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1)     State of the Art 

1.1) Introduction 

Engineers have been using steel in the construction of bridges since the second half of 

XIX century and many of these old structures are still in service, thanks to strict programs 

of maintenance, reinforcement and upgrade to suit changing requirements. 

In modern days, a big share of the work which involves bridges is made to replace and 

upgrade existing structures, although some entirely new structures are being built on new 

railway alignments or routes. 

For bridges on new alignments there’s greater freedom with the design, both depth and 

structure typology may undergo substantial changes due to the wide range of possibilities 

in the choosing of track formation, clearances etc.. 

1.2) Requirements of the bridge profile 

There are two key functional requirements for a railway bridge: 

1. Provide support to the railway traffic and infrastructure throughout the life of the 

bridge 

2. Provide adequate clearances between the structure and the traffic on and beneath 

it. 

The first requirement can be expressed and defined by these sub-requirements: 

 Strength and fatigue endurance 

 Limit the deck deformation 

 Robustness 

 Durability 

The second requirement is expressed in terms of “clearance gauges”, which are defined 

and imposed by the authorities. There are three basic parameters that are involved to 

determine the form of construction of a railway bridge: 

1. Available construction depth 

2. Span and geometric configuration 

3. Limitations which are imposed by the substructure 
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Construction Depth: 

For some new bridges on new railway alignments, construction depth is not particularly 

constrained: the track level and the level and the road level beneath can be fixed at levels 

that suit the structure. In such cases, there are more options to choose the form of 

supporting girders and deck for maximum efficiency, economy and aesthetic 

considerations. 

Replacement bridges are more likely to be constrained to a shallow construction depth, 

due to the need to maintain a clearance below and to avoid the lifting of the track. For 

short spans, deck-type structure can be entirely arranged within a shallow construction 

depth, but in many cases the only way to support the track is to arrange a shallow deck 

spanning transversely to longitudinal main girders either side of the track. This form is 

called “half through” construction or, for top-braced deep trusses over longer spans, 

“through construction”. 

 

Span and Geometric configuration: 

The span has a direct influence on depth of the main girders of a bridge and thus on 

whether the girders can be arranged within the available construction depth. Nowadays is 

preferable to build continuous construction wherever it is possible, due to potential span 

skews to the abutments that support them. 

It is obvious that considerations are needed as far as the interaction between the bridge 

and the track below. 

 

Limitations which are imposed by the substructure: 

In addition to the limitation in the replacement of existing bridges, replacement on an 

existing substructure often constrains the width of the bridge. 

The strength and form of the abutments and of the intermediate supports are likely to 

have influence on the detailing of the bearings and beams. 
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SHALLOW DECK-TYPE BRIDGES 

There are two forms of shallow slab construction (where the deck acts mainly as a beam 

spanning between abutments): 

1. Solid steel slabs 

2. Orthotropic decks 

 

Solid Steel Slabs: 

The simplest bridges comprise simply supported slabs spanning longitudinally between 

abutments. These solid steel slabs can be used to form such decks for railway bridges 

approximately up to 3m. The slab simply sits on the abutments on elastomeric strip 

bearings, it is approximately 200 or 250 mm thick and no fabrication is involved (other  

than cutting to size). 

Their advantage is very low structure depth. 

 

Orthotropic Deck: 

For spans up to 9m, a very shallow structure depth of approximately 300 to 400mm can 

be achieved using a all-steel units spanning longitudinally between abutments. 

This deck unit comprise a steel deck plate (20 or 25 mm thick) with T sections welded to 

its lower face (usually 600mm of spacing). 

The deck unit is relatively flexible transversally, so robust kerbs of containment can be 

achieved using independent parapet walkway units located clear of the tracks; 

alternatively , parapets and robust kerbs can be provided by bolt-down steel units at either 

side of the deck (to resist the horizontal loads, transverse bracing must be provided 

between the T sections). 
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Figure 1 

Example of orthotropic deck with robust kerbs.                                                 

 

 

 

As an example for this kind of shallow bridges, we can mention the Eisenbahnbrücke 

Brunngraben bridge, built in 2010. This structure is owned and designed by OBB 

Infrastruktur AG, and it is located in Ardning, Styria, Austria (Europe). 

 

Total Length 16.04 m 

Span 14.44 m 

Girder Depth 1.253 m 

Total Width 6.0 m 

 

 

Figure 2  View of Eisenbahnbrücke Brunngraben bridge 
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Figure 3  View of Eisenbahnbrücke Brunngraben bridge 

 

 

Figure 4 View of Eisenbahnbrücke Brunngraben bridge 
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Figure 5 

Lateral prospect of Eisenbahnbrücke Brunngraben bridge 
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Figure 6 

Top view of Eisenbahnbrücke Brunngraben bridge 
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Figure 7 

Cross section of Eisenbahnbrücke Brunngraben bridge on the supports 

 

Figure 8 

Cross section of Eisenbahnbrücke Brunngraben bridge 
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Figure 9 

Lateral prospect of Eisenbahnbrücke Brunngraben bridge 
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HALF TROUGH BRIDGE 

 

The structural configuration of a half-through bridge generally creates a linear 

rectangular U–shaped trough, the vertical legs being the main girders and the horizontal 

being the bridge deck. Design of such bridges requires consideration of the interaction 

between the transversely spanning action of the deck and the longitudinal spanning of the 

main beams.  

The structure behaves essentially in a simple progress of slab spanning between cross 

girders, cross girders spanning between main girders and main girders spanning between 

supports, the key structural ‘element’ 

that requires special design 

consideration is the ‘U-frame’ that is 

created by a cross girder and the two 

vertical stiffeners to which it is 

connected. The need for frames is to 

provide intermediate lateral restraint to 

the top flanges, which are in 

compression. Such restraint is able to 

constrain the buckling mode of the top flanges, as shown in the picture on the right and 

below. The restraint provided by each ‘U-frame’ depends on the three components – cross 

girder, vertical stiffeners and the connections between cross girder and main girder. The 

restraint can be expressed in in terms of a flexibility under unit lateral load, as shown in 

the picture below. 

 

Figure 10 Example of half trough bridge design 
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An existing example of this type of deck can be seen in Antibes, Provence-Alpes-Cote 

d’Azur, France (Europe). 

 

Figure 11 

View of Antibes Railroad Bridge 

 

Figure 12 

View of Antibes Railroad Bridge 
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Figure 13 

View of Antibes Railroad Bridge 

 

Another example is Railway bridge over the Emile Mark street in Differdange, 

Luxembourg (Europe). The replacement of an old deck with direct track fastening by a 

ballasted track bridge required a structural system with minimized construction depth; a 

half-through 

girder deck solved the problem. 

 

Figure 14 The picture shows the assembled steel framework 

 

Figure 15 View of Railway bridge over the Emile Mark street in Differdange. 
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1.3) Load Requirements 

 

Several kinds of loads should be considered here: 

 DL = Deal Load 

 LL = Live Load 

 WL = Wind Load 

 IM = Dynamic Loads of vehicles 

 

1.3.1) Dead Load 

 

Deal Load itself can be subdivided into two subsections: 

1. DC = Dead Load of structural and non-structural components 

2. DW = Deal Load of the wearing surface 

 

DC 

 

Dead load includes the self weight of: 

- Structural components such as girder, slabs, cross beams, etc… 

- Nonstructural components such as medians, railings, signs, etc…  

But does not include the weight of wearing surface. 

 We can estimate dead load from its density: 

 

Material Density (kg/m
3
) 

Concrete (Normal Weight) 2400 

Concrete (Lightweight) 1775-1925 

Steel 7850 

Aluminium Alloy 2800 

Wood 800-960 

Stone Masonry 2725 
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DW 

It is the weight of the wearing surface (usually asphalt) and utilities (pipes, lighting if 

needed, etc…). Different category is needed due to large variability of the weight 

compared with those of structural components. 

 

1.3.2) Live Load 

 

Live load is the force due to vehicles moving on the bridge, its impacts depends on  many 

parameters including: 

- Span length 

- Weight of vehicle 

- Axle loads (load per wheel) 

- Axle configuration 

- Position of the vehicle on the bridge (transverse and longitudinal) 

- Number of vehicles on the bridge (multiple presence) 

- Girder spacing 

- Stiffness of structural members 

 

When we are talking about bridges, live load is very heavy (several tons per wheel) and it 

can be a series of point loads (wheel loads of trains) or uniform loads; dynamic effects of 

live load cannot be ignored. 

The strategy for analyzing live loads can be summed up this way: 

 

 

 

 

Various Live Loads 
Place them to get 

the maximum 
effect to span 

Consider dynamic 
effects 

Distribute Load on 
each girder 

Get the 
Moment/Shear to 

be used in the 
design of the 

girders 
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1.3.3) Dynamic Load 

 

This kind of load will be largely explained in chapter 1.4 

 

1.3.4) Wind Load 

 

Wind load can be described as an horizontal load, and there are two types of wind loads 

on the structure: 

WS = wind load on structure (Wind pressure on the structure itself) 

WL = wind on vehicles on bridge (Wind pressure on the vehicles on the bridge, which the 

load is 

transferred to the bridge superstructure). 

 

For small and low bridges, wind load typically do not control the design. For longer span 

bridge over river/sea, wind load on the structure is very important; there’s the need to 

consider the aerodynamic effect of the wind on the structure, like turbulence. 

There’s also the  need to consider the dynamic effect of flexible long-span bridge under 

the wind force and we can do that by conducting dynamic analysis. 

 

For bridges or parts of bridges more than 10 m above low ground or water level, the 

design wind velocity,    , should be adjusted according to: 

          
   

  

    
 

  

  

Where 
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After having the wind velocity it’s possible to calculate the pressure on the structure  

      
   

  
     

   
 

     
 

We can find some references about wind force on bridges also in Eurocode 1 part 4, 

which shows us the simpliest method, where the wind force in direction x may be 

calculated using this equation: 

   
 

 
   

           
  

  
  

Where 

                    

                                                          

                             

Values of C factor can be find in the table below 

 

Values of the exposure factor can be found in the table below 

 

Figure 16 Table for the exposure factor 
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Rail traffic actions are defines by means of load models, five of them are given in the 

Eurocode: 

1. Load Model 71 (and load model SW/0 for continuous bridges) to represent normal 

rail traffic on mainline railways 

2. Load Model SW/2 to represent heavy loads 

3. Load Model HSLM to represent the loading from passenger trains at speeds 

exceeding 200 km/h 

4. Load Model “unloaded train” to represent the effects of an unloaded train. 

 

1.3.5) Load Model 71 

 

Figure 17 Load Model 71 and characteristics values for vertical loads  

 

The characteristic values given in Figure 17 shall be multiplied by a factor α, on lines 

carrying rail traffic which is heavier or lighter than normal rail traffic. When multiplied 

by the factor α the loads are called "classified vertical loads" . This factor α shall be one 

of the following: 

 

0.75 – 0.83 – 0.91 – 1.00 – 1.10 – 1.21 – 1.33 – 1.46 
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1.3.6) Load Model SW/0 and SW/2 

Load Model SW/0 represents the static effect of vertical loading due to normal rail traffic 

on continuous beams; Load Model SW/2 represents the static effect of vertical loading 

due to heavy rail traffic. 

 

Figure 18 Characteristic values for vertical loads for Load Models SW/0 and SW/2  

 

Load Model SW/0 shall be multiplied by the factor α as well. 

 

 

 

1.3.7) Load Model unloaded train 

The Load Model "unloaded train" consists of a vertical uniformly distributed load with a 

characteristic value of 10,0 kN/m. 

 

1.3.8) Eccentricity of vertical loads (Load Models 71 and SW 10) 

 

The effect of lateral displacement of vertical 

loads shall be considered by taking the 

ratio of wheel loads on all axles as up to 1,25: 

1,00 on anyone track. The resulting eccentricity 

e is shown in Figure 19. 

 

F

Figure 19: Eccentricity of vertical 

loads 
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1.3.9) Distribution of the Load 

 

The passing of the convoy on the rails produces a concentrated load through the wheels 

and a distributed load from the hole train itself. These two loads are transmitted first to 

the rails through the sleepers, then to the slab through the ballast. 

From the slab the load effects are transferred to the main girders, depending on the 

stiffness distribution of the section. The main girders, which are simply supported, 

distribute the loads on the main support of the bridge. 

 

Figure 20   The shaded areas represents a possible distribution of load effects in 3D (figure a) through the 

sleepers to the slab, figure b shows the transmission of those loads to the main girders. 

 

Figure 21   The wheel loads, represented by the concentrated loads Q at the tracks, are simplified as one 

concentrated load 2Q acting in the middle of the cross-section, directly on the slab. The reaction forces RA  

and RB act at the supports. 

In a linear elastic analysis cracking and redistributions are neglected, which means that 

the slab has to behave in an isotropic way (it can distribute the load effects in all 

directions in the same way). However, in service state, this is unrealistic. The stiffness is 

influenced by transversal reinforcement that implies that the slab have an orthotropic 

behavior. 
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Figure 22 

a) Isotropic behavior 

b) Extreme scenario of orthotropic behavior, in which there’s no stiffness in longitudinal direction. 

 

1.3.10) Longitudinal distribution of wheel load by the rail 

 

Wheel loads may be distributed onto the supports as shows in Figure 21. 

 

Figure 23: Distribution of wheel   loads 

 

 

 

 

 

 

Where  
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1.3.11) Longitudinal distribution of load by sleepers and ballast 

 

Generally the point loads may be distributed uniformly in the longitudinal direction 

(except where local load effects are significant, e.g. for the design of local floor elements, 

etc.). 

For the design of local floor elements etc. (e.g. longitudinal and transverse ribs, rail 

bearers, cross girders, deck plates, thin concrete slabs, etc.), the longitudinal distribution 

beneath sleepers as shown in Figure 24 should be taken into account, where the reference 

plane is defined as the upper surface of the deck. 

 

Figure 24: Longitudinal distribution of load by a sleeper 

and ballast 

 

 

 

 

1.3.12) Transverse distribution of actions by the sleepers and ballast 

 

On bridges with ballasted track without 

cant, the actions should be distributed 

transversely as shown in Figure 25: 

 

 

 
Figure 25: Transverse distribution of actions by the 

sleepers and ballast, track without cant (effect of 

eccentricity of vertical loads not shown) 
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1.3.13) Torsion in the main girders 

 

When the slab is subjected to a load the slab bends in the transversal direction and as an 

effect of this torques are introduced in the main girders, and causes torsion. It  is required 

that full compatibility between main girders and slab should be assumed and designed for. 

This means that torsion reinforcement should be designed based on the torsional moments 

that occur due to full compatibility. 

 

Figure 26 Torques T in the main girders caused by the load Q 

 

Figure 27 Beam subjected to a torque 

  

 

. 
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1.4) Dynamic behavior and load models 

 

All types of bridges require a specific analysis for special loads, being them footbridges, 

road bridges or railway ones. In particular, for railway bridges, those kind of loads can be 

very affecting on the entire load category; that is why there is an entire section in the 

Eurocodes dedicated to the matter. (Eurocode 1 – Part 2 – Section 6).  

There are many factors than take part in a dynamic behavior, such as: 

1) The speed of the traffic which is crossing the bridge 

2) The span L 

3) The mass of the structure 

4) The natural frequencies of the whole structure and relevant elements 

5) The number of axles, axle loads and the spacing of those 

6) The damping of the structure 

7) Vertical irregularities in the track 

8) The unsprung/sprung mass and suspension characteristics of the vehicle 

9) The presence of regularly spaced supports of the deck 

10) Vehicle imperfections 

11) Dynamic characteristics of the track (ballast, sleepers etc) 

 

1.4.1) Requirements for a dynamic analysis 

“The dynamic analysis shall be undertaken using characteristic values of the loading 

from the Real Trains specified. The selection of Real Trains shall take into account each 

permitted or envisaged train formation for every type of high speed train permitted or 

envisaged to use the structure at speeds over 200km/h. 

The dynamic analysis shall also be undertaken using Load Model HSLM on bridges 

designed for international lines where European high speed interoperability criteria are 

applicable. 

Load Model HSLM comprises of two separate Universal Trains with variable coach 

lengths, HSLM-A and HSLM-B.” 
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Figure 28 HSLM-A 

 

 

Figure 29 HSLM-A 

 

HSLM-B comprises of N number point forces of 170 kN at uniform spacing d [In] where 

N and d are defined in Figures 30 and 31. 

 

Figure 30 HSLM-B 
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Figure 31 HSLM-B (L is the span length) 

 

 

Either HSLM-A or HSLM-B should be applied in accordance with the requirements of 

Table 1 

 

 

Table 1 Application of HSLM-A and HSLM-B 
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Table 2 Summary of additional load cases depending upon number of tracks on bridge 

 

1.4.2) Real Trains 

 

Here below, the schemes of the real trains from A to F.   

 

Figure 32 Real Train A 

 

Figure 33 Real Train B 
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Figure 34 Real Train C 

 

 

Figure 35 Real Train D 

 

 

Figure 36 Real Train E 
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Figure 37 Real Train F 

 

1.4.3) Speeds to be considered 

 

“For each Real Train and Load Model HSLM a series of speeds up to the Maximum 

Design Speed shall be considered. The Maximum Design Speed shall be generally 1,2 x 

Maximun1 Line Speed at the site. 

The Maximum Line Speed at the site shall be specified.  

Calculations should be made for a series of speeds from 40m/s up to the Maximum 

Design Speed, smaller speed steps should be made in the vicinity of Resonant Speeds. 

For simply supported bridges that may be modelled as a line beam the Resonant Speeds 

may be estimated using this equation” 

        and              

Where: 
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1.4.4) Bridge parameters 

1) Structural Damping 

“The peak response of a structure at traffic speeds corresponding to resonant 

loading is highly dependent upon damping. The following values of damping 

should be used in the dynamic analysis:” 

 

Bridge Type 

   Lower limit of percentage of critical 

damping [%] 

Span < 20m Span ≥ 20m 

Steel and Composite               

    

      

Prestressed Concrete                        

Filler beam and reinforced 

concrete 

                       

 

For spans less than 30m dynamic vehicle/bridge mass interaction effects tend to reduce 

the peak response at resonance. Account may be taken of these effects by increasing the 

value of damping assumed for the structure according to Figure 38. 

For continuous beams, the smallest value    (for all spans should be used. The total 

damping to be used is given by :              

 

Figure 38 Additional damping as a function of span length 
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Where           
                 

                              [%] 

 

2) Mass of the bridge 

“Maximum dynamic load effects are likely to occur at resonant peaks when a 

multiple of the frequency of loading and a natural frequency of the structure 

coincide and any underestimation of mass will overestimate the natural frequency 

of the structure and overestimate the traffic speeds at which resonance occurs. At 

resonance the maximum acceleration of a structure is inversely proportional to 

the mass of the structure. Two specific cases for the mass of the structure 

including ballast and track shall be considered: 

- A lower bound estimate of mass to predict maximun1 deck accelerations using 

the minimum likely dry clean density and minimum thickness of ballast, 

-  An upper bound estimate of mass to predict the lowest speeds at which resonant 

effects are likely to occur using the maximum saturated density of dirty ballast  

 

3)  Stiffness of the bridge 

 

Maximum dynamic load effects are likely to occur at resonant peaks when a 

multiple of the frequency of loading and a natural frequency of the structure 

coincide. 

Any overestimation of bridge stiffness will overestimate the natural frequency of 

the structure and speed at which resonance occurs. The stiffness of the whole 

structure including the determination of the stiffness elements of the structure may 

be determined in accordance with EN 1992 to EN 1994. 

Values of Young's modulus may be taken from EN 1992 to EN 1994. 

 

1.4.5) Verifications of the limit states 

“To ensure traffic safety: 

-  The verification of maximum peak deck acceleration shall be regarded as a traffic 

safety requirement checked at the serviceability limit state for the prevention of track 

instability. 
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-    The dynamic enhancement of load effects shall be allowed for by multiplying the static 

loading by the dynamic factor  . If a dynamic analysis is necessary, the results of the 

dynamic analysis shall be compared with the results of the static analysis enhanced by   

and the most unfavourable load effects shall be used for the bridge design. 

-     If a dynamic analysis is necessary, a check shall be carried out to establish whether 

the additional fatigue loading at high speeds and at resonance is covered by 

consideration of the stresses due to load effects from   x LM71. The most adverse fatigue 

loading shall be used in the design.” 

 

1.4.6) Dynamic factor    

 

The dynamic factor   takes account of the dynamic magnification of stresses and 

vibration effects in the structure but does not take account of resonance effects. Structures 

carrying more than one track should be considered without any reduction of dynamic 

factor   . Generally the dynamic factor   is taken as either    or    according to the 

quality of track maintenance as follows:  

 

 

For carefully maintained track: 

   
    

       
                                    

For tracks with standard maintenance: 

   
    

       
                                    

 

Being    the length associated with  . 

If no dynamic factor is specified    shall be used. The dynamic factor   shall not be used 

with: 

 the loading due to Real Trains 

 the loading due to Fatigue Trains 

 Load Model HSLM 

 the load model "unloaded train" 
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Where the maximum line speed at the site is lower than 200 km/h a dynamic analysis 

should be carried out. The analysis should take into account the factors that influence the 

dynamic behavior and consider Real Trains from A to F. 

 

For bridge decks carrying one or more tracks the checks for the limits of deflection and 

vibration shall be made with the number of tracks loaded with all associated relevant 

traffic actions in accordance with Table 3. 

 

 

Table 3 Number of tracks to be loaded for checking limits of deflection and vibration 
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1.4.7)    User Comfort Criteria 

 

Railroad traffic on bridges induces vibrations which could possibly have an adverse effect 

on passenger comfort. At extreme cases, vibrations from an improperly design bridge 

could cause derailment. 

As far as the global bridge response is concerned, it is generally understood that when one 

of the apparent trainload excitation frequencies coincides with the fundamental natural 

frequency of the bridge, resonance could occur. 

In order to better control excess bridge vibration, the objective is to derive a user comfort 

serviceability limit based on the natural frequency of the bridge. 

Previous research efforts have tried to use complex modeling of bridge dynamic behavior 

to derive natural frequency based serviceability criteria (Wright and Walker 1971, 

Amaraks 1975, and DeWolf and Kou 1997). None of these previous efforts have 

produced acceptable criteria to place in design codes. This study will instead use a simple 

dynamic pluck test to obtain a dynamic property of the bridge, which, in turn, is used to 

formulate the proposed user comfort serviceability criteria. 

In the dynamic pluck test, the bridge is loaded with the fatigue truck at the location that 

incurs maximum deflection. The load is then removed instantaneously, and free vibration 

is allowed. The response is then correlated to acceptable vibration for steel girder bridges. 

            
  

Where: 

             is the maximum acceleration 

     is the initial deflection 

        is the bridge circular natural frequency, being     the natural frequency 

 

The natural frequency of a simply supported, single span bridge can be calculated with: 

      
 

    
    

 
  

Where 

  is the span length 

  is the elasticity modulus 

   moment of inertia at midspan 
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  acceleration of gravity 

  weight per unit length of bridge girder. 

 

Vertical accelerations has to be controlled and compared with some limitations, as 

follows: 

 For ballast stability, vertical accelerations of the deck to be less than 3.5m/sec/sec 

for frequencies up to 20Hz 

 For passenger comfort, vertical acceleration within carriages of the trains to be less 

than 0.5m/sec/sec. 

 

Limitations on span deflection and joint rotation are applied to control the ride quality of 

the track.  

Limitations on twist of the track also apply, particularly at crossovers and turnouts. 

 

Vertical deflection at midspan is also checked to ensure acceptable vertical track radii, 

that the structure is not significantly different in performance to existing rail bridges and 

also to ensure acceptable levels of vertical acceleration inside coaches corresponding to 

satisfactory passenger comfort. 

Permitted span/deflection ratios  are all those which stay below the upper limit of L/600. 
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1.5) Research Summary 

 

In the past few years, engineers have been trying to improve this kind of bridge, by 

researching innovative solutions.  

We feel like mentioning the work which has been done by Ing. Josef Fink’s research 

group (Paul Herrmann and Lukas Juen), reguarding “Extremely slender steel-concrete 

composite deck slab for railway bridges”. 

The main goal in this research was to study the behavior of an innovative composite 

sandwich system, consisting in a concrete core in between of two steel plates, 

interconnected by continuos shear connectors. 

This new type of deck slab is supposed to replace the thick steel slab for bridges with 

spans of 10 to 25 meters. 

 

Figure 39 Trough bridge with a thick steel slab 

 

 

Figure 40 Trough bridge with a sandwich slab 
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The plate consists of two outer steel plates separated by unreinforced concrete, the height 

of the sandwich construction is 200mm and it mainly carries the vertical loads transversal 

to the main girders of the bridge. 

The flexural rigidity of the SCSC system is mainly achieved by the two steel plates which 

participate additionally in the carrying function in longitudinal direction. The shear 

connection between the steel plates is generated by continuous shear connectors like 

crown dowels or perforated strips and the concrete filling. 

Four sandwich plate specimens were tested under static load to examine load the bearing 

behaviour of the innovative SCSC sandwich system. 

 

Basic Load-Bearing mechanism 

 

The basic idea to ensure the transmission of the shear flow between the outer plates is the 

formation of compression struts within the concrete core, which are respectively 

supported by two adjoining shear connectors as shown in Figure 41 .The concrete acts 

with the shear connectors. This load-bearing mechanism allows the use of unreinforced 

concrete to reduce material and production costs compared to conventional reinforced 

composite structures used in bridge construction. 

 

 

Figure 41 SCSC plate with compression diagonal within the unreinforced concrete core 
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Tests 

 

Six models were investigated exemplary for one plate: 

1. Rigid shear connection; constant widths (RSC1) 

2. Rigid shear connection; effective widths due to shear lag effects (RCS2) 

3. Elastic shear connection; constant widths; strut inclination α=45°=const. (ESC1) 

4. Elastic shear connection; effective widths due to shear lag effects; strut inclination 

α=45°(ESC2) 

5. Elastic shear connection ; constant widths; strut inclination from α=30° to α=60° 

(ESC3) 

6. Elastic shear connection; effective widths due to shear lag effects; strut inclination 

from α=30° to α=60° (ESC4) 

 

The comparisons in the results are shown in Figure 42 

 

Figure 42 comparison of analytical models with test data 

 

The model ESC2 is the best choice to describe the structural behaviour by means of 

deformations. Taking the results of all strain- gauges into account, the models RSC1 and 

ESC1 show the best accordance with the measured test data for strain calculation. 

 

Conclusions 

 

The SCSC plate is a durable and cost effective element usable as deck slab for railway 

bridges. 
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Another important research was conducted by K.M.A. Sohel and J.Y. Richard Liew of the 

National University of Singapore. Their purpose was to study the static behavior of a SCS 

sandwich slab with lightweight concrete core. 

To investigate the static performance of sandwich slabs, static tests for a centrally applied 

patch load were conducted on SCS sandwich slab specimens of different core thicknesses 

(80 and 100 mm) as well as different steel face plate thicknesses (4, 6 and 8 mm). Other 

parameters included in the investigation are the diameter of J-hook shear connectors and 

concrete core with and without fibres. A total number of eight SCS sandwich slabs 

measuring 1200 × 1200 mm2 (width × length) was prepared for the static test. All the 

slabs were fabricated with J-hook shear connectors. The diameter of the J-hook 

connectors was 10 mm for six specimens and the others contained 12 mm diameter 

connectors. The spacing of the connectors in both directions was 100 mm for all 

specimens. 

 

Figure 43 SCS sandwich with J-hook shear connectors. 

 

Here below the sandwich slabs specimens 

 

Shear strength of the J-hook connectors embedded in concrete should be determined by 

push out tests. The failure of J-hook connectors with a lightweight concrete core of 

compression strength   fc = 31 MPa was governed by concrete bearing failure. 
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Whereas, the connector with normal concrete core (compression strength > 48 MPa) 

failed by shear yielding of the connector occurring at about 8–10 mm slip. 

 

Figure 44 Direct tensile test on J-hook connectors 

embedded in concrete 

 

The slab was simply supported on all four 

sides and subjected to a central concentrated 

load produced by a servo-controlled Instron 

hydraulic actuator of capacity 2000 kN under 

displacement control mode. 

From the test results, the general load–

deflection behavior of SCS sandwich slabs 

under concentrated load is illustrated in the 

figure below. 

In the first stage, the load increased linearly with some minor tension cracking in the 

concrete core which was expected. In the second stage, the onset of the bottom plate slip, 

bucking of the top plate and possibly the failure of one or more connectors occurred. 

 

Figure 45 Experimental load–deflection curves (a) sandwich slabs with normal weight concrete core (b) 

sandwich slabs with lightweight concrete core. 
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The effect of fibres can be studied by comparing the load–deflection behavior of the slabs 

with and without fibres. An addition of 1% volume fraction of fibres increased the load–

deflection stiffness and the first peak load. 

For SCS sandwich slabs, the flexural capacity of the slab can be evaluated using the yield 

line theory.  

Fig. 46 shows the fracture pattern of yield lines in a square slab, simply supported at four 

edges and subjected to a concentrated patch load. From the virtual work principle, the 

flexural capacity of the slab may be evaluated using the equation proposed by Rankin and 

Long. 

        
  

   
        

 

 

Figure 46 

Formation of yield-

line mechanism of 

sandwich slab 
subjected to 

concentrated mid-

point load. 

 

 

 

 

 

 

The pull-out capacity of the J-hook from the concrete core greatly affects the punching 

shear capacity of the slabs. Fibres within the concrete core help to increase both flexural 

and punching capacity of the slabs. After punching failure occurs in the concrete core, the 

SCS sandwich slabs continue to resist load due to the membrane action in the steel plates 

preventing sudden failure of the slabs and this allows the sandwich slabs to sustain a 

higher load at the large deflection range. 
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J.Y. Richard Liew conducted another investigation with X.X.Dai riguarding  the SCS 

sandwich system, in particular the research was developed towards the static and fatigue 

behavior. Fatigue failure is of one of the key concerns in the design of bridge. Fatigue 

analysis is normally carried out 

based on the S-N curve approach, as shown in the equation below, under the assumption 

of a linear cumulative damage law, the so called Miner's rule. 

   
    

 
  

  

 

   

   

Where 

                               

              

                       

                                                    

                                                       

                                   

 

The schematic view of cyclic load or fatigue load time history is shown in Figure 47, in 

which the load range    is defined as              

 

 

Figure 47 Fatigue load parameters 
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Generally the fatigue tests assume a linear relationship between          and the stress 

range or load range   . (where b and k are constants) 

               

In the study the two researchers conducted, were used the same J-Hooks as in the study 

mentioned earlier  

 

Figure 48 Design of SCS sandwich beam with J-Hooks 

 

 

Test Specimens 

The length, width and overall thickness of the SCS composite beam are 1200mm, 250mm 

and 92mm respectively, with dimensions as shown in Figure 48. 

The steel plate is grade S275JR with a yield strength of 350 KN/mm
2
 and ultimate tensile 

strength of 500 KN/mm
2
. The J-Hooks are made from cold drawn round steel bar with an 

ultimate tensile strength of 610 KN/mm
2
. 

The fatigue test specimen is defined by its relative maximum applied load 
    

  
 

        and relative load range 
  

  
             

 

Static Test Results 

For specimen SP, the beam deflection increased linearly with an increase of load until 20 

kN, where debonding occurred at the interface between the bottom steel plate and the 

concrete core. 

After this, the beam deflected at a slightly faster rate as shown in Figure 39. Some shear 

cracks (in the form of diagonal cracks) were observed starting from the loading point and 

gradually propagating to the beam ends when the applied loads increased from 42 to 49 

kN. These cracks propagated through the concrete core at about 45 degrees across 
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connectors L-3, L-4 and L-5, as shown in Figure 49a. After the cracks appeared, the 

deflection increased at a faster rate with extension and widening of these shear cracks. 

Finally, the concrete core was broken into pieces of 

blocks.  

Larger diagonal shear cracks developed in the plain concrete core for specimen SP, as 

shown in Figure 49b, contributing to a larger beam deflection as compared to specimens 

S1 and S2 with the fibre-reinforced concrete core. Finally, significant load drops occurred 

in the load deflection curve indicating the failure of the connectors. 

 

Figure 49 Shear cracks development 

 

Figure 50 Load deflection behavior 
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Hysterical Responses 

 

The hysteretic load deflection response under cyclic load is shown in Figure 40. Two 

static load deflection loops loaded up to the maximum applied load were recorded prior to 

fatigue cycling. Monotonic load cycles were conducted periodically to determine the load 

deflection profile of the tested specimen throughout its fatigue life. The unloading curve 

does not follow the loading path, which indicates some permanent deformation has 

occurred. The loading and unloading curves comprise a static envelope. The area covered 

by this envelope is the energy absorbed by the specimen inducing permanent deformation 

or damage. This permanent deflection increases with the increase of fatigue load cycles. 

The hysteretic response of relative slip between the bottom steel face plate and the 

concrete core under a cyclic load show similar behavior with that of deflection, except 

that the slip values are smaller than the corresponding deflection values, as shown in 

Figure 51. 

 

 

Figure 51 Hysteric response of load vs. deflection  
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Figure 52 Hysteric response of load vs. relative slip 

 

 

Permanent Deformation 

  

The relationship between deformation, expressed by the deflection and relative slip, and 

the number of load cycles is shown in Figure 52, both in normal and log scale. The 

maximum and minimum applied load levels are 0.8 and 0.4 respectively. 

The first two data points represent the permanent (plastic) deformation at the end of an 

unloading phase in the first two static loops before fatigue tests start. It is seen that both 

the deflection and relative slip increase in an accelerating manner. The slope of the line 

connecting the data points can be deemed as an indicator of the deformation rate with 

respect to the number of load cycles.  

Comparing the deformation curves of F95 and F85 concludes that a larger value of 

maximum applied load induces more fatigue damage although the load ranges are the 

same. 
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Figure 53 Variation of permanent deformation 

 

Energy Dissipation 

The area covered by the load displacement curve can be approximated by dividing the 

integral into many small trapezoids by displacement increments, such as          shown 

in Figure 54. The 

unit work in this increment is thus the area of the trapezoid. 

   
 

 
               

The algebraic sum of the unit work in both loading and unloading parts are thus the 

energy absorbed by the specimen, given as: 
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Figure 54 Permanent deformation 

 

The variation of energy absorption 

capacity in the process of fatigue loading is 

shown in Figure 55 The absorbed energy in 

the first static loop for F85 and F84 are 

almost the same since they are subjected to 

the same maximum applied load. In the 

subsequent fatigue load cycles, specimen F85 absorbed more energy than F84. 

Specimen F95 absorbed more energy than the other two in the whole process of fatigue 

loading due to its higher value of maximum applied load. Thus it is concluded that the 

variation of energy absorption capacity is affected by both the maximum applied load and 

load range. 

 

Figure 55 Variation of energy dissipation with an increasing number of load cycles 

 

Conclusions 

Test results show that J-hook connectors are effective in preventing relative slip at the 

steel-concrete interface and tensile separation of the steel face plates. Using a 1% volume 

fraction of steel fibers in the concrete core could reduce the cracks significantly and 

enhance the structural integrity of the sandwich beams. 

Results from fatigue tests on SCS beams show that their fatigue life is affected by both 

the fatigue stress range and maximum applied stress; fatigue life reduces when the load 

range or maximum applied load increases. 

The proposed SCS sandwich system with a lightweight concrete core and J-hook 

connectors shows good performance under fatigue loading. 
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2)      Bridge Design for 10 meters span with cross 

end beam 

2.1) Static Analysis 

 

The main purpose of this work is to design and analyze a half trough steel bridge, suitable 

for railways, studying it for different bridge spans and trying to make it with the lowest 

building depth as possible. 

Various spans will be considered, such as 6-10-15 meters supported by two types of end 

cross beams, also considering the possibility of three or four bearings. 

This particular type of bridge is characterized by a steel deck plate, with an uniform 

thickness of 80 mm throughout the length of the span. 

High rotational and flectional stiffness is guaranteed by the main girders, box beams with 

different thicknesses between the webs and the top flange, 30mm and 40mm respectively.  

Additional diaphragms are positioned into the main girders to improve the stiffness of the 

structure, their thickness is 12mm. 

 

2.1.1) Bridge Characteristics  

 

Firstly, the deck supported by the end cross beam is going to be analyzed.  

This beam is very stiff and presents a section as shown in Figure 56. 

 

Figure 56 Section of the end cross beam 

 

 

 

 

 

 

 

As we can see the beams web is welded directly to the bridge deck and its thickness is 

30mm. This beam is going to lay on the bearings with the bottom flange, 40mm thick. 
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Six stiffener plates (30 mm thick) are welded transversely to the beams web, as we can se 

from Figure 57. 

 

Figure 57 Bridge cross section 

 

 

 

 

Figure 58 Bridge longitudinal view 
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2.1.2) Design 

 

The bridge was modeled on the computer with the FEM software CSi Bridge, all the 

structure was drawn using only shells, as shown in Figure 59. 

Two models will be compared to see if three bearings are enough or the loading needs a 

fourth bearing. 

 

Figure 59 Bridge with end cross beam model with three bearings 

 

 

Figure 60 Bridge with end cross beam model with four bearings 
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2.1.3) Loading 

 

The structure, according to the Eurocode requirements, has been loaded with all kinds of 

loads and those have been combined with the given coefficients: 

- Dead Load 

- Wind Load 

- Temperature Loads ( Uniform & Non Uniform) 

- Vehicle Load LM 71 

- Vehicle Load SW/2 

 

DEAD LOADS: 

Other than the weight of the structure itself, the ballast has also been included in the dead 

loads. As stated in the Eurocode 1-1-1 , the weight of the ballast has been considered 

increased by +30% and also with a reduction of -30% (in the combinations, the self 

weight multiplier won’t be 1, but 1,3 to take into account the increasing of +30%, and 0,7 

for the reduction) 

 

WIND LOADS: 

Using the equations given in Eurocode 1-4, the Wind forces in y and z directions were 

calculated, applied as a uniform pressure on the structure, considering          
 

   
 . 

   
   

  

 
        

  

  
  

Being                         

And         
  

  
  

   
   

  

 
        

  

  
  

Being                         

And         
  

  
  

Wind in x-direction may be neglected. 

Coefficients      and      have been taken by the graph below 
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Figure 61 Graph for the determination of coefficient Cf 

 

To take into account also the torsion moment caused by wind actions, a height of 4m for 

the train has been used to calculate the area on which the wind pressure takes place. This 

pressure has been further 

decomposed into two forces acting 

on the sleepers, as shown in figure 

62. 

 

Figure 62 Wind force 

decomposure 

 

 

 

 

 

The forces on the rails are calculated as follows 
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TEMPERATURE LOADS: 

As stated in EC 1991-1-5 this structure can be assigned into Type 1 category, being it a 

steel deck bridge with box girders. 

In these models, two different load cases were made to take into account the temperature 

leap. Characteristic values of minimum and maximum shade air temperatures for the 

site location shall be obtained, e.g. from national maps of isotherms. 

           

           

Using the picture below we can detect the bridge temperatures starting from the shade air 

temperatures, approximately now they will be: 

          

           

 

In addition to those uniform 

temperatures, in the model was 

inserted a non-uniform temperature 

load case, which takes into account 

      on the surfaces that are 

exposed to the weather,      on 

the shaded areas. 

 

Figure 63 Graph for determination of 

structure temperatures 

 

 

 

Figure 64 Non uniform temperature 
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VEHICLE LOADS: 

 

In this load case two different types of load were inserted, SW/2 and LM71 (already 

showed in chapter 1.3). These loads were designed as shown in pictures 65 and 66.  

The characteristic values given in LM71 shall be multiplied by a factor a, as explained 

before, we chose 1.10. 

 

 

Figure 65 Input of SW/2 Load into CSi Bridge 

 

Figure 66 Input of LM71 Load into CSi Bridge 
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2.1.4) Distribution of the Load 

 

Load is distributed by sleepers and ballast with a 1:4 slope like this. 

 

Figure 67 Distribution of the load 

 

 

2.1.5) Load Combinations 

 

The load combinations have been formed according to the rules written in Eurocode 0.  

The general format of effects of actions should be: 

 

                                                      

 

Values for the coefficients can also be found in this Eurocode, As listed below. 
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These are the combinations detected, with the relative coefficients applied on each load. 

 

Figure 68 Load combinations 
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Into the loading process, something have been neglected: 

- Impact forces of 1000 KN in the direction of vehicle travel of 500 KN perpendicularly 

- Centrifugal forces, since this bridges are not placed into curving tracks 

- Eccentricity of the track, due to different loads from the wheels. This eccentricity is so 

small so it doesn’t affect the solution. 

-  Longitudinal forces 

 

2.2) Results of the structure with three bearings 

 

After running the analysis, these are the results provided by the post processor of the 

software, divided by load case and the displacement in Z is shown in Figures 69 – 70 – 71 

– 72 for the three-bearings structure, Figures 73 – 74 – 75 – 76  for the four-bearings 

structure .  

 

 

 

Figure 69 Dead Load z-displacement, structure with three bearings 
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Figure 70 LM71 Load z-displacement, structure with end cross beam and three bearings 

 

 

 

Figure 71 SW/2 Load z-displacement, structure with end cross beam and three bearings 

 

Figure 72 Wind Load z-displacement, structure with end cross beam and three bearings 
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2.3) Results of the structure with four bearings 

 

Figure 73 Dead Load z-displacement, structure with end cross beam and four bearings 

 

 

 

Figure 74 LM71 Load z-displacement, structure with end cross beam and four bearings 

 

 

 Figure 75 SW/2 Load z-displacement, structure with end cross beam and four bearings 
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Figure 76 Wind Load z-displacement, structure with end cross beam and four bearings 

 

If we watch the deflection gap that there’s between the 3-bearings bridge and the 4-

bearings one, we can see that these are the differences: 

 

LOAD 3-BEARINGS 4-BEARINGS 

 Span Max 

displacement  

Deck-end Max displacement Span Max displacement Deck-end Max displacement 

DEAD -1.68 [mm] 0.14 [mm] -1.69 [mm] 0.00 [mm] 

LM71 -11.88 [mm] 0.99 [mm] -11.22 [mm] 0.99 [mm] 

SW/2 -9.60 [mm] 0.80 [mm] -9.00 [mm] 0.75 [mm] 

WIND 0.13 [mm] -0.01 [mm] 0.13 [mm] 0.00 [mm] 

 

So, basically, displacements on the z axe are almost the same. The fourth bearing 

shouldn’t be necessary. 
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3) Bridge Design for 10 meters span without cross 

end beam 

3.1) Static Analysis 

 

3.1.1) Bridge Design 

 

If the end cross beam is considered too big and if we want to achieve a really low 

building depth, another solutions may be more suitable, even more practical and 

economical. An end cross slab, 80 mm thick like the deck, is going to replace the end 

cross beam; this slab may be seen in Figure 77.  

Figure 77 End cross slab     

With this structural modification, the hole bridge went through some design changes, as 

shown in Figures 78 – 79  . 

 

Figure 78 Bridge section with end cross slab 
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Figure 79 Bridge longitudinal view with end cross slab 

 

 

Like before, this bridge was modeled with CSi Bridge, and the outcome is shown in 

Figure 80. Also here, the structure has been analyzed with three and four bearings, in 

order to make a comparison. 

 

Figure 80 Bridge with end cross slab model 

Below, some details of the box girder and the attachment of the diaphragms inside the 

main girders. 
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Figure 81 Details of box girder  

 

The diaphragms at both ends of the deck will be fully penetrated all over the perimeter, 

because we want them to be waterproof and also can prevent external material to fall into 

the main girder.  

 

3.1.2) Loading 

 

The loading is exactly the same as in the previous description for the end cross beam 

bridge. 

 

3.1.3) Results of the structure with three bearings 

 

After running the analysis, these are the results, divided by load case and the 

displacement in Z is shown in Figures 82 – 83 – 84 – 85 for the three-bearings structure , 

Figures 86 – 87 – 88 – 89 for the four-bearings structure.  
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Figure 82 Dead Load z-displacement, structure with end cross slab and three bearings 

 

 

Figure 83 LM71 Load z-displacement, structure with end cross slab and three bearings 

 

Figure 84 SW/2 Load z-displacement, structure with end cross slab and three bearings 
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Figure 85 Wind Load z-displacement, structure with end cross slab and three bearings 

 

3.1.4) Results of the structure with four bearings 

 

Figure 86 Dead Load z-displacement, structure with end cross slab and four bearings 

 

 

Figure 87 LM71 Load z-displacement, structure with end cross slab and four bearings 
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Figure 88 SW/2 Load z-displacement, structure with end cross slab and four bearings 

 

Figure 89 Wind Load z-displacement, structure with end cross slab and four bearings 

 

With this structural changes, the deflections are: 

LOAD 3-BEARINGS 4-BEARINGS 

 Span Max 

displacement  

Deck-end Max displacement Span Max displacement Deck-end Max displacement 

DEAD -1.80 [mm] 0.00 [mm] -1.80 [mm] 0.00 [mm] 

LM71 -13.20 [mm] 1.10 [mm] -13.20 [mm] 1.10 [mm] 

SW/2 -10.80 [mm] 0.90 [mm] -10.2 [mm] 0.90 [mm] 

WIND 0.13 [mm] -0.01 [mm] 0.13 [mm] 0.001 [mm] 

 

Here also, seems that there’s no need of an additional bearing, due to the little gap that 

there’s between the two structures z-displacements. Now, stated that the 3-bearings 

structure is the one to be chosen, it will be interesting to compare the 3-bearing structure 

with end cross beam and with end cross slab. 
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LOAD 3-BEARINGS End Cross Beam 3-BEARINGS End Cross Slab 

 Span Max displacement  Deck-end Max displacement Span Max displacement Deck-end Max displacement 

DEAD -1.68 [mm] 0.14 [mm] -1.80 [mm] 0.00 [mm] 

LM71 -11.88 [mm] 0.99 [mm] -13.20 [mm] 1.10 [mm] 

SW/2 -9.60 [mm] 0.80 [mm] -10.80 [mm] 0.90 [mm] 

WIND 0.13 [mm] -0.01 [mm] 0.13 [mm] -0.01 [mm] 

 

 

Both the structures are verified as far as the Eurocode concernes, since the limitation are: 

1) 3 [mm] displacement in the deck-end 

2) L/600 in middle span, which here it is 16.66 [mm] 

 

LOAD GAP 

 Span Max displacement  Deck-end Max displacement 

DEAD 0.12 [mm] 0.14 [mm] 

LM71 1.32 [mm] 0.11 [mm] 

SW/2 1.20 [mm] 0.10 [mm] 

WIND 0.00 [mm] 0.00 [mm] 

 

Seen these results, 1.2 [mm] gap it’s affordable, also because changing to a end cross slab 

structure leads to a loss of weight ( this can also be seen as a money saving procedure). 

 

                                                     

                                                     

                         

 

It is a 1% weight saving. 

 

For a better understanding of the ratio bearings/displacement, also a two bearing structure 

has been analyzed, here are the related results: 
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LOAD 2-BEARINGS End Cross Beam 2-BEARINGS End Cross Slab 

 Span Max 

displacement  

Deck-end Max displacement Span Max displacement Deck-end Max displacement 

DEAD -1.82 [mm] 0.00 [mm] -2.64 [mm] -1.20 [mm] 

LM71 -12.21 [mm] -1.87 [mm]  -17.60 [mm] -14.30 [mm] 

SW/2 -9.60 [mm] 0.80 [mm] -16.50 [mm] -10.50 [mm] 

WIND 0.143 [mm] 0.00 [mm] 0.156 [mm] 0.065 [mm] 

 

These numbers are not acceptable, modifications on the model are necessary. For 

instance, trying to higher the slab thickness might fix the displacement problem. 

Instead of 8 cm, to achieve displacement verifications with the two bearings structure, we 

have to improve the thickness of the slab up to 20cm. 

 

 

3.2) Verifications 

 

3.2.1) Deck Twist 

 

The twist of the bridge deck shall be calculated taking into account the characteristic 

values of Load Model 71 as well as SW/0 or SW/2 as appropriate multiplied by alpha.  

The maximum twist t [mm/3m] of a track gauge s [m] of 1,435 m measured over a length 

of 3 m should not exceed the values given in Table below. 

 

Figure 90 Deck twist 
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Where: 

           

          

          

 

At 30 [m/sec] t=  1.023 [mm]  

At 40 [m/sec] t= 1.023 [mm] 

On this tracks, trains do not exceed 55.55 [m/sec] 

 

3.2.2) Stresses 

 

As far as stresses verification, Von Mises’s stresses have to respect this limits 

               

The picture below shows the most unfavourable combination, the highest stress in the 

deck is 76.1 MPa , and around the area of the bearings where we have the singularities, 

the highest is 281.2 MPa. 

So everything is acceptable. 

 

 

Figure 91 Von Mises diagram for 10 meters span  
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3.2.3) Transverse Deformation 

 

This verification will be neglected, due to the short span length there will be no problems 

regarding horizontal curvatures. 
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4)     Dynamic Analysis for 10 meters span, 

without cross end beam, three bearings 

4.1) Introduction 

 

Dynamic considerations are often more complex and complicated than its static 

counterpart, mainly due to the time varying of the dynamic problem.  

Magnitude, direction and/or position of a dynamic load are also varying with time. 

Similarly, the structural response to a dynamic load is time varying too. Because of that, a 

dynamic problem does not have a single solution, as a static one does. A succession of 

solutions of a dynamic problem has to be established, corresponding to all times of 

interest in the response history. The Eurocode 1-2 also provides a flow chart to determine 

whether the dynamic analysis is required or not, as shown in Figure 92. 

 

 

 

 

 

 

 

Figure 92  

Flow chart to determine whether the 

dynamic analysis is required. 
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Where: 

L is the span length [m] 

V is the Maximum Line Speed at the site [km/h] 

   is the first natural bending frequency of t bridge loaded by permament actions [Hz] 

   is the first natural torsional frequency of t bridge loaded by permament actions [Hz] 

V is the maximum nominal speed [m/sec] 

From this flow chart we can see than for 

this type of structure the dynamic analysis 

is not required, but it will be run anyways.  

Also from the graph here on the left , 

entering with span length and natural 

frequency, is we end up into the 

“comfortable” area, the dynamic analysis is 

not required. 

Span Length = 10m  

Natural Frequency= 14.85488 Hz  

So we are inside. 

 

 

Figure 93 Zone which doesn’t require a dynamic analysis 

 

As written before, the EC 1-2 also states that The dynamic analysis shall be undertaken 

using characteristic values of the loading from the Real Trains specified, and the speeds 

to be considered have to be multiplied by a safety factor of 1,2 so in this case the 

maximum allowed speed will be: 

     
  

 
           

  

 
  

In this project six speeds will be analyzed for each of the six Real Trains: 

1) 36 [km/h] = 10 [m/sec] 

2) 72 [km/h] = 20 [m/sec] 

3) 108 [km/h] = 30 [m/sec] 

4) 144 [km/h] = 40 [m/sec] 

5) 165 [km/h] = 46 [m/sec] 

6) 192 [km/h] = 53 [m/sec] 



 

 86 

 Six speeds for the six real trains (from A to F), which have been inputted into the CSi 

software as shown in the Figures below 

 

 

Figure 94 Train type A in CSi Bridge 

 

 

Figure 95 Train type B in CSi Bridge 

 

 

Figure 96 Train type C in CSi Bridge 
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Figure 97 Train type D in CSi Bridge 

 

 

Figure 98 Train type E in CSi Bridge 

 

 

Figure 99 Train type F in CSi Bridge 
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As far as the introduction of the Damping Factor, a small theoretical explanation is 

required  in addition of what has already been written before.  

 

In the simplest way, the railway bridge model is supposed to be considered as a 

Bernoulli-Euler     beam. This beam model considered the linear character of the bridge 

structure. Compared with its length, the beam has small transverse dimensions. The 

differential equation of the motion of a simple supported beam is formulated like this: 

  
        

   
  

        

   
     

       

  
        

 

The equation of motion is deduced on the assumption of the theory of small deformations, 

Hooke’s law, Navier’s hypothesis and Saint-Venant’s principle can be applied. Constant 

cross-section and mass per unit length of the beam is assumed and the damping is 

considered proportional to the velocity of vibration. It is possible to divide the damping 

coefficient in two parts, Mass and Stiffness proportional damping coefficients, normally 

referred to as Rayleigh damping. 

During formulation, the damping matrix is assumed to be proportional to the mass and 

stiffness matrices as follows: 

        

Stiffness-proportional damping coefficient    
  

     
          

Mass-proportional damping coefficient                

Where  
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4.1.2) Time History: 

 

The equation of dynamic equilibrium of an elastic discretized structure is formulated in 

Equation                              . 

Step by step integration of the equation has to be performed, in order to 

reproduce the complete time history response of the structure. 

 

Direct Integration: 

The equation of dynamic equilibrium is integrated, using direct integration, a 

numerical step by step procedure in the time domain. The method is based on 

following concepts: 

1) The dynamic equilibrium equations are satisfied at discrete time points, within the 

solution time interval. These discrete points are Δt apart. 

2) Within these time intervals, the variation of displacement, velocity and 

acceleration is assumed. This gives arise to a series of direct integration schemes, 

each possessing different accuracy and stability characteristics. 

 

In this particular chapter we want to verify that the structure satisfies the EC requirements 

for deck acceleration, and than see the effects of some important variables of the results 

of dynamic analysis, such as:   

- Output time 

- Rampth Function 

- Meshing 

- Direct Integration / Modal 

 

Like in the static analysis, both 3Bearings cross end beam structure and 3Bearings cross 

end slab structure have been examined, then focusing in detail only in the slab structure 

(it was already proven more suitable in the static analysis). 

To accomplish this goal, 36 different load cases have been created in the model, one for 

every speed of each real train. 

Using CSi Bridge, it was necessary to set up the analysis type like this, with these 

damping coefficients: 
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4.2) Results for 3 Bearings – Cross End Beam structure: 

 

All the pictures with the z-displacements are shown in Annex A 

 

4.3) Results for 3 Bearings – Cross End Slab structure: 

 

All the pictures with the z-displacements are shown in Annex A 

 

Since on the Eurocode there are limitations on the accelerations of the structure, we took 

one particular point and analyzed its accelerations under the moving loads of each train.  

The joint we took into account is in the middle of the span on the main girder, as shown 

in the picture below. 

 

Figure 100 Joint taken into account for the acceleration verifications 

 

The results of the primary dynamic analysis are shown in the graphs that follow. 

Number of output Time Steps: 50 

Output Time Step Size: 0.1 secs 
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Now that all the accelerations are gathered we take the worst case scenario, which in this 

case is presenting itself in the Real Train C at the velocity of 40 meters per second.  

Now it may be useful to understand what impact do certain variable have on the results 

for instance: 

- Time Step Data 

- Rampth Function 

- Time History Type 

- Meshing 

 

4.4)  Changing variables 

 

4.4.1) Time Step Data 

 

Time-history analysis is performed at discrete time steps. The time span over which the 

analysis is carried out is given by multiplying the number of time steps and their size.  

For periodic analysis, the period of the cyclic loading function is assumed to be equal to 

this time span. Responses are calculated at the end of each time increment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basically, if we put those results into a graph it would look like this: 

Output Time 

Step Size 

Number Of 

Output Time 

Steps 

0.10 50 

0.09 56 

0.08 62 

0.07 71 

0.06 83 

0.05 100 

0.04 125 

0.03 166 

0.02 250 

0.01 500 

Acceleration  

[m/sec/sec] 

3.397 

1.501 

1.556 

1.258 

1.401 

1.249 

0.7625 

0.741 

0.7725 

0.9403 
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So, gradually decreasing the size of the time step, but keeping the loading time equal, it 

improves the solution and it kind of stabilizes between 0.02 and 0.04.  

 

4.4.2) Ramp Function 

 

The built-in time function in the CSi 

software looks like this: 

 

This function can be modified in order 

to see if this has some effect on the 

results, for instance it could be like 

this: 

  Figure 101 Ramp Function 

 

If  we carry out the analysis on the Real Train C at 

speed of 40 m/sec , we can see that the solution is 

perfectly the same before and after the modification 

of the Rampth function. 
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4.4.3) Time History Type 

 

Modal superposition provides a highly efficient and accurate procedure for performing 

time history analysis. Closed form integration of the modal equations is used to compute 

the response, assuming linear variation of the time functions,        , between the input 

data time points. Therefore, numerical instability problems are never encountered, and the 

time increment may be any sampling value that is deemed fine enough to capture the 

maximum response values. One tenth of the time period of the highest mode is usually 

recommended; however, a larger value may give an equally accurate sampling if the 

contribution of the higher modes is small.  

 

Direct integration of the full equations of motion without the use of modal super position 

is available in CSi Bridge.  

While modal superposition is usually more accurate and efficient, direct integration does 

offer the following advantages for linear problems: 

• Full damping that couples the modes can be considered 

• Impact and wave propagation problems that might excite a large number of modes may 

be more efficiently solved by direct integration 

Direct integration results are extremely sensitive to time-step size in a way that is not true 

for modal superposition. 

 

We keep the same train, same speed, with the modifications done earlier. Now instead of 

using Linear Direct Integration as time history type, we are going to see how the results 

change by using the Modal one. 

 

After running the load case analysis, the acceleration that resulted was        
 

    
  , 

previously, with the Direct Integration it was        
 

    
 , so a 56.4% difference. 
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4.4.4) Meshing 

 

Other important share of impact on results is given by the mesh used in the model, here’s 

the difference between a dense and non-dense meshing. 

 

 

 

                         

       
 

    
  

 

 

 

 

 

 

                  

       
 

    
  

 

 

 

 

So here the impact of the modification is around 13%, so it is not very significant.  

 

We can say that the changing of the output time step size has a great impact on the final 

results, so it will be good to see if this is happening also for low speeds, like 10 m/sec and 

20 m/sec. 
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Real Train C : 10 m/sec 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And graphically we can see that the results for the slowest speed is already pretty stable, 

so changing the output time step size has impact, but not that significant as it was for 40 

m/sec. 

 

 

 

Output Time 

Step Size 

Number Of 

Output Time 

Steps 

0.10 50 

0.09 56 

0.08 62 

0.07 71 

0.06 83 

0.05 100 

0.04 125 

0.03 166 

0.02 250 

0.01 500 

Acceleration  

[m/sec/sec] 

0.3273 

0.2357 

0.2581 

0.2349 

0.2434 

0.2068 

0.2002 

0.2095 

0.1203 

0.1061 
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Real Train C : 20 m/sec 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here the results are pretty much fluctuating, never gaining a stable amount. 

 

 

 

 

Output Time 

Step Size 

Number Of 

Output Time 

Steps 

0.10 50 

0.09 56 

0.08 62 

0.07 71 

0.06 83 

0.05 100 

0.04 125 

0.03 166 

0.02 250 

0.01 500 

Acceleration  

[m/sec/sec] 

0.8012 

0.3651 

0.2732 

0.406 

0.5166 

0.3687 

0.6577 

0.3459 

0.4356 

0.3282 
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4.5) Acceleration Verification 

 

In the Annex 2 chapter 4.4.2 the criteria for the deck acceleration verifications can be 

found: 

 

“To ensure traffic safety, where a dynamic analysis is necessary, the verification of 

maximum peak deck acceleration due to rail traffic actions shall be regarded as a traffic 

safety requirement checked at the SLS for the prevention of track instability.” 

 

“The maximum permitted peak values of bridge deck acceleration shall not exceed the 

following design values: 

         
 

  
                     

         
 

  
                                                               ” 

 

In this case, our upper limit will be 3.5 [m/sec/sec] , seeing the results presented before, 

every train at every speed verifies the deck acceleration limit. 

 

Proven that the slab structure with three bearings is the most suitable for this kind of 

design, now the same analysis will be carried out for different spans, respectively 15 

meters and then 6 meters. 
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5)      Bridge Design for 15 meters span 

5.1) Static Analysis 

 

There are no major changes between the 10 meters and 15 meters structures, only the 

length and one additional diaphragm into the main girders 

 

Figure 102 15 meters span bridge 

 

5.1.1) Loading 

 

All the loading procedure is the same as it was in the analysis of the 10 meters structure 

 

5.1.2) Results 

 

Figure 103 Dead Load z-displacement for 15 meters span 
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Figure 104 SW-2 z-displacement for 15 meters span 

 

 

Figure 105 LM71 z-displacement for 15 meters span 

 

 

Figure 106 Wind z-displacement for 15 meters span 
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Load Z-Displacement [mm] Limits [mm] Verification 

 Deck-End Middle 

Span 

Deck-End Middle 

Span 

 

Dead +0.20 -5.40 None None YES 

SW-2 +1.00 -24.00 3.00 25.00 YES 

LM71 +0.55 -23.76 3.00 25.00 YES 

Wind -0.055 +0.65 None None YES 

 

From this table we can see that the verifications that the Eurocode suggests are satisfied. 

 

 

5.2) Verifications 

 

5.2.1) Deck Twist 

 

The twist of the bridge deck shall be calculated taking into account the characteristic 

values of Load Model 71 as well as SW/0 or SW/2 as appropriate multiplied by alpha.  

The maximum twist t [mm/3m] of a track gauge s [m] of 1,435 m measured over a length 

of 3 m should not exceed the values given in Table below. 

 

Where: 
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At 30 [m/sec] t=0.65 [mm] 

At 40 [m/sec] t=1.09 [mm] 

On this tracks, trains do not exceed 55.55 [m/sec] 

 

5.2.2) Stresses 

 

As far as stresses verification, Von Mises’s stresses have to respect this limits 

               

The picture below shows the most unfavourable combination, the highest stress in the 

deck is 91.55 MPa , and around the area of the bearings where we have the singularities, 

the highest is 324.23 MPa. 

So everything is acceptable. 

 

 

Figure 107 Von Mises diagram for 15 meters span 

 

5.2.3) Transverse Deformation 

 

This verification will be neglected, due to the short span length there will be no problems 

regarding horizontal curvatures. 
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5.3) Dynamic Analysis 

 

From the graph here on the left , 

entering with span length and natural 

frequency, if we end up into the 

“comfortable” area, the dynamic 

analysis is not required. 

Span Length = 15m  

Natural Frequency= 8.10008 Hz  

So we are inside. 

 

To run the dynamic analysis in this 

model, nothing basically changes from 

the 10 meters one. The only thing that 

is subject to a change is the damping 

coefficient since the modal analysis 

gives us different frequencies with which to calculate the mass-proportionl and stiffness-

proportional coefficients. The equation, obviously, it’s still the same:  

        

Stiffness-proportional damping coefficient    
  

     
           

Mass-proportional damping coefficient                   

Where  

       

                   

           

5.3.1) Results  

 

All the pictures with the z-displacements are shown in Annex A 

The dynamic analysis was carried out with: 

Number of output Time Steps: 166 

Output Time Step Size: 0.03 secs 

Pictures below show the acceleration of middle span, on the main girder, as before. 
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 107 

Since the upper limitations given by the Eurocode are      
 

    
  , each train in verified for 

every speed, apart from trains B and C at speed of 53 meters per second. (in both cases 

the deck acceleration is 4.398 m/sec/sec). 

At this point the choices are two: 

1) Limit the speed of the trains passing on the bridge with this span at the maximum 

of 46 meters per second. 

2) Try to change the cross section of the bridge and see which modification will keep 

the deck acceleration below the limits. 

 

If we higher the height of the main girders from 67 cm to 84 cm and run again the 

dynamic analysis for those two cases, these are the results 

 

                     
 

 
         

 

  
  

                     
 

 
         

 

  
  

 

Proven that this little modification clearly improves the behavior of the hole structure, it’s 

better to run the hole static and dynamic analysis once again, for each of the 36 cases. 
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6)   Bridge Design for 15 meters span with 

bigger main girders 

6.1) Static Analysis 

 

This is how the structure with bigger main girders and an additional diaphragm looks 

 

Figure 108 15 meters span bridge with bigger main girders 

 

Cross Section and longitudinal view are presented in the next two figures. 

 

 

Figure 109 Cross section for 15 meters span bridge with bigger main girders 
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Figure 110 Longitudinal view for 15 meters span with bigger main girders 

 

Below, some details of the box girder and the attachment of the diaphragms inside the 

main girders. 

 

 

Figure 111 Detail of the bigger box girders 

 

6.1.1) Loading  

 

The loading of the structure is the same as before, only the damping coefficient changes. 
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6.1.2) Results 

 

 

Figure 112 Dead z-displacement for 15 meters span with bigger girders 

 

Figure 113 SW-2 z-displacement for 15 meters span with bigger girders 

 

Figure 114 LM71 z-displacement for 15 meters span with bigger girders 
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Figure 115 Wind z-displacement for 15 meters span with bigger girders 

 

Load Z-Displacement [mm] Limits [mm] Verification 

 Deck-End Middle 

Span 

Deck-End Middle 

Span 

 

Dead +0.7 -3.85 None None YES 

SW-2 +1.5 -18 3.00 25.00 YES 

LM71 +1.54 -18.48 3.00 25.00 YES 

Wind -0.04 +0.45 None None YES 

 

From this table we can see that the verifications that the Eurocode suggests are satisfied. 

 

 

6.2) Verifications 

 

6.2.1) Deck Twist 

 

The twist of the bridge deck shall be calculated taking into account the characteristic 

values of Load Model 71 as well as SW/0 or SW/2 as appropriate multiplied by alpha.  

The maximum twist t [mm/3m] of a track gauge s [m] of 1,435 m measured over a length 

of 3 m should not exceed the values given in Table below. 
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Where: 

           

          

          

  

At 30 [m/sec] t=1.067[mm] 

At 40 [m/sec] t=1.056 [mm] 

On this tracks, trains do not exceed 55.55 [m/sec] 

 

6.2.2) Stresses 

 

As far as stresses verification, Von Mises’s stresses have to respect this limits 

               

The picture below shows the most unfavourable combination, the highest stress in the 

deck is 100.74 MPa , and around the area of the bearings where we have the singularities, 

the highest is 324.23 MPa. 

So everything is acceptable. 

 



 

 113 

 

Figure 116 Von Mises diagram for 15 meters span with bigger girders 

 

2.2.3) Transverse Deformation 

 

This verification will be neglected, due to the short span length there will be no problems 

regarding horizontal curvatures. 
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6.3) Dynamic Analysis 

 

From the graph here on the left , entering 

with span length and natural frequency, is 

we end up into the “comfortable” area, the 

dynamic analysis is not required. 

Span Length = 15m  

Natural Frequency= 9.71318 Hz  

So we are inside. 

 

To run the dynamic analysis in this model, 

nothing basically changes from the 10 

meters one. The only thing that is subject to 

a change is the damping coefficient since the 

modal analysis gives us different 

frequencies with which to calculate the mass-proportionl and stiffness-proportional 

coefficients. The equation, obviously, it’s still the same:  

        

Stiffness-proportional damping coefficient    
  

     
          

Mass-proportional damping coefficient                  

Where  

       

                   

           

 

6.3.1) Results  

 

All the pictures with the z-displacements are shown in Annex A 

The dynamic analysis was carried out with: 

Number of output Time Steps: 166 

Output Time Step Size: 0.03 secs 

Pictures below show the acceleration of middle span, on the main girder, as before. 
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This results show that the modification made in the main girders has a huge effect on the 

deck accelerations. 

All 36 cases is verified by Eurocode standards. 
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7)   Bridge Design for 6 meters span 

7.1) Static Analysis 

 

Cross Section and longitudinal view are presented in the next two figures. 

 

 

Figure 117 Cross Section 6 meters span 

 

Figure 118 Longitudinal view for 6 meters span 
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Everything is kept the same, only the span length will change, which will affect only the 

damping used in the dynamic analysis. 

 

7.1.1) Results 

 

Figure 119 Dead z-displacement for 6 meters span 

 

Figure 120 LM71 z-displacement for 6 meters span 

 

Figure 121 SW-2 z-displacement for 6 meters span 
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Figure 122 Wind z-displacement for 6 meters span 

 

Load Z-Displacement [mm] Limits [mm] Verification 

 Deck-End Middle 

Span 

Deck-End Middle 

Span 

 

Dead +0.063 -0.78 None None YES 

SW-2 +0.45 -5.40 3.00 10.00 YES 

LM71 +0.99 -5.45 3.00 10.00 YES 

Wind -0.011 +0.06 None None YES 

 

7.2) Verifications 

 

7.2.1) Deck Twist 

 

The twist of the bridge deck shall be calculated taking into account the characteristic 

values of Load Model 71 as well as SW/0 or SW/2 as appropriate multiplied by alpha.  

The maximum twist t [mm/3m] of a track gauge s [m] of 1,435 m measured over a length 

of 3 m should not exceed the values given in Table below. 
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Where: 

           

          

          

  

At 30 [m/sec] t=0.748 [mm] 

At 40 [m/sec] t=0.753 [mm] 

On this tracks, trains do not exceed 55.55 [m/sec] 

 

7.2.2) Stresses 

 

As far as stresses verification, Von Mises’s stresses have to respect this limits 

               

The picture below shows the most unfavourable combination, the highest stress in the 

deck is 86.23 MPa , and around the area of the bearings where we have the singularities, 

the highest is 266.93 MPa. 

So everything is acceptable. 

 

Figure 123 Von Mises diagram for 6 meters span 
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7.2.3) Transverse Deformation 

 

This verification will be neglected, due to the short span length there will be no problems 

regarding horizontal curvatures. 

 

Since the displacements seem to be highly verified, the deck has been modeled a bit 

thinner (65mm instead of 80mm) in order to save some steel if the analysis will be 

verified. 

 

7.3)Static Analysis with 65mm deck 

 

Figure 124 Box girders for 6 meters span with 65 mm deck 

 

7.3.1) Results 

 

Figure 125 Dead z-displacement for 6 meters span with 65 mm deck 
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Figure 126 LM71 z-displacement for 6 meters span with 65 mm deck 

 

Figure 127 SW-2 z-displacement for 6 meters span with 65 mm deck 

 

Figure 128 Wind z-displacement for 6 meters span with 65 mm deck 



 

 124 

Load Z-Displacement [mm] Limits [mm] Verification 

 Deck-End Middle 

Span 

Deck-End Middle 

Span 

 

Dead +0.09 -1.02 None None YES 

SW-2 +0.75 -9.00 3.00 10.00 YES 

LM71 +1.76 -9.68 3.00 10.00 YES 

Wind -0.018 +0.099 None None YES 

 

Since everything is verified, we can use this structure to carry on the dynamic analysis.  

 

 

7.3.2) Verifications 

 

7.3.2.1) Deck Twist 

 

The twist of the bridge deck shall be calculated taking into account the characteristic 

values of Load Model 71 as well as SW/0 or SW/2 as appropriate multiplied by alpha.  

The maximum twist t [mm/3m] of a track gauge s [m] of 1,435 m measured over a length 

of 3 m should not exceed the values given in Table below. 

 

Where: 
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At 30 [m/sec] t=1.373 [mm] 

At 40 [m/sec] t=1.369 [mm] 

On this tracks, trains do not exceed 55.55 [m/sec] 

 

7.3.2.2) Stresses 

 

As far as stresses verification, Von Mises’s stresses have to respect this limits 

               

The picture below shows the most unfavourable combination, the highest stress in the 

deck is 88.82  MPa , and around the area of the bearings where we have the singularities, 

the highest is 267.83 MPa. 

So everything is acceptable. 

 

 

Figure 129 Von Mises diagram for 6 meters span with 65mm deck 

 

7.3.2.3) Transverse Deformation 

 

This verification will be neglected, due to the short span length there will be no problems 

regarding horizontal curvatures. 
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7.4) Dynamic Analysis 

 

From the graph here on the left , entering 

with span length and natural frequency, is 

we end up into the “comfortable” area, the 

dynamic analysis is not required. 

Span Length = 6m  

Natural Frequency= 18.20517 Hz  

So we are inside. 

 

To run the dynamic analysis in this model, 

nothing basically changes from the 10 

meters one. The only thing that is subject to 

a change is the damping coefficient since 

the modal analysis gives us different 

frequencies with which to calculate the mass-proportionl and stiffness-proportional 

coefficients. The equation, obviously, it’s still the same:  

        

Stiffness-proportional damping coefficient    
  

     
           

Mass-proportional damping coefficient                  

Where  

       

                    

           

 

7.4.1) Results  

 

All the pictures with the z-displacements are shown in Annex A 

The dynamic analysis was carried out with: 

Number of output Time Steps: 166 

Output Time Step Size: 0.03 secs 

Pictures below show the acceleration of middle span, on the main girder, as before. 
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Since the upper limitations given by the Eurocode are      
 

    
  , each train in verified for 

every speed. 
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8) Fatigue Checks 

 

Fatigue in metals is the process of initiation and growth of cracks under the action of 

repetitive tensile loads. If crack growth is allowed to go on long enough, failure of the 

member can result when the  non cracked cross-section is sufficiently reduced such that the 

member can no longer carry the internal forces for the crack extends in an unstable mode. 

The fatigue process can take place at stress levels (calculated on the initial cross-section) that 

are substantially less than those associated with failure under static loading conditions. The 

usual condition that produces fatigue cracking is the application of a large number of load 

cycles. Consequently, the types of civil engineering applications that are susceptible to 

fatigue cracking include structures such as bridges, crane support structures, stacks and masts, 

and offshore structures. 

Crack growth in metals requires two existing conditions: existing flaws and tensile stresses. 

This crack growth can be delineated into three distinct regimes: initiation, steady-state 

propagation and unstable fracture, like in the next figure. 

 

Figure 130 Crack growth chart 

 

As has already been noted, the initiation portion of general crack growth in which existing 

flaws are sharpened into cracks is essentially non-existent for all fabricated steel structures 

and can conservatively be ignored. 
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8.1)  Verification of the structural steel bridge part 

 

For the fatigue calculations in the structural steel bridge part EN1994-2 allows the use of 

the equivalent stress ranges simplified method. The stress variations in a given structural 

detail is thus obtained by the single crossing of the bridge of Load Model 71. 

All in all the verification format of the equivalent stress ranges simplified method is 

as follows: 

         
   

   
 

Where: 

                                                   

                               is the equivalent constant amplitude stress range 

related to 2 millions cycles 

    is the reference value of the fatigue strength at 2 millions cycles (detail category)  

                                                 

                           

  
    

      
       dynamic factor 

 

How to calculate the damage equivalent factor is given by this combination of sub-

factors. 

                 

 

Where: 

  is the factor for the damage effect of traffic and depends on the length of the influence 

line 

  in the factor for traffic volume 

  is the factor for the design life of the bridge 

  is the factor for the structural element is loaded by more than one track 

    is the maximum factor value taking into account the fatigue limit 
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8.2)  Results 

 

Here are the details that are subject to fatigue 

checks divided into spans, first in x-direction, than 

in y-direction. 

The detail which is going to be verified for fatigue 

now is the welded connection between the web and 

deck on the main girder . 

 

Longitudinal Direction 
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Transversal Direction 
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This is the detail of the web welded to the upper 

flange 

 

 

 

 

 

Longitudinal Direction 
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Transversal Direction 
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Here the detail of the diaphragms into the main girders is 

checked 

The class of the detail is 80 because the thickness of the 

diaphragms is lower than 50 mm 

 

 

Longitudinal Direction 
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9) Annex A 

 

Here are presented all the results of the displacements of the dynamic analysis carried out 

previously. 

 

9.1) Results for 3 Bearings – Cross End Beam structure: 

 

 

Type A: Speed 10 [m/sec] 

 

Type A: Speed 20 [m/sec] 
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Type A: Speed 30 [m/sec] 

 

Type A: Speed 40 [m/sec] 

 

Type A: Speed 46 [m/sec] 
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Type A: Speed 53 [m/sec] 

 

Type B: Speed 10 [m/sec] 

 

Type B: Speed 20 [m/sec] 
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Type B: Speed 30 [m/sec] 

 

Type B: Speed 40 [m/sec] 

 

Type B: Speed 46 [m/sec] 
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Type B: Speed 53 [m/sec] 

 

Type C: Speed 10 [m/sec] 

 

Type C: Speed 20 [m/sec] 
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Type C: Speed 30 [m/sec] 

 

Type C: Speed 40 [m/sec] 

 

Type C: Speed 46 [m/sec] 
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Type C: Speed 53 [m/sec] 

 

Type D: Speed 10 [m/sec] 

 

Type D: Speed 20 [m/sec] 
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Type D: Speed 30 [m/sec] 

 

Type D: Speed 40 [m/sec] 

 

Type D: Speed 46 [m/sec] 
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Type D: Speed 53 [m/sec] 

 

Type E: Speed 10 [m/sec] 

 

Type E: Speed 20 [m/sec] 
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Type E: Speed 30 [m/sec] 

 

Type E: Speed 40 [m/sec] 

 

Type E: Speed 46 [m/sec] 
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Type E: Speed 53 [m/sec] 

 

Type F: Speed 10 [m/sec] 

 

Type F: Speed 20 [m/sec] 
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Type F: Speed 30 [m/sec] 

 

Type F: Speed 40 [m/sec] 

 

Type F: Speed 46 [m/sec] 
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Type F: Speed 53 [m/sec] 

 

9.2)  Results for 3 Bearings – Cross End Slab structure: 

 

 

Type A: Speed 10 [m/sec] 

 

Type A: Speed 20 [m/sec] 
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Type A: Speed 30 [m/sec] 

 

Type A: Speed 40 [m/sec] 

 

Type A: Speed 46 [m/sec] 



 

 151 

 

Type A: Speed 53 [m/sec] 

 

Type B: Speed 10 [m/sec] 

 

Type B: Speed 20 [m/sec] 
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Type B: Speed 30 [m/sec] 

 

Type B: Speed 40 [m/sec] 

 

Type B: Speed 46 [m/sec] 
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Type B: Speed 53 [m/sec] 

 

Type C: Speed 10 [m/sec] 

 

Type C: Speed 20 [m/sec] 
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Type C: Speed 30 [m/sec] 

 

Type C: Speed 40 [m/sec] 

 

Type C: Speed 46 [m/sec] 
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Type C: Speed 53 [m/sec] 

 

Type D: Speed 10 [m/sec] 

 

Type D: Speed 20 [m/sec] 
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Type D: Speed 30 [m/sec] 

 

Type D: Speed 40 [m/sec] 

 

Type D: Speed 46 [m/sec] 
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Type D: Speed 53 [m/sec] 

 

Type E: Speed 10 [m/sec] 

 

Type E: Speed 20 [m/sec] 
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Type E: Speed 30 [m/sec] 

 

Type E: Speed 40 [m/sec] 

 

Type E: Speed 46 [m/sec] 
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Type E: Speed 53 [m/sec] 

 

Type F: Speed 10 [m/sec] 

 

Type F: Speed 20 [m/sec] 
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Type F: Speed 30 [m/sec] 

 

Type F: Speed 40 [m/sec] 

 

Type F: Speed 46 [m/sec] 
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Type F: Speed 53 [m/sec] 

 

9.3) Results for 3 Bearings , 15 meters span 

 

Type A: Speed 10 [m/sec] 

 

Type A: Speed 20 [m/sec] 
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Type A: Speed 30 [m/sec] 

 

Type A: Speed 40 [m/sec] 

 

Type A: Speed 46 [m/sec] 
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Type A: Speed 53 [m/sec] 

 

Type B: Speed 10 [m/sec] 

 

Type B: Speed 20 [m/sec] 
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Type B: Speed 30 [m/sec] 

 

Type B: Speed 40 [m/sec] 

 

Type B: Speed 46 [m/sec] 



 

 165 

 

Type B: Speed 53 [m/sec] 

 

Type C: Speed 10 [m/sec] 

 

Type C: Speed 20 [m/sec] 
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Type C: Speed 30 [m/sec] 

 

Type C: Speed 40 [m/sec] 

 

Type C: Speed 46 [m/sec] 
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Type C: Speed 53 [m/sec] 

 

Type D: Speed 10 [m/sec] 

 

Type D: Speed 20 [m/sec] 
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Type D: Speed 30 [m/sec] 

 

Type D: Speed 40 [m/sec] 

 

Type D: Speed 46 [m/sec] 
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Type D: Speed 53 [m/sec] 

 

Type E: Speed 10 [m/sec] 

 

Type E: Speed 20 [m/sec] 
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Type E: Speed 30 [m/sec] 

 

Type E: Speed 40 [m/sec] 

 

Type E: Speed 46 [m/sec] 
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Type E: Speed 53 [m/sec] 

 

Type F: Speed 10 [m/sec] 

 

Type F: Speed 20 [m/sec] 
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Type F: Speed 30 [m/sec] 

 

Type F: Speed 40 [m/sec] 

 

Type F: Speed 46 [m/sec] 
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Type F: Speed 53 [m/sec] 

 

9.4)  Results for 3 Bearings , 15 meters structure with bigger main 

girders 

 

Type A: Speed 10 [m/sec] 

 

Type A: Speed 20 [m/sec] 
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Type A: Speed 30 [m/sec] 

 

Type A: Speed 40 [m/sec] 

 

Type A: Speed 46 [m/sec] 
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Type A: Speed 53 [m/sec] 

 

Type B: Speed 10 [m/sec] 

 

Type B: Speed 20 [m/sec] 
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Type B: Speed 30 [m/sec] 

 

Type B: Speed 40 [m/sec] 

 

Type B: Speed 46 [m/sec] 
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Type B: Speed 53 [m/sec] 

 

Type C: Speed 10 [m/sec] 

 

Type C: Speed 20 [m/sec] 
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Type C: Speed 30 [m/sec] 

 

Type C: Speed 40 [m/sec] 

 

Type C: Speed 46 [m/sec] 
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Type C: Speed 53 [m/sec] 

 

Type D: Speed 10 [m/sec] 

 

Type D: Speed 20 [m/sec] 
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Type D: Speed 30 [m/sec] 

 

Type D: Speed 40 [m/sec] 

 

Type D: Speed 46 [m/sec] 
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Type D: Speed 53 [m/sec] 

 

Type E: Speed 10 [m/sec] 

 

Type E: Speed 20 [m/sec] 
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Type E: Speed 30 [m/sec] 

 

Type E: Speed 40 [m/sec] 

 

Type E: Speed 46 [m/sec] 
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Type E: Speed 53 [m/sec] 

 

Type F: Speed 10 [m/sec] 

 

Type F: Speed 20 [m/sec] 
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Type F: Speed 30 [m/sec] 

 

Type F: Speed 40 [m/sec] 

 

Type F: Speed 46 [m/sec] 
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Type F: Speed 53 [m/sec] 

 

9.5) Results for 3 Bearings , 6 meters span 

 

Type A: Speed 10 [m/sec] 

 

Type A: Speed 20 [m/sec] 
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Type A: Speed 30 [m/sec] 

 

Type A: Speed 40 [m/sec] 

 

Type A: Speed 46 [m/sec] 
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Type A: Speed 53 [m/sec] 

 

Type B: Speed 10 [m/sec] 

 

Type B: Speed 20 [m/sec] 
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Type B: Speed 30 [m/sec] 

 

Type B: Speed 40 [m/sec] 

 

Type B: Speed 46 [m/sec] 
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Type B: Speed 53 [m/sec] 

 

Type C: Speed 10 [m/sec] 

 

Type C: Speed 20 [m/sec] 
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Type C: Speed 30 [m/sec] 

 

Type C: Speed 40 [m/sec] 

 

Type C: Speed 46 [m/sec] 
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Type C: Speed 53 [m/sec] 

 

Type D: Speed 10 [m/sec] 

 

Type D: Speed 20 [m/sec] 
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Type D: Speed 30 [m/sec] 

 

Type D: Speed 40 [m/sec] 

 

Type D: Speed 46 [m/sec] 
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Type D: Speed 53 [m/sec] 

 

Type E: Speed 10 [m/sec] 

 

Type E: Speed 20 [m/sec] 
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Type E: Speed 30 [m/sec] 

 

Type E: Speed 40 [m/sec] 

 

Type E: Speed 46 [m/sec] 
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Type E: Speed 53 [m/sec] 

 

Type F: Speed 10 [m/sec] 

 

Type F: Speed 20 [m/sec] 
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Type F: Speed 30 [m/sec] 

 

Type F: Speed 40 [m/sec] 

 

Type F: Speed 46 [m/sec] 
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Type F: Speed 53 [m/sec] 
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10) Annex B 

 

Figure 131 Details of the weldings involved in the assembling of the box girder 

 

 

Figure 132 Assembling of the deck 

 

The deck is composed of four smaller plates, all welded together. In the middle, 

there’s a gap of 300 mm to avoid crossing of more weldings that would make 

them weaker for fatigue. 
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11) Conclusions 

 

After all this deep static and dynamic analysis, it is possible to draw some conclusions. 

It was proven that for every structure the best choice to take into the designing of this 

kind of bridges is using three bearings, due to the fact that two are not enough and the 

deck will be too thick, resulting far more expensive; as far as the four bearing structure, 

we can say that the improvement brought by the fourth bearing is not worth the money to 

install it. 

One other thing that is proven to be a better solution, is the use of a end cross slab instead 

of an end cross beam, since it is far cheaper and faster to produce (it can be obtained from 

the same plate of the deck since the thickness and material and geometry are the same). 

If the purpose is to design a bridge with a 6 meters span, two choices are available and 

equally valid; this choice is about the thickness of the deck, whether to make it 65mm or 

80mm. 

The main difference here is the comfort criteria that the designer wants to reach. 

In order to have the better comfort, hence        
 

    
  as deck acceleration, the 80mm 

thick deck has to be used; if the purpose is saving some money and the comfort is not that 

important (      
 

    
  as deck acceleration) the 65mm thick deck may be used. 

In the 10 meters span structure, there are not many choices available in the design, since 

the structure with end cross slab and three bearings is the only possibility in this context.  

Regarding the 15 meters span bridge, there’s also a choice to be made.  

Since in the first analysis (hence with normal height of the main girders) only 2 cases out 

of 36 are not verified and those were with high speeds (53 m/sec) , we can decide either 

to forbid the trains to go through that bridge at high speeds, or we improve the structure 

with higher main girders. 
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