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Introduction

In a general and informal way, a spatial random network can be seen as a set of
points randomly deployed on the plane and randomly connected to each other.
Depending on the rules used to construct the network, its structure can resemble
what is observed in real natural, as well as in artiőcial, complex systems.

Before starting, it is necessary to informally introduce the basic concepts
that will be used throughout the thesis and the reason why random networks
are relevant in many őelds of science.

Historically, random networks have been studied in mathematics and sta-
tistical physics, although many models were inspired by practical questions of
engineering interest. One of the őrst mathematical models was created in 1959
by Paul Erdös and Alfréd Rényi. They studied the behaviour of a ‘typical’
graph of n vertices where every edge connecting two vertices was drawn with
probability p. They showed that many properties of these graphs are almost
always predictable and they arise with very high probability when the model pa-
rameters are appropriately chosen. The graphs they considered, however, were
abstract mathematical objects and there was no notion of geometric position of
vertices and edges, which is fundamental for the models studied in this thesis.

Mathematical models inspired by more practical questions and relying on
some notion of geometric locality of the random network connections appeared
in 1957 in a paper published by Simon Broadbent and John Hammersley. They
introduced a simple discrete mathematical model of a random grid in which ver-
tices are arranged on a square lattice, and edges between neighbouring vertices
are added at random. This simple model revealed an incredible mathematical
depth and became one of the most studied mathematical objects in statistical
physics. Broadbent and Hammersley were inspired by the work they had done
during World War II and their paper’s motivation was the optimal design of
őlters in gas masks. Indeed, the gas masks of the time used granules of acti-
vated charcoal, and they argued that the optimal functioning of the mask could
be studied by simplifying the problem through a random network model. They
studied what should be the correct density of the charcoal: at one extreme
air ŕowed easily through the cannister, but the wearer of the mask breathed
insufficiently őltered air, at the other extreme, the charcoal pack was nearly im-
permeable, and while no poisonous gases got through, neither did sufficient air.
The optimum was to have high charcoal surface area and tortuous paths for air
ŕow, ensuring sufficient time and contact to absorb the toxin. They realised that
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this condition would be met in a critical operating regime, which would occur
with very high probability. They named the mathematical framework that they
developed percolation theory, because the meandering paths reminded them of
water trickling through a coffee percolator.

A few years later, in 1961, American communication engineer Edgar Gilbert
introduced a model of random planar networks in continuum space. He con-
sidered nodes randomly located in the plane and formed a random network by
connecting pairs of nodes that are sufficiently close to each other. He wanted
to use this model to provide long-range radio connection using a large number
of short-range radio transmitters, and this was the starting point of continuum
percolation theory. Using this model, he formally proved the existence of a
critical transmission range for the nodes.

These networks can be used for human communication, as well as for sensing
the environment and collecting and exchanging data for a variety of applications,
such as environmental and habitat monitoring, industrial process control, secu-
rity and surveillance, and structural health monitoring.

The object of this thesis is to study some fundamental properties and results
of a particular type of random network, which is called the Boolean model.

In Chapter 1 we formally introduce the model and we explain how it can be
constructed by probabilistic methods.

In Chapter 2 we analyse the presence of phase transition in the case of an
inőnite network. The purpose of this part of the thesis is to prove that there
exists a critical density of the nodes for which the network suddenly changes its
behaviour.

Finally, in Chapter 3, we study the connectivity of őnite networks growing
in size. We focus speciőcally on studying if the behaviour of the networks
asymptotically corresponds to the one observed in the second chapter and on
how the density of the nodes should grow in comparison to the size of the
network for having all the nodes connected to each other almost surely.

At the end, we verify the results by doing some simulations.
All the main results discussed in this thesis are taken from [3].

Boolean random networks: phase transition and connectivity 5



Chapter 1

The boolean model

1.1 Poisson processes

As we said in the Introduction, there are several types of random networks, each
one with its own properties. In particular, we want to study the Boolean model,
a continuum model where the position of the nodes of the network themselves
are random and are formed by the realisation of a point process on the plane. To
properly deőne the Boolean model it is necessary to introduce some preliminary
notions.

We start by listing the following desirable features of a somehow regular,
random network deployment.

(i) Stationarity. The distribution of the nodes in a given region of the plane
should be be invariant under any translation of the region to another
location of the plane.

(ii) Independence. The number of nodes deployed in disjoint regions of the
plane should be independent.

(iii) Absence of accumulation. The number of nodes in every bounded region
of the plane should be őnite and on average proportional to the area of
that region.

We now describe a way to construct a process that has all the features listed
above and later give its formal deőnition. Consider a square of side length
one. Partition this square into n2 identical subsquares of side length 1/n and
assume that the probability p that a subsquare contains exactly one point is
proportional to the area of the subsquare, so that for some λ > 0,

p =
λ

n2
. (1.1)

We assume that having two or more points in a subsquare is impossible. We
also assume that points are placed independently of each other. Lets look at
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CHAPTER 1. THE BOOLEAN MODEL

the probability that the (random) number of points N in the whole unit square
is k. This number of points is given by the sum of n2 independent random
variables, each of which has a small probability λ/n2 of being equal to one, and
which are equal to zero otherwise. It is well known that, as n → ∞ this sum
converges to the Poisson distribution of parameter λ, which is usually called
law of rare events. Indeed,

lim
n→∞

P (N = k) = lim
n→∞

(

n2

k

)(

λ

n2

)k (

1− λ

n2

)n2−k

= lim
n→∞

λk

k!

(

1− λ

n2

)n2

n2!

n2k(n2 − k)!

(

1− λ

n2

)−k

=
λk

k!
e−λ.

(1.2)

The construction in the unit square clearly satisőes the three desired properties,
and we now want to extend it to the whole plane. Consider two disjoint unit
squares and look for the distribution of the number of points inside them. This is
the sum of two independent Poisson random variables, that is a Poisson random
variable of parameter 2λ. This leads to the idea that in the point process on
the plane, the number of points in any given region A should have a Poisson
distribution of parameter λ|A|, where | · | denotes area. This intuition leads to
the following deőnition.

Definition 1.1. (Poisson process) A random set of points X ⊂ R
2 is said to

be a Poisson process of density λ > 0 on the plane if it satisőes the conditions:

(i) For mutually disjoint domains of R
2 D1, . . . , Dk, the random variables

X(D1), . . . , X(Dk) are mutually independent, where X(D) denotes the
random number of points of X inside domain D.

(ii) For any bounded domain D ⊂ R
2 we have that for every k ≥ 0:

P (X(D) = k) = e−λ|D| (λ|D|)k
k!

(1.3)

The deőnition does not explicitly say how the points are distributed on the
plane so we now introduce a constructive procedure to create a Poisson process,
which will also be useful to make the simulations. Lets start with the following
observation.

Observation 1.1. Let B ⊂ A be bounded sets. By conditioning on the number

Boolean random networks: phase transition and connectivity 7



1.1. POISSON PROCESSES

of points inside |A|, and applying Deőnition 1.1, we have

P (X(B) = m|X(A) = m+ k) =
P (X(B) = m,X(A) = m+ k)

P (X(A) = m+ k)

=
P (X(A\B) = k,X(B) = m)

P (X(A) = m+ k)

(i)
=

P (X(A\B) = k)P (X(B) = m)

P (X(A) = m+ k)

(ii)
=

(

m+ k

m

)( |A| − |B|
|A|

)k ( |B|
|A|

)m

.

(1.4)

This expression is a binomial distribution with parameters m+k and |B|/|A|.
If we condition on the number of points in a region A to be m+k, then the num-
ber of points in B ⊂ A represent the number of successes in m+ k experiments
with success probability |B|/|A|. This means that each of the m + k points
is randomly and uniformly distributed on A and the positions of the different
points are independent. This proves that the property is necessary, we will now
show that it is also sufficient, namely a process that satisőes this property is
actually a Poisson process. Hence, to construct a Poisson point process in any
bounded region A of the plane we should do the following: őrst draw a random
number N of points from a Poisson distribution of parameter λ|A|, and then
distribute these uniformly and independently over A.

Proposition 1.2. Let N,M1, . . . ,Mr be random variables with the following
properties:

(i) N has a Poisson distribution with parameter µ;

(ii) The conditional distribution of the vector (M1, . . . ,Mr) given N = s is
multinomial with parameters s and p1, . . . , pr.

Under these conditions M1, . . . ,Mr are mutually independent Poisson distributed
random variables with parameters µp1, . . . , µpr respectively.

Proof. Deőne m1 + · · ·+mr = s:

P (M1 = m1, . . . ,Mr = mr) = P (M1 = m1, . . . ,Mr = mr|N = s)P (N = s)

=
s!

m1! · · ·mr!
pm1

1 · · · pmr
r e−µµ

s

s!

=

r
∏

i=1

pmi

i

mi!
e−µpi .

N represents the number of points in A in the construction above, and
M1, . . . ,Mr represent the number of points ending up in regions B1, . . . , Br into
which A has been subdivided. Since the properties of the construction are now
translated into properties (i) and (ii) of the proposition above, the conclusion
is that the number of points in disjoint regions are mutually independent with
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CHAPTER 1. THE BOOLEAN MODEL

the correct Poisson distribution. Hence, this really is a constructive procedure
to create a Poisson process on A.

Finally, note that the independence property of the process implies that the
process is not affected by conditioning on the event that there is a point at
x0 ∈ R

2, apart from that point. Indeed, we can for example divide the plane
into inőnitesimal regions and, for the independence property, the presence of
the point in one region does not inŕuence the others. This fact can be stated
with arbitrarily high level of formality, we refer to [9] for the technical details.

The deőnition of a Poisson point process can be generalized to the case when
the density is not constant over the plane, but it is a function of the position
over R

2. We will use this type of process to prove some theorems later in the
thesis.

Definition 1.3. (Inhomogeneous Poisson process) A countable set of
points X ⊂ R

2 is said to be an inhomogeneous Poisson process on the plane
with density function Λ : R2 → [0,∞), if it satisőes the conditions

(i) For mutually disjoint domains of R
2 D1, . . . , Dk, the random variables

X(D1), . . . , X(Dk) are mutually independent, where X(D) denotes the
random number of points inside domain D.

(ii) For any bounded domain D ⊂ R
2 we have that for every k ≥ 0

P (X(D) = k) = e−
∫
D

Λ(x)dx [
∫

D
Λ(x)dx]k

k!
(1.5)

Proposition 1.4. Let X be a Poisson point process with density λ on the plane,
and let g : R2 → [0, 1]. Consider a realization of X and delete each point x with
probability 1− g(x), and leave it where it is with probability g(x), independently
of all other points of X. This procedure generates an inhomogeneous Poisson
point process of density function λg(x).

Proof. We denote by X̃ the point process after having applied the procedure in
the proposition. The independence property is immediate from the construction,
and the distribution of X̃ can be computed as follows:

P (X̃(A) = k) =

∞
∑

i=k

P (X(A) = i)P (X̃(A) = k|X(A) = i). (1.6)

Given the event X(A) = i, the i points of X in A are uniformly distributed over
A because of (1.4). Thus the conditional distribution of X̃ given X(A) = k is
just

P (X̃(A) = 1|X(A) = 1) = |A|−1

∫

A

g(x)dx, (1.7)

and more generally,

P (X̃(A) = k|X(A) = i) =

(

i

k

)(

|A|−1

∫

A

g(x)dx

)k

×
(

1− |A|−1

∫

A

g(x)dx

)i−k

.

(1.8)
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1.2. BOOLEAN NETWORKS

Hence,

P (X̃(A) = k) = e−λ|A| (λ
∫

A
g(x)dx)k

k!

×
k
∑

i=1

(λ|A|[1− |A|−1
∫

A
g(x)dx])i−k

(i− k)!

= e−λ|A| (λ
∫

A
g(x)dx)k

k!
eλ|A|(1−|A|−1

∫
A

g(x)dx)

=
(λ
∫

A
g(x)dx)k

k!
e−λ

∫
A

g(x)dx.

1.2 Boolean networks

We start by giving a general deőnition that includes the one of boolean networks
and that will be important in the next paragraphs.

Definition 1.5. (Poisson random connection networks) A Poisson ran-
dom connection model, denoted by (X,λ, g), is given by a Poisson point process
X of density λ > 0 on the plane, and a connection function g(·) : R2 → [0, 1]
satisfying the condition 0 <

∫

R2 g(x)dx < ∞.

Each pair of points x, y ∈ X is connected by an edge with probability g(x−y),
independently of all other pairs and of X. We also assume that g(x) depends
only on the Euclidean norm |x| and is non-increasing in the norm.

That is,

g(x) ≤ g(y) whenever |x| ≥ |y|.

This gives a type of network where the density λ plays a key role, as densely
packed nodes form very different structures than sparse nodes.

The random connection model is quite general and has applications in dif-
ferent branches of science. In physics the random connection function may
represent the probability of formation of bonds in particle systems; in epidemi-
ology the probability that an infected herd at location x infects another herd
at location y; in telecommunications the probability that two transmitters are
non-shaded and can exchange messages; in biology the probability that two cells
can sense each other.

We now give the proper deőnition of boolean network.

Definition 1.6. (Boolean network) For a given r > 0, a Boolean model
network is a Poisson random connection model where the connection function
is of the boolean zero-one type,

g(x) =

{

1 se |x| ≤ 2r

0 se |x| > 2r
(1.9)
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CHAPTER 1. THE BOOLEAN MODEL

Figure 1.1: Boolean model. Connected components of overlapping discs are
drawn with the same grey level.

This geometrically corresponds to placing discs of radius r at the Poisson
points and considering connected components formed by clusters of overlapping
discs; see Figure 1.1.

The Boolean model also has applications in many őelds. In communication
engineering it can be adopted as a őrst-order approximation of communica-
tion by isotropic radiating signals. This applies to radio communication, and
more generally to any communication where signals isotropically diffuse in a
noisy environment. In [2], for example, the authors analyse the applications of
the Boolean model to wireless communications. Even some biological systems
communicate by diffusing and sensing chemicals. We refer, as an example, to
[10], an article studying the usefulness of the Boolean model in physical biol-
ogy. Another possible őeld where this model can be applied is the one of neural
networks, as studied in [5].

Boolean random networks: phase transition and connectivity 11



Chapter 2

Phase transition

2.1 Random connection model

Informally, a phase transition is deőned as a phenomenon by which a small
change in the local parameters of a system results in a huge change of its global
behaviour, which can be observed over an inőnite domain.

We now consider the random connection model introduced in section 1.2. In
the following, we always condition on a Poisson point being at the origin. This
is possible for the independence property as said in the previous chapter.

It is easy to see that the integrability condition is required to avoid a trivial
model. Indeed, let Y denote the (random) number of points that are directly
connected to the origin. This number is given by an inhomogeneous Poisson
point process of density λg(x), so that

P (Y = k) = e−λ
∫
R2

g(x)dx [λ
∫

R2 g(x)dx]
k

k!
, (2.1)

where this expression is to be interpreted as zero in the case
∫

R2 g(x)dx = ∞.
It follows that if

∫

R2 g(x)dx = 0, then P (Y = 0) = 1 and each point is isolated
a.s. On the other hand, if

∫

R2 g(x)dx diverges, then P (Y = k) = 0 for all őnite
k and in that case Y = ∞ a.s.

The following theorem is crucial because it shows that in the random con-
nection model there is always a critical value of λ for which there is a phase
transition. We deőne the number of vertices in the component at the origin as
|C| and θ(λ) = Pλ(|C| = ∞).

Theorem 2.1. There exists a 0 < λc < ∞ such that θ(λ) = 0 for λ < λc and
θ(λ) > 0 for λ > λc.

Since in the proof of 2.1 are used some theorems that regard other particular
types of random networks, we need to state a couple of preliminary observations
and deőnitions.

12



CHAPTER 2. PHASE TRANSITION

Observation 2.1. Pλ(|C| = ∞) > 0 is equivalent to the existence a.s. of an
unbounded connected component on R

2.

Observation 2.2.

E(|C|) = ∞P (|C| = ∞) +
∞
∑

n=1

nP (|C| = n), (2.2)

where 0×∞ is deőned as 0. From (2.2), it follows that

(i) E(|C|) < ∞ implies P (|C| = ∞) = 0;

(ii) P (|C| = ∞) > 0 implies E(|C|) = ∞;

(iii) E(|C|) = ∞ implies nothing.

Definition 2.2. (Branching process) A branching process is obtained by a
tree T composed of an inőnite number of vertices, where each vertex has exactly
k > 0 children, and draw each edge of the tree with probability p > 0, or delete
it otherwise, independently of all other edges.

Definition 2.3. (Site percolation model) Consider an inőnite square lattice
Z
2 and divide it in boxes. In a site percolation model of probability p, each box

is occupied with probability p and empty otherwise, independently of all other
boxes.

Proof of theorem 2.1. In the őrst part of the proof we prove that θ(λ) = 0 by
showing that E(|C|) < ∞, while in the second part, because of Observation 2.2,
we use that θ(λ) > 0 implies E(|C|) = ∞.

First of all we need to show the monotonicity of the percolation function
θ(λ). To do so, we consider two random connection models with λ1 < λ2

and we thin the process of density λ2, namely we delete each point of this
model independently with probability (1− λ1/λ2). The resulting graph can be
effectively viewed as a realisation of a model of density λ1. On the other hand,
it is also clear that the latter realisation contains less points than the original
one, so we can conclude that if there is an inőnite cluster in the realisation of
density λ1, then there must also exist one in the realisation of density λ2, and
this concludes the proof of the monotonicity of θ(λ).

We now prove the őrst part of the theorem. We start with a point x0 in
the origin and we consider points directly connected with x0. We obtain an
inhomogeneous Poisson point process of density λg(x − x0), that we name the
őrst generation. We denote these random points by x1, x2, . . . , xn ordered by
modulus. We continue considering the random points directly connected with
x1 but not with x0. They also form an inhomogeneous Poisson point process,
independent from the őrst and with density λg(x−x1)(1−g(x−x0)). We go on as
obvious, so that at each point xi we form an independent inhomogeneous Poisson
point process with the points still not connected with the previous ones, adding
at the density a factor (1−g(x−xj)) with j = i−1. This construction produces
a random graph G such that if two points are connected with the origin in the

Boolean random networks: phase transition and connectivity 13



2.1. RANDOM CONNECTION MODEL

original random model, they are also connected in G. The number of points in
the n-th generation has as an upper bound the number of points of the n-th
generation of a random tree of expecting offspring µ = λ

∫

R2 g(x − xn)dx =
λ
∫

R2 g(x)dx. That is because some connections in the construction are missing
due to the additional factors (1−g(x−xj)) < 1. It is possible to choose λ small
enough such that µ ≤ 1 and, for a fundamental theorem in random networks
theory, we know that when µ ≤ 1 the branching process does not grow forever
with probability one. We refer to [3] for the precise statement and proof of that
theorem. This proves that E(|C|) < ∞, concluding the őrst part of the proof.

For the second part of the proof we need to prove that for λ big enough,
θ(λ) > 0. It is useful to deőne ḡ : R+ → [0, 1] by

ḡ(|x|) = g(x), (2.3)

for all x ∈ R
2.

Partition the plane into subsquares of side length one. The probability that
two Poisson points inside two adjacent boxes are connected by an edge is at
least ḡ(

√
5), since the diagonal of a rectangle formed by two adjacent boxes is√

5. Moreover, the probability that at least k points are inside a box can be
made larger than 1 − ϵ, for arbitrarily small ϵ, taking λ big enough. Take two
adjacent boxes and let x0 be a point of the Poisson process in one of them. For
λ big enough, the probability that x0 is connected to at least a point in the
adjacent box is given by

p ≥ (1− ϵ)

(

1−
(

1− ḡ(
√
5)
)k
)

. (2.4)

We choose k and λ such that p > pc, the critical probability for the site
percolation on the square lattice. In fact, another fundamental theorem in
random networks theory states that also in the site percolation model there is
phase transition, so pc exists. The precise statement and proof of this theorem
are also in [3].

Lets now describe a dynamic procedure similar to the one above that ensures
percolation in the random connection model. Begin with a point x0 ∈ X. In the
őrst iteration determine the connections from x0 to Poisson points in each of the
four boxes adjacent to the one where x0 is placed. We call each of these boxes
occupied if there is at least a connection from x0 to some point inside the box,
empty otherwise. Note that everyone of these boxes is occupied, independently
from the others, with probability p > pc. In the second iteration move to a
point x1 inside an occupied box directly connected with x0 and examine the
connections from x1 to points in boxes still not examined. This procedure
goes on in the natural way each time determining the state of new boxes and
spanning a tree rooted in x0 that is a subgraph of the component centred in x0

in the random connection model. Since p > pc, the probability that the box of
x0 is in an unbounded connected component of adjacent boxes is positive, and
this implies that x0 is in an unbounded connected component of the random
connection model with positive probability.

14



CHAPTER 2. PHASE TRANSITION

2.2 Boolean model

We now state a theorem that is a directed consequence of Theorem 2.1 in the
special case of the Boolean random network model.

Theorem 2.4.

(i) In a boolean random network of radius r, exists a critical density 0 < λc <
∞ such that θ(λ) = 0 for λ < λc, and θ(λ) > 0 for λ > λc.

(ii) In a boolean random network of density λ, exists a critical radius 0 < rc <
∞ such that θ(r) = 0 for r < rc, and θ(r) > 0 for r > rc.

(iii) In a boolean random network exists a critical degree 0 < ξc < ∞ such that
θ(ξ) = 0 for ξ < ξc, and θ(ξ) > 0 for ξ > ξc.

The exact values of the critical quantities in the Theorem 2.4, are not known,
but there are some analytic bounds that can be obtained adapting the proof of
Theorem 2.1. We can, for example, substitute in the proof the connection func-
tion g(x) with the indicator function obtaining some explicit bounds. Computer
simulations suggest that ξc = 4πr2cλc ≈ 4.512.

The proof of Theorem 2.4 follows immediately from Theorem 2.1 and the
following proposition.

Proposition 2.5. In a boolean random network it is the case that

λc(r) =
λc(1)

r2
. (2.5)

Proof. Consider a realisation G of the boolean network with r = 1. Scale all
distances in this realisation by a factor r, obtaining a scaled network Gs. Gs

can be seen as the realisation of a boolean model where all discs have radius
1/r and the density of the Poisson process is λ(1)/r2. The connections of G
and Gs are the same and this means that if G percolates, Gs also does so. On
the other hand if G does not percolate, Gs does not either. It follows that
λc(Gs) = λc(1)/r

2, which concludes the proof.

Proof of Theorem 2.4. The point (i) has already been proven in Theorem 2.1
since the boolean model is a particular case of the Poisson random connection
model.

For the point (ii) use Proposition 2.5 obtaining that the critical radius rc is
√

λc(1)/λc(r).
For the point (iii) combine the previous two points obtaining the critical

node degree ξc = 4πr2cλc.

We now analyse the compression phenomenon. In every Poisson random
connection model at high density, őnite clusters tend to be formed by isolated
points and they are also the last őnite components to disappear as λ → ∞.
In the case of the boolean model is possible to study with precision this phe-
nomenon.

Boolean random networks: phase transition and connectivity 15



2.2. BOOLEAN MODEL

Figure 2.1: The compression phenomenon. Image taken from [3], p.49.

For λ big enough, P (|C| = k) is clearly very small for any őxed k ≥ 0.
More precisely a necessary and sufficient condition for this event to occur is the
existence of a component of k connected discs surrounded by a fence of empty
region not covered by discs. As we can see in 2.1, this is equal to have the region
inside the highlighted dashed line not containing any Poisson point other than
the given k, forming the isolated cluster of discs. Clearly, the area of this region
is smaller when the k points are near. Hence, in a boolean model at high density
the event |C| = k is rare, but if it occurs, it is more likely in a conőguration
where the k points collapse into a very small region, and the approximately
circular-shaped area around them of radius 2r is free of Poisson points.

Lets now do more precise considerations on the compression phenomenon.

Theorem 2.6. In a boolean model with high density, the points tend to be
isolated or part of an infinite connected component, more precisely,

lim
λ→∞

1− θ(λ)

e−λπ(2r)2
= 1. (2.6)

Proof. We consider the following sufficient condition to have an isolated com-
ponent of k + 1 < ∞ points: impose the presence of a point at the origin and
name, for α < r, S = Sα the event that a disc of radius α contains k additional
points, and an annulus outside it with width 2r does not contain any Poisson
process; see Figure 2.2. If S occurs, then there is an isolated cluster of size k+1
at the origin. The probability of the event S can be computed as follows:
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Figure 2.2: Sufficient condition for an isolated component. Image taken from
[3], p.50.

P (S) =
(λπα2)k

k!
e−λπα2

e−λ(π(α+2r)2−πα2)

=
(λπα2)k

k!
e−λπ(α+2r)2 .

(2.7)

Since S implies the presence of a cluster of k+1 points at the origin, we also
have

P (|C| = k + 1) ≥ P (S), for all α, λ, k. (2.8)

We want to use P (S) to approximate P (|C| = k + 1). To improve the
approximation, we őrst maximise the lower bound over α,

P (|C| = k + 1) ≥ max
α

P (Sα), for all λ, k. (2.9)

Since we are interested in the behaviour at high density, we take the limit
for λ → ∞,

lim
λ→∞

P (|C| = k + 1)

maxα P (Sα)
≥ 1, for all k. (2.10)

We now compute the denominator in (2.10). To őnd the maximum, derive in
function of α (2.7), impose the őrst derivate equal to zero, control what points
are in the domain (remembering that 0 < α < r) and őnally verify what point
maximizes P (S), comparing the points also with the extremes 0 and r that
could be maximum. After some counts, the maximum is

α =
k

2πrλ
+O

(

1

λ2

)

. (2.11)
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For k ̸= 0 we rewrite (2.10) as

lim
λ→∞

P (|C| = k + 1)

exp(−λπ(2r)2 − k log λ
k −O(1))

≥ 1, for every k. (2.12)

Note that for k = 0 the approximation is sharp, in that case the denominator
of (2.10) behaves as e−λπ(2r)2 , which is exactly the probability that a node is
isolated and appears also in the numerator. In fact the approximation is sharp
for every value of k and to understand why, it is necessary to return to the
sufficient condition S. In the equation (2.11), α tends to zero as λ → ∞ and
the annulus described in the deőnition of S becomes a disc of radius 2r. But
remembering that the disc of radius α must contain k + 1 points, this implies
that the points must be arbitrarily near each other for α → 0. Remember what
happens to the necessary condition for k points to be isolated when they become
near to each other: the empty region requested for the őnite component to be
isolated is exactly a disc of radius 2r. It follows that when α → 0, the sufficient
and the necessary condition to have |C| = k + 1 are the same condition.

Finally, studying the denominator in (2.12), note that the probability to
have limited components tends to zero faster for big values of k. This explains
why isolated nodes are the last ones to disappear as λ → ∞. Substituting k = 0
concludes the proof.
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Chapter 3

Connectivity in the boolean

model

3.1 Preliminaries

Until now, we have discussed phase transition on inőnite networks. We now
want to study the asymptotic behaviour of sequences of őnite random networks
that grow larger in size. This topic interests scientists because real systems are
of őnite size and discovering the correct scaling laws that govern their behaviour,
means discovering how the system is likely to behave as its size increases. In
particular the main question that we want to answer is if the phase transition is
a property present also in őnite networks and in which sense there can be phase
transition.

We start with a preliminary observation: there are two equivalent ways to
create networks of a growing number of nodes. One can either őx the area of
the network, and increase the density of the nodes to inőnity or keep the density
constant and increase the area of interest to inőnity. Although the two cases
above can describe different practical scenarios, by appropriate scaling of the
distance lengths, they can be viewed as the same network realization.

Before we start stating the main theorems, we need to brieŕy introduce a
powerful mathematical tool that we will frequently use in this chapter: the
Chen–Stein method, which is used to estimate convergence to a Poisson distri-
bution. We have already seen how a Poisson distribution naturally arises as
the limiting distribution of the sum of n independent, low probability, indicator
random variables. The idea behind the ChenśStein method is that this sit-
uation generalizes to dependent, low probability random variables, as long as
dependencies are negligible as n tends to inőnity.

We őrst have to deőne a distance between two probability distributions.

Definition 3.1. The total variation distance between two probability distribu-
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tions p and q on N is deőned by

dTV (p, q) = sup{|p(A)− q(A)| : A ⊂ N} (3.1)

We need to introduce the following notation. Let I be an arbitrary index
set, and for α ∈ I, let Iα be an indicator random variable with expectation
E(Iα) = pα. We deőne

λ =
∑

α∈I

pα (3.2)

and assume that λ < ∞. Let W =
∑

α∈I Iα, and note that E(W ) = λ. Finally,
we denote with Po(λ) a Poisson random variable with parameter λ.

We now state a bound on the total variation distance between the Poisson
distribution of parameter λ and the distribution of the sum of n dependent indi-
cator random variables with expectations pα. We do not prove the bound, which
appears in [1]. It also makes use of the notion of neighbourhood of dependence
as deőned below.

Definition 3.2. For each α ∈ I, Bα ⊂ I is a neighbourhood of dependence for
α, if Iα is independent of all indices Iβ , for β /∈ Bα.

Theorem 3.3. Let Bα be a neighbourhood of dependence for α ∈ I. Let

b1 ≡
∑

α∈I

∑

β∈Bα

E(Iα)E(Iβ),

b2 ≡
∑

α∈I

∑

β∈Bα,β ̸=α

E(IαIβ).
(3.3)

It is the case that
dTV (W ;Po(λ)) ≤ 2(b1 + b2). (3.4)

We use this bound in the particular case of indicator random variables of
events in random networks whose probability decays with n. In this case the
bounds converge to zero and the sum of the indicators converges in distribution
to the Poisson distribution with parameter λ = E(W ).

We now formally introduce the notions necessary to study őnite boolean
models. Let X be a Poisson process of unit density on the plane. We consider
the boolean random network model (X,λ = 1, r > 0). As in the previous
chapter we condition on a Poisson point being at the origin and let θ(r) be the
probability that the origin is in an inőnite connected component. We focus on
the restriction Gn(r) of the network formed by the vertices that are inside a box
Bn ⊂ R

2 of side
√
n. We call N∞(Bn) the number of Poisson points in Bn that

are part of an inőnite connected component in the boolean model (X, 1, r) over
the whole plane. As said before, all the results obtained also hold, by scaling,
considering a box of unit length, density λ = n and dividing all distance lengths
by

√
n. We start by proving the following proposition.

Proposition 3.4. We have θ(r) = E[N∞(B1)].
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Proof. Divide B1 into m2 subsquares si, i = 1, . . . ,m2 of side length 1/m and
deőne a random variable Xm

i that has value one if there is exactly one Pois-
son point in si, that is also contained in an inőnite connected component of

the whole plane, and zero otherwise. Let Xm =
∑m2

i=1 X
m
i . Xm is a non de-

creasing sequence that tends to N∞(B1) as m → ∞. Hence, by the monotone
convergence theorem, we also have that

lim
m→∞

E(Xm) = E(N∞(B1)). (3.5)

We now call si full if it contains exactly one Poisson point, and let Ai be the
event that a Poisson point in si is part of an inőnite component. Finally, call
θm(r) the conditional probability P (Ai|si full).

We note that θm(r) → θ(r) for m → ∞. This is true because if m → ∞
and si is full, si tends to become equivalent to a point of the Poisson process.
The probability of the point being in an inőnite component is the same as the
origin because of the stationary property present in the deőnition of the Poisson
process.

We have

E(Xm
i ) = P (Xm

i = 1)

= P (Ai|si full)P (si full)

= θm(r)

[

1

m2
+ o

(

1

m2

)]

.

(3.6)

It follows that
E(Xm) = m2E(Xm

i ) = [1 + o(1)]θm(r). (3.7)

By taking the limit for m → ∞ in (3.7) and using (3.5), we obtain

E(N∞(B1)) = lim
m→∞

[1 + o(1)]θm(r) = θ(r). (3.8)

We know from the previous chapter that in a Boolean model deőned on
the whole plane, the percolation function θ(r) represents the probability that a
single point is in an inőnite connected component. One might expect that the
fraction of the points in the main cluster inside the box Bn is roughly equal to
this function. This would mean that also in the case of őnite networks we have
a phase transition and that there is a value of the radius of the discs that allows
a certain fraction of the nodes in Bn to be connected. On the other hand, if
one wants to observe all nodes to be connected inside the box, then the radius
of the discs must grow with the box size. We make these considerations precise
below, starting with almost connectivity.

3.2 Almost connectivity

Definition 3.5. For any α ∈ (0, 1), Gn(r) is said to be α-almost connected if
it contains a connected component of at least αn vertices.
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The main theorem regarding almost connectivity in the boolean model is
the following.

Theorem 3.6. Let
rα = inf{r; θ(r) > α}. (3.9)

We have that for any α ∈ (0, 1), if r > rα, then Gn(r) is α-almost connected
asymptotically a.s., while for r < rα it is not.

Before proving Theorem 3.6 we need to mention a preliminary result.

Theorem 3.7. Consider a supercritical boolean model of radius r and density
λ > λc. For any 0 < δ < 1, let Rδn be a rectangle of sides

√
n · δ√n on the

plane. Let R↔
δn denote the event of a left to right crossing inside the rectangle,

that is, the existence of a connected component of Poisson points of Rδn, such
that each of the two smaller sides of Rδn has at least a point of the component
within distance r from it. We have

lim
n→∞

P (R↔
δn) = 1. (3.10)

Proof of Theorem 3.6. The proof is based on geometric constructions. We begin
proving that for r > rα, Gn(r) is α-almost connected. A sufficient condition
to have a connected component in Gn(r) containing αn vertices is the presence
of a box Bδn containing at least αn points of an inőnite connected component
(we call this event A1) surrounded by a circuit Gn(r) (we call this event A2);
see Figure 3.1. We will prove that each of these events holds with an arbitrarily
high probability as n → ∞. The result immediately follows from the union
bound.

P (A1 ∪A2) = 1− P (Ac
1 ∩Ac

2)

≥ 1− P (Ac
1)− P (Ac

2) → 1
(3.11)

for n → ∞.
Lets begin by looking for a circuit of Gn(r) surrounding Bδn. By Theorem

3.7 we have that if r > rc, for any 0 < δ < 1, there exists a crossing path in
a rectangle of sides

√
n × √

n(1 −
√
δ/2) with high probability. We apply this

result to the four rectangles that surround Bδn, as we can see in the őgure 3.2.
We call CRi, i ∈ {1, 2, 3, 4} the four events that denote the existence of

crossing paths inside everyone of the four rectangles, CRi their complements.
By the union bound we have

P

(

4
⋂

i=1

CRi

)

= 1− P

(

4
⋃

i=1

CRc
i

)

≥ 1−
4
∑

i=1

P (CRc
i ) → 1,

(3.12)

as n → ∞.
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Figure 3.1: Sufficient condition for almost connectivity. Image taken from [3],
p.79.

The next step is to show that for all 0 < α < 1 there are at least αn points
inside Bδn that are part of an inőnite connected component of the boolean model
on the plane. We choose r > rα so that θ(r) > α. Then, using Proposition (3.4),
we can choose 0 < δ < 1 and ϵ > 0 such that

δE[N∞(B1)] = δθ(r) ≥ α+ ϵ. (3.13)

From (3.13) follows that

P (N∞(Bδn) < αn) = P

(

N∞(Bδn)

n
< α

)

≤ P

(∣

∣

∣

∣

N∞(Bδn)

n
− δE[N∞(B1)]

∣

∣

∣

∣

> ϵ

)

.

(3.14)

To conclude this part of the proof we need to use the Ergodic Theorem, a
generalisation of the classical strong law of large numbers (SLLN). The classical
SLLN states that the average of many i.i.d. random variables tends to their
common expectation. However, in this case the random variables are not inde-
pendent, but they are stationary for the property (i) characterizing a Poisson
process.

The Ergodic Theorem is exactly what we need since it generalises the SLLN
to stationary identically distributed random variables. For more details on the
Ergodic Theorem we refer to [6].

It follows that we have, a.s.,
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Figure 3.2: Existence of the circuit. Image taken from [3], p.79.

lim
n→∞

N∞(Bδn)

δn
= E(N∞(B1)). (3.15)

Since a.s. convergence implies convergence in probability, it follows that the
right-hand side of (3.14) tends to zero for n → ∞, which completes the őrst
part of the proof.

We now need to prove that if rc < r < rα, then less than α = θ(rα) nodes
are connected. To do this, partition Bn into M2 subsquares si of side length√
n/M for some őxed M >

√

4/α. Let δ ∈ (1−α/4, 1), and let wi be the square
of area δ|si| < δnα/4, placed at the centre of si and Ai the annulus si \wi; see
Figure 3.3.

Note that with these deőnitions,

|wi|
|si|

= δ > 1− α

4
(3.16)

and hence
|Ai|
|si|

<
α

4
. (3.17)

Finally, we also have that |si| < nα/4.
We consider the following events.

(i) Every si, i = 1, . . . ,M2, contains at most αn/4 vertices.

(ii) ∪M2

i=1Ai contains at most αn/4 vertices.
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Figure 3.3: Partition of the box and annuli construction. Image taken from [3],
p.81.

(iii) N∞(Bn)<αn.

(iv) All annuli Ai, i = 1, . . . ,M2, contain circuits that are part of the un-
bounded component.

We now analyse the probability of these events. The ergodic theorem tells
us that the number of points in a large region deviates from its mean by at
most a small multiplicative factor. Hence, the event in (i) occurs w.h.p. since
|si| < nα/4. The event (ii) also occurs w.h.p. since the union of the annuli Ai

cover less than a fraction α/4 of the square. At the same way we obtain the
result for event (iii). To conclude, event (iv) also occurs w.h.p. by the argument
used in the őrst part of the proof.

We claim that the occurrence of events (i)-(iv) implies that no component
in Bn can have more than αn vertices. This is true because each component
that has vertices in two boxes wi and wj , i ̸= j, also connects to the circuits in
Ai and Aj that are part of an inőnite component. This implies by (iii) that it
contains less than αn vertices. It remains to rule out the possibility of having

components of size at least αn that are contained in sj ∪
⋃M2

i=1 Ai, for some
j = 1, . . . ,M2. But by (i) and (ii) the number of vertices of this set is at most
2αn/4 < αn and this completes the proof.
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3.3 Full connectivity

We now want to study how the density λ should grow, with respect to the size of
the network, for having all points inside the box Bn forming a connected cluster.
We have just demonstrate that α-connectivity is achieved above the critical
percolation radius rα. The intuition in that case was that above criticality
the inőnite component invades the whole plane, including the area inside the
box, and makes a fraction of the nodes in the box connected. This fraction is
asymptotically equal to the value θ(r) of the percolation function. Now, if we
want to observe a fully connected cluster inside a growing box, we clearly need
to grow the radius of the discs with the box size. The problem is to identify at
what rate this must be done. In the following, we see what is the exact threshold
rate for asymptotic connectivity. We begin with a preliminary result that shows
the required order of growth of the radius.

Theorem 3.8. Let πr2n = α log n. If α > 5π/4, then Gn(r) is connected w.h.p.,
while for α < 1/8 it is not connected w.h.p.

Proof. We őrst show that Gn(r) is not connected for α < 1/8. Consider two
concentric discs of radii rn and 3rn and let An be the event that there is at least
one Poisson point inside the inner disc and there are no Poisson points inside
the annulus between radii rn and 3rn. We have that

P (An) = (1− e−πr2n)e−8πr2n

=

(

1

n

)8α [

1−
(

1

n

)]α

,
(3.18)

where we have used that πr2n = α log n. Consider now ’packing’ the box Bn

with non-intersecting discs of radii 3rn. There are at least βn/(log n) of such
discs that őt inside Bn, for some β > 0. A sufficient condition to avoid full
connectivity of Gn(r) is that An occurs inside at least one of these discs. Ac-
cordingly,

P (Gn(r) not connected) ≥ 1− (1− P (An))
βn

log n . (3.19)

By (3.18) and exploiting the inequality 1−p ≤ e−p that holds for any p ∈ [0, 1],
we have

(1− P (An))
βn

log n ≤ exp

[

− βn

n8α log n

(

1−
(

1

n

)α)]

, (3.20)

which converges to zero for α < 1/8. This completes the őrst part of the proof.

We now need to show that Gn(r) is connected w.h.p. for α > 5π/4. Partition
Bn into subsquares Si of area log n − ϵn, where ϵn > 0 is chosen so that the
partition is composed of an integer number k = n/(log n − ϵn) of subsquares
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and n/ log n = k + x, with 0 < x < 1. We have

ϵn = log n− n

k

=
x log n

k

< x
(log n)2

n− log n

(3.21)

We call a subsquare full if it contains at least one Poisson point, and we call
it empty otherwise. The probability for a subsquare to be empty is e−logn+ϵn ,
while the probability that every subsquare of Bn is full is

P





n
log n−ϵn
⋂

i=1

Si is full



 = (1− e− logn+ϵn)
n

log n−ϵn . (3.22)

Note that this latter probability tends to one as n → ∞ since ϵn = o(1) from
3.21. Note also that any two points in adjacent subsquares are separated by at
most a distance of (5 log n− 5ϵn)

1/2, which is the length of the diagonal of the
rectangle formed by two adjacent subsquares. It follows that if

rn >

√
5 log n− 5ϵn

2
, (3.23)

then every point in a subsquare connects to all points in that subsquare and
also to all points in all adjacent subsquares. This is the same condition as

πr2n >
π5

4
(log n− ϵn). (3.24)

By dividing both sides of the inequality in (3.24) by log n and taking the limit
for n → ∞, it follows that for α > 5π/4, points in adjacent subsquares are
connected. Since by (3.22), w.h.p. every subsquare contains at least a Poisson
point, the result follows.

The following Theorem gives a stronger result regarding the precise rate of
growth of the radius to obtain full connectivity and it is the main result of this
section.

Theorem 3.9. Let π(2rn)
2 = log n + αn. Then Gn(rn) is connected w.h.p. if

and only if αn → ∞.

Idea of the proof of Theorem 3.9. A complete proof of this theorem is quite
technical and long. We do not attempt to give all details here, however, we
want to highlight the main steps required to obtain a rigorous proof.

The őrst step is to show that isolated nodes do not arise w.h.p. inside the
box if and only if αn → ∞. This őrst step is shown by Proposition 3.10 and
Proposition 3.11 below.
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The second step is to show that ruling out the possibility of having isolated
nodes inside the box is equivalent to achieving full connectivity of all nodes
inside the box. To do this, őrst we state in Theorem 3.12 that the longest edge
of the nearest neighbour graph among the nodes in Bn has the same asymptotic
behaviour as the longest edge of the tree connecting all nodes in Bn with mini-
mum total length. Then, by Proposition 3.13 we show that this is also the same
asymptotic behaviour of the critical radius for full connectivity of the boolean
model inside the box.

The key to the őrst step is to approximate the sum of many low probability
events, namely the events that a given node is isolated, by a Poisson distribution.
One complication that arises in this case is given by boundary conditions. It is
in principle possible that isolated nodes are low probability events close to the
centre of the box, but that we can observe ‘fake singletons’ near the boundary
of it. These are Poisson points that are connected on the inőnite plane, but
appear as singletons inside the box.

The key to the second step is that at high density (or at large radii), if the
cluster at the origin is őnite, it is likely to be a singleton; then simply ruling out
the possibility of observing isolated points inside a őnite box should be sufficient
to achieve full connectivity. However, even if we show that singletons cannot be
observed anywhere in the box, and we know by the compression phenomenon
that when radii are large no other isolated clusters can form, it is in principle
possible to observe extremely large clusters that are not connected inside the
box, but again only through paths outside the box. Theorem 2.6 simply does not
forbid this possibility. Hence, the step from ruling out the presence of singletons
inside the box to achieving full connectivity is not immediate. Finally, note that
the compression theorem focuses only on the cluster at the origin, while we are
interested in all points inside the box. To adapt this theorem to a őnite box and
ensure that all we observe is likely to be a singleton, the probability of being a
singleton conditioned on being in a component of constant size, must converge
to one sufficiently fast when we consider the union of all points inside the box.
All of these difficulties are carefully overcome in the work of Penrose [7], and in
the following we only give an outline of this work.

Proposition 3.10. If π(2rn)
2 = log n + α, then the number of isolated nodes

inside Bn converges in distribution to a Poisson random variable of parameter
λ = e−α.

We now state a slight variation of Proposition 3.10 that can be proven fol-
lowing the arguments in [3]. Note that this also shows that w.h.p. there are no
isolated nodes inside Bn if and only if αn → ∞.

Proposition 3.11. Let π(2rn)
2 = log n+αn, and let An be the probability that

there are no isolated nodes in Bn. We have that

lim
n→∞

P (An) = e−e−α

(3.25)

if and only if αn → α, where α can be infinity.
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We now give a proof of Proposition 3.10 in the simpler case when Bn is
a torus. This implies that we do not have special cases occurring near the
boundary of the box, and the events inside Bn do not depend on the particular
location inside the box.

Proof of Proposition 3.10 (Torus case). The proof is based on a discretisation
of the space, followed by the evaluation of the limiting behaviour of the event
that a node is isolated.

Partition Bn into m2 subsquares centred in si ∈ R
2, i = 1, . . . ,m2 of side

length
√
n/m, and denote these subsquares by Vi, i = 1, . . . ,m2. Let Amn

i be
the event that Vi contains exactly one Poisson point. For any őxed n, and any
sequence i1, i2, . . . , we have

lim
m→∞

P (Amn
im

)

n/m2
= 1. (3.26)

Note that for őxed m and n, the events Amn
i are independent of each other, and

that the limit above does not depend on the particular sequence (im).

It is time to turn to node isolation events. Let Dn be a disc of radius 2rn
such that π(2rn)

2 = log n + α, centred at si. We call Bmn
i the event that the

region of all subsquares intersecting Dn\Vi does not contain any Poisson point.
For any őxed n, and any sequence i1, i2, . . . , we have

lim
m→∞

P (Bmn
im

)

e−π(2rn)2
= 1. (3.27)

Note that in (3.27) the limit does not depend on the particular sequence (im),
because of the torus assumption. Note also that events Bmn

i are certainly in-
dependent of each other for boxes Vi centred at points si further than 5rn
apart, because in this case the corresponding discs Dn only intersect disjoint
subsquares.

We deőne the following random variables for i = 1, . . . ,m2:

Imn
i =

{

1 if Amn
i and Bmn

i occur,

0 otherwise,
(3.28)

Wm
n =

m2

∑

i=1

Imn
i , Wn = lim

m→∞
Wm

n . (3.29)

Note that Wn indicates the number of isolated nodes in Bn. We now want to use
the Chen-Stein bound in Theorem 3.3. Accordingly, we deőne a neighbourhood
of dependence Ni for each i ≤ m2 as

Ni = {j : |si − sj | ≤ 5rn}. (3.30)

Note that Imn
i is independent of Imn

j for all indices j outside the neighbourhood
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of independence of i. Writing Ii for Imn
i and Ij for Imn

j , we also deőne

b1 ≡
m2

∑

i=1

∑

j∈Ni

E(Ii)E(Ij),

b2 ≡
m2

∑

i=1

∑

j∈Ni,j ̸=i

E(IiIj).

(3.31)

By Theorem 3.3 we have that

dTV (W
m
n ;Po(λ)) ≤ 2(b1 + b2), (3.32)

where λ = E(Wm
n ). Writing am ∼m bm if am/bm → 1 as m → ∞, using (3.26)

and (3.27) we have

λ = E(Wm
n ) ∼m ne−π(2rn)

2

= elogn−π(2rn)
2

= e−α.

(3.33)

Since the above result does not depend on n, we also have that

lim
n→∞

lim
m→∞

E(Wm
n ) = lim

n→∞
e−α = e−α. (3.34)

We now compute the right-hand side of (3.32). From (3.26) and (3.27) we have
that

E(Ii) ∼m
n

m2
e−π(2rn)

2

. (3.35)

From this it follows that

lim
m→∞

b1 = lim
m→∞

m2

∑

i=1

( n

m2
e−π(2rn)

2
)2 π(5rn)

2

n
m2

= e−2απ(5rn)
2

n
,

(3.36)

which tends to 0 as n → ∞.
We want to show similar behaviour for b2. The őrst thing to notice is that

E(IiIj) is zero if two discs of radius 2rn, centred at si and sj , cover each other’s
centres, because in this case the event Amn

i cannot occur simultaneously with
Bmn

j . Hence, we have

E(IiIj) =

{

0 if 2rn > |si − sj |
P (Ii = 1, Ij = 1) if 2rn < |si − sj |.

(3.37)

We now look at the second possibility in (3.37). Let D(rn, x) be the area of the
union of two discs of radius 2rn with centres a distance x apart. Since Bmn

i and
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Figure 3.4: The union discs of radius 2rn separated by a distance of at least 2rn
has area at least 3π(2rn)

2/2. Image taken from [3] p.86.

Bmn
j describe a region without Poisson points that tends to D(rn, |si − sj |) as

m → ∞, for 2rn < |si − sj | we can write

E(IiIj) ∼m

( n

m2

)2

exp[−D(rn, |si − sj |)]. (3.38)

We deőne annular neighbourhood Ai for each i ≤ m2 as

Ai = {j : 2rn ≤ |si − sj | ≤ 5rn}. (3.39)

Combining (3.31), (3.37) and (3.38) we have

lim
m→∞

b2 = lim
m→∞

m2

∑

i=1

∑

j∈Ai,j ̸=i

( n

m2

)2

exp(−D(rn, |si − sj |))

= lim
m→∞

m2
∑

j∈Ai,j ̸=i

( n

m2

)2

exp(−D(rn, |si − sj |))

= n

∫

2rn≤|x|≤5rn

exp(−D(rn, |x|))dx

≤ nπ(5rn)
2 exp

(

−3

2
π(2rn)

2

)

,

(3.40)

where the last equality follows from the deőnition of the Riemann integral and
the inequality follows from geometry depicted in Figure 3.4. To see that this
last expression tends to 0 as n → ∞, substitute π(2rn)

2 = log n+ α twice.
We have shown that both (3.36) and (3.40) tends to zero as n → ∞, hence

it follows from Theorem 3.3 that

lim
n→∞

lim
m→∞

dTV (W
m
n ;Po(λ)) = 0. (3.41)

Since by deőnition Wm
n converges a.s. to Wn as m → ∞, (3.33) and (3.41) imply

that Wn converges in distribution to a Poisson random variable of parameter
e−α as n → ∞.
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Having discussed the node-isolation results, we next need to relate these
results to the question of full connectivity.

The two results above, given by Propositions 3.10 and 3.11, can be inter-
preted as the asymptotic almost sure behaviour of the length Nn of the longest
edge of the nearest neighbour graph of the Poisson points inside Bn. Indeed, the
transition from having one to having no isolated points when we let the radii
grow clearly takes place when the point with the furthest nearest neighbour
őnally gets connected.

Now let the Euclidean minimal spanning tree (MST) of the Poisson points
in Bn be the connected graph with these points as vertices and with minimum
total edge length. Let Mn be the length of the longest edge of the MST. The
following is a main result in [7].

Theorem 3.12. It is the case that

lim
n→∞

P (Mn = Nn) = 1. (3.42)

We also have the following geometric proposition.

Proposition 3.13. If rn > Mn/2, then Gn(rn) is connected; if rn < Mn/2,
then Gn(rn) is not connected.

Proof. Let rn > Mn/2. Note that any two points connected by an edge in the
MST are within distance d ≤ Mn. It immediately follows that MST ⊆ Gn(rn)
and hence Gn(rn) is connected. Now let rn < Mn/2. By removing the longest
edge (of length Mn) from the MST we obtain two disjoint vertex sets V1 and
V2. Any edge joining these two sets must have length d ≥ Mn > 2rn, otherwise
joining V1 and V2 would form a spanning tree shorter than MST , which is
impossible. It follows that Gn(rn) cannot contain any edge joining V1 and V2

and it is therefore disconnected.

To conclude the proof we note that it follows from the last two results that
w.h.p., if rn > Nn/2, then the graph is connected, whereas for rn < Nn/2 it is
not. But we noted already that rn > Nn/2 means that there are no isolated
points, while rn < Nn/2 implies that there are.
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Chapter 4

Simulations

In this last section of the thesis, we have made some simulations to verify the
main results that we have discussed in the thesis.

The parameters in the simulations are:

• the radius of the circles r;

• the size of the squared domain Λ = [0, T ]× [0, T ], with T > 0 large;

• the density λ > 0 of the Poisson process X on the squared domain.

In every simulation, to create the Poisson process we need to remember two
key properties:

• the number of points in Λ has distribution Poi(λT 2);

• conditional on X(Λ) (number of points in Λ), locations of points x ∈ X
are independent and uniformly distributed on the domain Λ.

In other words, the number of points in the process can be generated through
a Poisson function, since N ∼ Poi(λT 2). After having generated it, we have used
a random function to generate the 2N coordinates of the points in the square
domain. Note that the procedure to generate the Poisson process works only
because the domain is a square, to simulate the process in different domains,
for example in circles, see [8].

We have made several independent simulations for every choice of the pa-
rameters, calculating the mean of the values obtained. In this way we should
avoid to obtain data that deviates too much from the average results, since in
all the simulations we are interested in the average behaviour of the networks.

In particular we have confronted the results of the simulations with the three
main theorems present in the thesis:

(1) Theorem 2.4: In a boolean random network of radius r, exists a critical
density 0 < λc < ∞ such that θ(λ) = 0 for λ < λc, and θ(λ) > 0 for
λ > λc.
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Figure 4.1: Plot showing how the size of the largest cluster in the network
increases with the density. (r = 1)

(2) Theorem 3.6: We have that for any α ∈ (0, 1), if r > rα, then Gn(r) is
α-almost connected asymptotically a.s., while for r < rα it is not.

(3) Theorem 3.9: Let π(2rn)
2 = log n+αn. Then Gn(rn) is connected w.h.p.

if and only if αn → ∞.

As we can see from the list above, in all the theorems the size of the largest
cluster covers a fundamental role. To őnd it, in the simulations we have created
an algorithm inspired by another one that can be found in [4]; see Appendix
A.1.

4.1 Phase transition

In this section we want to verify phase transition in the Boolean model. As we
know from Theorem 2.4, varying the density or the radius should be indifferent,
namely in both cases we should have phase transition. This means that in
an inőnite Boolean network under a critical density (or critical radius) it is
impossible to have an inőnite component, while above the critical density (or
critical radius) it becomes possible.

In every simulation we have őxed the size of the square domain T = 100 and
we have found the percentage of points that are part of the largest cluster.

First of all we analyse the behaviour of the network varying the density.
In this case we have őxed the radius r = 1 and we have simulated densities λ
between 0.1 and 0.6, using the program in Appendix A.3. For every density we
have made 10 simulations and we have found the average percentage of nodes
in the largest cluster.

The results are reported in Figure 4.1.
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Figure 4.2: Plot showing how the size of the largest cluster in the network
increases with the radius. (λ = 1)

The őgure conőrms the predictions of Theorem 2.4. It resembles a sigmoid
with a very rapid growth, showing that there is a range of values for which we
have phase transition. For λ = 0.1 the percentage of nodes in the largest cluster
is approximatively zero, meaning that the network is formed by singletons and
isolated clusters with a small dimension. For λ ≈ 0.35 there seems to be phase
transition and it is exactly the theoretical value of λc predicted from the theo-
rem. Above that value, on the contrary almost all the nodes in the cluster are
part of a single connected component. To have even more precise results and to
see an even faster growth of the percentage of the nodes in the largest cluster,
we could increase the size of the networks.

Lets now analyse the behaviour of the network changing the radius of the
circles associated to the nodes of the Poisson process. We have őxed the density
λ = 1 and we have simulated networks with radii between 0.3 and 1, using the
program in Appendix A.4. As before, for every value of the radius we have
made 10 simulations and we have reported the results in Figure 4.2.

The őgure conőrms the predictions of Theorem 2.4 for the same reasons as
the previous one. It resembles a sigmoid where the percentage of nodes in the
largest cluster grows rapidly. The critical value of the radius corresponds to

the one predicted from Theorem 2.4: rc ≈
√

4.512
4π = 0.6 Moreover, the results

also conőrm the predictions of Theorem 3.6, which states that there is a critical
value of the radius for which there is α-almost connectivity a.a.s. The fact that
the theorem works a.a.s. as the size of the domain tends to inőnity implies
that to obtain even more precise results we can, for example, increase T , which,
however, would also increase the computational time considerably.
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4.2 Connectivity

In this section we are interested in the full connectivity of the networks. The
question is when all nodes are part of a single cluster w.h.p.

Theorem 3.9 states that there is full connectivity w.h.p. if and only if

rn =

√

log n+ αn

4π
, (4.1)

where αn → ∞ for n → ∞.
To verify this statement we have őxed the density λ = 1 and we have taken

increasing values of the domain size T . For each value of n =
√
T we can predict

from (4.1) the value of rn for which we should have full connectivity w.h.p. as
n → ∞. For every case we have made 10 simulations and we have found the
average percentage of nodes in the largest cluster; see Appendix A.5 .

We have simulated three different series of radii

• Series 1: rn :=
√

logn
4π , it should be asymptotically under the critical

increasing radius since αn = 0;

• Series 2: rn :=
√

2 log(n)
4π , it should be asymptotically above the critical

increasing radius since αn = log(n) → ∞;

• Series 3: rn :=
√

n0.3

4π , it should be asymptotically above the critical

increasing radius since αn → ∞ and in particular the size of the largest
cluster should grow faster than the one in the second series.

The results are reported in Figure 4.3 and they conőrm the predictions. The
largest cluster is initially relatively small for all the series because the initial size
of the networks is low if compared with the density and the size of the radii. The
plot clearly shows that in the őrst series the size of the largest cluster remains
negligible compared to the number of nodes in the network, conőrming that in
this case, for n → ∞, the network is formed by small clusters not connected
with each other. Instead, for the second and third series we can see that the
size of the largest network increases with the size of the networks, in particular
for the last one the largest cluster contains almost all the nodes of the network
for T ≥ 120. For having the same results for the second series we should
simulate networks with greater size, but this would exponentially increase the
computational running time. Despite this, the pattern is still clear, and the plot
conőrms the predictions of Theorem 3.9.

We can conclude that the results of the simulations coincide with what we
expected from the theorems, which are a useful instrument to predict the be-
haviour of large clusters in Boolean networks.
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Figure 4.3: Plot showing the variation of the size of the largest cluster in the
networks for different series of radii. (λ = 1)
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Appendix A

Algorithms

In this appendix we report the algorithms that we have used in Chapter 4. The
algorithms are written using the language Python.

1 #n = number of points in the Poisson process

2 #coordx , coordy = coordinates of the points

3 #R = radius of circles

4

5 def find_clusters ():

6 cluster_list = [] #list of clusters

7 for i in range(n):

8 cluster_i = set() #cluster of i

9 for j in range(i,n):

10 if (math.dist([ coordx[i],coordy[i]],[ coordx[j],coordy[j]]) <

2*R) and (j not in cluster_i):

11 for k in cluster_list:

12 if j in k: #if j is already in a

cluster , we remove the cluster from cluster_list

13 cluster_list.remove(k)

14 cluster_i = cluster_i | k #we do not have to visit

the other nodes in the cluster

15 cluster_i.add(j)

16 cluster_list.append(cluster_i)

17 return cluster_list

Listing A.1: Algorithm for őnding clusters

1 # Create limits (x,y)=((-T/2,T/2) ,(-T/2,T/2))

2 plt.xlim((-T/2,T/2))

3 plt.ylim((-T/2,T/2))

4

5 # Plot points

6 for cluster in cluster_list:

7 rand_color = "#"+’’.join([ choice(’ABCD0123456789 ’) for i in range

(2)])*3 #not picking "E" or "F" to avoid colours too bright

8 for i in cluster:

9 circle = plt.Circle (( coordx[i],coordy[i]),R,color=rand_color)

10 plt.gca().add_patch(circle)

11
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12 plt.show()

Listing A.2: Algorithm for plotting the network

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import math

4 from random import *

5

6 # Parameters

7 lambda_list = list(np.arange (0.1 ,2.5 ,0.1)) #density of the nodes

8 num_sim = 10 #number of simulations

9 T = 100 #domain size

10 R = 1 #radius of circles

11 dim_largest_cluster_list = []

12

13 for Lambda in lambda_list:

14 lam = Lambda * T * T #density of Poisson distribution

15 dim_largest_cluster_Lambda = []

16 for i in range(num_sim):

17 n = np.random.poisson(lam) #number of points

18 coordx = 2 * T/2 * np.random.random_sample(n) - T/2 # generate

random x

19 coordy = 2 * T/2 * np.random.random_sample(n) - T/2 # generate

random y

20 cluster_list = find_clusters ()

21 dim_largest_cluster = 0

22 for c in cluster_list:

23 if len(c) > dim_largest_cluster: dim_largest_cluster = len(c)

24 dim_largest_cluster_Lambda.append(dim_largest_cluster/n)

25 dim_media = sum(dim_largest_cluster_Lambda)/num_sim

26 dim_largest_cluster_list.append(dim_media)

27

28 plt.plot(lambda_list , dim_largest_cluster_list)

29 plt.xlabel(’densities ’)

30 plt.ylabel(’% of nodes in largest cluster ’)

31 plt.title(’Simulations per density: %d; domain size: %d’%(num_sim ,T

))

32 plt.show()

Listing A.3: Algorithm for viewing phase transition changing the density

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import math

4 from random import *

5

6 # Parameters

7 Lambda = 1 #density of the nodes

8 T = 100 #domain size

9 lam = Lambda * T * T #density of Poisson distribution

10 radii = list(np.arange (0.6 ,1.7 ,0.05)) #radii of circles

11 num_sim = 10 #number of simulations

12 dim_largest_cluster_list = []

13

14 for R in radii:

15 lam = Lambda * T * T #density of Poisson distribution
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16 dim_largest_cluster_R = []

17 for i in range(num_sim):

18 n = np.random.poisson(lam) #number of points

19 coordx = 2 * T/2 * np.random.random_sample(n) - T/2 # generate

random x

20 coordy = 2 * T/2 * np.random.random_sample(n) - T/2 # generate

random y

21 cluster_list = find_clusters ()

22 dim_largest_cluster = 0

23 for c in cluster_list:

24 if len(c) > dim_largest_cluster: dim_largest_cluster = len(c)

25 dim_largest_cluster_R.append(dim_largest_cluster/n)

26 dim_media = sum(dim_largest_cluster_R)/num_sim

27 dim_largest_cluster_list.append(dim_media)

28

29 #Plot

30 plt.plot(radii , dim_largest_cluster_list)

31 plt.xlabel(’radii’)

32 plt.ylabel(’% of nodes in largest cluster ’)

33 plt.title(’Simulations per radius: %d; domain size: %d’%(num_sim ,T)

)

34 plt.show()

Listing A.4: Algorithm for viewing phase transition changing the radius

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import math

4 from random import *

5

6 # Parameters

7 Lambda = 1 #density of the nodes

8 T = range (80 ,150 ,10) #domain size

9 num_series = 3 #number of series of radius to test

10 num_sim = 10 #number of simulations

11

12 #Different series of radius to test full connectivity

13 radii = [[] for i in range(num_series)]

14 cluster_size_list = [[] for i in range(num_series)]

15

16 for i in T:

17 radii [0]. append(math.sqrt(math.log(i)/(8* math.pi))) #under the

critical value

18 radii [1]. append(math.sqrt(math.log(i)/4* math.pi)) #above the

critical value

19 radii [2]. append(math.sqrt(i**0.3) /(4* math.pi))) #above the

critical value

20 for j in range(num_series):

21 large_cluster_list = []

22 R = radii[j][-1]

23 for k in range(num_sim):

24 lam = Lambda * i * i #density of Poisson distribution

25 n = np.random.poisson(lam) #number of points

26 coordx = 2 * i/2 * np.random.random_sample ((n)) - i/2 #

generate random x

27 coordy = 2 * i/2 * np.random.random_sample ((n)) - i/2 #

generate random y

28 cluster_list = find_clusters ()
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29 largest_cluster = 0

30 for c in cluster_list:

31 if len(c) > largest_cluster: largest_cluster = len(c)

32 large_cluster_list.append(largest_cluster/n)

33 cluster_size = sum(large_cluster_list)/num_sim

34 cluster_size_list[j]. append(cluster_size)

35

36 plt.plot(T, cluster_size_list [0], label = "serie 1")

37 plt.plot(T, cluster_size_list [1], label = "serie 2")

38 plt.plot(T, cluster_size_list [2], label = "serie 3")

39 plt.xlabel(’T: domain size’)

40 plt.ylabel(’% of nodes in the largest cluster ’)

41 plt.title(’Size of largest cluster for different series ’)

42 plt.legend ()

43 plt.show()

Listing A.5: Algorithm to compare network’s connectivity for different series
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