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Abstract

Since the 5G connection standard is utilized by a rising number of devices and is
evolving to meet new needs and requirements, it has become crucial to study and
design new, faster, and more efficient transmitters and receivers. A fundamental
role in the 5G connection is played by Orthogonal frequency-division multiplex-
ing (OFDM), an encoding methodology. Since the demodulation is based on the
Fourier Transform, the purpose of this thesis is to realize a processor capable of im-
plementing FFT and DFT algorithms on variable length sequences that complies
with the 5G standard criteria. In order to do so, first an analysis of the Interna-
tional Telecommunication Union report ITU-R M.2410-0 has been conducted to
define the minimum requirements for the processor. Then, a study of the state of
the art for similar devices led to the development of a VLSI architecture suitable
for the application. An RTL version of the architecture has been implemented in
VHDL and tested.
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1
Introduction

The fifth-generation technology for broadband cellular networks is referred to
as "5G" in the telecommunication sector. The agency that takes care of the defini-
tion of these standards is the International Telecommunication Union (ITU). The
ITU is a United Nations specialized agency, founded in 1865 to facilitate interna-
tional connectivity in communications networks: it allocates global radio spectrum
and satellite orbits, develops the technical standards that ensure networks and
technologies seamlessly interconnect and works to improve access to Information
and communication technologies (ICTs) to underserved communities worldwide. 1

The sector that works on the 5G standard is the ITU Radiocommunication sec-
tor (ITU-R): this is the sector that allocates global radio spectrum and satellite
orbits and develops standards for radiocommunication systems with the objective
of ensuring the effective use of the spectrum. In 2015 the ITU-R issued a set of
requirements for 5G networks called International Mobile Telecommunications -
2020 (IMT-2020) standard. While the final version of the standard was published
on February 1st, 2021, most of it was completed earlier. The report M.2410-0, pub-
lished in November 2017, is of particular interest to this thesis because it describes
key requirements related to the minimum technical performance of IMT-2020 can-
didate radio interface technologies.[1] The main requirements taken into account
are:

• Latency up to 4 ms for enhanced Mobile Broadband (eMBB)

• Peak data rate 20 Gbit/s in Downlink and 10 Gbit/s in Uplink (eMBB)

1https://www.itu.int/en/about/Pages/default.aspx
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1.1. ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING

• Peak spectral efficiency 30bit/s/Hz in Downlink and 15 bit/s/Hz in Uplink

• Bandwidth 100MHz

A description and standardization of the requirements for 5G systems have
been carried out by the 3rd Generation Partnership Project (3GPP), a consortium
of various national and regional telecommunications standard organizations that
develops protocols for mobile telecommunications. The 3GPP was constituted in
1998 to first produce the 3G mobile phone system based on the 2G Global System
for Mobile Communications (GSM) system. With its Release 15 of 2018, the 3GPP
has defined the specifics of the 5G New Radio (5G NR) standard. The standard has
been further described in Releases 16 and 17, with the latter published during the
first half of 2022. The most relevant series of specifications for this work of thesis
is the 38, which provides technical details about the standard. In particular, the
38.211 technical specification has been important since it describes the structure
of physical channels and the modulation of the standard.[2] This report describes
in detail the frame structure and the Orthogonal frequency-division multiplexing
(OFDM) symbols used by the 5G NR standard and these specifics were used as a
starting point to define a set of specifications for the processor realized since the
OFDM requires both high-speed power-of-two Fast Fourier Transform (FFT) and
non-power-of-two Discrete Fourier Transform (DFT) to support the high data rate
of the 5G NR standard.

1.1 Orthogonal frequency-division multiplex-
ing

The OFDM is an encoding methodology used in digital modulation to encode
data on multiple carriers: in particular, the bit-stream of data to be sent is divided
into multiple closely spaced orthogonal subcarrier signals with overlapping spectra
and then transmitted. The main advantages of this modulation methodology are
its ability to cope with non-optimal channel conditions and efficient implementa-
tion using FFT. In fact, the orthogonality ensures that the cross-talk is eliminated
and inter-carrier bands are not required, allowing for efficient modulator and de-
modulator implementation using FFT algorithm on the receiver side and inverse
FFT of the sender side. This type of implementation requires both a fast execu-
tion of the algorithm and high flexibility on the Fourier transform length. This
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CHAPTER 1. INTRODUCTION

means that an FFT processor, to be functional in this application, should have
these characteristics:

• FFT size up to 4096

• Butterfly unit(s) supporting 2-,3-,5- and higher radices

• Twiddle Factor multiplication scheme with hardware efficiency

• Conflict-free data access scheme that supports multiple butterfly units for
2-, 3-, 5-, and higher radices as well as minimizes the memory usage for
non-power-of-two DFTs

1.2 Fast Fourier Transform Algorithm

The Fast Fourier Transform (FFT) is an algorithm used to compute the Dis-
crete Fourier Transform (DFT), the decomposition of the sequence of samples of
a signal into its frequency components, defined as:

X[k] =
N−1∑
n=0

x[n]e−j 2πnk
N , k = 1, . . . , N (1.1)

In particular, the FFT reduces the computation complexity of the DFT, and
consequently the time required to carry out the computation, from O(N2) to
O(N logN), where N is the data sequence length. While the fast algorithms for
the DFT computation are diffused since 1805, the generic FFT algorithm is cred-
ited to James Cooley and John Tukey, who published it in 1965, after independent
studies. This algorithm is based on the recursive breakdown of the DFT into
smaller ones: an N-length sequence, with N = N1N2, can be split into two smaller
N1 and N2 DFTs and a series of complex multiplications (Fig. 1.1)2 by the roots
of unity, later called Twiddle Factors, reducing the complexity of the computation;
this process can be repeated recursively, reducing at each step the length of the
DFTs. The most common Cooley-Tukey algorithm consists in halving the DFT
length at each step:

X[k] =

N/2−1∑
m=0

x[2m]e−j
2π(2m)k

N +

N/2−1∑
m=0

x[2m+ 1]e−j
2π(2m+1)k

N (1.2)

2By Yangwenbo99 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=111271197
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Figure 1.1: FFT algorithm scheme

Figure 1.2: Radix-2 Butterfly

until they reach length two: this is known as the radix-2 (Fig. 1.2) algorithm and
is possible only for power-of-two sizes. A more flexible algorithm is the Mixed-
Radix: the DFT is factorized using various radix to extend the applicability to
non-power-of-two sizes.

1.3 Mixed-Radix Algorithm

The processor’s architecture is based on the Mixed-Radix Algorithm [3], an
algorithm that divides the classic DFTs algorithm into a cascade of shorter DFTs.

4



CHAPTER 1. INTRODUCTION

If we consider the DFT definition:X[k] =
N−1∑
n=0

x[n]W nk
N

W nk
N = e−j 2πnk

N

(1.3)

starting from the mapping of the mono-dimensional array N = N1N2 into a two-
dimensional array N1 by N2 [4], it’s possible to map n and k, indices identifying
input and output sequences of the DFT algorithm, as:n = (N2n1 + A2n2) mod N, n1, k1 = 0, 1, . . . , N1 − 1

k = (B1k1 +N1k2) mod N, n2, k2 = 0, 1, . . . , N2 − 1
(1.4)

where A2 and B1 are two coefficients that depend on the relation between N1

and N2. The DFT algorithm can be rewritten as:

X[k1, k2] =
∑
n2

∑
n1

x[n1, n2]W
n1k1
N1

W n2k2
N2

W n2k1
N

=
∑
n2

{
W n2k1

N

∑
n1

x[n1, n2]W
n1k1
N1

}
W n2k2

N2

=
∑
n2

W n2k1
N y[k1, n2]W

n2k2
N2

(1.5)

where the term W n2k1
N is the Twiddle Factor. If N1 and N2 are relatively prime,

A2 and B1 are chosen to satisfy these conditions:

A2 = p1N1 and A2 = q1N2 + 1 (1.6)

B1 = p2N2 and B1 = q2N1 + 1 (1.7)

the Twiddle Factor can be simplified, and we obtain the relation:

X[k1, k2] =
∑
n2

∑
n1

x[n1, n2]W
n1k1
N1

W n2k2
N2

=
∑
n2

{∑
n1

x[n1, n2]W
n1k1
N1

}
W n2k2

N2

=
∑
n2

y[k1, n2]W
n2k2
N2

(1.8)

If we reiterate this process, splitting each time N1 and N2 into smaller length
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DFT, we can map the indices of the DFT of length N to:

N =
S∏

j=1

Nj

n =
S−1∑
m=1

(
S∏

n=m+1

(Nn)nm

)
+ nS

k = k1 +
S∑

m=2

(
m−1∏
n=1

(Nn)km

) (1.9)

an S stages sequence, where Ni, i=1,2,. . . ,S, is the radix number of the ith

stage, and ni ∈ [0, 1, . . . , Ni − 1] and ki ∈ [0, 1, . . . , Ni − 1] are the corresponding
sequence numbers of the input and output data in the ith stage with i=1,2,. . . ,S.
At each stage we can compute the radix-Ni DFT as:

xi [ki] =



Ni−1∑
ni=0

x [ni]W
niki
Ni

(i=1)

Ni−1∑
ni=0

W
(
k1+

i−1∑
m=2

(
m−1∏
n=1

(Nn)km

))
ni

i∏
j=1

Nj

xi−1 [ni]W
niki
Ni

 (else).
(1.10)

With the exception of the first, each stage consists of computing the Ni-length
DFT where each term of the sum is multiplied by a Twiddle Factor that is calcu-

lated over the product Ntf =
i∏

j=0

Nj, lengths of all previous stages plus the current
one.
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2
State of the Art

This chapter is dedicated to exploring possible implementation and architecture
in literature, starting from deriving specifics for processor performances.

2.1 Specifics derivation

As was mentioned before, the specifics and characteristics of the processor are
obtained starting from the requirements described in the technical report M.2410
and the technical specification report 38.211. The first consideration is about the
throughput of the processor: considering the minimum bandwidth of 100 MHz as
per requirements in [1], we have a Requirement on throughput (RqOnThrpt) of:

RqOnThrpt = 100MS/s (2.1)

If we then consider a maximum FFT length of 4096, we can evaluate the
Requirement on latency (RqOnLtcy) on a single data stream:

RqOnLtcy =
4096

RqOnThrpt
= 40.96µs (2.2)

small enough to not be comparable with the maximum latency of 4 ms specified
in the Minimum requirements related to technical performance for IMT-2020 radio
interface(s) for enhanced Mobile Broadband (eMBB).

7
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2.2 Architecture choice

The first design choice to be made is the architecture to be implemented: there
are various efficient FFT architectures, capable of high data throughput, based on
the Cooley-Turkey algorithm, but not all of them support multiple FFT sizes and
some are not capable of supporting non-power-of-two DFTs. To implement the
full Mixed-Radix algorithm and obtain a good versatility of the design is necessary
to take into consideration three types of architecture:

• Single-Path Delay Feedback (SDF)

• Multi-Path Delay Feedback (MDF)
• Memory-Based architectures
In this section, a brief description of each type of architecture will be presented

and their viability for the scope of this thesis will be considered.

2.2.1 Single-Path Delay Feedback

The Single-Path Delay Feedback (SDF) (Fig. 2.1) is a pipelined architecture
based on a radix-r block, multipliers for the twiddle factors and N-1 registers (the
minimum amount possible for an N-point FFT), making this architecture really
efficient in terms of area occupation.

Figure 2.1: Simple Single-Path Delay Feedback architecture for an FFT of size 16

While this simple implementation is quite limited in versatility, it can be im-
proved by substituting the radix-r block with a Re-configurable Processing Ker-
nel (RPK) [5][6], a configurable block that can be controlled by the Control Unit:
this means that a large number of FFT sizes can be supported by SDF architec-
tures. Moreover, the versatility is greatly reduced if we consider non-power-of-two
DFTs. Finally, the main problem of this implementation is the maximum through-
put achievable: as the name self explains, the single path limits the throughput
to a sample per clock rate. While this may be enough to reach the minimum re-
quirements for 5G NR, it might not be future-proof as these requirements become
more demanding.
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2.2.2 Multi-Path Delay Feedback

The Multi-Path Delay Feedback (MDF) is a pipelined structure that divides the
input sequence into multiple parallel streams: the structure, as for SDF structures,
is based on a radix-r block, twiddle factors multipliers and registers to synchronize
the data streams. This type of architecture solves the reduced throughput of the
SDF designs, while still not solving the versatility problem: if we consider the
MDF design in the paper “Power and Area Minimization of Reconfigurable FFT
Processors: A 3GPP-LTE Example”[7], it supports only 1536-point DFTs and
extending this support to other lengths it’s not easily doable.

2.2.3 Memory-Based architectures

Memory-Based architectures are mainly based on the utilization of memory:
they are usually composed of a Memory block, a Control Unit and Processing
Element or Butterfly Unit (Fig. 2.2).

Figure 2.2: Memory-Based architecture [8]

Memory-Based architectures are of two types:

• Single Memory architecture

• Dual Memory architecture

The former only uses one memory block connected with the Processing Ele-
ment by a bidirectional bus: at each stage is necessary both an output and input

9
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phase between two computation stages, increasing the latency of the total compu-
tation; the latter uses the two memories alternatively as input or output memory,
reducing the latency. This type of implementation will solve both the throughput
problem, as the processing element can be realized to work on multiple streams,
and the versatility problem, as it’s easier to implement radix-3 or radix-5 into
General radix-r Butterfly Units. An example of this implementation is presented
in “A High-Flexible Low-Latency Memory-Based FFT Processor for 4G, WLAN,
and Future 5G”[8]: this paper describes in detail a memory-based FFT processor
for telecommunication applications and it has been the main inspiration for this
thesis. These are the reasons that lead to the decision of realising a Memory-Based
architecture.

Finally, based on the analysis conducted in this paper [8] on the estimated hard-
ware cost, while the throughput could be higher with a Continuous-flow processor,
the choice of a Non-Continuous-flow processor with a radix-16 Butterfly Unit has
been made, as it should result in a more efficient architecture while being able to
satisfy the throughput and latency requirements.

2.3 Throughput estimation

If we consider a processor based on a radix-r Butterfly Unit, we can evaluate
the number of stages (No.Stage) necessary to compute an N-point FFT as:

No.Stage =
log2N

log2 r
(2.3)

rounded up to the closer integer. Each stage will need a number of clocks:

Clkstage =
N

k · r
(2.4)

where k is the number of Butterfly Units in the processor. In the case of a
Non-Continuous-flow processor, to evaluate the throughput we need to take into
account the non-computing clock cycle for I/O phases between two data streams.
For an N-point FFT, we have to consider a number of clock cycles for I/O equal
to:

ClkI/O = 2
N

k · r
(2.5)

10
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This value actually can be halved if the processor is used to compute in se-
quence multiple N-point FFTs Combining the equations (2.3), (2.4), (2.5), the
total throughput can be estimated as:

Thrpt = No.Stage · Clkstage + ClkI/O (2.6)

that should be less or equal to N
RqOnThrpt

· Clkfreq, the number of clock cycles
derived from the Requirement on throughput (RqOnThrpt). So, if we consider
a 4096-point FFT on a one radix-16 Butterfly Unit architecture working at 500
MHz, this is the result:

Thrpt =
log2 4096

log2 16
· 4096

16
+ 2 · 4096

16
=

= 1280 Clkcycles ≤ 10240 Clkcycles

(2.7)
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3
Architecture design

The architecture of the processor is obtained starting from a memory-based
architecture with a configurable radix-16 butterfly unit. As it can be seen in figure
3.1, the processor has a Control Unit that schedules and controls the processor
operations, a couple of Addresses Generators that generate input and output ad-
dresses for the memory, a memory block that stores data during the operations,
a Butterfly Unit and a Twiddle Factor Multiplier which execute the actual opera-
tions. This architecture grants the processor both versatility and high operation
speed as it has a pipeline structure and the possibility to execute in parallel mul-
tiple radix-r operations.

3.1 RTL design of the FFT processor

This section describes the Register Transfer Level (RTL) design of the processor
(Fig. 3.1), implemented using VHSIC Hardware Description Language (VHDL), a
hardware description language developed by the United States Department of De-
fense in 1985 as part of the program Very High-Speed Integrated Circuit (VHSIC)
and afterward standardized by the Institute of Electrical and Electronics Engi-
neers (IEEE).

13



3.1. RTL DESIGN OF THE FFT PROCESSOR

Figure 3.1: FFT processor block scheme

3.1.1 Control Unit

The Control Unit (Fig. 3.2) it’s the central block of the processor that generates
all the control signals needed by the other blocks. It is implemented as a Finite
State Machine (Fig. 3.3).

Other than the Finite State Machine (FSM), the Control Unit is formed by a
block that generates addresses for the Twiddle Factor Multiplier (TFMUL) mem-
ory and one that based on the current stage reorders the stage sequence.

Finite State Machine Operations

The FSM waiting state is the IDLE state: the Control Unit is waiting for an ex-
ternal START signal to start its operations while maintaining all the components
of the processor deactivated through the control signals STARTL, STARTR,
ENBU, ENC and SEL, all active high; the SETUP state is used by the Control
Unit as a transitional state to signal that the processor it’s ready to receive the
input data, while it activates the Load Address Generator through the STARTL

14
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Figure 3.2: Control Unit Block

Figure 3.3: Control Unit Finite State Machine

15
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signal; while in the LOAD state, the Control Unit waits for the Load Address
Generator DONE signal: the processor is loading the input data in its memory;
the WORK state is the core of the processor operations: while the Control Unit
is in this state, the actual DFT computation is being carried out and the Con-
trol Unit uses the control signals to menage the other blocks; when all the stages
DFTs are computed, the Control Unit enters the READ state and activates the
Read Address Generator: the processor presents at its output the computed DFT
sequence.

16



CHAPTER 3. ARCHITECTURE DESIGN

1 process (START ,S_NOW ,S,L_DONE , R_DONE )
2 begin
3 S_NEXT <= IDLE; -- FSM state
4 L <= ’0’; --
5 EN_BU <= ’0’; --
6 EN_C <= ’0’; -- Control signals
7 START_L <= ’0’; --
8 START_R <= ’0’; --
9 DONE <= ’0’; --

10 case S_NOW is
11 when IDLE =>
12 if START = ’1’ then
13 S_NEXT <= SETUP ;
14 .
15 end if;
16 when SETUP =>
17 START_L <= ’1’;
18 L <= ’1’;
19 S_NEXT <= LOAD;
20 when LOAD =>
21 if L_DONE = ’1’ then
22 S_NEXT <= WORK;
23 START_R <= ’1’;
24 EN_BU <= ’1’;
25 EN_C <= ’1’;
26 else
27 L <= ’1’;
28 S_NEXT <= LOAD;
29 end if;
30 when WORK =>
31 if S < to_integer (SMAX) then
32 S_NEXT <= WORK;
33 .
34 else
35 if L_DONE = ’1’ then
36 S_NEXT <= READ;
37 DONE <= ’1’;
38 else
39 S_NEXT <= WORK;
40 .
41 end if;
42 end if;
43 when READ =>
44 S0 <= S;
45 if R_DONE = ’1’ then
46 S_NEXT <= IDLE;
47 DONE <= ’0’;
48 else
49 S_NEXT <= READ;
50 DONE <= ’1’;
51 end if;
52 end case;
53 end process ;

Code 3.1: Address Generator FSM

17
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3.1.2 Stages sequence memory

The Stages Sequence memory is a ROM containing information about the
stage sequences for the 54 Fourier Transform lengths: each N-length DFT is in
fact divided into a cascade of smaller N0, N1, ..., NS DFTs. Each stage length is
associated with a P value that defines the parallelism used by the Butterfly Unit
in that stage: for example, if N0 = 4 and N

N0
mod 4 = 0, its parallelism will be

P0 = 4. Finally the memory stores also the value SMAX for each length that gives
the Control Unit information about the number of stages into which the DFT
length is divided.

3.1.3 Address Generator

The Address Generator generates a set of 16 addresses for the memory. They
are generated using the Conflict-Free Parallel Access scheme [9]:

bank =


(
nbr
1 + n2

)
mod L (S = 2)(

nbr
1 +

S−1∑
j=2

nj + nbr
S

)
mod L (S > 2)

address =
S∏

n=3

(Nn)n
′
2 +

S−1∑
m=3

(
S∏

n=m+1

(Nn)nm

)
+ nS

n′
2 = n2≫

⌊
log2

L
N1

⌋
(3.1)

This Access scheme is designed to access simultaneously sixteen banks of the mem-
ory block without any conflict: it translates the indices n1, n2...nS that identify
data in the Mixed-Radix algorithm (1.10) to a couple bank− address that ad-
dresses a memory location. In the computation of the value bank for values of
S higher than two, it’s used (nS)

br, the bit-reverse of the last index, to improve
the parallelism of the scheme. The access scheme can be used both in input and
output without modifying it. To implement it, the Address Generator (Fig. 3.4)
is realized as a FSM (Fig. 3.5), controlled by a START signal from the Control
Unit, that generates the sequence of indices and produces as output sixteen cou-
ples of bank− address. The Address Generator also produces two logic signals,
W and DONE, to communicate to the Control Unit when it’s working and when
it has finished generating the addresses for that stage. Finally, the Read Address
Generator, the block that generates the output addresses for the memory, is used
to provide the indices to the TFMUL.

18
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Figure 3.4: Address Generator Block

Figure 3.5: Address Generator Finite State Machine

Internal architecture

The Address Generator (Fig. 3.6) consists of the FSM, an Indices Generator,
and an array of sixteen blocks named ADDGEN: these are the blocks that imple-
ment the Conflict-Free Access Scheme algorithm (3.1) to translate the indices into
addresses for the memory.

19



3.1. RTL DESIGN OF THE FFT PROCESSOR

Figure 3.6: Address Generator Block Scheme

Finite State Machine Operations

The FSM has two states, IDLE and GEN; the first is the waiting state of
the address generator: the generator waits for the START instruction from the
Control Unit and maintains the internal reset signal at low state; the latter is the
operational state of the address generator: the generator raises the internal reset
signal, raises the W signal to high state and waits for the Indices Generator to end
its iterations. Once it ends, the state is reverted to IDLE and the DONE signal
is set to high to communicate to the Control Unit that the Address Generator has
ended its operations. Code 3.2 presents the VHDL implementation of the FSM.

1 process (START ,S_NOW ,IT)
2 begin
3 S_NEXT <= IDLE;
4 IT0 <= 0;
5 W <= ’0’;
6 DONE <= ’0’;
7 case S_NOW is
8 when IDLE =>
9 if START = ’1’ then

10 S_NEXT <= GEN;
11 end if;
12 when GEN =>
13 IT0 <= IT +1;
14 RES_int <= ’1’;
15 W <= ’1’;
16 .
17 .
18 if IT = IT_MAX then
19 IT0 <= 0;
20 S_NEXT <= IDLE;
21 DONE <= ’1’;
22 else
23 S_NEXT <= GEN;
24 end if;
25 end case;
26 end process ;

Code 3.2: Address Generator FSM
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3.1.4 Memory

The memory of the processor is realized as a "ping-pong" memory (Fig. 3.7),
a couple of memory blocks used alternatively as writing or reading memory: at
each stage, the processor reads data from one of the blocks, and writes the results
in the other. Other than the input data signals and the addresses, the memory
receives the CTRL signal from the Control Unit and the RE,WR signals from
the address generators: the first one set which memory block will be the input
one and which will be the output, the other two signals tell the memory when the
address generators are providing valid addresses.

Figure 3.7: Memory Structure

Memory Block

Each memory block(Fig. 3.8) is realized as an array of 16 banks, each one with
256 addresses: this way each block is capable of writing/reading contemporane-
ously sixteen inputs/outputs without any conflict.
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Figure 3.8: Memory Block

3.1.5 Butterfly Unit

The Butterfly Unit is the core block of the processor: it has a sixteen data
input and the SEL signal that determines the operations to be carried out. It is a
pipeline structure and it supports one radix-16, two radix-5/8, four radix-3/4, or
eight radix-2 operations in parallel.

The internal structure (Fig. 3.9) is composed of five main blocks, two Processing
Element A (PEA), one Processing Element B (PEB) and two Processing Element
C (PEC), and a series of multiplexing blocks used to route the data in the correct
way for the current radix-r operation.

Figure 3.9: Butterfly Unit structure
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Figure 3.10: Processing Element A structure

Processing Element A

The PEA block (Fig. 3.10) is the first operational block of the Butterfly Unit,
it has as input ten signals and as output sixteen signals. It supports two radix-4
or four radix-2 operations for radix-2, -4, -8, and -16 FFTs and also supports the
initial part of the algorithms for one radix-5 DFT or two in parallel for the radix-3
DFT. It is made up of 6 radix-2 (Fig. 3.11a) units, 2 reformulated radix-2 (Fig.
3.11b) units, six multiplexers, and two trivial multipliers.

(a) Radix-2 (b) Reformulated Radix-2

Figure 3.11: Radix-2 and reformulated Radix-2 butterfly scheme
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Figure 3.12: Processing Element B structure

Processing Element B

The PEB block (Fig. 3.12) contains all of the nontrivial multipliers in radix-
3, -5, -8, and -16 DFT computation and contains the adders needed for radix-5
computation. It has as input thirteen signals and as output eleven signals.

Processing Element C

The PEC block (Fig. 3.13) supports two radix-4 operations for the radix-16
FFT or four radix-2 operations for the radix-8 FFT and also supports the final
part of the radix-3 (two in parallel) and the radix-5 DFT computation. It is made
up of 8 radix-2 butterfly units. It has as input ten signals and as output eighteen
signals.

Figure 3.13: Processing Element C structure
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3.1.6 Twiddle factor multiplier

The TFMUL (Fig. 3.14) is a module of the FFT processor used to execute the
multiplications necessary to realize DFTs of a length higher than 16. Since this
architecture should support a large number of different DFT sizes, to reduce the
dimensions of the ROM containing the Twiddle Factors, the TFMUL is realized
using a Rotation Angle Generator and a Coordinate Rotation Digital Computer
(CORDIC) Rotator: this way the ROM needs only to be large enough to store the
DFTs lengths to be implemented.

Figure 3.14: Twiddle Factor Multiplier structure

Rotation Angle Generator

The Rotation Angle Generator (Fig. 3.15) is used to obtain the angle θ used
by the CORDIC Rotator, starting from the DFT length:

θ =
2π

N
k (3.2)

To reduce the occupied area by the ROM without losing too much precision, the
lengths values coefi =

2π
Ni

are stored in fixed point format, 4 bit for the exponent
coefexp and 15 bits for the mantissa coefman. Storing the data this way means
that the actual function that the block should realize is

θ = coefman · k · 2coefexp (3.3)

So we can implement the Rotation Angle Generator using a multiplier and then
a right shifter, since −9 ≤ coefexp ≤ 0. The Rotation Angle Generator takes as
input the address for the ROM and k and gives as output the value of θ.
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Figure 3.15: Rotation Angle Generator

CORDIC Rotator

The CORDIC Rotator is realized with a radix-4 pipelined architecture. It takes
as inputs θ from the Rotation Angle Generator and datain, a complex value, and
gives the rotated value dataout.

While the radix-2 architecture needs a simple Selection Function:

σi =

−1, zi < 0

+1, zi ≥ 0
(3.4)

and n rotation carried out as:

xi+1 = xi + σiyi

yi+1 = yi − σixi

zi+1 = zi − σi tan
−1(2−i)

(3.5)

to obtain n-bit precision, the radix-4 architecture, to reduce the number of micro-
rotations needed to obtain the same precision, needs a more complex Selection
Function. As described in the paper “High performance rotation architectures
based on the radix-4 CORDIC algorithm”[10], this Selection Function:
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σ0 =



+2, if 5/8 ≥ w0

+1, if 3/8 ≥ w0 < 5/8

0, if −1/2 ≥ w0 < 3/8

−1, if −7/8 ≥ w0 < −1/2

−2, if w0 < −7/8

(3.6)

for i = 0, and:

σi =



+2, if 3/2 ≥ wi

+1, if 1/2 ≥ wi < 3/2

0, if −1/2 ≥ wi < 1/2

−1, if −3/2 ≥ wi < −1/2

−2, if wi < −3/2

(3.7)

for i > 0, where wi = 4izi, and a this set of equations:

xi+1 = xi + σi4
−iyi

yi+1 = yi − σi4
−ixi

zi+1 = zi − αi[σi]

(3.8)

where αi[σi] = tan−1(σi4
−i)can be used to reach a n-bit precision with only n/2+1

micro-rotations, half of what a classic radix-2 architecture needs. This means that
the radix-4 architecture permits a significant reduction in computation time and
area occupation when using a pipeline structure.

The pipeline structure used in this work is presented in Fig. 3.16: each couple
x/ycell - wcell (Fig. 3.17) represents a micro-rotation; each σi value is also used to
compute the scale factor: K is in fact not fixed at 1.64 as in radix-2 architecture,
but needs to be evaluated each time. In order to do so, for the first n/4− 1 micro-
rotations, the scale factors ki are pre-computed and stored in a ROM: the σi values
are used to select the ki value needed and then the final value of the scale factor
K is obtained with a multiplier (Fig. 3.18).
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Figure 3.16: CORDIC Rotator pipelined structure
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(a) x/ycell structure (b) wcell structure

Figure 3.17: Blocks that implement a micro-rotation

Figure 3.18: Scale Factor computation block
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3.2 Debugging and simulations

During the RTL design, a test bench was realized to simulate the processor and
its components’ behaviour to ensure their correct functioning. The test bench is
designed to load input data from a .txt file, sixteen samples per clock cycle, until
it reaches the end of the file; the samples are converted in signed representation,
form acceptable from the processor (Code 3.3).

1 process
2 variable VLINE : line;
3 variable V : real;
4 file INP_FILE : text open read_mode is "./ matlab / x_data .txt";
5 begin
6 while not( endfile ( INP_FILE )) loop
7 if LOAD = ’1’ then
8 for i in 0 to to_integer ( N_out (0)* P_out (0)) -1 loop
9 readline (INP_FILE , VLINE );

10 read(VLINE , V);
11 data_in (i)(0) <= to_signed ( integer (V *2.0**(N -1)), N);
12 end loop;
13 end if;
14 wait until CLK ’ event and CLK = ’1’;
15 end loop;
16 wait for TCK *50;
17 wait;
18 end process ;

Code 3.3: Test bench load process

Then the test bench waits for the processor to perform the computation and
finally starts to save the output data to a .txt file, to later elaborate and display
them(Code 3.4). The program used to carry out the simulations was Verdi Auto-
mated Debug System from Synopsis, and the data output from the test benches
were elaborated using MATLAB.
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1 process
2 variable WLINE : line;
3 variable W1 ,W2 : real;
4 file OUT_FILE : text open write_mode is "./ matlab / yv_data .txt";
5 begin
6 wait until CLK ’ event and CLK = ’1’;
7 if DONE = ’1’ then
8 wait for OUTDEL ;
9 for i in 0 to to_integer ( N_out ( to_integer ( S_out ))* P_out ( to_integer ( S_out ))) -1

loop
10 W1 := real( to_integer ( data_out (i)(0)))*2.0**( -N+1+ integer (ceil(log2(

real( to_integer (MODE))))));
11 write (WLINE , W1 ,left ,15);
12 W2 := real( to_integer ( data_out (i)(1)))*2.0**( -N+1+ integer (ceil(log2(real

( to_integer (MODE))))));
13 write (WLINE , W2 ,left ,15);
14 writeline (OUT_FILE , WLINE );
15 end loop;
16 end if;
17 end process ;

Code 3.4: Test bench save process

Figure 3.19 shows the behaviour of the processor while computing a 20-point
FFT: first, the processor loads the samples in its memory; after the FFT comput-
ing starts: in the case of 20-point FFT, the computation is divided in a cascade of
a two 4-point FFT and a 5-point DFT with a Twiddle Factor multiplication in the
middle. The output is then presented at the output. The total process is carried
out in 37 clock cycles and the result has a maximum relative error of ∆ = 0.052%

The graph in Fig. 3.20 shows a comparison of the processor results with the FFT

Figure 3.19: Waveform Graph of the simulation

computed in MATLAB: as expected the results are quite similar, with an absolute
error of ∆ = ..., comparable with the quantization error caused by the number of
bits used to represent the data.
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Figure 3.20: MATLAB - Processor comparison of the 20-point DFT

While the processor is able to compute DFTs implemented with a two-stage
sequence, when the number of stages needed increases, the resulting DFT presents
a series of artefacts: if we consider for example the case of 4096-point FFT in
figure 3.21, the graph shows small peaks between the two main peaks. These
errors are probably caused by a problem with the Conflict-Free Parallel Access
Scheme implementation.
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Figure 3.21: MATLAB - Processor comparison of the 4096-point FFT
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4
Synthesis

The step following the RTL description of the processor is the Logic Synthesis.
The Logic Synthesis is a process that turns the abstract description of the design
behaviour, in our case the Register Transfer Level (RTL) description, into a netlist,
a design implementation in terms of logic gates. This process is realized thanks to
a synthesis tool: in this thesis, Design Compiler®[11] was used.

4.1 Logic Synthesis steps

The main steps of the Logic Synthesis are:

• Design preparation

• Definition of the environment
• Definition of Constraints
• Optimization

Design preparation

The RTL design should be realized following a set of guidelines aimed at im-
proving the synthesis quality and reducing the compilation time: an example is the
utilization of standard models for commonly used elements, like registers or multi-
plexers, or the use of output registers when possible to relax the time constraints.
For this design, the main difficulties during synthesis came from the implemen-
tation of the Address Generator and the memory: this block presents a complex

35



4.1. LOGIC SYNTHESIS STEPS

combinatorial logic, hard to properly implement and synchronize with the rest of
the design.

Definition of the environment

By outlining the technological libraries to be employed, this stage defines the
environment for carrying out the synthesis. For this thesis, it was used the Global
Foundries 22 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) technology, suit-
able for this type of implementation as it was developed for integrated, low-power
RF designs. As the working conditions for the processor are very variable, in this
work the default conditions defined by the library were used.

Definition of Constraints

During this phase the constraints for the optimization are set, both on timing
and area. In our case, the main constraint was represented by the operating clock:
the processor should be able to work at 250 MHz. As for the area, the main
objective was to obtain the minimum area possible while respecting the constraint
on timing. Another important optimization goal was the low power consumption
of the device.

Optimization

This is the actual compilation of the netlist, in Design Compiler carried out
using the Top-Down method: the design constraints are applied only to the top
cell and the compilation is carried out simultaneously on all the designs. This is
the simpler way to compile a netlist but it takes a long time and each change to
the design needs a new compilation.
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4.2 Logic Synthesis results

Once the compilation is ended, Design Compiler produces the netlist of the
design and it can be analysed to verify if the design respects the optimization
constraints and to do a preliminary evaluation on area occupation and power
consumption.

Table 4.1 presents the report on the area realized by Design Compiler: after
the optimization, the processor has an estimated area of 0.969 mm2.

Table ?? presents the report on the power realized: after the optimization, the
processor has a power consumption of 191 mW, mainly due to the registers present
in the design. This power consumption however is probably largely overestimated
due to a non-optimized implementation of the memory block.

Area report
Number of ports 241956
Number of nets 1706235
Number of cells 1397709
Number of buf/inv 210474
Number of references 19
Cominational Area 534623 µm
Buf/Inv Area 37222 µm
Noncombinational Area 434305 µm
Total Cell Area 968928 µm

Table 4.1: Report on the Area occupied by the processor

Power report
Cell Internal Power 180.7 mW
Net Switching Power 1.45 mW
Total Dynamic Power 182.15 mW
Cell Leackege Power 8.88 mW
Total Power Consumption 191.03 mW

Table 4.2: Report on the Power consumption of the processor
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Physical Design

Once the Logic Synthesis is completed, the netlist can be exported and used
to realize the Physical design. To do so, the optimized netlist is converted into
a hardware language description file, for example, Verilog of VHDL, and along
with a file containing information about the timing of the design, it’s used as a
starting point to obtain a geometrical representation of the design called layout
[12]. Once this layout is obtained, it can be analysed through a Static Time Anal-
ysis (STA) to verify that it meets the timing requirements and finally, if it meets
the specifics required, it can be physically realized into a foundry or implemented
on a Programmable Logic Device (PLD), like a Programmable Array Logic (PAL)
or a Field Programmable Gate Array (FPGA). The program used to realize the
Physical design was Innovus Implementation System by Cadence®. The Physical
Design is divided into a series of steps:

1. Design Partitioning: division of the design into blocks with the objective
of minimizing interconnects between them.

2. Floor Planning: definition of the silicon area dedicated to the design im-
plementation.

3. Power Planning: realization of the physical structure dedicate to power
delivery.

4. Placement: geometric positioning of the standard cells.

5. Clock Tree Synthesis: generation of the clock tree distribution.

6. Routing: connection of the various standard cells and blocks.

7. Design-for-Manufacturability enhancements
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8. Verifications: verifying the compliance of the layout with design rules.

The core steps of the Physical design are the Placement and the Routing.

5.1 Placement

The Placement step consists of the geometric placement of each cell of the
design inside a specified area. Depending on the technology used, this could mean
different things:

• Standard Cells: the technology is described by a group of predefined cells
used to implement various designs; during the Place phase, the position X,
and Y of each cell are defined.

• Sea-of-gates: the core element of the technology is the transistor itself. The
Placement phase allocates for each cell to realise a series of pre-fabricated
transistors and defines their geometrical interconnection.

• PLD: the design is not physically implemented but is realized by allocating
its cells to logic blocks on the PLD.

The main objectives of the Placement are to minimize the interconnection
lengths and to reduce to the minimum the interconnect congestion. To implement
the Placement, two class of algorithm exists, Constructive placement and Iterative
placement improvement. Usually, Placement starts from a Constructive place-
ment method: using a prefixed set of rules, e.g. Min-Cut algorithm or Eigenvalue
method, the constructive placement algorithm generates a first placement; then
the placement is improved using an Iterative placement algorithm, a method that
consists in moving cells of an existing placement trying to refine it. The result of
Placement is a detailed description of the best positioning of each cell and block,
based on various cost functions, such as wire length, routability and performance.

As can be seen in figure 5.1, the greater part of the processor area is occupied
by the Memory block; a large portion is also dedicated to the Twiddle Factor
Multiplier block as it is implemented with sixteen parallel CORDIC rotators with
a pipelined architecture. The input/output PIN placement is automatically set to
better suit the design.
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Figure 5.1: Placement of the processor cells and blocks

5.2 Routing

The Routing step consists of the realization of the interconnections between
the standard cells, using wires. The objective is to connect 100% of a system while
minimizing wire length and cross-talk. As for the Placement, Routing changes its
meaning based on implementation technology:

• Standard cells: exact geometric description of the metal interconnections

• PLD: selection of the routing tracks to be used to connect the various blocks

While Routing can be realized with a single-phase approach called Area Rout-
ing, generally, it is divided into two phases:

Global Routing −→ a coarse routing that has two scopes: generating an ap-
proximate route for each net and assigning to the correct routing regions each
net without specifying the actual layout. This process consists of three steps:
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Figure 5.2: Final layout of the processor

Region Definition, partitioning of the design into routing regions, Region Assign-
ment, identifying the series of routing regions that each net will route through,
Pin Assignment, each net is assigned to a pin.

Detailed Routing −→ the actual definition of the geometric layout of the nets.
This process is carried out incrementally: each region is routed one at a time in a
predefined order, based on the nets criticality and nets density of the region.

The result of the Routing phase is the geometric layout of each net connecting
the standard cells: in figure 5.2 is presented the final layout of the processor.
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Conclusions and Future Works

A study on the 5G standard was conducted to determine the specifics and
requirements for a processor implementing the Fast Fourier Transform (FFT) al-
gorithm. Starting from the various designs of processors present in literature, in
particular, the one described in the paper “A High-Flexible Low-Latency Memory-
Based FFT Processor for 4G, WLAN, and Future 5G”[8], a Register Transfer
Level (RTL) design of the processor was realized and tested to verify its func-
tioning. Using Design Compiler®, the synthesis of the design was carried out to
obtain a netlist implementable using the Global Foundries 22 nm FD-SOI technol-
ogy. Finally, the Physical Design of the processor layout was performed in Innovus
Implementation System to obtain a geometric description of the design that could
be used to realize a functioning chip. The main applications for this design come
from the necessity of fast modulation and demodulation of complex data symbols
in radiocommunication, in particular as part of Orthogonal frequency-division mul-
tiplexing (OFDM) for 5G, LTE, Wi-Fi and other communication systems.

As described at the end of chapter 3, while the processor is perfectly functional
for each FFT or DFT size mapped in two stages using the Mixed-Radix Algorithm
(MRA), it still presents some problems for FFT or DFT sizes mapped in a higher
number of stages. This issue could be the object of future studies, starting from the
Conflict-Free Access Scheme implementation which seems to be its main reason.
Moreover, a more accurate study of memory architectures could lead to a better
implementation of the RAM memory of the processor, to reduce both its power
consumption and the area occupied on the die.
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