


Abstract

This work further explores the existence of a network specifically devoted to prediction in the

brain. Building on previous knowledge, multiple meta-analyses on General Prediction, Prediction

Encoding and Prediction Violation are performed, both within and across different cognitive do-

mains (Cognitive Control, Attention, Language, Motor, and Social Cognition). Domain-specific

prediction appears to be mediated by different brain regions depending on the considered domain,

which closely resemble those that are involved in signal processing and elaboration in that domain.

Moreover, the processing of prediction violation seems to involve the insula and the inferior frontal

gyrus, as previous meta-analytic work suggested. Finally, previous findings on the existence of a

prediction network in the brain are partially replicated, once again highlighting the role of the in-

sula and the inferior frontal gyrus in said network. Due to unforeseeable computational limitations,

these results can be considered only partial and need replication.

In parallel with this meta-analytic work, a new tool for the evaluation of risk of bias in cognitive

studies is developed, as the literature lacks such an instrument. This tool is therefore created by

adapting a checklist for the assessment of quality in cognitive studies and then applied to a subset

of papers from the Social Cognition meta-analyses. Its statistical properties are assessed starting

from these preliminary data: although its inter-rater reliability is not good, this instrument shows

potential to be widely used in research, once a few adjustments to its structure are made.

Keywords: Prediction; Predictive coding; Meta-analysis, Risk of bias; Neuroimaging.
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Chapter 1

Introduction

How does the brain work? Is there some overarching principle that regulates everything that

happens inside a human’s head? These and many other questions on the nature of the human

brain do not have a definite answer yet, despite many different attempts at an answer have been

made. In this work, one of such attempts, predictive processing, will be presented and analyzed,

and new evidence for how it may be implemented in the brain will be brought forward.

During the groundwork for this study, a lack of tools for the evaluation of risk of bias in

cognitive studies emerged in the literature, which laid the foundations for an effort to design such

an instrument. This led to the development of the AEROBICS (Analysis & Evaluation of Risk Of

Bias In Cognitive Studies).

1.1 Predictive processing

Predictive processing (also known as predictive coding) is a theory that describes brain function

starting from computational models of prediction (Friston, 2002). In this theoretical proposal the

brain is considered as a prediction machine, which generates top-down predictions about the input

it receives and then corrects them by comparing them to the actual input (Clark, 2013; Friston,

2002). At the beginning, this theory was only applied to perception (Friston, 2002), but then it

was extended to include action as well, in what is known as active inference (Adams et al., 2013).

Predictive processing is biologically plausible, as it adapts very well to current knowledge about

cortical hierarchies and intrinsic connections in cortical areas (Friston, 2002; Friston and Kiebel,

2009).

In the next sections a more thorough description of predictive coding will be provided, in order

to allow a better understanding of the work which will be later presented.

1.1.1 A brief history of predictive coding

The intuition about the brain being an inference machine goes a long way back in time: at the

very beginning of scientific psychology Helmholtz described perception as an inferential process

(V. Helmholtz, 1867, 1971). The revolutionary idea here is that the only data available to sensory
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systems are the effects the world has on sensory organs, and from this they have to infer what caused

such effects (Clark, 2013). As time went on, Helmholtz’s ideas were further developed in different

ways (for a brief review see Clark, 2013), but not all of them were relevant for the development of

predictive coding.

After the description of the visual cortical hierarchy in the macaque brain (Felleman and Van Es-

sen, 1991), Mumford (1992) developed a model of visual perception based on the hierarchical or-

ganization of the cortex: cortico-cortical loops are described as template-residuals loops, which are

extremely similar to the basic mechanism behind predictive coding. On the one hand, high hier-

archical levels contain templates, which allow the system to make hypotheses about the incoming

data. These hypotheses are transmitted to lower areas via descending connections. Lower hierar-

chical levels, on the other hand, code residuals, that is to say data that do not fit the templates,

and broadcast them up the hierarchy to allow for better hypotheses (Mumford, 1992).

Starting from Mumford’s description of template-residuals loops, the first hierarchical formu-

lation of predictive coding was provided (Rao and Ballard, 1999): predictive coding was used

to explain some extra-classical effects in the visual hierarchy (e.g., endstopping, the reduction or

elimination of the response of a neuron to an optimally oriented line when it extends beyond the

receptive field of the considered neuron). In the model by Rao and Ballard (1999) higher corti-

cal levels compute predictions about the state of lower areas, which are projected downwards via

descending connections. In lower areas the prediction signal is compared with the actual activity

derived from sensory inputs, and the difference between them, known as prediction error, is sent

back up the hierarchy to update the prediction via ascending connections. This is a Bayesian belief

updating process, in which prior beliefs are updated by prediction errors from lower areas, and

constitutes the basic mechanism of predictive coding (Clark, 2013; Friston, 2002, 2005).

The previously described models were then expanded and formalized in a precise theory in nu-

merous papers by Karl Friston (Friston, 2002, 2005, 2009; Friston et al., 2017). In this formalization,

this author introduced some innovations that allowed predictive coding to become a much more

comprehensive theory (Stephan et al., 2019). First, besides the fundamental concepts of prediction

and prediction error, he introduced the concept of precision: precision is the inverse of variance

(Friston, 2002) and allows the system to regulate how each component of the predictive model

(i.e., predictions and prediction errors) is weighted (Adams et al., 2013; Fletcher and Frith, 2009;

Friston, 2009). This enables the system to become context-sensitive (Hohwy, 2020) and thus able

to deal with the noise and ambiguity of the many different situations it may face. Second, Friston

specified that the message passing described by predictive coding goes on not only between areas,

but also within the same brain area, in its different neuronal layers (Friston and Kiebel, 2009).

This idea sits well with the structure of cortical columns (Bastos et al., 2012; see later for a more

precise description).

Before moving on to describing the precise mechanisms of predictive coding, it is central to

provide an explanation of why this theory provides a unifying account of brain activity.
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1.1.2 Predictive processing as a unifying account of brain activity

Before explaining why predictive processing may be regarded as a unifying principle of brain activity,

it seems useful to quickly address why having a unifying theory of brain activity may serve our

understanding of the brain in the first place.

Epistemologically, empirical work should always be accompanied by theoretical elaboration, so

that theory can drive and inform research. This is true for any science, but seems particularly

relevant for neuroscience as it strives to explain how the brain works (Hohwy, 2007; Shipp, 2016).

As a matter of fact, the brain is an extremely complex object and studying it empirically without

a general reference framework may become convoluted and, in the long run, nonsensical, as many

different findings are piled up but never organized in a coherent framework.

It has been argued that predictive processing can subsume many different theoretical approaches

(Friston, 2010), even those that are apparently opposite to it (Hohwy, 2016). Where does this

unifying power come from? Predictive coding can be seen as a corollary of the free-energy principle

(Friston, 2005, 2009, 2010; Prosser et al., 2018), which states that biological systems resist a natural

tendency to disorder, meaning that they maintain their states in a constantly changing environment

(Friston, 2010). This can be generalized to the attempt of biological agents to maintain homeostasis

and minimize entropy, which in certain frameworks is defined as the average of surprise over time

(Friston, 2010). This means that biological organisms try to minimize the surprise associated with

their states at any given moment in order to remain homeostatic (Bastos et al., 2012; Prosser et al.,

2018). The most immediate way to accomplish this is to minimize prediction error by improving

their predictions or by modifying the input with action (Adams et al., 2013; Bastos et al., 2012;

Friston, 2010; see later for a more thorough discussion).

This unifying power can be taken to the extreme, as some interpretations of the minimization

of prediction error lead to the conclusion that sensory input is the only evidence an agent can

have of their own existence (Hohwy, 2016). In this view, the existence of the agent become self-

evidencing, which means that the hypothesis that the agent exists best explains some evidence and

thus provides evidence for itself. In summary, evidence supports a self-evidencing hypothesis to the

extent the same hypothesis explains that evidence (Hohwy, 2016). It follows that the better the

brain gets at seeking out evidence it can explain, the more evidence it has for its own existence

(Hohwy, 2016).

Such a point of view may sound appealing or appalling to the reader, but it goes far beyond

the scope of what concerns the matter at hand. Here, it is sufficient to point out that the free

energy principle, in its different formulations, can explain a number of different phenomena linked

to cognition and, in general, to the human mind, thus giving predictive coding the potential to be

a unifying principle of brain activity.

1.1.2.1 Perception

As stated before, one could say that predictive coding as a whole started as a way to explain

perception (Clark, 2013; Friston, 2002). Perception can be viewed as an inverse problem, as the

brain has to infer what caused sensory inputs to describe the reality around itself starting from

those inputs alone (Friston, 2002, 2005). A predictive scheme eliminates the ambiguities of solving
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such a ill-posed problem (Friston, 2002): without entering into the mathematical formalism, it does

not try to infer the causes from the inputs (which leads to an indeterminate answer) but rather

to predict the input from a representation of the causes. From the comparison of predictions and

actual inputs, a prediction error may be generated and carried back up the hierarchy to optimize

the model (Friston, 2009; Shipp, 2016). It is important to remember that this happens on multiple

hierarchical levels: each level predicts the activation pattern of the level beneath it and sends

prediction errors to the level above (Friston, 2005, 2009; Friston and Kiebel, 2009; Hohwy, 2020).

Models based on predictive coding have been proposed for numerous perceptual phenomena, both

neural and from subjective perception. In the following list some of the most illustrative ones can

be found:

– Repetition suppression: repetition suppression is a neural phenomenon in which neurons

reduce their firing rate to a specific stimulus when it is presented repeatedly. It can be elicited

in both electrophysiological and functional neuroimaging studies (for a review, see Barron

et al., 2016). It is clear how repetition suppression can be described by predictive coding: as

a stimulus is repeated, its representation becomes more and more accurate, leading to fewer

prediction error signals and thus to a reduction of the associated neural signal (Grotheer and

Kovács, 2016).

– Mismatch negativity (MMN): the MMN is a negative ERP component which is elicited by

any change in a repetitive stream of auditory stimuli (Näätänen, 2003). Such a component

can be seen as a transient prediction error, signalling that the model used to predict auditory

stimuli up to that point needs to be updated (Friston, 2005).

– Binocular rivalry : binocular rivalry is a perceptual phenomenon that rises when the two eyes

are presented simultaneously with different visual stimuli. In this case, the subject perceives

the two different images distinctively and reports the perceptual alternation of the two (for a

review see Leopold and Logothetis, 1999). This phenomenon can be explained by a predictive

coding schema (Hohwy et al., 2008): the brain first selects the image most compatible to

the model it deems most suitable to describe the world, resulting in the subject perceiving

one specific image, even though it is seen by just one eye. This model and its predictions,

however, cannot explain away the prediction errors coming from the input from the other eye,

which are therefore carried up the hierarchy. To suppress those prediction errors the brain

has no alternative but to change its model of the state of the world, switching to the one

which describes the visual stimulus presented to the other eye. Therefore, the subject starts

perceiving a different image. The change in the model results, nonetheless, in large prediction

error signals coming from the input of the first eye, which once again cause the switch in the

considered representation. This repetitive process explains the perceptual alternation of the

two images (a more thorough description can be found in Hohwy et al., 2008).

1.1.2.2 Action

The free energy principle can be declined to also explain action, in what has been described as

active inference (Adams et al., 2013; Friston, 2009, 2010). Active inference could be regarded as an
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extension of predictive coding: once again, at any given point in time, the brain is trying to minimize

prediction error. This may be achieved in one of two ways (Adams et al., 2013): the brain can

either update its predictions to be more similar to sensory input (perceptual inference as described

in predictive processing) or change the way it samples the environment so that sensory input

corresponds to predictions (action). In the case of action, predictions are transmitted downwards

in the motor hierarchy (Friston, 2009, 2010). Crucially, these predictions are proprioceptive in

nature, meaning that the brain is trying to predict future bodily states (e.g., muscle tension,

position in space; Adams et al., 2013). These descending signals are then compared with the actual

proprioceptive input and prediction errors may arise. Again, the key difference between predictive

coding and action (as described in active inference) emerges here: in predictive coding prediction

errors are explained away as the predictive model is updated, whereas in action proprioceptive

prediction errors are automatically transformed into movement. This means that proprioceptive

predictions are fulfilled rather than corrected (Adams et al., 2013). This take on action inverts the

typical concept of motor control, as fibers descending from the motor cortex do not carry motor

commands but proprioceptive predictions. Their comparison with actual proprioceptive input at

the level of the spinal cord generates prediction errors, which activate motor neurons, resulting in

muscle contraction (Adams et al., 2013). Action, as described in these terms, sits well with the

previously cited extreme views on free energy and predictive coding (e.g., Hohwy, 2016): the agent

is so dependent on finding evidence for their own existence that they actively look for it by changing

their action on the environment.

1.1.2.3 Attention

Predictive coding and, more generally, the free energy principle also provide an innovative way to

describe attention (Friston, 2002, 2009). As a matter of fact, attention is conceptualized as precision

optimization (Hohwy, 2020), meaning that it regulates the weight that is given to predictions and

predictions error when they are compared, becoming the cognitive counterpart of precision (Clark,

2013; Friston, 2002). For example, in a situation for which the agent does not have a strong

predictive model, predictions may be weighted less so that prediction errors coming from the input

may be stronger and thus cause the updating of the model (i.e., learning) more easily (Clark,

2013). Therefore, attention allows the system to adapt its inferences and learning to a ever-

changing world by continuously changing the relative weight given to predictions and prediction

errors (Hohwy, 2020). Interestingly, such a view on attention is also relevant for action (Hohwy,

2020): proprioceptive predictions and prediction errors can be differentially weighted depending on

the context, which allows the agent to be more adaptive in their environment (Adams et al., 2013;

Hohwy, 2020).

1.1.3 Predictive processing in the clinical field

If predictive processing truly is a unifying account of brain activity, it should not only explain how

the brain works, but also have the potential to describe what happens when something goes wrong

with it (Clark, 2013). This effort to apply predictive coding to the clinical field is ongoing, but

has already had some results: most of the research conducted has focused on psychiatric disorders
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(Friston, 2023; Smith et al., 2021), but some hypotheses on neurologic disorders have been put

forward as well. Crucially, most models of disorders developed from predictive processing rely to

some extent on deficits in precision optimization (Friston, 2023). For example, the typical symptoms

of Parkinson’s disease can be modelled as alterations in the regulation of precision of prediction

errors in the motor hierarchy (Adams et al., 2013). In psychiatry, models based on predictive coding

have been developed for some psychopathic traits (Prosser et al., 2018), for the positive symptoms

of schizophrenia (Fletcher and Frith, 2009) and other psychiatric disorders including depression and

autism (for a review, see Smith et al., 2021). For a more comprehensive discussion of the potential

of predictive coding in computational psychiatry the interested reader is referred to Friston (2023).

1.1.4 Predictive processing as a biologically plausible account of brain

activity

As previously stated, predictive coding is considered a biologically plausible account of brain activ-

ity, in the sense that the known laminar organization and anatomical connections in the brain sit

well with the way this theory describes message passing within and between areas in brain hierar-

chies (Bastos et al., 2012; Friston, 2002; Friston and Kiebel, 2009). Interestingly, this applies to the

motor system as well (Adams et al., 2013; Bastos et al., 2012). Nonetheless, this biological plau-

sibility is not surprising, as predictive coding was first developed in close connection to empirical

evidence on cortical hierarchies (Mumford, 1992; Rao and Ballard, 1999).

1.1.4.1 Forward and backward extrinsic connections

Predictive coding describes each kind of message (i.e., predictions, prediction errors, and precision

signals) as being transmitted by different kinds of connections (Friston, 2002, 2005). Forward

connections go from a lower to a higher hierarchical level and therefore carry prediction errors.

Backward connections start in higher cortical levels and terminate in lower ones, carrying either

predictions or precision signals (Friston, 2002, 2005; Friston and Kiebel, 2009). It is important

to note that lateral connections, linking areas at the same hierarchical level, exist. This kind

of connections are not directly linked to signal transmission but allow the competition between

different predictive models, as predicted by the mathematical models describing predictive coding

(for a more formal description, see Friston, 2002).

Given that all these are extrinsic connections, they connect different areas of the same hierarchy

and are considered to have different effects on the neurons they target. Forward connections are

driving and always elicit a response. Backward connections, on the other hand, can be either

driving (if they convey predictions) or modulatory, which serves as a demonstration of the fact that

they mediate precision optimization (Bastos et al., 2012; Friston, 2005).

These connections also have different laminar origins and targets. Forward extrinsic connections

originate from superficial pyramidal cells and terminate in layer IV, whereas backward extrinsic

connections start from deep pyramidal cells and end outside of layer IV (Bastos et al., 2012).

Clearly, this is a simplification and origins and terminations of fibers may not be so clearly defined.

Nonetheless, this distinction is useful to understand the intrinsic connectivity of brain areas.
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1.1.4.2 Different neurons for different functions: intrinsic circuitry

As hinted above, predictive coding rises from mathematical modelling of how prediction may happen

in the brain (Friston, 2002, 2005). As the development of this theory went on and more equations to

describe it were formulated, the message passing dynamic that was suggested by the mathematical

formalism led Friston and Kiebel (2009) to hypothesize the existence of the two distinct neuronal

populations to code signals as required by predictive coding (i.e., one population coding predictions

and the other one coding prediction errors). Evidence for the existence of such populations emerged,

as it became evident that superficial and deep layers of the cortex, although deeply interconnected,

have different processing functions (Bastos et al., 2012).

Predictive processing posits the existence of four (plus one) kinds of units, based on the com-

bination of two basic properties that define the function of each neuron (Friston and Kiebel, 2009;

Shipp, 2016).

– Error vs. expectation units: error units receive prediction signals and generate prediction

errors. On the contrary, expectation units are responsible for the generation of predictions to

be conveyed to lower hierarchical levels (Shipp, 2016).

– Units for causes vs. for states : cause units code for the aspects of the environment that

produce regularities in sensory input (e.g., visual objects), whereas state units code for the

dynamics of reality, meaning the momentary changes in input due to interactions among

causes or between a cause and the context (e.g., an object being partly occluded by something

else; Shipp, 2016).

The interaction of these properties gives rise to four different kinds of neurons (i.e., error units for

causes, error units for states, expectation units for causes, and expectation units for states; Shipp,

2016). The fifth class of neurons are the ones mediating precision and its optimization. They have

a modulatory effect on other neuronal units and can be conceptualized as coding the reliability of

the signal provided by each unit according to the system.

The dynamics of message passing among these classes of cells are extremely complex and well

beyond the scope of this work (a thorough description can be found in Shipp, 2016). Nonetheless,

in order to understand how this theoretical circuit maps onto real neural circuitry, some basic hints

will be given (Bastos et al., 2012; Shipp, 2016):

– Error units for causes are particularly associated with interactions across levels: they receive

prediction signals from higher hierarchical levels and generate prediction errors to update the

model at higher levels.

– Message passing between units for states is mostly intrinsic to any given level. Nonetheless,

units for states may receive modulatory inputs from neurons coding precision from higher

hierarchical levels.

– Error units receive both excitatory and inhibitory inputs from expectation units in the same

hierarchical level and the one above to compare signals and compute the error signal.
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The identification of these distinct neuronal populations with specific types of neurons known

to be differentially present in cortical layers was hypothesized together with the existence of such

neuronal distinction (Friston and Kiebel, 2009). Nonetheless, a precise mapping onto the anatomy

of microcircuitry and intrinsic connections was first provided by Bastos et al. (2012): the authors

start from the description of the canonical microcircuit (which models how information flows in

the cortical column; Douglas and Martin, 1991; Douglas et al., 1989) and assign to each neuronal

population described there a specific role according to predictive coding, based on the known

connections among cellular layers. Shipp (2016) takes another perspective on the link between

the canonical microcircuit and the neuronal populations hypothesized from predictive coding, as

the canonical microcircuit (Douglas et al., 1989; Douglas and Martin, 1991) and evidence for its

existence are analyzed to verify whether they are in accord with predictive coding. The author

concludes that there is good correspondence, although at times predictive coding is lacking in

describing the richness of cortical organization (Shipp, 2016).

Notably, in this effort to map neuronal populations in the different layers, neurons coding preci-

sion have also been considered, together with the biological mechanisms that may mediate precision

optimization (Friston et al., 2017; Shipp, 2016). It is general consensus that precision is mediated

through neuromodulatory transmitter systems (e.g., by NMDA receptors, which are perfect candi-

dates to have modulatory effects due to their long time-dynamics) or population dynamics (Friston

et al., 2017).

Most of the work on the laminar organization of the cortex has been carried out on animal

models or simulations (Bastos et al., 2012), but there is potential for in-vivo non-invasive studies of

the laminar organization of the brain in humans: the development of laminar functional magnetic

resonance imaging (laminar fMRI; e.g., Koopmans et al., 2010; Polimeni et al., 2010) allows for

some hypotheses brought forward by predictive coding to be tested in humans and, more generally,

makes it possible to compare predictive coding against other theories of brain functioning (Stephan

et al., 2019).

1.1.4.3 Predictive processing is evolutionarily plausible

As pointed out in this section, there are a number of reasons for which predictive coding can be

deemed biologically plausible. As the last piece of the puzzle, it is important to verify whether it

is also evolutionarily plausible. In order to do so, one needs to see whether predictive processing

makes organisms more fit to their environment and if there are plausible evolutionary mechanisms

that can explain its origin.

It has been argued that brain structures underlying predictive coding are not a late evolution-

ary addition but rather emerged gradually from simpler predictive loops, already present in early

evolutionary ancestors to humans (Pezzulo et al., 2022). These ancient predictive loops originated

from even older generative models called homeostats (Pezzulo et al., 2022): as the name suggests,

these simple loops were involved in the regulation of homeostasis, by constantly predicting the

optimal homeostatic state and thus leading the organism to act to reach said state (in line with

the principles of active inference). This kind of processing allows only reactive action once the

status of the organism changes from the optimal one. Nonetheless, predictive action (meaning
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acting to avoid change from the optimal status) can be achieved with the interaction of different

homeostats, which form a so-called allostat (Pezzulo et al., 2022). The elaboration from unimodal

homeostats to multimodal allostats is the first mechanism of evolution that could have led to the

development of the predictive brain as it has been described up to this point. There are other

three mechanisms that have been hypothesized (Pezzulo et al., 2022): the duplication of predictive

loops (which enlarges the behavioral repertoire of the organism), the equipment of the model with

temporal depth (which allows prospective and retrospective inference), and with hierarchical depth

(which results in a loop made of different hierarchical levels that encode latent states unfolding at

different timescales). Different combinations of these mechanisms may generate brains of different

complexity and predictive capacities, including primate brains (Pezzulo et al., 2022).

1.1.5 Predictive processing and neural networks

As reported earlier in this work, predictive coding took its footing from works on the sensory hier-

archies (Mumford, 1992; Rao and Ballard, 1999). It therefore goes without saying that predictive

processing represents a good model for perceptual networks in the brain, with most of the work in

this theory focusing especially on the visual system (Clark, 2013). The same goes for the motor

hierarchy, when the concept of predictive coding is expanded in active inference (Adams et al.,

2013; Friston, 2009).

Some efforts have been made to apply predictive coding to other known anatomical and/or

functional networks in the brain (Friston et al., 2017). For example, the functional neuroanatomy

of cortico–basal ganglia–thalamic loops has been organized into a predictive model, whose message

passing according to predictive processing (also in its neuronal components) makes sense with

known anatomical connections among these regions (Friston et al., 2017). Another example is

an attempt to describe the mirror neuron system (MNS; Rizzolatti and Craighero, 2004): the

problem of inferring one’s intention and goals from their movements can be conceptualized as being

hierarchical in nature, which makes it suitable for the application of predictive coding (Kilner et al.,

2007). Once the MNS is described as a predictive system, it becomes evident that a predictive model

gives the simplest answer to the question about how mirror neurons do what they do: by taking

into account the context, it allows the MNS to infer different intentions from visually identical

movements (Kilner et al., 2007). Notably, this predictive hypothesis for the MNS has received

some empirical support (Kilner et al., 2007).

From what reported above, it clearly emerges that predictive coding as a general theory of

brain functioning allows for the development of plausible domain-specific models of different brain

functions and networks. This left researchers wondering whether in the human brain a domain-

general prediction network exists, defined as a set of cortical and subcortical regions engaged in

higher-level prediction across functional domains and processing modalities (Siman-Tov et al., 2019).

To date, it is possible to identify two attempts at answering this question (Ficco et al., 2021;

Siman-Tov et al., 2019). Both of these works used a meta-analytic approach, which allows the

combination of large sets of data from different studies to find any underlying regularities and, in

the case of functional neuroimaging studies, brain areas that are consistently active across different

tasks with different stimuli. The meta-analyses run by Siman-Tov et al. (2019) and Ficco et al.
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(2021) will be now described in detail, as they constitute the foundations of the work that will be

conducted here.

1.1.5.1 Siman-Tov et al., 2019. Is there a prediction network? Meta-analytic evidence

for a cortical-subcortical network likely subserving prediction.

This meta-analysis considers 39 functional neuroimaging studies concerning prediction formation

and violation in three domains: music, language, and action perception. The analysis was carried

out using Activation Likelihood Estimation (ALE; for a description of this method see Eickhoff

et al., 2009, 2012). The authors report significant convergence in several cortical and subcor-

tical clusters: bilateral anterior insula, inferior frontal gyrus and ventral premotor cortex, right

pre-supplementary motor area, middle frontal gyrus, supramarginal gyrus and subthalamus, left

posterior superior temporal sulcus, caudate and cerebellar lobule VII. A contrast analysis compar-

ing prediction violation and formation was run but did not support a major difference between the

brain regions mediating these processes.

The authors argue that the reported areas form a network that subserves domain-general higher-

level predictive processing. In the discussion, they put forward some hypotheses concerning the

connections between the proposed predictive network and other known neural networks, as it shares

some hubs with the salience network, the ventral attention network, and the mirror neuron system.

Moreover, the proposed network closely resembles the brain regions implicated in implicit learning

and social cognition. Notably, all the functions referred here or mediated by the cited networks can

be (or have already been) described with models rooted in predictive coding.

1.1.5.2 Ficco et al., 2021. Disentangling predictive processing in the brain: a meta-

analytic study in favour of a predictive network.

This meta-analysis considers 70 functional neuroimaging studies concerning prediction encoding

and violation without selecting any specific domain. The analysis was carried out using Activation

Likelihood Estimation (ALE; Eickhoff et al., 2009, 2012). The authors also investigate the connec-

tivity patterns of the areas showing convergence in ALE using the Seed-Voxel Correlations (SVC)

Consensus technique (Boes et al., 2015; Darby et al., 2019). In short, this technique highlights the

regions whose activity correlates with the one in the regions emerging from ALE.

In this study, the analyses for prediction encoding and violation were carried out separately,

then the two datasets were merged to allow for the analysis of general prediction. The results are

summed up in the following bullet points for easier reading:

– Prediction violation: significant convergence was reported in two clusters, one in the left

inferior frontal gyrus and the other in the left anterior insula (with some overlapping with

the claustrum).

– Prediction encoding : no significant clusters emerged at various thresholds of significance. The

analysis was then carried out with an uncorrected threshold. The results of this exploratory

analysis will not be reported here, but the interested reader is referred to the original paper

(Ficco et al., 2021).
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– General prediction: significant convergence was reported in clusters spanning in the frontal

and parietal lobe, including the left inferior frontal gyrus, the bilateral insula, the right frontal

superior frontal gyrus, the bilateral inferior parietal lobules, and the left precuneus.

From the SVC Consensus analysis, the results from the three conditions were extremely similar,

therefore the authors report just the ones for general prediction. Peaks are located in the left inferior

frontal gyrus, the bilateral superior temporal gyrus, the left thalamus, the left hippocampus and

the left cerebellum.

The maps obtained from the ALE and SVC analyses show a high similarity, which suggests that

active areas tend to form a coherent functional network. The results obtained in this meta-analysis

are reported as evidence for the existence of a prediction network across sensory modalities and a

variety of tasks, which overlaps with known large-scale networks for attention and task execution.

The ALE results for Prediction Violation replicate previous findings on the insula and the

inferior frontal gyrus only. On the one hand, the convergence in the insula may mean that any

prediction violation, regardless of its nature, produces an error broadly related to the self. On the

other hand, the inferior frontal gyrus is involved in detecting a mismatch between expectations and

decisions, hinting at a role in expectation violation. Moreover, intrinsic connectivity between the

insula and the inferior frontal gyrus was predicted by the degree of uncertainty intolerance, which

indicates a sensitivity to error signals. The ALE results for general prediction replicate some of the

hubs of the networks proposed by Siman-Tov et al. (2019), which extends their findings to more

domains than the ones they considered.

As previously reported, the SVC Consensus results are highly similar in all conditions, which

is particularly relevant when considering prediction encoding and violation: these findings strongly

support that the same network underlies both functions. Moreover, the network obtained in this

analysis across conditions resembles very closely the task positive network (TPN), a large-scale

brain network involved in task execution. The TPN is usually divided into three branches: the

salience network, the ventral attentional network and the dorsal attentional network. Again, this

replicates the results of the meta-analysis by Siman-Tov et al. (2019). Interestingly, the network

proposed by Ficco et al. (2021) is also negatively correlated with the default mode network (DMN),

as the TPN usually is. The authors deem this as surprising, since the DMN was suggested as being

responsible for creating and updating internal predictive models. This finding requires further

research into it.

1.1.6 All in all, is there a prediction network in the brain?

The work presented in this report starts from the results of the previously described meta-analyses

(Ficco et al., 2021; Siman-Tov et al., 2019). It takes after them both methodologically and concep-

tually. First of all, it is a meta-analysis aiming at the potential discovery of a set of brain regions

involved in prediction. The analysis per se will not be carried out using ALE here, but it seems

important to stress that this work is part of a bigger effort to find new insights into the existence

of a prediction network with a variety of methods, including ALE (Costa et al., 2023b).

This meta-analysis will be actually made up of many different meta-analyses. Taking from

Ficco et al. (2021), included contrasts will be divided into a Prediction Encoding and a Prediction
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Violation dataset, which will be analyzed separately. These datasets will be then pooled together

to perform a General Prediction (meaning process-general) meta-analysis. Moreover, taking from

Siman-Tov et al. (2019), studies focusing on prediction in some specific cognitive domains will be

considered, namely Cognitive Control, Attention, Language, Motor, and Social Cognition. Again,

these datasets will be then pooled together to run an Overall (meaning domain-general) meta-

analysis.

To summarize, for each cognitive domain considered three different meta-analyses will be con-

ducted (i.e., Prediction Encoding, Prediction Violation and General Prediction). At the end, the

same will be done for the domain-general datasets, which will include all the studies from each do-

main plus some studies on Memory, Music and Pain. These domains were considered for inclusion

but did not reach a sufficient number of studies to run a reliable domain-specific meta-analysis. In

total, 18 different meta-analyses will be conducted. For ease of reading, from this point forward the

meta-analyses will be referred just by the domain and the specific process they investigate (e.g.,

Attention Encoding, Overall Violation, Language General, and so on).

This work aims at expanding the current knowledge on how prediction works in the brain, both

in a domain-specific and in a domain-general manner. First, it tries to clarify whether domain-

specific prediction networks (maybe intertwined with a general prediction network) exist. Second,

it attempts to further clarify whether Prediction Encoding and Violation are mediated by different

areas or they can be considered as different expressions of the same areas (Ficco et al., 2021).

Finally, it will try to characterize the already hypothesized prediction network (Ficco et al., 2021;

Siman-Tov et al., 2019) more precisely, as it will include a significantly higher number of studies,

thus increasing the power of the meta-analysis.

1.2 Risk of bias

When conducting research, one can never be sure if the results they obtained are true or the

consequence of some mistake made along the way. This is the reason why researchers try to control

every variable that may impact their studies, so that they can be certain, to some degree, of the

fact that their findings result from the manipulation they ran.

Bias is a specific kind of error, as it is systematic (Boutron et al., 2019), which means that it is

caused by some underlying cause that alters all the results in the same way (e.g., an ill-calibrated

scale weighting every object 43 grams more than it actually weights). When it comes to systematic

reviews and meta-analyses, the definition of bias gets more complicated, because it can arise from

two different sources (Boutron et al., 2019): the actions of the authors of the review/meta-analysis

or of the primary authors, meaning those who conducted the included studies.

In this work, the focus will be on the bias in included studies, as a paucity of instruments for its

evaluation emerged during the preparation of the previously described meta-analyses. Biases due

to the actions of the people conducting the review or meta-analysis can be avoided by adhering to

published guidelines for these kinds of studies (e.g., the PRISMA statement; Liberati, 2009; Moher

et al., 2010; Page et al., 2021a, 2021b).

Given that it is impossible for review/meta-analysis authors to assess the presence of biases
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in the included studies with certainty, it is more appropriate to refer to a result as being at risk

of bias (Boutron et al., 2019). Risk of bias can therefore be defined as the likelihood that some

features of the study design or of the conduct of researchers will lead to misleading results (Boutron

et al., 2019; Moher et al., 2010; Page et al., 2021a). It can be further characterized into two classes

(Boutron et al., 2019; Moher et al., 2010; Page et al., 2021a):

– Risk of bias in results of included studies : the likelihood of the results of a review/meta-

analysis being wrong because of biases present in the included papers.

– Risk of bias due to missing results : the likelihood of the results of a review/meta-analysis

being wrong because of the absence of studies that should have been included (e.g., because

of publication bias, which describes the tendency to publish only significant results, leaving

out countless instances of non-significant ones).

The extreme importance of evaluating both of these kinds of biases is stressed in the main guidelines

for reviews present in the literature, namely the ones for Cochrane Reviews (which include both

systematic reviews and meta-analyses of healthcare studies; Boutron et al., 2019) and the PRISMA

Guidelines (developed specifically for systematic reviews and meta-analyses of clinical interventions,

but deemed relevant to any systematic review or meta-analysis; Liberati, 2009; Moher et al., 2010;

Page et al., 2021a, 2021b).

The instrument developed here focuses on the first kind of risk of bias, as statistical methods

to evaluate the risk of bias due to missing results are already available (for a review on methods

for the evaluation of non-reporting biases, see Lin et al., 2018).

A brief overview of previously developed measures of risk of bias in results of included studies

seems needed before describing the new instrument presented here for the first time. As a matter

of fact, the work to develop this innovative measure started from the shortcomings of what was

already present in the literature. Please note that, from now on, risk of bias in results of included

studies will be referred simply as risk of bias to make reading more fluid.

1.2.1 Measures of risk of bias in the literature

Only three relevant instruments for the assessment of risk of bias in reviews and meta-analyses

emerged after a thorough search of the scientific literature. All three focus on clinical studies,

which per se is problematic. The reasons for this will be clarified in a following section of this

report.

1.2.1.1 Wells et al., 2000. The Newcastle-Ottawa Scale (NOS) for Assessing the

Quality of Nonrandomized Studies in Meta-Analysis.

This scale (commonly referred to as just NOS; Wells et al., 2000) assesses the quality (an outdated

term used to indicate the inverse of risk of bias, i.e. the higher the quality of a study, the lower

the risk its results are biased) of non-randomized clinical studies before they are included in a

meta-analysis. Despite its deprecated terminology it is still renowned and used quite extensively

(amassing over 18,000 citations on Google Scholar at the time of writing). The NOS is made up of
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8 items, which evaluate possible sources of bias, divided into three domains based on which phase

of the study they are linked to:

– Selection: this domain refers to risk of bias arising from the selection of participants.

– Comparability : this domain is useful to ascertain if cases and controls are actually comparable

on most factors.

– Outcome/exposure: this domain evaluates whether exposure and/or treatment were performed

in the same way in controls and cases.

The NOS is definitely an easy-to-use and quick measure for quality/risk of bias, but concerns

about its validity have been raised (Stang, 2010). Moreover, as reported by Stang (2010), this

scale has never been published in a peer-reviewed journal, casting further doubts on its statistical

properties. Although the paper by Stang (2010) is more than 10 years old, to this day the NOS

seems to have not been published in any peer-reviewed journal.

1.2.1.2 Tools for the evaluation of risk of bias in Cochrane Reviews

Cochrane Reviews are a gold standard when it comes to reviews and meta-analyses in healthcare,

as they have to be written according to a specific manual, the Cochrane Handbook for Systematic

Reviews of Interventions. The Cochrane Organization provides a number of instruments for the

evaluation of risk of bias on a specific website (https://www.riskofbias.info/), but the main ones

are two:

– RoB 2 : it is the updated version of the Cochrane tool for assessing risk of bias in randomised

trials (Higgins et al., 2019; Sterne et al., 2019).

– ROBINS-I (Risk Of Bias In Non-randomised Studies - of Interventions): this scale assesses

risk of bias in non-randomised trials (Sterne et al., 2016), as the name itself suggests.

Despite their different target studies, these measures have the same general structure, which

guides researchers through some precise steps to produce an overall risk-of-bias judgement about

every study they want to include in their review/meta-analysis. Each tool screens a number of

domains for risk of bias, based on the specific features of the kind of research it is developed for.

On the one hand, the RoB 2 (Higgins et al., 2019; Sterne et al., 2019) screens for bias linked to

the randomization process, to deviations from intended interventions, to missing outcome data,

to the measurement of the outcome, and to the selection of reported results. On the other hand,

the ROBINS-I (Sterne et al., 2016) screens for bias linked to confounding, to the selection of

participants, to the classification of interventions, to deviations from intended interventions, to

missing data, to the measurement of outcomes, and to the selection of reported results. Each

domain is screened for bias through the use of the so-called signalling questions: they call for a

yes/no answer and allow for a somewhat structured assessment of risk of bias. Based on the answers

to these questions, authors can provide a risk-of-bias judgement for each domain and afterwards an

overall risk-of-bias judgement, which again describes the risk that including that particular study

in the review/meta-analysis being carried out will introduce some bias in the results due to the
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likely presence of bias in the results of the study itself. Both these instruments also have optional

components to evaluate the direction of bias in every domain and overall.

The RoB 2 (Higgins et al., 2019; Sterne et al., 2019) and the ROBINS-I (Sterne et al., 2016)

show some differences as well, also given that the RoB 2 has been updated more recently. For

example, the possible risk-of-bias judgments are different for the two measures: in the RoB 2 the

risk of bias may be judged as low, raising some concerns, or high, whereas in the ROBINS-I it may

be determined to be low, moderate, serious, or critical.

These tools rely heavily on the expertise of the researcher and might be therefore challenging

to use for someone approaching the field of systematic reviews and meta-analyses for the first

time. This dependence from the rater’s expertise is well recognized by the authors (Higgins et al.,

2019; Sterne et al., 2016, 2019) but is considered inevitable, as some degree of subjectivity in the

evaluation of single papers cannot be avoided. Another problem that has been reported in the use

of the ROBINS-I (which probably applies by extension to the RoB 2 as well; Igelström et al., 2021)

is the misapplication of this tool: researchers are sometimes too confident of their own expertise and

make unjustified modifications to the ROBINS-I protocol, thus making it less effective in detecting

overall risk of bias. Often the report of risk-of-bias assessment is also lacking (Igelström et al.,

2021), in the sense that many reviews applying the tool do not refer to its use in their reporting of

results. Finally, it is sometimes the case that the results obtained in the evaluation of risk of bias

are not used, meaning that studies rated at high risk of bias are included in the analyses anyway

(Igelström et al., 2021). All these problems are more serious for reviews of low methodological

quality (Igelström et al., 2021).

1.2.2 Why a new tool to measure risk of bias?

As previously reported, the need of a new tool to evaluate risk of bias emerged in the preparation

of the meta-analyses on predictive processing which will be later described.

Considering the guidelines for reporting a neuroimaging meta-analysis, namely the PRISMA

Guidelines in their 2020 update (Page et al., 2021a, 2021b), a thorough analysis of risk of bias in the

included studies seemed vital. Upon searching the literature, however, the results were inadequate:

the available tools, even the well-developed and peer-reviewed ones (i.e., the RoB 2 and ROBINS-

I), are specifically designed for reviews and/or meta-analyses of clinical trials. Applying them to

evaluate risk of bias in a meta-analysis of a totally different kind of study would not be feasible,

as potential sources of bias change with the nature of the study itself. For example, deviations

from intended interventions would not be a problem at all for a neuroimaging study run on healthy

participants, as there is no intervention to deviate from in the first place.

Starting from this, the decision to develop a new tool for the evaluation of risk of bias in cognitive

studies was made and the AEROBICS (Analysis & Evaluation of Risk Of Bias In Cognitive Studies)

was created. For a detailed description of the process that led to the conception and development

of the AEROBICS, see the section Evaluation of risk of bias in the chapter Materials and methods.

17



Chapter 2

Materials and methods

All steps of this study are in line with the PRISMA Guidelines (Page et al., 2021a,b).

2.1 Literature search

The literature search was systematically conducted on three different databases, namely PubMed

(https://pubmed.ncbi.nlm.nih.gov/), Embase (https://www.embase.com/), and PsycInfo (ProQuest;

https://www.apa.org/pubs/databases/psycinfo). The research strings and the number of papers

obtained with each search is available in Appendix A. The total number of papers found was 4,873.

The literature search included studies published until May 30, 2022.

2.2 Study selection

Given the large amount of relevant papers, selecting only those actually pertaining to the research

question being investigated was of key importance. A number of inclusion and exclusion criteria

were therefore implemented, starting from the research question and current guidelines for meta-

analyses of neuroimaging studies (Müller et al., 2018).

To be included studies should:

– Investigate prediction, either when it is violated or when it is encoded. A number of different

terms describing prediction were included in the search strings (e.g., expectancy, anticipation).

– Use functional neuroimaging, either functional Magnetic Resonance Imaging (fMRI) or Positron

Emission Tomography (PET).

– Include healthy adults only.

– Include at least 5 participants.

– Report results in a standardized coordinate space (either MNI or Talairach).

– Use data from the whole brain.

18



– Report contrasts coded so that activation in the prediction condition would be higher than

in the control condition.

– Use a univariate approach to data analysis, which reveals localized increased activations.

Experiments were excluded if:

– They used techniques other than functional neuroimaging. In the search strings a num-

ber of methods were explicitly excluded: Diffusion Tensor Imaging (DTI), machine learn-

ing, structural MRI, neurostimulation techniques (transcranial Direct Current Stimulation,

tDCS; Transcranial Magnetic Stimulation, TMS), and electrophysiological techniques (elec-

troencephalography, EEG; intracranial electroencephalography).

– Their samples included patients (especially ones with neurodegenerative disorders) and/or

children.

– They were single-case studies, animal studies, reviews, meta-analyses, clinical trials, or lon-

gitudinal studies.

– They included Region-Of-Interest (ROI) or Small Volume Correction (SVC) approaches.

After deleting duplicates and screening the abstracts of the articles found in the initial search, the

total number of eligible papers whose full text was read was 409.

The remaining articles were assessed for eligibility and after a double-check, coordinates from

252 experiments were included in the Overall General meta-analysis. In the Overall Encoding and

Overall Violation meta-analyses 134 and 175 experiments were included, respectively. The same

experiment could provide data for both the Encoding and the Violation condition, depending on

how its contrasts were coded. For papers describing more than one study, the single experiments

have been considered as separate data entries.

Please note that this selection process described here is the one for the Overall General meta-

analysis. Selected experiments were then assigned to one or more specific domains and conditions

based on the contrasts they contained and the phenomena they investigated.

Appendix B contains a table with the number of papers included in each meta-analysis, the

PRISMA flow diagram (Page et al., 2021a) describing the process of article selection, and a com-

prehensive list of all the papers included in all meta-analyses.

2.3 Data extraction

Once the eligible studies were identified, data extraction was performed. The following information

was extracted: the coordinates of significantly active foci in the contrasts of interest, their signifi-

cance values (either t-, z-, F-, or p-values, depending on what was provided in the paper), and the

number of participants.
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2.4 Evaluation of risk of bias

As previously stated, the evaluation of risk of bias is considered a key point for reviews and meta-

analyses in most guidelines (Page et al., 2021a; Page et al., 2021b), including those specific for

reviews and meta-analyses of neuroimaging studies (e.g., Müller et al., 2018). To evaluate risk of

bias the AEROBICS (Analysis & Evaluation of Risk Of Bias In Cognitive Studies) was used.

This tool was developed starting from the PECANS (Preferred Evaluation of Cognitive And

Neuropsychological Studies) Checklist (Costa et al., 2023a), which is a newly developed checklist

to evaluate the quality of methodology and reporting in cognitive and neuropsychological studies.

It was developed by a Delphi panel of experts and it is thought to provide a quick and easily

applicable way to improve papers before publication and evaluate them afterwards. It is divided

into sections which are based on the usual sections of a scientific paper. The scope of this checklist,

however, is much broader than the evaluation of risk of bias, therefore, after a thorough analysis

of all the items of the PECANS, only those relevant to risk of bias were selected. After selection,

items were grouped in four domains, which describe the possible areas in which bias may arise in

cognitive studies, namely participant selection, experimental task, support scales, and statistics.

Items were also rephrased to fit with the scoring system used by the AEROBICS, as it is different

from the one used by the PECANS, in that it does not call for yes/no answers. The user is instead

called to judge the risk of bias linked to every statement of the AEROBICS (choosing among low,

raising some concerns, moderate, and high, mimicking the scoring system used in Cochrane tool

for risk-of-bias evaluation; Higgins et al., 2019; Sterne et al., 2016, 2019). After having completed

the judgments for all the items, the user is guided in producing a risk-of-bias judgment for each

domain and then for the whole study.

The protocol for the AEROBICS can be found in Appendix C.

In this work, the AEROBICS was used only on a subset of the studies from the Social Cognition

domain, due to time constraints. Two independent raters evaluated risk of bias and then the inter-

rater reliability of the tool was calculated using R Statistical Software (v4.3.1, https://www.R-

project.org/; R Core Team, 2023) in RStudio (v2023.6.2.561, http://www.posit.co/; Posit team,

2023) with package irr (v0.84.1, https://cran.r-project.org/package=irr; Gamer et al., 2019).

2.5 Meta-analyses protocol

All meta-analyses were carried out using Seed-based d Mapping with Permutation of Subject Images

(SDM-PSI, v6.22, https://www.sdmproject.com/; Albajes-Eizagirre et al., 2019a, 2019b). Before

starting the actual analyses, it is necessary to prepare the input files for the software. In particular,

for each experiment the software needs to be fed the sample size, the software and set of standard

coordinates (either MNI or Talairach) used in data analysis, the coordinates of significantly active

foci, and the t-value associated with each one of the them. For experiments using any indicator

of significance other than t-values, the online utilities provided by the developers of SDM-PSI

(https://www.sdmproject.com/utilities/) were used to convert them into t-values.

The algorithm used by SDM-PSI is based on effect sizes found in experiments. In the first

step, it is necessary to select the cluster peaks (and statistical maps, if available) according to the
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inclusion criteria of the meta-analysis. It is important to check whether the same threshold value

was applied to the whole brain; in case different thresholds are used, the developers provide a guide

on how to select which values to use (Albajes-Eizagirre et al., 2019a). After the software is fed

these pieces of information (together with those previously indicated), it estimates from the t-values

the lower and upper bounds of possible effect size images. Afterwards, SDM uses MetaNSUE (a

meta-analytic method that allows an unbiased inclusion of studies with Non-statistically Significant

Unreported Effects by using maximum likelihood estimation and multiple imputation techniques)

to estimate the most likely effect size and standard error and executes multiple imputations to

add noise to the estimations within the previously established bounds. SDM-PSI then performs

a meta-analysis on each imputed dataset and combines the imputed meta-analyzed datasets with

Rubin’s rules. Finally subject images are recreated to run standard permutations tests, in which

the distribution of maxima is used to correct for multiple comparisons. In particular, SDM uses

Family-Wise Error (FWE) Rate to correct for multiple comparisons.

Every meta-analysis included in this work was conducted as follows:

1. Data were preprocessed using the native preprocessing function of SDM-PSI.

2. The actual meta-analysis was conducted with the method described above.

3. The results were corrected for multiple comparisons using FWE and 1,000 permutations.

4. The corrected results were thresholded to identify significant clusters, with an extent threshold

of 100 voxels.

5. A mask was created for every significantly active cluster using the MNI coordinates provided

at thresholding.

6. The mask was used to extract the statistics linked to that specific cluster, namely: Hedges’

g (an indicator of effect size, with its estimated value, variance and SDM-Z value), H2 and

I2 (two different measures of between-study heterogeneity). Only I2 will be interpreted in

depth, as it is more intuitive to comprehend: it represents the variance explained by study

heterogeneity in the results (Higgins and Thompson, 2002).

7. Finally, the extracted effects sizes were tested for biases, in particular for publication bias,

with Excess Significance tests and funnel plots.
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Chapter 3

Results

3.1 Meta-analyses on predictive processing

In each subsection, the results of the three meta-analyses for that specific domain are reported.

For each meta-analysis, the main results are presented in the text and are completed by a table,

containing the number of the cluster (under column Cl), the MNI coordinates of its main peak,

the values of the statistics described in the previous chapter and the results of the Excess Signifi-

cance test. A figure illustrating the clusters of significant activation for each meta-analysis is also

presented.

Please note that the null hypothesis of the Excess Significance test is the absence of publication

bias, therefore failing to reject it is the most desirable result. Significant results, independently of

their p-values, are marked by (*).

MRIcro (v1.9.1, https://people.cas.sc.edu/rorden/mricro/mricro.html; Rorden and Brett, 2000)

was used to create the images presented in this chapter: thresholded maps of results corrected for

multiple comparisons were overlaid on the ch2 template (Holmes et al., 1998) provided by the

software.

Clusters of significant size were further explored by analyzing the location of their local peaks,

in order to appreciate their scope across the brain. Moreover, since these clusters may have a

bigger impact on the research questions of this work, a more detailed report of the between-study

heterogeneity and publication bias tests is provided in the text.

Heterogeneity will be discussed starting from the value of I2, which will be interpreted according

to the guidelines provided by Higgins and Thompson (2002). A value of I2 over 50% suggests

considerable heterogeneity, which warrants caution in the interpretation of the results. If I2 is

comprised between 30 and 50%, the between-study heterogeneity should be considered moderate,

whereas if it is below 30% it is evaluated as mild.

Publication bias will be assessed with two methods. The first one is an Excess Significance test,

whose interpretation is explained above. The second method is the analysis of funnel plots: these

graphs show the distribution of standard errors of individual studies. If the plot is symmetric,

publication bias may be excluded.

22



3.1.1 Cognitive Control

3.1.1.1 Encoding

The meta-analysis on Cognitive Control Encoding yielded six clusters of significant activation,

whose details are reported in Table 3.1. A map of those same activations is available in Figure 3.1.

The main peaks of these clusters are located in the first section of the crus of the left cerebellum

(Cluster 1), in the bilateral inferior parietal gyrus (IPG; Clusters 2 and 4), in the right supplemen-

tary motor area (SMA; Cluster 3), in the left posterior cingulate (Cluster 5), and in the triangular

part of the right inferior frontal gyrus (IFG; Cluster 6).

Cl Anatomical MNI Voxels Hedges’ g H2 I2 Excess

region X Y Z Est. Var. SDM-Z Sign.(p)

Left

1 cerebellum, -30 -70 -30 1,761 .414 .004 6.944 1.043 4.100 .993

Crus I

Left inferior

2 parietal -46 -38 46 738 .355 .003 6.091 1.081 7.513 .628

gyrus

Right

3 supplementary 6 20 54 585 .353 .003 6.395 1.058 5.513 .886

motor area

Right inferior

4 parietal 54 -48 46 379 .401 .004 6.118 1.144 12.615 .973

gyrus

Left

5 posterior 0 -32 32 294 .321 .003 5.933 1.010 0.967 .611

cingulate

Right inferior

6 frontal gyrus, 50 24 2 151 .275 .003 4.990 1.011 1.100 <.001*

triangular part

Table 3.1: Statistics for the Cognitive Control Encoding meta-analysis.

Figure 3.1: Clusters of significant activation in Cognitive Control Encoding.

3.1.1.2 Violation

Five clusters of significant activation were found in the meta-analysis on Cognitive Control Vio-

lation. Their detailed statistics are reported in Table 3.2 and they can be visually appreciated in

Figure 3.2.
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The main peaks of these clusters are located in the left SMA (Cluster 1), in the triangular part

of the left IFG (Cluster 2), in the right insula (Cluster 3), in the left IPG (Cluster 4), and in the

opercular part of the right IFG (Cluster 5).

Cl Anatomical MNI Voxels Hedges’ g H2 I2 Excess

region X Y Z Est. Var. SDM-Z Sign.(p)

Left

1 supplementary -4 20 50 1,829 .479 .004 7.922 1.049 4.648 .730

motor area

Left inferior

2 frontal gyrus, -46 18 4 1,439 .372 .004 6.189 1.051 4.845 .997

triangular part

Right

3 insula 40 20 -4 597 .391 .012 3.548 3.406 70.639 .924

Left inferior

4 parietal -48 -36 44 287 .373 .004 5.693 1.142 12.432 .637

gyrus

Right inferior

5 frontal gyrus, 46 12 32 244 .305 .003 5.360 1.026 2.573 1.000

opercular part

Table 3.2: Statistics for the Cognitive Control Violation meta-analysis.

Figure 3.2: Clusters of significant activation in Cognitive Control Violation.

3.1.1.3 General

The meta-analysis on Cognitive Control General resulted in seven clusters of significant activation,

whose details are reported in Table 3.3. A map of these clusters is shown in Figure 3.3.

The main peaks of these clusters are located in the left SMA (Cluster 1), in the bilateral insula

(Clusters 2 and 3), in the left IPG (Cluster 4), in the right IFG (Cluster 5), in lobule IV of the left

cerebellum (Cluster 6), and in the left posterior cingulate (Cluster 7).

Cl Anatomical MNI Voxels Hedges’ g H2 I2 Excess

region X Y Z Est. Var. SDM-Z Sign.(p)

Left

1 supplementary 2 18 48 2,689 .459 .001 10.894 1.045 4.267 .854

motor area
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Left

2 insula -28 16 -6 2,202 .341 .002 7.294 1.225 18.336 .854

Right

3 insula 42 20 2 1,884 .351 .003 5.745 1.772 43.558 1.000

Left inferior

4 parietal -52 -42 42 1,682 .408 .002 9.166 1.064 6.014 .960

gyrus

Right inferior

5 frontal 48 -46 46 1,454 .344 .002 7.770 1.026 2.521 .955

gyrus

Left

6 cerebellum, -30 -68 -26 646 .292 .002 6.407 1.060 5.678 .974

Lobule IV

Left

7 posterior 0 -34 32 209 .275 .002 6.471 1.007 0.649 .988

cingulate

Table 3.3: Statistics for the Cognitive Control General meta-analysis.

Figure 3.3: Clusters of significant activation in Cognitive Control General.

3.1.2 Attention

3.1.2.1 Encoding

The meta-analysis on Attention Encoding identified two clusters of significant activation (see Table

3.4 for a complete report). These clusters can be seen overlaid on a standard brain template in

Figure 3.4.

The main peaks of these clusters are located in the right SMA (Cluster 1), and in the right

inferior occipital gyrus (IOG, Cluster 2).

Cl Anatomical MNI Voxels Hedges’ g H2 I2 Excess

region X Y Z Est. Var. SDM-Z Sign.(p)

Right

1 supplementary 2 4 52 27,082 .484 .006 6.494 1.028 2.701 .772

motor area
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3.1.2.2 Violation

The meta-analysis on Attention Violation indicated the presence of four clusters of significant

activation. Their main statistics are reported in Table 3.5. Figure 3.6 allows the visual appreciation

of these clusters.

The main peaks of these clusters are located in the right SMA (Cluster 1), in the opercular part

of the left IFG (Cluster 2), in the left superior longitudinal fasciculus (Cluster 3), and in the left

IPG (Cluster 4).

Cl Anatomical MNI Voxels Hedges’ g H2 I2 Excess

region X Y Z Est. Var. SDM-Z Sign.(p)

Right

1 supplementary 4 8 56 12,848 .405 .002 8.644 1.312 23.776 .820

motor area

Left inferior

2 frontal gyrus, -48 8 26 1,868 .262 .002 5.384 1.382 27.644 1.000

opercular part

Left superior

3 longitudinal -56 -38 12 878 .199 .002 4.342 1.230 18.717 .260

fasciculus III

Left inferior

4 parietal -50 -46 44 582 .243 .002 5.487 1.067 6.244 .989

gyrus

Table 3.5: Statistics for the Attention Violation meta-analysis.

Figure 3.6: Clusters of significant activation in Attention Violation.

Cluster 1 was further explored: it contains local peaks in the bilateral SMA, in the right IFG

(opercular, and triangular sections), in the right MFG, in the left SFG (medial section), in the left

anterior and median cingulate, in the right SMG, in the right middle occipital gyrus (MOG), in

the right IPG, in the right angular gyrus (AG), in the right STG, in the right SPG, in the right

putamen, in the right PrG, in the right MTG, in the right insula, in the right superior occipital

gyrus (SOG), and in the corpus callosum. In summary, Cluster 1 extends into a vast portion of the

right hemisphere, spanning from the frontal to the occipital lobe, and less extensively into the left

hemisphere, especially in the medial part of the frontal lobe. Some bilateral (but especially right)

subcortical local peaks are also present.

Between-study heterogeneity is mild and raises no concerns about these specific results.
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3.1.4 Motor

3.1.4.1 Encoding

The meta-analysis on Motor Encoding highlighted six clusters of significant activation, whose de-

tailed statistics are reported in Table 3.10. A map of these clusters can be found in Figure 3.20.

The main peaks for these clusters are located in the right median cingulate (Cluster 1), in the

left IPG (Cluster 2), in the right SMG (Cluster 3), in the right striatum (Cluster 4), in an undefined

brain region (Cluster 5), and in the right MFG (Cluster 6).

To better describe Cluster 5, whose main peak was located in an undefined area, its local peaks

were explored. They are found in the bilateral anterior thalamic projections and in the corpus

callosum, meaning that this cluster mainly extends into white matter.

Cl Anatomical MNI Voxels Hedges’ g H2 I2 Excess

region X Y Z Est. Var. SDM-Z Sign.(p)

Right

1 median 4 18 32 3,850 .355 .005 4.810 1.644 39.178 .995

cingulate

Left inferior

2 parietal -50 -48 38 3,017 .439 .006 5.497 1.864 46.349 .726

gyrus

Right

3 supramarginal 58 -46 28 1,615 .315 .004 4.818 1.056 5.275 .933

gyrus

Right

4 striatum 26 -2 -8 1,097 .314 .004 5.249 1.005 0.482 .233

5 Undefined -8 2 2 804 .381 .004 5.995 1.057 5.430 .643

Right middle

6 frontal 34 34 34 148 .012 .004 0.197 1.006 0.631 .599

gyrus

Table 3.10: Statistics for the Motor Encoding meta-analysis.

Figure 3.20: Clusters of significant activation in Motor Encoding.
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3.1.4.2 Violation

The meta-analysis on Motor Violation yielded two clusters of significant activation. The statistics

describing them can be found in Table 3.11. These clusters can be seen overlaid on a standard

brain template in Figure 3.21.

Their main peaks are found in the right Rolandic operculum (Cluster 1), and in the right SMA

(Cluster 2).

Cl Anatomical MNI Voxels Hedges’ g H2 I2 Excess

region X Y Z Est. Var. SDM-Z Sign.(p)

Right

1 Rolandic 62 -10 10 3,643 .386 .006 5.185 1.222 18.168 .410

operculum

Right

2 supplementary 4 18 50 1,523 .422 .005 5.845 1.073 6.806 .655

motor area

Table 3.11: Statistics for the Motor Violation meta-analysis.

Figure 3.21: Clusters of significant activation in Motor Violation.

3.1.4.3 General

Five clusters of significant activation emerged from the meta-analysis on Motor General. See Table

3.12 for a report on their main statistics. A map of these clusters is provided in Figure 3.22.

The main peaks for these clusters are located in the lenticular nucleus of the right putamen

(Cluster 1), in the left medial SFG (Cluster 2), in the left IPG (Cluster 3), in the left insula

(Cluster 4), and in an undefined brain region (Cluster 5).

Cluster 5 was indicated by the software as encompassing an undefined region. Its local peaks

fall into the bilateral anterior thalamic projections and in the left caudate nucleus, so this cluster

is mainly subcortical.

Cl Anatomical MNI Voxels Hedges’ g H2 I2 Excess

region X Y Z Est. Var. SDM-Z Sign.(p)

Right lenticular

1 nucleus, 28 18 0 12,117 .202 .008 2.279 2.738 63.473 .771

putamen

37



Left medial

2 superior 2 16 42 4,308 .395 .004 6.541 1.675 40.288 .994

frontal gyrus

Left inferior

3 parietal -50 -48 38 1,299 .304 .003 5.279 1.658 39.670 .951

gyrus

Left

4 insula -34 10 0 793 .276 .003 4.797 1.274 21.507 .370

5 Undefined -6 0 4 521 .392 .006 4.950 2.678 62.659 .702

Table 3.12: Statistics for the Motor General meta-analysis.

Figure 3.22: Clusters of significant activation in Motor General.

Cluster 1 includes local peaks in the right putamen, in the right Rolandic operculum, in the

right STG, in the right insula, in the right SMG, in the right IPG, in the right IFG (opercular,

and triangular sections), in the right PrG, in the right AG, in the right PoG, in the right MFG, in

the right MOG, in the corpus callosum, in the right SPG, and in the anterior segment of the right

arcuate network. Cluster 1 is therefore strongly right-lateralized, extending into areas mainly from

the frontal and parietal lobes. Some subcortical structures are also included in this cluster.

Between-study heterogeneity is considerable, therefore results on this cluster should be inter-

preted with caution.

Publication bias can be excluded with a fair amount of certainty, as indicated by both the

non-significant Excess Significance test and the nearly symmetric funnel plot (Figure 3.23).
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3.1.5 Social Cognition

3.1.5.1 Encoding

The meta-analysis on Social Cognition Encoding yielded no significant results.

3.1.5.2 Violation

The meta-analysis on Social Cognition Violation resulted in six clusters of significant activation,

whose detailed statistics are reported in Table 3.13. Figure 3.25 shows the locations of these clusters.

The main peaks of these clusters are located in the bilateral medial SFG (Clusters 1 and 4), in

the right Rolandic operculum (Cluster 2), in the right AG (Cluster 3), in the left PCun (Cluster

5), and in the right FG (Cluster 6).

Cl Anatomical MNI Voxels Hedges’ g H2 I2 Excess

region X Y Z Est. Var. SDM-Z Sign.(p)

Left medial

1 superior 0 28 38 1,719 .291 .002 5.869 1.049 4.694 .943

frontal gyrus

Right

2 Rolandic 50 8 2 1,158 .265 .002 5.944 1.024 2.351 .876

operculum

Right

3 angular 50 -64 26 827 .263 .002 5.524 1.097 8.858 .971

gyrus

Right medial

4 superior 2 50 0 627 .268 .003 4.711 1.293 22.637 .362

frontal gyrus

Left

5 precuneus 0 -48 40 372 .211 .002 4.632 1.002 0.185 .695

Right

6 fusiform 38 -50 -24 277 .250 .002 5.307 1.005 0.518 .955

gyrus

Table 3.13: Statistics for the Social Cognition Violation meta-analysis.

Figure 3.25: Clusters of significant activation in Social Cognition Violation.
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3.1.5.3 General

Five clusters of significant activation were found in the meta-analysis on Social Cognition General.

The statistics describing them can be found in Table 3.14. In Figure 3.26 their localization can be

appreciated.

The main peaks of these clusters are found in the right insula (Cluster 1), in the right medial

superior frontal gyrus (Cluster 2), in lobule VI of the right cerebellum (Cluster 3), in the left medial

cingulate (Cluster 4), and in the left inferior parietal gyrus (Cluster 5).

Cl Anatomical MNI Voxels Hedges’ g H2 I2 Excess

region X Y Z Est. Var. SDM-Z Sign.(p)

Right

1 insula 38 20 -8 14,401 .306 .002 6.715 1.058 5.519 .784

Right medial

2 superior 2 48 0 2,483 .238 .002 5.199 1.071 6.660 .950

frontal gyrus

Right

3 cerebellum, 36 -52 -24 857 .217 .002 4.713 1.020 2.007 .776

Lobule VI

Left

4 medial 0 -46 36 532 .165 .002 3.771 1.020 2.004 .382

cingulate

Left inferior

5 parietal -54 -26 36 100 .189 .003 3.724 1.334 25.065 .688

gyrus

Table 3.14: Statistics for the Social Cognition General meta-analysis.

Figure 3.26: Clusters of significant activation in Social Cognition General.

Cluster 1 includes local peaks in the bilateral insula, in the bilateral IFG (opercular, orbital, and

triangular sections), in the bilateral STG, in the bilateral striatum, in the uncinate fasciculus of the

bilateral inferior network, in the left amygdala, in the right gyrus rectus, in the bilateral putamen,

in the bilateral MTG, in the right AG, in the right ITG, in the right SMG, in the left caudate

nucleus, in the posterior segment of the right arcuate network, in the cingulum of the right median

network, in the right IOG, and in the right MOG. In summary, Cluster 1 extends bilaterally in the

frontal and temporal lobes, as well as in the right parietal and occipital lobes. It also encompasses

numerous subcortical structures bilaterally, together with some white matter connections.
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Cassidy and Gutchess, 2015. Neural Responses to Appearance-

Behavior Congruity.
Moderate

Some

concerns

Christopoulos and King-Casas, 2015. With you or against you:

Social orientation dependent learning signals guide actions made

for others.

Moderate Moderate

Cloutier et al., 2011. An fMRI study of violations of social ex-

pectations: When people are not who we expect them to be.
Moderate Moderate

Diaconescu et al., 2017. Hierarchical prediction errors in mid-

brain and septum during social learning - Study 1.
Moderate

Some

concerns

Diaconescu et al., 2017. Hierarchical prediction errors in mid-

brain and septum during social learning - Study 2.
Moderate

Some

concerns

Dungan et al., 2016. Theory of mind for processing unexpected

events across contexts.
Moderate Moderate

Dzafic et al., 2016. Dynamic emotion perception and prior ex-

pectancy.
Moderate Moderate

Table 3.15: Overall risk-of-bias ratings for the evaluated papers from the Social Cognition meta-analyses.

3.2.1 Inter-rater reliability

The inter-rater reliability for the AEROBICS was calculated both on the overall risk-of-bias ratings

and on the single domain-specific risk-of-bias ratings. Cohen’s kappa for two raters was used as an

index of inter-rater reliability. In Table 3.16 its value can be found, together with its significance.

Domain Cohen’s kappa z P

Participant selection .40 1.50 .134
Experimental task -.10 -0.95 .343
Support scales .78 3.30 <.001
Statistics -.11 -.067 .502
Overall 0

Table 3.16: Inter-rater reliability of the AEROBICS domain-specific and overall risk-of-bias ratings

Already at first glance, it is clear that the inter-rater reliability of the AEROBICS is not great,

nonetheless the results presented in Table 3.16 are here interpreted according to the guidelines

provided by McHugh (2012).

Before analyzing these results more in detail, it is important to stress once again that this is the

first time the AEROBICS is ever used to evaluate risk of bias. The results presented here should

be therefore considered preliminary, similar to a checkpoint for the development of this tool.

The only significant result is the one for the domain Support scales : the value of Cohen’s kappa

indicates a moderate level of agreement, which is good considering that it is the first time the

AEROBICS is used and tested.
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Of the other results, the closest to significance is the one for the domain Participant selection.

According to the guidelines provided by McHugh (2012), the raters agree in their evaluation weakly.

Although there is definitely room for improvement, it is a starting point for further development.

Finally, the values of kappa for the domains Experimental task and Statistics are the lowest

and least significant. According to McHugh (2012)’s guidelines, they would indicate the absence of

agreement. The overall risk-of-bias rating has an inter-rater reliability of 0, which does not allow

for any further discussion on it. Hypotheses for the reasons behind these low scores will be brought

forward in the Discussion chapter.

3.2.2 Qualitative assessment of the AEROBICS by the raters

The raters were asked for their opinions on the AEROBICS, especially concerning the difficulty in

its usage and its scoring system.

Rater 1 had significantly less experience in the research field and in the evaluation of risk of

bias. They had the impression that, although the AEROBICS was easy to use, the ratings were

driven by the information that was missing in papers rather than from their contents. At the end

of the evaluation, when they had the possibility to review their ratings compared with the ones of

Rater 2, they expressed some doubts on their own work: they believed that they were overzealous

in the evaluation of the items, which led to more severe ratings of risk of bias.

Rater 2 was significantly more experienced and familiar with research and its customs, which

led to greater flexibility in the use of the AEROBICS. They found the scale quite easy and quick

to use and stated that the ratings it provided seemed reasonable considering their impressions on

the papers.

The raters were also asked to provide suggestions for the improvement of the AEROBICS, based

on their first-hand experience with it, which will constitute the foundations for future modifications

to the tool presented later in the Discussion chapter.
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Chapter 4

Discussion

4.1 Is there a predictive network in the brain?

In this work, the existence of a domain-general and various domain-specific predictive networks was

investigated by conducting multiple meta-analyses using Seed-based d Mapping with Permutation

of Subject Images (SDM-PSI, v6.22, https://www.sdmproject.com/; Albajes-Eizagirre et al., 2019a,

2019b).

The results of these analyses may contribute to a better understanding of how prediction is

coded in the brain both within and across cognitive domains, thus helping to shed light on whether

predictive coding truly is a unifying account of brain activity (Friston, 2010; Hohwy, 2016).

More specifically, there will be an attempt to provide tentative answers to the questions high-

lighted at the beginning of this work. As previously stated, they stress some of the points still

baffling researchers when it comes to predictive coding being a general theory of brain functioning.

The images presented in this section, which allow the visualization of the clusters of sig-

nificant activation in all meta-analyses at once, were created using MRIcroGL (v1.2.20220720,

https://www.nitrc.org/projects/mricrogl) by overlaying thresholded maps of results corrected for

multiple comparisons on the mni152 template provided by the software.

4.1.1 Domain-specific prediction: different brain areas for different do-

mains?

Generally, different brain areas are involved in prediction in different cognitive domains, as the re-

sults for the meta-analyses reported here show. From what appears from these analyses, prediction

in a specific domain tends to involve the areas normally thought to be responsible for that specific

function. This point will be further discussed concerning each domain considered, but in general

it is in line with the basic principle of predictive coding: as pointed out at the beginning of this

work, the mechanism first hypothesized by Rao and Ballard (1999) for visual perception (and then

extended to the whole of cognition) described prediction as occurring at all levels of the visual

hierarchy, therefore in the areas which normally elaborate visual stimuli.

In Cognitive Control, the areas showing significant activation across the included studies are all
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part of a network thought to mediate cognitive control (Cole and Schneider, 2007). The results on

the bilateral insula are of particular interest, as they support recent work indicating the anterior

insulae as an under-appreciated hub for cognitive control (Molnar-Szakacs and Uddin, 2022).

Although having its main peak in the right Supplementary Motor Area (SMA), the cluster found

for Attention is of notable size, nearly spanning across the whole brain. It is commonly known that

different attentional networks exist in the brain and involve different areas across different lobes (for

a review and further references, see Posner, 2012). The findings of the meta-analyses conducted

here are therefore in line with the literature on the areas generally involved in attentional processes.

Language is classically considered to be left-lateralized in the brain, with linguistic processing

taking place across multiple areas of the frontal and temporal lobes (Friederici and Gierhan, 2013).

Once again, the knowledge found in the literature is in line with the results of the Language General

meta-analysis, especially in what concerns Cluster 1. It is important to stress, however, that the

right hemisphere plays a role as well in the processing and production of language (Lindell, 2006),

which is reflected in Cluster 2. The interpretation of Cluster 3 is a bit more tricky: although some of

its local peaks are located in the frontal lobe, which is classically linked to language, its subcortical

components are more difficult to explain. Nonetheless, recent developments in the literature call

for a more detailed analysis of the subcortical components of language processing (Murphy et al.,

2022), which could help to shed light on the present results.

When it comes to the Motor domain, the role of the frontal and parietal lobe are well established

in the literature, with the primary motor cortex being part of the frontal lobe and the parietal lobe

providing sensorimotor integration (Rizzolatti and Luppino, 2001). The parietal lobe also carries out

some purely motor functions (Fogassi and Luppino, 2005). The presence of some subcortical clusters

is not surprising, as various subcortical structures are known to contribute to motor functions,

although they carry out other functions as well (Di Martino et al., 2008). Once more, the results

from the meta-analyses allow to support the idea that prediction for a specific domain happens in

the same network that normally mediates that domain.

Finally, in Social Cognition the clusters showing significant activation are all located inside the

so-called social brain (Frith and Frith, 2007), a vast group of brain regions responsible for the

processing of signals relevant to social interaction.

4.1.2 Encoding vs Violation: are these processes mediated by specific

brain areas?

Since the Overall meta-analyses were not completed due to their computational demands, the only

way to answer this question is to qualitatively compare the results for Encoding and Violation in

each of the cognitive domains considered. From there it would be possible to draw conclusions

on some plausible differences in brain areas involved in the encoding and violation of predictions

across domains.

It is important to remind the reader that previous meta-analytic work found significant conver-

gence for prediction violation in the left inferior frontal gyrus (IFG) and in the left anterior insula

(Ficco et al., 2021; for a more thorough discussion of the implications of such findings please see

the Introduction chapter of this work).
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(some of which are included as domains in the meta-analyses; e.g., attention) due to their rich

connectivity patterns (Liakakis et al., 2011; Uddin et al., 2017).

This limitation, however, allows for a further finding, which is made possible by the comparison

of the Encoding and Violation conditions in each domain investigated. From this comparison, it

emerges that the insula and the IFG, considered hubs of the prediction network identified by both

Siman-Tov et al. (2019) and Ficco et al. (2021), are more involved in the processing of prediction

violation rather than its encoding. Generalizing this conclusion, it could be argued that domain

specificity in prediction is more linked to the encoding of predictions, whereas the processing of the

violation of said predictions relies more on a general prediction network (discussed more in detail

in the next paragraph).

4.1.3 A domain-general prediction network: insights from the domain-

specific meta-analyses

Once again, the optimal way to further explore the existence of a prediction network in the brain

would be to investigate it from the results of the Overall meta-analyses. As reported before,

however, they were not completed due to their computational demands. Fortunately, it is possible

to draw some conclusions from the qualitative comparison of the domain-specific meta-analyses.

Previous meta-analytic research (Ficco et al., 2021; Siman-Tov et al., 2019) reported the ex-

istence of a prediction network in the brain, spanning across multiple brain areas. In particular,

these meta-analyses converge in suggesting a predominant role of the IFG and insula in prediction.

Other areas deemed of importance for prediction include regions from the frontal, parietal, and

temporal lobes, and some subcortical structures (e.g., caudate nucleus, cerebellum).

The results of the meta-analyses conducted here broadly supports the existence of the network

first hypothesized by Siman-Tov et al. (2019) and then further explored by Ficco et al. (2021).

In particular, their findings about the insula and the IFG (although not left-lateralized) are repli-

cated, further confirming the importance of these brain regions in prediction. The unique approach

taken by this work allowed to take this conclusion a little further: the results of the Violation

meta-analyses highlighted that these regions may play a more prominent role in the processing of

prediction violation.

No strong conclusions can be drawn on the other areas included by Siman-Tov et al. (2019)

and Ficco et al. (2021) in the prediction network. Nearly all of them appear as either a main or

a local peak in the clusters of significant activation, but not as predominantly as the IFG or the

insula. Given that these conclusions are drawn from the domain-specific General meta-analyses, it

is not possible to exclude that these areas are found significantly active due to their contribution

to domain-specific processing.
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4.1.4 Limitations of the meta-analyses

First and foremost, the impossibility to complete the Overall meta-analyses deeply hindered the

capacity to draw reliable conclusions from the results of this work. Because of this, it is vital to

replicate these findings either with another software or with a computer equipped with sufficient

computational power. Of note, an effort to conduct these analyses on the same datasets with

Activation Likelihood Estimation (ALE; Eickhoff et al., 2009, 2012) has already been made and is

being prepared for publication (Costa et al., 2023b).

This need for replication is more obvious for the last two research questions presented here. As

a matter of fact, the conclusions drawn about the different areas involved in prediction encoding

and violation, and the prediction network would greatly benefit from quantitative evidence backing

them up. Although the qualitative comparison of the data from the domain-specific meta-analyses

provides a good foundation to build some conclusions, the results of the domain-general analyses

would allow to exclude domain-specific influences. It would be therefore possible to draw conclusions

with a lesser amount of uncertainty.

4.2 The AEROBICS and the evaluation of risk of bias

This work represents the first instance in which the AEROBICS was used to evaluate risk of bias

in the papers included in a meta-analyses, so the results presented here should be considered

preliminary. This tool was developed from the PECANS Checklist (Costa et al., 2023a) to provide

a quick and easy way to assess risk of bias in papers reporting cognitive studies before including

them in a review and/or meta-analysis.

As previously stated, a lot of work still needs to be put in the development of the AEROBICS

before it is ready to be published and widely used. As a prime example, its inter-rater reliability is

bad to say the least, so much so that it is null on the Overall risk-of-bias rating. The agreement on

the Experimental task and Statistics domains was non-existent as well, but the values of Cohen’s

kappa for the Participant selection and especially Support scales domains show the potential of the

AEROBICS in the evaluation of risk of bias.

In order to highlight the future directions of the development of the AEROBICS, its main

limitations will be here presented, as overcoming them will be the key process in the finalization of

this scale.

4.2.1 Limitations of the AEROBICS

The first limitation of the AEROBICS is inherent to its nature: as the authors of the Cochrane

instruments for the evaluation of risk of bias (Higgins et al., 2019; Sterne et al., 2016, 2019) point

out, judging risk of bias will always retain a subjective component, which causes expertise to

play a major role in the evaluation. That is to say, the more research experience the user of the

AEROBICS has, the more reliable their ratings are supposed to be. This was evident in the data

presented here as well: Rater 1 was significantly less experienced than Rater 2, which led the two

raters to rate risk of bias very differently. This is also reflected in the inter-rater reliability scores
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of the AEROBICS.

Going more into the specifics of the AEROBICS, the explanation of its scoring system at the

beginning of the protocol may be misleading, especially for raters with less experience. Although

the scoring system based on judgments and quartiles proved easy to use, the instructions on how

to formulate a risk-of-bias rating led Rater 1 to make extremely harsh judgments, which in turn

led to higher risk-of-bias ratings on single domains and overall.

Finally, the phrasing on some of the items was ambiguously interpreted by the two raters,

resulting in differences in the risk-of-bias judgment for single domains and overall. It was possible to

identify some items or groups of items phrased similarly whose ratings were most different between

raters. For example, the difference between neuropsychological evaluation and questionnaire was

not so clear to the raters, so much so that one paper was judged to contain a neuropsychological

evaluation by one rater and a questionnaire by the other. Once again, expertise played a prominent

role in the evaluation of these items: when an item’s interpretation was ambiguous, Rater 1 chose

to follow the interpretation leading to the harshest risk-of-bias rating, whereas Rater 2 relied on

their expertise to provide a more balanced judgement.

4.2.2 Possible improvements and future work

As it emerged clearly, the AEROBICS as is is not a reliable measure of risk of bias. Nonetheless,

it shows the potential to be a easy-to-use and quick way to provide a risk-of-bias judgement for

papers before including them in a meta-analysis and/or review. The limitations described above

can be solved with some changes to the current protocol of the AEROBICS.

First off, although it is impossible to completely remove subjectivity from the evaluation, it is

possible to reduce the role played by expertise, so that experienced and inexperienced raters alike

can give more balanced risk-of-bias ratings. This can be achieved by providing some commented

examples of the evaluation of papers, so that people first approaching this kind of research can be

guided in using the AEROBICS. Moreover, this could possibly ensure that the scale is used how

its authors intended, thus overcoming one of the limitations of the Cochrane instruments for the

evaluation of risk of bias pointed out by Igelström et al. (2021).

Second, the instructions at the beginning of the protocol can be modified, so that more details

are given as to how risk of bias should be evaluated. This will be particularly useful for less

experienced researchers. For example, raters are now instructed to evaluate risk of bias as high if

no information is available on that specific item. In some cases, this led to wrong ratings by Rater 1:

items 31 and 33 refer respectively to the presence of an outlier analysis and the handling of missing

data, which are often not explicitly described in papers. Given that, Rater 1 often concluded for

high risk of bias concerning these items, whereas Rater 2, being more familiar with research custom,

was able to identify where these statistical procedure where referred to in the paper and therefore

provide a more balanced rating. This ambiguity could easily be solved by being more specific in the

instructions; for example by reporting the cases in which missing information is not problematic or

how information concerning different items may be reported in papers.

Finally, to solve the ambiguity in the interpretation of items, it would be useful to provide some

guidelines describing each item and what should be considered to provide a risk-of-bias judgment for
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it. Some may argue that changing the phrasing would be easier, which is technically true, but there

is a reason why keeping the current phrasing is the best alternative. As previously pointed out,

the AEROBICS was developed starting from the PECANS checklist (Costa et al., 2023a), which

in turn was developed by a Delphi panel of experts on the evaluation of the quality of cognitive

studies. This means that items were phrased in a certain way as it was the most in line with

the current theoretical knowledge. Therefore, providing guidelines would be a great compromise

between adhering to scientific standards and guiding researchers in providing better evaluations

of risk of bias. Supplementary guidelines are not unheard of, as this approach has already been

used by the authors of the PRISMA guidelines (Moher et al., 2010; Page et al., 2021a). With each

edition of the PRISMA statement, as a matter of fact, a supplementary paper is published in which

each item of the PRISMA Checklist and its evaluation are described in detail (Liberati, 2009; Page

et al., 2021b).
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Chapter 5

Conclusion

5.1 Predictive processing

The analyses presented in this work allowed to provide an answer (although not definitive) to the

questions highlighted at its beginning.

First, the results of the domain-specific General meta-analyses support the basic workings of

predictive coding, as described by Rao and Ballard (1999) in their model of visual perception:

according to the data presented here, domain-specific prediction is in part mediated by the same

areas thought to normally process signals linked to that domain. Quite importantly, the results of

the meta-analyses do not support the fact that these areas work alone in mediating prediction (as

pointed out in the next paragraphs).

Secondly, through the qualitative comparison of the results of each couple of domain-specific

Encoding and Violation meta-analyses, the more prominent role of the insula and the inferior

frontal gyrus (IFG) in processing prediction violation, first hypothesized by Ficco et al. (2021), is

replicated. Of note, the results obtained here do not support the left-lateralization found by Ficco

et al. (2021).

Finally, some conclusions are drawn on the very existence of the prediction network by qualita-

tively comparing the results of the domain-specific General meta-analyses. Of the areas identified

by Siman-Tov et al. (2019) and Ficco et al. (2021), only the role of the insula and the IFG is

replicated. Due to the fact that this inference is not produced from optimal data, it is not possible

to draw conclusions on any other area previously hypothesized as part of the prediction network

due to the possible influence of domain-specific processing, which cannot be fully excluded.

5.2 Risk of bias

At the beginning of this work, the absence of an instrument to evaluate risk of bias in cognitive

studies was highlighted. Such an instrument was therefore developed, starting from the Preferred

Evaluation of Cognitive and Neuropsychological Studies (PECANS) Checklist (Costa et al., 2023a).

It was named Analysis & Evaluation of Risk Of Bias in Cognitive Studies (AEROBICS) and used

53



by two raters to evaluate risk of bias in a subset of the papers included in the Social Cognition meta-

analyses in this preliminary study. The AEROBICS proved easy and quick to use, thus showing

potential for widespread use in research. Nonetheless, its inter-rater reliability is bad, which shows

the need of more work to achieve the standards for publication. Some possible improvements

have already been identified and will be put in place in the near future to further develop the

AEROBICS.
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Appendix A

Research strings for the

meta-analyses on predictive

processing

For each database searched, the general research string will be provided, together with a table

containing the domain-specific string for each cognitive domain investigated. The table will also

report the number of papers found for each domain.

A.1 PubMed

(((neuroimaging [Title/Abstract] OR fMRI[Title/Abstract] OR functional MRI [Title/Abstract]

OR magnetic resonance imaging[Title/Abstract] OR PET[Title/Abstract]) NOT

(DTI[Title/Abstract] OR Diffusion tensor Imaging[Title/Abstract] OR machine

learning[Title/Abstract] OR structural[Title/Abstract] OR tDCS[Title/Abstract] OR

TMS[Title/Abstract] OR EEG[Title/Abstract] OR intracranial[Title/Abstract]))

AND

(prediction[Title/Abstract] OR expectancy[Title/Abstract] OR expectation[Title/Abstract] OR

anticipation[Title/Abstract] OR unexpected[Title/Abstract] OR surpris*[Title/Abstract] OR

prediction error[Title/Abstract] OR incongruent[Title/Abstract] OR irregular[Title/Abstract] OR

violat*[Title/Abstract] OR mismatch[Title/Abstract] OR anticipat*[Title/Abstract])

AND

INSERT HERE THE DOMAIN-SPECIFIC SEARCH STRING

NOT (disease[Title/Abstract] OR disorder[Title/Abstract] OR pathology[Title/Abstract] OR

psychiat*[Title/Abstract] OR stroke[Title/Abstract] OR neurologic*[Title/Abstract] OR

Alzheimer[Title/Abstract] OR Parkinson[Title/Abstract] OR depression[Title/Abstract] OR

schizophrenia[Title/Abstract] OR dementia[Title/Abstract] OR neglect[Title/Abstract] OR

drug*[Title/Abstract] OR brain injury[Title/Abstract] OR surgery[Title/Abstract] OR
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surgical[Title/Abstract] OR damag*[Title/Abstract] OR animal*[Title/Abstract] OR

infants[Title/Abstract] OR adolescents[Title/Abstract] OR older[Title/Abstract] OR

elderly[Title/Abstract] OR child*[Title/Abstract] OR phantom[Title/Abstract] OR

rats[Title/Abstract] OR aphasi*[Title/Abstract] OR sign[Title/Abstract] OR

adhd[Title/Abstract] OR deficit*[Title/Abstract] OR patient*[Title/Abstract] OR

single-case[Title/Abstract] OR rodent*[Title/Abstract] OR review[Publication Type] OR

meta-analysis[Publication Type] OR developmental[Title/Abstract] OR infants[Title/Abstract]

OR surprisingly[Title/Abstract] OR unexpected results[Title/Abstract] OR

unexpectedly[Title/Abstract] OR treatment[Title/Abstract] OR training[Title/Abstract] OR

longitudinal[Title/Abstract])

Domain Research string Papers obtained

Cognitive Control

(executive function*[Title/Abstract] OR cognitive

flexibility[Title/Abstract] OR

perseverat*[Title/Abstract] OR cognitive

control[Title/Abstract] OR

error-monitoring[Title/Abstract] OR error

monitoring[Title/Abstract] OR error

detection[Title/Abstract] OR cognitive

conflict[Title/Abstract])

200 results

Attention

(spatial attention[Title/Abstract] OR external

attention[Title/Abstract] OR selective

attention[Title/Abstract] OR sustained

attention[Title/Abstract] OR focused

attention[Title/Abstract] OR alternated

attention[Title/Abstract] or divided

attention[Title/Abstract] OR visual

attention[Title/Abstract] OR

attention[Title/Abstract])

373 results
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Language

(language[Title/Abstract] OR

linguistic[Title/Abstract] OR

semantic*[Title/Abstract] OR

syntactic[Title/Abstract] OR

phonological[Title/Abstract] OR

pragmatic*[Title/Abstract])

410 results

Motor

(motor[Title/Abstract] OR motor

planning[Title/Abstract] OR

movement[Title/Abstract] OR

kinematic*[Title/Abstract])

436 results

Social Cognition

(social cognition[Title/Abstract] OR theory of

mind[Title/Abstract] OR

mentalizing[Title/Abstract] OR

mindreading[Title/Abstract] OR

mind-reading[Title/Abstract] OR mind

reading[Title/Abstract] OR ToM[Title/Abstract]

OR social learning[Title/Abstract])

73 results

Memory

(prospective memory[Title/Abstract] OR episodic

memory[Title/Abstract] OR semantic

memory[Title/Abstract] OR procedural

memory[Title/Abstract] OR long-term

memory[Title/Abstract] OR working

memory[Title/Abstract] OR short-term

memory[Title/Abstract])

192 results

Music

(music*[Title/Abstract] OR

harmonic[Title/Abstract] OR

melodic[Title/Abstract] OR

rhythmic[Title/Abstract])

40 results
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Pain pain[Title/Abstract] 143 results

The search on PubMed yielded a total of 1,867 results.

A.2 Embase

(neuroimaging OR fMRI OR functional MRI OR magnetic resonance imaging OR PET) NOT

(DTI OR Diffusion tensor Imaging OR machine learning OR structural OR tDCS OR TMS OR

EEG OR intracranial)

AND

(prediction OR expectancy OR expectation OR anticipation OR unexpected OR surpris* OR

prediction error OR incongruent OR irregular OR violat* OR mismatch OR anticipat*)

AND

INSERT HERE THE DOMAIN-SPECIFIC SEARCH STRING

NOT (disease OR disorder OR pathology OR psychiat* OR stroke OR neurologic*OR Alzheimer

OR Parkinson OR depression OR schizophrenia OR dementia OR neglect OR drug* OR brain

injury OR surgery OR surgical OR damag* OR animal* OR infants OR adolescents OR older OR

elderly OR child* OR phantom OR rats OR aphasi*OR sign OR adhd OR deficit OR patient*

OR single-case OR rodent* OR review OR meta-analysis OR developmental OR infants OR

surprisingly OR unexpected results OR unexpectedly OR treatment OR training OR longitudinal)

The results were then filtered to limit them to papers in English describing studies on humans

available on Embase only.

Domain Research string Papers obtained

Cognitive Control

(executive function* OR cognitive flexibility OR

perseverat* OR cognitive control OR

error-monitoring OR error monitoring OR error

detection OR cognitive conflict)

124 results

Attention (attention) 267 results
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Language (language OR semantic* OR syntactic OR

pragmatic*)
165 results

Motor (motor planning OR movement OR kinematic*) 278 results

Social Cognition
(social cognition OR theory of mind OR

mentalizing OR mindreading OR mind-reading

OR mind reading OR ToM OR social learning)

115 results

Memory

(prospective memory OR episodic memory OR

semantic memory OR procedural memory OR

long-term memory OR working memory OR

short-term memory)

69 results

Music (music* OR harmonic OR melodic OR rhythmic) 49 results

Pain (pain) 150 results

The search on Embase yielded a total of 1,217 results.

A.3 PsycInfo (ProQuest)

((ab(neuroimaging) OR ab(fMRI) OR ab(functional MRI) OR ab(magnetic resonance imaging)

OR ab(PET)) NOT (ab(DTI) OR ab(Diffusion tensor Imaging) OR ab(machine learning) OR

ab(structural) OR ab(tDCS) OR ab(TMS) OR ab(EEG) OR ab(intracranial)))

AND

INSERT HERE THE DOMAIN-SPECIFIC SEARCH STRING

AND

(ab(prediction) OR ab(expectancy) OR ab(expectation) OR ab(anticipation) OR ab(unexpected)

OR ab(surpris*) OR ab(prediction error) OR ab(incongruent) OR ab(irregular) OR ab(violat*)

OR ab(mismatch) OR ab(anticipat*))
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NOT (ab(disease) OR ab(disorder) OR ab(pathology) OR ab(psychiat*) OR ab(stroke) OR

ab(neurologic*) OR ab(Alzheimer) OR ab(Parkinson) OR ab(depression) OR ab(schizophrenia)

OR ab(dementia) OR ab(neglect) OR ab(drug*) OR ab(brain injury) OR ab(surgery) OR

ab(surgical) OR ab(damag*) OR ab(animal*) OR ab(infants) OR ab(adolescents) OR ab(older)

OR ab(elderly) OR ab(child*) OR ab(phantom) OR ab(rats) OR ab(aphasi*) OR ab(sign) OR

ab(adhd) OR ab(deficit) OR ab(patient*) OR ab(single-case) OR ab(rodent*) OR ab(review) OR

ab(meta-analysis) OR ab(developmental) OR ab(infants)OR ab(surprisingly) OR ab(unexpected

results) OR ab(unexpectedly) OR ab(treatment) OR ab(training) OR ab(longitudinal))

The results were then filtered to limit them to peer-reviewed papers in English describing studies

on humans.

Domain Research string Papers obtained

Cognitive Control

(ab(executive function*) OR ab(cognitive

flexibility) OR ab(@perseverat*) OR ab(cognitive

control) OR ab(error monitoring) OR

ab(error-monitoring) OR ab(error detection) OR

ab(cognitive conflict))

271 results

Attention (ab(attention)) 338 results

Language (ab(language) OR ab(semantic*) OR

ab(syntactic) OR ab(pragmatic*))
316 results

Motor (ab(motor) OR ab(motor planning) OR

ab(movement) OR ab(kinematic*))
437 results

Social Cognition

(ab(social cognition) OR ab(theory of mind) OR

ab(mentalizing) OR ab(mindreading) OR

ab(mind-reading) OR ab(mind reading) OR

ab(ToM) OR ab(social learning))

98 results
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Memory

(ab(prospective memory) OR ab(episodic

memory) OR ab(semantic memory) OR

ab(procedural memory) OR ab(long-term

memory) OR ab(working memory) OR

ab(short-term memory)))

246 results

Music (ab(music*) OR ab(harmonic) OR ab(melodic)

OR ab(rhythmic))
54 results

Pain (ab(pain)) 29 results

The search on PsycInfo (ProQuest) yielded a total of 1,789 results.
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Appendix B

Detailed report of study selection

B.1 Number of included experiments in each meta-analysis

Please note that the Overall meta-analyses also include experiments on Memory, Music and Pain.

This explains why the sum of the experiments in the domain-specific meta-analyses is lower than

the number of studies included in the domain-general meta-analyses.

General Prediction

Overall General 252 experiments

Cognitive Control General 31 experiments

Attention General 52 experiments

Language General 52 experiments

Motor General 41 experiments

Social Cognition General 35 experiments

Prediction Encoding

Overall Encoding 134 experiments

Cognitive Control Encoding 15 experiments

Attention Encoding 17 experiments

Language Encoding 32 experiments

Motor Encoding 28 experiments

Social Cognition Encoding 18 experiments

Prediction Violation

Overall Violation 175 experiments

Cognitive Control Violation 21 experiments

Attention Violation 44 experiments

Language Violation 39 experiments

Motor Violation 18 experiments

Social Cognition Violation 29 experiments
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B.2 PRISMA flow diagram (Page et al., 2021a)
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B.3 Complete list of papers included in the meta-analyses

Please note that the Condition(s) and Domain(s) columns specify in which process- and domain-

specific meta-analyses data from the cited paper were included. Experiments on Memory, Music,

and Pain were only included in the domain-general analyses.

For full references, the reader is directed to the Bibliography.

Reference Domain(s) Condition(s)

Aben et al., 2019. Context-dependent modulation of cognitive

control involves different temporal profiles of fronto-parietal ac-

tivity.

Attention Violation

Alderson-Day et al., 2017. Distinct processing of ambiguous

speech in people with non-clinical auditory verbal hallucinations.
Language Encoding

Alho et al., 2015. Top-down controlled and bottom-up trig-

gered orienting of auditory attention to pitch activate overlap-

ping brain networks.

Attention Violation

Alvarez et al., 2010. Functional anatomy of predictive vergence

and saccade eye movements in humans: A functional MRI inves-

tigation.

Motor Encoding

Andics et al., 2013. FMRI repetition suppression for voices is

modulated by stimulus expectations.
Language

Encoding,

Violation

Arrington et al., 2000. Neural Mechanisms of Visual Attention:

Object-Based Selection of a Region in Space.
Attention Violation

Atmaca et al., 2013. Prediction processes during multiple object

tracking (MOT): involvement of dorsal and ventral premotor cor-

tices.

Attention Encoding

Aue et al., 2019. Expectancies influence attention to neutral but

not necessarily to threatening stimuli: An fMRI study.
Attention Violation

Bardi et al., 2016. Brain activation for spontaneous and explicit

false belief tasks overlaps: new fMRI evidence on belief process-

ing and violation of expectation.

Social

Cognition

Encoding,

Violation

Beldzik et al., 2015. Brain Activations Related to Saccadic Re-

sponse Conflict are not Sensitive to Time on Task.

Cognitive

Control
Violation

Bengtsson et al., 2009. Listening to rhythms activates motor

and premotor cortices.
Music Violation

Benn et al., 2014. The neural basis of monitoring goal progress.
Cognitive

Control
Encoding

Bianco et al., 2016. Neural networks for harmonic structure in

music perception and action.
Music Violation

Blank and Von Kriegstein, 2013. Mechanisms of enhancing vi-

sual–speech recognition by prior auditory information.
Language Violation
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Blank et al., 2018. Neural Prediction Errors Distinguish Percep-

tion and Misperception of Speech.
Language Violation

Blank and Davis, 2016. Prediction Errors but Not Sharpened

Signals Simulate Multivoxel fMRI Patterns during Speech Per-

ception.

Language
Encoding,

Violation

Böckler et al., 2016. (How) observed eye-contact modulates gaze

following. An fMRI study.
Attention

Encoding,

Violation

Bohrn et al., 2012. Old Proverbs in New Skins – An fMRI Study

on Defamiliarization.
Attention Violation

Bonhage et al., 2015. Combined eye tracking and fMRI reveals

neural basis of linguistic predictions during sentence comprehen-

sion.

Language Encoding

Boorman et al., 2013. The Behavioral and Neural Mechanisms

Underlying the Tracking of Expertise.

Social

Cognition
Violation

Cacciaglia et al., 2019. Auditory predictions shape the neural

responses to stimulus repetition and sensory change.
Attention Violation

Cacioppo et al., 2014. Intention understanding over T: a neu-

roimaging study on shared representations and tennis return pre-

dictions.

Motor
Encoding,

Violation

Cacioppo et al., 2017. Predicting Intentions of a Familiar Signif-

icant Other Beyond the Mirror Neuron System.

Social

Cognition
Encoding

Campbell et al., 2021. Insula cortex gates the interplay of action

observation and preparation for controlled imitation.
Motor

Encoding,

Violation

Carp et al., 2010. Conditional differences in mean reaction time

explain effects of response congruency, but not accuracy, on pos-

terior medial frontal cortex activity.

Cognitive

Control,

Attention

Violation

Carter et al., 1995. Interference and Facilitation Effects dur-

ing Selective Attention: An H215O PET Study of Stroop Task

Performance.

Attention Violation

Carvalho et al., 2016. Time-Perception Network and Default

Mode Network Are Associated with Temporal Prediction in a

Periodic Motion Task.

Attention Violation

Cassidy and Gutchess, 2015. Neural Responses to Appearance-

Behavior Congruity.

Social

Cognition

Encoding,

Violation

Cazzato et al., 2012. Mapping reflexive shifts of attention in

eye-centered and hand-centered coordinate systems.
Motor Violation

Chaminade et al., 2001. Is perceptual anticipation a motor sim-

ulation? A PET study.
Motor Encoding

Chen and Desmond, 2005. Cerebrocerebellar networks during

articulatory rehearsal and verbal working memory tasks.
Memory

Encoding,

Violation

65



Chiu et al., 2017. The Caudate Nucleus Mediates Learning of

Stimulus–Control State Associations.

Cognitive

Control
Encoding

Chou et al., 2012. The role of inferior frontal gyrus in processing

Chinese classifiers.
Language Violation

Christensen et al., 2011. Neural Substrates of Attentive Listen-

ing Assessed with a Novel Auditory Stroop Task.
Attention Violation

Christopoulos and King-Casas, 2015. With you or against you:

Social orientation dependent learning signals guide actions made

for others.

Social

Cognition
Violation

Clos et al., 2014. Effects of prior information on decoding de-

graded speech: An fMRI study.
Language

Encoding,

Violation

Cloutier et al., 2011. An fMRI study of violations of social ex-

pectations: When people are not who we expect them to be.

Social

Cognition
Violation

Cohen et al., 2016. The Impact of Emotional States on Cognitive

Control Circuitry and Function.

Cognitive

Control
Encoding

Collins et al., 2017. Working Memory Load Strengthens Reward

Prediction Errors.
Memory Violation

Cooke et al., 2006. Large-scale neural network for sentence pro-

cessing.
Language Encoding

Cotti et al., 2011. Functionally dissociating temporal and motor

components of response preparation in left intraparietal sulcus.
Motor Encoding

Coull et al., 2016. Differential roles for parietal and frontal cor-

tices in fixed versus evolving temporal expectations: Dissociating

prior from posterior temporal probabilities with fMRI.

Attention Encoding

Crafa et al., 2017. Heightened Responses of the Parahippocam-

pal and Retrosplenial Cortices during Contextualized Recogni-

tion of Congruent Objects.

Memory Encoding

Criaud et al., 2017. Testing the physiological plausibility of con-

flicting psychological models of response inhibition: A forward

inference fMRI study.

Cognitive

Control
Encoding

Cross et al., 2013. The influence of visual training on predicting

complex action sequences.
Motor Encoding

Danek et al., 2015. An fMRI investigation of expectation viola-

tion in magic tricks.
Motor Violation

Danielsen et al., 2014. Investigating repetition and change in

musical rhythm by functional MRI.
Music Violation

Davis and Hasson, 2018. Predictability of what or where reduces

brain activity, but a bottleneck occurs when both are predictable.
Attention Violation

D’Cruz et al., 2011. Human reversal learning under conditions

of certain versus uncertain outcomes.

Cognitive

Control
Violation
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Den Ouden et al., 2009. A Dual Role for Prediction Error in

Associative Learning.
Attention Violation

Den Ouden et al., 2010. Striatal Prediction Error Modulates

Cortical Coupling.
Motor Violation

Diaconescu et al., 2017. Hierarchical prediction errors in mid-

brain and septum during social learning.

Social

Cognition

Encoding,

Violation

Diekhof et al., 2011. The power of imagination — How anticipa-

tory mental imagery alters perceptual processing of fearful facial

expressions.

Social

Cognition
Violation

Dietrich et al., 2019. Discourse management during speech per-

ception: A functional magnetic resonance imaging (fMRI) study.
Language Encoding

Domahs et al., 2013. Good, bad and ugly word stress – fMRI

evidence for foot structure driven processing of prosodic viola-

tions.

Language
Encoding,

Violation

Dombert et al., 2016. Functional mechanisms of probabilistic

inference in feature- and space-based attentional systems.
Attention Violation

Dungan et al., 2016. Theory of mind for processing unexpected

events across contexts.

Social

Cognition
Violation

Dunne and Opitz, 2020. Attention control processes that pri-

oritise task execution may come at the expense of incidental

memory encoding.

Memory Encoding

Dzafic et al., 2016. Dynamic emotion perception and prior ex-

pectancy.

Social

Cognition

Encoding,

Violation

Eickhoff et al., 2011. Neural Correlates of Developing and

Adapting Behavioral Biases in Speeded Choice Reactions–An

fMRI Study on Predictive Motor Coding.

Motor Encoding

Fajkus et al., 2015. An fMRI investigation into the effect of

preceding stimuli during visual oddball tasks.
Attention Violation

Fareri et al., 2012. Effects of Direct Social Experience on Trust
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Appendix C

The AEROBICS (Analysis &

Evaluation of Risk Of Bias in

Cognitive Studies) protocol

C.1 Scoring

For each item, read the statement and evaluate whether the related information reported (or not

reported) in the paper under investigation may contain potential risk of bias. Select the label

(among low - some concerns - moderate - high) that best describes the evaluation. In order to

formulate an evaluation, consider the principle at the basis of this tool and thus of the evaluation

of risk of bias proposed here: risk of bias can be inferred from both the methodology adopted, and

the accuracy and specificity of the research protocol, analysis and results’ report. The more details

are included in the paper pertaining to one item of the present instrument, the more the study

protocol adheres to gold standards, the lower the risk of bias. If an item is not applicable to the

paper being evaluated, please select the option Not applicable (N/A). If there is no information

available about the specific item, please select High (where appropriate). At the end convert each

label into its numerical equivalent:

– Low → 1

– Some concerns → 2

– Moderate → 3

– High → 4

For each domain, sum the scores for the completed items. To calculate the risk-of-bias score

for the domain of interest, calculate the quartiles from the maximum score possible in that specific

domain and assign a label to the score obtained according to these guidelines:

– I quartile → Low risk of bias
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– II quartile → Some concerns on risk of bias

– III quartile → Moderate risk of bias

– IV quartile → High risk of bias

For example, if a domain is made up of 10 questions the maximum score possible is 40 and the

quartiles, and thus the labels for each risk-of-bias judgment, would be as follows:

– 1-10 → Low risk of bias

– 11-20 → Some concerns on risk of bias

– 21-30 → Moderate risk of bias

– 31-40 → High risk of bias

For the overall risk-of-bias judgment, please select the highest level of risk of bias obtained in

the single domains.

C.2 Domains & statements

– Participant selection:

1. The control group has been randomly selected and it is clear how it is comparable

to/different from the experimental group.

2. The sample size has been justified with an a priori power analysis (reported with all

necessary statistical data) or otherwise.

3. The sampled population and the recruitment process have been thoroughly described.

4. The inclusion/exclusion criteria were established before data analysis and are clearly

reported in the paper.

5. If and how participants were compensated is clearly stated in the paper.

6. For clinical research only, the authors report the diagnostic criteria selected (e.g., DSM-

5), the instruments used to corroborate the diagnosis (e.g., SCID-PD), and the specific

features of the participants included (e.g., pharmacotherapy, disease duration).

7. The number of tested participants is reported, alongside the number of exclusions (with

the reasons that led to them) and the final sample size.

– Experimental task:

Only for studies including an experimental task

8. Subjects and/or researchers were blinded to the condition the former were assigned to.

9. For studies including both an experimental task and a neuropsychological battery, all parts

of the study were conducted on the same day.
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10. The experimental task is thoroughly described, in sufficient detail that it would be

possible to replicate it.

11. The authors describe clearly the characteristics of the stimuli whose manipulation might

modulate size of the effect(s) under investigation.

12. All experimental and control conditions are explicitly described, together with proce-

dures to ensure counterbalancing (if needed).

13. The total duration of the experiment, the number and length of breaks, and the number

of blocks are reported.

14. The number of practice and experimental trials, the number of stimuli for block, the

trial timeline (e.g., inter-stimulus interval, duration of black screen, stimulus duration),

and the organization of trials (random, pseudo-random, or fixed) are reported.

15. All variables collected are described and reported in the paper.

16. The authors report the response effector and whether there was any response feedback

or response-contingent reward.

– Support scales:

Only for studies including (neuro)psychological tests

17. The characteristics of the (neuro)psychological evaluation (e.g., cut-off, scores, reference

papers, norm data) are reported in detail.

18. The authors describe thoroughly what the participants are asked to do (i.e., the test).

19. The authors report how the test was administered (e.g., on a lab computer, tablet,

online).

20. All variables collected are described and reported (e.g., RTs, accuracy, errors).

21. The response effector and modality are reported.

22. All the tests were done on the same day.

Only for studies including questionnaires

23. The authors describe thoroughly what the participants are asked to do (i.e., the ques-

tionnaires).

24. The authors report how the questionnaire was administered (e.g., on a lab computer,

tablet, online).

25. The scoring system is clearly explained.

26. The authors report who is asked to answer the questionnaires (participant, parent, care-

giver, other).

– Statistics

27. A clear description of the statistical method used for all analyses and of the nature of

inference (e.g., null hypothesis testing, interval estimation, Bayesian analysis, predictive

modeling) is provided.
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28. Information relevant for each analysis is reported (e.g., the structure of the models, the

methods used for hypothesis testing, the nature of priors for Bayesian analysis, and the

nature of any feature selection and cross-validation operations used for machine learning

analyses).

29. All dependent and independent variables (including covariates) are reported.

30. Only for online studies, data cleaning procedures (e.g., removal of duplicate or auto-

mated bot responses) are reported.

31. An outlier analysis was performed and reported in detail (type, level of the data consid-

ered).

32. The exclusion of any trials (e.g., practice trials, errors outliers, too-fast or too-slow

responses) and the reasons behind it are reported, together with the total percentage of

excluded trials.

33. The handling of missing data is described in detail.

34. In case of multiple comparisons (including subgroup analyses), the correction method

for multiple comparisons (e.g., Bonferroni, False Discovery Rate correction) is reported.

35. The analysis and its reporting make it clear how the main hypotheses were tested: an

effect size and statistic for each hypothesis tested can be easily extracted from the paper.

36. All the exact main statistics (e.g., F-values for ANOVA, degrees of freedom, r for corre-

lation, Bayes factor for Bayesian analysis) for all tested effects are reported.
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Appendix D

Complete ratings of the papers

evaluated using the AEROBICS

The complete risk-of-bias ratings for the evaluated papers from the Social Cognition meta-analyses

will be reported here. For ease of reading the evaluations provided by the two raters will be listed

in two different sections.

For an explanation of the scoring system, the reader is referred to the complete AEROBICS

protocol, which can be found in Appendix C.

For complete references, the reader is directed to the Bibliography.

D.1 Rater 1

Domains Overall

Reference
Participant

selection

Experimental

task

Support

scales
Statistics

RoB

rating

Bardi et al., 2016. Moderate
Some

concerns
N/A

Some

concerns
Moderate

Boorman et al., 2013. Moderate
Some

concerns
N/A Moderate Moderate

Cassidy and Gutchess,

2015.

Some

concerns
Moderate

Some

concerns
Moderate Moderate

Christopoulos and

King-Casas, 2015.
Moderate

Some

concerns
N/A Moderate Moderate

Cloutier et al., 2011. Moderate
Some

concerns
N/A

Some

concerns
Moderate

Diaconescu et al., 2017

- Study 1.
Moderate

Some

concerns
N/A

Some

concerns
Moderate
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Diaconescu et al., 2017

- Study 2.
Moderate

Some

concerns
N/A

Some

concerns
Moderate

Dungan et al., 2016. Moderate
Some

concerns
Moderate

Some

concerns
Moderate

Dzafic et al., 2016.
Some

concerns

Some

concerns
Moderate Moderate Moderate

D.2 Rater 2

Domains Overall

Reference
Participant

selection

Experimental

task

Support

scales
Statistics

RoB

rating

Bardi et al., 2016.
Some

concerns
Low N/A

Some

concerns

Some

concerns

Boorman et al., 2013.
Some

concerns
Low N/A Low

Some

concerns

Cassidy and Gutchess,

2015.

Some

concerns

Some

concerns

Some

concerns

Some

concerns

Some

concerns

Christopoulos and

King-Casas, 2015.
Moderate Low N/A

Some

concerns
Moderate

Cloutier et al., 2011. Moderate
Some

concerns

Some

concerns
N/A Moderate

Diaconescu et al., 2017

- Study 1.

Some

concerns

Some

concerns
N/A Low

Some

concerns

Diaconescu et al., 2017

- Study 2.

Some

concerns

Some

concerns
N/A Low

Some

concerns

Dungan et al., 2016. Moderate
Some

concerns

Some

concerns
Moderate Moderate

Dzafic et al., 2016.
Some

concerns
Low Moderate Low Moderate
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Köhler, S., Bär, K.-J., & Wagner, G. (2016). Differential involvement of brainstem noradrenergic

and midbrain dopaminergic nuclei in cognitive control: NA and Dopaminergic Nuclei and Cog-

nitive Control. Human Brain Mapping, 37(6), 2305–2318. https://doi.org/10.1002/hbm.23173.

Langner, R., Kellermann, T., Boers, F., Sturm, W., Willmes, K., & Eickhoff, S. B. (2011). Modality-

Specific Perceptual Expectations Selectively Modulate Baseline Activity in Auditory, Somatosen-

sory, and Visual Cortices. Cerebral Cortex, 21(12), 2850–2862. https://doi.org/10.1093/cercor/

bhr083.

Laurienti, P. J., Wallace, M. T., Maldjian, J. A., Susi, C. M., Stein, B. E., & Burdette, J. H. (2003).

Cross-modal sensory processing in the anterior cingulate and medial prefrontal cortices. Human

Brain Mapping, 19(4), 213–223. https://doi.org/10.1002/hbm.10112.

Leaver, A. M., Van Lare, J., Zielinski, B., Halpern, A. R., & Rauschecker, J. P. (2009). Brain

Activation during Anticipation of Sound Sequences. Journal of Neuroscience, 29(8), 2477–2485.

https://doi.org/10.1523/JNEUROSCI.4921-08.2009.

Lee, D., Pruce, B., & Newman, S. D. (2014). The neural bases of argument structure processing

revealed by primed lexical decision. Cortex, 57, 198–211. https://doi.org/10.1016/j.cortex.2014.

04.013.

Lee, H. & Noppeney, U. (2014). Temporal prediction errors in visual and auditory cortices. Current

Biology, 24(8), R309–R310. https://doi.org/10.1016/j.cub.2014.02.007.

99



Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V., & Niv, Y. (2017). Dynamic Interaction

between Reinforcement Learning and Attention in Multidimensional Environments. Neuron,

93(2), 451–463. https://doi.org/10.1016/j.neuron.2016.12.040.

Leopold, D. A. & Logothetis, N. K. (1999). Multistable phenomena: changing views in perception.

Trends in Cognitive Sciences, 3(7), 254–264. https://doi.org/10.1016/S1364-6613(99)01332-7.

Leube, D. T., Knoblich, G., Erb, M., & Kircher, T. T. (2003). Observing one’s hand become

anarchic: An fMRI study of action identification. Consciousness and Cognition, 12(4), 597–608.

https://doi.org/10.1016/S1053-8100(03)00079-5.

Li, S., Jiang, X., Yu, H., & Zhou, X. (2014). Cognitive empathy modulates the processing of prag-

matic constraints during sentence comprehension. Social Cognitive and Affective Neuroscience,

9(8), 1166–1174. https://doi.org/10.1093/scan/nst091.

Liakakis, G., Nickel, J., & Seitz, R. (2011). Diversity of the inferior frontal gyrus—A meta-analysis

of neuroimaging studies. Behavioural Brain Research, 225(1), 341–347. https://doi.org/10.1016/

j.bbr.2011.06.022.

Liberati, A. (2009). The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses

of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Annals of In-

ternal Medicine, 151(4), W65–W94. https://doi.org/10.7326/0003-4819-151-4-200908180-00136.

Lim, M., O’Grady, C., Cane, D., Goyal, A., Lynch, M., Beyea, S., & Hashmi, J. A. (2020). Threat

Prediction from Schemas as a Source of Bias in Pain Perception. Journal of Neuroscience, 40(7),

1538–1548. https://doi.org/10.1523/JNEUROSCI.2104-19.2019.

Limanowski, J. & Blankenburg, F. (2015). Network activity underlying the illusory self-attribution

of a dummy arm: Network Activity of Illusory Self-Attribution. Human Brain Mapping, 36(6),

2284–2304. https://doi.org/10.1002/hbm.22770.

Limanowski, J., Kirilina, E., & Blankenburg, F. (2017). Neuronal correlates of continuous manual

tracking under varying visual movement feedback in a virtual reality environment. NeuroImage,

146, 81–89. https://doi.org/10.1016/j.neuroimage.2016.11.009.

Lin, L., Chu, H., Murad, M. H., Hong, C., Qu, Z., Cole, S. R., & Chen, Y. (2018). Empirical

Comparison of Publication Bias Tests in Meta-Analysis. Journal of General Internal Medicine,

33, 1260–1267. https://doi.org/10.1007/s11606-018-4425-7.

Lindell, A. K. (2006). In Your Right Mind: Right Hemisphere Contributions to Language

Processing and Production. Neuropsychology Review, 16, 131–148. https://doi.org/10.1007/

s11065-006-9011-9.

Lyu, B., Ge, J., Niu, Z., Tan, L. H., & Gao, J.-H. (2016). Predictive Brain Mechanisms in Sound-

to-Meaning Mapping during Speech Processing. Journal of Neuroscience, 36(42), 10813–10822.

https://doi.org/10.1523/JNEUROSCI.0583-16.2016.

100
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