
Università degli Studi di Padova
Facoltà di Ingegneria dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di laurea magistrale

iCruise: development of a smartphone
app for lane detection

Application intended to support CruiseControl devices

Candidato:
Alvise Rigo
Matricola 1013970

Relatore:
Prof. Luca Schenato

Anno Accademico 2012/2013

Nella nostra galassia ci sono quattrocento miliardi di stelle, e nell’universo ci sono
più di cento miliardi di galassie.

Pensare di essere unici è molto improbabile.
Margherita Hack

N

Everyday life is like programming, I guess. If you love something you can put
beauty into it.

Donald Knuth

C O N T E N T S
1 related work 1

1.1 stereo imaging 4

2 android os 5
2.1 Description of the OS 6

2.1.1 Briefly analysis of Android components 7
2.1.2 The Linux kernel 7
2.1.3 Libraries 7
2.1.4 The Dalvik Virtual Machine 8
2.1.5 Application Libraries 8
2.1.6 Applications and Application Framework 8

3 development environment 9
3.1 SDK 9
3.2 NDK 9

3.2.1 JNI calls 10
3.3 OpenCV library 11

3.3.1 Tegra 11
3.4 target device 11
3.5 OpenGL ES library 12

4 tasks and work flow 13
4.1 Emphasizing margins 13
4.2 Lane Detection 13

4.2.1 Searching of straight lines 13
4.3 The Vanishing Point estimation 14

4.3.1 outline on perspective 14
4.3.2 benefits derived from the knowledge of the vanishing point 14

4.4 General Work Flow 15
4.5 The problem of lens distortion 16
4.6 Features expected from the Software 16
4.7 application architecture 16

5 lane detection 19
5.0.1 a wrong attempt 19
5.0.2 the reason why it doesn’t work for lane detection 19

5.1 the final solution 20
5.1.1 image filtering 20
5.1.2 margin emphasis 21
5.1.3 noise reduction 22
5.1.4 line detection 23
5.1.5 lane estimation 24

5.2 a closer look to the line detection algorithm 25
5.2.1 line creation 25
5.2.2 line removal 26

6 vanishing point estimation 29

7 conclusion 33

v

vi contents

bibliography 39

L I S T O F F I G U R E S
Figure 1 Near and far field distinction 1
Figure 2 Example of EDF for edge recognition 3
Figure 3 OpenCV Logo 11
Figure 4 HTC One X, the testing device 12
Figure 5 OpenGL ES logo 12
Figure 6 Example of left and right search region 14
Figure 7 Internal architecture of the application 17
Figure 8 Image of a vertical line 21
Figure 9 before and after the application of the kernel 22
Figure 10 Example of filtered image 23
Figure 11 Output of the detection line algorithm before the vanish-

ing point estimation 24
Figure 12 Final output of the work flow before the vanishing point

estimation 25
Figure 13 example of left search 26
Figure 14 First step: line creation 27
Figure 15 Second step: line removal 27
Figure 16 Practical example of diagonal check 28
Figure 17 Left search phase after the vanishing point estimation 29
Figure 18 Filtered image after the vanishing point estimation 30
Figure 19 Two search region distinction 31
Figure 20 Output of the detection line algorithm after the vanishing

point estimation 31
Figure 21 Final output of the work flow after the vanishing point es-

timation 32

vii

S O M M A R I O
La sempre maggiore diffusione di dispositivi mobili, quali smartphone, e la sem-

pre maggiore potenza computazionale in essi equipaggiata, rendono possibile l’u-
tilizzo di questi dispositivi in ambiti sempre nuovi e interessanti. Il sistema ope-
rativo Android inoltre, che al momento della stesura conta più di 900 milioni di
attivazioni totali, da la possibilità di esplorare questi nuovi ambiti realizzando ap-
plicativi complessi che possono interfacciarsi con una moltitudine di sensori, tra
i quali la fotocamera. In questa tesi verrà presentata e descritta un’applicazione
Android atta ad assistere un dispositivo di CruiseControl attraverso la fotocamera
dello smartphone. L’applicazione curerà esclusivamente la parte di lane detection,
ossia il riconoscimento dei margini della corsia che il veicolo equipaggiato dello
smartphone sta percorrendo. Fondamentale per l’applicazione sarà quindi, gra-
zie agli algoritmi presentati, l’essere conscia dell’ambiente circostante: compiere
di fatto computer vision attraverso l’elaborazione delle immagini. La sfida del pro-
getto, che nella sua categoria non rappresenta un novità assoluta ma una discreta
novità se si considera la piattaforma per cui viene realizzata, è quella di realizzare
un’applicazione il più snella possibile, che non necessiti di un quantitativo di me-
moria eccessivo e che possa offrire un’esperienza gradevole in fatto di fluidità e di
rappresentazione visiva del grado di coscienza che il programma ha dell’ambiente
circostante.

A B S T R A C T
The continuously growing diffusion of mobile devices, as smartphones, and the

always greater computational power equipped allow the employ of these for new
and very interesting purposes. Moreover, the Android operating system, which at
the moment counts more than 900 millions of activations all over the world, allows
the developer to explore these new fields creating complex applications that can
interact with many different sensors, first of all the embedded camera. Aim of this
thesis is to introduce a new Android application for the assistance of a CruiseCon-
trol module through the camera equipped by the smartphone: in particular the
part of lane detection will be covered. The application has to be able to place, in
the most realistic manner, the car in which it is running inside the roadway bound-
aries using algorithms of computer vision created ad-hoc for the purpose. The true
challenge of the project, that in its own area of interest is not a really new finding
but a quite interesting discovery if we consider the platform for which it was devel-
oped, is to realize a very slim application, that has not to require a huge amount
of memory and that can offer a direct user experience in terms of smoothness and
visual representation of the awareness of the surrounding environment. As an in-
troduction of the outlined application, this thesis will be focused on all the aspects
regarding the development of the application and the algorithm of lane detection
and vanishing point evaluation.

ix

R I N G R A Z I A M E N T I
Considero questa tesi il capitolo conclusivo di un lungo cammino di crescita

e formazione che dal punto di vista professionale mi ha notevolmente cambia-
to, migliorandomi. Voglio ringraziare pertanto un po’ di persone che sono state
importanti in questi ultimi anni di magistrale, senza le quali probabilmente non
sarei qui ora a scrivere queste righe.

In primis voglio ringraziare i miei genitori, sia per aver creduto nella mia scelta
di studi “alternativa” mantenendomi per molti anni, sia per avermi consigliato e
supportato.

Andrea, per la sua costante presenza interessata e curiosa della mia passione
informatica.

Carlotta, per la sua costruttiva, onnipresente partecipazione a ogni passo della
mia carriera universitaria.

Gloria, capace sempre di allietarmi i momenti difficili; saggia consigliera, sen-
za di lei tutto sarebbe stato più tortuoso e meno divertente. Un grazie sentito
veramente speciale per tutto, comprese le varie riletture di questo scritto.

Grazie ai miei amici “di casa”: Mattia, per le innumerevoli chiacchierate illumi-
nanti scientifiche, Monica ed Elisa, per essere sempre vere amiche, Margherita e
Ciro, per la vostra originalità e intrapprendenza.

Grazie ai miei amici dell’Università, che da buoni compagni si sono sempre
mostrati disponibili ad aiutarmi, ma si sono fidati anche del mio aiuto e dei miei
consigli che ho sempre cercato di condividere senza trattenermi: sono convinto
che se li meritino tutti. Sperando di non dimenticarmene, ringrazio Alberto, Ales-
sandro, Angela, Daniele, Federica, Federico, Gianluca, Giulio, Ilaria, Lucia, Marco,
Mattia, Rossella e Sebastian. Grazie per tutto, vi auguro il meglio.

Ringrazio infine il Prof. Schenato, che mi ha dato l’opportunità di realizzare
questo lavoro di tesi, concedendomi la giusta libertà di scelta.

Padova, luglio 2013 a. r.

xi

I N T R O D U C T I O N
The purpose of this thesis is to introduce a software for Android smartphones

capable of detecting the lanes inside the roadway and estimating the vanishing
point in the scene that is nothing more than a picture coming from the camera of
the device. For this work was used a HTC One X, equipped with Android operating
system and a Tegra 3 processor.

This application is part of a bigger project called iCruise. The purpose of iCruise
is to build a features-rich application which can offer assistance to a CruiseCon-
trol device installed in a vehicle. Essentially, the main lack of the commonly used
CruiseControl devices is that they are not aware of what is happening outside the
vehicle and more importantly, they do not know the distance between them and
the following vehicle. This is why we devoted our efforts in the development of this
application that will try to fix the mentioned hole. Actually, there are already avail- These kind of

devices are called
adaptive

CruiseControls

able in the market solutions that offer a complete experience in fact of CruiseC-
ontrol, however these implementations make use of sophisticated (and so expen-
sive) radars that continuously monitor the vehicles in the road. These ones are
indeed working solutions but too expensive and hardly portable. A smartphone
application can, on the other hand, be very cheap and bring a rich CruiseControl
service to everyone. Moreover, this application can take advantage from being
open source, in such a way to let everyone to improve the code, making it safer
and faster.

relevant contribution
As previously anticipated, the target device of the work we are going to describe

is a smarthphone, with very limited computational capabilities if compared to
a desktop PC. Firstly, an attempt to use the traditional methods has been made The open source

nature of OpenCV
allows to freely read
and modify all the
methods code

which however has led to not completely satisfying results. In particular an ad-hoc
Hough transform has been implemented, but, although all the appropriate opti-
mizations applied, the speed of the algorithm was too slow and to much gullible
from the noise. Probably, adjusting the Hough transform properly, is possible to
obtain a reliable algorithm for this particular employment, but still too slow. These
are the motivations that led to the development of a new algorithm for line (lane)
detection which is presented in the chapter 5.

In addition to that, a new work flow is presented for lane detection that is based
on the reiteration of the same algorithm of line detection, enriched with some
expedients.

the challenge
Basically, this thesis is all about computer vision, a new field that, starting from

the image analysis, tries to produce useful information from the picture. The com-
puter vision is a complicated subject for the computer science that requires smart
algorithms to emulate the human mind (as far as the human vision); sadly it turns
out that the human mind is naturally inclined to perform some basic operations

xiii

xiv List of Figures

like edge detection, shape recognition an so on, all useful activities but difficult
to realize through a computer. Moreover, even if we came to a brilliant algorithm
for edge detection (for instance), we would soon face a sad truth when we will be-
come aware of the huge amount of power required by the newly found algorithm.
The nature of the target device makes the things harder, since it has not all the
computational power available in a desktop PC, platform for which state of the
art algorithms are already available. The application has to analyse all the frames
that come from the camera, thus it has to work at about 20 frame per second which
gives only 50ms to process the actual frame.

Even if in this work we will not talk about the final usage of this application,
it is easy to understand the importance of getting robust and correct information
about the road boundaries. However, there are a lot of difficulties to face that can
affect the reliability of the program or that can degrade the performance of the
lane detection. Some of those could be:

• overall illumination of the scene: obviously working at night is dif-
ferent from working during a sunny day: some of the useful details in the
scene can be omitted by the camera. We have to keep in mind that the cam-
era of a smartphone is far from being perfect: even in a shaded scene there
could be a lot of noise in terms of colour fidelity. Also the sun position can
lead to several problems; in fact the shade position and the brightness of the
picture can vary greatly.

• unexpected objects and occlusion: one of the most relevant knots of
computer vision is the appearance of unexpected pixels that can be simply
related to noise but also to the unlikely presence of objects. For instance, a
particular intrusive shade of a tree or a bag in the roadway, but also the legit-
imate presence of raindrops on the front windows of the car or the crossing
of the windshield wiper. These are all examples that have not to compro-
mise the output of the software; but its robustness has to prevent it. Occlu-
sion, on the other hand, could also be problematic when, for instance, a car
in front of the vehicle in which the software is running hide the part of the
road needed to localize the lane.Usually, the colour

variation brought by
sensor noise is

minimal in a sunny
day, but get worse

when the light
decreases

• noise: it is unpredictable and can generate pixels that do not match with
the neighborhood, bringing possible misunderstanding of part of the pic-
ture.

This work will show, step by step, all the expedients found to achieve this result:
some of these regard only technical choices (normal matter when developing),
others on the other hand could be tricks inside an algorithm.

brief description of the following chapters
• Chapter 1

In this chapter we will run through the state of the art in the field of lane
detection and vanishing point estimation. The literature available is con-
siderably wide so only the most significance contributions or those contri-
butions that have been proved to be meaningful in the development of the
project will be proposed. After that, will be presented the major innovations
brought by this work.

• Chapter 2

The main subject of this chapter is Android. Since it is not yet an operating
system widely used for this type of employ, it will be presented very carefully,

List of Figures xv

starting from the operating system itself and than coming to its positive as-
pects and drawbacks. We will focus a little bit on a really critical aspect of
this work that is the use of native code inside the Android applications.

• Chapter 3

Now that the Android O.S. and the possibility to run native code have been
introduced, in this chapter we will run through the Android SDK, the main
tool to build Android apps, and the NDK, a development kit which can com-
pile native code for Android devices. As we are dealing with computer vision,
the OpenCV libraries will be introduced: these are the decisive libraries used
in the project which also are, de facto, the standard in this context. The chap-
ter ends with and overview of the OpenGL libraries and the description of
the device where the application was tested.

• Chapter 4

This application is made of various phases, that accomplish various sub
tasks. In this chapter we will introduce the general work flow followed by
the application and will also talk about the features expected by the pro-
gram, because reliability imposes some constraints to the application. In
the last part, the inner architecture will be presented in order to describe
how the logical tasks are divided into running threads.

• Chapter 5

In this chapter we come to the application, describing all its features. Here
we will talk about problems and solutions faced during the developing pro-
cess.

• Chapter 6

A marginal chapter, which will not introduce new concepts but instead it
will show some clarifying examples on how the knowledge of the vanishing
point can make the whole work flow easier.

• Chapter 7

The name says it all, here you find a review of all the work done together
with some final thoughts.

1 R E L AT E D W O R K
This chapter wants to introduce other relevant works made to accomplish the

job of lane detection. From now on we will mainly refer to this topic leaving the
rest of the implementation of iCruise as future work.

There are various papers that show working solutions aimed to do lane detec-
tion for Autonomous Guided Vehicles by mean of a camera. It should be empha-
sized that most of this works do not deal with smartphones camera installed on
unstable supports (like in the case of this work), but with steady cameras that can
deliver better stability. This chapter wants to give an idea of the state of the art in
this particular field, describing how our colleagues have achieved the same result.
One of the most interesting method relies on the birds-eye view of the road, which
is a sort of top-view image. For the reasons explained in later chapters, the images
acquired by a camera are affected by aberration and prospective. This side effects
can be nullified through a birds-eye view. A birds-eye view can make easier the
detection of the lane, but imply more work for the processor, an issue that has to
be handled carefully.

Other works have taken a different path believing that it is worth to describe the
progress of the road with high precision. These works, like Jung and Kelber, 2012,
make a differentiation from the near field (the portion of the lane which is near to
the vehicle) and the far field. In picture 1 there is an example of such a division
of the road. While the lane boundaries of near field can be always be considered
like straight lines, the lane boundaries of the far field on the contrary could be de-
scribed as parabolic lines when a curve is approaching. The cited work presents a
very precise way to do that which relies on choosing the right coefficients for both
the lines (that approximate the line boundaries) in the near field and the parabolic
curve in the far field. Obviously, the straight line and the parabolic line have to be
consecutive. For this reason, in the conjunction point, the continuity condition
and the differentiability condition must be satisfied. The whole problem, at the
end, turns in minimizing the error carried by the near and far field lines as approx-
imation of the lane with the conditions of continuity and differentiability satisfied.

Figure 1: Near and far field distinction

1

2 related work

The work proposed in King Hann Lim and Ang, 2012 presents another interest-
ing work flow for lane detection that can be summed with these steps:

• horizon localization: to eliminate the disturbances from the sky seg-
ment the horizon localization is performed to partition the scene in two sec-
tors; it is likely that the sky segment occupies a great part of the image, so
it is worth to remove it and to benefit of a smaller image. To do so, a verti-
cal meaning distribution is computed by averaging the gray values in every
row on a blurred image. Plotting the resulting graph, it is possible to evalu-
ate the exact point in which the switch to the sky colour happens. This is a
really common approach that does not deserve a deep analysis.

• lane region analysis: in this step the road region is estimated perform-
ing some ad-hoc evaluations on the color of the image. The main purpose
of this step is to eliminate from the scene all those pixels that belong to the
road, in such a way to empathize the white pixels of the lane markings.More on this in the

mentioned paper

• adaptive line segment: exploiting the mathematical properties of the
resulting image, it is possible to have the precise position of the lane mark-
ings. Initially, the gradient magnitude (∇Dmap) and the orientation (θ) are
computed starting from the horizontal edge map (Dx) and the vertical edge
map (D y). The relationship between this quantities are:

|∇Dmap | ≈ |Dx |+ |DY |, (1)

θ = tan−1
(

Dx

D y

)
and are useful to define an edge distribution function, also known as EDF.
The authors decided to divide the road in n different rows, where the first
n −1 from the bottom represent the near field, the nth instead the far field.
After obtaining θ and ∇Dmap for each row, looking at the maximum ∇Dmap

in the negative and positive angles, it is possible to estimate the position of
the right and left markings of the lane. In the picture 2 we clearly see the
two tallest peaks, that refer to the two lines edge. The more that pixels are
closer to the horizon, the bigger is the amount of space that they represent,
analogously, the closer we are to the horizon, the smaller the lane will be.
For this reason the noise, which is uniformly distributed in the whole image,
has a bigger impact in those pixels close to the horizon. This a natural draw-
back which affects not only a camera, but also all human eyes; the authors
of the cited paper decided to deal with the problem adopting the already
seen distinction between far field and near field. In the near field the EDF
technique is actually a working solution, but in the far field they developed
another one called "the river flow edge detection".

• river flow edge detection: in the far field, the edges are not clearly pre-
dictable and they are deeply affected by the noise. The idea is simple and
is really close to what the water of a river does: it follows the bank of the
river. This is what the river flow algorithm actually does: it follows the lane
marking choosing as “bank pixels” those with higher intensity.

These presented works show indeed interesting approaches, but are too com-
plex for our purpose and, somehow, too much elegant. In fact, the purpose of
this project does not require to distinguish when a curve is coming and, moreover,
does not require to show to the user that the curve is actually coming. What on
the contrary is really needed is the right positioning of the lane where the vehicle
is running and the right outlining of the lane area in which it is worth to check for

related work 3

Figure 2: Example of EDF for edge recognition

some possible excessively near objects (vehicles), as, for instance, a vehicle that
has slowed down suddenly. In order to meet these requirements, it is not needed
to have a detailed description of the far field and we can approximate merging
the near field with the far field using a linear description of the lane boundaries.
Clearly, when this approximate model has to manage a narrow curve, the outcome
will not be precise, but this is an unlikely case, negligible if we consider the real use
cases of a cruise control application.

the line detection problem In any of these possible approaches there is
a common feature that is the line detection. The lanes in the roadway are delim-
ited with white lines that are easily distinguishable thanks to the darker colour
of the rest of the road. This almost always present characteristic allow us to ex-
ploit it using one of the available algorithms for line detection. Actually, there are
not single and “all inclusive” algorithms for line detection, but a set of common
approaches that allow to distinguish lines inside an image. In fact, an algorithm
such the Hough transform (which is one of the most used for line detection) is
not decisive when applied to a noisy image without taking care of distinguishing
the relevant borders of the picture through, for instance, a Kenny edge detector.
All the efforts present in the literature show slightly different techniques to distin-
guish the lines of the lane and, of course, this work will present its own method for
line detection.

A general work flow is now necessary to accomplish the final goal: a robust
algorithm for line detection represents only the first step to accomplish the output.
In fact, many analogous works proceed as follow: in the first frame the algorithm
of line detection is applied in order to know the precise position of the lane (or the
lanes); then in the other frames, an algorithm of lane following is continuously
run to adjust the position of the lanes previously found. The clear advantage is
that, once known the approximate position of a lane edge, in the future frames it

4 related work

will be possible to reduce the region of interest of the picture into a smaller one
allowing a drastic reduction of computational time. More on this on chapter 4.

1.1 stereo imaging
Even if it is not used by this work, it is worth to spend some words to present how

an alternative work flow based upon the stereo imaging can make the things easier.
The stereo imaging expects that the scene is acquired by mean of two cameras,Stereo imaging is

used by human
brain to compute

distances.

one next to the other; in this way it is possible to have a picture of the scene taken
exact at the same time but from two positions that differ for few centimetres. In
essence, the steps to cover to obtain useful information from the stereo imaging
are:

1. Radial and tangential lens distortion removal. The output of this step is an
undistorted image.

2. Rectification: this is a process that adjusts the angles and distances between
cameras.

3. Find the same feature in the right and left camera view. The output of this
stage is a disparity map which tells, in term of pixels, the distance that
characterizes the correspondence.

4. At the end, knowing the relative position of the two cameras, we can posi-
tion each feature inside a 3-dimensional scene through triangulation. This
step is called reprojection.

The third step is the key point of the stereo imaging, suppose that the same fea-
ture is acquired in the first camera at the coordinate

(
x1, y1

)
and in the second

camera at the coordinate
(
x2, y2

)
. Assuming that previously we have successfully

fulfil steps 1 and 2, then we have an undistorted and rectified image and we can
reasonably argue that y1 = y2. We can’t state the same for the x value which has
to be different because of the mutual position of the two cameras. For this reason
x1 6= x2 and, more precisely, |x1 − x2| gives a quantification of the distance of the
feature from the cameras. Sadly, although this approach gives very precise results,
it has two drawbacks:

• it requires a lot of computational power, due to the number of steps needed;

• it requires two cameras, an impressive requirement for a smartphone (actu-
ally, such a device exists and probably within few years a smartphone with
two cameras will be very common; but at the moment we have to be satis-
fied with only one camera).

2 A N D R O I D O S
Android is an open source software stack that includes, above all, the operat-

ing system, a middleware for the communications and a set of core applications,
along with a set of API libraries for writing applications that are meant to be re-
ally integrated with the operating system and that respect its own style and pat-
terns. Android is, with some exceptions, an open source software, making it very
attractive for developers and in general for those curious people who likes skim-
ming the code for fun. Android initially was developed upon both the Linux ker-
nel 2.6 and the typical C libraries used inside every GNU/Linux operating system,
making it an OS open source and with a strong base. Although the early versions
haven’t been really exciting (even more so if compared to the competition), the
latest versions offer to the developers a flexible developing platform along with an
outstanding user experience.

android, a goal of the open source software Android was originated
by group of companies known as the Open Handset Alliance, led by Google. All
this companies believed that an open source platform is really necessary and so
have addressed their efforts to this cause in order to bring new devices to the mar-
ket equipped with this operating system. Android is intentionally open source,
and not free “as in freedom” Free Software Foundation, 2007a: it is a shared ef-
fort carried by a group of organizations with shared needs. There are a lot of
companies that are born with the purpose of building Android applications or
devices. The possibility to have the source code available made the developing
process quite agile and, in few years, it was possible to see great devices entering
the market of smartphones. However, what probably has stricken the most are
all those communities of developers and enthusiasts arose around, basically, the
released source code. Now, after five years, there are entire ecosystems based on
branches of the Android source code like, for example, the CyanogenMod com-
munity. Nowadays Android is probably the most concrete contribution of the last
years in terms of innovation for the open source community.

Android is a major
step towards an
ethical,
user-controlled,
free-software
portable phone, but
there is a long way to
go.
—Richard Stallman

why not a copyleft license? Good question. First of all it is worth to in-
troduce some concepts. There are basically two type of free license:

• free, copy left licenses: an example could be the GPL license [Free Software
Foundation, 2007a] or its newer, less strict, version LGPL [Free Software
Foundation, 2007b]. This kind of licenses allows everyone to use the code
with no limitation. Every developer or company who wants to use it to build
an application, can do that without any limitations, but, once he decides to
publish it, he has to use the very same license that initially protected the
code. As a consequence, anyone can, in turn, use that code to build an im-
proved version of the application and release it. It is said that the source
code been copied infects the software developed upon it.

• open source, not copy left licenses: as not copy left license we can mention
the ALv2 [The Apache Software Foundation, 2004]. The software covered
by this license, as open source, has to have its code freely available together
with its binary file but it doesn’t have any particular restriction for any future

5

6 android os

redistribution. This means that any company can actually use the code in its
own manner, releasing it with any license. Since all the Android framework
and userspace applications are released under ALv2 license, all the device
manufacturers can greatly take advantage from it, who can build a firmware
that fits perfectly with the device. While this opportunity encourages the
proprietary distribution, it discourages the opportunity to bring more open-
ness to the mobile software scene, allowing these companies to close their
enhancements and to perpetuate their aggressive commercial strategies.

Google has his own motivations to believe that GPLv3 license would have dra-
matically reduced the manufacturers interested in developing under Android; con-
sidering that is up to Google to choose the commercial politic, we have to live with
his choices. Luckily, the Linux kernel (which is a fundamental component of the
Android operating system) is benefiting from all this success as it is covered by the
GPL license; when porting a software to new devices or architectures, some ad-
justments are always necessary that for the reasons mentioned before, have to be
really free.

2.1 description of the os
Android is made up of several necessary and dependent parts; we can sum up

the most important with the following list:

• The Linux kernel that provides the low level interface with the hardware,
memory management, scheduling of processes and all the basic activities
of an operating system.

• Open source libraries for software development, including SQLite, Webkit
and OpenGL, necessary to build great applications starting from a solid, al-
ready working, base.

• A software layer used to run Android applications, including the Dalvik Vir-
tual Machine and some other libraries that provides Android-specific func-
tionalities. The Dalvik Virtual Machine is a modified version of the Java Vir-
tual Machine (JVM1), greatly optimized for mobile devices.The Dalvik VM is a

modified version of
the original JVM, the

name comes from
the birth place of the

main developer:
Dalvik is an Iceland’s

village

• A set of pre installed applications; most of them are used to control Google
services, like Gmail or the PlayStore.

• The user interface framework, to control the applications.

The engineering team inside Google has decided to build this “hybrid” operat-
ing system for one fundamental reason: the code portability. As we will later see,
this particular Android architecture (and its license) allows to have many different
devices running the same operating system with the same applications, no mat-
ter which hardware architecture they are running on. The key of all this flexibility
is the choice to build all the top level applications using the Java programming
language, and of course, the adoption of a virtual machine. Any program written
in Java could not be executed directly on the architecture of the machine, but on
top of a particular machine, called virtual machine, which will execute the source
code translated in the so called bytecode. There is no hardware architecture that
execute entirely this code, but a virtual one that in Android is called Dalvik Virtual
Machine.

1 Java Virtual Machine

2.1 description of the os 7

2.1.1 Briefly analysis of Android components
In this section we will go through the analysis of the main components of the

Android OS. As an open application stack, it is possible to find in the Internet a
lot of resources that describe more precisely the OS. For instance, the site Android
Developers Site is a good starting point.

2.1.2 The Linux kernel
This is the bottom layer upon which it is build all the Android ecosystem. The

Linux kernel provides all the basic functionalities of the operating system, allow-
ing memory virtualization and caching, processes scheduling, I/O management
and takes care of all the needed communications with the peripherals using their
drivers. If we would find the component of the Android architecture that is really
platform-dependent this is the kernel and all its drivers; they have to be compiled
for the hardware in which they’ll run. As mentioned before, while a Java process
has not to be compiled for the architecture of the device but for the Java Virtual
Machine, this does not hold for the kernel, which has to strictly interact with the
hardware.

2.1.3 Libraries
Some computer libraries provide really useful functions, which are often used

by the processes to fulfill basic services like the encryption of a password or the
rendering of a 3-dimensional object. All these libraries are not included in the high
level application framework of the Android architecture, but instead are placed
right at the top of the kernel. Sometime the choice to keep the existing and work-
ing code instead of writing new one has to be made and in this case Google’s engi-
neers decided to keep the available code to fulfill these basic services. If some of
those processes could not have been implemented upon the Android framework
(like, for instance, the libc lilbrary), some others could actually have been, but
building them using efficient C code leads to the most achievable performances.
The direct drawback is, again, that these services have to be compiled properly for C code can take

advantage of the
most optimized
compilers

the processor architecture making them harder to deploy in a variety of different
devices. Significant example of native libraries are:

• Surface Manager: provides the compositing functionalities to the OS

• SQLite: this is the main database provided by the Android framework. If an
application needs to store some data that has to be consistent and perma-
nent in all its execution, a light database like SQLite can fulfill this require-
ment. The Android framework that we will discuss in later chapters, offers a
lot of useful methods that makes the interfacing process agile.

• OpenGL: nowadays the smartphone is a device for almost every purpose,
gaming included. Mostly the high-end devices are equipped with powerful
graphic cards integrated right inside the main chip (in fact, almost every de-
vice has all the functionalities integrated in one chip; in fact we speak about
SoC2. In order to use all the available power of the GPU3 (the components
that provides the graphic capabilities), the OpenGL libraries have to be used,
giving to the developers some primitive method to draw 3-dimensional ob-
ject in the screen. In the chapter 4 we will see how these libraries have been
used for the project.

2 System on a chip
3 Graphic Processing Unit

8 android os

2.1.4 The Dalvik Virtual Machine
This is one of the main components of Android. The Dalvik Virtual Machine is

derived directly from the Java Virtual Machine, but it is optimized to run in mul-
tiple copies on top of mobile devices. This is clearly an advantage if we think at
the laying operating system that sees many similar processes and doesn’t have
to worry about some technical difficulties like the dynamic memory allocation or
the simultaneous coexistence of Java thread. Unlike the Java Virtual Machine, the
Dalvik Virtual Machine doesn’t run the .class files but .dex files; the conversion
between .class to .dex happens in compilation times and provides a reduction in
terms of memory weight.

unlikely alternative to avoid the dalvik vm Does it mean that an An-
droid application is meant to run only inside the Dalvik VM4? Actually no, we
can always build native application if we desire, but only in some particular cases,
where the performances are crucial for the application. For example, most of the
games are build not as processes of the Dalvik VM but as native processes that are
executed directly by the processor. As we will see, the project uses this unlikely
alternative to obtain maximum performances.

2.1.5 Application Libraries
Together with the VM, Android provides some useful libraries to accomplish

more application-specific functions, like the ones that we can find in the standard
Java library. The whole library is available easily on-line at the web address An-
droid Reference Library. Note that all these libraries are written in Java because
are meant to be used for Android applications inside the Dalvik VM.

2.1.6 Applications and Application Framework
At the top of the Android stack we have applications and the framework with

which they interact. An application running inside the Android OS can take ad-
vantage of some services useful to create rich applications; these services can offer
the possibility to fix the actual position by means of the GPS or can let the applica-
tion to receive incoming messages. All these services build the so called Android
Framework that, in simple words, is the soil where the application will live and the
inspector which will control their lifecycle and their mutual interactions.

4 Virtual Machine

3 D E V E LO P M E N T
E N V I R O N M E N T

In this chapter we will analyze the development environment used to build the
software. In addition to a brief description of all the components that the envi-
ronment includes, we will focus on the possibility to use native code inside an
Android application. Actually, this is not a likely case, but when the performances
are a fundamental requirement (like in this project), then also the most difficult
development alternatives are welcome. At the end of this chapter the device in
which the code has been tested is introduced together with its most relevant char-
acteristics.

3.1 sdk
The Android SDK1 provides all the tools needed to build, run and debug An-

droid applications. The most convenient way to develop applications for Android
is using Eclipse, a very popular IDE which embeds a lot of useful functionalities
to simply the development process. The key component of the integration of the
Android SDK and Eclipse is the ADT plugin, which somehow links all the SDK fea-
tures right into the IDE, providing:

• Graphical UI builder, a tool that simply the drawing process of the user
interface. The UI is meant to be build through an .xml file, which defines
all the elements of the interface and how they are positioned in the screen.
This tool automatically compiles this file leaving to the developer only few
adjustments.

• Various debugging outputs, like memory analysis, OpenGL tracking and
other useful information.

• Virtual devices, in which we can easily deploy the application and auto-
matically run it. Even if this option is really helpful, it hasn’t been used, for
obvious complications regarding camera availability and performances.

The development process can also take advantage of some facilities of the target
device that can display real time information about CPU usage, layout bounds and
graphical activity of the OpenGL stack.

3.2 ndk
As the SDK, the NDK2 is also a development kit, but is intended for slightly dif-

ferent purposes. The fundamental requirement of speed for this application leads
to the critical choice of using native code to write the algorithms involved in the
detection of lanes, a very heavy work load.

1 Software Development Kit
2 Native Development Kit

9

10 development environment

native code When we talk about the Android architecture we made distinc-
tion between the Java Android application framework and the rest of the system:
bottom libraries and Linux kernel. While the first requires Java code compiled for
the Dalvik Virtual Machine, the second runs directly in the architecture of the de-
vice. Obviously, passing through a virtual machine leads to additional overhead
because the code has to be interpreted by the VM and then translated on-the-fly
for the processor. This passage can sometimes be exploited to gain a boost in the
overall performances, however it is an unlikely case which is not inherent to our
discussion. The NDK allows to build C and C++ code for the CPU, but, although
this possibility can improve the performances of the software, it brings also some
drawbacks. The development will in fact get complicated since the developer has
to use a whole new development kit with its rules and that hardly integrates with
the normal Java code. Moreover, if we think that the last ARMv7 architecture can
fetch, decode and execute some of the Java bitecode, probably we will dismiss the
possibility to use native code.

so, why use the ndk? Computer vision is a new branch of the computer
science and for this reason there aren’t many libraries that provide the implemen-
tation of basic filters or famous algorithms; but, for sure, we can say that the most
mature and widespread library for computer vision is OpenCV. OpenCV libraries,
particularly devoted to performances, are written in C (and starting from the ver-
sion 2.0 also in C++), and not in Java code. If from a certain point of view this isAll the tests were

made offline on a
laptop

clearly a limitation, from another is a great advantage. The obligation to write and
compile code in C/C++ (the latter in our case) allows the developer to test all the
algorithms on a desktop pc, solution faster and convenient with respect to the one
offered by a mobile device.

The main mechanism which allows to run native code inside an Android appli-
cation is called JNI3.

3.2.1 JNI calls
The JNI is a vendor-neutral interface that permits the Java code to interact with

the laying native code. It also has support for loading code from dynamic shared
libraries. All this translates to particular Java methods that, in turn, call the native
code.

development work flow The really simple work flow used for the code de-
velopment can be described as follow (the setup of the development environment
is excluded):

1. The computer vision algorithms have been written on a desktop PC equipped
with the OpenCV libraries installed. After a successful compiling, the code
has been tested right on the PC, taking advantage of providing the algo-
rithms with some videos recorded off-line. Those videos had the purpose
to simulate with high fidelity a real time acquisition of the road by the cam-
era.

2. Once that the algorithms satisfies the requirements that will be mentioned
in the chapter 4, it is possible to proceed to compile the code using the NDK
for the specific architecture of the device.

3. After assembling the application (this time using the Android SDK), it is time
to test it on the road and, in case, restart from the starting point.

3 Java Native Interface

3.3 opencv library 11

3.3 opencv library
OpenCV is a C++ library which is, de-facto, standard when dealing with com-

puter vision. This library offers many useful, state-of-the-art, methods for image
processing, image visualization and other specific functions commonly used in
computer vision. In the most recent versions they also added the compatibility
with the Android operating system, inserting some java bindings that facilitate
the work of integrating OpenCV code inside Android applications. As we already
pointed out, we didn’t take advantage from this possibility choosing a quicker ap-
proach that consists on using native code.

Figure 3: OpenCV Logo

3.3.1 Tegra

Since nowadays OpenCV is often used to build smartphone applications, this
library recently included a new interesting feature which allows to make faster ap-
plications. Tegra is a new brand created by Nvidia to indicate all the new SoCs pro-
duced by the company; it is like a particular architecture, ARM based, with marked
capabilities of OpenGL rendering. The Tegra SDK offers in fact a convenient way
to build fast applications that makes intense use of 3D operations. Tegra, more-
over, allows to use the computational power coming from the GPU to accomplish
task not necessarily of 3D computation. This is why OpenCV exhibits a closed
source implementation of certain methods which probably comes from NVIDIA
rather from the OpenCV community which are actually faster than the original
version. Since these particular implementations are already compiled and inte-
grated inside the OpenCV library package, an application can automatically use
the optimized version of a method when running on a Tegra device. Our target
device is Tegra capable, but since we mainly use custom code, we exploited the
Tegra enhancements only for basic operation of filtering.

3.4 target device
There is not much to say about this device except that it is equipped with a Tegra

processor. Here we have the precise specifications of the device:

12 development environment

O.S. Android Jelly Bean 4.1.2 with HTC Sense 4
SoC Nvidia Tegra 3
CPU 1.5GHz quad-core ARM Cortex A9
GPU Nvidia Geforce ULP
RAM 1GB
Storage 32GB

For more information refer to Wikipedia - HTC One X, 2013.

Figure 4: HTC One X, the testing device

3.5 opengl es library
The way we chose to display the frames of the camera and the highlighted lane

makes use of OpenGL ES library. This is the fastest solution because all the work-
load is demanded to the GPU, reducing the CPU utilization to a minimum level.
The CPU time in fact is really precious in this context and if there is a way to sub-
tract some of the work from the CPU, this way is welcome. Nowadays the GPUWhen dealing with

pixels, the GPU can
be decisive in terms

of speed

is fundamental even in the 2D operations: starting from Android 4.0, the UI is al-
most entirely drawn by the GPU, making all the animations very smooth and fluid.
Going back to our application, the screen of the smartphone is considered like a
face of a parallelepiped and the picture of the road is a simple texture applied to
one face. Looking at the screen we will have the impression to look to a simple 2D
image, but this is not our case: we are looking instead to a static 3D object (with a
variable texture) through a static “window”.

Figure 5: OpenGL ES logo

4 TA S K S A N D W O R K F LO W

In this chapter we describe the main ideas underlying the process that, starting
from a simple image of the road comprehensive of lanes boundaries (lanes mark-
ers), returns the exact position of the boundaries of the lane in which the vehicle
is running.

Purpose here is not to illustrate in details how the code actually works, but sim-
ply to draw the basic operations that the code implements.

4.1 emphasizing margins
First of all it is necessary to point out all the lanes boundaries. Luckily, the lane

marker is always painted in white, with rare exceptions where the application is
not needed. The application takes advantage of this characteristic and empha-
sizes it thorough an algorithm (an image filter) that can find the contours inside
an image. The literature commonly refers to these type of algorithms as edges de-
tectors, as the very famous Sobel Filter. All these algorithms use various techniques
that can require the application of multiple filter in order to come at the final re-
sult; in this project a custom chain of filters has been used and will be described
in the chapter 5.

4.2 lane detection
4.2.1 Searching of straight lines

After that the contours are clearly visible, it is possible to go further with the
localization of the lines inside the scene. We do so because the segment of lane
marker closer to the vehicle (which will be in the lower part of the image) can be al-
ways approximated by a straight line. So, if we find a straight line in the lower part
of the image which is characterized by a certain tilt angle, then we are almost sure
that a lane boundary has been found. As in the previous case, there are various al-
gorithms that suite for this purpose: first of all, the Hough Transform. The Hough
Transform is an algorithm commonly used for line detection and it can be found
implemented in the OpenCV library; it is available in two different implementa-
tion: in addition to the classic one, there’s also a probabilistic implementation
which should offer more performances. However, as we will see, none of the two
has shown itself particularly suitable; this is why we opted for a custom algorithm.

lane detection Once that we have found all the relevant lines inside the
scene, we are ready to calculate and position the lanes inside the roadway. This
is the final task of the application, and, if the previous task was completed suc-
cessfully, it comes quite easily: it’s all about right estimations starting from the
available information.

13

14 tasks and work flow

4.3 the vanishing point estimation
4.3.1 outline on perspective

The perspective can
be easily nullified by

mean of a bird-eye
view; this generates

additional work

When we acquire an image of the real world with any type of camera (or simply
with our eyes), we have to tacitly agree with the underlying physic optical rules
and so with the perspective. In the perspective model every set of parallel lines in
the real world are translated into a pair of lines converging at an infinite distance
from the camera to the vanishing point. This is exactly our scenario, where all the
straight lines that define the road are parallel and, in our simplified model, can
be considered infinite long and so converting to the vanishing point. While this
could be a complication (because search for parallel lines inside an image is much
easier than find incidental ones), it can be also an advantage if we consider where
are positioned the lines we are searching.

Figure 6: Example of left and right search region

4.3.2 benefits derived from the knowledge of the vanishing point
If we look at the image 6 we can clearly see how can we take advantage of know-

ing the position of the vanishing point: the vanishing point can be considered as
the top right angle of a rectangle with the bottom left angle overlapped to the bot-
tom left angle of the acquired image; this rectangle will be the region where lines
with tilt angle ∈ (

0, π2
)

lay. We call such region left search area. Similarly, the right
search area is the region with all the lines (of our interest) which are tilted with an
angle ∈ (−π

2 ,0
)
.

In a mobile context, a trick like the one just explained is very appreciated be-
cause can significantly reduce the amount of work load for the CPU; but we can do
more using also the position of the vanishing point to validate all the lines we are
going to find. If a line, at the infinitum, does not converge to the vanishing point,

4.4 general work flow 15

it will be considered as a false positive and so will be discarded. In the chapter 6
will be described the process of vanishing point estimation, while, in the following
chapter we will see how we took advantage from it.

4.4 general work flow
In this section is outlined the general process that, de facto, originates the whole

application. The process is explained in the following points (more details on
these will follow).

1. acquisition of the picture

The camera continuously acquire picture of the scene. A thread, inside an
infinite cycle, grabs the image from the buffer of the camera and copies it in
a class variable in order to share it with the rest of the application. This par-
ticular task is independent and has maximum priority because the image
acquired has to be the more updated as possible.

2. lane detection

Once that we are provided with the most updated picture of the real scene,
we are ready to run our algorithms. But firstly we need to prepare the picture
to be easily readable.

a) image filtering is a crucial task because it allows to get rid of all the
unwanted information that are present in the picture. It can also en-
hance it removing most of the noise produced by the camera. The key
purpose of this phase is also to return a binary image where every dot
with value greater then zero could actually be considered part of a line.

b) now the line detection algorithm comes to the scene to find all the cor-
rect lines that can be associated with a lane margin. As previously an-
ticipated, this algorithm is not present in the literature and can be con-
sidered as a valid alternative to the famous concurrent methods.

c) With lanes estimation we intend the phase in which, starting from the
exact location of all the possible lines inside the image, we have to un-
derstand where the lanes are located.

3. vanishing point estimation

This task is meant to find a good approximation of the vanishing point posi-
tion and is the last part of the work flow with logic intents. The reason why
we should find the position of the vanishing point and the benefits deriving
from this were presented earlier and will be remarked in the proper chapter.

4. output of the result

This is a not critical task, but it deserves however attention. The possibility
to see directly from the display the output of the previous phases is really
useful when it comes to test the application, and maybe debug it. There’s
no more direct way to verify the correctness of an algorithm than seeing its
output “graphically”. An interesting aspect of this phase is the way used to
display the picture. For the purpose of relieving the processor of an addi-
tional burden, we decided to let the graphic card manage all the needed to
display the image in the screen of the smartphone. In order to do so, the
OpenGL graphic library was used; more on this in the proper section 3.5.

16 tasks and work flow

4.5 the problem of lens distortion
The scene acquired by the camera is far to be exactly the same as in the reality;

it is in fact heavily distorted because taken using no perfect lens. The optic of any
kind of camera is one of the main factor that determines the quality of the coming
picture. Also in the best reflex in the market equipped with the best lenses we have
lens distortion; obviously, in a smartphone that usually has very cheaper lenses
we have distortion too, a lot more. The reason of such distortions is mainly for
manufacturing: it is much easier to make spherical lens than to make a more ideal
lens. This limitation in the manufacturing process leads to imperfect lenses that
suffer mainly of two distortion: the radial distortion and the tangential distortion.

• radial distortion: it affects the acquired image in the pixels near the
edge. It’s the cause of the usually called “fish-eye effect”. In the context of
our application, this type of distortion did not lead to severe problems. Our
fear of acquiring parabolic lines instead of straight ones hopefully did not
happen.

• tangential distortion: it comes when the sensor of the camera is per-
fectly parallel to the optical lenses. This type of distortion leads to pixels
that are displaced with respect to the position they should have in an ideal
image. As for the other distortions, we did not have to correct it because its
effect were negligible.

4.6 features expected from the software
In this section we will illustrate some of the features that the lane detection al-

gorithm has to satisfy. The main problem when executing is an unexpected situ-
ation, where the software has to deal with unlikely states of the processed image.
The three key elements that negatively impact in the reliability of the application
are:

• light

• shadows

• unlikely objects

The practical effect that these elements lead to is unexpected straight lines in-
side the roadway. We will see that is by mean of (straight) line detection that the
application computes the position of the lane: having accidental lines inside the
road that don’t belong to the lane boundaries could lead to a wrong behaviour of
the lane detection process.

4.7 application architecture
The work flow can result, as it was presented, linear where each phase waits the

previous one to execute. However the application was designed a little bit more
complex in order to be more flexible and configurable. There are two threads that
run inside the application: to the first is demanded the acquisition of the images
from the buffer of the camera; it is an easy task, which has only to copy arrays of
pixel from a location to another. The second thread, on the contrary, is a more
complex and is the responsible for all the tasks of lane detection. These threads

4.7 application architecture 17

run independently from one another, but at a certain time they must access to
the same location in memory; to avoid any bad misbehaviour, a semaphore con-
trols the interaction of the two thread with the shared variables. In picture 7 is
clearly visible the architecture, with specified the two types of operations that are
performed by the threads.

Figure 7: Internal architecture of the application

5 L A N E D E T E C T I O N
In this chapter the problem of lane detection will be deeply analysed with par-

ticular attention on the implementation of the developed software. For the sake of
completeness a wrong attempt will be also introduced, in order to don’t let some-
body else to make the same mistakes. It is important to remark that all the code,
working or not, was developed using the OpenCV library in its C++ implementa-
tion. It is really possible that, following different leading paths or using a different
version of the OpenCV library, could lead to better results and maybe turn what
we called “wrong attempt” into a “successful attempt”.

5.0.1 a wrong attempt
With all the preliminary remarks mentioned before, we are going to illustrate

this first attempt which was declared as not completely working. In this first at-
tempt, we tried to follow the already working examples that the literature has to
offer (we mentioned at them in chapter 1). In particular, we tried to used the HoughLinesP makes

use of fixed point
operations to
improve
performances

Hough transform already available and implemented in the OpenCV library as
HoughLinesP, defined in the header file opencv2/imgproc/imgproc.hpp.

Prior the phase of line detection we prepared the image using some filters that
we also used in the working solution illustrated in section 5.1. As the exact same
filters have been used, we are not going to illustrate them now, but we relegate
them to the mentioned section.

5.0.2 the reason why it doesn’t work for lane detection
As every algorithm meant to be used in a general context and for general pur-

poses, this is an example of a really well implemented algorithm ready to work in
many situations. For example, it does not offer a way to fix the angle which will
characterize the found straight lines; obviously, using this algorithm in its original
behaviour and then discarding the useless lines (the ones with an improper angle)
is not a feasible solution because computationally excessive. Actually, an attempt
has been made in order to adapt the algorithm for the purpose of line detection
(and then lane detection): the main idea was to provide the algorithm with addi-
tional parameters to confine the research only in the desired angles. The source
code of the function HoughLinesP was deeply revisited and at the end reached a
working stage. But, although it was working well, it was too slow.

provide the houghlinesp with the right angles The main lack of the
implemented Hough transform method was the impossibility to specify the range
of angles in which the lines we are looking for have to belong. A naive approach
can, at the end of the searching activity, discard the unwanted lines in favour of
only those that rely on the angles range; obviously this is something that we can’t
afford. Convinced that the Hough transform was the right way, we tried to provide
the method with other parameters through which specify the angle range. Sadly
this try was unsuccessful for the main reason that the code, born to be used in a
slightly different manner, was not suitable for so much changes. Discarded the
Hough transform, a new algorithm for line detection was written.

19

20 lane detection

5.1 the final solution
Now that we introduced all the necessary subjects, we are ready to jump into

the central part of the software, showing for each step its output.

5.1.1 image filtering
As previously mentioned, the image considered as it comes out from the cam-

era buffer, is rich in details and colours, all information that are not always mean-
ingful for our purposes. Consider for example all the information carried by the
pixels representing the sky, the are all meaningless, except for the fact that they
are bluish and that surely don’t contains the road lanes.

Another element which is insignificant is the colour of the pixel: we don’t care
which is the exact colour of a roadway pixel: it could be lighter or darker than
the next one, without any particular reason. As we already said, the chip which
constitutes the camera is not perfect and for this reason it is very likely that objects
in the real scene with the exact same colour will be acquired with different tints.

Even if these slightly differences of colour can be overcome easily, we decided
to address this problem not considering it at all. The only derivatives along the
two axis x and y have been enough to fulfil our needs.

applying linear filters

When we talk about digital image processing we are actually referring to linear
filtering and so to image filters. A linear filter, in the digital era, can be easily ap-
plied performing the convolution of the image with the kernel which expresses
the linear filter. The kernel is a simple matrix, which usually is squared and char-
acterized by an edge with odd number of coefficients. It also has an anchor point
which is usually located at the center of the matrix. In order to apply a filter to anUsually, bigger

kernel means better
results and slower

performances

image, a process called filtering convolution has to be done. The aim of this pro-
cedure is to update all the pixels of the image with a new value (which has not to
be different) according to the application of the kernel to that pixel.

Suppose that we want to apply the kernel

 1 0 −1
0 0 0
−1 0 1

 (2)

to the image with the following pixels values:
50 200 189 12
40 223 200 10
60 205 212 24
53 210 201 11

 (3)

The image 8 is a simple example of vertical straight line in a grey scale image
where the second and third column of pixels represent the lines; we can see it in
the following picture.

The process of convolution is really simple and is dictated by this equation:

H(x, y) =
Mx−1∑

i=0

My−1∑
j=0

I (x + i −ax , y + j −ay)K (i , j) (4)

where:

5.1 the final solution 21

Figure 8: Image of a vertical line

• I is the source image which we want apply the filter to.

• H is the new image which is going to be created; it’s the output of the filter.

• K is the kernel matrix.

• i and j are respectively an index over the columns and rows of the filtering
kernel. In our case Mx = My .

• (ai , a j) is the coordinate of the anchor point inside the kernel matrix. Usu-
ally the anchor pixel is the central one; look at the kernel matrix 2: the an-
chor point is bold.

Refer to OpenCV 2.4.5.0 Online Documentation for additional details of linear
filtering with OpenCV.

The application of the mentioned kernel to the picture of the line through the
process of filtering convolution leads to the following result:

0 0 0 0
0 13 7 0
0 0 14 0
0 0 0 0

 (5)

Once again, it is an image with the same dimension of the original one, but
the pixels values are drastically changed. The result image shows that, where the
original picture contains high-valued pixels near low-valued ones, then the same
pixels in the filtered image (result image) will have a value that is barely visible,
but the surrounding low-valued pixels instead will have a zero value.

5.1.2 margin emphasis
Essentially, what we are calculating is an approximated derivative of the image

which will emphasize the margins of the picture. Probably the previous example
is not really relevant, but the following example better conveys the idea.

Fortunately, although we are dealing with a really simple kernel, it works really
well when used for lane detection: the characteristic white of the lane boundaries
over the dark grey of the road help the effectiveness of this kernel. Note that the
images were firstly converted to a grey scale; considering the colours present in
the road, starting from an image with 3 channels would have brought to an almost
3 times slower execution of the filtering process without any additional benefit.

implementation details The kernel used to implement the derivative filter
allowed us to execute the convolution of the image in a faster way than the normal
convolution. In fact, it turns out that:

22 lane detection

Figure 9: before and after the application of the kernel

 1 0 −1
0 0 0
−1 0 1

=
 1

0
−1

× [
1 0 −1

]
(6)

basically, it means that we can apply the filter independently to each row and
each column to obtain exactly the same result. OpenCV offers an easy way to
apply 2D filters to an image, even in the case they were separable like in our case.
The function responsible for this task is called sepFilter2D. It takes as input the
source image that we called I , the destination image H and the kernel for rows
convolution Kx and the kernel for columns convolution Ky .

5.1.3 noise reduction
The task of noise reduction plays an important role in the whole project. Even

if the previous filter gets rid of a huge amount of noise in the scene, there are still
a lot of “bad pixels” that can compromise the phase of line detection. The three
devices we use in order to address the problem of noise reduction have been:

1. blur filter, this is a very common approach to noise reduction. A blur filter
can be implemented in many ways; in this case we opted for a very simple
solution: the filter in fact averages the value of the pixel at the position (x, y)
with the values of surrounding pixels. From a logical point of view, the op-The most used

averaging filter is
probably the

gaussian blur,
however, for our

purposes, a simpler
version is enough

eration principle here is the same we saw for the derivative filter, only the
kernel is changing. The kernel Ksmooth used for smoothing the image is:

Ksmooth = 1

9
×

1 1 1
1 1 1
1 1 1

 (7)

It basically takes the pixel value under the anchor point and averages it with
the nine (eight if we exclude the current pixel) surrounding values. The aim
of such a filter is to smooth the aliasing of all the borders in the image, mak-
ing them more uniform for the following operations. In addition to that, it
can also weaken all those pixels that are isolated (in groups of few pixels)
because not part of a relevant margin. When the threshold filter will be ex-
plained, the smooth filter will be adequately justified.

5.1 the final solution 23

2. erosion is the second filter used to address the problem of noisy pixels. Its
principle is again similar to the convolution of the image with a kernel, but
this time the equation which determines the output pixels is different:

H(x, y) = min
(x ′,y ′)|Ker ode (x ′,y ′)6=0

I (x +x ′, y + y ′) (8)

The minimum value among the pixels in the neighborhood of the computed
pixel (x, y) is taken as new (x,y) value. The neighborhood is defined by the
not-null values of the eroding kernel. This process gets rid of all the isolated
pixel, in group of 3 members maximum. For our purposes, the kernel which
suited the best has been the following:

Ker ode =
0 1 0

1 1 1
0 1 0

 (9)

3. threshold filter, the most simple filter: it removes all those pixels that have a
value under a predefined threshold (15 for this project) and set the remain-
ing ones to a fixed value. This basic filter permits to construct a binary im-
age, where all pixels not blank have the same value.

Now that we introduced all the used filters (that are applied to every image com-
ing from the camera sensor), we can appreciate them in actions with the following
image.

Figure 10: Example of filtered image

The most important thing to notice is the homogeneity of the road: it has no
pixels that are not black; as a binary image it actually doesn’t give any informa-
tion about the roadway, except for the position of the lane boundaries. This fact
is really helpful for the next phase which has the purpose of detecting the lanes
position.

5.1.4 line detection
The next phase takes advantage of the algorithm of line detection described

in section 5.2. This method does not alter the image which analyses because it

24 lane detection

creates all the “buffer” images that are needed and all the required data structures.
The output is nothing more than an array, which tells the exact location of the
found lines. The algorithm is not smart enough to find only those line that are
part of a lane mark and, for this reason, an additional phase is needed that can
distinguishes from this set of lines which ones are actually relevant.

5.1.5 lane estimation

Now consider the image 11: the lines that have been found are red and every
line has the starting point (green point) marked and the end point (blue point).
As we can see, there are both false negative as, for instance, the discontinued laneOnce that the

straight lines are
found, the

estimation of the
lane position is an

easy job

marker, and false positive, as the two lines found over the car. One key point of
the software is that it is robust to such false results; it knows that, if there is no line
detected at a certain point, it could likely be that the line hasn’t been detected in
the current frame for accidental reasons. For the same reason, it is smart enough
to quickly update the position of the line margin when a new line is found in a
more proper position. This case is represented by the figure 12, where all the lines
found by the line detection algorithm (we can see them in figure 11) don’t suggest
the presence of a lane boundaries in the middle of the roadway.

As soon as a line in the middle of the roadway is found, the software updates
the lane margins to reflect the new information. See figure 18 and 20 in the next
chapter to see the updated position.

The logic that lies below the estimation of lanes position is quite simple and
doesn’t deserve more attention. The most relevant thing to notice is that all the
information about the lane position are not built from scratch at every frame, but
are progressively updated with the analysis of the upcoming frames.

Figure 11: Output of the detection line algorithm before the vanishing point estimation

5.2 a closer look to the line detection algorithm 25

Figure 12: Final output of the work flow before the vanishing point estimation

5.2 a closer look to the line detection al-
gorithm

This section is entirely dedicated to the algorithm used for line detection. As
stated in the introducing part of this chapter, we also tried other alternatives be-
fore creating a new one, but they were all too complex (and so slow) to execute in
a smartphone.

Now we will run through the most important steps of the algorithm.

5.2.1 line creation

Every pixel of the image is crossed starting from the center of the last (the bot-
tom one) row in a bottom-up fashion. We divided the search of the lines in two
different and independent regions as shown in figure 6; consider that at the begin-
ning the location of the vanishing point is not known and the middle of the image
is used as limit of the two regions. We will illustrate only a left search because the
right counterpart is identical. The figure 13 conveys the idea of “left search”.

This step has the main purpose of detecting lines that are likely to belong to a
lane mark. The algorithm tries to attribute all the pixels he finds to the line which
it most likely belongs to. If there’s no probable line then it creates a new line. So,
every time that the algorithm has finished to analyse a row of pixel, it will have
either updated the previously found lines with a new pixel or it will have created
new ones. The picture 14 tries to draw this process.

This algorithm is basically a cycle over all the rows of the image. At the end of
every row, it checks the correctness of the lines that have been found and removes
those who not satisfy some requirements. This is why for each line a counter is
kept that can tell which is the last row after which it has had no more updates.

26 lane detection

Figure 13: example of left search

5.2.2 line removal
The previous step, if executed as is, without any particular expedient, would be

too slow and would not suite its purpose for the huge amount of detected lines.
This is the reason why at the end of every analysed row, the algorithm checks
whether there are some lines that are not meant to be found, for various reasons:

• The line is not enough long and, even if there will be some pixels that can
belong to this line (because aligned with it), the gap formed of blank pixels
would be too big. This check is performed looking at the counter previously
mentioned.

• The line has no way to satisfy the length requirement because it starts close
to the last available row and has too many blank holes.

The image 15 sums up the procedure of line removal.

5.2 a closer look to the line detection algorithm 27

Figure 14: First step: line creation

Figure 15: Second step: line removal

the diagonal check One of the most annoying problem in the first stage
of the algorithm is illustrated in the figure 16. Basically, in order to add flexi-
bility to the algorithm various tricks and threshold have been used. The thresh-
old max_y_allowed_gap for instance sets the maximum x-distance (in pixels) be-
tween two consecutive pixels. While this threshold works in most cases, in some
else can lead to an unwanted behaviour depicted in the mentioned figure. We can The diagonal check

is only one of the
checks made

clearly see how the first five pixels can actually be attributed to a straight line, but,
the more we get far from these pixels, the more the detected line changes deeply
its tilt angle leading to an erroneous line. To address the misbehaviour, when the
line that is going to be detected is enough long, the diagonal check is performed.
This check goes through the last pixel of the line toward the first and counts all the
non blank pixels: if the counter stops to a low value, then is most likely that the
line is not properly straight and so has to be discarded.

max_y_gap As for the x axis, there is also a max allowed gap that regards the
y direction. The lines detected are not required to be continuous along the y axis
(there could be some row of the image that hasn’t got any pixel of the detected
line), again, this is a matter of flexibility: as we already said the noise plays an

28 lane detection

Figure 16: Practical example of diagonal check

important role here and can seriously frustrate the successful detection of a line.
But there should be a limit, in fact the threshold max_y_gap defines the maximum
size of this “hole”; if this limit is exceeded, the line is deleted.

6 VA N I S H I N G P O I N T
E S T I M AT I O N

Once that we calculated a first estimation of the lane, calculating the position
of the vanishing point is not that big deal. In fact, the vanishing point is actually
the point to which the two markers of the detected lane converge. Its position can
be very helpful to increase the performances of the whole process and can also
enhance the phase of line detection.

Figure 17: Left search phase after the vanishing point estimation

The filtering process can really take advantage from the location of the vanish-
ing point. It is not necessary, for instance, to filter the part of the image above the
vanishing point, because no relevant line can lay in that region. For this reason,
the output of the filter chain is a bit different as conveyed by the picture 18. The vanishing point

is not entirely
updated on every
frame, but a mean of
the last twenty
computed values is
kept in order to
make it stable

Regarding the line detection, knowing the location of the vanishing point leads
to two main advantages:

• the search area is drastically reduced (for instance all the sky area is un-
touched),

• all the resulting lines are much more accurate because it is possible to know
the precise tilt angle of each line.

In fact, as can see from picture 17, the search areas are defined in that conve-
nient way where the left search is the search of all those lines that converge to
the vanishing point from the left and, in the other way around, the right search is
meant to find all the lines converging to the vanishing point from the right.

As for before, it doesn’t worth to search straight lines in the sky but it does worth
to stop the search right below the vanishing point.

29

30 vanishing point estimation

Figure 18: Filtered image after the vanishing point estimation

The above considerations clarify why there are no lines detected over the van-
ishing point and why the image is so narrow in the picture 20. Its size proves that
the rest of the image was actually discarded.

Not surprisingly the final output shows the entire image because all the compu-
tations of the lane margins are finished and the software draws the boundaries in
a complete image in order to be more user friendly as possible.

vanishing point estimation 31

Figure 19: Two search region distinction

Figure 20: Output of the detection line algorithm after the vanishing point estimation

32 vanishing point estimation

Figure 21: Final output of the work flow after the vanishing point estimation

7 C O N C L U S I O N
The purpose of this thesis was to present an Android application for lane detec-

tion. This work is actually part of a wider project called iCruise, which wants to
provide an all-inclusive service for the assistance of cruise control devices. There
are already devices (usually integrated in new, high end cars) which provide a rich
cruise control experience; they, in addition to maintain the speed of the vehicle,
deactivate the automated control when the following car is too close to the vehicle.
However all these features have a cost which can be imputed to the high cost of a
radar that is the mean by which the device “sees” (or better, is aware of) the road.

The real challenge of this work can be summed with the following question:
can we make an alternative to these expensive devices, which can be cheaper, portable
and that can of course fulfil all the needs of a features-rich cruise control device?
More roughly we asked: could we use the camera of a smartphone as eye of the
cruise control device? This was the starting point of the whole project, and the first
part of the answer was to use a smartphone as target platform. The further choice
to use specifically an Android device was dictated mainly by the tools chosen for
the implementation of the logic part of the software. In fact, the OpenCV library
are becoming particularly suitable for developing Android application; they can,
for example, take care of the acquisition of the output of the camera through a
proper class which interfaces with the low-level library. OpenCV are clearly far The OpenCV class

responsible of
managing the
interaction with the
camera is still a work
in progress. For
example, prior a
certain update, it
wasn’t working in
the target device

to be perfect, but the work that the community is doing is amazing and the help
you can get from the developers around OpenCV questions is amazing too. Since
the Android support of the OpenCV library is something new, we can’t really ex-
pect a better library and the fact that it is completely open source makes it really
interesting. The availability of the source code can, in addition to broaden the
programmer’s horizon with some really well written algorithms, provide you with
an initial code to build your own: this was in fact what was done with the Hough
transform, which was therefore discarded as technique of line detection. Going
back to iCruise, the first step of the project was to decide all the needed features
of the software; this is how we came to the lane detection, which is the task of this
thesis. With the lane detection we want to make the software aware of the position
of the vehicle in the context of road transit; since the roadway is logically divided
into lanes, then we want to be able to position the lane in which the vehicle is
running. The biggest advantage which a working lane detection brings is a drastic
reduction of the search area for possible vehicles that can be dangerous for the ve-
hicle carrying the cruise control device. As we already mentioned, if the following
vehicle comes too close, we need to deactivate the automated service.

Pondered various alternatives, we decided to use the following tools:

• The Android SDK was used to build the Android application, comprehen-
sive of all its callbacks methods to fulfil the Android application lifecycle.

• The Android NDK allowed us to embed the application with C++ code with
the main purpose of making the computational load faster. The additional
requirement of integrating native libraries (like OpenCV indeed) made this
choice a forced one.

• OpenCV libraries to implement all the algorithms.

33

34 conclusion

• OpenGL libraries to display the frames and to highlight the lane boundaries.

As for the implementation, we configured the whole process in the following
points:

• The frames are continuously taken from the camera internal buffer and copied
in an array. This task is accomplished by an independent thread.

• A second thread proceed, in cycle, as follow:

– firstly it filters the image in order to prepare it for the following phases;
if the vanishing point is already computed, it takes advantage from it
to limit the image,

– then it applies the ad-hoc written algorithm of line detection; again,
if it knows the vanishing point, the searching regions are smartly de-
fined,

– it estimates the position of the lane,

– finally it estimates the location of the vanishing point for the first two
step of this cycle.

• The last phase is simple: the software has only to display the result into the
screen.

If we consider the logical part of the software, including all the algorithms cre-
ated and the inner architecture of the application, we can say that it is already
working, but of course it is not perfect. The software is stable in terms of noise,
light variations and shadows which can somehow mislead the process of lane
recognition. It hasn’t yet been tested in any particular situations, like during a
snowy day, or under a heavy rain. However it shows quite good potentialities in
terms of reliability. Probably, the main value is the algorithm of line detection
which, supported by a reliable estimation of the vanishing point, can really be
able to locate only those lines that are of interest in the process of lane detection.

From a performance point of view probably the software shows its main limi-
tation. If we limit the performance analysis to the status quo, probably we would
say that software provides the right amount of speed in order to accomplish all
the task in a reasonably short time. However, we have to remember that the fi-
nal purpose of the software is not to provide the only lane detection but a whole
service to a cruise control device, capable also of vehicle detection. In this wider
context the software is probably taking too much to successfully finish all its tasks,
but some deeper analysis have to be made in this direction: for the time being we
can’t say the exact amount of time that a full lane detection could take since we
don’t know the time requirements of the following parts of the project. The fact
that the power equipped inside the modern smartphones is fated to increase very
quickly allows us to stay positive and to be confident that the computational bur-
den in the scope of this application, soon or later, can be overcame. The actual
implementation, that has an HTC One X as target device, is capable to run at 15
fps. This means that the lane boundaries are updated around 15 times per second,
a rate which probably suites with the purpose of the project. As we already stated,
the lane detection is independent from the camera preview that can run at the
speed of more than 20 frame per second.

final thoughts At the beginning of this final chapter (and of the whole project)
we ask ourself if it were possible to build an Android application capable of assist-
ing a CruiseControl device. Surely the answer to this question is not covered by

conclusion 35

the scope of this project, but we can prove that the task of lane detection is feasi-
ble using a smartphone, without expensive radars.

A C R O N Y M S
vm Virtual Machine . 8

jvm Java Virtual Machine . 6

soc System on a chip . 7

gpu Graphic Processing Unit . 7

sdk Software Development Kit . 9

ndk Native Development Kit . 9

jni Java Native Interface . 10

37

B I B L I O G R A P H Y

Android Developers Site

2013a Android Reference Library, http://developer.android.com/referen
ce/packages.html. (Cited on p. 8.)

2013b Application Fundamentals, http://developer.android.com/guide/
components/fundamentals.html. (Cited on p. 7.)

Free Software Foundation

2007a GNU General Public License, http://www.gnu.org/licenses/gpl.
html. (Cited on p. 5.)

2007b GNU Lesser General Public License, http://www.gnu.org/licenses/
lgpl.html. (Cited on p. 5.)

Jung, Claudio Rosito and Christian Roberto Kelber

2012 “A Robust Linear-Parabolic Model for Lane Following”, Universidade do
Vale do Rio dos Sinos Ciencias Exatas e Tecnologicas. (Cited on p. 1.)

King Hann Lim, Kah Phooi Seng and Li-Minn Ang

2012 “River Flow Lane Detection and Kalman Filtering-Based B-Spline Lane
Tracking”, International Journal of Vehicular Technology. (Cited on p. 2.)

Meier, Reto

2012 Professional Android 4 Application Development, John Wiley & Sons, Inc.,
10475 Crosspoint Boulevard, Indianapolis.

OpenCV

2013 OpenCV main site, http://www.opencv.org. (Cited on p. 11.)

OpenCV 2.4.5.0 Online Documentation

2013 Making you own linear filter!, http://docs.opencv.org/doc/turoria
ls/imgproc/imgtrans/filter_2d/filter_2d.html. (Cited on p. 21.)

OpenCV Questions

2013 OpenCV questions, http://answers.opencv.org. (Cited on p. 33.)

The Apache Software Foundation

2004 Apache License, Version 2.0, http://www.apache.org/licenses/LINC
ENSE-2.0. (Cited on p. 5.)

Wikipedia - HTC One X

2013 HTC One X, http://it.wikipedia.org/wiki/HTC_One_X. (Cited on
p. 12.)

39

http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.opencv.org
http://docs.opencv.org/doc/turorials/imgproc/imgtrans/filter_2d/filter_2d.html
http://docs.opencv.org/doc/turorials/imgproc/imgtrans/filter_2d/filter_2d.html
http://answers.opencv.org
http://www.apache.org/licenses/LINCENSE-2.0
http://www.apache.org/licenses/LINCENSE-2.0
http://it.wikipedia.org/wiki/HTC_One_X

	Dedica
	Contents
	List of Figures
	Sommario
	Abstract
	Ringraziamenti
	1 related work
	1.1 stereo imaging

	2 Android OS
	2.1 Description of the OS
	2.1.1 Briefly analysis of Android components
	2.1.2 The Linux kernel
	2.1.3 Libraries
	2.1.4 The Dalvik Virtual Machine
	2.1.5 Application Libraries
	2.1.6 Applications and Application Framework

	3 development environment
	3.1 SDK
	3.2 NDK
	3.2.1 JNI calls

	3.3 OpenCV library
	3.3.1 Tegra

	3.4 target device
	3.5 OpenGL ES library

	4 Tasks and work flow
	4.1 Emphasizing margins
	4.2 Lane Detection
	4.2.1 Searching of straight lines

	4.3 The Vanishing Point estimation
	4.3.1 outline on perspective
	4.3.2 benefits derived from the knowledge of the vanishing point

	4.4 General Work Flow
	4.5 The problem of lens distortion
	4.6 Features expected from the Software
	4.7 application architecture

	5 lane detection
	5.0.1 a wrong attempt
	5.0.2 the reason why it doesn't work for lane detection
	5.1 the final solution
	5.1.1 image filtering
	5.1.2 margin emphasis
	5.1.3 noise reduction
	5.1.4 line detection
	5.1.5 lane estimation

	5.2 a closer look to the line detection algorithm
	5.2.1 line creation
	5.2.2 line removal

	6 vanishing point estimation
	7 Conclusion
	Bibliography

