/(Hτβ) as the momentum scale we use to split the integral
into large momentum p > pc and small momentum p < pc part; τβ is the latest time that occurs
in the loop, i.e., |τβ | = min{|τ1|, |τ2|}. We choose again a cutoff to regularize the integral in
momentum space pUV := Λ a(τβ) with aβ := a(τβ).

In order for Λ to be a physical cutoff we need to multiply it by the scale factor since we are
imposing a cutoff to an integral on comoving momenta. The cutoff Λ regularizes integrals in kphys,
while Λ aβ regularize integrals in k = kphys aβ . The choice of τβ to be the latest time means
choosing the largest physical cutoff between Λ aβ with β = 1, 2 [65].

As discussed in the previous chapter to perform the analytical computation we will use the
WKB approximated propagators that in the two momentum limits take the following form

Fσ(p < pc, τ1, τ2) ≈ 1

2Msa
3/2
1 a

3/2
2

cos

[
Ms

H
ln
τ1
τ2

]
, (3.25)

Fσ(p > pc, τ1, τ2) ≈ 4p2 −M2
s (a2

1 + a2
2)

8p3a1a2
cos [p(τ1 − τ2)] (3.26)

− M2
s (τ1 − τ2)

4a1a2H2τ1τ2p2
sin [p(τ1 − τ2)] ,

GRσ (p < pc, τ1, τ2) ≈ − θ(τ1 − τ2)

Msa
3/2
1 a

3/2
2

sin

[
Ms

H
ln
τ1
τ2

]
, (3.27)

GRσ (p > pc, τ1, τ2) ≈ θ(τ1 − τ2)

{
4p2 −M2

s (a2
1 + a2

2)

4a1a2p3
sin [p(τ1 − τ2)] (3.28)

+
M2
s (τ1 − τ2)

2a1a2H2τ1τ2p2
cos [p(τ1 − τ2)]

}
,

The amputated amplitude for diagram (a), neglecting the external momentum, i.e. |k+p| ≈ |p| ≡
p, is given by

A
(a)
amp, scalar =

µ2a4(τ1)a4(τ2)

2

∫
d3p

(2π)3
Fσ(p, τ1, τ2)Fσ(p, τ1, τ2) , (3.29)

and splitting the integral in momentum space gives

A
(a)
amp, scalar =

µ2a4
1a

4
2

4π2

{∫ pc

0

dp p2 [Fσ(p, τ1, τ2)]2 +

∫ pUV

pc

dp p2 [Fσ(p, τ1, τ2)]2
}
. (3.30)

We neglected the external momentum k in the loop integration. Primarily we are interested in
the UV behavior of the amplitudes; since the integral over large momenta is dominating, we can
say that |k + pUV | ≈ |pUV | ≡ p is a good approximation.

After subtracting the divergences through renormalization, we should in principle consider k
and its effects in particular in the small momenta integral. In this case the reference scale is pc so
our approximation would be sensible if |k + pc| ≈ |pc|. We are considering modes that are inside
the comoving Hubble radius during inflation and therefore there exists a maximum value of km
that is its value at horizon exit at the end of inflation km = a(tf )H. Therefore as long as pc is
larger than km we can still consider k < pc. And since pc = aM and we are considering massive
field M � H we can use |k + p| ≈ |p| ≡ p as zero order approximation.
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Diagram (a): Using equations (3.25) and (3.26) we have

A
(a)
amp, scalar =−

µ2a1a2a
2
βpc

48π2
cos2

[
pc
Haβ

ln
τ1
τ2

]
−
µ2a2

1a
2
2(pc − pUV )(a2

1pc + a2
2pc − 2a2

βpUV )

64π2a2
βpUV

− µ2a2
1a

2
2(a2

1 + a2
2)p2

c

64π2a2
β

(
cos[2pUV ∆τ ]

pUV
− cos[2pc∆τ ]

pc

)
− µ2a2

1a
2
2

64π2

(
sin[2pUV ∆τ ]

∆τ
− sin[2pc∆τ ]

∆τ

)
+

µ2

323π2
a2

1a
2
2

p2
c

a2
β

(
a2

1 + a2
2 −

1

H2τ1τ2

)
∆τ

(
Si[2pc∆τ ]− Si[2pUV ∆τ ]

)
, (3.31)

where we introduced ∆τ := τ1 − τ2.

Diagram (a + b + b′): Similarly we can compute the diagram (b) and its mirrored version,
with the results

A
(a+b+b′)
amp, scalar = +

µ2

32π2
a2

1a
2
2

(
sin[2pc∆τ ]

∆τ
− sin[2pUV ∆τ ]

∆τ

)
− µ2

48π2
a1a2a

2
βpc cos

[
2pc
Haβ

ln
τ1
τ2

]
+

µ2

32π2
a2

1a
2
2(a2

1 + a2
2)
p2
c

a2
β

(
cos[2pc∆τ ]

pc
− cos[2pUV ∆τ ]

pUV

)
+

µ2

16π2
a2

1a
2
2

p2
c

a2
β

(
a2

1 + a2
2 −

1

H2τ1τ2

)
∆τ

(
Si[2pc∆τ ]− Si[2pUV ∆τ ]

)
. (3.32)

Diagram (c′): The result for the integration of diagram (c′) is

A
(c′)
amp, scalar =2µ2a4(τ1)a4(τ2)

∫
d3p

(2π)3
Fσ(p, τ1, τ2)

(
−iGRσ (p, τ2, τ1)

)
(3.33)

= +
iµ2

8π2
a2

1a
2
2θ(∆τ)

(
cos[2pc∆τ ]

∆τ
− cos[2pUV ∆τ ]

∆τ

)
+

iµ2

12π2
a1a2a

2
βpcθ(∆τ) sin

[
2pc
Haβ

ln
τ2
τ1

]
+
iµ2

4π2
a2

1a
2
2

p2
c

a2
β

(
a2

1 + a2
2 −

1

H2τ2
1 τ

2
2

)
θ(∆τ)∆τ

(
Ci[−2pc∆τ ]− Ci[−2pUV ∆τ ]

)
− iµ2

8π2
a2

1a
2
2(a2

1 + a2
2)
p2
c

a2
β

θ(∆τ)

(
sin[2pc∆τ ]

pc
− sin[2pUV ∆τ ]

pUV

)
, (3.34)

and

A
(c)
amp, scalar(∆τ) = A

(c′)
amp, scalar(−∆τ), (3.35)

Diagram (d): The integration of diagram (d) does not require the split of the integration as
discussed in the Minkowski case, the result is

A
(d)
amp, scalar = iλa4(τ1)

∫
d3p

(2π)3
Fσ(p, τ1, τ1) (3.36)

= − iλ

8π2
a2

1

(
p2
UV −

p2
c

3
− p2

c ln
pUV
pc

)
. (3.37)

We presented the same calculations both in the Minkowski spacetime and in de Sitter for the
corrections to the inflaton propagator due to the interaction with a massive scalar field. We expect,
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diagram (a) diagram (b) diagram (c)

Figure 3.3: one-loop Feynman corrections to the inflaton two-point function due to the interaction
with a massive scalar field.

from the results obtained in algebraic QFT, that the ultraviolet divergences are of the same order
and the type and number of counterterms are the same in both spacetimes [6]. Diagram (d) shows
this property clearly, we see that in both cases we have the a quadratic and logarithmic dependences
on the cutoff Λ.

To understand the UV behavior of the amputated amplitude (c + c′), we need some further
manipulations, we will present them in section 3.3 after the study of the fermionic contributions.
In order to extract the singular behavior we will study the previous expressions in the language
of distribution, and we will find that these divergences multiply a Dirac delta function δ(∆τ),
following the computation performed in [7, 52].

Note that in the de Sitter calculation when splitting the integral in small and large momentum
we are keeping the next to leading order of approximation in p. This allowed us to capture the
divergences more accurately. The leading order terms are easily seen, since they are in form
similar to the result in Minkowski, where we kept only the leading order terms. For instance for
the diagram (c), in de Sitter the first term in equation (3.34) corresponds to the second term in
equation (3.21), i.e. Minkowski term.

3.2.2 One-loop corrections from a massive fermion

The discussion related to the corrections coming from the inflaton interaction with a massive
fermion through an Yukawa interaction is very similar to the one we gave in the previous section.
We have to keep in mind the differences from the scalar case: the factor (−1) coming from each
fermionic loop and the product of the propagators in the loop is traced over [41]. The one-loop
contributions to the two-point function are listed in figure 3.3; their mirror diagrams should be
considered as before.

We stress again that in this section we are interested in the UV behavior and therefore we will
focus on the amputated part of the diagrams.

Minkowski background

The amputated amplitude for diagram (a), neglecting the external momentum, i.e. |k+p| ≈ |p| ≡
p, is

A(a)
amp = −V1V2

2

∫
d3p

(2π)3
Tr[Fψ(k + p, τ1, τ2)Fψ(p, τ2, τ1)], (3.38)

where the vertices are V1 = V2 = −iY , the symmetry factor is 1/2 and we kept the same labels
convention as in the previous section.

Diagram (a): Proceeding to split the integral into small and large momentum parts and
using Λ has regulator we compute the integral in equation (3.38)
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A
(a)
amp, fermion = +

Y 2

48π2

(
4M3

f + 6Mf
cos(2Mf∆τ)

∆τ2
− 6Λ

cos(2Λ∆τ)

∆τ3
− 3

sin(2Mf∆τ)

∆τ3

+ 3
sin(2Λ∆τ)

∆τ3
+ 6M2

f

sin(2Mf∆τ)

∆τ
− 6Λ2 sin(2Λ∆τ)

∆τ

)
, (3.39)

reminding that we defined ∆τ = τ1 − τ2.

Diagram (b) and (b′): Similarly to the scalar case we compute the contribution of diagram
(b) and its mirrored version

A
(b)
amp, fermion = +

Y 2

48π2
θ(−∆τ)

(
4M3

f + 6Mf
cos(2Mf∆τ)

∆τ2
− 6Λ

cos(2Λ∆τ)

∆τ3
− 3

sin(2Mf∆τ)

∆τ3

+ 3
sin(2Λ∆τ)

∆τ3
+ 6M2

f

sin(2Mf∆τ)

∆τ
− 6Λ2 sin(2Λ∆τ)

∆τ

)
, (3.40)

and

A
(b′)
amp, fermion(∆τ) = A

(b)
amp, fermion(−∆τ), (3.41)

Diagram (a+ b+ b′): We note that again the non-local divergence cancel when summing the
three contributions

A
(a+b+b′)
amp, fermion = +

Y 2

8π2∆τ3

(
2Mf∆τ sin(2Mf∆τ)− 2Λ∆τ cos(2Λ∆τ)

− (1− 2M2
f∆τ2) sin(2Mf∆τ) + (1− 2M2

f∆τ2) sin(2Λ∆τ)

)
. (3.42)

Diagram (c) and (c′): The result of the integration for diagram (c) and (c′) is

A
(c)
amp, fermion =− iY

4π2∆τ3
θ(−∆τ)

(
(1− 2Λ2∆τ2) cos(2Λ∆τ)− (1− 2M2

f∆τ2) cos(2Mf∆τ)

− 2∆τ(Mf sin(2Mf∆τ)− Λ sin(2Λ∆τ)

)
(3.43)

and

A
(c′)
amp, fermion(∆τ) = A

(c)
amp, fermion(−∆τ), (3.44)

De Sitter background

We proceed to calculate the one-loop correction to the two-point function with the same method
described in the previous sections, keeping in mind the peculiarities of working in de Sitter space-
time. The WKB mode function in small and large momentum limits are

ησ(p < pc, τ) ≈ exp

(
i
Mf

H
log

τ

τi

)
, (3.45)

ησ(p > pc, τ) ≈ 1√
2

exp

(
−ip(τ − τi)

)
, (3.46)

χσ(p < pc, τ) ≈ 0 , (3.47)

χσ(p > pc, τ) ≈ 1√
2

exp

(
−ip(τ − τi)

)
, (3.48)
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from which we build the propagators using equations (2.111), (2.112), (2.113), (2.114) and (2.71).

Diagram (a + b + b′): The sum of the corrections coming from diagram (a), (b) and (b′) is
finite as expected from the result in the Minkowski background

A
(a+b+b′)
amp, fermion = +

Y 2

8π2
a1a2

(
2p2
c

sin[2pc∆τ ]

∆τ
− 2p2

UV

sin[2pUV ∆τ ]

∆τ

+ 2pc
cos[2pc∆τ ]

∆τ2
− 2pUV

cos[2pUV ∆τ ]

∆τ2
− sin[2pc∆τ ]

∆τ3
+

sin[2pUV ∆τ ]

∆τ3

)
+

Y 2

4π2H2τ1τ2
a1a2

p2
c

a2
β

(
pc cos[2pc∆τ ]− pUV cos[2pUV ∆τ ]

)
− Y 2

8π2
a1a2

p2
c

a2
β

(
a2

1 + a2
2 +

1

H2τ1τ2

)(
sin[2pc∆τ ]

∆τ
− sin[2pUV ∆τ ]

∆τ

)
(3.49)

Diagram (c) and (c′): The results of the integrations of diagram (c) and (c′) are

A
(c′)
amp, fermion =− iY 2

∫
d3p

(2π)3
Tr
[
Fψ(p, τ1, τ2)GRψ (p, τ2, τ1)

]
(3.50)

=− iY 2

4π2
a1a2θ(∆τ)

(
2p2
c

cos[2pc∆τ ]

∆τ
− 2p2

UV

cos[2pUV ∆τ ]

∆τ

− 2pc
sin[2pc∆τ ]

∆τ2
+ 2pUV

sin[2pUV ∆τ ]

∆τ2
− cos[2pc∆τ ]

∆τ3
+

cos[2pUV ∆τ ]

∆τ3

)
− iY 2

2π2H2τ1τ2
a1a2

p2
c

a2
β

θ(∆τ)

(
pc sin[2pc∆τ ]− pUV sin[2pUV ∆τ ]

)
− iY 2

4π2
a1a2

p2
c

a2
β

θ(∆τ)

(
a2

1 + a2
2 +

1

H2τ1τ2

)(
cos[2pc∆τ ]

∆τ
− cos[2pUV ∆τ ]

∆τ

)
, (3.51)

and

A
(c′)
amp, fermion(∆τ) = A

(c)
amp, scalar(−∆τ). (3.52)

We presented the computation of the one-loop corrections to the two-point inflaton function due
to the interaction with a massive fermion field in the Minkowski and de Sitter spacetime. Similarly
to the scalar case, the non-local divergences in the diagrams (a), (b) and (b′) cancel each other
leaving with a finite amplitude. To understand the UV behavior of the fermionic corrections we
will need to study the contributions coming from diagrams (c) and (c′).

3.2.3 Numerical calculation
In this section we proceed to perform the full computation numerically and compare with the
approximated analytical results of the amputated amplitudes for both scalar and fermion contri-
butions. We concentrate on diagrams (c) and (d), as they are the ones containing UV divergences,
as we will show in the next sections. We first check the integrands of the amputated amplitudes,
that consist of propagators and vertices. Performing the numerical analysis we also neglect the
external momenta in the same approximation discussed in the last sections.

In figure 3.4 we have the comparison between the analytical and numerical results for diagram
(c). The integrand is expressed in equation (3.33) for the bosonic and (3.50) for the fermionic case.
The red line is the analytical expression obtained using the propagators constructed from the WKB
approximated mode functions in equations (2.137) and (2.138) as explained in chapter 2. The black
cross points are the numerical computations where the propagators are constructed from the full
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mode functions in equations (2.99), scalar, (2.128) and (2.129), fermion. Figure 3.4 shows that the
analytical results well describe the numerical computation. This can be considered a further check
of the consistency of describing the massive propagators with a WKB approximation as discussed
in chapter 2.

We then performed the momentum integration in equations (3.33) and (3.50) numerically and
compared with the analytical result given respectively by equation (3.34) and (3.51). Using the
same convention of above in figure 3.4 we show the agreement of the two calculations. This result
can be considered as a check of the goodness of the approximation given in equation (3.30) where
we described the splitting of the momentum integration.
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Figure 3.4: Amputated amplitudes before the momentum integration for the diagram (c) as a
function of the momentum. Both the contributions from the massive scalar and fermion fields
are calculated and shown on the left and the right panel, respectively. The solid red line is the
analytical estimate and the black cross (+) points are the numerical computation. For the scalar
case, we chose τ1 = −2/H, τ2 = −1/H, Ms = 10H, and µ = H. For the fermion case, we chose
τ1 = −1.01/H, τ2 = −1/H, Mf = 10H, and Y = H. Note that the exact values of µ and Y are
irrelevant as they are an overall factor.
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Figure 3.5: Amputated amplitudes after the momentum integration for the diagram (c) as a
function of the momentum cutoff Λ. Both the contributions from the massive scalar and fermion
fields are calculated and shown on the left and the right panel, respectively. The solid red line is
the analytical estimate and the black cross (+) points are the numerical computation. For both
scalar and fermion cases we chose τ1 = −1.001/H, τ2 = −1/H, Ms = 10H, Mf = 10H, Y = H,
and µ = H. Note that the exact values of µ and Y are irrelevant as they are an overall factor.

The same analysis was done for diagram (d) where in figure 3.6 we have on the left the com-
parison for the integrand in equation (3.36). In the analytical computation the propagator is build
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from the WKB approximated mode function (2.136) while in the numerical computation from the
complete one (2.99). We then performed the integral in equation (3.36) numerically. Figure 3.6,
on the right, shows the comparison with the analytical result in equation (3.37).

We can conclude that in both diagrams the WKB approximation and the split of the momentum
integrations are good approximations of the full result.
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Figure 3.6: Left panel : Amputated amplitudes before the momentum integration for the diagram
(d) as a function of the momentum. Right panel : Amputated amplitudes after the momentum
integration for the diagram (d) as a function of the momentum cutoff Λ. The solid red line is
the analytical estimate and the black cross (+) points are the numerical computation. We chose
τ1 = −1/H, Ms = 10H, and λ = 1. Note that the exact value of λ is irrelevant as it is an overall
factor. As is expected, we observe the quadratic divergence in diagram (d). See text for more
details.

3.3 Ultraviolet Behavior

The main objective of this chapter is to understand the ultraviolet behavior of the one-loop correc-
tion to the two-point function of the inflaton. In the previous sections we explicitly calculated the
amplitudes but we understood the need for further manipulations to extract their UV dependence
on the cutoff. The idea is that the divergence is to be found in the part of the amplitude where the
two times τ1 and τ2 coincide so we should search for a way to re-express the amplitude factorizing
the equal time contribution.

These divergent terms are proportional to δ(∆τ) and are the usual local divergences that can
be canceled by counterterms. As we can see explicitly from the scalar result of diagram (a), (3.17),
and (b), (3.18), non-local divergences can also be present but they will cancel summing the contri-
bution coming from different diagrams. In our case the linear divergence in diagram (a) cancels the
one in diagram (b). The presence of these divergences is due to the split in multiple contributions
(diagrams) of the total corrections. The non-local divergences always cancel between each other.

Following [52] let us consider as an example the term present in diagram (c) for the scalar case,
equation (3.34)

θ(∆τ)
cos[2pUV ∆τ ]

∆τ
(3.53)

it turns out that this term is logarithmically divergent as Λ→∞. In order to see this consider the
integral ∫ ∞

−∞
d∆τ f(∆τ) θ(∆τ)

cos[2pUV ∆τ ]

∆τ
=

∫ ∞
0

d∆τ f(∆τ)
cos[2pUV ∆τ ]

∆τ
, (3.54)
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where f(∆τ) is a test function. The integral in equation (3.54) is the prototype of the time
integration of an amputated amplitude containing the term in equation (3.53), extended to ±∞,
that we will perform after attaching the external legs.

We first split the time integration into two pieces,∫ ∞
0

d∆τ = lim
ε→0

∫ η

ε

d∆τ +

∫ ∞
η

d∆τ , (3.55)

where η is the time regulator which will be sent to zero at the end of the calculation, after sending
Λ→∞. In the first integral we can approximate

f(∆t) ≈ f(0) &
∆τ

τ1 −∆τ
≈ ∆τ

t1
, (3.56)

and we remind pUV = Λa(τβ)−Λ/Hτβ and τβ is the earliest time occurring in the loop, for instance
for the diagram (c′): β = 2, for the diagram (c): β = 1. Thus we have,∫ ∞

0

d∆τ f(∆τ)
cos[2pUV ∆τ ]

∆τ

= lim
ε→0

∫ η

ε

d∆τ f(0)
1

∆τ
cos

[
−2Λ∆τ

Hτ1

]
+

∫ ∞
η

d∆τ f(∆τ)
1

∆τ
cos

[
−2Λ∆τ

Hτ1

]
,(3.57)

where we used τβ = τ1. The first term gives∫ η

ε

d∆τ f(0)
1

∆τ
cos

[
−2Λ∆τ

Hτ1

]
= −f(0)

[
γ + ln

(
− 2Λ

Hτ1
ε

)]
(3.58)

= −
∫ ∞
−∞

d∆τ f(∆τ)

[
γ + ln

(
− 2Λ

Hτ1
ε

)]
δ(∆τ) ,

where the limit ε→ 0 is to be understood and the second term vanishes, provided that f(∆τ) is a
good test function, meaning it vanishes fast enough as ∆τ →∞. Therefore, we obtain

θ(∆τ)
cos[2pUV ∆τ ]

∆τ
= −

[
γ + ln

(
− 2Λ

Hτ1
ε

)]
δ(∆τ) (3.59)

where γ is the Euler-Mascheroni constant.
Similarly let us consider

θ(∆τ)
cos[2pc∆τ ]

∆τ
(3.60)

We proceed in a similar way and we have the integral

∫ ∞
−∞

d∆τ f(∆τ) θ(∆τ)
cos[2pc∆τ ]

∆τ
=

∫ ∞
0

d∆τ f(∆τ)
cos[2pc∆τ ]

∆τ

=

∫ η

ε

d∆τ f(0)
1

∆τ
cos

[
−2Ms∆τ

Hτ1

]
+

∫ ∞
η

d∆τ f(∆τ)
1

∆τ
cos

[
−2Ms∆τ

Hτ2

]
=

∫ ∞
−∞

d∆τ f(∆τ)

(
δ(∆τ) ln

η

ε
+ θ(∆τ − η)

1

∆τ
cos

[
−2Ms

Hτ2
∆τ

])
. (3.61)

Therefore, from equation (3.59) and equation (3.61), we find

θ(∆τ)

(
cos[2pc∆τ ]

∆τ
− cos[2pUV ∆τ ]

∆τ

)
= δ(∆τ)

[
γ + ln

(
− 2Λ

Hτ1
η

)]
+ θ(∆τ − η)

1

∆τ
cos

[
−2Ms

Hτ2
∆τ

]
(3.62)
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The same reasoning is applied to the similar terms we found in the amputated amplitudes pre-
viously computed, e.g. θ(∆τ)f(∆τ) sin[2pUV ]/∆τn, where n is some exponent power. Repeating
the same procedure for all the terms in the amputated amplitudes, we obtain similar expression
used to derive equations (3.63), (3.64), (3.65), and (3.66).

3.3.1 Numerical calculation
From the previous discussion we understand that numerically the ultraviolet divergences become
visible after performing a time integration. For instance the δ(τ1 − τ2) term in the amplitude of
diagram (c) is used upon the first time integration and it is possible to appreciate the divergence
behavior as function of Λ; in this case we see the logarithmic dependence (see e.g., equation (3.59)).
In the case of diagram (d), on the other hand, we have only one vertex and thus the UV behaviour
is manifest and there is no need for the time integration to see the Λ dependence.

We shall present only the numerical results of diagrams that contain a divergence. In figure
3.7, we performed τ2-integration in an interval (τin, τ1 − δ) where we chose τin close to τ1 since
the aim was only to check the UV behaviour predicted by the analytical computation for diagram
(c). The black cross (+) points are the results of the full numerical computation and the red line
the analytical expression.

As we expected from the analytical results, equations (3.64) and (3.66), we see a logarithmic
divergence for the scalar contribution and a quadratic divergence for the fermion contribution.
In the fermion diagram (c), the logarithmic divergence is expected to be present. But in order
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Figure 3.7: Amputated amplitudes for the scalar (left ) and fermion (right) contributions after
performing the τ1 integration near τ2. The full numerical computation is depicted by black cross
(+) points. The solid red line represents the analytical expression. In the left panel, we observe
the logarithmic divergence as we expected from the analytical expression. In the right panel, we
see the quadratic divergence. In order to see the logarithmic divergence, we need to subtract the
quadratic divergence. See text for more details. We chose Ms = 10H and Mf = 5H.

to see it, we need to subtract the quadratic divergence. Unfortunately, however, it is difficult to
numerically subtract the quadratic divergence by using the analytical expression because of the
numerical errors; due to the quadratic nature, a small difference in the coefficient makes a huge
difference for the quadratic term.

Therefore we took the following approach. Since we confirmed that the quadratic divergence is
in good agreement with our analytical expression, we fitted the full numerical results by fixing the
coefficient of the quadratic term. We then subtracted the quadratic term from both the numerical
results and the analytical expression. The comparison between the final results are shown in figure
3.8. We followed the same procedure for the diagram (d). In figure 3.6 we already saw the quadratic
divergence. The logarithmic divergence is seen after subtracting the quadratic divergence as shown
in figure 3.8.
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Figure 3.8: Left panel: Amputated amplitude of the fermion diagram c with the Λ2 divergence
subtracted. Right panel: Amputated amplitude of the scalar diagram d with the Λ2 divergence
subtracted. The solid red line is the analytical estimate and the black cross (+) points are the
numerical computations. Subtracting the quadratic divergence we see the expected logarithmic
divergence.

In this section and in section 3.2.3 we performed the numerical calculations without resorting
to the adiabatic expansion approximation. We computed propagators, amputated amplitudes and
UV behaviours fully numerically and compared with the analytical expressions. It shows that
the use of the WKB approximation is perfectly sufficient to reproduce the behaviour of the exact
numerical amplitude, both regarding the leading and sub-leading UV behaviour.

3.4 Analytical Results

In the previous sections we introduced the tools to understand the ultraviolet divergent behavior
of the amplitudes and we anticipated, through the numerical computation, the type of divergences
we expect. In this section we will present the complete analytical results of the calculation of the
amputated amplitudes and we will then concentrate on the UV behavior studying the relevant
terms. We will compare it with the singular part of the amplitudes having Minkowski as back-
ground spacetime. Finally we will discuss the implication of the result in de Sitter spacetime.

Starting from the results in (3.32) and (3.34) and applying the formalism developed in section
3.3 we obtain the amputated amplitudes for the scalar contributions to the inflaton two-point
function

A
(a+b+b′)
scalar =− µ2

32πH4τ4
1

δ(τ1 − τ2)

+
µ2

16π2H4τ2
1 τ

2
2 (τ1 − τ2)

sin

(
−2Ms

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η)

− µ2Ms(τ
2
1 + τ2

2 )

16π2H5τ4
1 τ

3
2

cos

(
−2Ms

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2)

+
µ2M2

s (τ2
1 + τ2

2 )(τ1 − τ2)

8π2H6τ4
1 τ

4
2

[
Si

(
−2Ms

Hτ2
(τ1 − τ2)

)
− π

2

]
θ(τ1 − τ2)

− µ2M2
s (τ1 − τ2)

8π2H6τ3
1 τ

3
2

[
Si

(
−2Ms

Hτ2
(τ1 − τ2)

)
− π

2

]
θ(τ1 − τ2)

+
µ2Ms

24π2H5τ1τ4
2

cos

(
2Ms

H
ln
τ1
τ2

)
θ(τ1 − τ2) , (3.63)
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and

A
(c+c′+d+d′)
scalar = +

iµ2

4π2H4τ4
1

[
γ + ln

Λ

Ms
+ ln

(
−2Ms

Hτ1
η

)]
δ(τ1 − τ2)

− iλ

4π2H4τ4
1

[
Λ2 − M2

s

3
−M2

s ln
Λ

Ms

]
δ(τ1 − τ2)

+
iµ2

4π2H4τ2
1 τ

2
2 (τ1 − τ2)

cos

(
−2Ms

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η)

+
iµ2Ms(τ

2
1 + τ2

2 )

4π2H5τ4
1 τ

3
2

sin

(
−2Ms

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2)

+
iµ2M2

s (τ2
1 + τ2

2 )(τ1 − τ2)

2π2H6τ4
1 τ

4
2

Ci

(
−2Ms

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2)

− iµ2M2
s (τ1 − τ2)

2π2H6τ3
1 τ

3
2

Ci

(
−2Ms

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2)

− iµ2Ms

6π2H5τ1τ4
2

sin

(
2Ms

H
ln
τ2
τ1

)
θ(τ1 − τ2) , (3.64)

where Ci and Si are the since and cosine integral functions. We separated the finite contributions
of diagrams (a+ b+ b′) and the divergent one coming from the diagrams (c+ c′ + d+ d′).

In a similar fashion from the results in equations (3.49) and (3.51) we single-out the fermionic
divergent contribution in the amputated amplitudes coming from diagram (c + c′) and we show,
once again, that the sum of diagrams (a+ b+ b′) do not present divergences.

A
(a+b+b′)
fermion = +

3Y 2M2
f

8πH4τ4
1

δ(τ1 − τ2)

+
Y 2M2

f

2π2H4τ1τ3
2 (τ1 − τ2)

sin

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η)

− Y 2Mf

2π2H3τ1τ2
2 (τ1 − τ2)2

cos

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η)

− Y 2

4π2H2τ1τ2(τ1 − τ2)3
sin

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η)

−
Y 2M2

f (τ2
1 + τ2

2 )

4π2H4τ3
1 τ

3
2 (τ1 − τ2)

sin

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η)

−
Y 2M2

f

4π2H4τ2
1 τ

2
2 (τ1 − τ2)

sin

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η)

−
Y 2M3

f

2π2H5τ2
1 τ

3
2

cos

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2) , (3.65)
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and

A
(c+c′)
fermion = +

iY 2

2π2H4τ4
1

[
Λ2 − 3γM2

f − 3M2
f ln

Λ

Mf
− 3M2

f ln

(
−2Mf

Hτ1
η

)]
δ(τ1 − τ2)

−
iY 2M2

f (τ2
1 + τ2

2 )

2π2H4τ3
1 τ

3
2 (τ1 − τ2)

cos

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η)

−
iY 2M2

f

2π2H4τ2
1 τ

2
2 (τ1 − τ2)

cos

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η)

+
iY 2M3

f

π2H5τ2
1 τ

3
2

sin

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2)

+
iY 2

4π2H2τ2
1 η

2
δ(τ1 − τ2)

+
iY 2M2

f

π2H4τ1τ3
2 (τ1 − τ2)

cos

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η)

+
iY 2Mf

π2H3τ1τ2
2 (τ1 − τ2)2

sin

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η)

− iY 2

2π2H2τ1τ2(τ1 − τ2)3
cos

(
−2Mf

Hτ2
(τ1 − τ2)

)
θ(τ1 − τ2 − η) . (3.66)

Note that Ms/H � 1 andMf/H � 1, and thus the sinusoidal terms are sub-dominant. Moreover,
in context of the derivation of section 3.3, as long as the test function f(∆τ) vanishes fast enough
for large ∆τ , the cosine term can further be approximated as

1

∆τ
cos

[
−2Ms

Hτ2
∆τ

]
≈ 1

∆τ
. (3.67)

We stress that the terms dependent on η need to be treated carefully. In fact only after the inte-
gration over τ2 we can send η → 0. Using the above approximation the limit η → 0 leads to a final
amplitude η-independent. The dominant terms are then given below in equations (3.69) and (3.70).

As we anticipated previously the amplitude of fermion and scalar (a + b + b′) diagrams are
finite. Note that the separation of the diagrams into two groups (a+ b+ b′) and (c+ c′ + d+ d′)
is natural. In fact the former group has the retarded propagator GRϕ in both external legs while
the latter has the Hadamard Fϕ and the retarded GRϕ propagators, as shown in figures 3.2 and 3.3.
Therefore collecting the amplitudes in these two groups based on their external legs, that we call
AGG and AGF , the total one-loop amplitude is

A1−loop(k) =

∫ τ

τi

dτ1

∫ τ

τi

dτ2
[
−iGRϕ (k, τ, τ1)

] [
−iGRϕ (k, τ, τ2)

]
AGG

+

∫ τ

τi

dτ1

∫ τ

τi

dτ2
[
−iGRϕ (k, τ, τ1)

]
[Fϕ(k, τ, τ2)]AGF , (3.68)

where τi is the initial time and τ the horizon crossing time; the time integration will be discussed
in the next chapter. Considering only the terms which dominantly contribute to the one-loop
corrected amplitude we have

AGG ≈−
1

8πH4τ4
1

(
µ2

4
− 3Y 2M2

f

)
δ(τ1 − τ2) , (3.69)
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and

AGF ≈+
i

2π2H4τ4
1

[(
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2

)
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µ2 + λM2
s
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ln

Λ
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f ln
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+
i
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1
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2
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1
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2π2H4τ4
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ln
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(τ3
1 + τ1τ

2
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1 τ2)

3τ3
2 (τ1 − τ2)

θ(τ1 − τ2 − η)

]
, (3.70)

where Λ is the UV cutoff and η is the time-regulator which will be sent to zero after sending Λ→∞
(see section 3.3 for details on the role of η).

Note that the η dependence in the terms (3.63) and (3.65), that contribute to AGG, is only
through the step function and it does not appears together with the cut-off regulator Λ. Therefore
after the integration over τ2 we can safely send η → 0. These are sub-leading terms and they do
not contribute to the dominant part of the amplitude in equation (3.69).

Instead the third and the fourth lines of the dominant contribution to AGF , (3.70), would
contain the time regulator η together with Λ. We split the logarithm in two parts, isolating the η
contribution

ln

(
− 2Λ

Hτ
η

)
= ln

(
Λ

M

)
+ ln

(
−2M

Hτ
η

)
. (3.71)

After the integration over τ2, we may send η → 0 and hence no dependence on η remains. Upon
the first integration in τ2 we also use the delta functional in the first two terms of AGF .

The UV divergences of the one-loop amplitude are contained in AGF and are

AUV =
1

2π2H4τ4
1

[(
Y 2 − λ

2

)
Λ2 +

(
µ2

2
+
λM2

s

2

)
ln

Λ

Ms
− 3Y 2M2

f ln
Λ

Mf

]
. (3.72)

As expected the scalar and the fermion contributions have the same dependence on the cutoff
Λ but carry opposite sign. Hence let us consider a theory in which there are ds scalar and df
fermion degrees of freedom, which independently contribute to the one-loop diagrams. Then we
may multiply our results by the corresponding degrees of freedom, resulting in the following UV
structure

AUV =
1

2π2H4τ4
1

[(
Y 2df −

λ

2
ds

)
Λ2 + ds

(
µ2

2
+
λM2

s

2

)
ln

Λ

Ms
− 3Y 2M2

f df ln
Λ

Mf

]
. (3.73)

As we will see in the next chapter, the supersymmetric hybrid inflation model we will consider
contains one massive Dirac fermion, df = 1, and four massive real scalars, ds = 4. Moreover we
know that in the supersymmetric case the coefficients in the potential are not independent, they
are related by λ = Y 2/2, obtained from the superpotential.

Therefore, Y 2df−λds/2 = 0 and the quadratic divergence vanishes analytically. Furthermore, if
the supersymmetry is unbroken,Ms = Mf , the logarithmic divergences also vanish. The important
result is that at one-loop order the divergences cancel analytically and we do not need to require
any renormalization if supersymmetry is unbroken. And if supersymmetry is broken, the resulting
divergence is mild since the quadratic parts still cancel in this case and it depends on the fermion
and scalar mass difference.
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To conclude the chapter we show the UV divergence behavior in Minkowski. It confirms what
we anticipated: the order of the UV divergences and the type and number of counterterm needed
in a curved spacetime is the same as in the flat Minkowski spacetime

AUV,M =
1

4π2

[(
Y 2 − λ

2

)
Λ2 +

1

2

(
µ2 + λM2

s

)
ln

Λ

Ms
− 3Y 2M2

f ln
Λ

Mf

]
. (3.74)
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CHAPTER 4

PRIMORDIAL POWER SPECTRUM

In this chapter we will apply the previous general results to a specific model of inflation. The main
goal is to observe the effects of loops corrections on cosmological observables such as the power
spectrum of primordial curvature perturbations. We shall understand the relative importance of
the radiative corrections with respect to the tree level result in the primordial Universe physics.

In section 4.1 we will present the time integration procedure we followed to calculate the full
Feynman amplitudes. In particular we will address the oscillating features of the Feynman ampli-
tudes that arise after attaching the external legs and performing the time integrations. In section
4.2 we will discuss the classical dynamics of hybrid inflation models and their supersymmetric
versions that will be used to address the calculation of the one-loop corrections to the primor-
dial power spectrum in section 4.3. These results are obtained using perturbation theory in the
framework, previously discussed, of the in-in formalism. We will present our final results from a
numerical evaluation of the primordial curvature power spectrum.

4.1 Time Integration

In the previous chapter we concentrated on the computation of the amputated amplitude to extract
the ultraviolet behavior of the one-loop corrections to the two-point inflaton function. To conclude
the calculation of the Feynman amplitudes we have to attach the external propagators to the
amputated amplitude and integrate over τ1 and τ2

A1−loop(k) =

∫ τ

τi

dτ1

∫ τ

τi

dτ2
[
−iGRϕ (k, τ, τ1)

] [
−iGRϕ (k, τ, τ2)

]
AGG

+

∫ τ

τi

dτ1

∫ τ

τi

dτ2
[
−iGRϕ (k, τ, τ1)

]
[Fϕ(k, τ, τ2)]AGF , (4.1)

obtaining the total one-loop amplitude, where we have defined

AGG := Aa+b+b′

scalar +Aa+b+b′

fermion, (4.2)

AGF := Ac+c
′+d′

scalar +Ac+c
′

fermion. (4.3)

The one-loop contribution to the two-point inflaton function corrects the tree level propagator
reported in equation (3.8). We can have both Hadamard Fϕ and retarded propagators GRϕ as
external lines, equation (4.1), as we have seen in the explicit diagrammatic representation of the
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corrections. For a (nearly) massless scalar field, such as the inflaton, from equations (2.94) and
(2.95), the propagators in the Keldysh basis are

Fϕ(k, τ1, τ2) =
H

2k3

(
(1 + k2τ1τ2) cos(k(τ1 − τ2)) + k(τ1 − τ2) sin(k(τ1 − τ2))

)
, (4.4)

GRϕ (k, τ1, τ2) = θ(τ1 − τ2)
H

2k3

(
(1 + k2τ1τ2) sin(k(τ1 − τ2))− k(τ1 − τ2) cos(k(τ1 − τ2))

)
. (4.5)

To perform the time integration we decided to keep the scalar and fermion contributions separated
at first to analyze the individual effect.

For the AGF contributions, in the presence of the δ-functional terms, the first time integration
is trivially performed analytically. For the other parts of the dominant terms the approximated
form in equations (3.69) is considered. After the first time integration, taking the limit η → 0, we
explicitly checked that the results are independent on the time regulator η introduced in section
3.3, as it was the case for previous similar computation [52].

Regarding the amplitudes AGG instead, as stated already in equation (3.69), the leading term
is only the one including the δ(∆τ) factor, therefore the τ2 time integration is performed straight-
forwardly. The main reason for this term to dominate is due to the fact that the factor M/H is
large and that means fast oscillation of the integrand. Therefore both τ1 and τ2 integration can be
safely done numerically setting η to be a much smaller number than the other parameters. The
last time integration, over τ1, was only performed numerically and we will present in section 4.3
the results fixing the parameters with the choice of the inflationary model.

4.1.1 Oscillatory behavior
The complete loop corrections show a time dependent periodic behavior and this is introduced by
the inclusion of the external propagators. The dependence on oscillatory functions is present in the
Feynman amplitude in the in-in formalism also in a Minkowski spacetime with a finite initial time
tin. Let us take as an example a theory that produces only diagram (d) as radiative correction,
the one-loop amputated amplitude is given by equation (3.23).

Introducing a mass counterterm, in the MS renormalization scheme [72],

δm2 =
λ

16π2

(
Λ2 −m2 ln

(
Λ

µR

))
, (4.6)

where µR is the arbitrary renormalization scale, the renormalized amplitude reads

Adamp

∣∣
ren

= −i λ

16π2
m2

(
1 + ln

(
m2

4µ2
R

))
. (4.7)

The renormalized amputated amplitude is time independent but the result of the full amplitude,
when attaching the external propagator and integrating in time, is not

Ad = Adamp

∣∣
ren

sin2
(√
k2 +m2(t− tin)

)
2(k2 +m2)3/2

. (4.8)

The time dependence in these cases can be interpreted as a consequence of the choice of switching-
on the interaction at a finite time tin and to fix the mode function at that time to be as in equation
(2.85), therefore fixing the Minkowski vacuum state at the initial time tin.

In the Minkowski spacetime we would expect naively to recover the value of the amplitudes
found in the literature [71], given the in-out formalism, and therefore the amplitude to be inde-
pendent from the initial time, in the limit tin → −∞. In most cases this limit does not exist and
it is therefore necessary to address the problem in the language of distribution theory.
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Also in the de Sitter spacetime the periodic behavior appears in the full two-point function
amplitudes. The full solution is therefore again dependent on the initial time τin and as in the
previous discussion we cannot always take the limit τin → −∞ directly because is not well defined.

Note that in this case there could be a time dependence of a different type, due to the back-
ground. In fact it can arise directly from the amputated amplitude a logarithmic dependence on the
Hubble parameter H(τ), for example in the case of the inflaton self-interaction [7, 65]. Considering
loops coming from a massive particles the logarithmic dependence is instead on the mass of the
mentioned particles [7], as it is in our case, and the amputated amplitude has a time dependence
of a different type, through the H dependence of the different terms.

It has been shown that the oscillations are dependent on the interaction profile [7]. Considering
the Minkowski background, the in-in formalism is equivalent to a theory that evolves freely from
infinite negative time up to the tin where the interaction is switched-on. Then the system evolves
according to the interacting theory. It can be described by a standard action with a step function
θ(t− tin) multiplying the interacting Lagrangian

S =

∫ +∞

−∞
dt

∫
d3x (L0 + θ(t− tin)Lint) . (4.9)

Therefore we expect the oscillatory terms to disappear in the limit in which the interaction is always
active, the in-out limit. The result in equation (4.8) is obtained using the ’naive’ interaction profile
θ(t− tin) and presents time oscillations.

It is possible to construct a nearly adiabatic switching-on of the interaction using different
interaction profiles. The longer the transition time ∆t from the free to the interacting theory the
smaller the amplitude of the oscillations. It was shown that the constant contribution coming from
the corrections is independent on the chosen profile and it reproduces the results of the in-out
approach for an adiabatic switch-on of the interaction [7]. As expected the Poincaré symmetry is
recovered for an adiabatic activation of the interaction.

The same arguments are valid also for the de Sitter spacetime: the amplitude of the oscillations
depends on the interaction profile and they are suppressed for long transition time (adiabatic
switch-on). The constant contribution is instead profile independent [7].

In the next sections we proceed to use the in-in formalism without changing the interaction
profile therefore we expect the presence of these oscillation of the two-point functions and for them
to give an imprint on the primordial power spectrum.

4.2 Hybrid Inflation

The hybrid inflation scenario was introduced by Linde [73] to overcome one specific difficulty of
the new [73] and the chaotic [74] scenarios: the requirement of a small and therefore ’unnatural’
coupling constant in order to fit the CMB data. This hybrid inflationary paradigma was born in
the context of grand unified theories (GUTs) and the main difference with the previous models is
in the presence of a second scalar field Υ, the waterfall field, besides the inflaton φ. In this case
Υ provides the vacuum energy density that drives inflation while φ is the slow-rolling field [75].
Since the inflaton is freed of the role of generating the non zero VEV, much larger and ’natural’
couplings are allowed in order to reproduce the experimental CMB data.

The contributions of the one-loop corrections are proportional to the coupling constants of the
theory and since we are interested in enhancing these effects on top of the classical dynamics we
will consider this type of models. Moreover previous studies suggested the supersymmetric hybrid
inflation scenario to be the most promising model in order to appreciate loop corrections similar
to the one we studied [7].

The minimal version of the hybrid inflationary model is given by the potential
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Figure 4.1: The two regimes of the hybrid inflation potential. Figure from [76].

V (φ,Υ) =
m2

2
φ2 + λhφ

2Υ2 +
g

4
(M2 −Υ2)2, (4.10)

where the last term is typical of a theory that presents a spontaneous symmetry breaking (SSB).
The interaction term between φ and Υ keeps the field Υ ’trapped’ in the origin: Υ = 0, as long as
φ > φc. The value φc of the inflaton corresponds to point at which the auxiliary field mass changes
sign. In fact we have, as starting point

M2
Υ

∣∣
Υ=0

=
∂2V (φ,Υ = 0)

∂Υ2
= −gM2 + λhφ

2, (4.11)

therefore we have

φc :=
g

λh
M2, (4.12)

and it is clear that we have respectively for φ > φc and φ < φc the mass mΥ > 0 and mΥ < 0 and
this changes the shape of the potential as shown in figure 4.1.

During the first phase φ > φc the minimum along the waterfall field is stable and the field φ is
slowing rolling with the almost flat potential

V (φ,Υ = 0) =
g

4
M2 +

1

2
m2φ2 ≡ V0 +

1

2
m2φ2 (4.13)

when φ reaches the critical value φc a phase transition to the true vacuum occur and inflation
rapidly ends. The mass MΥ < 0 is negative and the potential has the typical Mexican hat shape
with Υ = 0 that is now a local maximum with the true minima being Υ = ±M .

To the effective potential in equation (4.10) we add a Coleman-Weinberg type term to account
for the one-loop correction to the effective potential that can modify the classical dynamics of φ
[77]

∆VCW (φ) = (−1)f
m4

eff(φ)

64π2

[
ln

(
m2

eff(φ)

µ2

)
− 3

2

]
, (4.14)
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that has a positive (negative) sign for bosonic (fermionic) fields. In the case of hybrid inflation
models, Υ = 0 during the inflationary era, and its effective mass is M2

Υ = 2λhφ
2 −M . Therefore

the correction is

∆VCW (φ) =
(λhφ

2 −M)2

64π2

[
ln

(
λhφ

2 −M
µ2

)
− 3

2

]
+

m2

64π2

[
ln

(
m2

µ2

)
− 3

2

]
, (4.15)

where the second term is constant and does not contribute to the inflaton dynamics. When
considering the inflaton as nearly massless field the slope necessary to provide the slow-rolling is
granted by the radiative corrections that depends on the coupling λh.

The Coleman Weinberg term dominates for

λh ≥ 8π
m

φ
, (4.16)

this type of models are especially interesting in supersymmetry (SUSY) and supergravity (SUGRA)
[78, 79]. In this case in fact the coupling can take larger values, of the order of 10−4, 10−3.

Note that in this part of the discussion we are studying the classical dynamics of the field
φ. In the following, treating the supersymmetric case, we will restore the notation φ0 = 〈φ〉 and
φ = φ0 + ϕ to make a connection with the discussion in chapter 3.

4.2.1 Supersymmetric Hybrid Model

The scalar and the fermionic one-loop corrections are proportional to the only coupling constant
of the theory λh in the supersymmetric hybrid inflation model. To enhance the loop effects

The supersymmetric model of inflation we will use is described by the superpotential [8, 78]

W = λhφ̃
(
M2
G − ΣΣ̄

)
+M2

SB(S + β), (4.17)

where MG ' 1.688 × 10−3MP, MSB ' 1.0 × 10−8MP is the supersymmetry-breaking scale. The
first and the second term produce respectively the inflationary potential and the SUSY breaking
after inflation. The second term is negligible during inflation for λh sufficiently large. The real part
of the superfield φ̃ is the scalar component is the inflaton, while the superfields Σ and Σ̄ are the
waterfall fields that draw inflation to an end we they acquire a non zero VEV. During the epoch
of inflation, the approximated inflaton potential in this particular scenario is [78]

Vinf ' λ2
hM

4
G +

λ4
hM

4
G

64π2

[
ln

(
λ2
hφ

2
0

2µ2
Λ

)
+O

(
M4
G

φ4
0

)]
, (4.18)

where µΛ is the renormalization scale. We are neglecting the symmetry breaking during inflation
due to the scale MSB . Using the same notation for the fields as in chapter 3, the interaction
between the inflaton and the heavy scalar and fermion fields are

Lint 3 −
λ2
h

4
φ2

4∑
i=1

Σ2
i +

λh√
2
φχ̄χ . (4.19)

Note that in the model there are four massive real scalars degree of freedom, Σi (i = 1, 2, 3, 4) and
one massive fermion. As anticipated in this scenario the constants of the general model introduced
in chapter 3 are directly connected to the single coupling λh

M2
s1,3 =

1

2
λ2
h(φ2

0 +M2
G) , M2

s2,4 =
1

2
λ2
h(φ2

0 −M2
G) , Mf =

1√
2
λhφ0 , (4.20)

µ =
1

2
λ2
hφ0 , λ =

1

4
λ2
h , Y =

1√
2
λh , (4.21)
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whereM2
G has the effect of splitting the mass eigenstate of the scalar field. The background inflaton

field φ0 is given in terms of the number of e-folds N , before reaching the critical value MG [78]

φ2
0(N)

M2
P

=
λ2
h

4π2
N +

2M2
G

M2
P

, (4.22)

and the slow-roll parameters ε are given by

ε =
λ4
hM

2
P

2(32π2)2φ2
0

, (4.23)

η = − λ2
hM

2
P

32π2φ2
0

. (4.24)

Remind that φ barely varies during inflation hence we choose φ0 = φ0(N = Npiv) to fix the
parameters. Npiv is the number of e-folds reached when the pivot scale kpiv = 0.05 Mpc−1 exits
the horizon.

4.3 Radiative Corrections to the Primordial Power Spectrum

In this section we will construct the primordial power spectrum of curvature perturbations in the
effort of producing a theoretical prediction to be confronted against the cosmological observations.
The primordial power spectrum is a fundamental tool to discriminate between different inflationary
models. The spectrum is typically characterized by an amplitude and a tilt (given by the spectral
index), that depend on the shape of the inflaton potential.

In fact in the slow-roll approximation we have [25]

∆ζ(k) =
1

12π2M6
P

V 3

(V ′)2

∣∣∣∣
t∗
, (4.25)

where t∗ is the horizon exit time, i.e. k = a(t∗)H, and the primordial power spectrum in the SUSY
hybrid model presented in the previous section is

∆ζ(k) =
1

12π2M6
P

V 3

(V ′)2

∣∣∣∣
k=aH

=
162π2M4

Gφ
2
0(k)

3λ2
hM

6
P

∼ 4

3

M4
G

M4
P

N(k) (4.26)

and the spectral index is given by

nζ − 1 =
d∆ζ(k)

d ln k
. (4.27)

The study of features of the primordial power spectrum is therefore essential to distinguish differ-
ent models. One-loop corrections can be the sources of peculiar features. They can produce time
dependent oscillation [55]. Periodic properties of the primordial power spectrum are also produced
at tree level for extended models [80] or for non standard initial states [81].

In the first chapter we introduced the scale invariant power spectrum of the inflaton fluctuations
∆ϕ and in chapter 3 we showed that in the in-in formalism at tree level we have

∆tree
ϕ (k) =

k3

2π2
P tree
ϕ (k) =

k3

2π2
F tree
ϕ (k, τ, τ). (4.28)

We then proceeded calculating the quantum corrections to Pϕ using the in-in formalism in a
perturbative fashion

Pϕ = P tree
ϕ + P 1−loop

ϕ + . . . (4.29)
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From equation (1.179) we can connect the power spectrum of the inflaton fluctuations to the one
of the primordial curvature perturbation

∆ζ(k) =

(
H2

φ̇2

)
∆ϕ(k) =

(
H2

φ̇2

)
k3

4π2
Pϕ(k) =

1

2εM2
P

k3

4π2
Pϕ(k), (4.30)

where the last equivalence holds in the slow-roll approximation. In the following we will compute
the effects of the one-loop corrections on the curvature perturbation assuming that the equation
(4.30) holds also at that order

∆ζ(k) =
1

2εM2
P

k3

4π2

(
P tree
ϕ (k) + P 1−loop

ϕ (k) + . . .
)
. (4.31)

The primordial power spectrum is an important tool to understand the quantum nature of the
inflationary physics.

4.3.1 Supersymmetric Hybrid Inflation
We will now study the one-loop correction to the power spectrum of the primordial curvature
perturbations in the scenario where we expect it to produce the most promising results: SUSY
hybrid inflation [7, 78]. In fact as discussed above we can produce an inflationary phase with values
of the coupling λh in equation (4.18) up to the order 10−3.

The one-loop contributions are shown separately in figure 4.2. The ratio between them and
the tree level is shown and it presents an oscillatory feature in the small k regime due to the
radiative corrections. As discussed earlier this feature appear including the contributions from the
external propagators to the two-point function. The oscillations are a consequence of the imposing
the initial conditions, the Bunch-Davies vacuum, at finite time τin, at the beginning of inflation.
For longer inflationary phases the oscillations are suppressed leaving only a constant contribution.
The constant shift is estimate to be proportional to the square of the coupling λh and to the mass
difference of the fields.

The radiative corrections are the results of the time integrations, as discussed in section 4.1, of
the amputated amplitudes given in equations (3.69) and (3.70). Considering the supersymmetric
setting we have an analytical cancellation of the divergences in equation (3.73). In fact even if the
inflaton VEV break SUSY invariance we still have the cancellation of the logarithmic divergence
and the final amplitude in this setting is finite

AUV =
1

2π2H4τ4
1

[(
1

8
λ4
hφ

2
0 +

1

16
λ4
h(φ2

0 +M2
G)

)
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2Λ2

λ2
h(φ2

0 +M2
G)
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+

(
1

8
λ4
hφ

2
0 +

1

16
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h(φ2

0 −M2
G)

)
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2Λ2
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h(φ2

0 −M2
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− 3

8
λ4
hφ

2
0 ln

(
2Λ2

λ2
hφ

2
0
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=

1

2π2H4τ4
1
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− 3

16
λ4
hφ

2
0 log

(
1− M4

G

φ4
0

)
+

1

16
λ4
hM

2
G ln

(
φ2

0 −M2
G

φ2
0 +M2

G

)]
. (4.32)

In this particular context the one-loop correction is fully finite are independent from the renormal-
ization procedure.

The UV Feynman amplitude add a time dependence to the final amplitude. In fact besides
the time dependence due to the external propagators and the initial time τin, discussed above, the
amputated amplitude introduce a time dependence due to the background, from the H and φ0

that are slowly-varying.
Using equation (4.31) we obtain the radiative corrections to the curvature power spectrum. Note

that during inflation the masses of the heavy fields are dependent on φ0 and therefore are slowly-
varying during the evolution. Since the changes are adiabatic, due to the slow-roll conditions, we
used the results of the computation for constant masses. Therefore the results are not valid towards
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the critical regime, when inflation is ending. The WKB approximation for the fields breaks down
at this stage since the fields are going to be massless at the end of inflation.

Because the results of chapter 3 are completely general it is possible to work also outside the
supersymmetric scenario. In fact we can introduce local counterterms, using the MS scheme [72],

δm2 =
λ

4π2

(
Λ2 −M2

s ln

(
Λ

µR

))
, (4.33)

for the scalar contributions and

δm2 = − Y 2

2π2

(
Λ2 −M2

f ln

(
Λ

µR

))
, (4.34)

for the fermion contributions, where µR is the renormalization mass scale. The counterterms are
obtained using the WKB form of the massive propagators that is a good approximation in the UV
regime and thus can be used to understand the UV divergences. We can use these time independent
counterterms, to have a renormalized theory that have massive fermions and scalars interacting
with the inflaton according to the Lagrangian in equation (3.2). Therefore the previous results can
be extended to different models of inflation in a straightforward way.

Figure 4.2: One-loop contributions to primordial power spectrum, coming from the massive scalar
field (left) and the massive fermion field (right). For the parameters, we chose λh = 1.192× 10−3,
MG = 1.688 × 10−3 MP, MSB ≈ 1.0 × 10−8 MP, and Npiv = 59. The initial time τi is chosen as
τi = −k−1

pive
Ntot−Npiv , with the total number of e-folds Ntot = 65. The parameters are chosen in

such a way that the tree-level power spectrum gives the Planck normalization, 2.1× 10−9. Figure
from [82].

Note that in the studied case the scalar (fermion) contribution is positive (negative) with
magnitudes of O(10−1). Beside the oscillatory behavior, which does not cancel completely, the
radiative corrections produce a shift of the power spectrum. This shift is non zero when summing
the fermion and scalar contributions and proportional to particle mass differences squared, resulting
in a relative size∼ 0.001. We show in figure 4.3 the total power spectrum, including the contribution
at one-loop order. The relative difference is proportional to the number of e-folds so a longer
inflationary epoch would enhance the constant shift while, as discussed above, suppressing the
oscillations.

Finally using the result for the primordial power spectrum including one-loop effects we pro-
duced a prediction for the temperature power spectrum of the CMB. In figure 4.4 we show our
prediction (black curve) and the Planck best fit (green curve). Due to the smoothing around a
particular angular scale, the oscillatory feature is not visible in the predicted power spectrum.
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Figure 4.3: One-loop power spectrum ∆ζ(k). The choice of parameters is the same as in figure
4.2. Figure from [82].

Figure 4.4: Cosmic microwave background power spectrum C�. The total e-folds number is chosen
to be 70. The parameter λh is chosen such that the Planck normalization is met. The green curve
is the Planck best-fit [3] and the black curve represents our prediction. The data is from [3]. Figure
from [82].
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SUMMARY AND CONCLUSION

Cosmic inflation is a widely accepted paradigm in cosmology, it describes a primordial epoch of
accelerated expansion of the Universe. The CMB observations, consistent with adiabatic, scale
invariant and Gaussian initial condition, are considered hints for cosmic inflation. Within this
framework the problems (horizon, flatness and unwanted relic) of the Hot Big Bang model can be
solved. The current observations are consistent with a nearly scale invariant primordial curvature
power spectrum as the one predicted by the slow-roll scenario of a single-field inflation. Nonetheless
realistic models of inflation contain multiple fields other than the inflaton. The presence of fields
coupled to the inflaton may alter the predictions of the single-field inflation models.

In the past five decades different inflationary theories have been studied, focusing on the classi-
cal dynamics of the field. Less attention has been dedicated to the understanding of the quantum
corrections to the power spectrum arising from the presence of other fields in the early Universe
interacting with the inflaton. The radiative corrections can produce a characteristic imprint in the
primordial power spectrum since they introduce a time dependence due to both the background
evolution and the choice of the Bunch Davies vacuum as initial state at time τin.

In this thesis we investigated the explicit ultraviolet behavior of the inflaton two-point function
and the features of the primordial power spectrum due to the radiative corrections coming from the
presence of massive scalar and massive fermion fields that interact with the inflaton, respectively
via the most general, Z2 invariant, (renormalizable) interactions and a Yukawa coupling. The
natural theoretical framework to use is the Schwinger and Keldysh (or in-in) formalism since time
translation invariance is broken by the cosmological setting, i.e. the expanding Universe, and we
expect a time dependence of the cosmological observables.

We computed the one-loop radiative corrections to the inflaton two-point correlation function
due to the heavy fields, without specifying the inflaton potential, keeping the inflationary scenario
general at first. We performed the computations in a de Sitter spacetime, choosing the initial
state at some initial conformal time τin to be the Bunch-Davies vacuum. The mode functions
were treated, in the analytical computation, using the WKB approximation while numerically, we
used the full solution of the equations of motion in the de-Sitter spacetime. We explicitly showed
that the scalar and fermion one-loop contributions contain the same quadratic and logarithmic
divergences as in the case of the Minkowski spacetime background, as expected from the results
in algebraic QFT. The contributions carry as usual opposite sign and they cancel exactly for the
supersymmetric model considered, giving rise to a finite total result.

Time dependent features of the power spectrum arising from the one-loop corrections were
expected as discussed in a previous work [55]. The time dependence is of two types. One arises
from the amputated amplitude due to the evolution of the background. In fact the slow-rolling
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field φ0 even if varies slowly is not exactly constant and therefore neither the masses are perfectly
constants. Moreover the dependence on the Hubble parameter H of the amputated amplitudes
provide a second source of time dependence of this type. The other type of time dependence is
on the expected oscillatory features in the power spectrum. Indeed we found that both radiative
corrections coming from the fermion and the scalar produce a constant shift and this peculiar
oscillatory effects on top of the tree level primordial power spectrum. The oscillatory behavior is
due to the fixing of the initial conditions at finite time τin instead that at τin = −∞. It arises in
the complete amplitudes when inserting the external propagators and integrating in time. When
choosing the initial time large, in magnitude, we see the oscillation shifts towards lower wavenumber
k, but keeping the same overall shape. In the limit τin → −∞ the oscillations are shifted towards
momenta k → 0 outside of the visible range.

We can interpret the choice of the finite time in a twofold way: as the choice to set the initial
conditions at the beginning of inflation, without resorting to a prolonged de Sitter phase in the
far past. Then the inflation starts at τin, with all the interactions that we have considered and
the correct time-evolution of the modes. Otherwise, even assuming that inflation extended to the
infinite past, we can interpret τin as a starting point for the interactions between the inflaton
and the other massive fields. This switching-on via a step-function is a non-adiabatic process so
further analysis is needed to check if our results are reliable in this case; indeed it was shown for a
self-interacting inflaton that an adiabatic switch-on of the interaction leads to no oscillations and
introduces only a constant shift [7]. Further analysis is needed to understand the physical meaning
of these oscillations.

Finally we applied our result in the framework of supersymmetric hybrid inflation where the
coupling constant can be as large as O(10−3) and therefore the one-loop corrections are expected to
be substantial. We explicitly showed that the fermion and scalar UV divergences in the inflaton two-
point function corrections cancel each other analytically in this setting. The radiative corrections
of both scalar and fermion fields separately are O(0.1).

In the various phases of the computation we performed numerical checks of the approximations
used in the analytical computations using Mathematica. We computed propagators, amputated
amplitudes and UV behaviors numerically starting from the full mode functions and compared
them to the analytical results. We showed that the WKB approximation and the split of the
momentum integrations are good analytical approximations for the full result. Moreover we argued
that the WKB approximation is a good tool to capture the UV divergences of massive fields.

The final step was to make a prediction for the temperature power spectrum of the CMB includ-
ing the quantum corrections. In figure 4.4 we present our prediction for the CMB power spectrum
together with the best fit of the Planck data. Due to the smoothing around a particular angular
scale, the oscillations are not directly visible in the predicted power spectrum. In the optimistic
scenario of large coupling, we were expecting to see the imprint of the primordial power spectrum
oscillations in the CMB and be able to constrain the model parameters and τin. Unfortunately at
present we do not observe any features that can be traced back to the oscillations of the primordial
power spectrum as a simple power-law power spectrum is a good fit of the latest Planck results
without the need for any particular features.

Generically, the constraints on oscillatory features are still quite weak and surely features similar
to those obtained in our model are not excluded. From future observation we can expect to improve
the methods to reconstruct the primordial power spectrum from the experimental data and we can
hope to detect the effect of radiative corrections, for sufficiently large couplings.
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