
UNIVERSITY OF PADOVA

DEPARTMENTOFMANAGEMENTAND ENGINEERINGDTG

MASTER’S THESIS INMANAGEMENT ENGINEERING

APPLICATIONOFNATURAL LANGUAGE PROCESSING

TECHNIQUES IN A BUSINESS CONTEXT FOR INSIGHT

EXTRACTION

SUPERVISOR MASTER CANDIDATE
PROF.SSAMARTADISEGNA THAYSA FERNANDA SILVESTRIN

CO-SUPERVISOR STUDENT ID
NICOLÒ BIASETTON 2043195

Academic Year
2023-2024

2

Abstract

In the current scenario, businesses are dealing with increasing levels of volatility and
uncertainty. It highlights the necessity for identifying oncoming change and adapting to
leverage an advantage. Few technologies are as powerful or as versatile to do so as
Machine Learning and its associated domains. This work aims to evaluate the current
playing field and the NLP methodologies businesses apply to gather insights through
Sentiment Analysis. After comprehensive review of current practices for both business and
industrial sectors, data composed of customer reviews on a selected product was extracted
from the web. Three models widely recognized for their suitability to NLP tasks were trained
on four varying datasets derived from the initial extraction, Support Vector Machine, Random
Forest and Naive Bayes, testing both the hypothesis of techniques like stemming or not, and
the effectiveness of using either customer reviews or their titles for the task. The result
confirmed the use of review titles for better classification results, in both stemmed and
non-stemmed datasets.

Keywords: Machine Learning; Natural Language Processing; Customer Reviews; Sentiment
Analysis.

3

Sommario

Nel contesto attuale, le imprese stanno affrontando crescenti livelli di volatilità e incertezza.
Ciò sottolinea la necessità di individuare i cambiamenti imminenti e adattarsi per sfruttare un
vantaggio. Poche tecnologie sono tanto potenti e versatili quanto il Machine Learning e i suoi
ambiti correlati. Questo lavoro si propone di valutare lo stato attuale del campo di gioco e le
metodologie di NLP (Natural Language Processing) che le imprese applicano per
raccogliere informazioni tramite l'Analisi del Sentimento. Dopo una revisione completa delle
pratiche attuali sia nel settore commerciale che in quello industriale, sono stati estratti dati
dalle recensioni dei clienti su un prodotto selezionato dal web. Tre modelli ampiamente
riconosciuti per la loro idoneità alle attività di NLP, Support Vector Machine, Random Forest
e Naive Bayes, sono stati addestrati su quattro set di dati diversi derivati dall'estrazione
iniziale. Sono stati testati sia l'ipotesi di utilizzare tecniche come lo stemming o meno, sia
l'efficacia di utilizzare recensioni dei clienti o i loro titoli per l'attività. I risultati hanno
confermato l'uso dei titoli delle recensioni per ottenere migliori risultati nella classificazione,
sia nei dataset con stemming che senza stemming.

Keywords: Machine Learning; Natural Language Processing; Customer Reviews; Sentiment
Analysis.

4

Contents
Abstract 3

Sommario 4

1 Introduction.. 10
1.1 RelatedWorks and Current Research..12

1.1.1 Applications of NLP...12
1.1.2 Applications of SA..15
1.1.3 RelatedWorks.. 15

2 Machine Learning... 20
2.1 Supervised Learning... 21

2.1.1 Classification... 21
2.1.2 Regression..25

2.2 Unsupervised Learning..26
2.2.1 Clustering.. 26

2.3 Semi-supervised Learning.. 27
2.4 Reinforcement Learning... 27
2.5 Importance of Data...27
2.6 Machine LearningModels..28

2.6.1 Generalized linear models... 31
2.6.1.1 Linear Regression... 31
2.6.1.2 Polynomial Regression... 33
2.6.1.3 Logistic Regression...34

2.6.2 Deterministic models..36
2.6.2.1 Decision Tree-based models...36
2.6.2.2 Random Forest models.. 39
2.6.2.3 Support Vector Machine... 41

2.6.3 Probabilistic models...43
2.6.3.1 Multinomial Naive Bayes classifier... 44

2.7 Model Evaluation and Selection..46

3 Natural Language Processing..48
3.1 Introduction to NLP... 48

3.1.1 Challenges of NLP..49
3.2 Text Preprocessing and Representation..52

3.2.1 Noise Removal...52

5

3.2.2 Text Normalization... 54
3.2.3 Tokenization..54

3.2.3.1Word-based tokenization... 55
3.2.3.2 Character-based tokenization..55
3.2.3.3 Sub-word based tokenization...56

3.2.4 Stop word removal...56
3.2.5 Stemming and Lemmatization...57

3.3 Language Modeling and Text representation.. 58
3.3.1 Bag ofWords (BOW)..59
3.3.2 N-grams..60
3.3.3 TF-IDF... 61
3.3.4Word Embedding..62

3.3.4.1 Embedding Layer.. 63
3.3.4.2Word2Vec... 63
3.3.4.3 GloVe...65

3.3.5 Transformer-based Embedding...66
3.4 Named Entity Recognition (NER).. 66

3.4.1 Rule-based NER..67
3.4.2 Feature-based supervised learning NER.. 67
3.4.3 Unsupervised learning NER... 68

3.5 Syntax and Parsing... 68
3.5.1 Part-of-speech Tagging...69
3.5.2 Dependency Parsing.. 70
3.5.3 Constituency Parsing...71

4 Sentiment Analysis...72
4.1 Development of SA on Customer Reviews...74
4.2 Lexicon Based SA Approaches... 79

4.2.1 Sentiment Lexicon Generation Approaches.. 80
4.2.2 Use of Lexicons on NLP Pipelines..83
4.2.3 Evaluation of Lexicon-based approaches...84

4.3 Supervised ML SA Approaches... 84
4.4 Ethical implications and guidelines...88

5 Development...91
5.1 Project context and objectives...91
5.2 Methodology..92
5.3 Data gathering and pre-processing..93
5.4 Data analysis...95
5.5 Natural language processing... 100

6

5.6 MLModel training.. 101
5.7 Model Selection.. 109

6 Conclusion 110

7 R code 112

8 References 130

Acknowledgements 140

7

LIST OF FIGURES

1. Classification of Machine Learning techniques……………………....……………………...……..………. 21

2. Representation of the sigmoid function for [- ; +]... 35∞ ∞
3. Concept of Decision Tree model logic………..…..…..…..…..…..…..…..…..…..……………………….…… 37

4. Concept of Random Forest model logic…..…….…..…..…..…..…..…..…..……………………….………….41

5. Visual representation of the optimal separating hyperplane………………………..….…………….. 42

6. Visual representation of the soft margin concept……….…….…….…….……….……………….…….. 43

7. Possible types of noise in Machine Learning processes…………………………………...…………….. 53

8. Word2Vec training models………………………………………………………………………………………...65

9. Logic of a dependency parsing…………………………………………………………………………………... 70

10. Logic of constituency parsing……………………………………………………………………………………. 71

11. Sentiment Analysis tasks …………………………………………………………………………………………. 73

12. Sentiment Analysis techniques………………………………………………………………………………….. 78

13. General Sentiment Analysis framework …………………………………………………………….……… 80

14. Data set tibble summary representing the initial 10 rows……………………………………………… 95

15. Glimpse at the initial dataset, its columns and data types…………….………….………….…………. 96

16. Distribution of reviews posted over the years of 2018 and 2023 ……………………………………. 96

17. Distribution of numbers of reviews per rating, 1 to 5 stars …………………………………………... 97

18. Distribution of reviews in classes after transformation ………………………………………………. 98

19. Top 10 words sorted by frequency before removing stop words ………………………………….… 98

20. Top 10 words sorted by frequency after removing stop words ……………………………………… 99

21. Word Clouds ………………………………………………………………………………...………………………… 99

22. Comparison of Accuracy achieved by each model trained on both 5-fold and 10-fold cross

validation …… 102

23. Comparison of Accuracy and Kappa achieved by each model when tested on the testing

dataset…… 103

24. Comparison of the ConfusionMatrix of each model learned from the dataReview dataset ….. 105

25. Comparison of the ConfusionMatrix of each model learned from the dataTitle dataset 106

26. Comparison of the Confusion Matrix of each model learned from the dataReview_ST

dataset…… 107

27. Comparison of the ConfusionMatrix of each model learned from the dataTitle_ST dataset… 108

8

LIST OF TABLES

1. Summary of RelatedWorks………………..…………………………….……………..………………..………... 19
2. Confusion matrix representation ……………………………………………………………………………… 25

9

1
Introduction

With the current scenario of high volatility, risk and uncertainty, the continued investment in
innovation becomes a survival mechanism for modern businesses (Obradovic, 2016). At its
core, it represents their ability of noticing oncoming change and leveraging it to get ahead of
competitors (Obradovic, 2016). Few other technologies have as much to contribute to this
end today as Machine Learning and its associated fields, both for prediction and for gaining
an advantage. Likewise, few other technologies are as versatile: the applications range from
business intelligence, to project development and management, from marketing, to
production and maintenance, to briefly mention a few.

Traditionally the process of data analysis has been conducted through the use of numerical
data, instead of focusing on the synthesis of knowledge from text - especially considering the
industrial sector and the fast advancement of its digitization (May et al, 2022). Only more
recently has Machine Learning found a strong development in the Business sector, a growth
mainly related to the maturity achieved on Natural Language Processing (NLP) technologies
and the availability of big data (Van der Aa, 2022). Due to its extensive use of documentation
and textual data (Van der Aa, 2022), the sector allows for a more accessible implementation
of the technology than others.

This more recent growth and maturity of NLP technologies can be traced to three deciding
factors: “the application of innovative or rarely exploited machine learning algorithms, the
availability of datasets and the availability of appropriate infrastructures to store data and run
computationally intensive algorithms on large datasets” (Quarteroni, 2021, p. 6). Meaning
that now, more so than in times past, businesses have easy access to both the technology –
be it tangible or intangible – and the necessary data to power it.

The ramifications are all-encompassing: from the possibility to ease communication , not
only towards their clients, but also towards their entire supply chain while surpassing even
language barriers (Bahja, 2021) to investing in the collection and prediction of public opinion

10

on their products and services to gather insights (Cambria, 2016). The former brings
implications to the enhancement of trade relations and global commerce (Bahja, 2021), while
the latter, the focus of this research, lends itself to the evolution of an era in which the future
of products and services is defined by the opinion and needs of the communities who use
them (Cambria, 2016).

On a wider scale, the collection of user’s opinions, mainly through social networks, provides
information about their context and individual behavior (Algefes et al, 2022). Today, all of us
have the possibility of expressing opinions on “different subjects related to politics,
education, travel, culture, commercial products, or subjects of general interest” (Goularas &
Kamis, 2019, p. 9), meaning that the knowledge available for extraction is of great
significance and can then be combined and used to “effectively predict, forecast, and infer
outcomes of real-world events” (Algefes et al, 2022, p. 2). The author still mentions that the
reach of such social media representation, for example, goes beyond 3.6 billion active users,
and this number seems to be growing over time - not reducing.

Going even further, Alpaydin (2016) points out the symbiotic relationship between
consumers generating data, while also consuming it. Given that everytime they buy a
product, access a website, post on social media or simply use online maps to get around,
they generate large amounts of data, consumers have come to expect products and services
that understand and predict their needs and interests - that are specialized for them.

Among the technologies companies have at their disposal to parse through consumer data,
Sentiment Analysis represents the collection of techniques that allows for sentiment retrieval
from various sources, even surpassing the challenges of the more widely available
unstructured data, like volume, velocity and variety (Vargas, 2017). These techniques are
“numerous and are based on different methods of natural language processing and machine
learning techniques for extracting adequate features and classifying text in appropriate
polarity labels” (Goularas & Kamis, 2019, p. 9). Also called Opinion Mining, “studies usually
follow a workflow consisting of two steps: identify (topics, opinionative sentences), and
classify (sentences, documents)” (Tsytsarau & Palpanas, 2011, p. 4).

However, the quality of the outcome obtained through the use of Opinion Mining is essential
for any following analysis, and can be quite challenging. The identification of a given textual
opinion and its polarity evaluation are the basis for further research on the subjective themes
contained in the text, for example, which are essential elements for deepening the insight
acquired from the data (Tsytsarau & Palpanas, 2011).

In sum, the application of Machine Learning, along with NLP and associated technologies to
understand public context and opinion, finds applications for both predicting change and
preparing to take advantage of it. Especially in the business environment, which is the
motivation for this work: gathering user generated data (UGD) on a product and parsing it for
opinions and insights with NLP and Sentiment Analysis techniques. The product chosen
needed to fit two main prerequisites: have user generated data available for the analysis –
meaning a B2B product, and be of Italian manufacture.

The product chosen for analysis was the La Specialista Prestigio Espresso Machine,
produced by the italian company De’Longhi, as if fit in both criteria. The data was gathered
through the web scraping of websites such as Amazon, as it had the highest number of

11

reviews in English. For this purpose, the language becomes a deciding factor as the number
of resources and libraries available vary a lot per language, being English the most common
one and so the one with the larger amount of material – both for data gathering as for the
tools to analyze it.

This work contributes to the ever growing literature on the applications of tools such as NLP
and SA in the business environment, by providing the evaluation of a potential methodology
for gathering and analyzing publicly available customer data using Supervised Machine
Learning. The end goal is to validate the approach in regards to the extraction of useful
information and insights through widely available tools and resources.

This means that, while this work does not claim to be an exhaustive overview of all models
that can be applied for analysis, it should capture the most widely accepted ones for the
particular task it aims to develop.

This research is divided into 6 sections, following a logical progression of arguments and
steps, organized in the following manner: Section 2 provides an overview of the current
applications of NLP in the business sector and a brief mention of recent developments on
the industrial sector, Sections 3 to 5 provide further context to the opportunity tackled by this
paper and a deeper review of the concepts therein. Lastly, Section 6 presents the case study
and the conclusion reached.

1.1 RelatedWorks and Current Research

This section aims to provide insight about the current state of the art in the fields of NLP and
SA applications, for both research and business/industrial purposes.

1.1.1 Applications of NLP

Natural Language Processing is a subfield of artificial intelligence, focused on teaching
computers how to understand human language – this means inferring contextual information
and mining valuable insights from human written text (Global Risk Institute, 2022).

While NLP is definitely not a new field of research, with ELIZA simulating simple
conversations (Bahja, 2021) and SMART allowing for the use of natural language to
research a textual database (Quarteroni, 2018) already in the 1960s, it is still more
commonplace inside non-industrial sectors than it is outside of them (May et al, 2022). This
section provides a brief overview of the solutions in development for the use of companies,
from the point of view of both business and industrial applications, with a greater focus on
the former.

Starting with a brief outlook of industrial environments, although many of the procedures can
be available in text form, the use of NLP “is not capable of end to end prediction based on
textual knowledge but rather focused on very well described, unique tasks” (May et al, 2022,
p. 186). Going further, there are so many possible influencing factors that cannot be
foreseen in such environments, the result is oftentimes an increasing amount of
unstructured, natural text data (Ziora, 2021; May et al, 2022), and “pre-trained models [...]
cannot be used because the production vocabulary is different from everyday language”

12

(May et al, 2022, p. 186). In sum, training industrial models can be highly task-specific and in
general needs to be developed from the ground up.

To avoid the high development and management costs of building a structured semantic
context for a specific manufacturing field – such as an industry-specific ontology, Ziora
(2021) proposes a textual similarity approach for the retrieval of troubleshooting options for
new problems, based on past similar solutions found in technical assistance reports.
Similarly, Single et al (2020) propose the use of NLP to build a database of chemical
accidents – ontology-based – so that companies can consult to investigate possible
abnormal operations and the effectiveness of the safety measures implemented.

If these issues can be solved, the use of NLP and associated methods can increase
efficiency and save time for a wide range of manufacturing scenarios. This represents the
possibility of long-term advantages within a company, and is the reason why May et al
(2022), for example, propose a pipeline to gather, pre-process and use maintenance logs
and written commentary on failures and downtimes in a manufacturing plant to predict
machine downtime - an as of yet novel application on NLP and ML.

Another field starting to develop further regards human-machine communication and
interaction - which is usually done through a software using input such as a keyboard entry
or a touch screen command (Gui & Harth, 2021). The application of NLP could simplify the
process by suppressing the need for professional knowledge of the system to interact with it,
accepting natural language input as suggested in.

Now, regarding the business side of NLP applications, the field becomes a little wider. With
extensive applications “in many branches such as Finance, Banking, Telecommunication,
E-commerce, Medicine, or Healthcare, it is often implemented in the process of
contemporary business organization management” (Ziora, 2021, p. 76). As highlighted by
the Global Risk Institute (2022), with its increasing popularity, an ever increasing number of
firms are making use of NLP to better understand their clients and the environment they are
working in. Even further, they affirm that companies that do not choose to actively use NLP
techniques to gain insights on today's widely available data will soon be at a great
competitive disadvantage in the market.

As corporate applications tend to be more accessible, they are also more widespread. At the
forefront of this movement is the easy availability of large sets of textual data, online and
offline, inside and outside of the company. Zhecheva & Nenkov (2022, p. 108) explain that
“corporate unstructured textual data could be found in emails and social media posts, but
also in clients’ reviews, web pages, blogs, news, CRM systems files, survey responses, etc”.
They also mention sources such as job performance evaluations, contracts and meeting
summaries. All of these have the potential to provide insights for gaining competitive
advantage.

The first recent application worth mentioning is the work developed by Vashisht & Dharia
(2020), which combines a Business Intelligence tool with a chatbot, with the goal of providing
a quick and intuitive manner or engaging with the company’s data. Using NLP, the firm’s
managers can query the database and gather insights intuitively. Not only that, this interface
completely bypasses the need for technical knowledge on how to use the BI tool, further
widening its potential user base and accessibility.

13

The capacity to empower people when using NLP to analyze company data is further
explained by Sergeeva et al (2022, p. 1), when they say that “while technology is the enabler
of these improvements, the biggest change is Cultural – Every Authorized Business Person
has access to the underlying data to perform their own analysis using their own tools”. On a
wider lens, it has the capacity to remove the focus from specific Data Specialist resources
and provide more autonomy to the numerous businesspeople in whichever domain of
knowledge they specialize in – they can conduct their own analysis to make more informed
decisions on their respective areas.

Still related to Business Intelligence, by applying NLP and word embedding algorithms, [23]
proposes a system that provides firms a way of generating summary reports on the
patenting landscape of their industry automatically. The goal is to provide enterprises with an
in depth analysis of growing trends within emerging industries and the state-of-the-art
technology within their market. Moreover, it eases the continuous patent research and
evaluation during the lifecycle of product development. The insights can then be used to
further base not only the overarching company strategy, but also R&D and Project
Management, financial and patenting strategy and marketing campaigns.

On the financial side, the attempts to go beyond numerical data started many decades ago:
“the earliest attempts to import other predictors employed discourse analysis techniques
developed from linguistics and Naïve statistical methods such as word spotting” (Frazier et
al. 1984; Brachman and Khabaza 1996, as cited by Xing et al, pg. 50).

Some recent NLP and text mining applications for finance regard the “information retrieval
and the classification of financial statement content” (Global Risk Institute, 2022, p. 3). More
specifically, tasks like comparison and verification of company reports against financial
statements, insight extraction from press releases and new articles, fraud detection and
even market prediction (Global Risk Institute, 2022). In the latter case, however, (Xing et al,
pg. 50, pg. 57) points out the need for a more interdisciplinary approach, affirming that the
task “is positioned at the intersection of linguistics, machine learning, and behavioral
economics”.

Another application that has been gathering a considerable amount of interest in the last
decade is the chatbot. This is highlighted by saying that “there can be observed growing
popularity in its application in different business domains, especially in customer care in
banking, financial, telecommunication and healthcare institutions” (Ziora, 2021, p. 78).
Especially in the business perspective, the author mentions that chatbots can render
companies accessible and available in the eyes of customers, independent of time and
location, with high potential for scalability at low cost.

Thinking of Logistics and Supply Chain Management, Quarteroni (2018) provides one
application for conformity checks on the documentation of raw goods received: NLP helps to
identify entities such as organizations or locations mentioned in the text that may need to be
further assessed through background checks before confirming a given transaction. This
solution relies on a search-based application, in which the documentation is scanned and
then evaluated through the use of a statistical named entity recognizer - the result of which
brought the reduction of 80% of the time needed for a human to perform the task.

14

Still in this field, Blume Global leveraged NLP as explained by Ziora (2021), using it to query
complex datasets to optimize their Supply Chain. In the same vein, the company applied
Machine Learning and NLP techniques to perform in-depth analysis of social media, news
and reports to gather an understanding and implement mitigating solutions to the risks they
were subjected to.

Widely used in Marketing, the NLP methods are categorized based on which information is
desired and the depth of analysis; “these are Concept and topic extraction, Relationship
extraction, and Sentiment and writing style extraction” (Hartmann & Netzer, 2023, p. 206).
The first, for example, refers to the identification of single words or themes in the text, and is
exemplified by the framework proposed by Tirunillai & Tellis (2014), to understand the market
through brand-mapping, the segmentation inside of it and the dynamics over time. The
second contains the methods to find the link between words or entities within the text
(Hartmann & Netzer, 2023), here represented by a ML and NLP alternative to discovering
customer’s needs from User Generated Content proposed by Timoshenko & Hauser (2019).

In companies today, this is still usually done through customer interviews, which can be quite
long and expensive. Finally, the last category refers to the classification of the sentiment or
writing-style prevalent in the text, oftentimes lexicon-based (Hartmann & Netzer, 2023), and
represents the category in which the present research can be found. To exemplify with a
related publication, (Chakraborty et al, 2022, pg. 600) developed “a scalable text analysis
method to convert open-ended text reviews from online review platforms to produce
attribute-level summary ratings”, looking to capture both the valence of sentiment as well as
its degree – in a scale of positive to negative.

1.1.2 Applications of SA

Regarded as a subfield of NLP, Sentiment Analysis can be considered a text classification
task whose fundamental goal is to discover feelings and ideas from a given collection of
written text – be it by a person or an organization (Thada & Shrivastava, 2020; Salmony &
Faridi, 2021). This task, also called Opinion Mining, is traditionally meant to classify a given
piece of text like a social media post or comment based on its polarity, positive, neutral or
negative. (Ziora, 2021)

The main approach for this task is through the use of Machine Learning models, either with
Supervised (such as linear classifiers and support vector machines) or Unsupervised
Learning models. (Ziora, 2021)

Restricting the evaluation more specifically to the Business domain – where this work is
placed – SA provides “in-depth insight into the attitude of buyers' feedback about their
product; therefore, they can improve their strategy to meet the customer's expectations and
needs and avoid loss.” (Salmony & Faridi, 2021, p. 132) But much beyond that, there are
wide applications of SA for tasks such as brand and reputation monitoring, market research
and competitor analysis, employee sentiment analysis, or trend analysis just to name a few.

Many of the works cited here are further detailed in section 1.1.3, as they are more closely
related to the research developed in this work.

15

1.1.3 RelatedWorks

In this section, the goal is to understand the recent developments in the NLP and SA fields
that are more strictly related to the research undertaken by this work, meaning the sentiment
classification of user generated content. Not only that, but the techniques and results are
also briefly discussed.

When researching publications for this specific field on scholarly literature websites – such
as the widely known and used Scopus – using combinations of the keywords “NLP”, “SA”
with “customer reviews”, “user reviews” or “user generated content”, there is a very clear
upwards trend over time. From around 2010 onwards, the number of publications has only
grown year over year - with more than 400 new works added just in 2022.

As seen previously, this is a direct result of factors such as the increase in data availability
and the development of technologies able to support its analysis and use. Methods such as
web scraping, in which researchers iteratively extract useful information from freely available
web sites, are a common practice. For example, in the work of Waila et al (2012), paired with
pre-existing databases, the authors scraped movie reviews websites such as IMDB to gather
data and train sentiment classification models using both Supervised Machine Learning –
Naive Bayes and SVM — and Unsupervised Semantic Orientation.

The movie review databases didn’t go through stop word removal or stemming during
pre-processing. For the Supervised ML models, the researchers found that NB had a slightly
better performance when compared to SVM, even if the latter is typically regarded as
superior. However, more than that, the Unsupervised ML model realized with POS tagging
as feature extraction of adjectives found in the reviews had the best performance overall:
above 80% Accuracy on all three datasets.

Another research that found some success with the Naive Bayes model was done by Rain
(2012), this time in an evaluation of probabilistic ML models looking also into Decision List
Classifiers. The goal here was to evaluate 15 products with the highest number of reviews,
mostly books and movies, divided into 3 datasets. The author tackled the problem of the
ambiguity (lack of distinction) of using a 1 to 5 stars rating system by setting a new system,
in which reviews with 1 or 2 stars had a ‘0’ score, while reviews with 5 stars got a score of 1.
They offset the fact that the majority of products receive mostly good reviews, so those were
more restricted.

All three of the datasets worked better with the Naive Bayes model, based on their Accuracy.
However, it is interesting to notice that the worst performance for both algorithms was with
the same dataset – which the author concludes happened because the data was not as
specific as the others. Ultimately, it leads to the conclusion that training the model and using
it on the same specific product or range of products will yield better results than trying to find
a generic, widely encompassing model, and provide deeper information on specific features
and properties. In sum, a model developed with data on book reviews should be used to
classify new book review inputs, a model developed with electronic product reviews should
be used to classify new such inputs and so on.

On a more focused look into Supervised ML models, Singla et al (2019) trained not only
probabilistic classification models like Naive Bayes, but also deterministics ones like SVM

16

and Decision Trees. The authors have extracted mobile phone reviews from Amazon.com to
form a big database, filtered and pre-processed to remove elements such as stop words,
digits and special symbols: the result is over 400.000 reviews for 4.500 phones.

The only features selected for the training were Product Name, Brand and the reviews
themselves, as these were the most relevant ones. After determining the sentiment
orientation with a sentiment dictionary – including eight different emotions and their valence
– the corresponding Positive or Negative polarity tag calculated was added to each review.
The prepared data was imbalanced and thus corrected using an undersampling technique
for the training of each model. The results were evaluated with the Accuracy measure of
each one, and in contrast with research by Waila et al (2012) the widely regarded as
superior SVM had the best performance – over 80% – against 65% by the Naive Bayes
model, the worst out of all three.

This type of contradicting result may stem from numerous reasons, such as data variability
between the experiments and the way in which the text and features are represented – Waila
et al (2012) used TF-IDF with no stop word removal or stemming, while Singla et al (2019)
performed those steps along with removing punctuation marks and digits. Even the domain
can be taken into consideration, as movie reviews may have differences in language and
context from phone reviews. These factors are better evaluated in future sections, but
highlight the necessity of training more than one single model agreed to be the best one for
the task, and compare their performance before selecting the most suited one for the task –
and the dataset used.

Still in the Supervised ML area, Thada & Shrivastava (2020) have looked into Logistic
Regression for Sentiment Classification. The research employed a publicly available dataset
by Kaggle, Unlocked Mobile phone, which after cleaning and pre-processing resulted in just
over 300.000 reviews. Before using a 80/20 training and testing data split, the data was
converted into numeric representation through the Bag of Words approach – meaning that
the position of the words is not a relevant factor, only their frequency in the document is
considered.

The performance of the model was evaluated in terms of the Roc AUC curve, which reached
a very high score of 0.927. Interestingly, some of the words with the highest contribution to
positive sentiments were excellent, loving and amazing, while for negative they were worst,
worthless and horrible.

The same research also looked into the TF-IDF approach, now using not only the frequency
but also the weight of the words to a given document and later removing the ones with less
importance. This method resulted in a Roc AUC curve of 0.927 – meaning there was no
improvement from the BOW approach, save that it used considerably less features to reach
the same score.

In an attempt to include the order of the words in the analysis along with their frequency, one
last attempt was made: adding bi-grams. This means that the analysis is not conducted only
in words such as “not” and “bad” independently, which could indicate negative connotations,
but also “not bad”, which can have a more positive connotation. This addition returned a Roc
AUC curve of 0.967, the best one. Now, among the terms most indicative of positive feelings
were “no issues”, while for negative feelings were “not happy” and “not satisfied”.

17

One thing to keep in mind from the comparison of the three methods is that while n-grams
can be quite useful for an increased model performance, they should be used carefully as
the number of features can increase very quickly.

Aside from strictly business side applications, Kaur (2022) applied the concept of NLP and
SA to analyze the trend in political news publication, given the fact that the manner in which
media portrays everyday occurrences can shape people’s decision-making and predefined
notions. This task can be tricky, as news are not typically reported with objectively positive
or negative language, the ideas are conveyed through more complex discourse. The author
used the Vader Sentiment Analyzer to label the data as positive, neutral or negative at
word-level, and TF-IDF for text representation.

Using a 25/75 train-test split, the author trained both Naive Bayes and Logistic Regression
models, which obtained performance of 59% and 61% Accuracy, respectively. As these are
too low for actual implementation and use, the author suggests improvements starting with
POS tagging.

Trupthi et al (2016) considered only two classes, instead of the typical three: positive and
negative. The idea here was to classify movie reviews with Naive Bayes and evaluate the
impact of varying feature extraction techniques on the final model. Although the baseline
model with a simple BOW representation reached an Accuracy of 73%, but Precision and
Recall measures were not good: although the model predicted well True Positive values,
there were too many False Positives – an occurrence explained by the fact that people tend
to use positive words even in negative reviews, after the “not” negation (“not good” or “not
great”). Another point to consider is that due to the fact that words could only be classified as
positive or negative, without a neutral category, and stop words were not initially removed,
they had a bigger impact than necessary on the output.

The second model was then trained two times, the first by removing stopwords and the
second by adding meaningful bigrams. In doing so, they have seen the metrics reduced
even further due to stopword removal, but increased enormously as the result of the
bigrams. Their main takeaway is the fact that when the classification has too many features,
many of them are low information and as such may decrease model performance. So
removing these means removing noise that affects richer value features, allowing the latter
more weight and minimizing the possibility of overfitting the model.

Another path for grasping public sentiment outside of the business field is developed in a
study by Ng et al (2022), that evaluated over 300.000 tweets to understand how people saw
the monkeypox virus outbreak. The goal was to inform public health decision makers on
policy and awareness campaigns. Different from the works seen so far, the researchers
started with topic modeling, using BERTopic to segregate the data into thematic groups and
generate the main idea behind each one. The research provided very pertinent insights:
three out of the five topics identified dealt with fear that monkeypox was to become the next
worldwide pandemic, while the remaining two dealt with lack of faith in public institutions
seen as inadequate.

Another possible approach to using NLP for SA applications is through the use of lexicons.
Gupta et al (2021) calculate the polarity of sentences within tweets, which commonly contain

18

online slangs that are trickier to classify, using both lexicon-approach and machine learning
classification techniques (SVM, Random Forest and Linear Regression).

The researchers started by initializing both Vader and a dictionary that considers over 300
slangs and their meanings as key-value pairs. Then, the data was processed to substitute all
of the slangs found by their meaning, so the phrase “The joke was funny lol” becomes “The
joke was funny laugh out loud”. Next, the lexicon was used to calculate the polarity of each
phrase, set as either positive, negative or neutral as a score between +4 and -4,
subsequently normalized to fit within the interval of [-1, +1].

The scores were finally summed up to calculate the final polarity of each tweet, and later used as
input for training and testing ML models. This approach outperformed previously existing works
using only the Vader lexicon, achieving accuracy of over 90% for all three models trained while
maintaining equally high levels of Precision and Recall. It shows the necessity of using both
pertinent and updated lexicons in the correct context: tweets are typically filled with informal
language such as slang that evolve quickly over time, and should be dealt with as such.

The issues that arose were mainly due to extended slang, such as “looool”, emojis and images –
the last two were initially removed or substituted by a numeric data type NaN. Most of these can
be dealt with by expanding the lexicon and keeping it up to date.

As just seen, there is no one unique way of solving the NLP task of sentiment analysis, there can
be many approaches more or less successful – each within their own parameters and limits.
Many of the topics here presented are further discussed along this research to provide the basis
of the project developed.

Finally, a summary of the works presented in this section is seen below, in Table 1. The columns
contain information on the authors of each journal, the data used and the NLP techniques
applied for each one. Lastly, the models trained and the metrics evaluated are presented. This
summary makes it easy to find the common trends of the current research on sentiment analysis
for customer generated data in general, such as using Accuracy to judge the quality of the
models trained and the ubiquity of Naive Bayes as one of them.

Table 1. Summary of Related Works.

19

2
Machine Learning

As a sub-branch of Artificial Intelligence (Mrabet et al, 2021), Machine Learning comprises
all activities that try to teach a computer to imitate the way human beings learn, using pattern
recognition. This is done in a data-based manner, rather than rule-based, meaning that
instead of being given the logical rules to arrive at a conclusion, of having its algorithm
programmed directly, the model is trained on available data and learns how to arrive at a
conclusion by itself.

The evolution from one to another happened because the traditional inductive reasoning
method used is no longer efficient - or even feasible - when done by people (Alpaydin,
2016). The volume of the data collected is too large and the manual analysis related to it is
too costly, which means that computer models that can extract information automatically - or
learn from it - have become essential. In this manner, Machine Learning “offers new tools to
overcome challenges for which traditional statistical methods are not well-suited” (Jiang et al,
2020, p. 675).

Even further, the tasks to be solved have become more complex: comparing, for example,
sorting simple numbers to sorting spam emails (Choudhary & Gianey, 2017). While the first
has very clear inputs, outputs and the logical procedure to follow from one to the other, the
latter requires instructions that are not always clear cut and easy to generalize. Machine
learning, then, gives the model the ability to learn and improve with experience, without
being given explicit instructions.

Machine Learning is also fundamentally about generalization (Choudhary & Gianey, 2017):
as explained by Alpaydin (2016), the mathematical model built is not intended to fully identify
the process from input to output, but to serve as a good enough approximation of it, taking
into account patterns and regularities that occur in the data. Once ready, the model can be

20

descriptive and be used to gather insights on the process itself, or predictive to make
predictions - assuming that the future will not be vastly different from the moment in which
the data was gathered. The core goal, then, is to “instruct computers to use data or past
experience to solve a given problem.” (Muhammad & Zhu, 2015, p. 1)

In the case of prediction, Machine Learning may even be preferable to traditional statistical
tools (Jiang et al, 2020), as it has fewer restrictive statistical assumptions, such as linear
relationships and absence of multicollinearity.

The field can be divided into four general categories, and the first step into the process is to
choose the one most suited for the analysis to be done: Supervised learning, Unsupervised
learning, Semi-Supervised learning and Reinforcement learning. (Kour & Gondhi, 2020;
Jiang et al, 2020)

Figure 1. Classification of Machine Learning techniques by Kour & Gondhi, 2020.

2.1 Supervised Learning

The aim of Supervised Learning algorithms is to learn how to map the input into an output
using values already corrected by a supervisor. This means that the model essentially
receives a set of labeled examples to train and learn from - containing both the input and the
output, and then tries to predict the correspondence to unseen points; the results are
evaluated and adapted by a human until reaching an accurate enough prediction power
using the loss function (Kour & Gondhi, 2020; Jiang et al, 2020). Here, perhaps even more
than in other cases, the data used typically undergoes critical preparation and preprocessing
(Muhammad & Zhu, 2015).

In general, the idea is to have a large enough labeled dataset so that it can be split into two:
one for training and validating the model, and another for testing it. The split should be done
randomly, and during training different error values can be achieved depending on how the
division was made. It should be noted that when validating the model to find the best
possible one, the data points used become part of the training phase and so cannot be then
used for testing - in a way, they are now known to the model. (Alpaydin, 2016; Sen et al,
2019).

This subfield of ML has two main types of tasks: Classification, in which the goal is to predict
a categorical output, so a discrete value called class label, and Regression, in contrast,
which aims to predict a continuous output, a numerical value (Mrabet et al, 2017; Jiang et al,
2020). Some existing algorithms can be used for either task, such as Support Vector
Machines and Neural Networks, while others are more specific to only one of them.

21

In both cases, there may exist a number of sub configurations that will influence the
performance of the model trained, how well it will generalize the pattern learned, also called
Hyperparameters (Jiang & Rosellini, 2020). These must be chosen and adjusted as needed,
according to the model under training, to achieve a good fit.

2.1.1 Classification

Humans are exceedingly good at classification tasks, differentiating between one object and
another based on shared features: the most common example given is recognizing dog
breeds, as they all have the same sets of characteristics that vary slightly on appearance,
color and size but at the end of the day they are all dogs (Faul, 2019). How a person learns
how to differentiate them is based on the features of each one.

There may be different types of classification tasks, as explained by Sen et al (2019): there
is the binary classification, in which there are only two possible classes for any given input -
for example, if an email is spam or not or if a picture contains a dog or not. And there can be
multi-label classification, in which three or more labels are possible for any given input - for
instance, if the grade achieved by a student is above average, average or below average.
Even further, the same input can belong to more than one single label, meaning the
classification task is not so clear cut and the boundaries between the classes are quite close
to each other.

The goal of the model is to find “a set of instances that share a common property” (Alpaydın,
2021, p. 57), also called a label or more commonly a class. So the task itself is to find a way
to formulate the class using these shared features, to find a discriminant that represents the
boundary that separates the inputs based on the space defined by their attributes (Alpaydın,
2021). This can mean classifying an email as spam or not, or a potential borrower as likely to
default on the loan or not – and provide insights to make real world decisions.

For text classification, for instance, typically “the goal is to determine whether a given
document belongs to the given category or not by looking at the words or terms of that
category” (Kadhim, 2019, p. 1). The task can be summarized through the words of
Muhammad & Zhu (2015), by saying that the classification process of a given dataset D is
based on finding the model that best describes the way the values of attributes contained in
the set size A [, …] relate to the classes contained in the class label vector C [, …𝐴1 𝐴2 𝐴𝑛 𝑐1 𝑐2
], where .𝑐𝑛 𝑐𝑛 ≥ 2

There can be three types of attributes, according to Hájek & Barushka (2019): the first is
called Boolean and can only assume one of two values, so typically questions answered as
yes or no (answers to is “is it blue?” and “does it have hair?” and so on). The second type of
feature is called categorical, either ordered or unordered, and can be one out of three or
more values (will answer questions such as “what color is it?” and “how many stars does it
rate on a scale of 1 to 5?”) – these usually require further handling before use through
dummy variables [70, pg 59]. The last type of feature is called continuous, so real-value
answers belong here (“what is its height?” and “how much rain fell during January?”). These
three types represent characteristics that are shared by the group, the dataset under
analysis, and can be used to set them apart into classes – not all features are equally

22

significant, some not at all. It depends on the researcher which ones should be kept and
which ones should be left out of the model.

ML based text classification belongs to the Supervised ML field, meaning that the model
“needs to be trained on some labeled training data before it can be applied to actual
classification task” (Waila et al, 2012, p. 2). If the learning model is based on a statistical
method, such as Naive Bayes, it is called a statistical text classifier – and the same goes for
so called vector space based models such as k-Nearest Neighbors and Support Vector
Machine algorithms, now representing the documents as high dimensional vectors.

Classification tasks can also be solved through Decision Tree induction models, which allow
for an easy understanding of how the model defines the class for each input, and can be
quite effective. These models are further discussed in subsequent sections, but for now
suffice to know that they typically use labeled data for classification purposes.

For model performance evaluation, Mrabet et al (2017) provide an overview. Starting with
Accuracy for binary classification seen in (1), a metric commonly used: it represents the ratio
between the sum of the correct predictions over the total number of data points in the testing
dataset – so how correct were the model’s predictions overall.

(1)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
Given that:

represents the number of positive inputs correctly classified.𝑇𝑃
represents the number of negative inputs correctly classified.𝑇𝑁
represents the number of positive inputs classified incorrectly.𝐹𝑃
represents the number of negative inputs classified incorrectly.𝐹𝑁

However, this measure can be deceiving when dealing with an imbalanced dataset, not
reflecting properly the efficiency of the model - datasets in which one class vastly
outnumbers another. It can be quite common for real life dataset and is one of the
challenges to face when performing classification tasks. In this case, the Accuracy metric
can be paired with the model’s Precision and Recall rates to have a deeper look on its
performance over specific classes. These are widely used in the NLP field for tasks such as
document classification and query classification performance, for example.

Choudhary & Gianey (2017, p. 4) point out further that the Accuracy metric lacks other
specificities, such as “the relation between the data attributes, the measure of correct
distribution of data instances to each and every class possible, the number of the positive
outcomes from among all received positive outcomes, and several others”.

Seen in (2) and (3), respectively, Precision represents the proportion of values predicted as
positive that was actually correct, while Recall represents the proportion of positive samples
that were predicted as such overall.

(2)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃
23

(3)𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁
This means that a model can be great at its given task overall, but predict better to one class
or another. One consequence of this is that the model should then be tailored to fit the needs
of the task. For example, if the goal is to use scans to predict if a tumor is benign or
malignant before being directed to a licensed professional, a researcher may decide to
develop a model that performs particularly well in detecting if they are malignant, to make
sure that no patient goes on undiagnosed. This notion is important because oftentimes
improving one damages the other, so prioritizing one over the other needs to be in
accordance with the application.

If one were to try and use only Precision and Recall to evaluate one model against another
for example, without looking at the bigger picture, the outcome can also be negative. Say for
example, a bank builds models A (15% Precision, 95% Recall) and B (10% Precision, 85%
Recall) for classifying borrowers that are likely to default on a loan or not, requiring an
Accuracy of at least 90% to be used. Model A can be said to be the better choice, but cannot
be used because it does not reach the Accuracy level desired.

One metric that is commonly added for this purpose is the F1 score, and it is based on the
harmonic mean of both Precision and Recall – so as to find the best combination of both.
This means that this metric evaluates the model through its predictions for each class,
instead of simply the overall performance, and as such by maximizing F1, so are the other
metrics maximized. It is calculated through (4) and ranges from 0 to 100% or 0 to 1.

(4)𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
Next, Mrabet et al (2017) introduce the Confusion Matrix: it keeps track of True Positive and
True Negative predictions - the ones that were correctly made, along with the False Positive
and False Negative predictions - conversely, the ones that were wrongly made. These allow
for a more careful evaluation, as seen previously, one can be more important than the other:
if the goal is to use the model to detect possible mines, for instance, the ratio of True
Positives would be more important and thus prioritized, as the loss for getting a single one
wrong would be greater than classifying a True Negative or a False Positive.

Seen in Table 2, the Confusion Matrix is a direct summary of the model’s performance, and
can also be extended to multi-class classification tasks. In that case, the concepts of True
Positives and True Negatives remain the same, as do False Positives and False Negatives;
what changes is that these will now be extender for each class the model is predicting for, so
the diagonals (where the given class column and row intersect) represent the True Positive
value.

Table 2. Confusion matrix representation by Alpaydin (2016, p. 561)

24

This level of analysis is very interesting for imbalanced datasets, as mentioned previously.
These contain large disparities in the number of samples from one class to the other, and
are quite typical of real world data. The authors Shmueli et al (2018) mention the example of
models trained to identify fraudulent credit card transactions: the data gathered would result
in many non-fraudulent transactions in comparison to the suspicious ones and as such the
models would have very little to distinguish between one class and the other. The issue can
be mitigated, before building the model, by using techniques of oversampling or
undersampling, depending on the model’s needs. It should be noted, however, that this
applies to binary classification models, as multiclass classification does not lend itself well to
the procedure. (Shmueli et al, 2018)

The idea is to reach a similar number of samples for each class, especially because random
sampling for a model on imbalanced data may produce even fewer inputs of the rare class –
and quite commonly these are the most important ones. Undersampling, simply put, means
that “the more plentiful class is undersampled, relative to the rare class” (Shmueli et al,
2018, p. 181).

The metrics used for the evaluation of models trained on data manipulated through
undersampling should still, typically, be tested on data that represents the real ratio between
one class and another (Shmueli et al, 2018). For example, if the underrepresented class
composes 5% of the total inputs, and the other 95%, the model could be trained to learn on
undersampled data that moved this ratio to a 50/50 split - and finally tested on a dataset
composed as the original one. If that is not possible, the researcher may assign so-called
oversampling weights to the inputs of each class represented in the confusion matrix and
adjust the metrics to better represent reality.

2.1.2 Regression

Regression tasks are essential in the Machine Learning field and quite prevalent. However,
this work provides only a brief overview as a contrast to the main topic, Classification. This is
due to the fact that the project does not intend on developing regression tasks in its course.

In the case of Regression tasks, the model is defined and optimized to predict a numerical
value output. A non-trivial application example is provided by Alpaydin (2016, p. 4), when
mentioning the navigation of “an autonomous car, where the output is the angle by which the
steering wheel should be turned at each time, to advance without hitting obstacles and
deviating from the route”.

Regression models, for optimization, are calculated in such a way so as to minimize the
approximation error [30, direct, pg 4-10], meaning that “our estimates are as close as
possible to the correct values given in the training set” (Alpaydin, 2016, p. 10). This is usually
done starting from the simplest option possible, a linear model, and evolving the complexity
as needed, for quadratic or higher order polynomials or nonlinear functions - while at the
same time optimizing the parameters (Alpaydin, 2016).

The magnitude of the errors calculated for Regression models depend directly on the
difference between real outputs and the predicted ones; this means that they should be
analyzed in relations to the data, not as absolute numbers - but also serve as contrast to

25

Classification models, where it can be difficult to grasp the closeness or lack thereof
between the many categories (Mohri et al, 2018).

2.2 Unsupervised Learning

For Unsupervised Learning tasks, there is an absence of a training process: the models are
meant to assess by themselves any pattern they may find on the unlabeled data. This
means that there is only the input data, and the output will depend on what the model
discovers as the most frequently occurring patterns, trajectories, clusters - also known as
density estimation in the field of Statistics (Muhammad & Zhu, 2015; Alpaydin, 2016).

These models tend to be particularly good in description tasks, “because they aim to find
relationships in a data structure without having a measured outcome” (Jiang et al, 2020, p.
2). However, since there is no labeled data, the quantitative evaluation of the performance of
a model can be more complicated to perform (Mohri et al, 2018). This is one of the reasons
why they are so important for researchers: unlabeled data is so much easier and cheaper to
find, which allows for a higher accessibility (Alpaydın, 2021).

2.2.1 Clustering

One possible model to perform density estimation is Clustering: as the name suggests, the
goal is to group the inputs based on their similarities, a “sorting process where the criteria
governing the sort are not known” (Faul, 2019, p. 149).

While it is widespread and commonly used, typical applications of clustering are on
exploratory data analysis (Alpaydın, 2021) or the analysis of very large datasets (Mohri et al,
2018). In the first case, not much is known about the data set and the goal is to find naturally
occurring groups, to be evaluated and classified later on. On the second, however, the data
set is known; for example: the Customer Segmentation performed by a company, grouping
them based on demographic characteristics and past transactions (Alpaydın, 2021). The
information extracted can then be used to devise strategies for each cluster identified,
regarding their communications, products and services, now a little more customized than
before, or even find deviations and identify a possible niche segment.

One point of attention, however, is the features chosen for the analysis: the emphasis put on
the attributes chosen to represent the data points will determine the outcome – and so affect
the model's coherence. One way of thinking about this is considering candies (Faul, 2019):
some are larger or smaller, have more or less sugar, one shape or another, chocolate or
jelly; the distinguishing features can be many, and so the sorting will vary with the purpose of
the analysis.

Because in Supervised Learning the data has a label, it makes sense to try and keep only
the features that relate to it - however, for Unsupervised Learning the data has no label and
so remains the question of what features are relevant to be used, or not used (Dy & Brodley,
2004).

Another application, for example, is document clustering. When combined with NLP, treating
documents as bag-of-words allows the algorithm to find similarities between them – like the

26

number of shared words – and assign groups for classification. This means that a document
can be automatically organized and filtered by subject, such as politics, sports, fashion and
so on, or have their information extracted quickly and efficiently. The critical variable here is
the choice of the lexicon used to give meaning to the words (Alpaydin, 2016).

In more complex applications, a class, a cluster, can even be made up of multiple groups: in
optical character recognition, for example, there can be several ways of representing the
same number 7, or in speech recognition where the same word may be spoken in different
ways. The class these examples are assigned to needs to reflect this mixture (Alpaydin,
2021).

2.3 Semi-supervised Learning

Regarding Semi-supervised learning tasks, it tries to gather the best points of both
Supervised and Unsupervised fields by using labeled and unlabeled data together, in
different ratios (Khour & Gondi, 2020). This can happen for several reasons, such as in fields
where the unlabeled data is very easy to obtain, but labeling it is very expensive, and so “the
hope is that the distribution of unlabeled data accessible to the learner can help him achieve
a better performance than in the supervised setting” (Mohri et al, 2018, p.6).

2.4 Reinforcement Learning

The fourth and last subcategory of Machine Learning tasks works by interacting with the
environment to collect information, sometimes even affecting it, and is then rewarded
depending on the effect created (Mohriet al, 2018). By trying to maximize the reward, the
model is allowed to determine by itself the best possible behavior within the given context
and learn (Kour & Gondhi, 2020).

One possible dilemma to deal with is exploration versus exploitation, as pointed out by
Mohriet al (2018, p. 6), “since he must choose between exploring unknown actions to gain
more information versus exploiting the information already collected”.

This work does not go into further detail, as the related concepts and models are not used in
it.

2.5 Importance of Data

The model calculated to relate inputs to outputs depends directly on the dataset used,
making f(x) deterministic (Faul, 2019). This means that independent of the task at hand,
ensuring the appropriate data quantity and quality is crucial and should be appropriate to the
learning model trained - some of them do well with small amounts of data - like Naive Bayes,
while others will only thrive on large amounts of it - such as Neural Networks.

Since these models are being created and used to draw insights to make more informed
business decisions, and thus have the potential to cause considerable effects on
organizations, their quality will have a direct impact on the decisions taken (Ziora, 2020). At
the end of the day, too much data with low quality will make for poor models and predictions.

27

It is crucial for the success of any model to ensure appropriate data quality and quantity, be it
qualitative or quantitative. However, because data acquisition can be very expensive, both
financially and time-wise, its use needs to be optimized. This is even more important
because typically models require two entirely separate datasets: one for training and one for
testing, meaning that data quantity becomes a valuable asset.

For Supervised Learning, for example, one of the most common optimization methods is
called Cross Validation (Faul, 2019), and consists of methodologically and iteratively
partitioning the available data multiple times into complementary subsets, one for training the
model and one for validating its generalization capabilities. In the end, the model trained on
the best possible partitioning is chosen based on its given metric - and so moves on to the
testing phase, with the testing dataset.

Cross validation essentially measures the quality of the inductive bias of each hypothesis,
each model among all those trained, and selects the best one with a predefined parameter.
This metric can be, for example, the Accuracy of the models (which should be maximized),
or the Mean Square Error (which should be minimized).

Data quality itself can be managed, to a certain point, before training the model. Even if the
dataset is usually imperfect and contains noise factors or missing feature values, these can
typically be cleaned, or the categories transformed into dummy variables to better adjust and
reflect the content. (Sen et al, 2019).

This theme is further discussed in the specific sections for NLP and Sentiment Analysis, as
there are challenges and considerations to be made regarding the data that are particular to
these application fields.

The last point of attention regarding the data is ethical: both when selecting it and applying
their conclusions. In the words of Patti et al (2017, p. 154), “the choice of the data sample
will significantly affect the results we will be able to draw by a system trained on them, and
the annotation itself must be designed and done in order to avoid biases and to expose the
shared knowledge of the speakers’ community”.

2.6 Machine LearningModels

Before discussing the models themselves, there are a few concepts to understand. The most
basic one is inductive bias: it represents the set of assumptions taken when building the
model, the prior knowledge and beliefs that went into the process, and it influences the
learning and the generalization from the available data. One way of introducing inductive
bias into the model is assuming a given hypothesis space – a space that contains allℋ
possible solutions between input and output, constrained by the model selected and its
configuration (Alpaydin, 2016; Brownlee, 2020).

For example, by choosing to train a linear model – and so making the assumption that the
relationship between the variables is so – the hypothesis space is then constrained to findℋ
only linear solutions for when learning the function that maps input to output with the𝑓(𝑥)
least amount of error. In this way, the inductive bias shapes the learning process, guiding
how the model searches for a suitable solution, favoring some hypotheses over others.ℎ

28

This is important because is the general function that describes the data and defines𝑓(𝑥)
the model.

Some hypothesis spaces are larger than others: in regression, for example, as the order of
the polynomial increases, so do the capacity and complexity of the space. Then, the next
assumption to be made becomes when to stop (Alpaydin, 2016). The objective of making
assumptions is to find the hypothesis space with the highest probability of containing theℋ
solution to . So learning “is not possible without inductive bias, and now the question is𝑓(𝑥)
how to choose the right bias” (Alpaydin, 2016, p. 38).

Finding the best possible hypothesis space is directly related to model selection, but itℋ
should be highlighted that the goal of the model is not to find the exact relationship between
input and output of past data, but to predict the output of new data – meaning that it needs to
have the capacity of generalization (Alpaydin, 2016). Even if the data represents only a small
subset of all possible input-output instances, the goal is to learn a model that’s capable of
predicting well for new and unseen inputs (Alpaydin, 2021).

Regarding the hypothesis space , the best course to find a model that is capable ofℋ
generalizing well is to “match its complexity to the complexity of the function underlying the
data. As the author Alpaydin (2016, p. 39) explains, “if is less complex than the function,ℋ
we have underfitting. But if we have that is too complex, the data is not enough toℋ
constrain it and we may end up with a bad hypothesis.”

If there is noise present in the dataset used in the training, using a hypothesis that is too
complex may cause the model to learn it along with the underlying function – which creates
a model with overfitting issues (Alpaydin, 2016). Conversely, complexity is also related to the
sample size: if it is small, pairing it with a too complex can also lead to overfitting (Mohri etℋ
al, 2018). A possible solution for this can be acquiring more data to improve the model, but
“if is not chosen well, no matter which ∈ we pick, we will not have goodℋ ℎ ℋ
generalization” (Alpaydin, 2016, p. 39).

Another further assumption is made, now regarding the data – one which makes learning
possible at all: its regularity, where similar inputs have similar outputs. The model is able to
learn patterns because as the value of the inputs changes, so does the value of the output,
in the past as in the future (Alpaydın, 2021). Without this regularity, it would not be able to
transition between particular cases and a general model - it would simply not be applicable.

What the model needs to do is find the function that best generalizes the relationship𝑓(𝑥)
between input and output from the training data to unseen instances. Author Alpaydın (20, p.
40) sums up the combination of the generalization capacity of the model with the data and
hypothesis space assumptions by saying that “as the amount of training data increases,ℋ
the generalization error decreases. As the complexity of the model class increases, theℋ
generalization error decreases first and then starts to increase ”. This last increase happens,
then, due to overfitting: the model memorized too well the training data or its noise and so
lost the capability to generalize well on new and unseen inputs.

Alpaydın (2016) expresses these three concepts as the triple trade-off:

i) The hypothesis space should be just large enough to include the solution thatℋ
solves the input into the output from the data;

29

ii) The amount of data used should be enough to allow the model to form an optimal
hypothesis ;ℎ
iii) A good optimization method must be used to find the hypothesis with a good
enough generalization capability.

But it is possible – and necessary – to delve into one more consideration regarding the
complexity of the hypothesis space for Supervised Learning algorithms: that of the interplay
between model complexity and the bias-variance trade off. It represents the balance
between the model's ability to capture the underlying patterns in the data – the bias – and its
susceptibility to fluctuations in the training set – the variance.

While the inductive bias seen previously relates to the assumptions made regarding the data
distribution and relationship between variables, thus shaping the learning process, the bias
refers to the systematic error in a given model’s predictions and thus speaks of its
performance after the learning phase. The bias represents how much the solution found
differs from the true function, from the true relationship between input and output – or, in
other words, a small bias signifies that the model fits the process well enough (Faul, 2019).

Variance, on the other hand, is more closely related to how the different possible solutions
change from one another based on the changes that occur in the dataset – put simply, how
sensitive the model is in relation to changes in the training data (Faul, 2019).

The problem is that “in general, making one of them smaller increases the other. This is
called the bias-variance trade-off” (Faul, 2019, p 228). The concept can be better explained
by saying that by increasing the complexity of the model when looking for a better fit of 𝑓(𝑥)
(and lowering the bias), the solution will encompass more of the minor changes in the
dataset, thus increasing its variance.

Conversely, if the variance is kept very low, it's possible that the model has a poor goodness
of fit, and so a high bias; this means that the ideal model needs to account for the best
possible trade-off between its bias and its variance (Alpaydın, 2016).

One way of adjusting the model’s learned coefficients to reduce unnecessary complexity is
by introducing a penalty term (or entropy measure) when calculating and validating them
(Faul, 2019). This is further discussed in the following sections.

In sum, according to Alpaydın (2021), the goal of using machine learning models is to learn
the rules that explain and govern the data: by looking at the function calculated, the
underlying process of the data can be explained. For example, a model whose goal is to
calculate the credit score of a customer can potentially provide information on the factors –
and how strong is their influence – of a high-risk or low-risk consumer. Unfortunately, some
of the models seen in the next section are better at this task than others; for instance, while
Linear Regression and Decision Trees models are very easy to interpret, a Logistical
Regression one can be trickier to evaluate the factors and their inherent weight – and a
Neural Network model works in a black-box manner and will provide no such insights.

Although there are models that are flexible and can be used for more than one single
method of learning, this work will explain the models based on the previously seen

30

classification, along with a brief explanation provided on the context of the applications of
each, as follows below.

2.6.1 Generalized linear models

As seen in previous sections, regression problems are about discovering the relationship
between variables of interest, meaning that they are “related to curve fitting, interpolation,
and data prediction” (Hájek & Barushka, 2019). The idea at its core is to understand and
predict the change of a dependent variable, given the change in one or more independent
variables related to it. These models are trained with labeled datasets, thus being classified
as Supervised Learning methods.

Regression models are widely used and tend to be easy to interpret, which promotes their
applications in a variety of fields like Machine Vision and Engineering, Medicine, Finance,
Economy, going as far as predictions for Hydrology and Seismology (Hájek & Barushka,
2019). This means these models can use the same logic to predict variables of such a wide
range as machine degradation, market volatility and ground water level.

The performance of regression models depends on how closely they follow the trend of the
data, and so how well they predict the output for unseen input – but it hinges on the
assumption that the dataset used for training is as diverse and comprehensive as needed to
capture the relationship between the different variables (Alpaydın, 2021).

The performance will also depend on the predictors [53, pg 230], and how much they
correspond both to each other and to the regressand: the aim is to find a linear model based
on few minimally correlated regressors, that are in turn each highly correlated to the output,
to explain the data while keeping as much information as possible.

When the first requirement is not true, the issue presented is called Multicollinearity (Faul
2019), and means that at least one predictor is redundant, modeling the same behavior in
the output as another; in essence, this means that different input coefficients give the same
output, and thus since different models will be equivalent to each other, small changes in the
input will cause large changes in the model.

2.6.1.1 Linear Regression

Widely used for being simple and highly interpretable, Linear Regression models are a
powerful framework inside of the Supervised ML field for modeling and predicting numerical
outcomes. Not only that, it provides a benchmark to compare other, more complex models,
and justify the need for more or less complexity. In essence, by fitting a linear equation to a
dataset, the relationship between the diverse building blocks and their labels can be
estimated.

It is important (Yale University Department of Statistics and Data Science, n.d.) to evaluate
and make sure that there exists a relationship; while one does not need to cause the other,
but they do need to have some degree of association, of correlation. A very simple
verification tool is the scatterplot between input and output: if it does not show any correlated
upwards or downwards trend, a linear regression model may not be particularly useful.
Conversely, the correlation coefficient can serve as a quantitative indicator of the

31

relationship: a value in between -1 and 1; the closer it is to the extremes, the stronger the
linear relationship, while it is weaker or nonexistent the closer it arrives to 0.

Given a set of observation () pairs, the correlation coefficient is calculated through (5).𝑥𝑛, 𝑦𝑛
(5)𝑟 = 1𝑛−1 Σ(𝑥 −𝑥𝑠𝑥)(𝑦 −𝑦𝑠𝑦)

It is a case of polynomial regression, in which the polynomial is a linear one (Faul, 2019). In
its simplest form with only one dependent variable, the regression equation (Yale University
Department of Statistics and Data Science, n.d.) is quite straightforward, composed of: as𝑦
the output to be estimated, as the intercept – so the output value when all possible inputs 𝑎
are zero, as the slope and finally, as the independent variable, as such 𝑏 𝑥

(6)𝑦 = 𝑎 + 𝑏 * 𝑥
However, the models created are typically much more complex, with many more
independent variables represented by each respective coefficient , thus transforming theβ𝑛
initial representation into

+ (7)𝑦 = β + β1 𝑥1 + β2 𝑥2 +... + β𝑛 𝑥𝑛 ϵ𝑛
Since it’s been developed and applied in so many different fields, an array of terminologies
can be used to describe each element. As such, this research will use the following: the
output – scalar function value y – is called interchangeably regressand or dependent
variable, while the input – features or characteristic of the data – may be called either
regressor or independent variable. The relationship to the measurements according to Faul
(2019) is summed up by

(8)𝑦𝑛 = 𝑓(𝑥𝑛) + ϵ𝑛
The noise present in the data is represented by , which is “assumed to be independent andϵ
identically distributed (i.i.d.) following the normal distribution” (Faul, 2019, p. 217) – also
called Homoscedasticity. It is a key assumption for linear regression, and implies that the
errors (or residuals) vary uniformly across all levels of the output data; they do not have a

32

particular pattern influenced by independent variables. The simplest method to evaluate the
homoscedasticity of the model is by plotting the errors against the predicted values: if there
is no discernible pattern, the assumption holds.

Beyond simply fitting a straight line into the data, Linear Regression is a very dynamic and
flexible model: the term linear refers to the relationship between the inputs, not the function
of the inputs themselves – which means that these can be non-linear (Faul, 2019). In the
end, the model is the linear “function of the input whose slope and intercept are the
parameters learned from the data” (Alpaydın, 2016, p. 41).

Once the function is approximated, the coefficients calculated – also called vector 𝑓(𝑥𝑛)
weights (Faul, 2019) – can provide an indication of the importance of each independent
variable, if they are to be kept or removed, if they add or subtract from the output. Even
further, they can provide insights into the underlying relationship in the data.

There are different techniques to calculate the coefficients, the most common of which is
called Ordinary Least Squares. This method finds the best-fitting line for the data by
“minimizing the sum of the squares of the vertical deviations from each data point to the line”
(Yale University Department of Statistics and Data Science, n.d.). It is a very straightforward
measure for data that conforms to assumptions of homoscedasticity and absence of
collinearity.

To compare the models amongst themselves, between a simpler one and a more complex

one, with more parameters, it can be useful to calculate the . It is found with the residuals𝑅2
of each model, and takes into consideration the errors, but also the number of parameters
used, for example, which is the reason why this comparison can be done.

Author Kutner (2005) provides two choices to move forward when the simple linear
regression model is not the correct choice for the given data set: either move on to another,
more appropriate model, or employ a tactic of data transformation, to adapt it to the
particular solution. If successful, the latter option may be better: it allows for the continued
use of the simpler methods.

The transformation approach tries to linearize, as much as possible, a nonlinear regression
function.

2.6.1.2 Polynomial Regression

An extension of the linear regression, here the idea is to fit a more complex function on the
data, a polynomial of a higher degree. Meaning that, “when the regression function is not
linear, a direct approach is to modify the regression model by altering the nature of the
regression function” (Kutner, 2005, p. 128). Thus, by increasing the complexity of the model
itself (the order of the polynomial), it then becomes more flexible and capable of capturing
more complex relationships within the data.

These models may contain one or more independent variables, each present in various
powers (Kutner, 2005). For example, considering a very simple example in Equation (9), a
second order model with one predictor variable, the independent variable is present to the

33

first and second powers. Because of that, the typical notation is slightly different to reflect the
pattern, as in (10) below.

(9)𝑦𝑖 = β0 + β1 𝑥𝑖 + β2 𝑥𝑖2 + ϵ𝑛
(10)𝑦𝑖 = β0 + β1 𝑥𝑖 + β11 𝑥𝑖2 + ϵ𝑛

Again in this case, represents the value of the dependent variable when all inputs areβ0 𝑦𝑖
zero: the value may or may not have meaning, depending on the problem under evaluation.

It is important to keep in mind, however, that a possible drawback of this approach is that by
increasing the order of the polynomial, “small changes in the dataset cause a greater change
in the fitted polynomials; thus variance increases” (Alpaydın, 2016, p. 82). This is the direct
reflection of the bias-variance trade off discussed at the beginning of this section.

Special caution is needed when considering models with independent variables present
above the third power: the interpretation of each coefficient may become difficult and the
estimations for unseen values can lose reliability (Kutner, 2005). The higher the order – and
better the fit – the more the prediction line will coincide perfectly with the observed values
from the training data set. This means that the model may lose the overarching trend
underlying the data, which is the main purpose of creating a machine learning model for
estimating purposes.

Going further, polynomial regression models “may provide good fits for the data at hand, but
may tum in unexpected directions when extrapolated beyond the range of the data”(Kutner,
2005, p. 294). To be sure to find the best possible generalization, the complexity of the
learner needs to correspond to the complexity of the data – and so the function that
describes it; for polynomial regression, one indicator for the order chosen is the one that best
minimizes the generalization error (Alpaydın, 2016).

2.6.1.3 Logistic Regression

By providing a discrete output, compared to the continuous output from the previous models,
Logistic Regression is primarily used for Classification problems or predicting the probability
of an event. Despite the common name, this is where they differ: logistic regression models
mainly aim to find the decision boundary between one class and another, to model the
relationship between dependent and independent variables and the probability of the
outcome belonging to a particular category, not a continuous numerical output.

It is a quite flexible model from the standpoint of the data types to be used: not just
continuous, but the models can be estimated using binary data, or nominal or ordinal – so
long as these are transformed into dummy variables during the data preprocessing stage.

Although the framework used has its similarities with linear regression models, also
estimating coefficients for independent variables, the underlying statistical technique and

34

interpretation of the model are different. Above all, it tends to be used for binary
classifications, so situations in which there exist two possible outcomes: yes or no, 0 or 1,
true or false. The logistical function, for example, is given by

(11)𝑓(𝑧) = 11+ 𝑒−𝑧

This function, also known as a Sigmoid Function, if plotted for intervals between - and +∞ ∞
will be represented as

Figure 2. Representation of the sigmoid function for [- ; +] by Kutner (2005).∞ ∞
The total range of the function is between 0 and 1, independent of the value of , which𝑓(𝑧) 𝑧
is perfect for describing probabilities; even further, the shape of the graph lends itself nicely
to simulating a threshold between one class and another, be it sharper or more gradual.
These are the two main motives for the model’s popularity (Kutner, 2005).

Now, to translate this function into a model the output is defined as the linear sum of the𝑧𝑖
independent variables multiplied by the coefficients , as seen in (12). This linear sum is𝑥𝑖 β𝑖
subsequently solved using , which results in (13) as follows:𝑓(𝑧)

(12)𝑧𝑖 = α +β1𝑥1 + β2𝑥2 +... + β𝑖𝑥𝑖
(13)𝑓(𝑧𝑖) = 11+𝑒−(α+Σβ𝑖𝑥𝑖)

The unknown parameters to be calculated by the algorithm are and , based on theα β𝑖
training data set available (Kutner, 2005), and its end goal is to map the linear combination
of the independent variables to a range between 0 and 1. To illustrate these concepts, an
example can be proposed:

35

As for the calculation of the parameters themselves, the Maximum Likelihood method is
typically used.

Since it can be trickier to understand the influence of each parameter, if compared to the
linear regression models, the results and the relationship among them can be interpreted
using the Odds Ratio. This indicator essentially measures the odds of the dependent
variable changing from one category to another when influenced by a one-unit change in the
independent variable.

It is also less intuitive to try and compare a simpler logistic regression model, with less
parameters, to a more complex one. It is simpler to evaluate if a particular parameter is
significantly impacting the output, or not – in which case, it can be removed to save space
and time.

Because a logistic regression model does not share the same concept for residual as a

linear one, for instance, using the for this task is not possible.𝑅2
2.6.2 Deterministic models

The models classified as deterministic learn rules from the dataset and apply them to make
predictions on new inputs, meaning that the same input will always have the same output –
these models then can be very understandable and straightforward, but tend to perform
poorly with very complex or nonlinear data (Bhaskaran, 2023; Kothari, 2023).

Some tasks may benefit more than others, especially ones with regular and vast datasets,
because this type of model has no role for randomness, as the rules learned in the beginning
are then applied equally on all subsequent inputs. The author Mehta (2022) states clearly
that the “mathematical characteristics are known in this case. None of them is random, and
each problem has just one set of specified values as well as one answer or solution. The
unknown components in a deterministic model are external to the model.”

One model in particular, Support Vector Machine, has particularly good performance for
natural language processing, and more specifically sentiment analysis, tasks. It is quite
prevalent in the published research discussed in this work.

2.6.2.1 Decision Tree-based models

First introduced in the 1960s, the concept of Decision Tree models was meant to represent a
structured decision-making process, easy to visualize and interpret. The model itself is
considered a Supervised Machine Learning method, and has been extensively used for
classification, regression and clustering purposes – mainly as weak learners to boost more
effective learners because they can be fast to train, evaluate and interpret (Mohri et al, 2018)

A decision tree can be defined as a hierarchical model that identifies local regions through
iteratively splitting the data based on the similarities found. Put simply, the model looks for
rules in the data, it proposes questions about it to take decisions to segment it into branches
until arriving at the final leaf – the resulting output. Each decision point is called a node and
“the tree structure is not fixed a priori but the tree grows, branches and leaves are added,

36

during learning depending on the complexity of the problem inherent in the data” (Alpaydin,
2016, p. 214).

The concept can be represented as seen in Figure 3, in which and are two variables,𝑥1 𝑥2
two inputs that can be used to classify the output into 5 categories. The model starts with a
decision node, in this case , and branches out iteratively until the input reaches the𝑥1 < 𝑎1
final leaf, the output, which contains its class (for classification tasks) or its value (for
regression tasks). Each leaf then represents a region inside the data that contains a
particular class or value (Mohri et al, 2018).

Figure 3. Concept of Decision Tree model logic by Mohri et al (2018).

The tree seen in this figure is called Univariate Decision Tree, as each decision node
considers only one of the available input dimensions to branch out. Typically, if the variable
is discrete, than the node can be split up to its n-value – for example, if a given attribute is
the color (black, white, green and blue), then the node can be split at most into 4 branches,ϵ
one for each value (Alpaydin, 2016). If the variable is numerical, then the node is
represented by a comparison to split the data as seen above ().𝑥1 < 𝑎1
There can be many trees that split the training data with a minimum amount of error and the
goal is usually to find the shortest one, with the smallest possible number of nodes so as to
control the complexity of the model – known as recursive binary splitting (Alpaydin, 2016). In
this case, the algorithm typically looks for the best possible split at each point based on a
given criterion without considering possible future splits for optimal overall outcome. For
classification tasks, the nodes of a tree are typically guided by an impurity criterion that
evaluates the how pure each branch is after the node: the algorithm then stops branching
out when a sufficient level of purity is found or when the number of points per leaf have
become too small to divide it further (Alpaydin, 2016, Mohri et al, 2018).

37

Authors Mohri et al (2018) propose two criterions for measuring impurity for testing nodes in
classification tasks, which are quite similar in that both try to find the variable that splits the
data into the most homogenous (or pure) child nodes.

(14)𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − 𝑙 = 1
𝑘∑ 𝑝𝑙(𝑛) 𝑙𝑜𝑔2𝑝𝑙(𝑛)

(15)𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥 = 𝑙 = 1
𝑘∑ 𝑝𝑙(𝑛)(1 − 𝑝𝑙(𝑛))

In which represents a possible class out of , and so represents the fraction of𝑙 𝑙 ϵ [𝑘] 𝑝𝑙(𝑛)
points that belong to for each node .𝑙 𝑛
The Entropy measure seen in (14) varies from 0 to 1, and measuring the disorder or impurity
of a node suffers the more variable its composition (Mohri et al, 2018): supposing classes A
and B, a node containing 10 points A and 10 points B would have a higher entropy than one
containing 5 points A and 5 points B. Similarly, a node containing only points of class A
would have zero entropy, which is the highest level of purity achievable.

The Gini Index seen in (15), on the other hand, varies between 0 and 0.5 and tries to
calculate the probability that a given input will be misclassified when its class is randomly
chosen based on the distribution of the data (Mohri et al, 2018). The lower it is, the better, as
it represents a smaller probability of misclassification – having a Gini index value of 0 means
all values are properly classified.

For numeric variables, which can potentially contain an infinite number of points, this
process of comparison can be simplified by testing out adjacent points between the different
classes or halfway between points (Alpaydin, 2016).

The tree may calculate either Entropy or the Gini Index metric for each variable available
and its possible splits to recursively define the one with the least impurity in the child nodes
created.

The idea is that the purer each subsequent split is, the shorter the tree will be, and Alpaydin
(2016) points out that different algorithms may use one metric or the other: the classification
and regression tree (CART) developed by University of California professor Leo Breiman
and colleagues uses the Gini Index as guide, while the Regression Tree ID3 by researcher
Ross Quinlan is based on Entropy – however research has shown that these two metrics
can be used interchangeably to yield similar results.

The author goes on to mention that this methodology overall tends to favor variables with
many values, as their branches are typically less impure, and this causes undesired
complexity. For noisy data, for example, having a larger tree to make sure it is as pure as
possible may cause overfitting, so a threshold can be set to build a tree that may not have
perfect Entropy or Gini values, but one that is close enough. This value is based on the cost
of misclassification, as having a too small threshold can lead to large trees with high
variance, and high thresholds lead to models with high bias.

For regression tasks the more appropriate metric is the mean square error (MSE) of the
estimated value, as the variables to predict are continuous in nature. Author Prasad (2022)

38

explains the following equation of MSE to select the best split at each phase of the tree and
reduce the error in the child node:

(16)𝑀𝑆𝐸 = 1𝑛 𝑖 = 1
𝑛∑ (𝑌𝑖 − 𝑌𝑖)2

So if represents the actual output value, and represents the predicted one, the idea is to𝑌𝑖 𝑌𝑖
minimize how far the prediction is from the expected output.

Because the fundamental idea behind decision trees is so easy to interpret, they have been
extensively used for machine learning purposes, even over more complex and accurate
models that do not provide the same simplicity in its interpretation (Alpaydin, 2016). The
algorithms can take many data types as input (like numerical, categorical and ordinal) and
be quite fast to train (Rathi et al, 2018), being reliably used for recommendation systems and
credit scoring, or spam email detection and sentiment analysis in the NLP field.

One point to keep in mind, however, is that despite their straightforward interpretation
decision tree models are hierarchical, meaning that each phase depends on the previous
one and so can be quite unstable due to small changes in the data (Mohri et al). The
resulting splits may be quite different from one model to the other with similar datasets.

The models can be evaluated based on their purpose (Shmueli et al, 2019): as seen in
previous sections, classification algorithms are typically chosen or discarded based on their
Accuracy, Precision and Recall – or more visually the ROC curve. As for regression tasks,
the models are usually evaluated based on their Mean Square Error or Root Mean Square
Error.

These values and the acceptable thresholds are also task-dependent.

2.6.2.2 Random Forest models

When the value of a highly interpretable model is not necessary, where visualizing the
model’s rules is not a requirement, the logic behind Decision Trees can be improved upon to
reach better performance: one such example was introduced by Leo Breiman and Adele
Cutler, named Random Forest (Shmueli et al, 2019). It can be used to tackle both regression
and classification problems as a Supervised Machine Learning approach.

The idea behind this technique is to combine several uncorrelated trees, joining multiple
algorithms to improve predictive performance based on the Ensemble Learning concept:
merging several classification models to acquire a better, more accurate final one. Author
Alpaydin (2016, p. 235) explains it by saying that “if we train not one but many decision
trees, each on a random subset of the training set or a random subset of the input features,
and combine their predictions, overall accuracy can be significantly increased.”

Essentially, Random Forest models are created through Bagging, an ensemble technique
that leverages bootstrapped data to create and merge a myriad of slightly different models
(Alpaydin, 2016). This is possible because by bootstrapping the data, by randomly picking
input/output pairs, several new same size datasets can be created – and the models can
commit and learn from different errors on different subsets. This is typically done with

39

replacement, meaning that the same datapoint can be randomly picked more than once or
not at all.

It is worth it to mention that both Decision Tree and Random Forest methods work with the
initial division of the original dataset into training and testing subsets.

The trees, each with their own bootstrapped dataset, are trained with a random subset of
variables at each stage (Shmueli et al, 2019): this is done to make sure that all trees are not
created equal and reduce the correlation between one another, especially in the first split
performed; it also means that Random Forests are created through bagging both the data
and the predictive features. The process is represented below, in Figure 4.

There are three hyperparameters to be set to create a Random Forest model: node size,
number of trees and the number of sampled features (IBM, n.d.). The first serves as a
threshold for how far the tree can be split and grown, so if the value set for minimum node
size is 10, once the tree reaches a point in which a given node has that amount of points𝑛
or less, it cannot be split any further into other branches. The second represents how many
decision trees will be trained and this value can vary a lot based on the size of the dataset,
its complexity and the computational time and power required. Lastly, the number of
variables sampled is the way the model avoid highly correlated trees and a very typical value
for classification tasks is the value of , while for regression tasks it can be , in which is𝑝 𝑝3 𝑝
the number of all predictive variables available (Sutton, 2020).

Figure 4. Concept of Random Forest model logic by IBM (n.d).

Still related to the number of sampled features hyperparameter, authors Syam & Kaul (2021,
p. 170) point out that “when the analyst suspects that the data has a large number of

40

correlated predictors variables, then fitting a random forest with a smaller sample of features
would be helpful”.

The manner in which the decision trees created from the many subsets of the data are
joined into one final Random Forest model is different for either regression and classification
tasks.

In the case of regression, the predictions set by each individual tree are typically averaged
amongst each other to define the prediction of the Random Forest, as they are represented
by continuous values (IBM, n.d.; Lohith et al, 2023). For classification, on the other hand,
Random Tree models typically aggregate all of the predictions based on the majority rule: “it
is just that class which is the most commonly occurring class among the D predictions”
(Syam & Kaul, 2021, p. 171).

It is interesting to note that this method does not result in a tree that can be easily displayed
in a diagram and interpreted, meaning this type of model is no longer so easily interpretable.
However, because of the training performed on so many slightly different datasets and the
fact that the features are not always selected equally, Random Forest models can provide
scores on the importance of each variable, the contribution of each one (Shmueli et al,
2019). The author also explains that this is done by evaluating the decrease in the Gini Index
metric for each predictor over all of the trees trained.

As seen in the previous section, Decision Trees can be prone to overfitting the data, tightly
encapsulating the samples used for training; it is not so with Random Forest models (IBM,
n.d.). This happens due to the process of averaging the predictions and classifications of the
uncorrelated trees. The flipside of this extra processing is the time and power it consumes.

In the same line, the evaluation of the models follows the task it tackles.

2.6.2.3 Support Vector Machine

One of the most widely used supervised machine learning models for both regression and
classification tasks, especially in the last couple of decades in the NLP field, is the Support
Vector Machine. It is interesting to note that its roots “go to potential functions, linear
classifiers, and neighbor-based methods, proposed in the 1950s or 1960s; it is just that we
did not have fast computers or large storage then for these algorithms to show their full
potential” (Alpaydin, 2016, pg. 16).

It is a discriminant-based method that applies the principle of never solving a more general
and complex problem before the problem itself: for example, when solving classification
tasks with SVM one only needs to discover where the class boundary lies, instead of also
investigating class densities and other unnecessary information (Alpaydin, 2016).

This results in the model’s ideology of finding the best hyperplane so that one class is
distinguished from another (Chauhan et al, 2021). Not only that, but doing so with the largest
margin possible between the classes so as to insure good generalization in case of factors
such as noise, meaning that “the optimal separating hyperplane is the one that maximizes
the margin” (Alpaydin, 2016, p. 351). This point is clearly represented in Figure 5 below.

41

Figure 5. Visual representation of the optimal separating hyperplane by Mohri et al (2018).

It represents a very simple linear classifier under the assumption that a linear hyperplane
can perfectly separate the data into two populations, defined by the equation .𝑤. 𝑥 + 𝑏 = 0
Since there can be infinite hyperplanes that separate the populations, the SVM model works
with the idea of a geometric margin, which the authors Mohri et al (2018, p. 80) describes as
“the geometric margin of a linear classifier for a sample S = (..,) is the minimumℎ 𝑥1 𝑥𝑚
geometric margin over the points in the sample [...], that is the distance of the hyperplane
defining to the closest sample points.”ℎ
Put more simply, the geometric margin in a SVM model measures the distance between the
decision boundary between the classes and the nearest data point from either one. The
larger it is, the higher the confidence of the model’s predictions and the less likely it is to
make mistakes, which is why a SVM typically looks for the hyperplane with the “maximum
geometric margin and is thus known as the maximum-margin hyperplane” (Mohri et al, 2018,
p. 80).

That is seen in the right side of the figure, where the hyperplane is maximizing the available
margin in relation to the points in each class – these points, the closest ones to the
separating hyperplane, are called Support Vectors and are the only ones that carry any
information whatsoever to the model.

If, however, the classes are not perfectly linearly separable and as such no hyperplane
separates them fully, the model may try to define the one with the least error. This tends to
be the more common case, because real world data is usually riddled with noise and
outliers. Author Alpaydin (2016) defines two types of deviations that the model can incur: an
instance of a given class can lie either on the margin (and as such not far away enough from
the hyperplane) or on the other side of it altogether and be misclassified by the model.

To solve this issue, the idea is to define a soft margin that allows for a given amount of
misclassification based on the task at hand (Mohri et al, 2018). The hyperparameter used to
control the level of misclassification is commonly known as or slack variable, and the𝐶
larger it is, the larger the allowed misclassification. It is typically chosen through cross
validation based on the best model’s Accuracy value and represents a trade-off between the
largest margin possible and the smallest error achieved, a bias-variance trade-off: the
smaller is, the more variation the predictions will have. Conversely, the higher is, the𝐶 𝐶
smaller the variance the model will have but the bias may increase along with it.

42

Figure 6. Visual representation of the soft margin concept by Alpaydin (2016).

Author Alpaydin (2016, p. 355) refers to it as a penalty factor to reduce the complexity of the
model, noting that “we are penalizing not only the misclassified points but also the ones in
the margin for better generalization, though these latter would be correctly classified during
testing.” They provide Figure 6 as a visual example, explaining that the only instance not
considered a support vector is (a), as it is far from the margin on the correct side and as
such would be classified well. Sample (b) lies on top of the margin, but on the correct side,
while (c) is too close to the hyperplane. Lastly, sample (d) is a misclassification, as it is on
the wrong side of the hyperplane.

If the problem cannot be linearly separated, however, one can map the space in which the
data is distributed using non-linear basis functions, typically resulting in more dimensions
than the original space (Alpaydin , 2016). This solution refers to the use of kernels such as
polynomial and gaussian as a manner of “projecting the data into a high dimensional space”
(Chauhan et al, 2021, p. 4).

2.6.3 Probabilistic models

Beyond the deterministic view of the models just discussed, the work through more static
guiding rules, probabilistic machine learning tries to express the uncertainty related to the
predictions to be made. The relevance of this point, in relation not only to the data but to the
entire process itself, is emphasized by the words of Ghahramani (2015, p. 452), saying that
real word data “can be consistent with many models, and therefore which model is
appropriate, given the data, is uncertain. Similarly, predictions about future data and the
future consequences of actions are uncertain. Probability theory provides a framework for
modeling uncertainty”.

43

Using the mathematics of probability theory to encompass the randomness and ambiguities
present in real world data, especially Bayes’ Theorem, the field tries to quantify and model
the uncertainty related to each possible outcome (Zhu, 2018).

This modeling comes at various levels, from the lowest one (measurement noise, for
example) to the highest and more complex – such as the parameters the models uses, how
many of them are considered and at which values they are good for predictions, even the
structure of the model itself, linear regression or neural networks (and then their
hyperparameters) (Ghahramani, 2015).

Probabilistic models try to move away from this type of reasoning, they do not try to provide
one single deterministic output, but the probability distribution of possible outcomes. Not only
can this approach be more nuanced, it may provide a more comprehensive understanding of
the variability contained in the data itself.

Author Murphy (2012, p. 307) further specifies that the core of probabilistic models is
answering questions like “how can we use this distribution to infer one set of variables given
another in a reasonable amount of computation time? And how can we learn the parameters
of this distribution with a reasonable amount of data?”.

And this can be done in a very straightforward manner, also known as Bayesian Learning:
“probability distributions are used to represent all the uncertain unobserved quantities in a
model and how they relate to the data. Then the basic rules of probability theory are used to
infer the unobserved quantities given the observed data” (Ghahramani, 2015, p. 453). In
essence, the prior probability distributions are transformed into posterior probabilities to
predict likely outcomes.

Typically, probabilistic models can be used for both supervised and unsupervised machine
learning tasks, but one important distinction to be made is the number of parameters: if it is
fixed, the model is considered parametric and is used for supervised ML; on the other hand,
if the model is non-parametric, the number of variables to learn from grows with the amount
of data used in its training (Murphy, 2012).

2.6.3.1 Multinomial Naive Bayes classifier

The Naive Bayes classifier is a widely known and used Machine Learning model, with
extensive applications in the NLP field. First applied to text classification tasks in 1964
(Martin & Jurafsky, 2023), the more recent applications are discussed in section 2.3.

In relation to other models, Naive Bayes classifier tends to work well for smaller or more
constrained datasets, when data is not widely available or difficult to retrieve. One possible
explanation for this is that Bayesian models are not as prone to overfitting the noise
contained in the dataset, because they typically work through averaging the model over the
data, instead of fitting the parameters to it (Murphy, 2012; Ghahramani, 2015).

One fundamental assumption of the model – and the reason why it is named naive – is that
all of the features are conditionally independent and have the same weight upon the final
outcome (Murphy, 2012; Alpaydin, 2016; Martin & Jurafsky, 2023). In reality, the features
most likely do have dependencies amongst each other, but this assumption allows for a

44

simpler model that still works well – especially in cases in which the data available is not
sufficient to accurately predict dependency.

Authors Martin & Jurafsky (2023, p. 5) provide a clear description of how the multinomial
Naive Bayes model works, and as such is used as the basis for the explanation contained in
this section. The example described by them of a text classification task is given by the
phrase “Naive Bayes is a probabilistic classifier, meaning that for a document , out of all𝑑
classes the classifier returns the class which has the maximum posterior probability𝑐 ϵ 𝐶 𝑐
given the document.”

It is based on the Bayes Theorem, given by (17) in which represents the probability𝑃(𝑐|𝑤)
of given that we know has happened. In other words, how likely is a text to belong to a𝑐 𝑑
given class, given that it contains a particular set of words (features).

(17)𝑃(𝑐|𝑤) = 𝑃(𝑑|𝑐) 𝑃(𝑐)𝑃(𝑑)
Because the goal is to find the class that maximizes the probability of given the document𝑐
the equation becomes:𝑑

(18)𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐ϵ𝐶 𝑃(𝑐|𝑑) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐ϵ𝐶 𝑃(𝑑|𝑐) 𝑃(𝑐)𝑃(𝑑)
After transforming the data, the text, into its bag-of-words representation (section 3.3.1) and
keeping count of the frequency of each word contained therein, the model starts by
calculating the prior probability of each class . This means the probability that any one𝑃(𝑐)
class will occur within the dataset based on the proportions present in it.

The variable , the probability of the document, can be disregarded because it is𝑃(𝑑)
constant, it does not change for each class considered.

Next, the model looks for the likelihood of the document given the class ; this task can𝑃(𝑑|𝑐)
be quite difficult and computationally expensive if trying to calculate all possible
combinations of features, of words – even impossible if the number of parameters is too
high. As such, the model pairs the assumption of conditional independence with the idea that
word order can be disregarded, naively simplifying the process: now, the probability of each
word occurring in a given class can simply be the product of one independent𝑃(𝑤𝑖|𝑐)
probability by the other as seen in (19).

(19)𝑃 (𝑑|𝑐) = 𝑃(𝑤1, ..., 𝑤𝑖|𝑐) = 𝑃(𝑤1|𝑐) · 𝑃(𝑤2|𝑐) ·... · 𝑃(𝑤𝑖|𝑐)
Let it be said that this is calculated using all of the words contained in the document in
question, so as to include the probability of each and every one of them occurring in that
particular class.

The application of this process for the text classification example is then expressed by (20),
iterating through all the words in the document – represented by position.𝑖

45

(20)𝑐𝑙𝑎𝑠𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐ϵ𝐶 𝑃(𝑐) · 𝑖 ϵ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠∏ 𝑃(𝑤𝑖|𝑐)
The final assigned is calculated for all and selected as the one that maximizes the𝑐𝑙𝑎𝑠𝑠 𝑐 ϵ 𝐶
calculated probability.

One issue present in this calculation, due to the fact that it is the result of chain
multiplication, is the possibility of encountering words that were not present in a given class
on the training dataset. These words will be assigned a zero probability of occurrence during
the classification process and as such the total probability will result in a zero value. The
typical solution for this is adding the Laplace Estimator, also known as add-one smoothing,
to make sure the probability is never zero, even when the feature is non-occurring for a
given class.

Unknown words – that were not present in the training dataset at all – can be dealt with by
ignoring and removing from the test set, and stop words that do not usually add value can be
removed when sorting through the BOW (such as sorting the words by their frequency and
removing the top 10 -100 entries).

The Naive Bayes model can be adapted to the task. For sentiment analysis, for example, the
simple fact that a word occurs seems to be more important than how many times it has
occurred, so one may set a word count maximum of 1 per document – even if the word is
present more than once in it (Martin & Jurafsky, 2023).

Finally, to evaluate the performance of the model created, typical metrics discussed in
section 2.1.1 are used, such as Precision, Recall and F1.

2.7 Model Evaluation and Selection

In the words of Mrabet et al (2021, p.4), “after building any ML model, the need to evaluate
and analyze the behavior and performance of this model is primordial”. What they mean by
this phrase is that for a ML model to have actual value, it needs to be carefully assessed
through characteristic and pertinent metrics. It also means that the influence of the task itself
should be taken into account.

A model built typically should be tested through metrics important in themselves, such as
Accuracy or MSE seen previously, as these will inform the research on how well it
generalizes on real world, unseen data. How the model will perform under the intended
circumstances.

However it needs to be tuned, also, with the task in mind: a model built to spot, recognize
and classify tumors from a patient’s exam should place a much heavier weight on positive
classifications. This happens because the cost associated with a false positive is much
higher than the one associated with a false negative, the latter of which will be evaluated and
discarded by a medical professional. However, allowing for a tumor to pass by as a false
negative can bring serious consequences.

46

In sum, not only the data needs to be carefully considered for quality and quantity, the model
built and tuned for the problem at hand, but also the weight placed on the erros and
assumptions de model makes need to be carefully considered.

47

3
Natural Language Processing

3.1 Introduction to NLP

As established in previous sections, Natural Language Processing is a “tract of Artificial
Intelligence and Linguistics, devoted to making computers understand the statements or
words written in human languages” (Khurana et al, 2022, p. 3714). The field can be
subdivided into two parts: Natural Language Understanding, in which this research is placed,
and Natural Language Generation, which comprises the process of teaching machines how
to produce language in a meaningful way.

NLU, for its part, is what allows researchers and professionals today to teach machines how
to extract concepts and entities, emotions, keywords and more from natural human language
– using knowledge from the field of Linguistics to draw on subjective concepts such as
meaning and context (Khurana et al, 2022). And it has come a long way.

The main stages of NLP development along the decades has been summarized below by
Campesato (2021), starting from the 1950s, highlighting the most common techniques per
each period.

In its initial stages, around the 1950s, the field was coming into existence simultaneously in
different parts of the world and had a strong focus on Machine Translation for English and
Russian (Khurana et al, 2022). With the further development of computer-based linguistic
studies and the beginnings of AI, during the decades between 1950 and 1980s researchers
started using conditional logic and rule-based algorithms to include user’s beliefs and

48

intentions, attempting to include the more subjective nature of human language (Khurana et
al, 2022).

However, there were many issues with this approach, two of which are lack of flexibility and
range: human language is logical only to a certain extent and thus cannot be fully
encompassed as such, and is in constant flux and evolution, meaning that the rules can
change over time. So rules that worked – with exceptions – yesterday, may no longer work
today or tomorrow.

Even further, for rule-based methods it can be difficult to connect two related sentences:
words such as “that” or “this” can be used to reference one to the other, and over time
statistical analyses were developed to try and predict the words most likely to follow a given
sentence – a tactic that reigned during the 90s, but the correct interpretation is better
inferred with modern NLP methods (Campesato, 2021).

The challenge of interpreting, analyzing and manipulating natural language data demands
different tools and methods, which are still under development today (Khurana et al, 2022).
The current state of the art “generally adopts Machine Learning algorithms or is more
generally based on statistical machine learning” (Khan et al, 2016, p. 98), embracing
algorithms already discussed such as Decision Trees and Markov chains and still using the
strategy of predicting the next word in a given sequence of words (Campesato, 2021).

The latest development, from 2014 onwards, involves combining Neural Networks with NLP
tasks – this pairing can be considered a turning point, and is now better able to take into
account the patterns within the data itself, instead of the manually constructed rules of
previous decades.

This means that beyond an initial machine translation task, the field is now awash with
complex applications ranging from Automatic Summarization (in which the computer
understands a body of text and provides a general summary of its main ideas), to Discourse
Analysis (the identification of a discourse structure and the context in which it is written),
from Named Entity Recognition (the identification of different entities referred to within a
body of text, such as a company or a person) to Optical Character Recognition (the
transformation of handwritten text into machine-readable text) and many others (Khan et al,
2016).

In sum, it can be said that in this ever evolving field, “in high-level terms, there are three
main approaches to solving NLP tasks: rule-based (oldest), traditional machine learning, and
neural networks (most recent)” (Campesato, 2021, p. 142). This does not mean, however,
that past complexities no longer exist.

3.1.1 Challenges of NLP

Grammar, as understood by the NLP field, “is not a set of rules that a speaker must follow as
its production is considered to be well-formed, but rather a description of the syntactic
phenomena used by any linguistic community at a given time” (Goyal et al, 2018, p. 128).
This means that the understanding of grammar in NLP is not a pre-established, well defined
set of rules about a given language, but rather the amalgamation of patterns and
characteristics that exist within it, at any given point in time.

49

And for that, one of the main issues regards its ambiguity: the possibility that the same
sequence of words, the same phrase, can lead to different interpretations (Khan et al, 2016).
It is typically related to syntactic, semantic or lexical levels, better broken down by Naeem et
al (2020, p. 3719) in saying that in the case of “syntactic level ambiguity, one sentence can
be parsed into multiple syntactical forms. Semantic ambiguity occurs when the meaning of
words can be misinterpreted. Lexical level ambiguity refers to ambiguity of a single word that
can have multiple assertions”. All of these tend to be specific per language, and should be
dealt with as such.

In the first case, syntax-level refers to the rules to be followed to form a correct sentence in a
given language (Khan et al, 2016). This means that the main reason for syntactic ambiguity
in the text is its structure: because of a poorly defined expression, a phrase such as “he ate
the cookies on the couch” can mean that the cookies eaten by him were previously on the
couch, or that they were eaten while he was sitting on the couch (Khan et al, 2016). They
are not incorrect, per se, but the structure could be better adapted towards one meaning or
the other.

For its part, semantics is the meaning of a given word within a sentence: this suggests that
the relationship between the several tokens can infer different, subtle meanings (Khan et al,
2016). An example given by the author is “colorless green ideas sleep furiously”, which is
correct syntactically, in its structure, but makes no sense due to its contradicting meanings:
how can something be green and colorless at the same time?

In general, semantic ambiguity happens because the same word may be equivocal and have
a variety of meanings, depending on its context, and so can usually be solved through word
sense disambiguation (Khan et al, 2016). In the previous example, perhaps the word green
can mean fresh, new, instead of the color.

The third level, lexical ambiguity, happens due to context, the lexicon in which it’s present.
The same word can represent different things when seen in different contexts, to which Khan
et al (2016) give the example of the word bank: it can belong to a financial lexicon, as the
institution, as it can belong to a nature lexicon, as the bank of a river.

These three levels of ambiguity can be solved by knowing the whole sentence (Khurana et
al, 2022), which can be challenging as NLP tasks are not typically carried on at the sentence
level. As such, several solutions have been proposed, such as “POS (Part of Speech)
tagging, NER, SBD, word sense disambiguation and word segmentation that are carried out
using machine learning models” (Khan et al, 2016, p. 95). These will be discussed in further
detail in subsequent sections.

Beyond ambiguity and contextual understanding, identifying emotions such as irony and
sarcasm or contradictory statements can also be quite challenging for NLP tasks
(Campesato, 2021). The first is directly linked to Sentiment Analysis tasks, and the main
issue is that the connotation of the sentence is the opposite of what is actually written;
researchers can try to circumvent this by training models given certain cues that occur
frequently with sarcastic or ironic affirmations, such as “yeah, right” and “whatever”, or word
embedding techniques (Roldós, 2022).

50

Beyond discussing the general issues NLP tasks have to deal with, one should keep in mind
that these can vary vastly from one language to another, or even be specific within the
language itself.

Author Campesato (2021, p. 118) Explains that each spoken language has its own rules,
involving “a set of grammar rules of varying degrees of complexity, along with language
specific features”. They mention that some, like German and Japanese, can better withstand
the changing order of words within a sentence, for example, while others like English and
Latin languages depend upon a stricter order to convey the proper meaning. Words that
exist in one may not exist in another, some may even be completely exclusive to a particular
people, not having even a comparable representation outside of it. One can go further and
explore genders, verbal conjugation or even the order in which the words are written – left to
right or right to left, but the takeaway is that NLP is typically very language specific, and thus
may require a deeper linguistic knowledge to be handled correctly.

As for the changes within the language itself, the main challenges refer to accents, slangs
and dialects. One thing to keep in mind is that NLP tasks are not only related to written text,
but also spoken human language – and may involve contact with people of all classes and
backgrounds. This reflects the challenge posed: although accents, slangs and dialects may
have some common features, they can represent changes inside the language based on
country, region and population groups – such as age groups or “tribes”: regional accents
vary how the same words are pronounced or even the meaning itself, while slangs are not
controlled or regulated by anyone, and can be used for obfuscation, understood only by a
specific group, or represent completely new words (Campesato, 2021).

Models intended for broad use need to take into account these colloquialisms, informal
phrases and expression and culture-specific lingo – and these tend to be ever evolving
within a given language. One possible solution, then, is to use a vast amount of data, and
models that are regularly trained and updated (Roldòs, 2020).

Another challenging issue to keep in mind is negation, because it can fully invert the
meaning of a sentence, of an opinion – and as such, particularly important for opinion mining
tasks. Authors Pang & Lee (2008) explain that bag-of-words method for example, seen in
further detail in later sections, would represent phrases such as “I like this book” and “I don’t
like this book” in a very similar manner, the only element that transforms the meaning into
polar opposites is the negation element “don’t”. Negation also pervades issues of sarcasm
and irony, which can be much more subtle and sophisticated – thus difficult to grasp with
NLP models.

One way of dealing with it is by prepending “not_” to the words that occur after a token of
negation (Martin & Jurafsky, 2023). In effect, it takes the phrase “I didn’t like this product”
and defines the tokens [not_like, not_this, not_product]. As these are more likely to occur in
negative contexts, one assumes they will be seen as cues to negative classifications.

Within a more restricted space, NLP tasks can also be related to domain-specific language.
This creates specific lexicons that shape the models’ understanding of words and their
meanings: in business, different industries often use very different language and terms – for
example, a model specific for the summarization of legal documents versus a model trained
for assessing and solving plant maintenance issues will contain vastly different terms. These

51

“lexicons” on which models are trained will define their working capacity: a finding brought up
previously, when discussing the work of Rain (2012) – in their research, the models were
trained on reviews for products such as books, and when used to analyze different products
their accuracy was much lower.

Even further, the same document may contain multiple topics. Thinking of product reviews,
they may contain comparisons between several products, for example, or it may cite several
varying features of the same product as subtopics (Pang & Lee, 2008). One may then need
to choose if to disregard all topics but the main one, or try and identify all of them. The
author provides insight into Sentiment Analysis tasks, saying that the latter is more common,
saying that usually we “try to identify the topics and then determine the opinions regarding
each of these topics separately” (Pang & Lee, 2008, p. 27).

Today there are a vast number of analysis tools specifically designed for numerous
industries, however more niche fields may have to create and train new models for their own
use (Roldòs, 2020). Even further, NLP-based models need to be developed with their final
task in mind, be it very general and all encompassing like chat bots or very specific.

3.2 Text Preprocessing and Representation

By now it has been understood that a computer does not understand text as humans do:
they interpret a sequence of symbols, related to each other only to the extent of the
researcher’s choice. This means that when preparing the body of texts – the corpus – to
train a particular model, it needs to be processed in a way that is optimized for this
interpretation.

“The initial step involves validating the contents of a dataset, which involves making
decisions about missing and incorrect data values” (Campesato, 2021, p. 501), or joining
several sources of data into a single body, the dataset should be preprocessed with NLP
techniques. This tends to involve very standard procedures, discussed below, such as Text
Normalization, Noise Removal and Tokenization – these are mostly good practices to make
sure the data is clearer and easier to interpret, and some task dependent ones: Stop word
removal, Stemming and Lemmatization, for example.

The way text preprocessing is done depends on the task at hand, as all techniques have
their own characteristics, advantages and disadvantages, which means that all steps in the
process should answer the question of “is important information being lost or is only
irrelevant noise being taken away?” (Yse, 2021). In this way, the data quality is better
enforced..

3.2.1 Noise Removal

Due to the widespread availability - and subsequent use – of user generated content from
social media and e-commerce platforms, noise removal is gaining more attention in NLP
tasks. These tend to be trained on very clean data, and thus may have problems when trying
to generalize to interact with User Generated Content (UGC).

In the NLP field, noise is a non-standard content that can generally be categorized as either
harmful or meaningful: in the first case it is unwanted and should be normalized (thus
removed) because it affects the model negatively, while the second should be kept as it is a

52

content that enhances how the model will perform on unseen data – how it will generalize
(Sharou et al, 2021).

It comes as no surprise that noise can carry meaning or intentions and may be useful to
selectively transfer it to the output, “such as emojis in machine translation to preserve
sentiment” (Sharou et al, 2021, p. 1). This means that this process is one in which the
researcher should take into account the task the NLP system aims to perform and customize
their choices as such.

Figure 7. Possible types of noise in Machine Learning processes by Sharou et al (2021)

The author of the noise taxonomy seen in the figure above to provide the following overview:

● Orthography: relates to the way in which words are written and can be exemplified
by simple, unintentional spelling errors, or the more complex cases of purposeful
variation through the use of word lengthening or shortening and symbols.

● Repetition of punctuation: typically serve the purpose of emphasizing an emotional
state or a meaning, like double exclamation marks. These can be important for
sentiment analysis, for example.

● Code-switching: encapsulates the use of different languages within the same text
sample, either words or entire sentences.

● Grammatical errors: related to incorrect composition of a sentence, exemplified
through the use of wrong propositions or verbal conjugation.

● Disfluencies in Human (transcribed) Data: these are typical issues from spoken
language, such as filler or repeating words.

● Internet jargon: refer to words not traditionally used in everyday conversations, but
specific to the Internet realm, such as upvote and downvote.

53

● URLs, Links and Markup: can be preserved if referring to meaningful content, for
example social media mentions using the @ character may denote an entity (that can
be tagged or have content analyzed in regards to it), and hashtags on tweets can
bring strong indications in Sentiment Analysis tasks.

All of these sources of noise can fall into a harmful case or a meaningful case, based on the
task at hand, and as such may be evaluated individually to define the optimal strategy –
there’s no universal solution, which may represent an issue for systems that follow a pre-set
pipeline.

3.2.2 Text Normalization

By normalizing the textual data, the goal is to reduce its randomness and bring it closer to a
given standard – this should improve the efficiency of the process and the model, as it
reduces the amount of different information the computer needs to parse through (Yse,
2021).

Noise removal tends to involve several steps, like “the removal of unwanted hashtags,
emojis, URLs, special characters such as ‘&,’ ‘!,’ ‘$,’ and so forth” (Campesato, 2021, p.
151). Some characters may typically be removed straight away, such as numbers, while
others demand a bit more thought; taking into consideration the period (“.”), for example, by
removing it altogether from the text elements such as ellipsis (the use of three consecutive
periods) will also be removed along with the potential meaning it brings to the text – it could
be treated as a token during the tokenization task (Campesato, 2021).

This means punctuation can be treated as separate words and should also be considered
based on the task to be undertaken: it is important for setting boundaries between words and
sentences (through commas and periods) and identifying meanings (question marks and
exclamation marks, for example) – essential concepts for Part-of-Speech tagging or speech
synthesis tasks [64, pg 11].

Perhaps a more complex application is through spoken language applications. Oftentimes
people use filler words and pauses, repeat or do not finish words – again, to decide whether
to remove or keep them in the dataset depends on the application (Martin & Jurafsky, 2023).
For example, filler words may indicate the beginning of a new sentence or a change of
subject.

In the English language in particular, thought should be given to correct for contractions:
these are combinations of words such as “we’ll” in place of “we will” and “don’t” instead of
“do not”. For standardization purposes, a typical solution to this is the creation of a dictionary
of contractions and their full form expressions to correct their instances in the textual body
before performing any other step (Yse, 2021).

Lastly, a very standard practice is to convert all characters into their lowercase counterparts,
maintaining case uniformity; this task can be quite problematic depending on the language
and if it uses accents or not. For Sentiment Analysis tasks, very positive or very negative
sentences may be written in uppercase, usually in its entirety, and if removed would love its
emphasis either way (Sharou et al, 2021).

54

As this work uses the English language, in which the use of accent marks is quite rare, the
main issue brought forth could be lowercasing names and surnames and thus changing the
entity to which it may refer (Campesato, 2021). This has impacts on techniques like
Part-of-Speech or Named-Entity tagging (Yse, 2021) but should not be the case, however, of
the processing of public product reviews in which the use of names and surnames is not
particularly common due to privacy concerns.

3.2.3 Tokenization

The process of segmenting the text in chunks with which the system is built is called
Tokenization: “in essence, it’s the task of cutting a text into pieces called tokens” (Yse,
2021), so words, subwords or even single characters. Ultimately, NLP systems will run with
numerical data to understand patterns and calculate errors and losses, to be understood and
processed meaningfully, which means that the textual data needs a guiding rule to be
transformed into a numerical counterpart – text is transformed into tokens because that’s the
level in which NLP models process it.

They are the basis for the vocabulary in which the models will be trained on, the set of
unique elements contained in the data. So the same text can be subdivided in numerous
ways, one different from the other, and result in models with varying characteristics.

The complexity of “splitting a sentence, paragraph, or document into its individual words”
(Campesato, 2021, p. 152) can vary a lot depending on the language and the lexicon and
may demand further processing: working with biomedical data, for instance, may involve
dealing with several acronyms, which can the dealt with through named entity recognition
(NER).

How the developer chooses to define a token – the building blocks of the system – is not
always straightforward and affects how the document is represented, at the computer level,
and will have consequences throughout the rest of the process (Dong & Liu, 2020; Khanna,
2022): decision such as if the punctuations were kept and they should now become tokens
themselves, preserve hyphenated words in their entirety or not, how contractions were dealt
with in previous steps (a common solution is to separate them, in such a way that wouldn't
becomes two tokens – “would” and “n’t”), if tokenization should be done at word level or
subword level and many others.

The techniques are explained by Khanna (2022) in the following sections:

3.2.3.1Word-based tokenization

The most common solution used, tends to separate tokens as single words based on
delimiters such as the blank spaces between them and punctuation marks (if present).
Depending on the choice of delimiter, the tokens change: for example, by considering only
blank spaces when punctuation was not removed from the text, a model can learn the same
word as several different tokens such as “house”, “house!” and “house?”. This would be
considered a problem, as it hinders the model and increases the computational complexity
without any additional benefit.

A solution to this problem is setting a limitation to the vocabulary created: instead of using
the totality of the tokens found, the developer may choose to keep only a select number of

55

the most common tokens in the given corpus and discard the rest. However, the number of
tokens kept should be representative of the data, as discarding part of it means loss of data
and information.

Lastly, misspellings can constitute an issue: if the corpus contains the word “house” and a
misspelled version of it, “houes”, they will be seen and considered as different words.

3.2.3.2 Character-based tokenization

Because a given language may have many different words, but a small set of characters
(letters, punctuation marks) with which to form all of them, character-based tokenizers were
conceptualized. The idea is to separate the text at the level of its individual characters and
the result is a very small vocabulary – fewer tokens than if compared to Word-base
tokenization.

One of the main advantages of this technique is the possibility to represent even previously
unknown words, ones that were not present in the training corpus, and a very small set of
Out-of-Vocabulary words. Even further, misspelled words can be understood so as to not
lose information so this technique can save on both memory and complexity.

However, a character typically does not carry the same amount of information, or meaning,
as an entire word does, and increases the number of tokens used to represent a single
element (for example, the word house would have five tokens instead of being only one).

3.2.3.3 Sub-word based tokenization

The midway point between the two previous techniques, the main idea of sub-word based
tokenization is to solve the problem posed by very large vocabulary sizes (tokenization at
word level) and by loss of meaningful tokens (tokenization at character level). The goal is to
allow the model a manageable sized vocabulary whilst maintaining a deeper understanding
of meaningful representations.

The solution relies on reducing the number of divisions performed on common words, and
splitting rare words into smaller, more meaningful subwords. The example given by the
author is “boy” and “boys”: the first remains the same, but the second is divided into two
tokens – the root word “boy” and its plural indicator “s”.

This technique teaches the model to find similarities between words with the same root and
commonalities in the use of given suffixes. Different NLP models may have their own
particular way of performing sub-word based tokenization, especially ones that have been
noted as State of the Art; one such example is the BERT model, released in 2018 by Jacob
Devlin and colleagues at Google: the tokens created receive different notations for root
words and suffixes, so the model is better able to understand their place and relationships.

3.2.4 Stop word removal

Not all words are important for conveying the meaning of a given sentence. These are called
stopwords: although omitting them creates sentences that are syntactically incorrect, the
meaning of the sentence remains unchanged – to the point that even text representation

56

techniques like Bag of Words and TF-IDF can still work well without them (Campesato,
2021).

These are words that are very commonly used, and as such carry no particular meaning by
themselves – as such, they can be removed with minimal loss to the model to better
prioritize the important information.

For the English language, for example, these words may include “a”, “an”, “the” and so on,
however there’s no one single list of stopwords to use per idiom and the use of different
toolkits may render differences in the output (Campesato, 2021).

As is prevalent in NLP tasks, the removal of stopwords is dependent on the application: for
Sentiment Analysis, for example, their removal may mean significant loss of information,
while text classification tasks tend to not rely too much on stopwords and are supported by
other words present in the text (Khanna, 2022b).

3.2.5 Stemming and Lemmatization

There are two typical techniques for reducing words into their quintessential form and
meaning, both of which produce slightly different results: Stemming and Lemmatization.

As explained by Bengfort et al (2018, p. 72), “stemming uses a series of rules – or a model –
to slice a string into a smaller substring. The goal is to remove word affixes (particularly
suffixes) that modify meaning”, and in doing so group related words together, even if the root
is not standardized in a dictionary. The example provided is the plural of Latin languages: by
removing the “s” or “es” suffixes, the word can be converted into its root form. Also through
Stemming, the words “connection”, “connected” and “connecting” would all become the
same root “connect” (Yse, 2021).

Stemming may however create words that do not exist as such. This can happen due to
Over-stemming, where a too large part of a token is removed and so grouped with other
incorrectly (for instance, “universe” and “university” may become “univers”), or due to
Under-stemming, where two or more words are reduced to more than one root, when they
should have been reduced to a unique root (for example, “data” and “datum” stemmed into
“dat” and “datu”, instead of “dat” for both) (Yse, 2021).

Two such Stemming algorithms used for the English language are Lancaster Stemmer,
Porter's algorithm and its improved version, the Snowball Stemmer.

Lemmatization, on the other hand, is based on a dictionary (Bengfort et al, 2018): the
technique checks each token against an predefined list and returns its lemma, its canonical
base word. This means that this technique tends to better handle irregular cases and similar
tokens with different POS tags. The author points out, for instance, that “the verb 'gardening'
should be lemmatized to 'to garden', while the nouns 'garden' and 'gardener' are both
different lemmas.” If done through Stemming, all three tokens would have been turned into
“garden”.

The lemma, then, is “a set of lexical forms having the same stem, the same major
part-of-speech, and the same word sense” (Martin & Jurafsky, 2023, p. 11), and as such
groups tokens together not only based on their composition but also based on their meaning

57

and uses. This means that very complex languages tend to be better manipulated through
Lemmatization, such as Arabic.

A very widespread Lemmatization algorithm is called WordNet.

The performance of the technique can even be improved by providing the context in which
the token exists, typically done through POS tagging (Yse, 2021). This method assigns each
word in a given sentence the role it represents, such as noun, verb, adjective and so on. It is
discussed in further sections.

In sum, each technique has its own advantages and disadvantages. For instance,
Lemmatization can be less complex, but much faster, as it requires only the splicing of string
variables, while Stemming is slower in all of its effectiveness, as it needs to verify each token
against a pre-existing dictionary or database (Bengfort et al, 2018).

3.3 Language Modeling and Text representation

“Converting a piece of text into a feature vector or other representation that makes its most
salient and important features available is an important part of data-driven approaches to
text processing” (Pang & Lee, 2008, p. 20). This process begins with language modeling and
text representation.

The natural awareness a person has about the placement and use of words in a given
sentence is called Language Intuition – and is not taught explicitly (Campesato, 2021). This
knowledge depends on language being predictable, and is imparted through repeated
interaction with a particular language and its grammar rules, vocabulary, synonyms and
numerous other factors. In English, for example, this means knowing that the phrase “I live in
a…” will most likely be completed by nouns such as “house” or “apartment”.

This is not the case for computers, as they do not see and understand natural language as
humans do – and so it needs to be translated and taught through a gamma of Text
Representation techniques. The main idea is to find the optimal way to capture the important
information and relationships within the textual data and make it accessible to the computer
using vectors, matrices or embedding.

This process through which a developer can impart Language Intuition onto an NLP model is
called Language Modeling. It describes how one chooses to represent the text data to give
the model the capacity to “describe language and make inferences based on that
description” (Campesato, 2021, p. 204) and can be done precisely because of the
predictability characteristics of human language. [67, pg 9]

There can be several ways to represent the text to bridge the gap between human language
and computer algorithms, like single words, small sequences of words (such as n-grams),
entire sentences or even paragraphs, and the end result is called a language model
(Campesato, 2021). When ready, the model is nothing more than a “probability distribution
for sequences of words” able to “take as input an incomplete phrase and infer the
subsequent words most likely to complete the utterance” (Bengfort et al, 2018, p 8). In sum,
it allows for a machine to predict what comes next in a given sentence.

58

This capability is directly related to several NLP-based tasks, such as Text Generation –
quite notorious now with recent breakthroughs on Large Language Models (LLMs),
Language Translation, Text Summarizations and even Sentiment Analysis. In the latter case,
developing an SA language model means teaching it to associate words, phrases and
contexts with different sentiment categories, such as Positive, Neutral and Negative; it then
may use the patterns learned to classify new inputs.

There exist some challenges to this process, however, one of which is data sparsity – if the
model learns through examples, it can be quite difficult and computationally expensive to
gather a meaningful sized dataset of possible configurations of human language. These
issues are typically tackled through the choice of how the text is represented (Campesato,
2021).

The text representation can be done through Discrete text embedding techniques (such as
Bag of Words, n-grams and TF-IDF), Distributional text embedding (such as Embedding
Layer, Word2Vec and GloVe) or Contextual text embedding (using the transformer
architecture), discussed in sequence.

3.3.1 Bag ofWords (BOW)

The BOW method is quite simple: it transforms the textual data into a vector “based on a
dictionary of unique words that appear in a document, and generates an array with the
number of occurrences in the document of each dictionary word.” (Campesato, 2021, p.
175). In other words, BOW builds a vector based on the occurrence of single words within a
text, and usually associates them with the frequency in which they appear.

To do so, Bengfort et al (2018) explain that every document (so every single body of text,
like a single customer review within a corpus of many) is represented as a vector whose
length is the same as the total vocabulary contained in the corpus. The spaces within each
vector are then used to specify the relationship between their document counterpart and the
vocabulary: typically through the frequency of each token, however other representations
such as one-hot or TF-IDF (to be discussed further) are also possible.

To better conceptualize this idea, the author Campeato (2021, p. 175) explains the process
using ”This is a short sentence” as an example and marking word frequency: “the
corresponding 1x5 vector for the dictionary is (this, is, a, short, sentence). Hence, the phrase
‘This sentence’ is encoded as the vector (1, 0, 0, 0, 1).” It shows clearly how to build the
document vector and its relationship to the original vocabulary, but it also provides evidence
of how word order is lost and so is the context in which they are used.

In the end, each document will have its own unique representation.

Regarding the word representation associated within a vector, token frequency is quite
common but leaves out grammar and word order, and tends to have a Zipfian distribution
that places more significance on tokens that occur more often. This may impact the model,
especially if it was built to deal with Normal distributions, such as Generalized Linear Models
(Bengfort et al, 2018). For this reason, different representations were defined, one of which
is called One-hot Encoding.

59

It is a “boolean vector encoding method that marks a particular vector index with a value of
true (1) if the token exists in the document and false (0) if it does not” (Bengfort et al, 2018,
p. 59). Essentially, this representation marks the presence/absence of a given token within a
document, and can be important in some applications. For classification purposes, for
example, the simple presence or absence of a given predictor may be more important than
the number of times it is used in a document (Shmueli et al, 2019).

One-hot encoding tends to be more effective for small documents – such as tweets,
simplifying each document into its core components, and finds special application in artificial
neural networks due with discrete input activation functions (Bengfort et al, 2018).

The BOW method tends to be used for its simplicity and can be seen as an unigram, an
individual token n-gram in which n = 1 (Campesato, 2021). However, it loses important
information as it does not keep track of the context in which the words are written or the
length of a particular document, and the final vectors generated can become extremely
sparse if the vocabulary is too large (Bengfort, 2018; Campesato, 2021). The latter impacts
the speed and performance of the model, and can be mitigated. “For very large corpora, it is
recommended to use the Scikit-Learn HashingVectorizer, it uses very low memory and
scales to large datasets as it does not need to store the entire vocabulary and it is faster to
pickle and fit since there is no state” (Bengfort, 2018, p. 59).

An extension of the BOW method, in the interest of capturing word order and context, is the
n-gram.

3.3.2 N-grams

Another vector-based text representation method is the n-gram, which aims to prioritize a
comprehensive vocabulary that’s still manageable. The idea is still transforming the textual
data into a word vector of integer values, however the tokens are no longer evaluated
singularly as unigrams, but sequences of n adjacent tokens.

This means that instead of seeing each token – typically words – on their own, they are
gathered in an ordered sequence of number n, and so retain word positioning (Campesato,
2021). The choice of n is usually done through cross validation and will determine the size of
the sequence. For example: for the same phrase used previously “This is a short sentence”,
a bigram representation (n = 2) would be “This is” and “is a” and so on. Conversely, a trigram
(n = 3) would define “This is a” and “is a short”, and so on.

Within the context of Sentiment Analysis tasks, for example, authors Pang & Lee (2008, p.
32) highlight the importance of token position to the overall sentiment or subjectivity of a text;
they explain the focus on discourse structure using the example of customer reviews and its
contrast to topic-based summarization tasks in which “the beginnings of articles usually
serve as strong baselines in terms of summarizing the objective information in them, the last
n sentences of a review have been shown to serve as a much better summary of the overall
sentiment of the document than the first n sentences”.

The point, however, is to define the order of the n-gram – an ongoing debate according to
the author. They mention two works as example, the first conducted by Pang et al, yielded
better results using unigrams over bigrams when representing text when classifying the

60

polarity of movie reviews, while the second by Dave et al saw better results when pairing
bigrams and trigrams for the same task.

Compared to the BOW method, the n-gram vectors tend to be shorter and the model trained
is better able to predict associations between words and themes, and is better prepared to
predict how a given sentence will be written. One point to keep in mind, however, is that the
more n increases, the less repeating n-grams will be found: this drastically reduces the
number of equal instances occurring in various contexts the model can train on and
recognize.

Another point to be careful with is that the choice of n will affect the bias-variance tradeoff,
seen in previous sections. Authors Benggort et al (2018, p. 134) sustain that “a small n leads
to a simpler (weaker) model, therefore causing more error due to bias. A larger n leads to a
more complex model (a higher-order model), thus causing more error due to variance”.
Within the context of supervised machine learning applications, the right balance needs to
be observed for the model to have acceptable results on new, unseen data.

Now, because the goal is to consider also the context, punctuation can be used to define
boundaries: sentences represent discrete ideas, and as such n-grams can be used to
identify combinations of tokens that start or end them (Bengfort et al, 2018).

Some common applications are seen in the auto-completion of phrases – such as the one
found in emails, auto spelling verification and even voice-based personal assistant bots:
n-grams can teach the difference between a question and a request, for instance (Srinidhi,
2021). But although this method can be simple to implement and yield good results, it has
since been surpassed by Neural Language Models for performance as they are better able
to capture and approximate information (Li et al, 2022). The study mentioned goes on to
evaluate and discuss if n-grams are still relevant today, citing its interpretability and lower
training cost as arguments to conclude it is so.

Another common application of the n-gram method is as a tool to embed algorithms
(Campesato, 2021), such as Word2Vec discussed ahead in section 3.3.4. This pairing
should provide the model with both the short-term word dependencies and context found by
n-grams and their semantic relationships provided by Word2Vec. One should keep in mind,
however, the complexity added by pairing methods, and so the hyperparameters (such as
the choice of n) of each should be taken into consideration very carefully.

3.3.3 TF-IDF

As mentioned previously, the TF-IDF algorithm can be seen as an improved BOW
representation, as it “takes into account the number of occurrences of a given word in each
document as well as the number of documents that contain that word” (Campesato, 2021, p.
80). It follows the principle that more valuable information is shown by words that appear
more rarely in a document, and so beyond just indicating frequency or presence/absence,
the method can evaluate the relative importance of a given token inside a document and the
corpus. In other words, the TF-IDF technique prioritizes the relevance of a term over its
frequency.

TF represents the concept of Term Frequency, so how many instances of a particular token
exist inside of a document; this information can be used to compare documents amongst

61

each other and find which pairs are more similar to one another. IDF, on the other hand,
represents the Inverse Document Frequency, so how rare a given token is across all
documents inside of a corpus; it is calculated logarithmically so as to avoid bias from longer
documents or terms that appear much more frequently than others in an exponential
tendency (Campesato, 2021).

The combination of both values is used to calculate the TF-IDF score, which is always
greater than or equal to zero. This means that the closer this score is to 1, the more
important and informative the given term is in relation to the document. The opposite is true
for values closer to zero. A TF-IDF equal to zero, for example, means that the term appears
in all documents of the corpus.

Supposing a given Term Frequency of a token inside of its given document ,𝑡𝑓(𝑡, 𝑑) 𝑡 𝑑
Bengfort et al (2018, p. 65) explain the method through the following formulas:

(21)𝑡𝑓(𝑡, 𝑑) = 1 + 𝑙𝑜𝑔 𝑓𝑡,𝑑
(22)𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔 1 + 𝑁𝑛𝑡

Where calculated through (21) is subsequently used to calculate the term’s IDF value𝑡𝑓(𝑡, 𝑑)
in regards to the total set of documents through (22), is the number of documents and𝐷 𝑁 𝑛𝑡
represents the total frequency of the term considering all documents.

Lastly, the TF-IDF score is calculated through the multiplication of both factors, as in:

(23)𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) . 𝑖𝑑𝑓(𝑡, 𝐷)
After all values are calculated for the vocabulary (the tokens) inside the corpus, “the words
are sorted in decreasing order, based on their tf-idf value, and then the highest scoring
words are selected”. (Campesato, 2021, p. 182). The number of terms to be used is a
hyperparameter chosen by the researcher.

One of the benefits of using TF-IDF is that “it naturally addresses the problem of stopwords,
those words most likely to appear in all documents in the corpus, and thus will accrue very
small weights under this encoding scheme” (Bengfort, 2018, p. 65) This works along the
lines of setting a higher importance on rare words, which lends itself well to most text
analytics activities.

Typically, this method is used for tasks such as Document Ranking or Classification,
Clustering and Information Retrieval, and it is important to note that it captures presence and
relevance of terms, but not the semantic value brought by them.

62

The TF-IDF method tends to be quite fast, but one needs to keep in mind that it works better
when dealing with single words, instead of a phrase, for instance. In that case, partial
matches can be accepted, but again they allow for a large leeway of errors and loss of
relevance (Roldòs, 2020). For more effective results, methods such as Word Embedding can
work better.

3.3.4Word Embedding

The applications of this technique are in the same range: Text Classification and Document
Clustering, depending on if the data is labeled or unlabeled. That is the main reason for its
comparisons to One-hot BOW and TF-IDF. In the first case, for instance, author Campesato
(2021) points out that Word Embeddings are able to reduce the vectors into smaller
versions, while carrying more valuable information.

As for TF-IDF, the author provides the task of differentiating between the words “tigers” and
“lions” inside of a document: both terms are related to the same topic, wild animals, however
“tf-idf values for these two documents will not determine that the documents are similar:
doing so involves a distributed representation (such as doc2vec) for the word embeddings of
the words in the two documents”.

Instead of defining a given word through a value, such as BOW and TF-IDF, Word
Embedding represents it through a vector.

Word embedding techniques have revolutionized the field of NLP by allowing models a
deeper understanding on meaning and context, and representing words with similar
meanings in a similar fashion (Brownlee, 2019). The idea here is to represent words as
dense vectors (as they work more efficiently than their sparse counterparts seen previously)
in a high-dimensional space. Each of these dimensions should represent given
characteristics, and so similar words will have similar vector representations – which
provides the model deeper information about the relationship between words and the context
in which they are used (Bengfort et al, 2018). Provides the example by saying that the
technique “attempts to inherit the semantic properties of words such that ‘red’ and ‘colorful’
are more similar to each other than they are to ‘river’ or ‘governance’”.

The similarity among words is typically captured through the backpropagation method when
training the Neural Network: the model will assign similar activation values, similar weights
for words used in similar contexts. In the end, this will be reflected in the embedding space
created for the dataset, with very dissimilar terms far away from each other, and similar
ones, close. Not only that, but the use cases of words can also be captured, meaning that
the use of the same term for positive phrases, compliments, can be set apart from its use
with sarcastic and ironic phrases – and and so can their connotations.

It can be quite a complex process. However, there are many pre-trained word embeddings
that are publicly available for use, meaning that it is not typically developed by scratch every
time one develops a language model. There are 3 main possibilities to discuss: Embedding
Layer – which foregoes pre-trained algorithms, Word2Vec and GloVe.

63

3.3.4.1 Embedding Layer

The first, Embedding Layer, is quite straightforward and works when the model to be trained
is based on Neural Networks, meaning that the word embedding is not an input given to the
model – but learned jointly with the model itself in a one-hot encoded configuration
(Brownlee, 2019). It can be quite demanding and slow, requiring very large amounts of clean
data, however it will create a word embedding specific to the text at hand.

3.3.4.2Word2Vec

The second, Word2Vec, is a pre-trained word embedding model, created by a team of
researchers at Google under the direction of Tomás Mikolov. It is a very efficient way of
creating the vectors in the embedding space for representing a body of text, composed of
floating point values, and has since become an industry standard for NLP applications.

Similar to Embedding Layer, Word2Vec “involves a neural network consisting of an input
layer, a hidden layer (with no activation function), and an output layer that has the same
dimension as the input layer” (Campesato, 2021, p. 191). So the purpose and method are
the same, the difference lies in the fact that Embedding Layer is done almost manually by
the researcher, as a part of the Neural Network’s training itself, a component of if, while
Word2Vec is a specific algorithm for creating word embeddings, already pre-trained, that can
be tuned to fit a particular task.

The main idea here is to make predictions instead of counting words and, again, capturing
the context of a term by the words that happen on either side of it: the preceding and
succeeding words (Campesato, 2021). Not only that, it works on vector math to find the
relationship among different terms: author Brownlee (2019) provides the example of
subtracting “man-ness” from the term “King” and adding “women-ness” to find the term
“Queen” – signifying the relationship of “king is to queen as man is to woman”.

The Word2Vec algorithm can be trained through two different word representations
techniques: Continuous Bag of Words (CBOW) or skip-grams, both of which learn based on
a term’s neighboring words. While the CBOW technique model “learns the embedding by
predicting the current word based on its context, the continuous skip-gram model learns by
predicting the surrounding words given a current word” (Brownlee, 2019). The idea is
represented in Figure 8.

The idea is that the CBOW architecture “starts with a set of surrounding words and then
attempts to predict the target word which [...] involves a feed forward neural network that
determines word embeddings” (Campesato, 2021, p. 195). Because of its configuration, the
author explains, with input and output layers having the same size, it creates more compact
word embeddings. It tends to work better for smaller datasets and be more computationally
efficient than its counterpart.

On the other hand, skip-grams work in the opposite direction, trying to infer the missing
terms that are most likely to appear around a given word; in its architecture there is no bias
term and no activation function between input layer and the single hidden layer, only a
Softmax activation function (to generate the probability distribution using the number 1 to set
the activation) between the latter and its output layer (Campesato, 2021). The skip-gram

64

method tends to work better than CBOW for words that appear rarely in the text and
provides a more nuanced result.

Figure 8.Word2Vec training models by Mikolov et al (2013).

Finally, the main benefit of using this algorithm is its efficiency in terms of space and time
requirements, allowing for the development of larger word embeddings from larger bodies of
text Brownlee (2019). The technique is not all-encompassing, however, providing only one
word embedding per word, and does present some limitations, amongst which is its shallow
neural network with one hidden layer and the fact that fine tuning is not possible – these
have now been solved through the use of the Attention-based Mechanism, which allows for
the representation of a single word as different vectors based on context (Campesato,
2021).

3.3.4.3 GloVe

In the same line as Embedding Layer and Word2Vec, GloVe is “limited to one word
embedding for every word, which means that a word that’s used with two or more different
contexts will have the same embedding for every occurrence of that word” (Campesato,
2021, p. 186).

Developed by researchers at the University of Stanford, it tries to join “both the global
statistics of matrix factorization techniques like LSA with the local context-based learning in
Word2Vec” (Brownlee, 2019).

This technique works by calculating a co-occurrence matrix of terms that happen within a
given context, and decomposing it into a global matrix – meaning it relies more heavily on
terms that happen frequently together than on the local context itself (Campesato, 2021).
The author specifies these two steps as:

1. Construction of the co-occurrence matrix of dimensionality equal to words x context.

65

2. Factoring the matrix into a matrix of dimensionality equal to word x features.

In the first matrix, the number of rows set by context represents all the instances the given
term has appeared in the corpus – meaning its frequency. These are then grouped into a
single vector per term into the global matrix, and so it has a lower dimensionality
(Campesato, 2021).

GloVe is a statistics-based technique, instead of a Machine Learning-based one as
Embedding Layer and Word2Vec (Brownlee, 2019), and despite being more efficient with a
great capability to capture a deeper understanding of a given term’s meaning, it has
important limitations: it does not support Out-of-Vocabulary words nor polysemy (words with
several meanings based on their context) (Campesato, 2021).

3.3.5 Transformer-based Embedding

As mentioned previously, attention-based mechanisms such as Transformer-based
Embedding architectures have surpassed in recent years the techniques mentioned
previously, especially Neural Network based ones. Differently from Word2Vec and GloVe,
attention-based mechanisms take into account all of the words present in a sentence,
meaning that each time a given term is used, it will have a different embedding (Campesato,
2021).

Another novelty is that the word order is registered and kept track of: after word embedding,
the technique applies positional encoding as an additional step; the sum of both of these
vectors is used as input for the Transformer (Vetsch, 2022).

Traditional Transformer-based architectures use a encoder/decoder model (Vetsch, 2022),
also called attention layers, and are generally constructed of an “encoder component that
contains six ‘sub’ encoders, as well as a decoder component that also contains six ‘sub’
decoders” (Campesato, 2021, p. 462). These, however, can be considered a
hyperparameter during training and be tuned as needed.

The attention layers are coordinated through a feed-forward network to process the input,
meaning the data does not circle backwards (Brownlee, 2019).

3.4 Named Entity Recognition (NER)

Another part of NLP text preprocessing tasks, now as a subfield of Information Extraction, is
called Named Entity Recognition (NER). The idea is to handle a tokenized body of text and
identify its compositional elements, to finally classify them based on predefined groups, to
indicate people/users, places, organizations, dates and many others (Vetsch, 2022). The
categories can be customized by the developer to suit the task at hand.

NER can actually assist with the transformation of unstructured data into structured data,
although it can be sensitive to too few or too many tokens during the process. The result is a
compilation of named entities, so “a word or a phrase that distinguishes one ‘item’ from other
items in a corpus” (Campesato, 2021, p. 160). This entity, in its own right, can be a single
token or a combination thereof: Anandika & Mishra (2019) provide the example of “The
Great Lakes”: it is a single entity, a geographical location, composed of three tokens.

66

However, the classification is only as good as the dataset is relevant to the task: language
can be very field or task specific and, as seen earlier, may change over time; for example,
training a NER model with twitter data will not work well for classifying entities in a scientific
journal, and so on. This factor may represent a problem, as some languages or fields can be
more challenging to gather data on.

Other difficulties a NER model can find relate to Nested Entities and Ambiguity: the former is
related to entities hidden inside other entities, which makes their detection particularly tricky,
while the latter relates to the instances in which the same term refers to more than one entity
– the example given here by the author is the word “Jordan”, as it can be either a name
(person) or a river (location) (Goyal et al, 2018).

There are currently four main NER techniques, discussed in further detail in the following
sections, that can be used a myriad of tasks, not only Information Extraction, but also Text
Understanding (aiding the comprehension of relationships among entities), Document
Summarization (capture information about the most important entities), Search & Retrieval,
and even sentiment Analysis (naming entities such as companies, brands and products),
among many others.

3.4.1 Rule-based NER

Relying on specific rules typically written by a linguistic expert, these earlier methods do not
demand the use of labeled data. The method is also known as the Linguistic Approach, and
the rules tend to be hand-crafted based on Grammatical, Syntactic, Orthographic or
Dictionary rules (Campesato, 2021; Vetsch, 2022).

The rule-based NER algorithm then looks for patterns that match the rules inside the corpus
to identify potential candidates for given categories. Although this method can be more
expensive, it works very well for field-specific tasks or limited data – such as fields and
languages where it is difficult to acquire a large amount of high-quality data. The issues
reside in tasks that need to be scalable or encompass too wide a subject.

3.4.2 Feature-based supervised learning NER

ML methodologies tend to be more advantageous for NER, as it is essentially a classification
task, and the field has many algorithms that deal really well with them. The idea of
Feature-based supervised learning is to follow the usual pipeline for training a classification
ML model: based on a subset of labeled corpus data, it is trained to identify the entities
within it; according to the occurrences found, the model calculates the probability of a given
category based on its context (Srinidhi, 2021)

During training, the features need to be chosen carefully. Authors Goyal et al (2018, p. 25)
classify the feature space into three categories: List Lookup (based on resources like
lexicons and dictionaries), Document and Corpus features (based on the document’s
structure and content) or Word-based features (the orthographical and contextual features of
the corpus).

There are many ML models available for NER, “such as hidden Markov models (HMM),
decision trees, maximum entropy models, support vector machines (SVM), and conditional
random fields (CRF)” (Campesato, 2021, p 161).

67

3.4.3 Unsupervised learning NER

As this method does not require labeled data, it is quite convenient when high quality
annotated data is very difficult or expensive to acquire. The idea is to train a model “that
considers the structural and distributional features of data to find more learning about the
data” (Goyal et al, 2018, p. 25).

Typically, there are two methods: the first works through clustering, applying distributional
statistics to group similar entities based on the context in which they appear, and the second
works through an association rules-based approach, where the model looks for patterns
within a very large dataset to find patterns and similarities (Goyal et al, 2018).

3.4.4 Deep learning NER

Deep learning based NER applications require a large amount of annotated data, which may
be difficult or expensive to acquire, though they tend to be much more accurate and time
efficient (Campesato, 2021; GeeksforGeeks, 2022). This is the main reason why this work
does not undertake any deep learning approach and as such does not go into further detail.

3.5 Syntax and Parsing

The last essential topic regarding the structural and grammatical analysis of textual
sentences depend on two essential concepts: Syntax and Parsing. Mainly because these
two fields have an important role in the relationship between words and how sentences are
structured.

As discussed in Section 3.1.1, on the challenges faced by the NLP field, syntax deals with
the rules set by a given language to structure a sentence as an independent unit. This
includes “the word order, the dependency relationships between these words and, in some
languages, the relationships of agreement as well as the case marking” (Goyal et al, 2018,
p. 127). It is part of how the patterns and regularities that occur within a language are
governed and thus can be used as the basis to explain human language to computers.

In sum, the Syntax guides the linguistic form of sentences, without placing too much
importance on the meaning behind them – the latter is regulated by the field of semantics.

Parsing (or syntax analysis), on the other hand, “consists of the decomposition of sentences
in major syntactic units and of the identification of dependency relationships” (Goyal et al,
2018, p. 129-130). This means identifying the phrases, clauses and grammatical roles of the
words, and is usually done in a graphical form, such as a tree – thus parsing can also be a
great asset for providing explanations, especially for shorter pieces of text or “serve as a
basis for modeling valence shifters such as negation, intensifiers, and diminishers” (Pang &
Lee, 2008, p. 22).

So while the Syntax encompasses the actual rules that guide the structure of sentences
within a language, Parsing represents the evaluation of the sentences based on these rules.

A very important concept that connects Syntax and its subsequent analysis for NLP tasks is
called Part of Speech (POS): they indicate the function, the role a given term develops within
a sentence – meaning nouns, verbs, adjectives, conjunctions and so on. By categorizing the

68

tokens, the analysis of the text becomes easier and serves as a starting point for specific
tasks. One such example is the improvement of Search Function; by signaling a term as
nouns or adjectives, which tend to be more semantically representative and may better
characterize texts than verbs or pronouns, algorithms are more well equipped for information
retrieval (Goyal et al, 2018).

3.5.1 Part-of-speech Tagging

This process of signaling each token based on its grammatical role within an entire corpus is
called POS tagging. These tags tend to vary through different languages, meaning there is
no one true standard for each one: instead, tagset have been developed and some of them
are more widely used than others (Goyal et al, 2018). The author provides as an example
the Penn Treebank tagset for English, which has more than 30 different tags – including
cardinal numbers and foreign words – and the Xerox tagger1, which goes beyond 70 such
tags.

Typically, there can be as many tags as needed, as the grammatical roles can be even
further specified. A noun, for instance, is said to be Common when referring to general
classes of people, places and objects, but Proper when speaking about specific people,
places and objects.

Even if it may seem simple, POS tagging can be quite a complex task. The main issue found
is ambiguity, because the same word (or more specifically graphic form) can take the role of
multiple parts of speech in any given language (Goyal et al, 2018). The word “heat” can
serve as either a noun or a verb, while “large” can serve as either an adjective, a noun or a
verb.

Beyond the simple number of tags chosen to classify it, the token itself may be either
variable or invariable, meaning it can take on more than one form: depending on gender – if
the language itself uses them, like the Latin languages – or plural form. For example, in
English adjectives tend to be invariable, so in the phrase “the eggs are blue” the adjective
“blue” would remain the same if there was only one egg, while in French it would be different
depending on the gender of the subject and its quantity.

Other issues found in the process of POS tagging relate to spelling errors or grammatical
errors typically found in user generated context, like written texts or transcribed spoken
language, and new words that were not present in the training corpus. These can easily trip
speech taggers and may make it necessary to use strategies such as contextual heuristics,
for example (Bengfort et al, 2018; Goyal et al, 2018)

In sum, through the rules set by the Syntax of a given language, tags can be assigned to
represent the role taken by each token inside of a corpus to facilitate NLP tasks or subtasks
– one of which is parsing.

According to Campesato (2021), POS tagging can be done through four methodologies:

1. Lexical based: sets the tag by the most frequently occurring use-case.

2. Rule based: coordinated through the pattern set by grammatical rules – such as an
“s” at the end of the word signals a plural. This is an obvious example for the main

69

issue of this methodology: the rules are strongly related to the language in question
(German and Italian, for example, may use the letter “e” for signaling plural) and tend
to not handle exceptions very well.

3. Probabilistic method: assigns the tag based on the likelihood that a token with a
particular tag will occur in the phrase.

4. Deep learning: as the name indicates, this method uses deep learning algorithms
such as RNN to define the tags based on contextual use.

As for Parsing, Khurana (2022, p. 3717) explains that after using POS tagging “at lexical
level, words are grouped to phrases and phrases are grouped to form clauses and then
phrases are combined to sentences at syntactic level.” This means that the analysis goes
beyond the lexical level and more information can be glimpsed; for example, changing the
word order can affect the comprehension of a sentence, and parsing is the next step to
reflect that beyond just the context of the word. For this step, there are typically two main
subfields, discussed as follows.

3.5.2 Dependency Parsing

The idea behind syntactic analysis through dependency parsers is to first identify the main
word inside of a phrase and subsequently look for links that modify it; this method results in
an overlapping structure of arcs that represent the meaningful structures and relationships
within a sentence (Dong & Liu, 2020). The author provides the visual example seen in Figure
9 below, using the phrase “How many teaspoons are in a tablespoon?”.

Figure 9. Logic of a dependency parsing by Dong & Liy (2020)

The example uses the module DisplaCy, found in the open source NLP library SpaCy, to
define how the words relate to and modify each other: using the Universal POS tagset
(written by linguists, rather than by developers), the main word in the sentence is “are”, a
verb.

As such, it becomes clear that Dependency Parsing focuses on the relationships at the word
level in a given sentence, and represents them as a graph in which each word is a node. As
the name suggests, this method points out the dependency among the words that form a
sentence.

70

This type of parser is quite popular due to its capacity to produce a quick and accurate
grammatical analysis, however it may lack depth of information (Dong & Liu, 2020).

3.5.3 Constituency Parsing

On the other hand, the idea behind the Constituency Parsing method is to discover and
define the hierarchical structure of a sentence, usually using a tree to represent the syntactic
structure found – as seen in Figure 10.

Figure 10. Logic of constituency parsing by Dong & Liu (2020)

Using the same example, the authors Dong & Liu (2020) use the Stanford CoreNLP package
– Java-based NLP tools – to show how constituency parsers can find more complex
interrelationships and nested structures: through tree traversal algorithms and without
explicit relationship between nodes. There may be more than one way of building such a
tree, however, due to the already discussed ambiguity.

The constituency parser trees are built with “terminal leaf nodes, the part-of-speech tag, and
the word itself. The nonterminal nodes represent phrases that join the POS tags into related
groupings” (Dong & Liu, 2020, p. 225). The focus here is the relationships that exist at a
sentence level, so the root phrase found by the tool is signaled with the tag SBARQ (which
represents as a direct question, because it begins with a “wh”-word). Other pertinent
notations in this example are WHNP (a noun phrase using a “wh”-word) and SQ, the main
clause of the root phrase.

It’s clear that this method of parsing provides more information than Dependency Parsing,
and some care must be taken to evaluate its relevance to the taks. Although Constituency
Parsing also suffers from ambiguity, the level of syntactic detail found can be very effective
for identifying questions and extracting queryable data (Dong & Liu, 2020).

71

4
Sentiment Analysis

As briefly introduced in Section 1, Sentiment Analysis is now a widespread sub-task within
the NLP field for teaching computer algorithms how to systematically evaluate, classify and
extract subjective information from texts, and their related affective states (such as opinions
and attitudes regarding a particular subject) (Lei & Liu, 2021). Authors Dong & Liu (2020, p.
13) point out that this popularity is due to its great capacity to pick up on the tone of text,
which “can convey a lot of information about the subject’s perspective and lead to aggregate
analyses of reviews, message polarity, or reactions”.

It belongs to the wider field of Information Extraction, which are typically solved as
classification problems – either as end-goal or as a sub-task of defining an effective
summary (Pang & Lee, 2008). This field of study has received many names, which this work
uses interchangeably, such as Opinion Mining and Subjectivity Analysis. To a smaller extent,
terms such as Review Mining or Appraisal Extraction can also be found in the literature. All
of these have as their goal the use of computation treatment to discover “opinion, sentiment
and subjectivity in text” (Pang & Liu, 2008, p. 5).

Authors Mäntylä et al (2018, p. 1) mention that the value of understanding other people’s
thoughts and opinions is likely “as old as verbal communication itself”, citing the fact that
historically, leaders have been interested in the opinion of subjects – either to control
opposition and dissent or to boost their own popularity, even books have been written in
either ancient Eastern and Western societies on the subject, such as the widely known
classics “The Art of War'' and “Iliad”. In ancient times, the voting method was defined as the
tool to tally up people’s opinions on a myriad of public matters and communal life, while
modern times began using questionnaires to do the same around the 20th century – to
quantify and measure opinions.

However valuable and sought after, it is not always easy: “in general, sentiment and
subjectivity are quite context-sensitive, and, at a coarser granularity, quite domain
dependent” (Pang & Lee, 2008, p. 13). This means that people’s opinions, how they write

72

and what they say, how it will be interpreted and what it represents, as previously
established, is entirely subjective and can vary greatly from one domain to the other.

This inherent subjectivity of this task is often classified in terms of binary polarity, meaning
good and bad, or happy and unhappy, positive and negative (Lei & Liu, 2021). The main idea
is that, given a piece of text that contains an opinion “about one single issue or item, classify
the opinion as falling under one of two opposing sentiment polarities, or locate its position on
the continuum between these two polarities” (Pang & Lee, 2008, p. 16). The author goes on
to mention that since many of these tasks work on determining two opposing sides, they are
particularly suited for binary classification Machine Learning techniques.

But the field can extract more details, if necessary, through multiclass classification. One
way of doing so is through the addition of a neutral state when the text does not lean
particularly strongly towards either polar side, while another is to substitute this scale
altogether and use the emotions themselves as insight: happiness, anger, sadness, joy and
so on.

The main tasks tackled by the SA nowadays are as follows.

Figure 11. Sentiment Analysis tasks by Kumar & Sebastian (2012).

Following the acquisition of a corpus of opinionated data, SA can be used to perform:

1. Subjectivity Classification, which tries to identify the content of a document as
opinionated (subjective, containing a point of view or emotion) or as the objective
statement of a fact.

2. Sentiment Classification, when the document is opinionated, to discover its polarity
(either binary or multiclass). Can encompass both classification and ranking of
sentiment, and solves a huge plethora of questions such as “how positive is this
text?”, “rank these texts from most positive to most negative” and assigning labels
“where is this text on a scale from between liberal and conservative political
thinking”(Pang & Lee, 2008).

73

3. Subtask of Opinion Holder Extraction, to establish the source of the opinion, be it
direct or indirect.

4. Subtask of Object/Feature Extraction, to discover the target entity, what or who the
text is talking about.

These possibilities developed over time, as Sentiment Analysis as a field of study and its
history are quite recent. Even if, at a push, the basic idea can be traced back many centuries
ago, the scientific papers published on the subject were very few until two decades ago
(Ahlgren, 2016). This late development can be attributed to factors such as the recent
evolution and broadening of Machine Learning methods, along with the refinement of NLP
techniques and the more ready availability of user generated data since the 1990s due to the
development of the World Wide Web (mainly its evolution from 1.0 to 2.0) (Pang & Lee,
2008; Kumar & Sebastian, 2012).

Initially, the sparse corpus of published research on sentiment analysis of public opinion,
according to Mäntylä et al (2018), dates back to the time of the Word War II, and was very
political in nature; the modern understanding of the field started to gather attention and
branch out its focus around mid-2000’s, using user generated content online, to reach many
other areas like finances and the prediction of the stock market and public sentiment of
terrorist attacks.

Indeed, the Internet nowadays makes it possible to “find out about the opinions and
experiences of those in the vast pool of people that are neither our personal acquaintances
nor well-known professional critics — that is, people we have never heard of” (Pang & Lee,
2008, p. 1). And the availability of data today is only getting bigger.

Not only that, but the data itself is also incredibly relevant: “the interest that individual users
show in online opinions about products and services, and the potential influence such
opinions wield” (Pang & Lee, 2008, p. 2) cannot be taken lightly.

For this reason, sentiment analysis research shifted its focus in the last couple of decades
and was dominated by business applications on ecommerce and social media, deepening
the need for methods that deal with nuance in user generated content: Mäntylä et al (2018)
mention that this development led to the deepening of NLP techniques in general, as issues
such as irony and sarcasm now became more prevalent in the datasets used, and furthered
the fields’ advancement towards more complex and nuanced emotion detection – instead of
only its general polarity.

One solution found is mentioned by Ahlgren (2016, p. 2), saying that more advanced
methods now “do not treat all words equally but assign more weight to important words
depending on their position in the sentence.” They go on to mention that even more
sophisticated techniques will be developed for nuanced understanding as computational
power becomes less expensive and NLP methods evolve. However, one of the main issues
Sentiment Analysis has faced along its history as a field is how domain-specific its
application tends to be, or how “one collection of words that is efficient for one domain most
likely will not perform as well in another domain” (Ahlgren, 2016, p. 1).

74

4.1 Development of SA on Customer Reviews

After understanding what is the field of Sentiment Analysis, how it has developed over time
and why businesses apply it, the workflow used to arrive at the analysis itself should be
discussed and compared to other SA tasks.

Many practical applications of this were seen in Section 1.2, especially in the context of
intelligence and how corporations use SA for assessing brand reputation, public opinion on
products and services, recommendation systems and tracking trends to make more informed
strategic decisions on how to stay relevant and ahead of competitors. More specifically,
companies can gather user generated content – which has an incredible power to influence
other consumers – and adapt their strategy, product development process, marketing
message, branding positioning and much more to suit their needs. Doing so can be quite
expensive and time consuming to undertake, because the qualified data needed is not
always easy to gather and, if needed, label. And this is the first step into the process.

The typical sources used by businesses and organizations around the word for gathering
data – typically user generated content – are:

1. Social media platforms, such as Twitter, Facebook and Instagram. Some of them
may offer APIs (Application Programming Interface) specific for this task.

2. Product reviews or ratings, typically through e-commerce websites, a field in which
Amazon.com is the most widely used due to its huge user-base and diversity of
products. These tend to come with an indication if it is positive or negative, such a
5-star rating system.

3. Online forums and blogs, which contain vast amounts of information regarding to
user’s thoughts, especially non-product related, such as politics and people. These
can be harder to process the subjective value, because it’s typically written as
free-form text.

4. News articles, to a lesser extent, however they may contain public comments on
matters such as politics, health, science, economics and future trends.

5. Lastly, surveys and questionnaires can be created by businesses and shared with
their clients for acquiring very targeted information.

One point of attention, however, is that some traditional sources of data – such as
Amazon.com and Twitter – have started to introduce barriers against web crawlers and APIs
that work as one, such as use-based payments and data quantity limitations, further
complicating the collection of qualified data used by businesses.

In the context of academic research, on the other hand, nowadays there are many publicly
available sentiment analysis datasets – gathered and maintained by communities such as
Kaggle, for example. These are typically composed of labeled data regarding movie and
product reviews or tweets, and on a smaller scale other social media posts and even news
articles.

75

While this work is done within the context of research, the goal is to undertake the task of
performing sentiment analysis on product reviews to analyze customer satisfaction and
improvement points as it would happen in a business context. This is the reason why it was
chosen to forego more easily accessible public datasets, but rather investing the time and
resources to create a real-world data set under today’s constraints, dealing with issues of
labeling, quality, data quantity and sparsity and so on.

Thinking specifically about customer reviews about products, services or even events, the
information they provide can range on many assorted aspects, from the most general
overview to opinions on very specific features based on what each person considers
important and valuable. This extraction and analysis of each single feature is a more
standard information extraction task, but allows for a deeper understanding of public
sentiment, and can be simpler than other SA tasks such as news article summarization, for
example, which may contain even opinions that do not belong to the writer themselves – and
as such require a further step to associate the opinions to their respective holders (Pang &
Lee, 2008).

So for customer review SA there can be two main subtasks: identifying product features and
subsequently extracting the opinions associated with them. Typically, the first one is done
through the assumption that features will be represented by nouns or noun phrases (like the
“quality” or the “performance” of a product); however, as not all nouns will be features, author
Bakrey (2023) proposes an heuristic to solve the problem, saying that “adjectives appearing
in the same sentence as frequent features are assumed to be opinion words, and nouns and
noun phrases co-occurring with these opinion words in other sentences are taken to be
infrequent features''. So for the second subtask, extracting the opinions related to each
feature, one can simply extract the adjectives connected to frequently used nouns found.

If the task is summarizing the reviews, on the other hand, the authors Pang & Lee (2008, p.
17) mention that doing so, beyond indicating the opinion, may indicate the reason why the
customer had those feelings and cement its value – its trustworthiness: “identifying pro and
con reasons can potentially be used to help decide the helpfulness of individual reviews:
evaluative judgments that are supported by reasons are likely to be more trustworthy”.

The time of the reviews can also be considered important. Indeed, many websites will allow
for viewing reviews in chronological order or its reverse: this allows not only for the
evaluation of sentiment, but also how this sentiment has changed and evolved over time. By
widening the scope from reviews to news articles, for example, one can see how public
opinion on politicians and campaigns or companies and their reputation can be tracked over
weeks, months or even years to create a timeline. In this way, one can define new strategies
and keep track of its development and effectiveness.

Still, as discussed extensively in previous sections, languages are quite complex and simply
looking at the list of words associated with a given user, such as “great” and “amazing”, does
not always indicate that the subjective meaning of the text is positive, for example (Bengfort
et al, 2018).

One very straightforward example on the importance of wordsense is given by Bengfort et al
(2018) using the word “sick”: a given interlocutor may use it in a sentences such as “that
kick-flip was sick” and “the chowder made me sick”, and each one of these has a different

76

meaning and directly opposite polarities. Another example, more complex, shows the issue
of different meanings even within the same context: if the interlocutor uses the word “bland”
to describe hot peppers, it is quite a negative comment; if the word is used to describe a
cough syrup, on the other hand, it may very well be positive.

It is clear that the field is much more elaborate than tallying up the sums of positive and
negative terms and doing so without a deeper context evaluation can yield vastly inaccurate
results. And the basis for this is the next steps: preparing the data and defining how to
represent it.

The task to be performed needs to be clear, because it will shape how the data is cleaned
and preprocessed. As discussed in previous sections, data cleaning begins with determining
data structure and finding and removing incomplete inputs. This is quite standard, and the
textual documents in a corpus tend to be contained into matrix representations, such as
dataframes. So after making sure that the columns in the dataset and their denominations
are pertinent and the empty inputs are cleared, the text itself is considered.

For simpler tasks, one can start by removing punctuations and special characters that create
noise and do not serve a specific purpose within the text. URLs are removed next, followed
by stop words like articles such as “the” and “a”, as both of these do not add information that
impacts the understanding of the text and its meaning. Then comes the process of
lowercasing all of the remaining words, so as to simplify the dataset and make sure that the
same word is seen as such – instead of being interpreted differently due to case-sensitivity.
Lastly, the documents are tokenized as needed, typically into single words or sentences, and
normalized through lemmatization or stemming.

It is clear that the initial steps already influence the subsequent ones. For example, say one
removes all punctuation in the beginning; this complicates the tokenization process if the
goal is to do so at the sentence level, as this is typically done through using the full stop (“.”)
as the boundary from one sentence to the next. Even further, removing all uppercase letters
and stop words impacts named entity recognition tasks, for example “Apple” as a company
will be understood as the same entity as “apple” the fruit, and “the people” becomes a more
generic counterpart of “people”, respectively.

As for stemming and lemmatization, again removing uppercase letters may confuse names,
for example “John” “Running” has its last name stemmed into “run” and the entity would be
misunderstood. The same can happen with keeping punctuation, as “running!” may not be
stemmed correctly into its stem “run”.

Further regarding the choices on text representation, one very common and widespread
method is TF-IDF, regarding term presence versus term frequency. Authors Pang & Lee
(2008) mention better results were seen when considering only term presence for polarity
classification – the binary valued vector showed 1 for a term that occurred within the
document, and 0 for non-occurrences; in their words, thinking of information retrieval tasks in
general, “while a topic is more likely to be emphasized by frequent occurrences of certain
keywords, overall sentiment may not usually be highlighted through repeated use of the
same terms” (Pang & Lee, 2008, p. 21).

If one chooses to use more complex representations of text, such as sentences or
paragraphs, for Sentiment Analysis they can have opposing labels within the same

77

document – meaning that the overall sentiment is the amalgamation of the sequence of the
opinion contained in each subunit (Pang & Lee, 2008). So instead of representing text as a
bag of features, one can use different subunits and try to model the relationship among
them: the authors propose a procedure for classifying movie reviews by initially detecting
and removing the objective parts, the objective sentences of the review containing not an
opinion but facts or perhaps a description of the plot, and applying the polarity classification
only on the text that’s left, the subjective part.

Another common technique used for Sentiment Analysis tasks is POS tagging, mostly as an
aide for text disambiguation: a strong presence of adjectives has typically been found to
indicate subjective and opinionated texts (Pang & Lee, 2008). This means that by signaling
them as such, these adjectives and their polarity can be used to guide sentiment
classification as the main – but not only – feature.

These are NLP-based steps and need to be carefully taken into consideration so as to make
sure the data that will compose the basis of any model to be built is solid. After the text
preprocessing, there are typically two major methods to perform sentiment analysis tasks:
lexicon-based and supervised machine learning – they can also be combined to work
together in a hybrid fashion, such as using ML to identify subjective text or expand a lexicon,
and use a lexicon to classify the text (Mudinas et al, 2012; Lei & Liu, 2022)

Both of these methods contain a wide variety of techniques to deal with Sentiment Analysis
tasks, as exemplified in Figure 12. This work will go into more details in further sections
dedicated to each of these fields.

Figure 12. Sentiment Analysis techniques by Sadia et al (2018).

Regardless of the method chosen, in the end one may choose to represent the resulting
sentiment information as a summary, and it is typically done through Pang & Lee (2008):

1. Aggregation of voting metric, such as star system or letter grades;

2. Highlight opinions that occur frequently;

78

3. Highlight points of consensus and of disagreement;

4. Identification of the various communities to which users belong;

5. Identification of levels of authority among users.

Number 1 is the most common for customer reviews, be it for products or services, for
books, movies, courses and many others. This type of dataset is typically already labeled
with the voting metric itself, and the model can be trained and used for a faster and deeper
understanding of customer feedback, applied on product improvement, market research and
competitor analysis, reputation management or simply checking the impact of a marketing
campaign.

They can also be used along with statistical representation, seen for example in ecommerce
platforms to indicate the average grade of a product or service and the number of reviews
per number of stars; the latter can be an important indicator, as a product with an average of
50% reviews on the negative side is more worrying if it has a very high number of reviews
overall than if it only has a few. People intuitively see reviews through this logic (Pang & Lee,
2008).

One possible issue, however, is that critics do not always agree with each other. Authors
Pang & Lee (2008) explains this through the example of a star-rating system, saying that a
person can see 3 stars or lower out of 5 as a negative opinion, while a more relaxed grader
could see 3 stars as something positive; even if two critics agree on the number of stars
itself, for example, they may do so for different reasons – one may see very strong positive
points, but also very negative ones, while another sees only average characteristics.

For this reason, a researcher may choose to represent the data by summarizing it, like
numbers 2 and 3 above, and verify the most common opinions found and cover both positive
and negative ideas, instead of only their representative score (Pang & Lee, 2008). This type
of task is very connected to extraction of topic-based information, with the added
consideration of subjective and opinionated text.

4.2 Lexicon Based SA Approaches

Widely used for their simplicity and interpretability, lexicon-based methods are an important
component of NLP tasks. They are among the most basic tools within the field to enable
computers to understand and manipulate human language, being defined by author Bakrey
(2023) as a “collection of words or phrases that are used in a speech or a specific field as
they play a role [...] providing information about the meanings, uses, and grammatical
properties of the words it contains”.

The author complements the definition by saying that lexicons are typically task-specific, so
the words and phrases contained therein are associated with certain features and styles; this
means that, for example, for POS segmentation the words are associated to their
grammatical uses, while for sentiment analysis they can be related to their polarity.

The idea can be broken down even further when thinking about their application. For the
field of this research, for instance, if the goal is to perform sentiment analysis on a given
corpus of text inside of a more general context, like blog posts or news articles, one can use
more general purpose lexicons – typically dictionary or corpus based. This means that they

79

contain either the polarity or the score of words as intended for their most commonly found
uses. One point of attention is that using continuous sentiment scores add a level of
complexity that is oftentimes undesired, and so less common than their counterpart (Deng et
al, 2017).

Two issues are typically found with more general-context lexicons: insufficiency and
inaccuracy, in which the first clearly relates to the lack of words and sentiments specific to
the text domain, and the latter refers to the fact that the most common meaning of a given
word may not be the one used in the analyzed text domain (Deng et al, 2017). As such,
textual analysis tasks can often be improved by lexicon extension for each specific task and
the context of its application.

If the task is the sentiment analysis of customer reviews, for example, one may use a
domain-specific lexicon. So it should be able to take into consideration not only the purpose
of the text, reviewing a product or a service, but also what is being reviewed. For example,
the word “long” within the context of restaurant reviews may be highly negative, associated
with long lines or long wait times, while for cellphones it may be quite positive, indicating
long battery life. This is typical for SA applied along with aspect extraction, so research
interested in both the sentiment and the aspect to which it refers.

Figure 13. General Sentiment Analysis framework by Sadia et al (2018).

Lexicon-based approaches can be deeply task-specific and bring a high level of
interpretability to the analysis, which does not exist with supervised machine learning
techniques – these, though they may achieve better performance, tend to work in a
black-box manner that does not allow for easy explanations (Mudinas et al, 2012). But they
are not all created equal.

80

4.2.1 Sentiment Lexicon Generation Approaches

Lexicons can be created manually, which is very time consuming – sometimes taking years
to reach a level adequate for use. Typically, this method is used to answer the need for very
high quality lexicons and for very niche applications, and the labeling is done through field
specialists and experts, such as scientists and doctors which tend to be regarded as
particularly reliable, but costly and time consuming. Another option is crowdsourcing, in
which a large number of people label the dataset a little bit at a time, so it is faster but may
not be as reliable.

One example of this is the Linguistic Inquiry and Word Count (LIWC) lexicon (Nichols, n.d.),
based on a general context collection of words and used to determine the degree of positive
and negative emotions in a given document. It started as a psychological study in the 1980s
(Tausczik & Pennebaker, 2009), trying to relate the personal texts and stories written by
patients and mental health improvement: the documents were initially subjected to the
classification of specialists in a wide variety of dimensions, like emotional, vivid and
optimistic. The issue was that many classifications were contradictory, as the specialists did
not agree among themselves. So the researchers turned to computer based resources,
creating a lexicon to classify texts based on psychological meaning at word-level – taking
into consideration grammatical use and personal or impersonal referencing.

Over the last 40 years, the LIWC lexicon has been maintained and expanded into many
other languages beyond English, categorizing words in over 100 textual and psychological
categories by field specialists, and is now widely used to analyze the sentiments of texts not
only for mental health diagnostics, but also marketing research (Nichols, n.d.). One must
point out, however, that the maintenance required by manually created lexicons is
perpetually ongoing, which may impact the cost and efficiency of the process.

Another, less expensive, approach to create lexicons is called dictionary-based, due to its
nature. A small list of seed-words is populated and labeled, usually manually, and then
propagated through an online dictionary looking for relationships, such as synonyms and
antonyms, and classifying them (Sadia et al, 2018; Darwich, 2019). This method typically
results in a task-specific lexicon, but not a context-specific one, because while the
seed-words are related to the task at hand, the main idea behind a dictionary is to define the
relationship between the words, not their domain-specific information.

One very common online general-domain dictionary used for this purpose is called Wordnet
(Sharma, 2022), which groups synonym words through synsets. It can be quite accurate, as
this dictionary stores the synonym pairs based on their context and usage.

Derived from it specific for SA tasks, the SentiWordNet lexicon relates the synonym pairs,
the synsets, to their respective sentiment polarity scores – positive, negative or objective –
as represented in values from between 0 and 1; the final sum of all three is 1 (Baccianella,
2010; Sharma, 2022). It is a publicly available resource and widely used due to its capacity
to encompass word meaning: Baccianella (2010, p. 2200) 2200 explains the lexicon through
the example of “the synset ‘estimable’, corresponding to the sense ‘may be computed or
estimated’ of the adjective estimable, has an Objective score of 1.0, while the synset
‘estimable’ corresponding to the sense ‘deserving of respect or high regard’ has a Positive
score of 0.75, a Neg score of 0.0, and an Obj score of 0.25”. It is also important to use POS

81

tagging along with SentiWordNet, so as to allow the algorithm to correctly identify the use
case of each word.

Another dictionary-based sentiment analysis lexicon is VADER (Valence Aware Lexicon and
sEntiment Reasoner), built specifically for use in the context of social media and made
publicly available for use in Python code; is was based on three preset lexicons, among
them LIWC, along with human validation, and detects both the polarity of the emotions
present in a document (positive, negative and neutral) and their intensity (Al-Shabi, 2020;
Malde, 2022). The latter is quantified on a scale of -4 to 4, most negative word to most
positive, respectively, which VADER normalizes and returns as a value between -1 and 1.
This interval is also known as the valence of the sentiment.

It is a great resource for up to date analysis of user generated content, as it contains
commonly found slang terms, abbreviations and emojis. As such, the lexicon finds
applications ranging from social media monitoring, to customer review analysis and market
research.

VADER can be used through the NLTK (Natural Language Toolkit) Python library and
requires very little or no text preprocessing at all, because it was built to automatically deal
with negation, capitalization (so how “AMAZING work” differs from “amazing work”)
expressive punctuation (such as “??” or “!!” at the end of a sentence) and the removal of
stop words. [95, site] All of these factors make VADER a widely popular tool, but it may
provide a lower accuracy for particularly context-dependent tasks in which the language
used is different from the general social media environment.

Author Al-Shabi (2020) compared the performance of several publicly available lexicons, as
it can be common when performing NLP tasks to employ more than one single lexicon.
Among them, both SentiWordNet and VADER, on the polarity classification of two different
datasets composed of user generated tweets. Using Accuracy as performance metric, the
VADER lexicon outperformed all others on both runs, especially for positive and negative
classes. They particularly recommend its use for the classification of short texts.

A more recent development is the lexicon named Sentimentr, mentioned by authors Lei &
Lie (2022): it can be quite accurate for general purpose uses as the lexicon has incorporated
rules to deal with valence shifting. This means that it uses weights to adjust the overall
sentiment value of a sentence based on how it is composed. If there are elements such as
negators (i.e: not, doesn’t), intensifiers (i.e: highly, really), downtoners (i.e: a little, slightly) or
adversative conjunctions (i.e: but, however), the output is adjusted accordingly. Sentimentr
was developed for Sentiment Analysis tasks with the R language.

The third, and final, method to create a lexicon is called corpus-based: this approach
specifying selected labeled seed-words and “exploiting co-occurrence statistics or syntactic
patterns in a text corpus” (Darwich, 2019, p. 297). So instead of using pairs of
synonym/antonym words, corpus-based methods try to capture the semantic distance of the
words that compose the corpus to the seed-words within their context of use to derive their
polarity, creating a lexicon that is not only task-specific, but also domain-specific. This is a
distinctive advantage, for example, using a corpora of user Tweets to infer polarity and
create a social-media specific lexicon (Deng et al, 2017).

82

This is a clever way of picking up on internet slang or more informal terms, which are beyond
the capabilities of dictionary-based lexicons unless the term has been specifically included in
it, and deriving a sentiment classification tool specific for the domain in which it will be used
(Darwich, 2019).

In general, due to the constraints and advantages presented, SA tasks are typically done in
a two step process: lexicon creation or extension based on the vocabulary found in the given
dictionary/corpus and measurement of sentiment strength (Mudinas et al, 2012). In other
words, in the absence of manually labeled datasets, many tasks can be solved by “first
creating a sentiment lexicon in an unsupervised manner, and then determining the degree of
positivity of a text unit via some function based on the positive and negative indicators”
(Pang & Lee, 2008, p. 27). This process results in a task – and field, if necessary – specific
lexicon, in which the output can be the association of words to a polarity (positive, negative,
neutral) or to its weight on a scale (for example, +5 if very positive, and -5 if very negative).

One must pay attention, however, to how the dictionary is maintained for these rule-based
methods: they are typically not updated often and as such may lack the presence of new
word-pair relationships in a timely manner (Deng et al, 2017). Lastly, even though rule-based
techniques can be pretty direct and adapted to fit the context to a certain extent, the fact
remains that it is a technique that focuses mostly on individual words (Campesato, 2021).

4.2.2 Use of Lexicons on NLP Pipelines

In general, lexicon-based methods are classified as a rule-based approach, because they
are built through a fully or partly human-written set of rules – manually or through
dictionaries and seed-word lists – and applied through pre-defined logic, such as the sum or
the average of the assigned scores.

For the task of Sentiment Analysis itself, the idea is that “each word in the document is
checked against the sentiment lexicon and the sentiment scores are recorded as matched
words are found” (Deng et al, 2017, p. 66). With the matches found, many calculations can
be performed: the simplest method is to sum the difference between positive and negative
scores of each word within the text, and use the result as overall sentiment score on a given
scale. Another possibility is to find the average value among all the tokens present in the text
– or perhaps the weighted average, depending on words that may carry a higher impact,
such as adjectives.

The output of this process can be used by itself, as a number in a reference scale – a score,
or be further processed to classify the document into its overall sentiment: for example, three
class classification into Positive, Negative or Neutral.

The manner in which lexicons can be integrated into the pipeline of NLP tasks, such as
sentiment analysis, is done through several steps. As discussed in previous sections, the
first one is Text Preprocessing the available data. This step is gonna vary widely based on
the lexicon (os lexicons) chosen to use and how it deals with the numerous grammatical
components of the text, if more or less handling is required.

Next comes the use of the lexicon itself. It will compare the words found on each document
to its word/valence pair and calculate the valence of each one.This value will then be used to

83

aggregate them into a single one – following a predefined heuristic – and compare it to the
threshold set for each class.

The final result can at last be used to gather a deeper understanding of the users and their
needs, be it the class or the score. It can be used for analysis and reporting, visualizing
trends and making decisions.

But needless to say, the lexicon-technique is not failproof. As discussed previously, it needs
to be maintained over time regardless of the method chosen to build the lexicon itself and
the method does not solve characteristic NLP issues such as sarcasm and irony, for
example, or non-sentiment words used to convey opinions.

4.2.3 Evaluation of Lexicon-based approaches

The manner in which the output it evaluated is through measures seen previously in the
section on Machine Learning techniques. The first, and by far the most prevalent, is
Accuracy. It measures the exactness of a classifier, how well one can trust that a review
evaluated as positive truly is positive (Jenhani et al, 2016). It is a great performance indicator
and widely used to compare the quality among models, but may not be enough to evaluate
the results from very imbalanced datasets, so other metrics can be used.

Recall (Sensitivity) represents the model’s capacity to identify the positive instances
identified, among all the actual positive instances. It can be used along with the Precision
metric, which represents the proportion of true positives that should be identified in
comparison to all that were classified as such.

Lastly, and quite common for comparisons, is the F1 score. It represents the so-called
harmonic mean between precision and sensitivity, providing an overview of both, and should
be as close to the value of 1 as possible.

As seen so far, the use of lexicon-based methods to solve Sentiment Analysis tasks can be
very straightforward. There are numerous publicly available lexicons, which – unless created
manually – makes the process accessible and less expensive than other approaches. But
issues inherent to NLP are not fully solved by it, like irony and figurative sayings, as the full
context in which the words exist cannot be grasped in its totality.

This deeper contextual understanding of the textual data is better reached through another
line of methodologies, known as supervised machine learning. Authors Yusof et al (2015) set
out to compare both approaches based on published literature in the field, and concluded
that while lexicon-based methods can be less expensive and work particularly well for
cross-domain applications, if a large body of textual data is available machine-learning
methods may achieve a higher accuracy – especially for context related meaning – because
of the way in which it learns.

4.3 Supervised ML SA Approaches

As already established in this work, the use of machine learning techniques as a business
practice has become indispensable. Sentiment analysis is just one more facet of it, one more
application in which it stands out, this time by allowing any given organization to more
effectively apply the concept of “customer in the center”.

84

When “compared with conventional computational linguistics methods, machine-learning is
more into achieving a higher level of automatic language processing, understanding,
prediction, and production, and its algorithms may thus be more sophisticated” (Lei & Liu,
2022, p. 5) This difference from more conventional techniques is given by the fact that not
only it involves different features, but also has the potential of modeling the numerous
relationships found in the text at varying levels, between tokens and sub-document units –
some may be specific to the task and others not even known by the developer (Pang & Lee,
2008). In other words, machine learning based sentiment analysis tends to achieve a deeper
understanding of the textual meaning contained in a given document due to its capacity to
extrapolate relationships within the subunits that compose it.

And while there is a wide variety of models that can be applied, discussed at length in
section 2.6, the basis is typically the same: supervised ML techniques “classify the texts in
the test dataset into one of the predefined sentiment categories based on the results of
machine-learning from the training dataset” (Lei & Liu, 2022, p. 17) – meaning it goes
through the labeled data to learn how to generalize the underlying sentiment expressed in
the text and predict its class. [Sen et al, 2019; Campesato, 2021).

Authors Haberzettl & Bernd (2018) conducted a survey on machine learning-based SA
research to discover which were the most widely used models and feature extraction
techniques, ranging from customer reviews, tweets, social media posts, news, forums and
many other mediums. Based on the papers with the highest number of citations, they found
12 dominant models and 11 techniques – that were later classified based on how many
times they appeared in the research and how many times they were part of the best model
trained.

Regarding the models, the authors found that out of the 12 present in literature, only 5 were
part of the best solution at least once: “Support Vector Machine (SVM), Artificial Neural
Network (ANN), Naive Bayes (NB), Logistic Regression (LR) or Maximum Entropy (ME) and
k-nN nearest neighbor (k-nN)” (Haberzettl & Bernd, 2018, p. 9). SVM, for example, was part
of the best solution found in over 50% of the papers reviewed, showing good promise for its
use.

As for the feature extraction techniques, because of the heterogeneity of the papers, their
data, objectives and metrics, comparison among the research becomes tricky. The authors
point out that almost half of the papers reviewed used only the model’s Accuracy as the
metric to decide between one technique or another, which is not expressive enough, and the
datasets used vary greatly amongst themselves, from quantity to quality. So while one may
say that the most widely used techniques were n-grams, term presence and POS tagging,
with the first being the most frequent method among the best solutions found, one should
consider it within a larger scale of the task and the data.

Now, creating the machine learning models themselves can be quite a long process, and the
first step is arguably the most important: to collect the labeled dataset. Like other methods, it
is often contaminated with noise (outliers) and missing values, perhaps even features that
need to go through a transformation to become usable, the so-called dummy variable (Sen
et al, 2019). Here, also, there are many ways of dealing with faulty data, typically done
during data preprocessing, such as removing irrelevant variables and deleting duplicate or

85

empty entries – for textual data, this can also go for punctuation, unnecessary spaces and
stop words (Naeem et al, 2020).

It is common after data preprocessing to employ visualization techniques and better
understand how it is distributed. So ”this includes word clouds for positive and negative
words in the dataset, bar-plot for the class distribution” (Naeem et al, 2020, p. 484) and
allows for a quick general outline, indicating class imbalances or more common words.

The remainder process outline is better summarized by authors Sen et al (2019), Naeem et
al (2020) and Lei & Liu (2022), when mentioning that clean labeled data is subsequently
decomposed into distinct features of the text or its sentiments. These can be high-frequency
words or phrases, their grammatical POS tags, NER tags, BOW, n-grams and so on. Much
like the lexicon-based methods, this feature selection relies a lot on the task itself, what it
means to accomplish, and the expertise of the developer.

It also depends on the granularity of the analysis: at a document level, in which the polarity is
assigned to the entirety of the document, it is assumed it relates to a single entity and so
needs no further development, while a sentence level the idea is to differentiate between
objective and subjective phrases to grade and sum their individual polarities; the deepest
type of analysis, however, requires further feature extraction and selection and as such is
called aspect level (or feature level) (Chauhan, 2021). It is applied when the text refers to
more than one entity and it is important to extract them, as well as the opinion expressed
along with it, and authors Avinash & Sivasankar (2018, p. 2) complement this by saying that
essentially “feature extraction is one of the dimensionality reduction techniques used in
machine learning to map higher dimensional data onto a set of low dimensional potential
features”

If one has enough computing power, however, they may use the method known as
brute-force, in which most, if not all, possibilities are tested, including raw data,
transformations and any other conceivable approach. The idea is to isolate the best features
through testing them all.

Quite a few researches have been done on this topic, with varying degrees of success.
Authors Chauhan et al (2021) for example compared the results achieved with the most
common supervised machine learning models through the BOW and TF-IDF feature
selection approaches. Using Accuracy as a metric, they concluded that the former performs
slightly better than the latter, especially when paired with stemming as the normalization
technique instead of lemmatization. Authors Avinash & Sivasankar (2018) on the other hand
chose to compare the performance of the same TF-IDF approach with the word embedding
technique doc2vec, an extension of Word2Vec seen in section 3.3.4. On the data set of
movie and product reviews, although both approaches achieved acceptable results, again
the TF-IDF models’ overall performance was worse than the alternative.

Authors Trupthi et al (2016) proposed a comparison between the traditional BOW
methodology, and then pairs it with bigram collocations, so pairs of words frequently used
that provide opinion such as “not good”, and high information feature extraction. The
traditional method by itself, as expected, had the worse performance overall, while the
simple addition of commonly used bigrams improved the model’s accuracy by 9%. However,

86

by removing low information features and keeping the high information features, the
accuracy of the model improved by 20% in relation to the initial, traditional BOW method.

So feature extraction and selection has a very big impact on the final model and needs to be
tested and investigated for each task due to the wide range of possibilities.

Next, this corpus is randomly divided into a training and a testing dataset: the former
typically contains more than 70% of the labeled text and will be the learning basis for the
chosen classification machine learning models like Decision Trees, Random Forest and
SVM, while the latter will use the remaining data to measure their classification performance
in the last step of the process.

One point to keep in mind is that regression models can be quite useful for predicting the
positivity contained in a given text that expresses opinions, like reviews, because it typically
tries to discover the similarity between one class and another. Classification models, on the
other hand, typically try to search for the characteristics, the features found within each class
without focusing too much on the scale and how close one class is to another (Pang & Lee,
2008).

The testing stage typically uses the metrics of Accuracy, F1 and Precision to compare and
evaluate the models trained, discussed at length in section 2.7. The threshold set for the
minimum acceptable level of performance may vary, as there is no one size fits all: different
tasks will demand different approaches. First of all, data characteristics and availability of
resources will have a large impact on the end result, which needs to be within expectations.
Now, in the sentiment analysis field for example, the task of brand monitoring on social
media may require a bigger focus on negative opinions as they indicate issues the firm
needs to pay attention to, so metrics used should reflect that to proactively identify and take
action to solve them. In the same vein, if the goal of social media monitoring is to identify
and promote positive content, it may be more appropriate to focus on metrics that reflect the
model’s capacity to correctly identify text in the positive sentiment class.

Another point is the business impact of the resulting model: if it is meant to have a big impact
on decisions, a higher, more strict threshold may be necessary. Using the same example of
social media monitoring, if the goal of the machine learning model is to filter out the negative
or offensive content, instead of promoting positive ones, maybe even to comply with national
and international regulations, using a higher performance threshold may be more indicated.
However, by prioritizing flagging every single negative or offensive piece of content so
accurately, the model may flag a few positive ones on the way – which could result in user
frustration and lessen engagement. Conversely, too much offensive content going through
may cause damage to the company reputation.

Class imbalances, mentioned previously, add another dimension to the metrics employed: if
the researcher knows that within the dataset one or more classes are vastly dominant in
regards to others, the F1 and AUC-ROC curve metrics can be employed.

In the end, the model best suited to the task, if there is such a one, can finally be used on
new and unseen data for its final purpose.

Although machine learning models for sentiment analysis tend to be more reliable overall
than lexicon based ones, their average accuracy is usually around 75% and not all of them

87

provide a good level of explainability. Even further, beyond the large requirements for good
quality, balanced labeled data, they typically are trained with specific domain datasets,
meaning that these models to generalize well only within those contexts (Chauhan et al,
2021).

In the business field, the dataset used may contain biases that will result in a model with
skewed or unfair predictions, especially if they are user generated. Even further, concerns
regarding privacy and regulations are becoming more and more important because the last
decade signified the convergence of factors that allowed for the widespread training and use
of machine learning models, and the trend is to keep on growing. This means that while the
use of machine learning in general is an amazing tool for advancement and acquiring further
knowledge and advantages, it needs to be done carefully and respectfully – the ethical
concerns are discussed further, in section 4.5.

It should be remarked that this work will not discuss deep learning approaches, as they are
outside of the scope and will not be used.

4.4 Ethical implications and guidelines

Sentiment Analysis is a field of study currently undergoing a strong wave of development.
Where today the main data source behind it is written text, authors Pang & Lee (2008) see it
as a soon-to-be standardized part of many products dealing also with speech. They pick
back up the idea introduced in the beginning of this section, that leaders – in a wide sense,
not just political – have always been interested in public opinion and the possibilities that this
knowledge provides. They illustrate it with Edward Bulwer-Lytton’s widely known phrase, “the
pen is mightier than the sword”.

Public opinion has power. It has sparked and ended wars, revolutions, mass hysteria and
outrage, it is the reason why fake news is constantly being spread and perpetuated by
companies and organizations to defend their own self interest (Pang & Lee, 2008).

This is to illustrate the fact that all of the SA applications mentioned so far in this work had as
its goal making a positive impact, but it does not encompass all it can be used for. Author
Mohammad (2022, p. 1) puts it succinctly by saying that “sentiment analysis can be a
facilitator of enormous progress (e.g., in improving public health and commerce) but also an
enabler of great harm (e.g., for suppressing dissidents and manipulating voters).” Author
Patti et al (2017) present the ethical dilemma by saying that the same technology used to
discover and counteract terrorists, homophobic and racist hate-speech on social media
(which is becoming an indispensable task due to its incredible capability of proliferating), is
also used to discover and influence people’s political orientation.

This is important because journalist enquiries have discovered that data analysis companies
played a role in elections and referendums by associating the information gathered on user’s
personalities to sentiment analysis of their content to better customize campaigns for still
undecided voters towards one side or the other (Patti et al, 2017).

So analyzing social media for the consensus on news with a high level of impact, like
vaccines acceptance or disease awareness for public health monitoring in the public sector
is meant to bring a positive impact, as well as, on a smaller scale, the consensus on a given

88

brand or product in the private sector to perform product or reputation improvement. Both of
these applications look to make a positive impact, but the script can be easily flipped.

The technology can be used to manipulate public opinion towards a specific end goal. In the
public sector, for example, to monitor and censor dissent and in the private sector as
customer manipulation – they cannot control UGC, but they can monitor and influence it
(Pang & Lee, 2008). The authors point out still that the latter is already part of normal public
relations efforts, citing the research of Zabin & Jefferies (2008), that discovered that more
than half of the companies engaging in social media monitoring actively and frequently
contribute to consumer conversations, a third of them looking to “sway opinion, correct
misinformation, solicit feedback, reward loyalty, test new ideas, or for any number of other
reasons”.

Not to mention the issues related to the data itself. Because typical sentiment analysis
technologies use UGC as its basis, consulting a large number of people who are not known,
creates the issue of trustworthiness: it means that their reliability can be put into question
(Pang & Lee). Even further, one must consider if what is expressed in the data contain
human bias, like prejudices and stereotypical ideas, and if it has an impact on the result: it is
quite common today to find chatbots as the first line of troubleshooting for products and
services in general, they are mean to interact with people of all backgrounds and should
reflect this in their speech; more personally on the user themselves, the researcher should
consider what is ethical to infer about a person’s opinion expressed online, as the data that
can actually be acquired typically goes into more personal details such as age and location,
space-time movements – issues of privacy (Patti et al, 2017).

In this line, there have been several nations that implemented in the last decade national
policies for protecting user’s privacy while online, trying to guarantee specifically the correct
confidentiality and anonymization of data. Over 70% of the countries worldwide have data
privacy laws regarding how corporations may use the data of their customers and users –
personal or otherwise – such as the General Data Protection Regulation (GDPR)
implemented in 2018 by the European Union block and the General Data Privacy Law
(GDPL) in Brazil, implemented in 2020 (Horizon Framework Programme of the European
Union, 2020; UNCTAD, 2023).

Looking specifically at the data represented by customer generated reviews, one should first
evaluate its impact to know if it is a worthwhile pursuit, if there can be motivation to engage
with the task at all. Authors Pang & Lee (2008) point out that due to the rising online
ecommerce, there is a lot of research on its impact on customer purchase, and the
overarching consensus seems to be that reviews of some items have more impact than
others – for example, customers tend to not pay attention to the reviews of cheaper items,
while their impact when talking about more expensive items is considerable. They also point
out that the studies in this field can be contradictory, with varying positive and negative
results depending on factors such as timing of the feedback and characteristics of the seller.
One thing is widely accepted, however: the overall polarity of the totality of reviews has a
significant economic effect for the company.

However, these issues in particular are not related only to sentiment analysis tasks, but to
data-mining technologies in general, and imply that their development are not only an

89

opportunity for research, but also for new reflections and responsibilities (Pang & Lee, 2008;
Patti et al, 2017).

These technologies, especially virtual agents such as chatbots and applications based on
speech (like Apple’s Siri and Amazon’s Alexa), can go so far as to have the ability to
“promote beliefs and behaviors in human users is obtained through the creation of an
empathic relationship with the user, assuming their goals and emotions” (Patti et al, 2017, p.
154) and it can be quite challenging setting up safeguards and teaching these agents the
moral aspects of human behavior.

Author Mohammad (2022) proposes 50 principles to guide research and implementation of
automatic emotion recognition technologies, regarding the data, the task design, its method,
impact and evaluation and finally the project’s implications for privacy.

90

5
Development

This section presents the case study, from its development, data collection and analysis to
the development of the machine learning models chosen based on the literature review
introduced so far.

5.1 Project context and objectives
As “nowadays, individuals, organizations and government agencies are increasingly using
the content in social media for decision making” (Ziora, 2021, p. 78) and the amount of user
generated content is only growing more each year (Maharani, 2013), it becomes increasingly
important to develop a strong body of research and evidence on the methods available to do
it.

Even more so, NLP has numerous sources of influence with considerable impact on the
manner in which the task is solved. Characteristics such as the amount and quality of the
data, along with its format – text or audio – and the language it is represented in, were
discussed at length in previous sections. These can branch out into considerations of the
availability of resources, like lexicons and dictionaries, of which English is by far the
language with the largest amount of NLP resources. In this sense, the task itself shapes the
process, but only so far as the data and resources allow for it.

As stated in Section 1.3, even if the NLP field of Sentiment Analysis is not a new technology,
it has been rising sharply in both public and private interest in the last decade due to the
huge availability of data allowed for by the advent of the Internet and Social Media, along
with the availability of the processing power required to analyze it. In this context, this work
intends on contributing to the growing scientific corpus by evaluating the impact that various

91

NLP and text representation techniques have on the results of Sentiment Analysis of user
generated content.

While not exhaustive, the literature review built thus far serves as support for the case study
developed, following the objectives:

1. Analyze the applicability of NLP and machine learning techniques for solving
complex business problems and generating valuable insights.

This objective entails detailed investigation into the specific use cases and industries in
which ML holds most promise, and the advantages they may offer in terms of data driven
decision making for strategic planning.

2. Evaluate technical challenges and limitations associated with the
implementation of ML in business processes.

Typically, one can expect technical limitations related to data quality and quantity, model
accuracy, computational resources. The goal is to assess and develop strategies to
overcome them.

3. Compare and evaluate different machine learning models for the chosen
application.

Considering previous resources and choices, evaluate the impact of the final result. This
could mean factors like data types, scalability and interpretability – decisions over which the
researcher has control as well as not.

To reach these three goals set out, this work has chosen the De'Longhi La Specialista
Espresso Machine (model EC9335BK), as it fits both requirements: it has extractable user
generated data and is of italian manufacture.

5.2 Methodology

In order to achieve the goal of extracting insights out of public reviews of the chosen product,
a standardized and repeatable heuristic should be defined. As such, the methodology
followed is set in six specific steps:

I. Define the field of research: evaluation of consumer sentiment through the use of
Natural Language Processing and Sentiment Analysis on product reviews. More in
depth, how the available text manipulation techniques may affect the results.

II. Realize a literature review: so as to better understand how the field has developed in
the last decade, a few strings of keywords were used to find the most relevant
publications; these include the initial field study: “industrial applications of Natural
Language Processing” and “business applications of Natural Language Processing”.
To get a more specific outlook, “Sentiment Analysis with Machine Learning models”
and “Sentiment Analysis with lexicon approach” were also used. Because of their use
as synonyms, terms such as “opinion mining” was also considered.

92

III. Select relevant research: as the initial queries returned a too varied selection of
publications, they were carefully filtered to remove any content not related to the
current topic. Further, the studies selected should comply with: (a) a real-world,
scalable application of NLP in either industrial or business setting; (b) either perform
or allow for the use along with machine learning techniques; (c) research done using
the English language.

IV. Data gathering and analysis: the dataset was gathered from online resources using
an API, and later analyzed using R language to obtain initial insights into what it
contains and how to proceed.

V. Model choice, application and tuning: the text was preprocessed based and fed into
the training and testing of models most recommended by the literature review. They
were tuned as needed.

VI. Final evaluation: the models were evaluated by themselves and later compared to
each other based on standard field metrics. The results were finally discussed and
future works were proposed.

The initial steps (I, II and III) are presented in detail in sections 1 through 4 of this work, while
the remaining steps represent the practical application and development of the case study
and are described in section 5.

5.3 Data gathering and pre-processing

The product selected, in line with the prerequisite of being of italian origin, is the La
Specialista Espresso Machine (Model EC9335BK) by manufacturer De'Longhi. The
company is based in the italian city of Treviso, largely focused on the design and
engineering of home appliances. In the early 2000s, De’Longhi pioneered the first
super-automatic coffee machine, named Magnifica, and has been a reference in the sector
ever since (De’ Longhi Group, n.d.).

Looking for product reviews in English, due to a wider availability of resources, the main
online selling platform found is Amazon.com – an almost ubiquitous presence in consumer
review research and analysis. The website uses the 5-star rating system, in which 1 star is a
negative review, while a 5 stars review means the product exceeds expectations.

To calculate a product’s overall rating, Amazon.con forgoes the simple use of the average of
all ratings, choosing instead to place weights on the date the review was posted, its
trustworthiness and if the consumer did buy the item through the website or not. This should
provide a more rounded and all-encompassing overview, meaning it could have greater
value and information for prospective buyers.

It is not, however, obligatory for the consumer to write a review attached to the rating. This
means that the vast majority of the ratings tend to be only the 5-star scale, without textual
explanations or comments – significantly reducing the data availability for NLP analysis.

For the machine in question (ASIN B08DHW3GGG), at the time of this research the website
had a total of 2.009 global consumer ratings that made up a product score of 3.8; out of
these, 795 had textual reviews attached divided in the following manner:

93

● 1-star: 249 reviews

● 2-star: 42 reviews

● 3-star: 49 reviews

● 4-star: 73 reviews

● 5-star: 382 reviews

Due to recent restrictions set by the platform, the website shows only 100 reviews per star
rating at any given time, meaning that the largest theoretical dataset that could be acquired
directly is 500 reviews. As seen above, some product ratings do not even reach this limit,
further reducing the available dataset to be created.

For this research, the data gathering was done through the use of an API named Apify.
Oftentimes regarded as the more ethical manner of practicing web-scraping due to its good
practices on using the server’s resources, the use of APIs allows for a simpler and faster
data gathering process – while still maintaining it customizable. Typically, these tools work in
a more transparent manner, and provide better data quality and consistency.

Apify, for example, has a scraper designed specifically for the reviews on the Amazon
platform: the main information it requires to work are the product (or products) page in which
to look for the data, and the specification of which reviews to gather and how to sort them.
The output can be customized as necessary.

For this research specifically – based on the platform’s restrictions – at least 5 runs were
necessary, one for each rating (1 star, 2 stars and so on). The output chosen was a .csv file
for each run, containing 23 data columns and one row per review, to be subsequently
integrated. Additionally, some 1-star and 5-star reviews were added manually, meaning that
the total dataset gathered contained 422 inputs.

As established previously, “having an appropriate dataset is the key element for increasing
performance of such systems” (Goularas, D., & Kamis, 2021, p. 5), perhaps presenting more
advantages than even experimenting with many different settings and configurations.

Initially, the data was cleaned to remove data columns deemed unnecessary for the project:
countryCode, position, reviewCategoryUrl, all of the reviewImage columns, reviewUrl,
reviewdIn, totalCategoryRatings and lastly totalCategoryReviews. Next, the reviews in
languages other than English were removed: since the Amazon domain evaluated is North
America, there were also inputs in Spanish and French languages – which are out of the
current scope.

In the end, the total usable dataset contains 399 entries, with the following 9 data columns:

● Country.

● Date.

● isVerified, which takes into consideration if the user acquired the product through the
website.

94

● The univocal productAsin as checkmark that all reviews are pertinent to the selected
product.

● ratingScore, containing the score from 1 to 5 stars.

● reviewDescription containing the textual review.

● reviewReaction containing the number of people who found the review useful.

● reviewTitle, which contains few words and tends to be straight to the point.

● variant to define the model bought.

These entries are divided into 5 categories, from 1 to 5 stars, and appear to be quite
unbalanced. People tend to vote more on the extremes, than on the neutral ground, to
express their opinions clearly. The initial configuration seen shows the following scores:

● 1-star: 129 reviews

● 2-star: 38 reviews

● 3-star: 39 reviews

● 4-star: 68 reviews

● 5-star: 125 reviews

Figure 14. Data set tibble summary representing the initial 10 rows.

The columns of real interest for this project are: ratingScore, as it contains the label, the
sentiment, reviewDescription, as it is the main comment made by the user the reasoning
behind the rating, and reviewTitle, because being shorter, this work makes the assumption
that is contains words – tokens – that denote and explain the feeling in a direct, straight to
the point manner and can be useful.

95

5.4 Data analysis

Realistically, the first thing to know is that the dataset is quite small and needs to be dealt
with as such, as it will affect later decisions. For example, using Deep Learning models,
which have an amazing reputation for Accuracy in NLP tasks, is not a viable option in the
long run as they tend to require very large datasets to actually learn and work as intended.
On the other hand, Naive Bayes can be a good choice in its place, so it remains a possibility.

As seen previously on Figure 12, the dataset saved into a tibble named coffeeReview
contains 9 columns with well organized column names, most of which use data type <chr>,
meaning strings. The two exceptions to this are date, stored as <dttm> to represent calendar
dates and times, and ratingScore, stored as <dbl>, part of the numeric class in R. This sets
the operations that can be performed in each one of them; for example the mean value of
the scores collected is around 3.06, with no weight placement, meaning it’s lower than the
value calculated by the Amazon platform with the full collection of reviews (3.8 rating).

Figure 15. Glimpse at the initial dataset, its columns and data types.

Regarding the date, a plot can be made to check any trends based on when the review was
posted, as seen in Figure 16. Even if not inside the particular scope of this project, one could
argue that the drop in the number or reviews posted between 2020 and 2021 may be related
to the beginning of the COVID-19 pandemic, during which consumers changed buying
patterns to prioritize essential, perishable goods (Wertz, 2021).

Figure 16. Distribution of reviews posted over the years of 2018 and 2023.

96

For general data cleaning, no duplicated data was found, however the column
reviewReaction had a high number of NA values – meaning they are Not Available, blank. To
remain inside the data type, these were set to “0 people found this helpful” so it can be used
if deemed necessary.

Regarding the distribution of the data, Figure 17 below shows the entries in a visual manner:
there is a clear data imbalance between the extreme points, 1 and 5 stars, and the
remaining, more temperate ratings of 2, 3 and 4 stars.

Figure 17. Distribution of numbers of reviews per rating, 1 to 5 stars.

Because the idea is to predict the overall sentiment contained in a given review and distill it
into their polarity, the 5-star system was transformed into the labels of [-1, 0 1] representing
respectively negative, neutral or positive polarity.

The original ratings were divided according to the findings of Gupta et al (2021), in which
mostly negative sentiments are contained in 1 and 2 star ratings (condensed into -1 polarity),
while mostly positive ones are contained in 4 and 5 star ratings (condensed into 1 polarity).
Lastly, 3 stars represents the neutral class (0). This transformation allows for the
simplification of the data and provides a better focus on the sentiment behind the review,
condensing the desired information, instead of reflecting the degree of satisfaction shown by
the customer.

One needs to keep in mind the possible ramifications of such a transformation, as it is
considered an inductive bias. It does depend on the assumption of an equal distance
between the ratings: the idea that the distance between 1 and 2 stars is the same as the one
between 4 and 5 stars. It can also introduce bias into the data by creating large differences
between the number of datapoints in each class, especially in an already imbalanced
dataset. For the dataset used here, the neutral category is clearly less predominant, seen in
Figure 18, and should be dealt with accordingly.

97

Figure 18. Distribution of reviews in classes after transformation.

The transformation also represents a loss in information granularity, in exchange for better
simplicity and clarity in the results, which in this case is acceptable due to the size of the
data set and the method used.

Regarding textual preparation on the reviews themselves and the review titles (respectively
reviewDescription and reviewTitle), numbers, punctuations and special characters were
removed, uppercase characters were transformed into lowercase. This represents the
removal of noise from the datasets. Due to the fact that the process does not contain the use
of lexicons to infer meaning, the contractions were kept as they were in the original text.

Next, both columns were tokenized at word-level and ordered by frequency, seen in a
summary in Figure 19. The tibble tokenReview (a) represents the words contained in the
reviews posted by the consumers throughout all the rates, and it is clear that the most
common words are stop words – these do not provide valuable information and as such can
be removed. As for tokenTitle (b), since the input by the customers was considerably shorter
(and more to the point), the words are more likely to be pertinent to the task at hand, seen in
the use of “great” 45 times and “coffee” 42 times.

(a) (b)
Figure 19. Top 10 words sorted by frequency before removing stop words in (a) tokens from

Review column and (b) tokens from Title column.

98

After removing the stop words from both sets of tokens, the content in the dataset becomes
clearer in the case of tokenReview, now containing highly indicative words. It also confirms
the assumption that this textual data is composed of subjective and opinionated text on the
topic chosen. As for the set of tokenTitle, the 4th most frequent word is “love”, a high
indication of positive sentiment, while the 10th most used word is “don’t” – a negation that
could denote a given prevalence of negative sentiment.

Figure 20. Top 10 words sorted by frequency after removing stop words in (a) tokens from
Review column and (b) tokens from Title column.

Negative words were not removed, as negation is an important factor to Sentiment Analysis
tasks.

One can try and infer several meanings from the words contained in both (a) and (b),
however tokens made from single words, n-grams in which n = 1, cannot be used as
indicators by themselves as the context is not present. The 6th word in the tokenTitle
classification, quality, can be associated with both “good quality” and “bad quality”
sentences.

To extend a little more, a word cloud can be created to include more words.

(a) (b)
Figure 21.Word Clouds for (a) tokenReview and (b) tokenTitle .

99

As expected from a dataset regarding a particular product, the most frequent words for both
fields, reviews and titles, are coffee, machine and espresso. A few other topics that show up
and one can assume users take into consideration when evaluating the product are its
pressure, easiness of use and the product’s warranty. Interestingly, the word “Breville”
among the most commonly used refers to a direct competitor brand, so another assumption
is that the product is actively compared to their coffee machines by the market.

Some concerns can be raised by the prevalence of words such as “defective” and “broke”. It
can be a point to investigate further, especially if one assumes they can be connected to the
instance of “warranty” present also.

5.5 Natural language processing

Starting from from the clean and tokenized data (also an NLP technique), four datasets were
created to compare the models created based on the textual preprocessing approach
chosen, stemming:

● dataReview: contains the reviews and their respective labels (ratings), with no
additional cleaning steps.

● dataTitle: contains the titles and their respective labels (ratings), with no additional
cleaning steps.

● dataReview_ST: contains the reviews and their respective labels (ratings), but the
words contained in it were stemmed.

● dataTitle_ST: contains the titles and their respective labels (ratings), but the words
contained in it were stemmed.

The idea behind stemming the tokens is to reduce word variation and its impact (by reducing
them to their root form), again here with the goal of simplifying the data. For sentiment
analysis tasks, specifically, stemming can be advantageous because semantically related
terms can then be treated as one, as they should be.

One possible issue stemming may present is that by simply removing the end part of each
token, the algorithm assumes its root without basis on a dictionary, such as occurs in the
lemmatization technique. Incorrect meaning and spelling may then occur.

The chosen data representation for all four datasets is the TF-IDF, in an attempt to highlight
the most important words within the corpora. The idea is to teach the machine learning
models what words are more relevant to the label of the review or title, negative (-1), neutral
(0) or positive (1) – emphasizing important terms while downplaying the common ones. It
can also serve as a manner of feature weighting.

The downside of using this type of text representation is that the matrices can be very
sparse, wasting memory and computational power to run.

Both of these techniques, stemming as text preprocessing and defining the TF-IDF as text
representation, belong to the NLP field and impact all subsequent steps.

100

At this point, the researcher can perform several NLP tasks, not only sentiment analysis.
Examples of this are document clustering, hoping to cluster reviews of a given label by their
common words and themes to better understand possible influences on customer
satisfaction, or topic modeling, looking to uncover latent topics on the reviews – categorizing
them to gain better insights.

This work then moved on to training the machine learning models.

5.6 MLModel training

As discussed in Section 1.1.3, there are a few ubiquitous models when performing
Sentiment Analysis, chief among them Support Vector Machines, Random Forest and Naive
Bayes. The last one is a particular choice, due to the small dataset available for the case
study.

Before training each model, each dataset was partitioned into a training dataset containing
80% of the reviews and a testing one, containing the remaining 20%. The function smote()
was used in all of the training datasets to oversample the neutral class (0) and improve the
imbalance among the classes.

All models were trained using both 5-fold and 10-fold cross validation for the four datasets:
dataReview, dataReview_ST, dataTitle and dataTitle_ST. Using the Accuracy metric to
evaluate which path is better, it becomes clear that even though the difference is small, with
an improvement of around 2%, in general using a 10-fold cross validation strategy yields
better models – especially for Support Vector Machines.

The comparison for the models created for each dataset is seen in Figure 22, ordered by
Accuracy. Also, some insight on the performance of each one can already be glimpsed:
interestingly the performance of the Naive Bayes is the worst through all four datasets, even
when the cross-validation process used tuneGrid() method to look for the best model
combining different La Place smoothing corrections (interval [1:3]) and the use (true) or not
(false) of kernel density estimation – respectively either considering the data as a normal
distribution or not.

The Random Forest models were trained using tuneLength of 5, meaning the algorithm
tested 5 different combinations of hyperparameters and selected the best possible one
among them. These are typically the number of trees and the number of random randomly
selected predictors per split.

As for the Support Vector Machine models trained, the tuneLength value used was 10. Using
the Linear SVM (method = “svmLinear”), the main hyperparameter to test and compare is C,
the cost brought by the trade-off between maximizing the margin and minimizing the errors.
At a first glance, considering only the Accuracy metric, SVM seems to be the most promising
model.

101

(a) (b)

(c) (d)

Figure 22. Comparison of Accuracy achieved by each model trained on both 5-fold
and 10-fold cross validation, seen for (a) dataReview dataset, (b) dataReview_ST

dataset, (c) dataTitle dataset and (d) dataTitle_ST dataset.

Because it is clear that in general the 10-fold cross validation models performed slightly
better, the 5-fold cross validation models are no longer evaluated. From this point on, all
models shown were created through 10-fold cross validation.

102

(a) (b)

(d) (d)

Figure 23. Comparison of Accuracy and Kappa achieved by each model when tested
on the testing dataset, seen for (a) dataReview dataset, (b) dataReview_ST dataset,

(c) dataTitle dataset and (d) dataTitle_ST dataset.

Another way of visualizing the performance and comparing the models between one another
is through the resamples() function, testing each one on the test datasets. It is remarked that
these have not undergone oversampling, as the training dataset have, remaining imbalanced
to better reflect real-world data.

It is also reflected on Figure 23 the performance of the SVM, when compared to both other
models: above 80% for all datasets. Also reflected here was the poor performance of the
Naive Bayes. This time the models are accompanied by the Kappa value, which reflects the
level of agreement or disagreement between the predictions, if they are most likely correct or
simply happened by chance such as in a random chance classifier. This value should be
maximized, as having a high inter-rate reliability means all models trained are in high
agreement with one another.

103

The Kappa value does not reflect, however, the validity of the previews: it only states that the
models agree with one another, not that they are agreeing to the correct answer. That is why
it is paired to the Accuracy value.

In general, beyond the poor performance of the Naive Bayes models, they have a very low
level of agreement between one another.

In general, the best model for all datasets seems to be SVM, possibly due to its robustness
when dealing with large scale features and high dimensional data, except for the stemmed
reviews (dataReview_ST): this one was better modeled by the Random Forest model.
Perhaps it can be attributed to the randomness factor, due to bootstrap sampling and feature
sampling the model may have led to a better fit.

The metrics ROC and AUC work for binary classifiers, not multiclass, so they were not used
in this work. However, one can perform a deeper analysis using the Confusion Matrix of
each model.

Seen on Figure 24 for the dataset dataReview, the x-axis Reference represents the true
value of each input, while the y-axis Prediction represents the model output. The goal is to
have the heatmap busier (darker color) in the central diagonal line, meaning the prediction
and the true value match for all three classes.

As expected, the testing data is highly unbalanced as it should reflect real world data and so
wasn't corrected: only 7 inputs belonging to the neutral (0) class. It was also the one with the
largest number of misclassifications for both the SVM and Random Forest models.

The Naive Bayes model is working essentially as a purely random classifier: all of the inputs
are predicted to be neutral. Class imbalance could be the reason for this, the model learning
to maximize the predictions by setting all inputs into the majority class. However, the neutral
class is the imbalance one and has been corrected for, meaning that other causes are more
likely.

Among these, it is possible that the model was not able to effectively discriminate between
the features belonging to one class over the other, or it may have violated the assumption of
independence between the classes – a core principle of the Naive Bayes model. Either way,
this performance means it is a bad candidate for the task and the data.

Both SVM and Random Forest are better at predicting positive reviews, but the latter
performs slightly better for both positive (1) and negative ones (-1). This is a point in which
one should consider the weight of each class: if the negative reviews have a larger weight,
as those are the ones to be considered in further detail by the business to solve the issues
contained therein looking to improve customer satisfaction, the Random Forest model could
be more interesting. Even for further hyperparameter tuning, looking for better Specificity
values (a low 53% in the current configuration).

104

(a) (b)

(c)
Figure 24. Comparison of the Confusion Matrix of each model learned from the
dataReview dataset, being (a) SVM, (b) Random Forest and (c) Naive Bayes.

As for the second dataset dataTitle, containing non-stemmed titles of each review and the
corresponding label, the Naive Bayes model shows the same behavior as seen for the initial
dataset and as such can be discarded.

Seen in Figure 25, the most balanced model seems to be SVM and its heat map reflects the
desired highlighted central diagonal. It shows, however, a tendency to classify neutral (0)
inputs as positive (1), classifying over half of the available inputs as such.

105

(a) (b)

(c)
Figure 25. Comparison of the Confusion Matrix of each model learned from the
dataTitle dataset, being (a) SVM, (b) Random Forest and (c) Naive Bayes.

In this case, the SVM model shows a better aptitude to correctly classifying negative
reviews. However, its capacity regarding neutral classes is less than ideal – misclassifying a
total of 4 inputs as positive and 1 as negative, from the total of 7 reviews within the testing
dataset. Many of the positive reviews were also misclassified as neutral.

In general, it is the best model so far, seemingly balanced and good for classifying negative
reviews correctly.

106

(a) (b)

(c)
Figure 26. Comparison of the Confusion Matrix of each model learned from the

dataReview_ST dataset, being (a) SVM, (b) Random Forest and (c) Naive Bayes.

Now, to check whether stemming the datasets improved the models trained, Figure 26
presents the Confusion Matrix heat maps for dataReview_ST. The initial impression is that
the Naive Bayes model maintains the same behavior already seen and discussed.

Taking one step further to stem the data does not appear to have made an impact on the
resulting models’ performance. On the contrary, where the Random Forest model for
non-stemmed titles correctly classified 35 positive reviews, the same model for the stemmed
titles dataset achieved 31 correct classifications for the class. There was a slight increase for
the correct classifications of the negative reviews, going from 16 correct predictions to 18.

107

The same is true for the SVM model, in which the non-stemmed data model correctly
classified 27 positive reviews (from the total of 38) while the stemmed data one recognized
25 as such. A slight improvement for negative reviews, again, going from 11 in the former to
16 in the latter.

(a) (b)

(c)
Figure 27. Comparison of the Confusion Matrix of each model learned from the
dataTitle_ST dataset, being (a) SVM, (b) Random Forest and (c) Naive Bayes.

Lastly, in figure 27 the Confusion Matrix heat maps for the models trained on the fourth
dataset, dataTitle_ST, stemmed titles. Already expected, the Naive Bayes maintains the

108

behavior of a random classifier, but this time the SVM shows the poorest performance so far
for predicting positive reviews. It kept, however, the same level of Sensitivity as the
non-stemmed title dataset, correctly classifying 22 out of 33 negative reviews.

5.7 Model Selection

A few considerations to be taken into account when selecting the model, beyond just its
performance, are its interpretability and computational efficiency. In the former case, as this
task is not designed for topic modeling or understanding the reasoning behind the
classification, interpretability is not a priority and can be foregone. As for the latter, the
efficiency is important – but can be manipulated with optimizations such as minimizing the
vocabulary size and using n-grams sparingly (both implemented in this project).

The idea of this process has been to solve complex business problems and generate
valuable insights, while testing different NLP approaches. If one takes the stand that
negative sentiments are a priority, as the assumption that they represent the points to be
improved upon for achieving better customer satisfaction, there are two promising models to
further refine. Both of these models were trained using the titles, instead of the reviews
themselves, confirming the initial assumption that this data may me more straight to the point
and contain words that better reflect the class.

The first was a Support Vector Machine model trained on the non-stemmed dataset
dataTitle, correctly classifying 22 negative reviews out of a total of 33, and 24 positive ones,
out of 38. It seems to be generally equilibrated and can be worked on further to minimize
false positives and maximize true negatives. This could be done through adjusting the
decision threshold to reflect the priority set, and the testing of different kernels – beyond just
the linear one used.

The second promising model is the Random Forest trained on the stemmed dataset
dataTitle_ST, which correctly classified 31 positive reviews out of a total of 38, and 23
negative ones out of 33.

109

6
Conclusion

In this work three main objectives were set: to analyze the applicability of NLP and Machine
Learning techniques in solving complex business problems, to evaluate the associated
technical challenges and limitations and lastly, to compare and discuss the results obtained
through the different machine learning models developed.

The first and second ones, extensively examined in Sections 2 to 4 and later tested in the
case study, have shown that the technology and resources currently available can bring
immense benefits to data-driven decision making in the business context. By collecting
relevant, opinionated user generated content available online (product reviews) and
manipulating it using NLP techniques and good practices, such as tokenization, TF-IDF text
representation and standard data cleaning, valuable insights can be extracted.

Some of the technical challenges discussed and overcome were the data itself and its
cleaning: UGC can contain several issue such as slangs, typos and non-recognized
characters like emojis, and the size of textual data can bring a large impact on computational
efficiency – this was dealt with through minimizing the vocabulary to only necessary terms
and limiting the number of n-grams using only n = 1.

The two suppositions made initially garnered interesting results: the first, comparing machine
learning models trained on the reviews themselves and models trained on their titles,
assuming that the latter would contain more direct, valuable words. The second, comparing
models learned from stemmed and non-stemmed data, to evaluate the impact of the
technique – specially because the dataset is considered small, and so could benefit from
condensing the tokens into their essential stems.

In total, four datasets were created, two using non-stemmed data (from the reviews
themselves, dataReview, and from the titles, dataTitle) and two using stemmed data (from
the reviews, dataReview_ST, and from the titles, dataTitle_ST). To further condense and
simplify the data, the original 5-star rating system used as class labels was transformed into
polarities: positive (1), negative (-1) and neutral (0).

110

The four datasets were used to learn three models widely successful in Sentiment Analysis
tasks: Support Vector Machine, Random Forest and Naive Bayes. The last one was chosen
specifically because of its renowned capability of generalizing well from smaller datasets.

All of the models were tested with both 5-fold and 10-fold cross validation, the latter one
showing better performance by a small margin, and comparing various combinations of
hyperparameter tuning.

The final resulting models showed interesting results: the initial bet on the Naive Bayes did
not provide the expected results, as all of them behaved as general random classifiers and
so were discarded.

On the other hand, the assumptions made about using the titles instead of the reviews
themselves confirmed their promise: the two best models trained were done so using the
titles TF-IDF representation. The first one, the SVM model trained on the dataTitle dataset
and the second one, the Random Forest model trained on the stemmed dataTitle_ST
dataset.

All models classified better for the positive class, which should be taken into consideration. If
the idea is to use Machine Learning models to identify possible issues to improve upon and
achieve better customer satisfaction levels, the focus should be on correctly identifying
negative instances. So this is the first suggestion for future work development, to expand on
the trade-off between Sensitivity (correctly spotting true positives) and Specificity (correctly
identifying negative values) to emphasize the latter.

Further considerations to develop are: introduction of higher level n-grams with the intention
of expanding the context within the dataset (as unigrams contain no context whatsoever)
and attempting the use of larger, more balanced datasets which would also allow for a deep
learning approach. Another suggestion to be tested is using a different, hybrid technique, to
pair the models with an appropriate lexicon and expand on context.

Lastly, specifically for acquisition of insights, it is suggested to perform topic modeling tasks
to evaluate not only the consumer satisfaction, but also the factors that influence it.

111

7
R code

library(readxl) # data
library(tibble) # data
library(ggplot2) # visualization
library(tidytext) # tokenization
library(dplyr) # data manipulation
library(tm) # text mining
library(SnowballC) # stemming
library(caret) # machine learning models
library(pROC) # for evaluating classifiers

######################### ORIGINAL DATASET #############################
import dataset as tibble
coffeeReview <- read_excel("coffeeReviews_int_clean_transf.xlsx",

col_names = TRUE)
coffeeReview %>% print()

brief overview of variables and data types
coffeeReview %>% glimpse()

mean of rating scores in the data set
coffeeReview$ratingScore %>% mean()

data plot by date or review
qplot(date,

data = coffeeReview,
xlab = "Date",
ylab = "Number of Reviews")

qplot(ratingScore,
data = coffeeReview,
xlab = "Rating",
ylab = "Number of Reviews")

Number of inputs per rating score 1 to 5
coffeeReview %>% filter(ratingScore==-1) %>% count() # 167

112

coffeeReview %>% filter(ratingScore==0) %>% count() # 39
coffeeReview %>% filter(ratingScore==1) %>% count() # 193

Dealing with missing values in the column reviewReaction
library(tidyr)
coffeeReview %>% summarise(count = sum(is.na(reviewReaction)))

coffeeReview <- coffeeReview %>%
replace_na(list(reviewReaction="0 people found this useful"))

Check for duplicated data
sum(duplicated(coffeeReview)) # zero

Remove numbers from reviewDescription and reviewTitle columns
coffeeReview$reviewTitle <- gsub(pattern = "[[:digit:]]",

replacement = "",
coffeeReview$reviewTitle)

coffeeReview$reviewDescription <- gsub(pattern = "[[:digit:]]",
replacement = "",
coffeeReview$reviewDescription)

coffeeReview %>% select(6,8) %>% print(n=50)

Set all characters to lowercase
coffeeReview$reviewTitle <- tolower(coffeeReview$reviewTitle)

coffeeReview$reviewDescription <- tolower(coffeeReview$reviewDescription)

coffeeReview %>% select(6,8) %>% print(n=50)

Remove punctuation from reviewDescription and reviewTitle columns
coffeeReview$reviewTitle <- gsub(pattern = "[[:punct:]]",

replacement = "",
coffeeReview$reviewTitle)

coffeeReview$reviewDescription <- gsub(pattern = "[[:punct:]]",
replacement = "",
coffeeReview$reviewDescription)

coffeeReview %>% select(6,8) %>% print(n=80)

########################## TOKENIZATION ##########################

tokenReview_full <- coffeeReview %>% unnest_tokens(output = "wordsReview",
input = reviewDescription,
token = "words") %>%

count(wordsReview, sort = TRUE)

tokenTitle_full <- coffeeReview %>% unnest_tokens(output = "wordsTitle",
input = reviewTitle,
token = "words") %>%

count(wordsTitle, sort = TRUE)

print(tokenReview_full)
print(tokenTitle_full)

remove stop words from tokenized data
tokenReview <- tokenReview_full %>%

113

anti_join(stop_words, by = c("wordsReview" = "word"))

tokenTitle <- tokenTitle_full %>%
anti_join(stop_words, by = c("wordsTitle" = "word"))

print(tokenReview)
print(tokenTitle)

############################ WORD CLOUD ##############################

library(wordcloud)

wcReview <- coffeeReview %>%
select(reviewDescription) %>%
summarize(text = paste(reviewDescription, collapse = " ")) %>%
pull(text)

wcReview <- removeWords(wcReview, stopwords("english"))

wordcloud(words = strsplit(wcReview, " ")[[1]], min.freq = 60, random.color=FALSE)

wcTitle <- coffeeReview %>%
select(reviewTitle) %>%
summarize(text = paste(reviewTitle, collapse = " ")) %>%
pull(text)

wcTitle <- removeWords(wcTitle, stopwords("english"))

wordcloud(words = strsplit(wcTitle, " ")[[1]], min.freq = 5, random.color=FALSE)

###################### BoW (tokenized no stop words) ######################

bowReview <- coffeeReview %>%
unnest_tokens(output = "wordsReview", token = "words", input =

reviewDescription) %>%
anti_join(stop_words, by = c("wordsReview" = "word")) %>%
count(id, wordsReview, sort = TRUE)

bowReview

bowTitle <- coffeeReview %>%
unnest_tokens(output = "wordsTitle", token = "words", input = reviewTitle) %>%
anti_join(stop_words, by = c("wordsTitle" = "word")) %>%
count(id, wordsTitle, sort = TRUE)

bowReview
bowTitle

########################## TF-IDF REPRESENTATION #########################

coffeeReview <- coffeeReview %>%
mutate(ratingScore = factor(ratingScore))

tfidfReview <- coffeeReview %>% unnest_tokens(output = "wordsReview",
input = reviewDescription,
token = "words") %>%

anti_join(stop_words, by = c("wordsReview" = "word"))
%>%

114

count(wordsReview, sort = TRUE) #%>% loses all
other columns

bind_tf_idf(wordsReview, id, n)

tfidfTitle <- coffeeReview %>% unnest_tokens(output = "wordsTitle",
input = reviewTitle,
token = "words") %>%

anti_join(stop_words, by = c("wordsTitle" =
"word")) %>%

count(wordsTitle, sort = TRUE) #%>% loses all
other columns

#bind_tf_idf(wordsTitle, id, n)

create a corpus from the original tibble dataset

corpusReview <- VCorpus(VectorSource(coffeeReview$reviewDescription))
head(meta(corpusReview))
corpusReview

corpusTitle <- VCorpus(VectorSource(coffeeReview$reviewTitle))
head(meta(corpusTitle))
corpusTitle

inspect(corpusReview[1:5])
inspect(corpusTitle[[58]])

further text cleaning
corpusReview <- tm_map(corpusReview, stripWhitespace) #remove extra whitespace
corpusTitle <- tm_map(corpusTitle, stripWhitespace)

corpusReview <- tm_map(corpusReview, removeWords, stopwords("english")) #remove
stop words
corpusTitle <- tm_map(corpusTitle, removeWords, stopwords("english"))

STcorpusReview <- tm_map(corpusReview, stemDocument) #stemming
STcorpusTitle <- tm_map(corpusTitle, stemDocument)

By this point, we have 4 datasets: non stemmed (corpusReview / corpusTitle)
and stemmed: (STcorpusReview / STcorpusTitle)

#Create the Document Term Matrix based on TF-IDF value
#1
dtmReview <- DocumentTermMatrix(corpusReview,

control = list(weighting = function(x)
weightTfIdf(x, normalize =

FALSE)))
inspect(dtmReview[1:10, 300:320])

#2
dtmTitle <- DocumentTermMatrix(corpusTitle,

control = list(weighting = function(x)
weightTfIdf(x, normalize =

FALSE)))
inspect(dtmTitle[1:10, 400:420])

#3
dtmReview_ST <- DocumentTermMatrix(STcorpusReview,

115

control = list(weighting = function(x)
weightTfIdf(x, normalize =

FALSE)))
inspect(dtmReview_ST[1:10, 300:320])

#4
dtmTitle_ST <- DocumentTermMatrix(STcorpusTitle,

control = list(weighting = function(x)
weightTfIdf(x, normalize =

FALSE)))
inspect(dtmTitle_ST[1:10, 300:320])

Convert matrices into dataframes
#1
matrixReview <- as.matrix(dtmReview)
View(matrixReview[1:30,1:30])

dfReview <- as.data.frame(as.matrix(dtmReview))
View(dfReview)

#2
matrixTitle <- as.matrix(dtmTitle)
View(matrixTitle[1:30,1:30])

dfTitle <- as.data.frame(as.matrix(dtmTitle))
View(dfTitle)

#3
matrixReview_ST <- as.matrix(dtmReview_ST)
View(matrixReview_ST[1:30,1:30])

dfReview_ST <- as.data.frame(as.matrix(dtmReview_ST))
head(dfReview_ST)

#4
matrixTitle_ST <- as.matrix(dtmTitle_ST)
View(matrixTitle_ST[1:30,1:30])

dfTitle_ST <- as.data.frame(as.matrix(dtmTitle_ST))
head(dfTitle_ST)

By this point, the four datasets are in the form of dataframes, accounting for
TF-IDF of each term in each document
they are (dfReview / dfTitle) not stemmed and (dfReview_ST / dfTitle_ST) stemmed

Extract rating score from original dataset and add to the clean data as labels
for training

scores <- coffeeReview$ratingScore

#1 DATASET
dataReview <- data.frame(
Sentiment = factor(scores),
dfReview

)
View(dataReview)

#2 DATASET
dataTitle <- data.frame(

116

Sentiment = factor(scores),
dfTitle

)
View(dataTitle)

#3 DATASET
dataReview_ST <- data.frame(
Sentiment = factor(scores),
dfReview_ST

)
View(dataReview_ST)

#4 DATASET
dataTitle_ST <- data.frame(
Sentiment = factor(scores),
dfTitle_ST

)
View(dataTitle_ST)

###################### DATA FOR MACHINE LEARNING MODELS #####################
library(performanceEstimation)
varUnder = 6
varOver = 1

dataReview DATASET (not stemmed TF-IDF representation of reviews)

split train and test datasets, and adjust unbalanced classes (oversampling with
smote function)
set.seed(1234)
trainIndex1 <- createDataPartition(dataReview$Sentiment, p = 0.8, list = FALSE)
train_dataReview <- dataReview[trainIndex1,]
test_dataReview <- dataReview[-trainIndex1,]

smote_dataReview <- smote(Sentiment ~ ., train_dataReview, perc.over =
varUnder,perc.under=varOver)

####### dataTitle DATASET (not stemmed TF-IDF representation of titles) #######

split train and test datasets, and adjust unbalanced classes (oversampling with
smote function)
set.seed(1234)
trainIndex2 <- createDataPartition(dataTitle$Sentiment, p = 0.8, list = FALSE)
train_dataTitle <- dataTitle[trainIndex2,]
test_dataTitle <- dataTitle[-trainIndex2,]

smote_dataTitle <- smote(Sentiment ~ ., train_dataTitle, perc.over =
varUnder,perc.under=varOver)

####### dataReview_ST DATASET (stemmed TF-IDF representation of reviews) ######

split train and test datasets, and adjust unbalanced classes (oversampling with
smote function)
set.seed(1234)
trainIndex3 <- createDataPartition(dataReview_ST$Sentiment, p = 0.8, list = FALSE)
train_dataReview_ST <- dataReview_ST[trainIndex3,]
test_dataReview_ST <- dataReview_ST[-trainIndex3,]

117

smote_dataReview_ST <- smote(Sentiment ~ ., train_dataReview_ST, perc.over =
varUnder,perc.under=varOver)

######## dataTitle_ST DATASET (stemmed TF-IDF representation of titles) ########

split train and test datasets, and adjust unbalanced classes (oversampling with
smote function)
set.seed(1234)
trainIndex4 <- createDataPartition(dataTitle_ST$Sentiment, p = 0.8, list = FALSE)
train_dataTitle_ST <- dataTitle_ST[trainIndex4,]
test_dataTitle_ST <- dataTitle_ST[-trainIndex4,]

smote_dataTitle_ST <- smote(Sentiment ~ ., train_dataTitle_ST, perc.over =
varUnder,perc.under=varOver)

######################## MACHINE LEARNING MODELS ########################

#1 dataReview DATASET (not stemmed TF-IDF representation of reviews)
SUPPORT VECTOR MACHINE
set.seed(1234) #linear svm 5 fold cv
svm5_dataReview <- train(form=Sentiment~.,

data=smote_dataReview,
method = "svmLinear",
trControl = ctrl5,
preProcess = c("center","scale"),
tuneLength=10,
metric="Accuracy"

)
svm5_dataReview

set.seed(1234) #linear svm 10 fold cv
svm10_dataReview <- train(form=Sentiment~.,

data=smote_dataReview,
method = "svmLinear",
trControl = ctrl10,
preProcess = c("center","scale"),
tuneLength=10,
metric="Accuracy"

)
svm10_dataReview # difference in accuracy from 5 fold to 10 fold svm is less than
1%

RANDOM FOREST
set.seed(1234)
rf5_dataReview<-train(form=Sentiment~.,

data=smote_dataReview,
method="rf",
tuneLength = 10,
trControl=ctrl5,
metric="Accuracy"

)
rf5_dataReview

set.seed(1234)
rf10_dataReview<-train(form=Sentiment~.,

data=smote_dataReview,
method="rf",
tuneLength = 10,

118

trControl=ctrl10,
metric="Accuracy"

)
rf10_dataReview

NAIVE BAYES
set.seed(1234)
nb_dataReview <- train(form=Sentiment~.,

data=smote_dataReview,
method = "naive_bayes",
trControl = ctrl5,
tuneGrid = expand.grid(# try different laplace

corrections
usekernel = c(TRUE, FALSE),
laplace = 0:3,
adjust = 1:3

),
preProcess = c("zv", "center", "scale")
center and scale the data

)
nb_dataReview

set.seed(1234)
nb10_dataReview <- train(form=Sentiment~.,

data=smote_dataReview,
method = "naive_bayes",
trControl = ctrl10,
tuneGrid = expand.grid(# try different laplace corrections

usekernel = c(TRUE, FALSE),
laplace = 0:3,
adjust = 1:3

),
preProcess = c("zv", "center", "scale")
center and scale the data

)
nb10_dataReview

#2 dataTitle DATASET (not stemmed TF-IDF representation of titles)
SUPPORT VECTOR MACHINE
set.seed(1234) #linear svm 5 fold cv
svm5_dataTitle <- train(form=Sentiment~.,

data=smote_dataTitle,
method = "svmLinear",
trControl = ctrl5,
preProcess = c("center","scale"),
tuneLength=10,
metric="Accuracy"

)
svm5_dataTitle

set.seed(1234) #linear svm 10 fold cv
svm10_dataTitle <- train(form=Sentiment~.,

data=smote_dataTitle,
method = "svmLinear",
trControl = ctrl10,
preProcess = c("center","scale"),
tuneLength=10,
metric="Accuracy"

)

119

svm10_dataTitle # difference of 2% in accuracy

RANDOM FOREST
set.seed(1234)
rf5_dataTitle<-train(form=Sentiment~.,

data=smote_dataTitle,
method="rf",
tuneLength = 10,
trControl=ctrl5,
metric="Accuracy"

)
rf5_dataTitle

set.seed(1234)
rf10_dataTitle<-train(form=Sentiment~.,

data=smote_dataTitle,
method="rf",
tuneLength = 10,
trControl=ctrl10,
metric="Accuracy"

)
rf10_dataTitle

NAIVE BAYES
set.seed(1234)
nb_dataTitle <- train(form=Sentiment~.,

data=smote_dataTitle,
method = "naive_bayes",
trControl = ctrl5,
tuneGrid = expand.grid(# try different laplace corrections

usekernel = c(TRUE, FALSE),
laplace = 0:3,
adjust = 1:3

),
preProcess = c("zv", "center", "scale")
center and scale the data

)
nb_dataTitle

set.seed(1234)
nb10_dataTitle <- train(form=Sentiment~.,

data=smote_dataTitle,
method = "naive_bayes",
trControl = ctrl10,
tuneGrid = expand.grid(# try different laplace corrections

usekernel = c(TRUE, FALSE),
laplace = 0:3,
adjust = 1:3

),
preProcess = c("zv", "center", "scale")
center and scale the data

)
nb10_dataTitle

#3 dataReview_ST DATASET (stemmed TF-IDF representation of reviews)
SUPPORT VECTOR MACHINE
set.seed(1234) #linear svm 5 fold cv
svm5_dataReview_ST <- train(form=Sentiment~.,

data=smote_dataReview_ST,

120

method = "svmLinear",
trControl = ctrl5,
preProcess = c("center","scale"),
tuneLength=10,
metric="Accuracy"

)
svm5_dataReview_ST

set.seed(1234) #linear svm 10 fold cv
svm10_dataReview_ST <- train(form=Sentiment~.,

data=smote_dataReview_ST,
method = "svmLinear",
trControl = ctrl10,
preProcess = c("center","scale"),
tuneLength=10,
metric="Accuracy"

)
svm10_dataReview_ST # essentially no difference between 5 and 10 fold cv

RANDOM FOREST
set.seed(1234)
rf5_dataReview_ST<-train(form=Sentiment~.,

data=smote_dataReview_ST,
method="rf",
tuneLength = 10,
trControl=ctrl5,
metric="Accuracy"

)
rf5_dataReview_ST

set.seed(1234)
rf10_dataReview_ST<-train(form=Sentiment~.,

data=smote_dataReview_ST,
method="rf",
tuneLength = 10,
trControl=ctrl10,
metric="Accuracy"

)
rf10_dataReview_ST

NAIVE BAYES
set.seed(1234)
nb_dataReview_ST <- train(form=Sentiment~.,

data=smote_dataReview_ST,
method = "naive_bayes",
trControl = ctrl5,
tuneGrid = expand.grid(# try different laplace corrections

usekernel = c(TRUE, FALSE),
laplace = 0:3,
adjust = 1:3

),
preProcess = c("zv", "center", "scale")
center and scale the data

)
nb_dataReview_ST

set.seed(1234)
nb10_dataReview_ST <- train(form=Sentiment~.,

data=smote_dataReview_ST,

121

method = "naive_bayes",
trControl = ctrl10,
tuneGrid = expand.grid(# try different laplace

corrections
usekernel = c(TRUE, FALSE),
laplace = 0:3,
adjust = 1:3
),
preProcess = c("zv", "center", "scale")
center and scale the data

)
nb10_dataReview_ST

#4 dataTitle_ST DATASET (stemmed TF-IDF representation of titles)
SUPPORT VECTOR MACHINE
set.seed(1234) #linear svm 5 fold cv
svm5_dataTitle_ST <- train(form=Sentiment~.,

data=smote_dataTitle_ST,
method = "svmLinear",
trControl = ctrl5,
preProcess = c("center","scale"),
tuneLength=10,
metric="Accuracy"

)
svm5_dataTitle_ST

set.seed(1234) #linear svm 10 fold cv
svm10_dataTitle_ST <- train(form=Sentiment~.,

data=smote_dataTitle_ST,
method = "svmLinear",
trControl = ctrl10,
preProcess = c("center","scale"),
tuneLength=10,
metric="Accuracy"

)
svm10_dataTitle_ST

RANDOM FOREST
set.seed(1234)
rf5_dataTitle_ST<-train(form=Sentiment~.,

data=smote_dataTitle_ST,
method="rf",
tuneLength = 10,
trControl=ctrl5,
metric="Accuracy"

)
rf5_dataTitle_ST

set.seed(1234)
rf10_dataTitle_ST<-train(form=Sentiment~.,

data=smote_dataTitle_ST,
method="rf",
tuneLength = 10,
trControl=ctrl10,
metric="Accuracy"

)
rf10_dataTitle_ST

NAIVE BAYES

122

set.seed(1234)
nb_dataTitle_ST <- train(form=Sentiment~.,

data=smote_dataTitle_ST,
method = "naive_bayes",
trControl = ctrl5,
tuneGrid = expand.grid(# try different laplace

corrections
usekernel = c(TRUE, FALSE),
laplace = 0:3,
adjust = 1:3
),
preProcess = c("zv", "center", "scale")
center and scale the data

)
nb_dataTitle_ST

set.seed(1234)
nb10_dataTitle_ST <- train(form=Sentiment~.,

data=smote_dataTitle_ST,
method = "naive_bayes",
trControl = ctrl10,
tuneGrid = expand.grid(# try different laplace

corrections
usekernel = c(TRUE, FALSE),
laplace = 0:3,
adjust = 1:3
),
preProcess = c("zv", "center", "scale")
center and scale the data

)
nb10_dataTitle_ST

###################### MODEL VISUALIZATION FOR CV ##########################

library(forcats)
classifiers_dataReview <- c("SVM cv5", "SVM cv10", "RF cv5", "RF cv 10", "NB cv5",
"NB cv10")
accuracy_dataReview <- c(0.8942628, 0.8991565, 0.8582042, 0.8704380, 0.5384703,
0.5385157)
dataframe_dataReview <- data.frame(Classifier = classifiers_dataReview, Accuracy =
accuracy_dataReview)

ggplot(dataframe_dataReview, aes(x = Accuracy, y = fct_reorder(Classifier,
Accuracy))) +
geom_bar(stat = "identity", fill = "pink") +
labs(title = "Classifier Comparison for dataReview dataset", x = "Accuracy") +
theme_minimal()

classifiers_dataReview_ST <- c("SVM cv5", "SVM cv10", "RF cv5", "RF cv 10", "NB
cv5", "NB cv10")
accuracy_dataReview_ST <- c(0.8797476, 0.8961309, 0.8893287, 0.8871304, 0.5384682,
0.5385157)
dataframe_dataReview_ST <- data.frame(Classifier = classifiers_dataReview_ST,
Accuracy = accuracy_dataReview_ST)

ggplot(dataframe_dataReview_ST, aes(x = Accuracy, y = fct_reorder(Classifier,
Accuracy))) +
geom_bar(stat = "identity", fill = "magenta") +

123

labs(title = "Classifier Comparison for dataReview_ST dataset", x = "Accuracy")
+
theme_minimal()

classifiers_dataTitle <- c("SVM cv5", "SVM cv10", "RF cv5", "RF cv 10", "NB cv5",
"NB cv10")
accuracy_dataTitle <- c(0.9061675, 0.9207537, 0.8750143, 0.8775456, 0.5384682,
0.5385157)
dataframe_dataTitle <- data.frame(Classifier = classifiers_dataTitle, Accuracy =
accuracy_dataTitle)

ggplot(dataframe_dataTitle, aes(x = Accuracy, y = fct_reorder(Classifier,
Accuracy))) +
geom_bar(stat = "identity", fill = "lightskyblue") +
labs(title = "Classifier Comparison for dataTitle dataset", x = "Accuracy") +
theme_minimal()

classifiers_dataTitle_ST <- c("SVM cv5", "SVM cv10", "RF cv5", "RF cv 10", "NB
cv5", "NB cv10")
accuracy_dataTitle_ST <- c(0.8845955, 0.9036776, 0.8605278, 0.8560535, 0.5384682,
0.5385157)
dataframe_dataTitle_ST <- data.frame(Classifier = classifiers_dataTitle_ST,
Accuracy = accuracy_dataTitle_ST)

ggplot(dataframe_dataTitle_ST, aes(x = Accuracy, y = fct_reorder(Classifier,
Accuracy))) +
geom_bar(stat = "identity", fill = "lightskyblue4") +
labs(title = "Classifier Comparison for dataTitle_ST dataset", x = "Accuracy") +
theme_minimal()

############## PREDICTION CAPABILITIES AND CONFUSION MATRIX ##############

#1 dataReview DATASET (non stemmed TF-IDF representation of reviews)

svm5_dataReview_predict <- predict(svm5_dataReview, newdata = test_dataReview)
svm5_dataReview_cm <- confusionMatrix(svm5_dataReview_predict,
test_dataReview$Sentiment)
svm5_dataReview_cm$overall['Accuracy']

svm10_dataReview_predict <- predict(svm10_dataReview, newdata = test_dataReview)
svm10_dataReview_cm <- confusionMatrix(svm10_dataReview_predict,
test_dataReview$Sentiment)
svm10_dataReview_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_svm10_dataReview <- as.matrix(svm10_dataReview_cm$table)

Plot the heatmap
ggplot(data = as.data.frame(matrix_svm10_dataReview), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "red") +
ggtitle("Heatmap for SVM (dataReview)")

rf5_dataReview_predict <- predict(rf5_dataReview, newdata = test_dataReview)
rf5_dataReview_cm <- confusionMatrix(rf5_dataReview_predict,
test_dataReview$Sentiment)
rf5_dataReview_cm$overall['Accuracy']

124

rf10_dataReview_predict <- predict(rf10_dataReview, newdata = test_dataReview)
rf10_dataReview_cm <- confusionMatrix(rf10_dataReview_predict,
test_dataReview$Sentiment)
rf10_dataReview_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_rf10_dataReview <- as.matrix(rf10_dataReview_cm$table)

Plot the heatmap
ggplot(data = as.data.frame(matrix_rf10_dataReview), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "red") +
ggtitle("Heatmap for RanForest (dataReview)")

nb_dataReview_predict <- predict(nb_dataReview, newdata = test_dataReview)
nb_dataReview_cm <- confusionMatrix(nb_dataReview_predict,
test_dataReview$Sentiment)
nb_dataReview_cm$overall['Accuracy']

nb10_dataReview_predict <- predict(nb10_dataReview, newdata = test_dataReview)
nb10_dataReview_cm <- confusionMatrix(nb10_dataReview_predict,
test_dataReview$Sentiment)
nb10_dataReview_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_nb10_dataReview <- as.matrix(nb10_dataReview_cm$table)

Plot the heatmap
ggplot(data = as.data.frame(matrix_nb10_dataReview), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "red") +
ggtitle("Heatmap for Naive Bayes (dataReview)")

#2 dataTitle DATASET (non stemmed TF-IDF representation of title)

svm5_dataTitle_predict <- predict(svm5_dataTitle, newdata = test_dataTitle)
svm5_dataTitle_cm <- confusionMatrix(svm5_dataTitle_predict,
test_dataTitle$Sentiment)
svm5_dataTitle_cm$overall['Accuracy']

svm10_dataTitle_predict <- predict(svm10_dataTitle, newdata = test_dataTitle)
svm10_dataTitle_cm <- confusionMatrix(svm10_dataTitle_predict,
test_dataTitle$Sentiment)
svm10_dataTitle_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_svm10_dataTitle <- as.matrix(svm10_dataTitle_cm$table)

Plot the heatmap
ggplot(data = as.data.frame(matrix_svm10_dataTitle), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "blue") +

125

ggtitle("Heatmap for SVM (dataTitle)")

rf5_dataTitle_predict <- predict(rf5_dataTitle, newdata = test_dataTitle)
rf5_dataTitle_cm <- confusionMatrix(rf5_dataTitle_predict,
test_dataTitle$Sentiment)
rf5_dataTitle_cm$overall['Accuracy']

rf10_dataTitle_predict <- predict(rf10_dataTitle, newdata = test_dataTitle)
rf10_dataTitle_cm <- confusionMatrix(rf10_dataTitle_predict,
test_dataTitle$Sentiment)
rf10_dataTitle_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_rf10_dataTitle <- as.matrix(rf10_dataTitle_cm$table)

Plot the heatmap
ggplot(data = as.data.frame(matrix_rf10_dataTitle), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "blue") +
ggtitle("Heatmap for RanForest (dataTitle)")

nb_dataTitle_predict <- predict(nb_dataTitle, newdata = test_dataTitle)
nb_dataTitle_cm <- confusionMatrix(nb_dataTitle_predict, test_dataTitle$Sentiment)
nb_dataTitle_cm$overall['Accuracy']

nb10_dataTitle_predict <- predict(nb10_dataTitle, newdata = test_dataTitle)
nb10_dataTitle_cm <- confusionMatrix(nb10_dataTitle_predict,
test_dataTitle$Sentiment)
nb10_dataTitle_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_nb10_dataTitle <- as.matrix(nb10_dataTitle_cm$table)

Plot the heatmap
ggplot(data = as.data.frame(matrix_nb10_dataTitle), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "blue") +
ggtitle("Heatmap for Naive Bayes (dataTitle)")

#3 dataReview_ST DATASET (stemmed TF-IDF representation of title)

svm5_dataReview_ST_predict <- predict(svm5_dataReview_ST, newdata =
test_dataReview_ST)
svm5_dataReview_ST_cm <- confusionMatrix(svm5_dataReview_ST_predict,
test_dataReview_ST$Sentiment)
svm5_dataReview_ST_cm$overall['Accuracy']

svm10_dataReview_ST_predict <- predict(svm10_dataReview_ST, newdata =
test_dataReview_ST)
svm10_dataReview_ST_cm <- confusionMatrix(svm10_dataReview_ST_predict,
test_dataReview_ST$Sentiment)
svm10_dataReview_ST_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_svm10_dataReview_ST <- as.matrix(svm10_dataReview_ST_cm$table)

126

Plot the heatmap
ggplot(data = as.data.frame(matrix_svm10_dataReview_ST), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "orchid1") +
ggtitle("Heatmap for SVM (dataReview_ST)")

rf5_dataReview_ST_predict <- predict(rf5_dataReview_ST, newdata =
test_dataReview_ST)
rf5_dataReview_ST_cm <- confusionMatrix(rf5_dataReview_ST_predict,
test_dataReview_ST$Sentiment)
rf5_dataReview_ST_cm$overall['Accuracy']

rf10_dataReview_ST_predict <- predict(rf10_dataReview_ST, newdata =
test_dataReview_ST)
rf10_dataReview_ST_cm <- confusionMatrix(rf10_dataReview_ST_predict,
test_dataReview_ST$Sentiment)
rf10_dataReview_ST_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_rf10_dataReview_ST <- as.matrix(rf10_dataReview_ST_cm$table)

Plot the heatmap
ggplot(data = as.data.frame(matrix_rf10_dataReview_ST), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "orchid1") +
ggtitle("Heatmap for RanForest (dataReview_ST)")

nb_dataReview_ST_predict <- predict(nb_dataReview_ST, newdata =
test_dataReview_ST)
nb_dataReview_ST_cm <- confusionMatrix(nb_dataReview_ST_predict,
test_dataReview_ST$Sentiment)
nb_dataReview_ST_cm$overall['Accuracy']

nb10_dataReview_ST_predict <- predict(nb10_dataReview_ST, newdata =
test_dataReview_ST)
nb10_dataReview_ST_cm <- confusionMatrix(nb10_dataReview_ST_predict,
test_dataReview_ST$Sentiment)
nb10_dataReview_ST_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_nb10_dataReview_ST <- as.matrix(nb10_dataReview_ST_cm$table)

Plot the heatmap
ggplot(data = as.data.frame(matrix_nb10_dataReview_ST), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "orchid1") +
ggtitle("Heatmap for Naive Bayes (dataReview_ST)")

#4 dataReview_ST DATASET (stemmed TF-IDF representation of reviews)

svm5_dataTitle_ST_predict <- predict(svm5_dataTitle_ST, newdata =
test_dataTitle_ST)

127

svm5_dataTitle_ST_cm <- confusionMatrix(svm5_dataTitle_ST_predict,
test_dataTitle_ST$Sentiment)
svm5_dataTitle_ST_cm$overall['Accuracy']

svm10_dataTitle_ST_predict <- predict(svm10_dataTitle_ST, newdata =
test_dataTitle_ST)
svm10_dataTitle_ST_cm <- confusionMatrix(svm10_dataTitle_ST_predict,
test_dataTitle_ST$Sentiment)
svm10_dataTitle_ST_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_svm10_dataTitle_ST <- as.matrix(svm10_dataTitle_ST_cm$table)

Plot the heatmap
ggplot(data = as.data.frame(matrix_svm10_dataTitle_ST), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "seagreen4") +
ggtitle("Heatmap for SVM (dataTitle_ST)")

rf5_dataTitle_ST_predict <- predict(rf5_dataTitle_ST, newdata = test_dataTitle_ST)
rf5_dataTitle_ST_cm <- confusionMatrix(rf5_dataTitle_ST_predict,
test_dataTitle_ST$Sentiment)
rf5_dataTitle_ST_cm$overall['Accuracy']

rf10_dataTitle_ST_predict <- predict(rf10_dataTitle_ST, newdata =
test_dataTitle_ST)
rf10_dataTitle_ST_cm <- confusionMatrix(rf10_dataTitle_ST_predict,
test_dataTitle_ST$Sentiment)
rf10_dataTitle_ST_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_rf10_dataTitle_ST <- as.matrix(rf10_dataTitle_ST_cm$table)

Plot the heatmap
ggplot(data = as.data.frame(matrix_rf10_dataTitle_ST), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "seagreen4") +
ggtitle("Heatmap for RanForest (dataTitle_ST)")

nb_dataTitle_ST_predict <- predict(nb_dataTitle_ST, newdata = test_dataTitle_ST)
nb_dataTitle_ST_cm <- confusionMatrix(nb_dataTitle_ST_predict,
test_dataTitle_ST$Sentiment)
nb_dataTitle_ST_cm$overall['Accuracy']

nb10_dataTitle_ST_predict <- predict(nb10_dataTitle_ST, newdata =
test_dataTitle_ST)
nb10_dataTitle_ST_cm <- confusionMatrix(nb10_dataTitle_ST_predict,
test_dataTitle_ST$Sentiment)
nb10_dataTitle_ST_cm$overall['Accuracy']

Heatmap of confusion matrix
matrix_nb10_dataTitle_ST <- as.matrix(nb10_dataTitle_ST_cm$table)

Plot the heatmap

128

ggplot(data = as.data.frame(matrix_nb10_dataTitle_ST), aes(x = Reference, y =
Prediction, fill = Freq)) +
geom_tile() +
geom_text(aes(label = sprintf("%d", Freq)), vjust = 1) +
scale_fill_gradient(low = "white", high = "seagreen4") +
ggtitle("Heatmap for Naive Bayes (dataTitle_ST)")

######################## COMPARING DIFFERENT MODELS ##########################
using the resampling function, which essentially compares models using the same
resampling profiles (data)

#1
rsmp_dataReview <-
resamples(list(SVM=svm10_dataReview,RanForest=rf10_dataReview,NaiveBayes=nb10_data
Review))
bwplot(rsmp_dataReview, layout = c(3, 1), main="box and whisker plot for
dataReview", fill = "pink")

post_dataReview <-
postResample(pred=svm5_dataReview_predict,obs=test_dataReview$Sentiment)

#2
rsmp_dataTitle <-
resamples(list(SVM=svm10_dataTitle,RanForest=rf10_dataTitle,NaiveBayes=nb10_dataTi
tle))
bwplot(rsmp_dataTitle, layout = c(3, 1), main="box and whisker plot for
dataTitle", fill = "lightskyblue")

#3
rsmp_dataReview_ST <-
resamples(list(SVM=svm10_dataReview_ST,RanForest=rf10_dataReview_ST,NaiveBayes=nb1
0_dataReview_ST))
bwplot(rsmp_dataReview_ST, layout = c(3, 1), main="box and whisker plot for
dataReview_ST", fill = "magenta")

#4
rsmp_dataTitle_ST <-
resamples(list(SVM=svm10_dataTitle_ST,RanForest=rf10_dataTitle_ST,NaiveBayes=nb10_
dataTitle_ST))
bwplot(rsmp_dataTitle_ST, layout = c(3, 1), main="box and whisker plot for
dataTitle_ST", fill = "lightskyblue4")

129

8
References

[1] Maharani, W. (2013). Microblogging sentiment analysis with lexical based and machine
learning approaches. 2013 International Conference of Information and Communication
Technology. https://doi.org/10.1109/icoict.2013.6574616

[2] Algefes, A., Aldossari, N., Masmoudi, F., & Kariri, E. (2022). A Text-mining approach for
crime tweets in Saudi Arabia: From analysis to prediction. 7th International Conference on
Data Science and Machine Learning Applications.
https://doi.org/10.1109/cdma54072.2022.00023

[3] Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. M. (2013). Efficient estimation of word
representations in vector space. arXiv (Cornell University).
http://export.arxiv.org/pdf/1301.3781

[4] Rathi, M., Malik, A., Varshney, D., Sharma, R., & Mendiratta, S. (2018). Sentiment
Analysis of Tweets Using Machine Learning Approach. 2018 Eleventh International
Conference on Contemporary Computing. https://doi.org/10.1109/ic3.2018.8530517

[5] Goularas, D., & Kamis, S. (2019). Evaluation of Deep Learning Techniques in Sentiment
Analysis from Twitter Data. 2019 International Conference on Deep Learning and Machine
Learning in Emerging Applications, 978-1-7281-2914–3.
https://doi.org/10.1109/deep-ml.2019.00011

[6] Cambria, E. (2016). Affective Computing and Sentiment Analysis. IEEE Intelligent
Systems, 31(2), 102–107. https://doi.org/10.1109/mis.2016.31

[7] Vargas, M. P., Parra, O. J., & Rico, M. J. (2017). Business perception based on sentiment
analysis through deep neuronal networks for Natural Language Processing. Lecture Notes in
Computer Science, 10531, 365–374. https://doi.org/10.1007/978-3-319-67380-6_33

[8] Riekert, M., Leukel, J., & Klein, A. (2016). Online media sentiment: Understanding
machine learning-based classifiers. ResearchGate.

130

https://www.researchgate.net/publication/303862940_Online_media_sentiment_Understandi
ng_machine_learning-based_classifiers/citations

[9] Mudinas, A., Zhang, D., & Levene, M. (2012). Combining lexicon and learning based
approaches for concept-level sentiment analysis. WISDOM ’12: Proceedings of the First
International Workshop on Issues of Sentiment Discovery and Opinion Mining.
https://doi.org/10.1145/2346676.2346681

[10] Tsytsarau, M., & Palpanas, T. (2011). Survey on mining subjective data on the web.
Data Mining and Knowledge Discovery, 24(3), 478–514.
https://doi.org/10.1007/s10618-011-0238-6

[11] Quarteroni, S. (2018). Natural language processing for industry. Informatik Spektrum,
41(2), 105–112. https://doi.org/10.1007/s00287-018-1094-1

[12] May, M. C., Neidhöfer, J., Körner, T., Schäfer, L., & Lanza, G. (2022). Applying natural
language processing in manufacturing. Procedia CIRP, 115, 184–189.
https://doi.org/10.1016/j.procir.2022.10.071

[13] Single, J. I., Schmidt, J., & Denecke, J. (2020). Knowledge acquisition from chemical
accident databases using an ontology-based method and natural language processing.
Safety Science, 129, 104747. https://doi.org/10.1016/j.ssci.2020.104747

[14] Gui, Z., & Harth, A. (2021). Towards a Data Driven Natural Language Interface for
Industrial IoT Use Cases. 2021 IEEE 2nd International Conference on Human-Machine
Systems (ICHMS). https://doi.org/10.1109/ichms53169.2021.9582450

[15] Sergeeva, M. B., Voskobovich, V. V., & Kukharenko, A. M. (2022). Data processing in
Industrial Internet of Things (IIoT) applications : Industrial Agility. 2022 Wave Electronics and
Its Application in Information and Telecommunication Systems (WECONF).
https://doi.org/10.1109/weconf55058.2022.9803390

[16] van der Aa, H., Carmona, J., Leopold, H., Mendling, J., Padró, L. (2018). Challenges
and opportunities of applying natural language processing in business process
management. International Conference on Computational Linguistics. "COLING 2018: The
27th International Conference on Computational Linguistics: Proceedings of the Conference:
August 20-26, 2018 Santa Fe, New Mexico, USA". Stroudsburg, PA: Association for
Computational Linguistics, 2018, p. 2791-2801.

[17] Obradovic, D. (2016, January 15). THE ROLE INNOVATION ON STRATEGIC
ORIENTATIONS AND COMPETITIVENESS OF ENTERPRISES. OBRADOVIC | Ecoforum
Journal. http://ecoforumjournal.ro/index.php/eco/article/view/305. Date accessed: 24 Apr.
2023.

[18] Bahja, M. (2021). Natural Language Processing Applications in business. In IntechOpen
eBooks. https://doi.org/10.5772/intechopen.92203

[19] Ziora, L. (2021). Natural language processing in the support of business organization
management. IntelliSys 2021: Intelligent Systems and Applications, 76–83.
https://doi.org/10.1007/978-3-030-82199-9_6

131

[20] Global Risk Institute. (2022, November 9). Teaching Computers to Understand Human
Language: How Natural Language Processing is Reshaping the World of Finance - Global
Risk Institute.
https://globalriskinstitute.org/publication/teaching-computers-to-understand-human-language
-how-natural-language-processing-is-reshaping-the-world-of-finance/

[21] Zhecheva, D., Nenkov, N. (2022). Business demands for processing unstructured
textual data – text mining techniques for companies to implement. Access to science,
business, innovation in digital economy, ACCESS Press, 3(2): 107-120.
https://doi.org/10.46656/access.2022.3.2(2)

[22] Xing, F.Z., Cambria, E. & Welsch, R.E. (2018). Natural language based financial
forecasting: a survey. Artif Intell Rev 50, 49–73. https://doi.org/10.1007/s10462-017-9588-9

[23] Trappey, A. J., Trappey, C. V., Wu, J., & Wang, J. W. C. (2020). Intelligent compilation of
patent summaries using machine learning and natural language processing techniques.
Advanced Engineering Informatics, 43, 101027. https://doi.org/10.1016/j.aei.2019.101027

[24] Vashisht, V., & Dharia, P. (2020). Integrating Chatbot Application with Qlik Sense
Business Intelligence (BI) Tool Using Natural Language Processing (NLP). In Lecture notes
in networks and systems (pp. 683–692). https://doi.org/10.1007/978-981-15-2329-8_69

[25] García-Méndez, S., De Arriba-Pérez, F., Barba-Seara, O., Fernández-Gavilanes, M., &
González-Castaño, F. J. (2021). Demographic Market Segmentation on Short Banking
Movement Descriptions Applying Natural Language Processing. 2021 International
Symposium on Computer Science and Intelligent Controls (ISCSIC), 141–146.
https://doi.org/10.1109/iscsic54682.2021.00035

[26] Hartmann, J., & Netzer, O. (2023). Natural language processing in marketing. In Review
of marketing research (pp. 191–215). https://doi.org/10.1108/s1548-643520230000020011

[27] Tirunillai, S., & Tellis, G. J. (2014). Mining Marketing Meaning from Online Chatter:
Strategic Brand Analysis of Big Data Using Latent Dirichlet Allocation. Journal of Marketing
Research, 51(4), 463–479. https://doi.org/10.1509/jmr.12.0106

[28] Timoshenko, A., & Hauser, J. R. (2019). Identifying Customer Needs from
User-Generated Content. Marketing Science, 38(1), 1–20.
https://doi.org/10.1287/mksc.2018.1123

[29] Chakraborty, I., Kim, M., & Sudhir, K. (2022). Attribute Sentiment Scoring with Online
Text Reviews: Accounting for Language Structure and Missing Attributes. Journal of
Marketing Research, 59(3), 600–622. https://doi.org/10.1177/00222437211052500

[30] Alpaydin. (2016). Introduction to Machine Learning. (3rd ed.). The MIT Press.

[31] Kour, H., & Gondhi, N. K. (2020). Machine Learning Techniques: a survey. In Lecture
notes on data engineering and communications technologies (pp. 266–275).
https://doi.org/10.1007/978-3-030-38040-3_31

[32] Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of Machine Learning.
(2nd ed.). The MIT Press.

132

[33] Ziora, L. (2020). Machine learning solutions in the management of a contemporary
business organization. Journal of Decision Systems, 29(sup1), 344–351.
https://doi.org/10.1080/12460125.2020.1848378

[34] Zabin, J., & Jefferies, A. (2008). Social media monitoring and analysis: Generating
consumer insights from online conversation. Aberdeen Group Benchmark Report.
https://robertoigarza.files.wordpress.com/2008/10/rep-social-media-monitoring-and-analysis-
aberdeen-group-2008.pdf

[35] Muhammad, I. Z., & Zhu, Y. (2015). SUPERVISED MACHINE LEARNING
APPROACHES: a SURVEY. ICTACT Journal on Soft Computing, 05(03), 946–952.
https://doi.org/10.21917/ijsc.2015.0133

[36] Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised Machine Learning: A brief
primer. Behavior Therapy, 51(5), 675–687. https://doi.org/10.1016/j.beth.2020.05.002

[37] Mrabet, M. a. E., Makkaoui, K. E., & Faize, A. (2021). Supervised Machine Learning: A
Survey. 2021 4th International Conference on Advanced Communication Technologies and
Networking (CommNet), 1–10. https://doi.org/10.1109/CommNet52204.2021.9641998

[38] Choudhary, R., & Gianey, H. K. (2017). Comprehensive Review On Supervised Machine
Learning Algorithms. 2017 International Conference on Machine Learning and Data Science
(MLDS), 37–43. https://doi.org/10.1109/mlds.2017.11

[39] Mahesh, B. (2019). Machine Learning Algorithms – A Review. ResearchGate.
https://doi.org/10.21275/ART20203995

[40] Sen, P. C., Hajra, M., & Ghosh, M. (2019). Supervised Classification Algorithms in
Machine Learning: A Survey and review. In Advances in intelligent systems and computing
(pp. 99–111). https://doi.org/10.1007/978-981-13-7403-6_11

[41] N, T. R., & Gupta, R. (2020). A survey on machine learning approaches and its
techniques: 2020 IEEE International Students’ Conference on Electrical, Electronics and
Computer Science (SCEECS). https://doi.org/10.1109/sceecs48394.2020.190

[42] Kadhim, A. I. (2019). Survey on supervised machine learning techniques for automatic
text classification. Artificial Intelligence Review, 52(1), 273–292.
https://doi.org/10.1007/s10462-018-09677-1

[43] Salmony, M. Y. A., & Faridi, A. R. (2021). Supervised Sentiment Analysis on Amazon
Product Reviews: A survey. 2021 2nd International Conference on Intelligent Engineering
and Management (ICIEM). https://doi.org/10.1109/iciem51511.2021.9445303

[44] Khurana, D., Koli, A., Khatter, K., & Singh, S. (2022). Natural language processing: state
of the art, current trends and challenges. Multimedia Tools and Applications, 82(3),
3713–3744. https://doi.org/10.1007/s11042-022-13428-4

[45] Khan, W., Daud, A., Nasir J. A., Amjad, T. (2016) A survey on the state-of-the-art
machine learning models in the context of NLP. Kuwait Journal of Science. Vol. 43 No. 4.

[46] Naeem, S., Logofătu, D., & Muharemi, F. (2020). Sentiment analysis by using
supervised machine learning and deep learning approaches. In ICCCI 2020 Advances in

133

Computational Collective Intelligence (pp. 481–491).
https://doi.org/10.1007/978-3-030-63119-2_39

[47] Usha, G. R., & Dharmanna, L. (2021). Sentiment Analysis on Business Data using
Machine Learning. 2021 Second International Conference on Smart Technologies in
Computing, Electrical and Electronics (ICSTCEE), 1–6.
https://doi.org/10.1109/ICSTCEE54422.2021.9708593

[48] Rain, C. (2012). Analysis in Amazon reviews using probabilistic machine learning.
https://www.semanticscholar.org/paper/Analysis-in-Amazon-Reviews-Using-Probabilistic-Rai
n/f0afe9ea9d286248336ee9dc4e954aecde3475bb

[49] Singla, Z., Randhawa, S., & Jain, S. (2017). Sentiment analysis of customer product
reviews using machine learning. 2017 International Conference on Intelligent Computing and
Control (I2C2), 1–5. https://doi.org/10.1109/i2c2.2017.8321910

[50] Sultana, N., Kumar, P., Patra, M. R., & Alam, S. S. (2019). Sentiment Analysis for
Product Review. 2019 International Journal of Soft Computing.
https://doi.org/10.21917/ijsc.2019.0266

[51] Thada, V., & Shrivastava, U. (2020). Sentiment mining of product opinion data.
International Journal of Innovative Technology and Exploring Engineering, 9(3), 1218–1222.
https://doi.org/10.35940/ijitee.c8641.019320

[52] Hájek, P., & Barushka, A. (2019). A Comparative Study of Machine Learning Methods
for Detection of Fake Online Consumer Reviews. 3rd International Conference on
E-Business and Internet, 18–22. https://doi.org/10.1145/3383902.3383909

[53] Faul, A. C. (2019). A concise introduction to machine learning. (1st ed.). Chapman and
Hall/CRC. https://doi.org/10.1201/9781351204750

[54] Alpaydın, E. (2021). Machine learning. The MIT Press.
https://doi.org/10.7551/mitpress/13811.001.0001

[55] Brownlee, J. (2020, September 3). What is a Hypothesis in Machine Learning?
MachineLearningMastery.com. Retrieved June 25, 2023, from
https://machinelearningmastery.com/what-is-a-hypothesis-in-machine-learning/

[56] Dy, J. G., & Brodley, C. E. (2004). Feature Selection for Unsupervised Learning. Journal
of Machine Learning Research, 5, 845–889.

[57] Yale University Department of Statistics and Data Science. (n.d.). Linear Regression.
Retrieved July 1, 2023, from http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm

[58] Kutner, M. H. (2005). Applied Linear Statistical Models (5th ed.). McGraw-Hill/Irwin.

[59] Kleinbaum, D. G., & Klein, M. (2010). Logistic regression: A Self-Learning Text (3rd ed.).
Springer.

[60] Waila, P., Marisha, Singh, V. K., & Singh, M. K. (2012). Evaluating Machine Learning
and Unsupervised Semantic Orientation approaches for sentiment analysis of textual
reviews. 2012 IEEE International Conference on Computational Intelligence and Computing
Research, 1–6. https://doi.org/10.1109/iccic.2012.6510235

[61] Campesato, O. (2021). Natural language processing and machine learning for
developers. Mercury Learning and Information.

134

[62] Roldós, I. (2020b, December 22). Major Challenges of Natural Language Processing
(NLP). MonkeyLearn Blog. Retrieved August 8, 2023, from
https://monkeylearn.com/blog/natural-language-processing-challenges/

[63] Yse, D. L. (2021, December 31). Text normalization for Natural Language Processing
(NLP). Medium. Retrieved August 8, 2023, from
https://towardsdatascience.com/text-normalization-for-natural-language-processing-nlp-70a3
14bfa646

[64] Martin, J. H., & Jurafsky, D. (n.d.). Speech and Language Processing (Chapter 02, 3rd
Draft). Stanford University Press. Retrieved August 8, 2023, from
https://web.stanford.edu/~jurafsky/slp3/2.pdf

[65] Sharou, K. A., Li, Z., & Specia, L. (2021). Towards a Better Understanding of Noise in
Natural Language Processing. Proceedings of Recent Advances in Natural Language
Processing, 53–62. https://doi.org/10.26615/978-954-452-072-4_007

[66] Dong, G., & Liu, H. (2020). Feature engineering for machine learning and data analytics
(1st ed.). CRC Press.

[67] Bengfort, B., Ojeda, T., & Bilbro, R. (2018). Applied Text Analysis with Python: Enabling
Language Aware Data Products with Machine Learning. O’Reilly Media.

[68] Khanna, C. (2022, January 6). Word, Subword and Character-based tokenization: Know
the difference | Towards Data Science. Medium. Retrieved August 8, 2023, from
https://towardsdatascience.com/word-subword-and-character-based-tokenization-know-the-
difference-ea0976b64e17

[69] Khanna, C. (2022b, November 28). Text preprocessing: Stop words removal | Chetna |
Towards Data Science. Medium. Retrieved August 8, 2023, from
https://towardsdatascience.com/text-pre-processing-stop-words-removal-using-different-libra
ries-f20bac19929a

[70] Shmueli, G., Bruce, P. C., Gedeck, P., & Patel, N. R. (2019). Data mining for business
analytics: Concepts, Techniques and Applications in Python. John Wiley & Sons.

[71] Srinidhi, S. (2021, December 12). Understanding word n-grams and n-gram probability
in natural language processing. Medium. Retrieved August 9, 2023, from
https://towardsdatascience.com/understanding-word-n-grams-and-n-gram-probability-in-natu
ral-language-processing-9d9eef0fa058

[72] Li, H., Cai, D., Xu, J., & Watanabe, T. (2022). Residual Learning of Neural Text
Generation with n-gram Language Model. Findings of the Association for Computational
Linguistics: EMNLP 2022. https://doi.org/10.18653/v1/2022.findings-emnlp.109

[73] Brownlee, J. (2019, August 7). What are word embeddings for text?
MachineLearningMastery.com. Retrieved August 9, 2023, from
https://machinelearningmastery.com/what-are-word-embeddings/

[74] Vetsch, R. (2022, January 22). NLP — from word embedding to transformers | by Robin
| medium. Medium. Retrieved August 10, 2023, from
https://medium.com/@RobinVetsch/nlp-from-word-embedding-to-transformers-76ae124e628
1

[75] Anandika, A., & Mishra, S. (2019). A Study on Machine Learning Approaches for Named
Entity Recognition. 2019 International Conference on Applied Machine Learning (ICAML).
https://doi.org/10.1109/icaml48257.2019.00037

135

[76] Marshall, C. (2021, December 13). What is named entity recognition (NER) and how
can I use it? Medium. Retrieved August 11, 2023, from
https://medium.com/mysuperai/what-is-named-entity-recognition-ner-and-how-can-i-use-it-2
b68cf6f545d

[77] GeeksforGeeks. (2022, October 18). Named Entity recognition. Retrieved August 11,
2023, from https://www.geeksforgeeks.org/named-entity-recognition

[78] Goyal, A., Gupta, V., & Kumar, M. (2018). Recent Named Entity Recognition and
Classification techniques: A systematic review. Computer Science Review, 29, 21–43.
https://doi.org/10.1016/j.cosrev.2018.06.001

[79] Kurdi, M. Z. (2016). Natural Language Processing and Computational Linguistics 1 (1st
ed.). Wiley. https://doi.org/10.1002/9781119145554

[80] Lei, L., & Liu, D. (2021). Conducting Sentiment Analysis (Elements in Corpus
Linguistics). Cambridge: Cambridge University Press. doi:10.1017/9781108909679

[81] Ahlgren, O. (2016). Research on Sentiment Analysis: The First Decade. 2016 IEEE
International Conference on Data Mining Workshops, 890–899.
https://doi.org/10.1109/icdmw.2016.0131

[82] Kumar, A., & Sebastian, T. M. (2012). Sentiment Analysis: A Perspective on its Past,
Present and Future. International Journal of Intelligent Systems and Applications, 4(10),
1–14. https://doi.org/10.5815/ijisa.2012.10.01

[83] Mäntylä, M., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis — A
review of research topics, venues, and top cited papers. Computer Science Review, 27,
16–32. https://doi.org/10.1016/j.cosrev.2017.10.002

[84] Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and
Trends in Information Retrieval, 2(1–2), 1–135.
https://www.cs.cornell.edu/home/llee/omsa/omsa.pdf

[85] Bakrey, M. (2023, March 25). All about Lexicons In NLP - Mohamed Bakrey - Medium.
Medium. Retrieved August 20, 2023, from
https://mohamedbakrey094.medium.com/all-about-lexicons-in-nlp-12ada00c2821

[86] Mudinas, A., Zhang, D., & Levene, M. (2012b). Combining lexicon and learning based
approaches for concept-level sentiment analysis. WISDOM’12.
https://doi.org/10.1145/2346676.2346681

[87] Nichols, R. Linguistic Inquiry and Word Count | Centre for Human Evolution, Cognition,
and Culture. (n.d.). Retrieved August 25, 2023, from
https://hecc.ubc.ca/quantitative-textual-analysis/qta-practice/linguistic-inquiry-and-word-coun
t

[88] Tausczik, Y. R., & Pennebaker, J. W. (2009). The Psychological Meaning of Words:
LIWC and Computerized Text Analysis Methods. Journal of Language and Social
Psychology, 29(1), 24–54. https://doi.org/10.1177/0261927x09351676

[89] Baccianella, S. (2010). SentiWordNet 3.0: an enhanced lexical resource for sentiment
analysis and opinion mining. Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10).
http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf

[90] Sadia, A., Bashir, F., & Khan, F. (2018). An Overview of Lexicon-Based Approach For
Sentiment Analysis. 2018 3rd International Electrical Engineering Conference.

136

[91] Darwich, M., Noah, S. a. M., Omar, N., & Osman, N. A. (2019). Corpus-Based
Techniques for Sentiment Lexicon Generation: A Review. Journal of Digital Information
Management, 17(5), 296. https://doi.org/10.6025/jdim/2019/17/5/296-305

[92] Sharma, S. (2022, August 20). Sentiment analysis using the SentiWordNet Lexicon -
Srishti Sharma - Medium. Medium. Retrieved August 25, 2023, from
https://srish6.medium.com/sentiment-analysis-using-the-sentiwordnet-lexicon-1a3d8d856a10

[93] Deng, S., Sinha, A. P., & Zhao, H. (2017). Adapting sentiment lexicons to
domain-specific social media texts. Decision Support Systems, 94, 65–76.
https://doi.org/10.1016/j.dss.2016.11.001

[94] Al-Shabi, M. A. (2020). Evaluating the performance of the most important Lexicons used
to Sentiment analysis and opinions Mining. ResearchGate.
https://www.researchgate.net/publication/343473213_Evaluating_the_performance_of_the_
most_important_Lexicons_used_to_Sentiment_analysis_and_opinions_Mining

[95] Malde, R. (2022, March 30). A short introduction to VADER - towards data science.
Medium. Retrieved August 25, 2023, from
https://towardsdatascience.com/an-short-introduction-to-vader-3f3860208d53

[96] Jenhani, F., Gouider, M. S., & Saïd, L. B. (2016). Lexicon-Based System for Drug Abuse
Entity Extraction from Twitter. In Communications in computer and information science (pp.
692–703). https://doi.org/10.1007/978-3-319-34099-9_54

[97] Yusof, N. N., Mohamed, A., & Abdul-Rahman, S. (2015). Reviewing classification
approaches in sentiment analysis. In Communications in computer and information science
(pp. 43–53). https://doi.org/10.1007/978-981-287-936-3_5

[98] Chauhan, A., Agarwal, A., & Sulthana, R. (2021). Performance analysis of machine
learning algorithms and feature extraction methods for sentiment analysis. 2021 International
Conference on Innovative Computing, Intelligent Communication and Smart Electrical
Systems (ICSES). https://doi.org/10.1109/icses52305.2021.9633882

[99] Avinash, M., & Sivasankar, E. (2018). A study of feature extraction techniques for
sentiment analysis. In Advances in intelligent systems and computing (pp. 475–486).
https://doi.org/10.1007/978-981-13-1501-5_41

[100] Trupthi, M., Pabboju, S., & Narasimha, G. (2016). Improved feature extraction and
classification — Sentiment analysis. International Conference on Advances in Human
Machine Interaction (HMI - 2016),. https://doi.org/10.1109/hmi.2016.7449189

[101] Haberzettl, M., Bernd, M. (2018). A Literature Analysis for the Identification of Machine
Learning and Feature Extraction Methods for Sentiment Analysis. 2018 Thirteenth
International Conference on Digital Information Management (ICDIM).
https://doi.org/10.1109/icdim.2018.8846980

[102] Saif M. Mohammad; Ethics Sheet for Automatic Emotion Recognition and Sentiment
Analysis. Computational Linguistics 2022; 48 (2): 239–278. doi:
https://doi.org/10.1162/coli_a_00433

[103] Patti, V., Damiano, R., & Bosco, C. (2017). Ethical implications of analyzing opinions,
emotions and interactions in social media. 2017 Seventh International Conference on
Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW).
https://doi.org/10.1109/aciiw.2017.8272606

137

[104] Data protection and privacy legislation worldwide. (n.d.). UNCTAD. Retrieved
September 3, 2023, from
https://unctad.org/page/data-protection-and-privacy-legislation-worldwide

[105] Horizon 2020 Framework Programme of the European Union. (2018, November 29).
FAQ - GDPR.eu. GDPR.eu. Retrieved September 3, 2023, from https://gdpr.eu/faq/

[106] Cyberlaw Tracker: Country detail. (n.d.). UNCTAD. Retrieved September 3, 2023, from
https://unctad.org/page/cyberlaw-tracker-country-detail?country=br

[107] Bhaskaran. (2023, February 24). Deterministic vs Stochastic Machine Learning: Which
Approach Reigns Supreme in the World of AI? - AITechTrend. AITechTrend - Further into the
Future. Retrieved September 9, 16 C.E., from
https://aitechtrend.com/deterministic-vs-stochastic-machine-learning-which-approach-reigns-
supreme-in-the-world-of-ai/

[108] Kothari, V., [vivekkothari]. (2023, April 19). Difference between Deterministic and Non
deterministic Algorithms. GeeksforGeeks. Retrieved September 16, 2023, from
https://www.geeksforgeeks.org/difference-between-deterministic-and-non-deterministic-algor
ithms/

[109] Mehta, S. (2022, May 10). Deterministic vs Stochastic Machine Learning. Analytics
India Magazine. Retrieved September 16, 2023, from
https://analyticsindiamag.com/deterministic-vs-stochastic-machine-learning/

[110] Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018b). Foundations of Machine
Learning, second edition. MIT Press.

[111] Prasad, A. (2022, January 5). Regression Trees | Decision tree for Regression |
Machine learning. Medium. Retrieved September 17, 2023, from
https://medium.com/analytics-vidhya/regression-trees-decision-tree-for-regression-machine-l
earning-e4d7525d8047

[112] Rathi, M., Malik, A., Varshney, D., Sharma, R., & Mendiratta, S. (2018b). Sentiment
Analysis of Tweets Using Machine Learning Approach. 2018 Eleventh International
Conference on Contemporary Computing (IC3). https://doi.org/10.1109/ic3.2018.8530517

[113] IBM. (n.d.). What is Random Forest? | IBM. Retrieved September 17, 2023, from
https://www.ibm.com/topics/random-forest

[114] Sutton, H. (2020). Quantifying structure in random forests [M.Sc Thesis]. Simon Fraser
University.

[115] Lohith, O., Jha, A., & Tamboli, S. C. (2023). Comparative Analysis of Random Forest
Regression for House Price Prediction. International Journal of Creative Research Thoughts,
11.

[116] Syam, N., & Kaul, R. (2021). Random forest, bagging, and boosting of decision trees.
In Emerald Publishing Limited eBooks (pp. 139–182).
https://doi.org/10.1108/978-1-80043-880-420211006

[117] Zhu, J. (2018b). Probabilistic Machine Learning: Models, Algorithms and a
Programming Library. Probabilistic Machine Learning: Models, Algorithms and a
Programming Library Jun Zhu Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, 5754–5759. https://doi.org/10.24963/ijcai.2018/823

[118] Murphy, K. P. (2012). Machine learning: A Probabilistic Perspective. MIT Press.

138

[119] Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence.
Nature, 521(7553), 452–459. https://doi.org/10.1038/nature14541

[120] Martin, J. H., & Jurafsky, D. (n.d.). Speech and Language Processing (Chapter 04, 3rd
Draft). Stanford University Press. Retrieved August 8, 2023, from
https://web.stanford.edu/~jurafsky/slp3/2.pdf

[121] Kaur, P. (2022). Sentiment analysis using web scraping for live news data with
machine learning algorithms. Materials Today: Proceedings, 65, 3333–3341.
https://doi.org/10.1016/j.matpr.2022.05.409

[122] Ng, Q. X., Yau, C. E., Lim, Y. L., Wong, L., & Liew, T. M. (2022). Public sentiment on
the global outbreak of monkeypox: an unsupervised machine learning analysis of 352,182
twitter posts. Public Health, 213, 1–4. https://doi.org/10.1016/j.puhe.2022.09.008

[123] Gupta, S., Bisht, S., & Gupta, S. (2021). Sentiment Analysis of an Online Sentiment
with Text and Slang Using Lexicon Approach. In Springer eBooks (pp. 95–105).
https://doi.org/10.1007/978-981-16-1502-3_11

[124] W. Suwanpipob, N. Arch-int and M. Wattana, "A Sentiment Classification from Review
Corpus using Linked Open Data and Sentiment Lexicon," 2021 13th International
Conference on Information Technology and Electrical Engineering (ICITEE), Chiang Mai,
Thailand, 2021, pp. 19-23, doi: 10.1109/ICITEE53064.2021.9611898.

[125] Bigné, E., Ruiz, C., Pérez‐Cabañero, C., & Cuenca, A. C. (2023). Are customer star
ratings and sentiments aligned? A deep learning study of the customer service experience in
tourism destinations. Service Business, 17(1), 281–314.
https://doi.org/10.1007/s11628-023-00524-0

[126] History | De’ Longhi Group - Corporate website. (n.d.). Retrieved October 20, 2023,
from https://www.delonghigroup.com/en/group/history

[127] Wertz, J. (2021, January 31). Changes In Consumer Behavior Brought On By The
Pandemic. Forbes. Retrieved October 20, 2023, from
https://www.forbes.com/sites/jiawertz/2021/01/31/changes-in-consumer-behavior-brought-on
-by-the-pandemic/

139

Acknowledgements

In the vast world of academia, where every paragraph feels like a triumph and every
bibliography entry a small victory, I can now finally enter this work. It has been the result of
over two incredible years of adventures in a new field, a new university and, above all, a new
country.

First and foremost, I extend my deepest gratitude to Associate Professor Marta Disegna,
who has supported and guided me from the beginning to the end of this thesis project. Your
knowledge and patience have transformed it into a coherent, well thought out work.

To Nicolò Biasetton, who saved the applied project from utter ruin and myself from hours
upon hours of staring into the screen, going blind debugging one part of the code or another.
Trust that your previous experiences and projects in the field were put to good use.

My sincerest gratitude for the support crew of this entire journey, from beginning to end –
and beyond. To Salva for all of the coffee (brioche) and the pep talks, to Aliya for always
being the brighter side of everything, and to Nima for taking me in and being the voice of
reason (usually). To Anastasiia, for finding the courage to speak up and becoming a dear
friend. Every single one of you is nothing short of exceptional. You have weathered the
storms (exams) and celebrated every small victory (anything above 27) alongside me, and I
wouldn’t change any part of it all.

To the ones I have carried with me from 10.000 kilometers away, for never being far. To
Carla, for all of the calls, the grown up discussions, steering me away from procrastination
and giving me all of the support when you were also going through it yourself. To Alexya for
venturing all the way out here (twice) just to teach me how to order a coca cola con ghiaccio.
To Lara, for over two decades of friendship, simple words are not enough. Every single one
of you is (stuck) with me for life.

Above all else, to my family.

To my family, for the unwavering belief in me, even before I had it myself, for keeping me
sane, for laughing and crying together from so far a distance, and the occasional
motivational cat photo. I could not have achieved this without you (and the cats).

Last, but certainly not least, I want to thank myself. It was challenging and it was hard work,
it was overwhelming and joyous. This thesis represents the culmination of over two years of
growth, of adventures, deadlines and (some) study. And I did it.

140

